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Abstract

Motivation: Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without dam-
aging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anti-
cancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an
increasing number of research groups are devising computational prediction methods to guide the discovery of po-
tential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interac-
tions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be
developed.

Results: In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following
assumption: SL interactions are caused by different molecular events or biological processes, which we define as
SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the
preferences of genes for different SL-related factors, making the results more interpretable for biologists and
clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related
knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message
aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph,
constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-
to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN
model outperforms all current state-of-the-art SL prediction methods and provides better interpretability.

Availability and implementation: SLGNN is freely available at https://github.com/zy972014452/SLGNN.

Contact: lijunyi@hit.edu.cn

1 Introduction

Developing effective anticancer drugs is a high priority research
topic at medical and health research institutions worldwide.
Identifying biochemical pathways that can be therapeutically tar-
geted is a key step in developing new compounds. Synthetic lethality
(SL) is an interaction between genes that, when both genes are
mutated, can lead to reduced cell viability or even cell death, while
mutations in only one of the genes in the pair not lethal (Guo,
2016). SL can selectively treat cancer cells by identifying existing
mutations and targeting their synthetic lethal partners (Zhang,
2021). Detecting suitable lethal partners conventionally relies on
high-throughput experimental laboratory screening technology,
commonly using RNA interference (RNAi) (Luo, 2009) followed by
genome editing through CRISPR (Du et al., 2017). However, such
approaches have severe limitations. For example, RNAi screening is

prone to off-target effects increasing the risk of clinical use
(Topatana, 2020). In addition, the high cost, and relatively long-
time scale limits the practical use of laboratory experiment-based
screening of SL interactions.

To overcome these limitations, computational approaches are
gaining considerable interest. Current computational methods can
be subdivided into two categories: knowledge-based methods, and
supervised machine learning (Long et al., 2021). Knowledge-based
approaches use prior knowledge, or assumptions, to predict SL gene
pairs, mainly based on observations on known SL gene pairs. For
example, DAISY (Jerby-Arnon et al., 2014) used a data-driven
approach to identify SL interactions within the genome, based on
co-expressed but not co-mutated properties of SL gene pairs. Sinha
et al. (2017) used genomics data from multiple sources to predict SL
interactions, including mutations and copy number variations.
While effective, the use of this approach is clearly limited by the
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need for prior information related to SL, such as insight into bio-
logical metabolic networks, gene regulation, or other know interac-
tions between previously recognized SL gene pairs. Clearly, such
strategy is suboptimal in predicting novel SL interaction.

Advances in machine-learning-based methods resulted in its suc-
cessful use in tasks, such as drug repurposing and gene–disease cor-
relation in bioinformatics. Encouraged by these results, machine-
learning methods have also been applied to predict SL interactions.
The method proposed by Paladugu et al. (2008) obtained gene fea-
tures from protein–protein interaction (PPI) network and used the
extracted features to train a support vector machine classifier for SL
interaction prediction. Das et al. (2019) predicted SL interactions
using multi-omics data from the Cancer Genome Atlas database
using a random forest model. Subsequently, Benstead-Hume et al.
(2019) utilized gene features derived from PPI network and the
Gene Ontology database to train a random forest model for SL
interaction prediction. These methods are primarily based on trad-
itional machine-learning processes. First, the features of genes are
collated from different sources of data, and then the prediction
model of SL interaction is derived by machine learning. As an alter-
native, there are methods based on graph representation learning.
These methods model SL interactions as a graph, where the gene of
interest is represented as a central node and potential SL interaction
partners are located at the periphery. Graph representation learning
relies on an encoder–decoder paradigm, in which the encoder propa-
gates information between nodes through the topology of the graph
to obtain low-dimensional representations of node features. The de-
coder part uses these features to complete downstream tasks like
node classification, link prediction and community discovery
(Hamilton, 2020). Depending on the implementation of this con-
cept, there are two different forms of graph representation learning:
matrix factorization (MF)-based methods and graph neural network
(GNN)-based methods. Huang et al. (2019) proposed one such
method, GRSMF, that used a self-representative MF encoder to pre-
dict SL interactions. Another approach, SL2MF (Liu et al., 2020),
obtained the features of genes by factorized differential gene similar-
ity matrices from various sources and used these to predict potential
SL interactions. Liany et al. (2020) used collective matrix factoriza-
tion (CMF) to model multiple matrices for SL interaction prediction.
A drawback of MF-based methods is that they simply generate a fea-
ture for each node, without parameter sharing or using node fea-
tures, effectively a form of shallow embedding (Hamilton, 2020).
Alternative approaches using GNNs can effectively alleviate this
limitation. Cai et al. (2020) modeled SL interactions into a graph
and used a novel dual-drop GNN to solve the sparsity problem of
interaction networks. Long et al. (2021) proposed a novel graph
contextualized attention network, GCATSL that predicted SL inter-
actions by aggregating gene feature graphs from different sources
based on an attention mechanism.

