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Abstract

We study asymptotic behaviour of positive ground state solutions of the nonlinear Choquard equation

−�u + εu = (Iα ∗ |u|p)|u|p−2u + |u|q−2u, in RN, (Pε)

where N ≥ 3 is an integer, p ∈ [N+α
N

, N+α
N−2 ], q ∈ (2, 2N

N−2 ), Iα is the Riesz potential of order α ∈ (0, N)

and ε > 0 is a parameter. We show that as ε → 0 (resp. ε → ∞), the ground state solutions of (Pε), after 
appropriate rescalings dependent on parameter regimes, converge in H 1(RN) to particular solutions of five 
different limit equations. We also establish a sharp asymptotic characterisation of such rescalings, and the 
precise asymptotic behaviour of uε(0), ‖∇uε‖2

2, ‖uε‖2
2, 
∫
RN (Iα ∗ |uε|p)|uε|p and ‖uε‖q

q , which depend in 
a non-trivial way on the exponents p, q and the space dimension N . Further, we discuss a connection of our 
results with a mass constrained problem, associated to (Pε) with normalization constraint 

∫
RN |u|2 = c2. 

As a consequence of the main results, we obtain the existence, multiplicity and precise asymptotic behaviour 
of positive normalized solutions of such a problem as c → 0 and c → ∞.
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1. Introduction

We study standing wave solutions of the nonlinear Schrödinger equation with attractive com-
bined nonlinearity

iψt = �ψ + (Iα ∗ |ψ |p)|ψ |p−2ψ + a|ψ |q−2ψ, in RN ×R, (1.1)

where N ≥ 3 is an integer, ψ : RN ×R → C, p ∈ [N+α
N

, N+α
N−2 ], q ∈ (2, 2∗) with 2∗ = 2N

N−2 , and 
Iα is the Riesz potential defined for every x ∈RN \ {0} by

Iα(x) = Aα(N)

|x|N−α
, Aα(N) = �(N−α

2 )

�(α
2 )πN/22α

,

where � denotes the Gamma function.
A theory of NLS with local combined power nonlinearities was developed by Tao, Visan and 

Zhang [45] and attracted a lot attention during the past decade (cf. [1,2,7,10,19,24–27,34,36,51]
and further references therein). Nonlocal equation (1.1) in the case p = 2 and α = 2 was pro-
posed in cosmology, under the name of the Gross–Pitaevskii–Poisson equation, as a model to 
describe the dynamics of the Cold Dark Matter in the form of the Bose–Einstein Condensate 
[4,8,47]. In this model the nonlocal convolution term in (1.1) represents the Newtonian gravi-
tational attraction between bosonic particles. The local term takes into account the short–range 
self–interaction between bosons. The non-interacting case a = 0 corresponds to the Schrödinger–
Newton (Choquard) model of self–gravitating bosons [40], which is mathematically well–studied 
[38]. When a = 1 the quantum self–interaction between bosons is focusing/attractive, while for 
a = −1 the self–interaction is defocusing/repulsive, see surveys [9,39] for the astrophysical back-
ground. Mathematically, the repulsive case a = −1 was recently studied in [34], see also further 
references therein. In this work we are concerned with the attractive case a = 1.

A standing wave solutions of (1.1) with a frequency ε > 0 is a finite energy solution in the 
form

ψ(t, x) = e−iεtu(x).

In the case a = 1, this ansatz yields the equation for u in the form

−�u + εu = (Iα ∗ |u|p)|u|p−2u + |u|q−2u, in RN. (Pε)

A solution of (Pε) is a critical point of the Action functional defined by

I (u) = 1

2

∫
RN

|∇u|2 + ε

2

∫
RN

|u|2 − 1

2p

∫
RN

(Iα ∗ |u|p)|u|p − 1

q

∫
RN

|u|q . (1.2)

A ground state of (Pε) is a nontrivial critical point of I with a minimal energy amongst all 
nontrivial critical points of I .

