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Analyses of astrophysical data provide first hints on the self-interactions of dark matter at low energies.
Lattice calculations of dark matter theories can be used to investigate them, especially in the case of
strongly interacting dark matter. We consider Sp(4) gauge theory with two fundamental fermions as a
candidate theory. We compute the scattering phase shift for the scattering of two identical dark pions and
determine the parameters of the effective range expansion. Our exploratory results in the supposedly
most common interaction channel provide a lower limit for the dark matter mass when compared to
astrophysical data. We also provide first benchmarks of velocity-weighted cross sections in the relevant
nonrelativistic domain.

DOI: 10.1103/PhysRevD.110.054513

I. INTRODUCTION

There exists a large amount of astrophysical data that is
not compatible with known physics [1,2]. One of the
simplest explanations is the existence of a yet unknown
type of matter. Despite a substantial amount of effort very
little is known to date about the nature of this dark matter.
A currently widely debated scenario is self-interacting

dark matter (SIDM) [3–11]. One example of such a theory
is a hidden confining dark sector. We consider the scenario
in which this sector is described by a local Sp(4) gauge
group and two degenerate, relatively heavy, flavors of
fermions in the fundamental representation. This theory is
well-motivated as a SIDM model making use of a 3 → 2
cannibalization process [12,13] which is known as the
strongly interacting massive particle (SIMP) process.1

In addition, at low fermion masses, this theory is a
candidate for composite Higgs and other beyond the
standard model scenarios [16–21]. Since both scenarios
are relevant for phenomenological studies for physics
beyond the Standard Model, the spectral properties of this
theory were investigated for a wide range of parameters

both in the framework of chiral perturbation theory (χPT),
and on the lattice [22–27].
However, in view of the lack of any signal of dark matter,

these known spectral properties are not sufficient to verify
the theory.Dynamical information such as scattering proper-
ties is needed.2 Scattering properties have been studied in
SU(2) gauge theories before [32–34].We provide here a first
study in this context of Sp(4) gauge theories. The strength of
dark matter self-interaction can be constrained from studies
of galaxies and galaxy clusters using results of simulated
dark matter halos; see e.g. [4,6–8]. While this astrophysical
data still exhibit large systematic uncertainties, these are
expected to decrease considerably [10].
Thus, there is a need for such first-principle calculations

of dark matter properties. The aim of this work is to provide
first lattice-based, nonperturbative predictions that can
directly be compared to astrophysical data. We eventually
find a lower bound for the dark matter mass of about
100 MeV taking astrophysical data at face value under the
assumption that one scattering channel dominates the total
scattering cross section.
To this end, we start in Sec. II with a description of this

road map, and especially what kind of lattice inputs are
needed. For the motivation of the underlying theory which
is described in Sec. III, as well as its spectral properties, we
refer to the literature [12,13,22,24,25]. In Sec. IV we
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1In an effective description such a 3 → 2 process is inherited
by the Wess-Zumino-Witten term [14,15]. 2We note in passing that the same data can be used to constrain

form factors relevant to direct detection experiments [28,29].
These are already experimentally explored in the direct detection
experiment CRESST [30]. However, the dependence on the
messenger sector, which we do not model, precludes a direct
comparison to the present study. Similarly, the electric polar-
izability can be studied [31].
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describe the details of the lattice calculation to obtain the
inputs identified in Sec. II. Readers not interested in
the technical details can skip this section. We combine
the lattice calculations with the road map discussed in
Sec. II in Sec. V, delivering our final results. We summarize
the paper with a short discussion and conclude in Sec. VI.
Preliminary results have been presented in [35,36].

II. MOTIVATION

In the current absence of a direct detection of dark matter,
astrophysical simulations of dark matter provide valuable
input to constrain its properties. Recent investigations
provided upper bounds on the self-interaction cross section
from various sources as low as σ=m < 0.13 cm2=g (with
possible systematic errors of order 0.1 cm2/g) [7], σ=m <
0.19 cm2=g [8], and σ=m < 0.35 cm2=g [6]. The typical
velocities in these systems are of order Oð1000 km=sÞ, the
escape velocity of galaxies. The velocity weighted cross
section hσvi was investigated in [4,6], and it was found that
their results prefer a mild velocity dependence.
In the following, we present how to arrive at this quantity

from first-principle calculations from lattice field theory.
We start by defining the velocity-weighted cross section,

hσvi ¼
Z

vesc

0

vσðvÞfðv; hviÞdv;

fðvÞ ¼ 32v2

π2hvi3 exp
�
−

4v2

πhvi2
�
: ð1Þ

Here, v is the relative velocity between two dark matter
particles, which we describe by a Maxwell-Boltzmann
distribution with mean velocity hvi [37],3 vesc is the escape
velocity of the halo which we assume to be much larger
than hvi and σ is the cross section. One finds that hσvi
depends solely on the cross section as a function of v. It is
useful to decompose the cross section in terms of partial
wave amplitudes,