The above GNN- and MF-based methods attempt to capture the
underlying biological mechanisms of SL by modeling the similarity
of gene nodes. However, this capture process needs to be improved
as it has limitations in the expressive capacity of homogeneous
graphs. To mitigate the impact of this problem, Wang et al. (2021)
proposed a knowledge graph-based approach, KG4SL, and was the
first to apply this in biomedicine for the prediction of SL interac-
tions. This method utilizes the rich semantic information present in
the knowledge graph to capture the underlying mechanism of SL.
While KG4SL uses the underlying mechanisms of SL interaction to
enhance gene embedding it does not model these from the perspec-
tive of interpretability. Specifically, it cannot attribute a perceived
importance value to different entities and relationships in the know-
ledge graph. Thus, the embedded information remains uninterpret-
able. For example, biological processes, such as gene expression or
gene regulation, may have different importance in distinct SL inter-
actions. The clinical utilization of SL prediction based on machine
learning is limited by the lack of information regarding its biomed-
ical relevance, its interpretability. Consequently, novel computation-
al approaches are needed to solve this defect (Wang, 2022).

To solve this problem, we propose an improved approach,
SLGNN, for SL prediction that models the preferences of genes in

distinct relationships in the knowledge graph, and thus allowing a
better understanding of the underlying biological mechanisms.
SLGNN is based on an assumption that SL interactions are caused

by different molecular events or biological processes, such as gene
regulation and co-involvement of genes in biological pathways. We

refer to them as SL-related factors that lead to SL interactions. For
the convenience of description, ‘factor’ in the following text refers to
‘SL-related factor’. For example, Poly (adenosine diphosphate-

ribose) polymerase 1 and breast cancer 1 represent a biologically
and medically relevant SL pair, with both molecules being involved

in DNA repair. The recognition of the interaction between these
molecules in the same biological process led to the development of
the first SL-based PARP inhibitor for the treatment of cancer (Lord

and Ashworth, 2017). In this example, the DNA repair process
appears to be the decisive factor in SL interaction between the two

genes, giving an intuitive insight into this SL mechanism. By model-
ing the preferences of genes for different SL-related factors, the
model becomes more interpretable, giving insight into the underly-

ing biology. The computational process underpinning SLGNN is
divided into three parts: first, we model the combination of relation-
ships in the gene-related knowledge graph as SL-related factors lead-

ing to SL interaction. Second, we obtain the initial embeddings of
genes through the explicit message aggregation of the knowledge

graph; third, we obtain the final gene embeddings through an SL
graph constructed using known SL gene pairs and based on the
factor-based message aggregation mechanism. Finally, a supervised

end-to-end training model is used for SL interaction prediction. In
comparisons the proposed SLGNN outperformed five other state-

of-the-art methods, while providing better interpretability.

