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Abstract
Biologging	 has	 proven	 to	 be	 a	 powerful	 approach	 to	 investigate	 diverse	 questions	
related	 to	movement	ecology	across	a	 range	of	 spatiotemporal	 scales	and	 increas-
ingly	 relies	 on	 multidisciplinary	 expertise.	 However,	 the	 variety	 of	 animal-	borne	
equipment,	coupled	with	little	consensus	regarding	analytical	approaches	to	interpret	
large,	complex	data	sets	presents	challenges	and	makes	comparison	between	stud-
ies	and	study	species	difficult.	Here,	we	present	a	combined	hardware	and	analytical	
approach	for	standardizing	the	collection,	analysis,	and	interpretation	of	multisensor	
biologging	data.	Here,	we	present	(i)	a	custom-	designed	integrated	multisensor	collar	
(IMSC),	which	was	field	tested	on	71	free-	ranging	wild	boar	(Sus scrofa)	over	2 years;	
(ii)	a	machine	learning	behavioral	classifier	capable	of	identifying	six	behaviors	in	free-	
roaming	boar,	validated	across	individuals	equipped	with	differing	collar	designs;	and	
(iii)	 laboratory	and	field-	based	calibration	and	accuracy	assessments	of	animal	mag-
netic	heading	measurements	derived	from	raw	magnetometer	data.	The	IMSC	capac-
ity	and	durability	exceeded	expectations,	with	a	94%	collar	recovery	rate	and	a	75%	
cumulative	data	recording	success	rate,	with	a	maximum	logging	duration	of	421 days.	
The	behavioral	classifier	had	an	overall	accuracy	of	85%	in	identifying	the	six	behav-
ioral	classes	when	tested	on	multiple	collar	designs	and	improved	to	90%	when	tested	
on	data	exclusively	from	the	IMSC.	Both	laboratory	and	field	tests	of	magnetic	com-
pass headings were in precise agreement with expectations, with overall median mag-
netic	headings	deviating	from	ground	truth	observations	by	1.7°	and	0°,	respectively.	
Although	multisensor	equipment	and	sophisticated	analyses	are	now	commonplace	
in	biologging	studies,	the	IMSC	hardware	and	analytical	framework	presented	here	
provide	a	valuable	tool	for	biologging	researchers	and	will	facilitate	standardization	
of	biologging	data	across	studies.	In	addition,	we	highlight	the	potential	of	additional	
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1  |  INTRODUC TION

In	recent	decades,	animal-	borne	sensors	designed	to	monitor	physi-
ology,	behavior,	movement,	and	environmental	conditions	have	rev-
olutionized	studies	of	animal	ecology	in	diverse	taxa	across	a	range	
of	 spatiotemporal	 scales	 (Ropert-	Coudert	&	Wilson,	2005;	Rutz	&	
Hays,	 2009;	Williams	 et	 al.,	2020;	Wilmers	 et	 al.,	2015).	 This	 has	
been	 made	 possible	 due	 to	 advances	 in	 sensor	 technology,	 data	
management,	and	analytical	techniques,	which	now	underpin	both	
theoretical	and	applied	research	on	wild	animals	(Cooke	et	al.,	2012; 
Rattenborg	et	al.,	2016;	Vyssotski	et	al.,	2006;	Wilmers	et	al.,	2015).	
However,	the	emergence	of	novel	biologging	techniques	requires	a	
multidisciplinary	approach,	often	relying	on	diverse	expertise	in	areas	
beyond	wildlife	 ecology	 (Jolles,	 2021;	 Kays	 et	 al.,	 2022;	 Portugal	
&	White,	2018; Tuia et al., 2022;	Wild	 et	 al.,	2023).	 Furthermore,	
animal-	borne	electronics	and	data	sets	are	increasingly	tailored	to	a	
particular	study	or	research	group,	making	access	to,	and	compari-
son	between,	biologging	studies	challenging.

Triaxial	accelerometers	and	magnetometers	form	the	bedrock	of	
biologging	studies	and	are	capable	of	providing	high-	resolution	data	
on	animal	movement	and	orientation	(Shepard	et	al.,	2008;	Williams	
et al., 2017;	Wilson	et	al.,	2008; Yoda et al., 1999).	However,	trans-
forming and interpreting the often large and complex data sets gen-
erated	 from	biologgers	 into	 behaviorally	 and	 ecologically	 relevant	
information	 requires	 expertise	 from	 disciplines	 beyond	 ethology.	
For	 example,	 recent	 studies	 have	 applied	 various	 machine	 learn-
ing	 techniques	 to	 identify	behaviors	 from	raw	accelerometer	and/
or	magnetometer	profiles	(Balasso	et	al.,	2023; Bidder et al., 2014; 
Chang et al., 2022; Dentinger et al., 2022;	Painter	et	al.,	2016;	Studd	
et al., 2019;	Wang,	2019; Yu et al., 2021),	in	addition	to	alternative	
approaches,	 such	 as	 template	 matching	 (Walker	 et	 al.,	 2015)	 and	
user-	defined	algorithms	for	behavior	(Wilson	et	al.,	2018).	The	per-
formance	of	such	models	varies	due	to	factors	such	as	the	frequency	
at	which	data	are	recorded	and	the	degree	of	behavioral	variation	
within and between	 the	behavioral	classes	attempting	to	be	 identi-
fied.	To	date,	no	consensus	has	been	reached	on	a	single	behavioral	
classification	 technique	 across	 biologging	 studies,	 further	 hinder-
ing	comparison	between	studies	and	species	 (Wang,	2019;	Wilson	
et al., 2018; Yu et al., 2021).

Magnetometer data, used in conjunction with accelerometers, 
can	 enhance	 machine	 learning	 performance	 by	 providing	 addi-
tional	 information	 regarding	animal	body	or	 limb	orientation	 (Alex	

Shorter	 et	 al.,	2017; Brewster et al., 2021; Dickinson et al., 2021; 
Sakai	et	al.,	2019;	Williams	et	al.,	2020).	 In	some	contexts,	 triaxial	
magnetometer	data	 alone	have	been	used	 to	 successfully	 identify	
behavior	in	free-	roaming	animals	(Chakravarty	et	al.,	2019;	Williams	
et al., 2017).	 In	addition,	 triaxial	magnetometers	are	well	suited	to	
provide	 magnetic	 heading	 orientation	 (Matsumura	 et	 al.,	 2011),	
although extracting compass headings from raw data is not trivial 
and	 depends	 on	 sensor	 calibrations	 and	 accelerometer-	based	 tilt-	
compensation	corrections	(Bidder	et	al.,	2015).	Unsurprisingly,	cal-
ibration	 techniques	 are	 now	 commonplace	 in	 studies	 that	 report	
magnetic heading measurements derived from raw magnetome-
ter	data	(Fannjiang	et	al.,	2019;	Gutzler	&	Watson	III,	2022; Logan 
et al., 2023;	Martín	López	et	al.,	2016;	Noda	et	al.,	2014);	however,	
few	(Wilson	et	al.,	2007)	have	provided	ground	truth	validation	of	
magnetic	compass	accuracy	and	reliability	across	ecologically	realis-
tic	movement	dynamics	or	behaviors.