σ ¼
Z

dΩ
dσ
dΩ

;

dσ
dΩ

¼ 1

ð16πÞ2
1

p2
jMj2;

M ¼ 16π
X
l

ð2lþ 1Þeiδl sinðδlÞPlðcos θÞ; ð2Þ

where the last lines show the decomposition of the matrix
elementM in partial waves. Here, dΩ ¼ sinðθÞdθdϕ is the

solid angle, p is the relative momentum in the center-of-
mass frame and δl is the scattering phase-shift of angular
momentum quantum number l. It is useful to introduce the
cross section of the different partial waves as

σlðpÞ ¼ 4πð2lþ 1Þ 1

p2
sin2ðδlÞ: ð3Þ

At small momenta above the elastic threshold the phase
shift δl can be described by an effective range expansion
(ERE)4

p2lþ1 cot δl ¼ −
1

a2lþ1
l

þ p2

2r2l−1l

þOðp4Þ: ð4Þ

This expansion is valid for rlp≲ 1, which is always
fulfilled for typical velocities of dark matter in galaxies.
We consider here ERE for s-wave scattering to second
order which includes the scattering length a0 and the
effective range r0. The s-wave (l ¼ 0) cross section using
ERE then reads,

σ0ðpÞ ¼
4πa20

j1 − a0r0
2
p2 þ ipa0j2

: ð5Þ

We can relate the momentum and the mass to a velocity via
p ¼ mvγ, where γ is the Lorentz factor. This framework
allows us to fit the discrete data points of phase shifts and
momenta that we get from the lattice to obtain the cross
section as a function of the velocity. As can be seen from
(1), this is sufficient to calculate the velocity-weighted
cross section.
Note that in Ref. [39] the aforementioned results on the

velocity-dependent cross section from astrophysical data
from [4] have been used to determine the best-fit coef-
ficients of the ERE. In contrast, we will determine these
parameters from a first principle lattice simulations for a
candidate theory. They can be compared to this fit, to
understand (possible) deviations of our candidate theory
from the optimal, yet unknown, true theory of dark matter.

III. THE CONTINUUM THEORY

The Lagrangian of Sp(4) gauge theory in isolation with
two mass-degenerate fundamental Dirac fermions with a
bare mass m0 in Minkowski spacetime is given by

L ¼ −
1

2
TrFμνFμν þ ūðiγμDμ −m0Þu

þ d̄ðiγμDμ −m0Þd: ð6Þ
3It can be shown that the distribution of the relative velocities

between two particles, each described by a Maxwell-Boltzmann
distribution, again follows a Maxwell-Boltzmann distribution
where the mass is substituted by the reduced mass of the two
particles. For equal masses this means that the mean relative
velocity is

ffiffiffi
2

p
times the mean velocity of a single particle.

4There are different sign conventions for the scattering length
in the literature. In this paper, we are working with the convention
used in [38,39]. In contrast, other papers like [32,40,41] use the
opposite sign convention for the leading coefficient al.
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In analogy to QCD we denote the two fermion fields as u
and d. Here Fμν is the field strength tensor of Sp(4) gauge
theory andD is the covariant derivative involving the gauge
fields in the fundamental representation as

Dμu ¼ ∂μuþ igAμu ¼ ∂μuþ igAa
μτ

au: ð7Þ

Due to the pseudoreality of the generators,5 the global
symmetries of the Lagrangian are enlarged in comparison
to QCD-like theories with a complex representation [42].
The massless Lagrangian is invariant under a global
Uð1ÞA × SUð4Þ acting on the fermion fields. The Uð1ÞA
is broken by the axial anomaly and the global SU(4) is
broken spontaneously by the fermion condensate and
explicitly by nonvanishing fermion masses down to a
global Sp(4) symmetry.
Spontaneous chiral symmetry breaking gives rise to the

SU(4)/Sp(4) coset and thus five light pseudo-Nambu-
Goldstone bosons (pNGBs) [43], which are the DM
candidates referred to as dark pions. Our goal is to
determine their scattering cross sections as outlined
in Sec. II.
The scattering of two pions can occur in three different

channels classified under remaining global Sp(4) sym-
metry. Mesons that consist out of two fundamental fer-
mions are either in a five-dimensional representation, a ten-
dimensional representation, or singlet representation. This
follows from the decomposition of the product of two four-
dimensional fundamental representations into its irreduc-
ible representations (irreps) as [44,45]