2 Materials and methods

In this section, we introduce the data used and the formulation of
the problem. Then, we describe the details of each module of

SLGNN.

2.1 Data description
SynLethDB (Guo et al., 2016) is a database containing a large num-

ber of currently known SL gene pairs. It was derived from biochem-
ical analysis, correlation databases and data mining. The latest
version of SynLethDB contains a gene-related knowledge graph

called SynLethKG. This provides a graphic representation of 36 402
SL interactions between 10 004 genes. Because the SynLethDB only

contains positive samples of SL interactions, to alleviate the impact
of distribution differences between positive and negative samples,
we used the method utilized in KG4SL to generate negative samples

with the same number as the positive numbers. SynLethKG is a SL-
related biomedical knowledge graph containing 11 entities and 24

relationships related to genes. The details of SynLethKG are shown
in Tables 1 and 2.

Table 1. Numbers of the entities in the SynLethKG

Type No. of entities

Anatomy 400

Biological process 12 703

Cellular component 1670

Compound 2065

Disease 136

Gene 25 260

Molecular function 3203

Pathway 2069

Pharmacologic class 377

Side effect 5702

Symptom 427
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2.2 Problem formulation
SL graph. We intended to model SL interaction as a graph S ¼
V;Eð Þ; where V is the set of n genes and E is the set of SL interac-

tions. We denote A 2 R
n�n as the adjacency matrix of this graph. If

vi and vj have a SL interaction, then, Aij is equal to 1, otherwise Aij

is equal to 0, modeling interactions between genes as a SL graph.
Knowledge graph. KG stores the attributes of real-world entities

and the correlation between these entities in the form of heteroge-
neous information networks. The correlations are modeled as dis-

tinct relationships (Shi et al., 2017). We denote SynLethKG as
G ¼ Ve;Erð Þ; where Ve represents the entities in KG and Er repre-
sents the relationships in KG. KG can be represented as a collection

of triples G ¼ fðh; t; rÞjh; t 2 Ve; r 2 Erg, where each triple ðh; t; rÞ
represents the relationships r between head entity h and tail entity t.
It is worth noting that we set the edges in the knowledge graph to be
undirected, which means that the number of relationships in the KG
is doubled.

Task description. Given SL graph S and SynLethKG G, our task
is to automatically generate gene embeddings through SynLethKG

G, then perform link prediction in the SL graph S to identify poten-
tial SL pairs.

2.3 Overview of SLGNN
The overall framework of the model, which consists of three main
components, is illustrated in Figure 1.

Factor modeling. We assume that the SL interactions are caused
by different SL-related factors and model these factors to enhance

the interpretability of the model.
Knowledge graph message aggregation. Through knowledge

graph convolutional networks, we perform explicit message aggre-

gation on entity embeddings in knowledge graphs, the embeddings
of genes at the knowledge graph level are obtained.

Factor-based message aggregation. We take the gene embedding
obtained from the knowledge graph as the input and perform a mes-

sage aggregation on the SL graph, incorporating the preference of a
given gene for different factors into the aggregation process.

2.3.1 Factor modeling

We aim to obtain SL-related factors that determine SL interaction,
representing the commonness of all SL interactions. Although we
can simply represent these factors as vectors, it is difficult to assign
explicit biological meaning to these. Inspired by KGIN (Wang et al.,
2021), we model these factors as combinations of relationships in
the KG. This approach derives the embeddings of factors directly
from the relationships in KG, providing them with a meaning that
can be explained. Suppose P is a factor set shared by all genes.
Technically, for each factor p 2 P, we use the following formula to
derive its embedding:

ep ¼
X
r2Er

a r;pð Þer; (1)

where er is the embedding of a relationship in KG, and aðr;pÞ is a
trainable parameter. In this way, we obtain jPj different factor
embeddings.