Integration	 of	 GPS	 technology	 with	 accelerometer	 and	 mag-
netometer	 data	 has	 further	 enhanced	 the	 accuracy	 and	 depth	 of	
spatial information in animal tracking studies and is reflected in the 
widespread	deployment	of	GPS	technology	across	a	range	of	animal	
studies	over	the	past	three	decades	(Hebblewhite	&	Haydon,	2010; 
Katzner	&	Arlettaz,	2020;	Kays	et	al.,	2015).	Beyond	its	utility	in	pro-
viding	reliable	positional	fixes,	GPS	is	now	used	to	improve	the	per-
formance	(e.g.,	mitigate	drift	and	heading	error)	of	dead-	reckoning	
path	 reconstruction	 that	 relies	 on	 vector	 integration	 obtained	
from	synchronized	accelerometer	and	magnetometer	data	(Gunner	
et al., 2021)	 and	 further	 underscores	 the	 importance	of	 assessing	
the	accuracy	of	magnetic	heading	measurements	obtained	from	raw	
data.	 Engineering	 multisensor	 collars	 (e.g.,	 GPS,	 accelerometers,	
magnetometers)	capable	of	recording	and	storing	large	volumes	of	
data	 over	months	 or	 years	 that	 comply	with	 animal	welfare	 stan-
dards	remains	an	additional	challenge	in	biologging	research	(Cook	
et al., 2017;	Holton	et	al.,	2021;	Kenward,	2000;	Wilson	et	al.,	1986, 
2021).

Here	we	present	 the	development	of	 a	multisensor	biologging	
collar	equipped	with	GPS	and	triaxial	accelerometer	and	magnetom-
eter	 sensors	 that	has	been	extensively	 tested	 in	 free-	ranging	wild	
boar	(Sus scrofa).	In	tandem,	we	have	developed	a	method	for	classi-
fying	ecologically	relevant	behaviors	from	raw	accelerometer	data	in	
wild	boar	using	machine	learning	techniques	and	provide	a	detailed	
assessment	of	magnetic	compass	performance	based	on	raw	mag-
netometer	data	across	a	range	of	behavioral	contexts.	Our	findings	
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suggest	that	both	the	collars	and	analytical	 techniques	are	robust,	
adaptable,	and	suitable	for	long-	term	studies	with	terrestrial	mam-
mals,	and	we	discuss	the	broader	applications	of	this	work	for	future	
wildlife research.

2  |  METHODS

2.1  |  Study site and subjects

Field	testing	of	the	integrated	multisensor	collars	(IMSCs)	was	car-
ried	 out	 in	 unrestricted,	 natural	 habitats	 throughout	 the	 Czech	
Republic.	Boar	were	captured	in	corral	traps,	sedated	using	meth-
ods	described	below	 (see	also	Appendix	S1),	 and	 fitted	with	 the	
IMSC,	 then	 released	 into	 the	 surrounding	 environment.	All	 data	
used	 to	 develop	 the	 behavioral	 classifier	 and	 evaluate	 mag-
netic compass performance were collected at a wildlife reserve 
(49°57′52.7″ N	 14°50′14.7″ E)	 owned	 by	 the	 Czech	 University	
of	 Life	 Sciences.	 Inside	 the	 reserve,	 a	 semi-	natural	 enclosure	
(~38 m × ~ 46 m),	made	from	nonmagnetic	wood	fencing	was	used	
to	collect	ground	truth	behavioral	data	(hereafter	“behavioral	en-
closure”)	 from	 six	 adult	 wild	 boars	 between	 October	 2017	 and	
December	 2018	 (Figure S1).	 Boar	 were	 captured	 opportunisti-
cally	using	dart	tranquilizer	methods	(see	Appendix	S1),	then	were	
transported	inside	the	behavioral	enclosure	and	fitted	with	one	of	
the	two	biologging	collar	designs	(see	below).	Four	infrared	game	

cameras	 (UOVision	UM	565)	were	 installed	within	the	enclosure	
(Figure S1)	to	record	ground	truth	data	used	for	behavioral	classi-
fier	and	magnetic	heading	analyses	(see	below).

Trapping, handling, and collaring protocols were performed 
in	 accordance	 with	 the	 Ethics	 Committee	 of	 the	 Ministry	 of	 the	
Environment	 of	 the	 Czech	 Republic	 number	 MZP/2019/630/361	
and	 following	ARRIVE	guidelines	 (Percie	du	Sert	et	al.,	2020).	See	
Appendix	S1	for	additional	study	site	information.

2.2  |  Biologging collar development

Two	 collar	 systems	 were	 designed	 in	 this	 study:	 “IMSCs”	 and	
“single-	tag	 collars”	 (STCs),	 both	 fitted	with	Wildbyte	Technologies	
Daily	 Diary	 data	 loggers	 (http://	www.	wildb	ytete	chnol	ogies.	com/	 ).	
Loggers	 were	 equipped	 with	 triaxial	 accelerometers	 and	 triaxial	
magnetometers	 (LSM303DLHC,	ST	Microelectronics)	programmed	
to	record	continuously	at	a	sample	rate	of	10 Hz	across	all	six	sensors	
aligned along three orthogonal axes corresponding to the major axes 
of	the	boars'	bodies	(Figure 1).

2.3  |  Integrated multi- sensor collar (IMSC)

The	 IMSCs	 included	 a	 “Thumb”	 Daily	 Diary	 tag	 (18 × 14 × 5 mm)	
with	triaxial	accelerometer	and	magnetometer	sensors	(LSM9DS1,	

F I G U R E  1 Biologging	collars	used	throughout	the	study.	Accelerometer	axes	orientation	is	superimposed	on	the	logger	and	axis	polarity	
indicates	the	acceleration	value	as	the	axis	is	pointed	toward	gravity.	Note	the	different	axis	alignments	between	STC	designs	(a,	b).	Both	the	
logger	position	and	logger	orientation	used	in	all	IMSCs	(c)	differ	from	the	STC	logger	position	and	orientations.	Photographs	of	both	collar	
designs	are	shown	below	their	respective	schematics.	IMSC,	integrated	multisensor	collars;	STC,	single-	tag	collars.
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ST	Microelectronics),	 as	well	as	a	Vertex	Plus	GPS	collar,	 sched-
uled	 to	 record	 GPS	 fixes	 at	 30-	min	 intervals.	 All	 accelerometer	
and	magnetometer	data	was	recorded	and	stored	on	a	removable	
32	GB	MicroSD	 card.	 Collars	were	 equipped	with	 an	 integrated	
“drop-	off	mechanism”	and	VHF	beacon	to	enable	collar	recovery	
from	 the	 field.	 All	 collar	 electronics	 were	 powered	 from	 a	 sin-
gle	battery	pack	 (4-	D	cell)	 and	 the	 total	deployment	weight	was	
716 g.	 The	Daily	Diary	 tag	was	 protected	 by	 a	 custom-	designed	
polyurethane	 housing	 (40 mm × 25 mm × 12 mm)	 positioned	 on	
the	 outside	 of	 the	 plastic	 collar	 belt.	 The	 orientation	 of	 the	 tag	
relative to the collar, as well as the orientation of collar relative 
to	the	animal,	remained	fixed	for	all	IMSC	deployments	(Figure 1, 
Table 1).

2.4  |  Single- tag collars (STCs)

All	 STCs	 were	 equipped	 with	 the	 “Square”	 Daily	 Diary	 tag	
(27 × 26 × 10 mm)	and	recorded	data	to	a	removable	32 GB	MicroSD	
card.	The	 logger	was	powered	with	 a	 single	 cell	 3.6 V	 lithium	bat-
tery	 (SAFT,	 LS17500CNR)	 and	 was	 oriented	 and	 leveled	 within	 a	
12 cm × 4.8 cm	dia	PVC-	U	cylindrical	tube	housing	secured	to	a	plas-
tic	collar	belt.	Total	STC	weight	was	250 g.	All	STC	housings	were	
positioned	ventrally	at	 the	base	of	 the	animal's	neck	 (Figure 1a,b).	
However,	 logger	 orientation	 was	 rotated	 in	 one	 STC	 deployment	
(Figure 1b)	to	test	the	positional	robustness	of	the	behavioral	clas-
sifier	(see	below).