4 ⊗ 4 ¼ 1 ⊕ 5 ⊕ 10: ð8Þ

The pions live in the five-dimensional irrep of Sp(4)
whereas the vector mesons live in the ten-dimensional
irrep. For two-pion scattering the irreps of the two-pion
product state are relevant which are given by

5 ⊗ 5 ¼ 1 ⊕ 10 ⊕ 14: ð9Þ

Pions will scatter in each of these three channels, which
need to be calculated separately on the lattice. We can
identify these channels with their equivalent processes in
QCD. The scattering channel involving the ten-dimensional
representation and the one-dimensional representation can
contain other single-meson states. Borrowing the QCD
nomenclature, these resonances occur e.g. in processes
such as ππ → ρ for the ten-dimensional irrep and ππ →
σ=f0 for the singlet representation. In QCD, those would be
the isospin I ¼ 1 and isospin I ¼ 0 channels. In this paper,
we focus on the 14-dimensional representation which can
be shown to involve (among other equivalent processes) the

scattering of two identical pions [32] such as πþπþ, and
thus corresponds to the isospin I ¼ 2 channel in QCD. It
arguably contributes most to the total cross section since 14
out of the total 25 combinations of pions scatter in this
channel.

IV. LATTICE SETUP

We discretize the Euclidean action using the standard
Wilson plaquette action and two mass-degenerate unim-
proved Wilson Dirac fermions [46] on hypercubic lattices
with a volume of L3 × T ¼ a4N3

L × NT . The gauge con-
figurations were generated using the hybrid Monte Carlo
(HMC) [47] algorithm. We perform measurements on the
configurations with the HiRep code [48,49] which has been
extended to symplectic gauge groups [50]. An overview of
the ensembles characterized by the inverse gauge coupling
β ¼ 8=g2 and the bare fermion masses m0 is given in
Table I. The ensembles have been partially generated for
earlier spectroscopic investigations in [22,24,51]. We
supplemented these ensembles by new ones where needed
such that for every set of bare parameters ðβ; am0Þ, we have
at least three different lattices sizes NL and thus at least
three different lattice momenta.

A. Interpolating operators

In order to extract the scattering properties in the isospin
I ¼ 2 channel, we need to compute the energy difference
between the interacting and noninteracting pions in a finite
volume; see also Sec. IV B. Thus, we need to compute the
energies of both one-pion and two pion states. For this, we
consider the local one-pion and two-pion interpolators

OπðxÞ ¼ ūðxÞγ5dðxÞ; ð10Þ

OππðxÞ ¼ OπðxÞOπðxÞ ¼ ūðxÞγ5dðxÞūðxÞγ5dðxÞ; ð11Þ

Oγ0γ5ðxÞ ¼ ūðxÞγ0γ5dðxÞ; ð12Þ

and calculating the two-point correlation function projected
to zero momentum

COðt − t0Þ ¼
X
x⃗;y⃗

hŌðx⃗; tÞOðy⃗; t0Þi: ð13Þ

By formally inserting the complete set of states of the
Hamiltonian, the correlator can be written as

COðtÞ ¼
X
n

1

2En
h0jŌjnihnjOj0ie−Ent: ð14Þ

At large Euclidean times the correlator will be dominated
by the ground-state energy, assuming that a suitable
operator basis with a sufficient overlap was chosen. If
the excited state contributions decay quickly enough, the

5This means that there is a color matrix S for which SτaS ¼
ðτaÞT for all generators τa.

SCATTERING OF DARK PIONS IN SP(4) GAUGE THEORY PHYS. REV. D 110, 054513 (2024)

054513-3



ground-state energy can be extracted by fitting the corre-
lator’s exponential decay at large t. We check that this
dominance of the ground state is indeed the case, by
visually inspecting an effective mass meffðtÞ implicitly
defined on a lattice with temporal extent T as

Cðt − 1Þ
CðtÞ ¼ e−meffðtÞ·ðt−1Þ � e−meffðtÞ·ðT−ðt−1ÞÞ

e−meffðtÞ·t � e−meffðtÞ·ðT−tÞ ; ð15Þ

which will show a plateau if the behavior of the correlator is
well-approximated by a single exponential term. The sign

is chosen to be positive for symmetric correlators and
negative for antisymmetric correlators.
In order to compare our results with the predictions of

leading-order χPT, we determine the pion decay constant
from the μ ¼ 0 axial-vector operator (12). The unrenormal-
ized decay constant f0π is defined through the corresponding
matrix element.6 Thus, at large Euclidean times the

TABLE I. All ensembles used in this work. They are defined by the inverse gauge coupling β, the bare fermion masses of the
degenerate fermions am0 in lattice units, the lattice extent (NL × NT ) and the number of configurations nconfig. We further give the ratio
of the pseudoscalar meson mass to the vector meson mass mπ=mρ as well as the ground-state energy in lattice units for the one-pion
channel mπ and the two-pion channel Eππ . For comparison with the leading-order χPT prediction we report the perturbatively
renormalized pion decay constant fπ .