Different factors should represent independent information (Ma
et al., 2019). If the embedding of a factor can be represented by the
embeddings of several factors, then this factor is likely to be redun-
dant. On the contrary, if these factors are independent of each other
than these they will contain more information. Here, we use dis-
tance correlation (Székely et al., 2007) as a regularizer to maintain
independence between factor embeddings. Distance correlation
measures the correlation between two variables and equals zero if,
and only if, the two variables are independent of each other. By min-
imizing the distance correlation between factor embeddings, the cor-
relation between factors can be reduced, according to the following
formula:

LIND ¼
X

p;p0 2P;p 6¼p0
dCor ep; ep0ð Þ; (2)

where dCorð�Þ is the distance correlation between two different fac-
tor embeddings:

dCor ep; ep0ð Þ ¼
dCov ep; ep0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVar epð Þ � dVar ep0ð Þ
q ; (3)

where dCovð�Þ is the distance covariance and dVarð�Þ is the distance
variance of factor embeddings. By optimizing the above objectives,
different factors can generate effective boundaries, improving the in-
terpretability of the model.

2.3.2 Knowledge graph message aggregation

We obtain the initial embedding of a gene through message aggrega-
tion of the KG, which avoids the manual design of gene features and
can generate features through the rich information represented in
the KG. KGNN (Lin et al., 2020) used a knowledge graph convolu-
tional network to automatically generate entity embeddings and we
follow this message aggregation mechanism with slight
modifications.

Relationships in KG play an important role in the knowledge
graph convolution network based on the message passing mechan-
ism, as they connect entities. A notable feature of KG is that the
same entities could be linked through different relationships that
correspond to distinct biological processes. Therefore, it is necessary
to distinguish different relationships during message aggregation. In
previous work, KGNN used an attention mechanism to model the
KG relationships as decay factors, in order to control the influences
of different neighbors. To enhance the performance of the model,
we take a different approach to aggregate messages for different
relationships in a process that is explicit:

e
ð1Þ
i ¼

1

jN ij
X

ðr;jÞ2N i
er � e 0ð Þ

j ; (4)

where N i ¼ fðr; jÞj i; r; jð Þ 2 Gg is the neighbor entity set of entity i,
er is the embedding of relationship r, e 0ð Þ

j is the embedding of entity j

Table 2. Numbers of the relationships in the SynLethKG

Type No. of entities

(Gene, participates, cellular component) 97 652

(Gene, participates, biological process) 619 712

(Anatomy, expresses, gene) 617 175

(Gene, regulates, gene) 267 302

(Gene, interacts, gene) 147 638

(Disease, associates, gene) 24 328

(Gene, participates, molecular function) 110 042

(Gene, covaries, gene) 62 966

(Gene, participates, pathway) 57 441

(Disease, upregulates, gene) 7730

(Compound, causes, side effect) 139 428

(Compound, binds, gene) 16 323

(Anatomy, upregulates, gene) 26

(Disease, presents, symptom) 3401

(Disease, localizes, anatomy) 3373

(Compound, treats, disease) 752

(Disease, resembles, disease) 404

(Disease, downregulates, gene) 7616

(Compound, upregulates, gene) 19 200

(Compound, downregulates, gene) 21 526

(Compound, resembles, compound) 6266

(Pharmacologic class, includes, compound) 1205

(Compound, palliates, disease) 384

(Anatomy, downregulates, gene) 31

Synthetic lethality prediction based on GNN 3
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and � is an element-wise product. This way, first-order neighbor
messages for each entity can be aggregated. To aggregate the mes-
sages of the higher-order neighbors, we recursively set the know-
ledge graph convolution network to a multilayer network:

e
ðlþ1Þ
i ¼ 1

jN ij
X

ðr;jÞ2N i
er � e lð Þ

j : (5)

Through this l-layer convolution network, the embeddings of enti-
ties in KG are obtained and we focus on the derived gene embedding
by the sum of the representation of each layer:

ei ¼ e
ð0Þ
i þ e

ð1Þ
i þ � � � þ e Lð Þ

i ; (6)

where L is the number of layers.