See	 Appendix	 S1 for additional information regarding collar 
specifications	and	deployments.

2.5  |  Data collection

Field	testing	of	the	IMSC	involved	71	collar	deployments	over	a	2-	
year	 period	on	 adult	 (>12 months,	>40 kg)	 free-	roaming	wild	 boar	
(52	 females,	 18	males,	 1	 unidentified).	 Collars	were	 evaluated	 for	
robustness,	capacity,	and	functionality	over	6001	tracking	days,	cu-
mulatively	across	all	deployments.

Behavioral classifier and magnetic compass performance data 
were	collected	from	six	 free-	roaming	 individuals	 inside	the	behav-
ioral	enclosure.	Before	collaring,	calibration	data	used	for	hard-		and	
soft-	iron	magnetometer	corrections	 (Gunner	et	al.,	2021;	Williams	
et al., 2017)	were	 collected	by	 rotating	 the	 collars	 through	 three-	
dimensional	space	for	5 min	within	the	immediate	area	of	the	behav-
ioral	enclosure.	The	resulting	accelerometer	“calibration	signature”	
was	 also	 used	 to	 time-	sync	 biologging	 data	with	 ground	 truth	 re-
cordings	 from	 each	 game	 camera.	 Upon	 data	 retrieval,	 raw	 data	
files	were	uploaded	 to	DDMT	software	 (Wildbyte	Technologies	–	
Swansea	University,	Singleton	Park,	Swansea,	UK,	SA2	8PP),	for	fur-
ther	processing,	including	magnetometer	calibrations.	A	summary	of	
data collection and performance evaluations for each collar design 
is provided in Table 1.

2.6  |  Behavioral classifier development

2.6.1  |  Training	data	set	construction

Triaxial	(x, y, z)	accelerometer	data	from	three	individuals	fitted	with	
STCs	were	 used	 to	 develop	 the	 behavioral	 classifier	 (Table 1).	 Six	
broad	behavioral	classes	(“Continuous	Walk,”	“Foraging,”	“Resting,”	
“Running,”	“Standing,”	and	“Other”)	were	established	using	the	cri-
teria	listed	in	the	Appendix	S1. Behavioral classes were determined 
based	on	a	collective	knowledge	of	Sus scrofa	behavioral	repertoires	
within	 the	 Czech	 Republic	 are	 consistent	 with	 those	 reported	 in	
other	Suidae	behavioral	classification	studies	(Dentinger	et	al.,	2022; 
Erdtmann	&	Keuling,	2020; Zhang et al., 2022).	Behaviors	were	iden-
tified using video records, and corresponding accelerometer profiles 
were	 located	 by	 matching	 video	 timestamps	 with	 synced	 times-
tamps	in	the	DDMT	software.	Profiles	were	then	extracted	to	cre-
ate	behavioral	ethograms	composed	solely	of	triaxial	accelerometer	
data	falling	into	one	of	the	six	behavioral	classes.	To	facilitate	future	
refinement	 of	 the	 classifier,	 “Foraging,”	 “Running,”	 and	 “Standing”	
classes	 were	 further	 subdivided	 to	 produce	 three	 additional,	
“higher	 resolution”	 behavioral	 categories:	 “Rooting,”	 “Trotting,”	
and	“Vigilance,”	respectively,	resulting	 in	a	total	of	nine	behavioral	

TA B L E  1 Collar	design	and	data	collection.	Overview	of	collar	design,	biologger	position	and	orientation,	and	data	type	collected	(i.e.,	
behavioral	classifier	training,	testing,	magnetic	heading	evaluation),	per	individual.

Collar design and data collection

Boar ID Collar design Tag position Tag orientation Classifier training Classifier testing Magnetometer testing

B3 STC 1 A Yes No No

B4 STC 1 B No Yes No

B5 STC 1 A Yes No No

B6 STC 1 A Yes No Yes

B7 STC 1 A No Yes Yes

B30 IMSC 2 C No Yes Yes

Note:	Numbers	and	letters	listed	for	Tag	Position	and	Orientation	are	arbitrary	and	indicate	similarities	and	differences	between	collar	designs.
Abbreviations:	IMSC,	integrated	multisensor	collar;	STC,	single-	tag	collar.
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classes.	The	higher-	resolution	behavioral	classes	were	collapsed	into	
their parent classes for initial classifier evaluation.

Each	marked	behavioral	 epoch	was	 subdivided	 into	4-	s	 non-
overlapping	 windows	 to	 generate	 baseline	 observations	 for	
classifier	 training	 (i.e.,	 entities	 to	 be	 classified	 following	 feature	
extraction).	 The	 4-	s	 observation	window	was	 chosen	 in	 consid-
eration	 of	 two	 factors:	 the	 shortest-	duration	 behavior	 desirable	
to	detect	and	the	minimum	acceptable	detection	latency.	In	total,	
there	were	 13,461	 training	 observations	 (14.96 hours	 of	marked	
data),	 with	 the	 following	 breakdown	 of	 observations	 and	 train-
ing	percentage	for	the	six	“core”	behavioral	classes:	“Continuous	
Walk”	(1445,	11%),	“Foraging”	(2601,	19%),	“Resting”	(6345,	47%),	
“Running”	 (1042,	8%),	 “Standing”	 (1668,	12%),	and	 “Other”	 (360,	
3%)	 (Table 2, Table S1).	 Training	data	 for	 the	 “higher	 resolution”	
behavioral	subclasses	are	provided	in	Table 2, Table S1. The pro-
portions	 of	 observations	 used	 to	 train	 the	 behavioral	 classifier	
were	selected	a	priori	to	reflect	the	frequencies	of	these	behav-
ioral	classes	thought	to	occur	in	natural	contexts	(VS,	MJ	personal	
observations).	 The	 training	data	 set	was	 constructed	 from	 three	
individuals	 (B3,	 B6	 male;	 B5,	 female),	 all	 fitted	 with	 STCs	 with	
identical	tag	orientations	(Figure 1a, Table 1).

2.6.2  |  Feature	extraction

Eighteen	features	were	extracted	from	each	4-	s	raw-	data	obser-
vation	window.	These	features	were	the	estimated	“signal	power”	
in	each	of	four	frequency	bands	(0–2.5 Hz,	2.5–5 Hz,	5–7.5 Hz,	and	
7.5–10 Hz;	four	features),	the	signal	median	(one	feature),	and	the	

signal	variance	(one	feature),	for	each	of	the	three	accelerometer	
axes.	 The	power	 features	were	derived	 from	 the	Welch	method	
of	power	spectral	density	estimation	 (2 s	windows	with	1 s	over-
lap,	 64-	point	 Discrete	 Fourier	 Transforms),	 by	 integrating	 the	
output	 in	 the	designated	 frequency	 ranges.	All	 features	 guaran-
teed	to	be	nonnegative	(i.e.,	all	except	the	median	features)	were	
log-	transformed	 to	 a	 decibel-	proportional	 scale	 prior	 to	 further	
processing.	Finally,	 features	were	 z-	scored	and	principal	 compo-
nent	analysis	was	performed,	retaining	a	number	of	components	
required	 to	 preserve	95%	of	 the	 total	 data	 variance	 (eight	 com-
ponents).	 The	 resultant	 13,461 × 8	matrix	 served	 as	 the	 training	
data	 for	 a	 5-	nearest	 neighbor	 classifier	 with	 cityblock	 distance	
as	 the	metric	 (Hastie	et	al.,	2009).	A	k-	NN	classifier	was	chosen	
for	 its	 ability	 to	 represent	 highly	 nonlinear	 decision	 boundaries,	
based	 on	 the	 demonstrated	 success	 of	 similar	 methods	 in	 prior	
biologging	 studies	 (Bidder	 et	 al.,	2014;	 Painter	 et	 al.,	2016;	 Sur	
et al., 2017).	The	number	of	neighbors	and	distance	metric	were	
chosen	 by	 grid-	search	 optimization	 on	 a	 small	 holdout	 data	 set	
(Hastie	et	al.,	2009).