β am0 NL NT nconfig mπ=mρ amπ aEππ afπ hPi
6.9 −0.87 10 20 976 0.8744(43) 0.7425(12) 1.4961(22) 0.1313(25) 0.550680(46)
6.9 −0.87 12 24 400 0.8754(41) 0.7414(15) 1.4891(27) 0.13195(91) 0.550441(54)
6.9 −0.87 16 32 100 0.8762(28) 0.74060(96) 1.4820(23) 0.1324(35) 0.550525(61)

6.9 −0.9 8 16 651 0.795(11) 0.6241(25) 1.2799(48) 0.1014(44) 0.557959(99)
6.9 −0.9 8 24 402 0.811(12) 0.6267(26) 1.2806(53) 0.0969(20) 0.55796(10)
6.9 −0.9 10 20 1273 0.7998(38) 0.5738(12) 1.1602(26) 0.1044(21) 0.557172(40)
6.9 −0.9 12 24 2904 0.8110(22) 0.56409(54) 1.1339(14) 0.10484(87) 0.557009(18)
6.9 −0.9 14 24 942 0.8115(27) 0.56222(63) 1.1280(16) 0.10599(58) 0.556981(26)
6.9 −0.9 16 32 546 0.8156(28) 0.56275(57) 1.1283(12) 0.1064(13) 0.556921(25)
6.9 −0.9 18 36 356 0.8135(24) 0.56121(58) 1.1245(12) 0.10576(91) 0.556987(24)

6.9 −0.91 12 24 1268 0.7698(77) 0.4920(10) 0.9950(27) 0.0949(13) 0.559351(28)
6.9 −0.91 14 24 513 0.7756(81) 0.4857(12) 0.9781(29) 0.0945(23) 0.559409(34)
6.9 −0.91 16 32 435 0.7658(65) 0.48610(86) 0.9765(19) 0.0948(23) 0.559353(27)

6.9 −0.92 12 24 63 0.738(61) 0.416(19) 0.885(14) 0.0853(68) 0.56145(14)
6.9 −0.92 14 24 550 0.699(10) 0.3926(14) 0.7914(40) 0.0724(19) 0.562096(34)
6.9 −0.92 16 32 176 0.670(11) 0.3894(14) 0.7848(35) 0.0821(15) 0.562116(42)
6.9 −0.92 24 32 467 0.7035(31) 0.38649(51) 0.7734(12) 0.08260(35) 0.562077(14)

7.05 −0.835 8 24 402 0.777(13) 0.6585(60) 1.345(15) 0.0481(47) 0.577085(74)
7.05 −0.835 12 24 313 0.790(11) 0.4616(15) 0.9424(32) 0.0792(14) 0.575237(39)
7.05 −0.835 14 24 619 0.7877(91) 0.4417(17) 0.9085(30) 0.0793(20) 0.575368(25)
7.05 −0.835 20 36 100 0.7945(61) 0.4380(10) 0.8792(27) 0.0796(31) 0.575269(29)

7.05 −0.85 12 24 84 0.611(33) 0.3778(57) 0.786(22) 0.0582(39) 0.577835(69)
7.05 −0.85 14 24 167 0.716(26) 0.3496(25) 0.7236(67) 0.0675(17) 0.577429(44)
7.05 −0.85 16 32 101 0.660(17) 0.3375(17) 0.6892(41) 0.0669(11) 0.577413(41)
7.05 −0.85 24 36 100 0.7118(64) 0.33076(97) 0.6638(23) 0.0684(19) 0.577371(24)

7.2 −0.78 8 24 401 0.8770(81) 0.8089(42) 1.617(11) 0.0402(50) 0.590527(59)
7.2 −0.78 10 20 195 0.648(16) 0.5508(48) 1.1345(88) 0.0497(20) 0.589788(65)
7.2 −0.78 12 24 150 0.835(19) 0.4382(34) 0.9024(84) 0.0569(14) 0.589547(56)
7.2 −0.78 14 24 425 0.7762(83) 0.3857(14) 0.7951(35) 0.06569(73) 0.589362(26)
7.2 −0.78 16 32 265 0.7930(90) 0.3809(11) 0.7703(31) 0.0645(11) 0.589253(22)
7.2 −0.78 24 36 508 0.7852(30) 0.36963(39) 0.74360(79) 0.0646(26) 0.5892779(85)