2.3.3 Factor-based message aggregation

After obtaining the initial gene embedding through KG message ag-
gregation, we use a factor-based message aggregation to derive gene
embeddings in the SL graph. Specifically, gene embedding eðlþ1Þ of
the lþ1 layer of the KG convolutional network is used to obtain the
corresponding gene embedding hðlþ1Þ.

For a given a gene, individual factors make a different contribu-
tion to the SL interaction associated with it. We use an attention
mechanism to measure the importance of these factors for a given
gene. For gene i 2 V, the attention score bði; pÞ is:

b i; pð Þ ¼
exp eT

p h lð Þ
i

� �

P
p0 2P exp eT

p0
h lð Þ

i

� � ; (7)

where ep is the embedding of factor p and h lð Þ
i is the embedding of

the l-th layer obtained by gene i after the factor-based message ag-
gregation, while h 0ð Þ

i is a randomly initialized embedding.
Intuitively, gene i should generate different embeddings for each

factor before message aggregation. Therefore, we use graph

attention networks (GATs) (Veli�ckovi�c et al., 2017) to aggregate
messages in the SL graph, adaptively deriving different gene embed-
dings. We input the gene embeddings of layer lþ1 of the knowledge
graph convolutional network into jPj different GATs, deriving the

h
ðlþ1Þ
i;p corresponding to the layer lþ1:

h
ðlþ1Þ
i;p ¼

X
j2N i

cp i; jð Þe lþ1ð Þ
j ; (8)

cp i; jð Þ ¼
expðrðaT

p ½Wpe lþ1ð Þ
i jjWpe lþ1ð Þ

j �ÞÞ
P

k2N i
expðrðaT

p ½Wpe lþ1ð Þ
i jjWpe lþ1ð Þ

k �Þ
; (9)

where cp i; jð Þ is the attention score in GAT-p, N i ¼ jj i; jð Þ 2 S
� �

is

the neighbor set of gene i in SL graph, e lþ1ð Þ
j is the embedding of

gene j obtained by lþ1 layer of knowledge graph convolution net-
work, Wp is a projection matrix, ap is a weight vector that is differ-

ent for each factor and r is an activation function, here, we use
LeakyReLU. Finally, we further aggregate these gene embeddings
generated by the GATs based on the attention scores of factors:

h
ðlþ1Þ
i ¼

X
p2P

b i; pð Þep � h lþ1ð Þ
i;p ; (10)

where h
ðlþ1Þ
i;p is the embedding of gene i obtained by GAT-p, ep is the

embedding of factor p, � is the element-wise product and b i; pð Þ is
the attention score of gene i to factor p. Following the same strategy
used for factor modeling, we attempt to make different GAT-
generated embeddings independent of each other to express more
information:

LGAT ¼
X

p;p0 2P;p6¼p0
dCorðhavg

p ;h
avg

p0
Þ; (11)

where havg
p represents the average embedding of all genes obtained

by GAT-p. Finally, we add each layer of gene embedding to obtain
the final gene embedding hi:

Fig. 1. The overall architecture of SLGNN. (a) Overview of the framework. Here gi represents a gene node in the SL graph and the initial gene entity embedding e 0ð Þ
i is used as

input. ei represents the gene embedding obtained by KG message aggregation and hi represents the gene embedding obtained by factor-based message aggregation. (b) KG mes-

sage aggregation. The figure shows the first-order and second-order subgraphs of entity e1 in the KG, and the neighbors are connected to e1 through the relationship ri. (c)

Factor-based message aggregation. Gene embedding h 0ð Þ
1 and factor embeddings epi

receive an attention score b through the attention mechanism. The gene embeddings

obtained by KG message aggregation e 1ð Þ
i are input into four different GATs to get embeddings h

ð1Þ
1;p, where c represents the attention score in the GAT. Finally, the gene embed-

ding h
ð1Þ
1 is obtained by aggregation
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hi ¼ h
ð0Þ
i þ h

ð1Þ
i þ � � � þ h

ðLÞ
i ; (12)

where L is the number of layers.