2.6.3  |  Behavioral	classifier	evaluation

Performance	of	 the	behavioral	 classifier	was	evaluated	using	 con-
tinuous accelerometer recordings collected from three individuals 
(B4,	B7,	 and	B30)	 not	 used	 in	 classifier	 training	 (Table 1).	 Prior	 to	
evaluation,	behaviors	were	verified	using	ground	truth	video	record-
ings and corresponding accelerometer profiles were identified as de-
scribed	above.	Because	the	tag	orientation	was	not	identical	across	
training	and	test	boar	(Figure 1, Table 1),	test	data	x, y, and z accelera-
tion	vectors	at	every	time	step	were	multiplied	by	the	3D	rotation	
matrix	required	to	map	them	to	the	coordinate	frame	used	for	train-
ing	data.	After	18-	dimensional	feature	extraction,	test	data	observa-
tions were transformed using the training data mean and standard 
deviation	 vectors	 before	 being	 projected	 onto	 the	 8-	dimensional	
principal component space of the training data for classification. 
Initial	test	data	classifications	were	made	at	every	possible	time	step	
using	a	4-	s	symmetric,	noncausal	sliding	window.

2.6.4  |  Postprocessing

Initial classifications were smoothed with a nonlinear filter; specifi-
cally,	the	class	at	each	time	step	was	replaced	with	the	modal	class	of	
a	1-	s	forward-	looking	window.	This	filtering	step	resulted	in	a	set	of	
candidate's	behavioral	events,	each	delimited	by	a	starting	and	end-
ing	 time,	which	were	 then	subject	 to	 two	predetermined	heuristic	
criteria	to	yield	the	final	set	of	classifications.	The	first	was	that	each	
candidate	behavioral	event	was	required	to	be	of	a	minimum	dura-
tion:	“Foraging”	 (5 s;	“Rooting”	3 s),	“Resting”	 (120 s),	“Running”	(3 s;	
“Trotting”	3 s),	“Standing”	(2 s;	“Vigilance”	2 s),	and	“Other”	(1 s).	Any	
candidate event not meeting its minimum duration, which was used 
only	in	postprocessing,	was	reassigned	to	the	next	most	likely	class	

TA B L E  2 Summary	of	behavioral	data	used	for	classifier	training.	
For	each	behavioral	class,	the	total	duration	(seconds)	and	total	
observations	(i.e.,	4-	s	training	windows)	are	shown,	as	well	as	the	
class	proportion	(%).	A	total	of	14.96 h	of	training	data	were	used	
for classifier development and proportions reflect those of the test 
set.	The	expanded	suite	of	“higher	resolution”	behavioral	classes	
are	italicized	and	nested	within	the	respective	parent	class	(i.e.,	
669	of	the	“Forage”	observations	were	subclassified	as	“Root,”	
representing	5%	of	all	training	observations).

Classifier training: behavioral class summary

Behavioral class
Total duration 
(s)

Total 
observations %

Rest 25,380 6345 47.1

Forage 10,404 2601 19.3

Root (2676) (669) (5.0)

Walk 5780 1445 10.7

Stand 6672 1668 12.4

Vigilance (472) (118) (0.9)

Run 4168 1042 7.7

Trot (2556) (639) (4.8)

Other 1440 360 2.7

Total 53,844 13,461 100.0
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6 of 15  |     PAINTER et al.

for	which	the	duration	criterion	could	be	met.	Class	likelihoods	were	
determined using the relative class proportions among the five near-
est	 training	 set-	neighbors	 corresponding	 to	 each	 time	 step	 in	 the	
candidate event. Class proportions were summed across time steps 
and	 sorted	 to	 produce	 a	 rank-	ordered	 likelihood	 for	 the	 classes.	
Candidate	events	for	which	this	procedure	failed	to	yield	a	valid	al-
ternate	class	assignment	were	merged	with	the	subsequent	event.1

The	 second	heuristic	was	 that	 any	 candidate	 “Standing”	 event	
flanked	by	“Resting”	activity	was	reassigned	to	the	“Resting”	class.	
Specifically,	 this	 reassignment	was	made	 if	 the	majority	of	a	120 s	
window	on	either	side	of	the	candidate	“Standing”	event	was	classi-
fied	as	“Resting.”

2.7  |  Magnetometer data

To	 assess	 magnetic	 compass	 heading	 accuracy	 and	 reliability,	
magnetometer data were collected from four collars under two 
conditions:	 a	 controlled	 laboratory	 environment	 (hereafter,	 “lab	
evaluation”)	designed	to	test	the	precision	of	the	magnetometer	and	
from	three	free-	roaming	boar	inside	the	behavioral	enclosure	(here-
after,	“field	test”)	(Table 1).

During	 the	 lab	 evaluation,	 the	 tag	 was	 leveled	 and	 centered	
inside	 an	 electromagnetic	 enclosure	 containing	 four	 Helmholtz's	
coils used to manipulate the strength and alignment of an experi-
mentally	 generated	magnetic	 field.	 Two	orthogonally	 aligned	 coils	
were	used	to	cancel	the	residual	horizontal	component	of	the	Earth's	
magnetic	 field	 (+/−	0.1%)	and	 to	adjust	 the	vertical	 component	of	
the magnetic field to match that of an Earth strength vertical field 
(~45,000	 nT).	 Two	 inner	 orthogonally	 aligned	 coils	 were	 used	 to	
generate	Earth-	strength	magnetic	fields	(total	strength	~50,000	nT)	
that	could	be	rotated	into	alignment	into	one	of	four	cardinal	com-
pass	alignments	corresponding	 to	 topographic	North,	South,	East,	
and	West	 (Kirschvink,	 1992).	 The	 tag	was	 oriented	 such	 that	 one	
end of the x-	axis	was	aligned	toward	topographic	North	which	was	
then	defined	as	 the	“heading	direction”	 in	DDMT	for	analysis.	Tag	
orientation	 remained	 static,	whereas	 the	horizontal	 component	of	
the	magnetic	 field	 was	 rotated	 by	 90°	 increments	 into	 alignment	
with	each	of	the	four	cardinal	compass	directions	for	a	period	of	10 s	
in	 each	 alignment.	Magnetic	 heading	measurements	 calculated	by	
DDMT were plotted relative to the four expected cardinal compass 
directions	using	the	gghistogram	function	in	the	R	package	ggpubr	
(Kassambara,	2020).