7.2 −0.794 12 24 101 0.732(26) 0.3932(63) 0.823(13) 0.0389(24) 0.590837(54)
7.2 −0.794 14 24 234 0.691(31) 0.3234(26) 0.6888(66) 0.0533(14) 0.590422(39)
7.2 −0.794 16 32 101 0.796(27) 0.3097(17) 0.6463(50) 0.0570(13) 0.590330(40)
7.2 −0.794 28 36 504 0.7163(57) 0.28524(35) 0.57582(97) 0.05689(71) 0.5904516(67)

6We chose a convention that corresponds to fπ ≈ 93 MeV for
the QCD pion.
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correlator Eq. (13) on a lattice with finite temporal extent T
of Eq. (12) has the form,

lim
t→∞

COγ0γ5
ðtÞ ¼ 1

2mπ
jh0jOγ0γ5 jPSij2ðe−mπ t þ e−mπðT−tÞÞ

¼ ðf0πÞ2mπ

2
ðe−mπ t þ e−mπðT−tÞÞ: ð16Þ

For the purposes of this investigationwe follow the approach
of [18,24] and estimate the renormalization constant ZA

needed for the renormalized pion decay constant fπ ¼ ZAf0π
using leading order lattice perturbation theory [52]. We
stress, that this is only used for comparing to the effective
field theory predictions and has no effect on our determi-
nation of the scattering properties.
The Wick contractions for the correlators defined by (13)

with the lattice sites n and m made explicit, can be
represented diagrammatically as [32]

ð17Þ

ð18Þ

where solid lines denote the fermion propagator with
suppressed color and spin indices DðnjmÞ−1 between the
lattice sites n and m.
We use Z2 × Z2 stochastic noise sources with spin-

dilution [53] for the inversion of the Dirac operator. For
the pion correlator we always choose four different sources
to calculate the one-to-all propagator. For the two-pion
operators we use 4 ≤ nsrc ≤ 16 sources. We find that the
number of sources used has no quantitative impact within
statistical uncertainties on the extracted energies.
The two-pion correlator can receive a constant contri-

bution to the sum of exponentials in (14). This is a generic
feature for scattering states of multiple hadrons [54,55] due
to the two pions propagating in opposite directions on the
periodic lattice. A similar behavior has also been observed
for simulations at finite temperature in the high temperature
phase; see Ref. [56] for a detailed discussion and a
comparison of different techniques to remove this contri-
bution. This constant is indeed found to be sizable in our
correlation functions. We therefore remove this constant
contribution by performing a numerical derivative on the
correlator CðtÞ,

C̃ðtÞ ¼ Cðt − 1Þ − Cðtþ 1Þ
2

: ð19Þ

Note, that this changes the correlator from a symmetric
quantity with respect to the lattice midpoint T=2 to an
antisymmetric one.

For the fitting of the correlator, we use the corrfitter
package to extract energy levels [57]. It allows us to keep
the fit stable using a Bayesian approach. We typically
exclude the first three data point in Euclidean time t and fit
the remaining correlator to several exponential terms. For
the results shown here we only consider one operator
for the two-pion channel. To improve the systematics and to
get more data points in the Lüscher analysis, one could
include more operators with nonvanishing momentum and/
or smeared operators in the respective channel and perform
a variational analysis by solving the generalized eigenvalue
problem. In light of the exploratory nature of this paper, we
defer this to future work.
For the Lüscher analysis, we need the energy of two

noninteracting pions. This energy is given by twice the pion
mass in the infinite volume limit. We determine it by fitting
the masses obtained in a finite spatial volume L3 to the
function

mπðLÞ ¼ m∞
π

�
1þ A

e−m
∞
π L

ðm∞
π LÞ−3=2

�
: ð20Þ

This form of the fit function is motivated by chiral lattice
perturbation theory. Within this framework the coefficient
A is not a free parameter. However, we choose to follow
[22] and treat A as a free parameter to account for
deviations from χPT. The results from the fits are presented
in Table II.

B. Lüscher analysis

Interactions between particles shift the finite volume
energy levels compared to the continuum. The Lüscher
analysis [58–60] is a tool to relate these energy shifts to
infinite volume scattering properties. We employ here two
particles with vanishing total momentum only. The for-
malism is valid for energy levels between the elastic

TABLE II. Results for the infinite volume pion mass calculated
with (20) for all of our ensembles. We also report the results for
the scattering length and the effective range from fitting (4). The
large uncertainties for the effective range in some ensembles are
unproblematic for the rest of the calculations as we are mainly
interested in the low-energy behavior.