2.4 Model optimization
The inner product of the two embeddings hi and ej for the gene pair
i, j is used as the probability of a SL interaction. The cross-entropy is
calculated using the probability value ŷij and the truth label:

ŷij ¼ rððhiÞTejÞ; (13)

LBCE ¼ �
1

jEtj
X

i;j2Et
yij � lnðŷijÞ þ ð1� yijÞ � lnð1� ŷijÞ; (14)

where r is sigmoid function. Et is the set of SL interactions in the
training set.

Independence losses LIND; LGAT and L2-normalization losses of
the model parameter Lnorm must also be considered. Regularization
parameters include the embeddings of entities, the embeddings of
relationships and the projection matrixes. The final loss function is
defined as:

L ¼ LBCE þ k1ðLIND þ LGATÞ þ k2Lnorm; (15)

where k1 and k2 are two hyperparameters that control the independ-
ence loss and the L2-normalization loss, respectively.

3 Results

In this section, we first introduce the state-of-the-art baseline meth-
ods and the implementation details, followed by parameter sensitiv-
ity analysis and model ablation study. Finally, we give an example
of model interpretability.

3.1 Experimental setups
3.1.1 Baseline methods

To validate the performance of SLGNN, we compare it to some re-
cently published state-of-the-art SL interaction prediction methods.
The first and second of these are based on MF, the third and fourth
on graph convolution network, while the final one represents a
knowledge graph convolution network. Note that, the first four
methods do not use KGs to generate gene embeddings:

• SL2MF (Liu et al., 2020) predicts SL interactions based on logical

MF.
• CMF (Liany et al., 2020) uses CMF to model multiple matrices.
• DDGCN (Cai et al., 2020) predicts sparse SL interaction based

on dual-dropout GCN.
• GCATSL (Long et al., 2021) adopts a context-based attention

network for SL prediction.
• KG4SL (Wang et al., 2021) represents the first KG enhanced SL

interaction prediction model.

3.1.2 Implementation details

The dataset was randomly divided into training set, validation set
and test set at a ratio of 8:1:1. To make the experimental result
more convincing, we used 5-fold cross-validation for all methods.
For all baselines, we used the hyperparameters and model parame-
ters described in the original paper. Our proposed SLGNN was
implemented in Python3.9 and PyTorch1.10. The GATs were
implemented using the DGL (Wang et al., 2019) framework, and
parameters, such as dropout rate and negative slope, were set
according to default settings in the original GAT paper. The model
learning rate was set to 0.002 and an early stopping strategy was
used. Due to memory constraints, we randomly dropout edges in
the KG with a ratio of 0.5. In the KG, we used word embeddings
in PyTorch to obtain unique embeddings for entities and

relationships, and a random initialization applying a standard nor-
mal distribution.

A greedy strategy was used to confirm the optimal hyperpara-
meters. At first, initial hyperparameters were set from related experi-
ence, then, each hyperparameter was optimized one by one.
Specifically, the coefficients of constraints k1 and k2 were tuned in
f10�5, 10�4, 10�3, 10�2g, the number of GNN layers was tuned in
f1, 2, 3g, the number of factors was tuned in f1, 2, 4, 8g and the di-
mension size was tuned in f32, 64, 128, 256g.