Field	tests	of	magnetometer	performance	were	carried	out	con-
currently	with	data	collected	for	the	behavioral	classifier	within	the	
behavioral	 enclosure	 on	 three	 free-	roaming	 individuals	 (Table 1).	
Video	 recordings	 were	 used	 to	 estimate	 ground	 truth	 magnetic	
headings	and	a	spatial	array	of	“magnetic	landmarks”	were	installed	
within	 the	 camera's	 field	 of	 view	 to	 provide	 known	magnetic	 ref-
erences	 to	 better	 estimate	 magnetic	 headings	 of	 focal	 subjects.	
Magnetic	 landmarks	were	either	nonmagnetic	cables	 tethered	be-
tween	trees	or	the	nonmagnetic	fence-	line	forming	the	behavioral	
enclosure	(Figure S1).	A	total	of	45	independent	behavioral	epochs	

from	 all	 core	 behavioral	 classes	 (excluding	 “other”),	 totaling	 5:27	
(min:s),	were	 selected	 to	 test	 the	 precision	 of	 the	magnetic	 head-
ing	data.	Heading	predictions	were	made	by	two	 investigators	not	
involved	in	data	collection	and	blind	to	all	raw	magnetometer	data.	
Using	 only	 video	 records,	 investigators	 predicted	 boar	 magnetic	
heading	 using	 the	 available	 magnetic	 landmarks	 described	 above.	
For	each	prediction,	 the	average	magnetic	heading	was	estimated	
over	 the	 duration	 of	 the	 behavioral	 segment	 identified.	When	 in-
vestigator	predictions	differed	by	 less	than	20°	(n = 40),	they	were	
averaged	to	establish	the	final	magnetic	heading,	whereas	when	pre-
dictions	differed	by	more	than	20°	(n = 5),	investigators	determined	a	
final	prediction	after	reevaluating	the	recording	together.	A	third	in-
vestigator	blind	to	the	magnetic	predictions	extracted	the	magnetic	
heading data from DDMT which was later compared to investigator 
predictions.

3  |  RESULTS

3.1  |  IMSC field performance: Durability, 
capacity, and lifetime

Between	2019	and	2022,	67	of	the	71	total	collars	(~94%)	deployed	
on	free-	ranging	boar	were	recovered	and	data	recording	durations	
ranged	from	9	to	421 days.	The	remaining	four	collars	 (~6%)	expe-
rienced	an	unknown	GPS	malfunction	and	remain	unrecovered.	Of	
the	67	collars	retrieved,	51	(76%)	were	fully	functional	and	no	appre-
ciable	damage	was	noted,	whereas	11	 (16%)	exhibited	mechanical	
damage	likely	due	to	physical	stresses	associated	with	boar	behavior,	
and	the	remaining	5	collars	(7%)	failed	prematurely	due	to	an	unex-
pected	electrical	fault.	Of	the	fully	functional	subset,	35	(69%)	col-
lars	recorded	data	until	retrieval,	whereas	9	collars	(18%)	recorded	
data for >50%	of	the	deployment	period	and	the	remaining	7	collars	
(14%)	recorded	data	for	<50%	of	deployment	period.	Overall,	free-	
ranging	boar	equipped	with	IMSCs	were	tracked	for	6001 days	and	a	
total	of	4547 days	of	biologging	data	were	recorded,	corresponding	
to	75%	of	the	cumulative	deployment	duration.

3.2  |  Behavioral classifier

Classifier performance was evaluated using accelerometer data from 
2100	independent	ground	truth	behavioral	epochs	(i.e.,	independent	
behaviors	falling	into	one	of	the	six	behavioral	classes)	across	three	
individuals,	totaling	08:28:15	(HH:mm:ss)	of	data	(Table 3, Table S1).	
Classifier	 performance	 was	 evaluated	 on	 an	 event-	by-	event	 basis	
(i.e.,	per	0.1 s	sample).	Overall	behavioral	classifier	performance	was	
85.1%	across	 all	 behaviors	 from	all	 three	 individuals	 (Table 4)	 and	
includes	 data	 from	 the	 STC	 and	 IMSC	 designs	 with	 different	 tag	
positions	 and	orientations.	Of	 the	 five	behavioral	 classes	of	 inter-
est	 (i.e.,	excluding	“Other”	which	was	composed	of	heterogeneous	
behaviors	only	 identified	by	the	classifier	when	a	behavior	did	not	
fall	 into	 any	 of	 the	 five	 core	 behavioral	 categories),	 the	 likelihood	

 20457758, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70264 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 15PAINTER et al.

that	any	given	prediction	matched	the	ground	truth	class	label	(i.e.,	
precision),	ranged	from	77.1%	(“Walking”	and	“Standing”)	to	96.5%	
(“Resting”)	(Table 4).	Classifier	recall,	that	is,	the	proportion	of	behav-
ioral	epochs	correctly	identified	by	the	classifier,	ranged	from	74.7%	
(“Running”)	 to	 91.8%	 (“Resting”)	 (Table 4).	 Classifier	 performance	
was	consistent	between	the	three	deployments,	ranging	from	83.5%	
(B4)	to	89.9%	(B30),	and	surprisingly,	the	collar	with	the	highest	per-
formance	 (B30,	 IMSC)	was	 least	similar	 in	design	 (i.e.,	 tag	position	
and	orientation)	to	those	used	to	train	the	classifier	(Table 5).	All	pos-
sible	pairs	of	the	eight	principal	components	used	to	identify	the	six	
behavioral	classes	are	plotted,	along	with	histograms	corresponding	

to each component in isolation, to illustrate the collective and rela-
tive	contribution	of	the	principal	components	toward	class	separa-
bility	(Figure 2).	Precision	and	recall	metrics	were	substantially	lower	
when	 tested	 on	 the	 three	 expanded	 behavioral	 classes,	 reflecting	
their similar acceleration profiles relative to their respective parent 
classes.	 However,	 overall	 classifier	 performance	 remained	 robust,	
with	 an	 accuracy	of	78.4%,	 although	 there	was	 larger	 variation	 in	
performance	between	collar	designs	when	tested	on	the	expanded	
classes	(Table 6).

3.3  |  Magnetic heading: Lab evaluation

Following	 the	 calibration	 procedures	 described	 above,	 the	 me-
dian	 magnetic	 heading	 measurements	 calculated	 by	 DDMT	 were	
in	agreement	with	each	of	 the	experimentally	generated	magnetic	
field	 alignments:	 N = 2.99°,	 S = 179.16°,	 East = 88.21°,	W = 268.66°	
(Figure 3),	with	an	overall	median	heading	error	of	1.7°	relative	to	
expected.

3.4  |  Magnetic heading: Field test

Across	 all	 45	 magnetic	 heading	 samples,	 the	 median	 discrepancy	
between	 DDMT	 magnetic	 compass	 heading	 measurements	 and	
ground	 truth	 predictions	 was	 0°	 (CI:	 −3.1°	 and	 6.9°)	 (Figure 4b).	
Median	bootstrapped	95%	confidence	 intervals	 relative	 to	predic-
tions	were	calculated	using	the	function	boot	from	the	boot	pack-
age	 (Canty	&	Ripley,	2020).	Discrepancy	between	DDMT	heading	
and	 corresponding	 ground	 truth	 prediction	 ranged	 from	 −30°	 to	
21°	(Figure 4b).	As	shown	in	Figure 4a,	the	distribution	of	compass	
headings	obtained	was	evenly	distributed	across	 all	 possible	mag-
netic heading alignments, and the error in the DDMT magnetic com-
pass heading measurements compared to predictions was uniform 

TA B L E  3 Classifier	testing	data.	Summary	of	accelerometer	data	
used	to	test	behavioral	classifier	performance	in	three	individuals	
not	used	for	classifier	training.	The	total	duration	(s)	and	total	
number	of	independent	behaviors	per	class	(Epochs)	as	well	as	their	
proportions	(%)	in	classifier	testing	are	listed.	The	expanded	suite	
of	“higher	resolution”	behavioral	classes	are	italicized	and	nested	
within their respective parent class, as in Table 2.