The existence and qualitative properties of ground states uε ∈ H 1(RN) to (Pε) for every 
ε > 0 have been studied in [24,25] (see also Theorems A, B, C below). In this work we are 
interested in the limit asymptotic profile of the ground states uε of the problem (Pε), and in the 
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asymptotic behaviour of different norms of uε , as ε → 0 and ε → ∞. Of particular importance 
is the L2–mass of the ground state

M(ε) := ‖uε‖2
2, (1.3)

which plays a key role in the analysis of stability of the corresponding standing wave solution 
of the time–dependent NLS (1.1). The importance of M(ε) is for instance seen in the Grillakis-
Shatah-Strauss theory [15,16,41,50] of stability for these solutions within the time-dependent 
Schrödinger equation. The latter says that the solution uε is orbitally stable when M ′(ε) > 0
and that it is unstable when M ′(ε) < 0. Therefore the intervals where M(ε) is increasing furnish 
stable solutions whereas those where M(ε) is decreasing correspond to unstable solutions. The 
Grillakis-Shatah-Strauss theory relies on another conserved quantity, the energy, which is defined 
below and for which the variations of M(ε) also play a crucial role.

Alternatively to the ground states with a prescribed frequency, one can search for standing 
wave solutions of (1.1) with a prescribed mass, and in this case the frequency is part of the 
unknown. That is, for a fixed c > 0, search for u ∈ H 1(RN) and λ ∈R satisfying

{ −�u = λu + (Iα ∗ |u|p)|u|p−2u + |u|q−2u, in RN,

u ∈ H 1(RN),
∫
RN |u|2 = c2.

(1.4)

A solution of (1.4) is a pair (u, λ) called a normalized solution. Here λ ∈ R arises as an a-
priori unknown Lagrange multiplier. This approach seems to be particularly meaningful from 
the physical point of view, and often offers a good insight into the dynamical properties of the 
standing wave solutions for (1.1), such as stability or instability. It is standard to see that critical 
points of the Energy functional

E(u) = 1

2

∫
RN

|∇u|2 − 1

2p

∫
RN

(Iα ∗ |u|p)|u|p − 1

q

∫
RN

|u|q (1.5)

restricted to the (mass) constraint

S(c) = {u ∈ H 1(RN) : ‖u‖2
2 = c2} (1.6)

are normalised solution of (1.4), and every normalised solution of (1.4) is a solution of (Pε) with 
ε = −λ. We refer the readers to [26,27,51] and the references therein.

In [36], the second author and C. Muratov studied the asymptotic properties of ground states 
for a class of scalar field equations with a defocusing exponent p and a focusing larger exponent 
q . More precisely, the following equation

−�u + εu = |u|p−2u − |u|q−2u, in RN, (1.7)

is discussed in [36], where N ≥ 3, q > p > 2. Later, in [23], M. Lewin and S. Rota Nodari prove 
a general result about the uniqueness and non-degeneracy of positive radial solutions to the above 
equation. The non-degeneracy of the unique solution uε allows the authors to derive its behaviour 
in the two limits ε → 0 and ε → ε∗, where ε∗ is a threshold for the existence. Amongst other 
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things, a precise asymptotic expression of M(ε) = ‖uε‖2
2 is obtained in [23]. This implies the 

uniqueness of energy minimizers at fixed mass in certain regimes.
In [34], Zeng Liu and the second author extend the results in [36] to a class of Choquard type 

equation

−�u + εu = (Iα ∗ |u|p)|u|p−2u − |u|q−2u, in RN. (1.8)

Under near optimal assumptions on the exponents p and q , the limit profiles of the ground states 
are discussed in the two cases ε → 0 and ε → ∞. But the precise asymptotic behaviour of the 
mass of the ground states was not studied in [34].

The nonlinear Schrödinger equation with two focusing exponents p and q ,

−�u + εu = |u|p−2u + μ|u|q−2u, in RN, (1.9)

where N ≥ 3, 2 < q < p ≤ 2∗ and μ > 0 is a parameter, was considered in [1,2] by T. Akahori et 
al. When μ = 1, p = 2∗ and q ∈ (2, 2∗), the authors in [2] proved that for small ε > 0 the ground 
state is unique and as ε → 0, the unique ground state uε tends to the unique positive solution 
of the equation −�u + u = uq−1. After a suitable rescaling, authors in [1] establish a uniform 
decay estimate for the ground state uε , and then prove the uniqueness and nondegeneracy of 
ground states uε for N ≥ 5 and large ε > 0, and show that for N ≥ 3, as ε → ∞, uε tends 
to a particular solution of the critical Emden–Fowler equation. More recently, Jeanjean, Zhang 
and Zhong [22] also studied the asymptotic behaviour of solutions as ε → 0 and ε → ∞ for 
the equation (1.9) with a general subcritical nonlinearity and discussed the connection to the 
existence, non-existence and multiplicity of prescribed mass positive solutions to (1.9) with the 
associated L2 constraint condition 