β am0 am∞
π × 104 a0mπ r0mπ

6.9 −0.87 7401þ8
−9 0.41þ0.35

−0.27 50þ363
−98

6.9 −0.9 5608þ4
−4 0.42þ0.07

−0.09 10þ4
−2

6.9 −0.91 4845þ9
−9 0.36þ0.12

−0.11 43þ51
−25

6.9 −0.92 3844þ19
−30 0.52þ0.24

−0.21 6.9þ10.4
−4.1

7.05 −0.835 4373þ9
−9 0.71þ0.16

−0.26 1.9þ1.4
−0.4

7.05 −0.85 3297þ12
−13 0.56þ0.14

−0.22 4.4þ7.7
−2.1

7.2 −0.78 3696þ4
−4 0.73þ0.07

−0.08 2.2þ0.3
−0.2

7.2 −0.794 2837þ13
−14 0.88þ0.13

−0.14 1.2þ0.5
−0.4
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threshold and the first inelastic threshold (presumed in our
case to be 2m∞

π < Eππ < 4m∞
π ). Consequently, we exclude

all data points from Table I outside this elastic region. The
momentum can be calculated from the energy levels using a
dispersion relation that accounts for the finite lattice
spacing,

cosh

�
aEππ

2

�
¼ coshðam∞

π Þ þ 2 sin

�
ap
2

�
2

; ð21Þ

though it turns out that the continuum version
(Eππ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m∞2

π þ p2
p

) works just as well.7 After ensuring
that the results do not depend on the dispersion relation
used, we employ the continuum one. We define the
generalized momentum q ¼ p L

2π which allows the calcu-
lation of the phase shift δ0. In our case for vanishing total
momentum the phase shift is connected to the generalized
momentum by the following formula that includes the
transcendental zeta function Z,

tanðδ0ðqÞÞ ¼
π

3
2q

Z0⃗
00ð1; q2Þ

: ð22Þ

For the calculation of Z, we refer to [40,61]. One can
immediately see, that the sign of tanðδ0Þ is exclusively

determined by the sign of Z0⃗
00ð1; q2Þ. This can be used to

determine regions of positive (negative) values of tanðδ0Þ

from the values of EππðLÞ directly as is shown in Fig. 1 for
one of our ensembles. The regions are separated by
choosing integer values and zeros in the zeta function
for q2. In the limit of vanishing momentum this sign also
coincides with the opposite sign of the scattering length
in Eq. (4).

V. RESULTS

A. Energy levels

We report the extracted energy levels and the renormal-
ized pion decay constants in Table I. We further give the
value of the average plaquette hPi since this quantity enters
the estimation of the renormalization constant of fπ. The
energies of the single-meson states are always smaller than
unity in lattice units, i.e. amπ < 1, whereas the energy of the
two-pion state below the first inelastic threshold is typically
aEππ < π=2 for all ensembles and aEππ < 1 for most
ensembles with β > 6.9. This suggests that discretization
artifacts are not sizable, in particular for β > 6.9. We discuss
this in Appendix, together with systematic effects due to the
size of our (spatial) volumes. The results presented in the
remainder of the main text can be considered free of any
observed systematic effects within statistical errors.
The energy shift between the interacting and noninter-

acting two-pion energies and its associated lattice momen-
tum p follows from the difference of twice the pion mass
extrapolated to infinite volume and the two-pion energy on
a lattice of finite volume according to Eq. (21). This
completes the set of quantities needed to determine the
scattering properties.

FIG. 1. Bottom panel: The extracted pion energy levels plotted against the unitless inverse spacial lattice extent for the ensemble with
β ¼ 7.05 and am0 ¼ −0.85. The line and band indicate the mean and estimated error of the fit using (20). The results of the fit for all
ensembles is given in Table II. The y-axes in both panels are scaled by the result of the fit. Top panel: Same plot but for the two-pion
energies. The dashed lines are the trivial energy levels obtained for integer values of q2. The blue light (dark) shaded region mark where
the Lüscher formalism results in negative (positive) values for p cotðδ0Þ (22). The regions are obtained by solving for zeros of the
Lüscher zeta function.

7This is expected, as the two dispersion relations are identical
in the limit of p → 0.
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B. Scattering

The Lüscher analysis grants access to the full scattering
phase shift δ0. We report here results for the phase shift in
the 14-dimensional irrep of two-pion scattering. We com-
pare the resulting cross section to astrophysical data.
The upper panel of Fig. 2 shows the left-hand side of (4)

for one of our ensembles (β ¼ 7.05; am0 ¼ −0.85). As we
do neither expect nor see any hints of resonances, and are
interested in nonrelativistic properties we use the ERE
expansion (4) to fit a0 and r0. The result of the fit is

indicated with the blue line and band. For the calculation of
the velocity-weighted cross section (1), we will use the
results of the fit at nonrelativistic velocities, where ERE is
valid, because of r0k ≪ 1. With (5), we can correlate these
data points one-to-one to a cross section and a center-of-
momentum energy s ¼ E2