Behavioral classifier testing data

Behavioral Class

Duration Epochs

Sum (s) % Total %

Rest 11,008 36.1 67 3.2

Forage 7436 24.4 343 16.3

Rooting (1562) (5.1) (98) (4.7)

Walk 4129 13.5 459 21.9

Stand 4590 15.1 685 32.6

Vigilance (439) (1.4) (106) (5.0)

Run 1827 6.0 157 7.5

Trot (647) (2.1) (106) (5.0)

Other 1505 4.9 389 18.5

Total 30,495 100 2100 100

TA B L E  4 Behavioral	classifier	performance.	Confusion	matrix	showing	behavioral	classifier	accuracy	tested	on	three	individuals	across	
six	behavioral	classes.	Classifier	predictions	are	listed	on	the	left	column	and	ground	truth	classes	are	listed	across	the	second-	to-	last	
row.	Values	within	the	matrix	represent	the	total	number	of	events	for	each	predicted	class	(rows)	and	for	each	ground	truth	observation	
(columns),	where	an	event	corresponds	to	one	acceleration	data	point	recorded	by	the	logger.	Light	green-	shaded	cells	inside	the	matrix	
represent	classifier	predictions	that	match	ground	truth	observations.	The	likelihood	that	the	classifier	prediction	matches	that	of	the	ground	
truth	observation	for	each	behavior	class	is	represented	by	the	Precision	column	shown	on	the	right.	The	proportion	of	events	in	each	class	
identified	by	the	classifier	is	represented	by	Recall	shown	across	the	bottom	row.	Lighter	to	darker	shades	of	green	in	Precision	and	Recall	
cells	indicate	lower	to	higher	classification	performance,	respectively.

Prediction Behavioral classifier confusion matrix Precision (%)

Walk 36,851 2883 0 5514 472 2064 77.1

Other 2758 9863 15 5606 1580 3881 41.6

Rest 39 253 101,077 0 0 3379 96.5

Forage 962 1090 0 62,545 2361 995 92.0

Run 167 788 0 35 13,649 173 92.1

Stand 508 174 8987 656 209 35,409 77.1

Truth Walk Other Rest Forage Run Stand

Recall (%) 89.3 65.5 91.8 84.1 74.7 77.1
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8 of 15  |     PAINTER et al.

TA B L E  5 Behavioral	classifier	performance	summary.	Precision	and	recall	percentages	are	shown	for	all	six	behavioral	classes,	partitioned	
by	individual,	as	well	as	overall	classifier	accuracy	(%)	per	individual.

Behavioral classifier performance summary

Behavioral class

B4 B7 B30

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Walk 77.8 86.4 74.2 91.2 87.1 85.6

Other 34.1 58.0 53.7 72.3 4.3 17.4

Rest 93.5 85.6 98.3 95.0 98.6 100.0

Forage 96.1 88.6 62.9 39.1 94.6 96.2

Run 92.3 78.4 94.1 75.2 75.0 60.2

Stand 58.7 72.4 85.9 83.0 95.3 67.3

Overall	accuracy	(%) 83.5 84.2 89.9

F I G U R E  2 Matrix	showing	plots	of	all	possible	pairs	of	the	8	principal	components	(PCs)	that	were	used	in	behavioral	classification.	
Points	correspond	to	training	observations	(n = 13,461	in	each	plot)	and	are	colored	according	to	behavioral	class.	Numbering	columns	and	
rows	each	from	1	to	8,	respectively,	beginning	at	the	top	left	corner	of	the	matrix,	the	column	number	corresponds	to	the	PC	plotted	on	
the	horizontal	axis	and	the	row	number	to	the	PC	plotted	on	the	vertical	axis.	For	example,	the	plot	in	row	3,	column	2	has	the	second	PC	
plotted	on	the	horizontal	axis	and	the	third	PC	plotted	on	the	vertical	axis.	The	plots	along	the	diagonal	are	histograms,	colored	by	class,	for	
each	of	the	8	PCs.	(Plots	mirrored	across	the	diagonal	show	the	same	two	PCs	with	the	axes	swapped.)
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    |  9 of 15PAINTER et al.

TA B L E  6 Expanded	classifier	performance.	Confusion	matrix	showing	behavioral	classifier	accuracy	tested	on	three	individuals	across	the	
expanded	suite	of	nine	behavioral	classes.	Table	format	is	identical	to	that	shown	in	Table 4.

Prediction Behavioral classifier confusion matrix Precision (%)

Walk 36,851 2883 0 4643 871 172 300 1885 179 77.1

Other 2758 9863 15 3959 1647 601 979 3334 547 41.6

Rest 39 253 101,077 0 0 0 0 3330 49 96.5

Forage 170 587 0 42,458 4415 1 0 457 478 87.4

Root 792 503 0 7061 8611 2360 0 55 5 44.4

Run 0 129 0 35 0 7164 109 15 0 96.1

Trott 167 659 0 0 0 1306 5070 119 39 68.9

Stand 434 117 8372 585 64 203 2 27,766 2980 68.5

Vigilance 74 57 615 7 0 0 4 4547 116 2.1

Truth Walk Other Rest Forage Root Run Trot Stand Vigilance

Recall (%) 89.3 65.5 91.8 72.3 55.2 60.7 78.4 66.9 2.6

F I G U R E  3 Lab	test	of	triaxial	magnetometer	data	used	to	calculate	magnetic	heading	measurements	after	calibration	in	DDMT	software.	
Histograms	plot	the	total	count	of	100	samples	(10 Hz × 10 s)	recorded	in	each	magnetic	field	alignment	(i.e.,	mN = topoN,	E,	S,	W),	relative	
to	magnetic	heading	bearings	calculated	in	DDMT	after	performing	magnetometer	calibration	procedures.	Plots	(a–d)	correspond	to	
experimentally	generated	Earth-	strength	magnetic	fields	aligned	at	North	(0°),	East	(90°),	South	(180°),	West	(270°),	respectively.	Median	
values for each magnetic field alignment are shown in red.
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10 of 15  |     PAINTER et al.

(i.e.,	 error	 was	 unbiased	 across	 the	 range	 of	 magnetic	 directions)	
as	 indicated	by	the	manova	model	previously	described	 in	Landler	
et	al.	(2022)	(model	results:	intercept:	approx.	F = 0.65,	p = .53,	error	
proportion: approx. F = 0.79,	p = .46)	(Figure 4c).	The	“error	propor-
tion”	was	 calculated	 as	 the	 angular	 deviation	between	 the	DDMT	
measurement	and	the	ground	truth	prediction	divided	by	the	total	
angular deviation. The cosine and sine of the magnetic heading in 
radians	were	used	as	the	response	variables	and	the	error	propor-
tion as a linear covariate. The intercept of this model was used to 
test	for	a	significant	departure	from	uniformity	(Landler	et	al.,	2022).	
Importantly,	the	accuracy	of	magnetic	compass	headings	was	con-
sistent	across	all	three	individuals	evaluated	(Table 7),	fitted	with	dif-
ferent	collar	designs,	biologger	positions,	and	orientations	(Figure 1, 
Table 1),	as	well	as	across	all	behavioral	classes,	including	behaviors	
characterized	 by	 large	 acceleration	 amplitudes	 and	 variation	 (e.g.,	
“Foraging,”	“Walking,”	“Running”).