3.2 Performance evaluation
We compare the performance of SLGNN with the five previously
described baseline models according to three evaluation metrics:
AUC, AUPR and F1-score. As shown in Table 3, SLGNN outper-
forms all baseline methods. The AUC, AUPR and F1-score of
SLGNN is 0.9635, 0.9710 and 0.9089, respectively, i.e. 2.1%,
1.8% and 2.9% higher than the second-best model. Compared to
MF methods with shallow embedding, GNN-based methods take
advantage of the topological structure of the graph to propagate in-
formation, and exploit the similarity of known SL interactions, thus
improving model performance. The comparisons indicate that the
two KG-based methods, KG4SL and our proposed SLGNN, exhibit
greatly improved performance as they benefit from the enhanced
embedding facilitated by the rich semantic knowledge present in the
KG. However, to generate gene embeddings, KG4SL only uses an at-
tention mechanism to distinguish different relationships in gene sub-
graphs, without considering the semantic information of
relationship embeddings. From the comparisons carried out it is
clear that SLGNN circumvents this limitation and performs better
at generating gene embeddings for the purposes of SL interaction
prediction.

3.3 Parameter sensitivity
In this section, we explore the influence of some parameters on the
performance of the model. Though experiments, SLGNN achieves
the best results when the number of GNN layers is 3, the number of
factors is 4, the weight factor k1 is 10�4, k2 is 10�3 and the embed-
ding dimension is 256. Therefore, we use these optimal hyperpara-
meters as the default setting while performing sensitivity analyses on
each hyperparameter. As illustrated in Figure 2, the performance of
the model increases with an increasing dimension setting. A higher
number of factors initially improve performance that reach its peak
at four. Increasing the number further results in a slow decline in the
performance. Intuitively, as the number of network layers increases,
the gene entities in the knowledge graph can perceive entity informa-
tion that is farther away, helping to improve model performance.
The result shown in Figure 2 is consistent with this intuition.
Regarding the L2-normalization parameter k2, it can be seen from
the figure that the model performance initially improved with
increasing weight factor, reach its optimum, and then start to
decline.

We also explore the influence of the hyperparameter k1 control-
ling independence loss. As shown in Table 4, when k1 increases, the
distance correlation between factor embeddings also grows. This is
also accompanied by a slight decrease of the AUC, indicating that

Table 3. Comparing the performance of the different methods (the

best result is shown in bold and the second-best result is

underlined)

Methods AUC AUPR F1

SL2MF 0.7912 6 0.0024 0.8637 6 0.0054 0.7478 6 0.0077

CMF 0.8023 6 0.0035 0.8422 6 0.0042 0.7565 6 0.0016

DDGCN 0.8413 6 0.0089 0.8851 6 0.0065 0.8133 6 0.0065

GCATSL 0.9214 6 0.0022 0.9450 6 0.0033 0.8631 6 0.0076

KG4SL 0.9436 6 0.0019 0.9539 6 0.0008 0.8833 6 0.0017

SLGNN 0.9635 6 0.0017 0.9710 6 0.0010 0.9089 6 0.0017
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when the factors are closer to each other they contained more se-
mantic information, improving model performance.

3.4 Ablation study
In this section, we explore the relative contribution of individual
components to the performance of the model, by eliminating indi-

vidual components one by one.
First, we verify the influence of factor modeling. To do so, we cre-

ate a variant of the model, SLGNNw/o F in which the factor modeling
component is removed resulting in the direct use of GAT to aggregate
messages in the SL graph. When the SLGNNw/o F is compared to the

original model, it results a significant reduction in model performance.
As shown in Table 5, the altered model is inferior to KG4SL, clearly

indicating the contribution of factor modeling.
Next, we explore the importance of GATs to the performance of

the model. Similarly, we create another variant of the model
SLGNNw/o G, which does not use GATs in the factor-based message
aggregation process. As shown in Table 5, the performance of this

variant to the model is also inferior, clearly indicating that our strat-
egy of using GAT to generate different gene embeddings with pre-
served independence is an effective way to get a better performance.

3.5 Interpretability of SLGNN
In this section, we explain the semantics of factors used in the model
and give an example to illustrate the interpretability of result
obtained by SLGNN.