ππ (see lower panel of Fig. 2). At
this point, we would like to remind the reader, that we are
interested in the velocity-weighted cross section (1) for
which we need the dependence on the relative velocity
which can be calculated from s by

v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m∞2
π

s

r
: ð23Þ

The results of the fits for all of our ensembles is summa-
rized in Fig. 3 where we plot the scattering length against
the value of m∞

π =fπ . Different data points correspond to
different values of β and am0. We consistently observe a
positive scattering length.8 We also show the leading-order
χPT prediction from [41] that is given by

a0m∞
π ¼ 1

32

�
m∞

π

fπ

�
2

; ð24Þ

in our sign convention. With that we can use our results to
test the applicability of χPT. While the data points for β ¼
7.05 and 7.2 agree with the χPT prediction within 1σ to 2σ,
the data points for β ¼ 6.9 do not. This might be an effect

FIG. 3. The scattering length obtained in Fig. 2 plotted against
the ratio of the mass and the decay constant of the pion. Different
colors and symbols correspond to different values for the inverse
coupling β. We observe a consistent positive scattering length
across all ensembles. The horizontal gray line and band indicate a
central value and error for the scattering length estimated using all
of our ensembles. The green dashed line shows the expected
result from leading-order χPT [41] (note the different sign
convention).

FIG. 2. Top panel: Result of (22) plotted against the center-of-momentum energy squared for the same ensemble as in Fig. 1 (β ¼ 7.05
and am0 ¼ −0.85). The blue line and band show the result of fitting the data to (4). The curved error bars indicate, that the two axes are
not independent and only values on the curved lines are allowed. Bottom panel: Result of using the data points above in (5) to obtain the
s-wave cross section.

8The results are in qualitative agreement with those also
observed in QCD (see e.g. [62–64] for recent results) and
SUð2Þ [32], where the qualitative behavior is associated
with appearance of Adler zeros. These are also expected in
the present case.
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of the limited amount of data points available or of the
discretization of the lattice. On top of that one has to
mention that the values of m∞

π =fπ are large and one would
naively not expect χPT to work in that regime. At present,
we can neither confirm nor rule out the validity χPT in that
regime from our results alone. See also [22,24] on this
question.
The plot also shows an estimate for the scattering

length averaged over all ensembles as a gray band of
a0m∞

π ¼ 0.57þ0.25
−0.24 . We can estimate the low-energy cross

section from that by σ0 ≈ 4πa20 and use it together with the
constraint from astrophysical data9 from [6–8] to fix the
lattice constant and thereby the mass of the dark matter
candidate. We obtain a lower bound for the dark matter
mass by ofmDM ≳ 110 MeV, which fits the estimated mass
range for SIMP dark matter based on perturbative consid-
erations [13] well.
Finally, in Fig. 4, we present our results for the velocity-

weighted cross section. The data points shown as circles are
taken from [4]. Shown in a purple line are the fitted results
from [39]. Their best estimate for the ERE are a0 ¼
22.2 fm, r0 ¼ −2.59 × 10−3 fm, and mDM ¼ 16.72 GeV.
The green band shows the result using the scattering
length predicted by leading-order χPT at values of 4.6 <
m∞

π =fπ < 6.0 which correspond to the minimal and maxi-
mal value obtained from our ensembles. r0 was set to zero
in that case, which we motivate by the small value of r0 that
was extracted from the data in [39]. Finally, the orange
band shows an error estimate for our results from the lattice,
where we used the ERE from every ensemble to calculate
the velocity-weighted cross section. All ensembles result in
lines within that band. Our data show no velocity depend-
ence in the regime relevant for dark matter in halos.
It should be noted that we can fix the lattice constant, and

by that the dark matter mass, at any point during the
calculation,

hσvi
mDM

∝
�

1

mDM

�
3

: ð25Þ

This allows us to move the band up and down at will by
changing the mass of the dark matter candidate. The mass
of 100 MeV was chosen such that the band is compatible
with the data.
The velocity, however, does not depend on the lattice

constant. Therefore, any dynamics in the graph is fixed to
the corresponding velocity. The velocity-weighted cross
section will decrease eventually due to the suppression by
the velocity distribution for large, i.e. relativistic, velocities.
We investigated this for the case of velocities much larger
than vesc and find that the maximum lies at relativistic
speeds. This discrepancy with the fitted curve can also be

seen in the parameters of the ERE. Neglecting the effective
range, the relevant quantity is a0mπ which differs by more
than three orders of magnitude (≈1900 for [39] in natural
units) between the results from the lattice and the best fit.
The data points are not direct measurements, but are

based on the results of simulations that rely on assumptions
about the dynamics of matter on galactic scales. Given the
current uncertainties in the data and approximations
employed here, this result does not alone invalidate dark
Sp(4) theories within the fermion mass range investi-
gated here.