4  |  DISCUSSION

Animal-	borne	telemetry	systems	have	emerged	as	a	powerful	 tool	
to	 further	 characterize	 animal	 movement,	 behavior,	 and	 ecology.	
The	availability	of	reliable	collar	systems	equipped	with	a	range	of	
sensor	 technologies	adaptable	across	multiple	 studies	and	species	
is	valuable	for	several	reasons,	including	that	it	eliminates	the	need	
to	develop	and	test	novel	equipment,	and	that	data	sets	collected	
from	a	 standardized	 system	may	catalyze	additional	 collaboration,	
data	 sharing,	 and	 advance	 progress	 in	 analytical	 techniques.2 The 
IMSC	 developed	 here,	 equipped	 with	 triaxial	 accelerometer	 and	
magnetometer	sensors,	GPS	technology,	as	well	as	a	variety	of	addi-
tional	sensors	not	used	in	the	current	study,	has	proven	to	be	highly	
reliable	under	the	harsh	demands	imposed	by	wild	boar	under	natu-
ral	contexts.	Across	 the	71	 IMSC	deployments,	94%	of	 the	collars	
were	recovered	resulting	in	biologging	data	recorded	across	75%	of	

F I G U R E  4 Results	from	the	magnetometer	field	test	collected	from	free-	roaming	individuals	equipped	with	STC	and	IMSC	designs.	A	
total	of	45	samples	were	evaluated	and	compared	to	ground-	truth	predictions	of	magnetic	heading.	(a)	Histogram	of	the	overall	distribution	
of	magnetic	compass	measurements	produced	by	DDMT	shows	that	samples	were	obtained	from	the	range	of	possible	compass	directions.	
(b)	The	discrepancy	between	DDMT	magnetic	compass	measurements	and	ground-	truth	recordings,	that	is,	DDMT	magnetic	heading	output	
error	(median	error = 0°,	black	dashed	line;	bootstrapped	95%	CI:	−3.1°	and	6.9°).	(c)	The	error	produced	by	DDMT	was	uniform	across	the	
range	of	possible	magnetic	compass	headings.	IMSC,	integrated	multisensor	collars;	STC,	single-	tag	collars.

TA B L E  7 Magnetic	heading	field	test.	Summary	and	results	of	ground	truth	magnetic	compass	headings.	The	proportion	of	time	
(%	Duration)	and	the	proportion	of	epochs	from	each	behavioral	class	(%	Epochs)	used	to	ground	truth	the	magnetic	headings	are	
listed,	partitioned	by	individual.	Combined	data	from	all	individuals	tested,	per	behavioral	class,	are	shown.	Median	magnetic	heading	
measurements	calculated	by	DDMT,	relative	to	ground	truth	predications	are	shown	per	behavioral	class	and	partitioned	by	individual.	In	
cases	with	a	negative	(−)	median	value,	the	corresponding	magnetic	compass	heading	is	shown	in	parentheses.

Behavioral class

B6 B7 B30 Combined

Median heading 
Rel GT prediction% duration

% 
epochs

% 
duration

% 
epochs

% 
duration

% 
epochs

Total % 
duration

Total % 
epochs

Rest 0 0 0 0 1 2 1 2 −8° (352°)

Forage 30 22 10 9 16 11 55 42 −6° (354°)

Walk 1 2 6 9 3 7 10 18 0°

Stand 5 7 17 13 11 16 33 36 −0.5 (359.5°)

Run 0 0 1 2 0 0 1 2 9°

Total 35 31 34 33 31 36 100 100 n/a

Median Heading Rel 
GT Prediction

−0.5° (359.5°) 0° −6° (354°) 0°
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the	 cumulative	 deployment	 duration.	While	 the	maximum	 record-
ing	 duration	was	 an	 impressive	 421 days	 for	 one	 deployment,	 the	
majority	of	IMSCs	(72%)	were	terminated	prematurely	due	to	hunt-
ing	or	automobile	collisions,	which	does	not	reflect	collar	capacity.	
In	 a	 separate	 study,	 36	 IMSCs	 identical	 to	 those	 described	 above	
were	deployed	on	free-	ranging	red	deer	(Cervus elaphus)	and	had	an	
average	and	maximum	data	recording	duration	of	203	and	529 days,	
respectively.	Given	the	standardization,	durability,	and	functionality	
of	the	IMSC,	these	collars	are	well	suited	for	long-	term	studies	in	ter-
restrial	mammals,	and	we	hope	they	will	be	adopted	for	use	in	future	
biologging	studies.

Concurrent	with	the	IMSC	development,	we	have	built	a	behav-
ioral	 classifier	 capable	 of	 identifying	 ecologically	 relevant	 behav-
iors	 from	 six	 behavioral	 classes	 in	wild	boar.	 The	 classifier	 had	 an	
overall	 performance	 of	 85%	 and,	 of	 the	 five	 core	 classes	 (i.e.,	 ex-
cluding	“Other”),	“Resting”	was	identified	with	the	highest	precision,	
and	 “Standing”	 had	 the	 lowest	 precision,	most	 often	misclassified	
as	“Resting”,	likely	due	to	the	similar	acceleration	profiles	between	
resting	 and	 standing	 behaviors.	 Classification	 recall	 performance	
was	highest	 in	 “Resting”	 and	 lowest	 in	 “Running.”	 The	majority	 of	
undetected	 “Runs”	were	misclassified	 as	 “Forage,”	 a	 class	 that	 in-
cludes	“Rooting”	characterized	by	large	and	variable	x-	axis	accelera-
tion	amplitudes,	like	those	associated	with	“Running”	accelerometer	
profiles.	Importantly,	the	test	data	set	for	core	and	expanded	behav-
ioral	classes	reflected	the	proportions	of	behaviors	used	in	classifier	
training,	which	 in	 turn,	approximated	 the	overall	behavioral	 reper-
toire	of	wild	boar	in	natural	contexts.	This	proportionality	helps	to	
mitigate	performance	biases	caused	by	over-		or	underrepresented	
behaviors	 and	 better	 reflects	 true	 overall	 classification	 perfor-
mance.	The	decision	to	use	a	k-	NN	classifier	was	based	on	classifica-
tion	performance	reported	in	previous	biologging	literature	(Bidder	
et al., 2014;	Painter	et	al.,	2016;	Sur	et	al.,	2017),	coupled	with	the	
nonlinearity	of	its	decision	boundaries	(Hastie	et	al.,	2009),	however,	
further	optimization	across	classifiers	and	of	hyperparameters	could	
potentially	yield	performance	improvements	that	can	be	empirically	
characterized	in	future	studies.

The	 classifier	 exhibited	 the	 best	 overall	 performance	 (89.9%	
accuracy)	when	tested	with	data	collected	from	the	IMSC,	despite	
being	trained	on	data	exclusively	from	STCs,	suggesting	that	the	
classifier	has	an	inherent	plasticity	and	is	capable	of	classifying	be-
haviors	from	biologging	tags	attached	in	various	orientations	and	
positions.	 As	 expected,	 classifier	 performance	 on	 the	 expanded	
suite	of	behavioral	 classes	was	not	 as	 robust,	 largely	due	 to	 the	
similarities	between	the	parent	class	and	higher	resolution	classes.	
To	explore	this	further,	we	build	upon	the	framework	detailed	in	
Wilson	et	al.	(2018)	using	DDMT's	Behavior Builder and Time Series 
functions	in	an	attempt	to	distinguish	between	behavioral	classes	
with	similar	acceleration	profiles,	such	as	“Standing”	and	“Vigilance”	
behaviors.	Applying	these	postclassification	techniques	to	a	sub-
set	of	our	current	dataset	drastically	improved	“Vigilance”	result-
ing in >50%	precision	and	recall	metrics	(see	Figure S1).	Although	
encouraging, a more detailed investigation using larger data sets 
across	multiple	behaviors	will	be	needed.	Furthermore,	we	expect	

that a similar improvement in classification performance could 
also	be	achieved	in	the	preprocessing	stages	of	classifier	develop-
ment	by	creating	new	features	that	capture	subtle	differences	in	
accelerometer	signatures	between	similar	classes,	like	those	iden-
tified	between	“Standing”	and	“Vigilance”	behaviors.