It is readily apparent that not all factors influence an interaction
that results in SL. Thus, various combinations of factors in the
model are weighted differently to reflect the importance of distinct
factors. Of the possible relationships illustrated in Figure 3, in the
composition of factor p1 two particular relationships (gene, partici-
pates, biological process) and (disease, downregulates, gene) carry
the highest weights. This suggests that relationships describing the
interaction between genes and disease and the participation of genes
in biological processes are the most likely to contain a factor leading
to SL. As can be seen from the figure, by maintaining the independ-
ence between the factors, the KG relationship with the highest
weight is different in each factor, improving the interpretability of
the model.

We can explain the interpretability of our proposed model from
another perspective. The importance of factors leading to SL interac-
tions differs for each gene. In other words, genes have certain bias to
given factors. As can be seen from the figure, gene357 and gene33 124

result in a SL interaction that can be derived through the attention
mechanism. In this example, factor p3 has the highest attention score
indicating that p3 is the main factor that causes the SL interaction
between gene357 and gene33 124. From the semantics of factor p3, we
can explore the specific mechanism of SL interaction between these
two genes.

4 Conclusion and discussion

In this article, we propose a knowledge graph-based model SLGNN
for the prediction of SL interactions, while also modeling the SL-
related factors that lead to SL interactions to improve the biological
interpretability of the results. First, the factors leading to SL inter-
action are modeled as weighted sums of different relationships in
KG, and the independence of factors is maintained by minimizing
the distance correlation between them. Then, the GNN-based mes-
sage aggregation mechanism is used to obtain initial embeddings for
the genes in KG. Finally, we conduct a factor-based message aggre-
gation through the SL graph and use GATs to improve the perform-
ance of the model. The experimental results show that our proposed
SLGNN is superior to five existing state-of-the-art methods in pre-
dicting SL interactions.

Despite its remarkable performance, SLGNN still has some limi-
tations. For example, gene embeddings obtained through the KG
graph is coupled and this has an impact on both interpretability and
performance. To further improve this drawback in future work, we
will attempt to use the decoupling representation learning, similar to
that described in DisenKGAT (Wu et al., 2021), to achieve higher
quality gene embeddings. In addition, due to the sparsity of the SL
graph, negative samples were created using theoretical considera-
tions and may contain potential positive samples. In this work, we
simply generated negative samples by randomly sampling. This
strategy is essentially unreliable and its use in the training of the
model may reduce the accuracy of predictions. Adopting alternative

Fig. 2. The effect of various hyperparameters of the model. This figure shows the im-

pact of four hyperparameters on model performance, including the embedding di-

mension, the number of factors, the number of layers and the weight factor k2

controlling L2-normalization

Table 4. The impact of independence between the factors

k1 AUC AUPR Distance correlation

10�5 0.9598 6 0.0024 0.9656 6 0.0016 2.3653

10�4 0.9612 6 0.0035 0.9688 6 0.0019 1.0275

10�3 0.9635 6 0.0017 0.9710 6 0.0010 0.0245

10�2 0.9622 6 0.0013 0.9697 6 0.0012 0.0043

Table 5. Comparison of SLGNN and model variants

Model AUC AUPR F1

SLGNN 0.9635 6 0.0017 0.9710 6 0.0010 0.9089 6 0.0017

SLGNNw/o F 0.9345 6 0.0012 0.9422 6 0.0041 0.8715 6 0.0032

SLGNNw/o G 0.9558 6 0.0021 0.9664 6 0.0013 0.8915 6 0.0016

Fig. 3. An example of SGNN interpretability. The top-2 KG relationships and their

weights in the factors are shown on the left, an example of SL interactions between

gene pairs indicated by factors is shown on the right
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strategies, such as contrastive learning, may alleviate the problem of
the imbalance between positive and negative samples, improving
quality of negative sampling (Jiang et al., 2021). Obtaining reliable
negative samples is one of our future research goals.
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