VI. DISCUSSION AND CONCLUSIONS

Strongly-interacting models are a promising candidate for
particle darkmatter as they give solutions to knownproblems
related to dark matter. In this paper, we used lattice field
theory to study scattering properties of a specific realization
of SIMP dark matter. Together with studies on the mass
spectrum [18,22,24,25], these nonperturbative results can
also be used to determine low-energy constants in an
effective description with χPT [18,24].
These results are a first step towards a robust determi-

nation of the scattering properties of composite dark matter
models. The analysis can straightforwardly be improved by
using finer lattices, while ensuring that aEππ remains
smaller than unity in all cases. This will further reduce
the influence of existing finite lattice spacing effects. More
energy levels can be obtained on the lattice by enlarging the
operator basis, e.g. with smeared interpolating operators
and correlators with nonvanishing momentum. On the

FIG. 4. Comparison of the lattice data shown as orange lines
with [4] represented by different symbols and colors that relate to
different cosmological objects (red stars—dwarf galaxies, blue
squares—low surface brightness, green pentagons—galaxy clus-
ters). The y-axis is calculated with (1) and scales like 1=m3

DM.
Lines of constant cross section are shown in gray, dashed lines.
The yellow band is an envelope over all of our ensembles shown
in individual lines. The green hatched band shows the result using
the scattering length predicted from χPT [41] given by (24) using
values of 4.6 ≤ m∞

π =fπ ≤ 6.0 obtained from our ensembles. The
effective range was set to zero in this case, which is motivated by
the very low values for r0 in the fit from [39] shown in purple.

9Due to the sizable uncertainties involved in the astrophysical
data, we approximate them by σ=m < 0.2 cm2=g.
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smaller lattices subleading finite volume corrections pro-
portional to e−mπL [65] can be taken into account.
We find a rough lower bound for the mass of the dark

pions, assuming that the isospin-2 channel is dominant, of
order 100 MeV. This also allows to at least partially
describe first exploratory results on the self-interaction
rates of dark matter from astrophysical data. Further
research is needed to provide a stronger statement on the
validity of this model as a dark matter candidate. This
includes both the technical aspects mentioned in the
previous paragraph and the inclusion of other scattering
channels.
Going beyond the isospin-2 scattering channel, the

natural next step is the determination of the phase shift
in the isospin-1 channel including the 3 → 2 process as
well as further derived quantities.

The data generated and the analysis code for this
manuscript can be downloaded from Ref. [66,67].
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APPENDIX: LATTICE SYSTEMATICS

In order to assess the relevance of lattice artifacts we
repeated the analysis, by excluding select ensembles from
Table I. We show the results in Fig. 5. First, we restricted
ourselves to ensembles where aEππ ≲ 1 where discretiza-
tion artifacts are expected to be smaller. In particular, we
choose aEππ < 0.95 to exclude the ensemble with β ¼ 6.9
and am0 ¼ −0.91 where all two-pion energies are very
close to one. Secondly, we also redid the analysis by
excluding the smallest lattices with NL ¼ 8 and all ensem-
bles where mπ=m∞

π > 1.3. Finally, we combined the two
exclusion criteria.
The omission of smaller lattices and ensembles with

sizable finite volume effects on the pion mass leads to only
minor changes, which are compatible with statistical uncer-
tainties.After restricting the analysis toaEππ < 0.95, we find

FIG. 5. Same as Fig. 3, but restricted to selected ensembles to study the lattice artifacts. (Top left) All ensembles with NL ¼ 8 and
mπ=m∞

π > 1.3 have been excluded. (Top right) All ensembles with aEππ < 0.95 have been excluded. (Bottom) The two restrictions have
been combined.
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that our results are in better agreement with leading-order
chiral perturbation theory. When combining the two restric-
tion our data reflects the expected mass-dependence within
the statistical uncertainties.
Additionally, we discuss the fit of the phase shifts

calculated according to Eq. (22) to the ERE in Eq. (4)
and the resulting scattering cross section in Eq. (5). In some
cases, the resulting fits were in tension with some data
points of the calculated phase shift by up to three standard
deviations. This might highlight that the phase shift at the
largest values of s=m∞

π
2 is not well-described by the ERE.

In our approach a large value of s=m∞
π
2 corresponds to a

smaller lattice and potentially larger discretization artifacts.
The apparent tension in the fit disappears if the data point at
the largest value of s=m∞

π
2 is excluded from the fit. We

show an example of this in Fig. 6.
In Table III, we compare the values of a0 and r0 for

various restrictions in the analysis.
Overall, we find no major deviations in our final results

for the scattering length a0 due to lattice artifacts. In
particular, our range of a0m∞

π remains virtually unchanged;
see Table III.
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