The	classifier	was	trained	and	tested	solely	 from	triaxial	accel-
erometer data, an important a priori consideration. Because spatial 
features	of	the	behavioral	enclosure	remained	consistent	through-
out	the	study	(e.g.,	location	of	water	source	and	feeding	area,	shaded	
areas	used	as	bedding	sites),	including	locations	and	viewing	angles	
of the cameras used to collect ground truth videos, it was important 
to exclude magnetometer data from classifier training and testing, 
as	behaviors	under	 these	circumstances	cannot	be	assumed	 to	be	
randomly	oriented.	For	example,	 in	our	 study,	 “Resting”	alignment	
was	biased	due	to	limited	shaded	areas	in	the	enclosure.	Had	magne-
tometer	data	been	included	in	the	behavioral	analysis,	the	classifier	
would	likely	identify	“Resting”	using	biased	magnetometer	data	that	
have	no	relevance	beyond	the	confines	of	the	behavioral	enclosure	
and	would	 result	 in	 false	positive	classifications	 that	artificially	 in-
flate	precision	and	recall	metrics.	We	acknowledge	that	magnetom-
eter	data	can	be	valuable	for	behavioral	identification	under	certain	
contexts	(Chakravarty	et	al.,	2019;	Williams	et	al.,	2017);	however,	it	
remains unclear if studies that incorporate magnetometer data into 
machine	 learning	analyses	could	be	predisposed	to	such	biases,	as	
the	relative	contribution	of	magnetometer	data	used	for	behavioral	
identification	is	rarely	provided.

Nonetheless,	triaxial	magnetometer	data	can	provide	a	wealth	of	
opportunities	for	exploring	movement	ecology	in	greater	detail,	such	
as	dead-	reckoning	analyses	(Gunner	et	al.,	2020)	and	studies	of	mag-
netic	alignment	 (Begall	et	al.,	2013;	Červený	et	al.,	2017).	Given	the	
salience	of	magnetometer	data	in	biologging	research,	it	is	surprising	
that few studies have validated the precision of magnetic compass 
headings	 calculated	 from	 raw	 triaxial	 magnetometer	 data	 (but	 see	
Wilson	et	al.,	2007).	Therefore,	we	provide	a	detailed	characterization	
of	magnetic	heading	measurements	under	laboratory	and	natural	con-
texts with magnetometer sensors mounted in different positions and 
orientations.	Magnetic	headings	calculated	by	DDMT	were	consistent	
with ground truth predictions, with an overall median deviation from 
expected	of	1.7°	and	0°	in	the	laboratory	and	field	test,	respectively.	
These	data	confirm	that	the	magnetometer	calibrations	(i.e.,	soft-		and	
hard-	iron	 corrections)	 and	 tilt-	compensation	 algorithms	 applied	 in	
DDMT	are	well	 suited	 for	extracting	high-	frequency	magnetic	 com-
pass	bearings	from	raw	magnetometer	data.

Importantly,	 the	 field	 test	 carried	 out	 on	 free-	roaming	 boar	 in-
cluded	magnetic	measurements	that	were	obtained	from	the	core	be-
havioral	classes.	“Running”	had	the	largest	average	deviation	relative	
to	expected	(9°)	and	may	be	due	to	the	large	variation	in	acceleration	
amplitudes	 that	 introduce	“noise”	 into	accelerometer-	dependent	 tilt-	
compensation	calculations	and/or	the	(in)ability	of	observers	to	accu-
rately	predict	magnetic	alignment	from	more	spatially	erratic	behavioral	
classes,	such	as	“Running.”	Unintuitively,	however,	magnetic	headings	
obtained	from	“Resting”	behavior,	characterized	by	little-	to-	no	varia-
tion	 in	acceleration	profile,	 also	had	a	 relatively	high	deviation	 from	
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expected	(8°)	and	was	likely	due	to	an	obstructed	view	of	the	animal's	
head	alignment	caused	by	a	dense	canopy	covering	the	bedding	area	
where	 boar	 would	 exclusively	 rest.	 It	 is	 noteworthy	 that	 magnetic	
compass	performance	remained	accurate	across	all	core	behaviors	(ex-
cluding	“Other”,	which	was	not	assessed),	and	compass	performance	
was	evaluated	across	a	representative	range	of	all	possible	magnetic	
directions	(i.e.,	0°–359°).	This	is	the	first	study	to	our	knowledge	that	
has	provided	a	detailed	characterization	of	magnetic	compass	perfor-
mance	in	free-	roaming	animals	using	ground	truth	data.

Of	particular	interest	is	the	implementation	of	dead-	reckoning	to	
reconstruct	high-	resolution	movement	traces	in	free-	roaming	mam-
mals.	As	a	proof-	of-	concept,	we	take	advantage	of	three	important	
elements	made	possible	by	the	IMSC	presented	in	the	current	study:	
(i)	 the	behavioral	classifier	capable	of	 identifying	ecologically	 rele-
vant	 behaviors	 in	 free-	roaming	 boar,	 (ii)	 a	 reliable	 stream	of	mag-
netic	 heading	 data	 recorded	 at	 subsecond	 intervals,	 and	 (iii)	 GPS	
fixes	recorded	at	30-	min	intervals.	Dead-	reckoning	relies	on	vector	
integration,	where	vectors	depend	on	speed	 (or	distance	traveled)	
and	heading	estimates	derived	from	raw	biologging	data	(for	details,	
see Bidder et al., 2015; Gunner et al., 2021).	Deriving	speed	 from	
biologging	data	is	notoriously	difficult	(Cade	et	al.,	2018),	and	pre-
vious	work	has	assigned	speed	coefficients	to	manually	labeled	be-
havioral	classes	to	estimate	vector	lengths	for	dead-	reckoning	path	
reconstruction	 (Bidder	 et	 al.,	2015).	We	 build	 upon	 this	 approach	
by	using	machine	learning	to	identify	behavioral	classes	from	large	
volumes	of	 continuous	biologging	data,	which	were	 then	assigned	
speed	 coefficients	 based	 on	 ground	 truth	 observations.	 Coupling	
our	 behavioral	 classification	 techniques	 with	 the	 accuracy	 of	 our	
verified	 magnetic	 heading	 data	 yielded	 high-	resolution	 track	 re-
construction	that	was	further	refined	by	“anchoring”	 tracks	to	the	

landscape	using	time-	synced	GPS	fixes	(Figure 5).	The	tortuosity	of	
the reconstructed track in Figure 5	 that	 explicitly	 avoids	 environ-
mental	 boundaries	 and	 physical	 obstacles	 highlights	 the	 precision	
of	 these	methods	compared	 to	using	GPS	data	alone	and	offers	a	
powerful	approach	to	investigate	movement	ecology	over	multiple	
spatiotemporal scales.

Although	 the	 emergence	 of	 biologging	 techniques	 has	 revolu-
tionized	studies	of	animal	ecology,	a	growing	set	of	challenges	ac-
companies	these	technologies,	requiring	multidisciplinary	expertise.	
The	IMSCs	developed	here,	coupled	with	a	robust	behavioral	clas-
sifier and a detailed verification of magnetic heading performance, 
provide	 a	 commercially	 available	 system	 that	 can	 be	 adopted	 and	
adapted for future studies on terrestrial mammals.
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ENDNOTE S
 1	If	no	subsequent	event	was	available	–	only	possible	at	the	end	of	a	file	
–	the	candidate	event	was	discarded	as	unclassifiable.	A	small	number	
of	time	steps	at	the	beginning	of	each	file	were	similarly	discarded,	since	
a	fixed	amount	of	time	must	accumulate	before	the	classifier	can	make	
its	first	decision.	Such	edge-	effects	have	negligible	impact	on	classifier	
evaluation.

 2	We	do	not	imply	that	the	field	of	animal-	borne	telemetry	and	biologging	
is	not	collaborative,	and	 indeed,	would	argue	 the	opposite.	However,	
we	 suggest	 that	 increased	 overlap	 between	 methodologies	 may	 en-
courage	further	collaboration	and	promote	the	growth	of	this	emerging	
discipline.
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