∫
RN |u|2 = c2. For other related papers, we refer the reader to 

[35] and the references therein.
For quite a long time paper [18] was the only one dealing with existence of normalized so-

lutions in cases when the energy is unbounded from below on the L2-constraint. More recently, 
however, problems of this type received much attention. We refer the readers to [43,44,48,49]
and references therein for the existence and multiplicity of normalized solutions to the equations 
(1.9). In [48], Wei and Wu studied the existence and asymptotic behaviour of normalized solu-
tions for (1.9) with p = 2∗, and obtained a precise asymptotic behaviour of ground states and 
mountain pass solutions as μ → 0 and μ goes to its upper bound, where λ := −ε arises as a 
Lagrange multiplier. We refer the readers to [20,22,43,44,49] for the asymptotic behaviour of 
normalized solutions when the parameter μ varies in its range. Roughly speaking, the param-
eter μ modifies thresholds for the existence but does not change the qualitative properties of 
solutions. In a sense, changing the parameter μ is equivalent to changing the mass c > 0. More 
precisely, it follows from the reduction given in [49] that finding a normalized solution of (1.9)
with p = 2∗ and mass constrained condition 

∫
RN |u|2 = c2 is equivalent to finding a normalized 

solution of the problem

{ −�u + εu = |u|2∗−2u + |u|q−2u, in RN,

u ∈ H 1(RN),
∫
RN |u|2 = c2μ

2
q−qγq ,

(1.10)

where γq = N(q−2)
2q

. In particular, sending μ → 0 (resp. μ → ∞) is equivalent to sending the 
mass c → 0 (resp. c → ∞).
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In [20], taking the mass c > 0 as a parameter, Jeanjean and Le also discuss the asymptotic 
behaviour of normalized solutions of (1.9) with p = 2∗. In the case N ≥ 4, 2 < q < 2 + 4

N
, 

amongst other things, Jeanjean and Le obtained a normalized solution uc of mountain pass type 
for small c > 0 and proved that

lim
c→0

‖∇uc‖2
2 = S

N
2 , lim

c→0
E(uc) = 1

N
S

N
2 . (1.11)

The relationship between action ground state and energy ground state is discussed in [11,17,20,
21,49]. In particular, in these works it is shown that the energy ground state is necessarily an 
action ground state. So some of the results in the present paper can be used for the analysis of the 
asymptotic behaviour of normalized ground states. However the connection between normalized 
solutions of mountain pass type and action ground states is less understood. We shall address this 
problem in a forthcoming paper.

Organization of the paper. In Section 2, we state the main results in this paper. In Section 3, we 
give some preliminary results which are needed in the proof of our main results. Sections 4 and 
5 are devoted to the proofs of Theorems 2.1 and 2.2, respectively. Finally, in the last section, we 
prove Theorem 2.3 and 2.4, and present some further results.

Basic notations. Throughout this paper, we assume N ≥ 3. Br denotes the ball in RN with radius 
r > 0 and centred at the origin, |Br | and Bc

r denote its Lebesgue measure and its complement in 
RN , respectively.

C∞
c (RN) is the space of the functions infinitely differentiable with compact support in RN .

Lp(RN) with 1 ≤ p < ∞ is the Lebesgue space with the norm ‖u‖p = (∫RN |u|p)1/p .

H 1(RN) is the usual Sobolev space with norm ‖u‖H 1(RN) = (∫RN |∇u|2 + |u|2)1/2
.

H 1
r (RN) = {u ∈ H 1(RN) : u is radially symmetric}.

D1,2(RN) = {u ∈ L2∗
(RN) : |∇u| ∈ L2(RN)}.

As usual, C, c, etc., denote generic positive constants. For any small ε > 0 and two nonnegative 
functions f (ε) and g(ε), we write:

(1) f (ε) � g(ε) or g(ε) � f (ε) if there exists a positive constant C independent of ε such 
that f (ε) ≤ Cg(ε).

(2) f (ε) ∼ g(ε) if f (ε) � g(ε) and f (ε) � g(ε).

If |f (ε)| � |g(ε)|, we write f (ε) = O((g(ε)). We also denote by � = �(ε) a generic positive 
function satisfying C1ε ≤ �(ε) ≤ C2ε for some positive numbers C1, C2 > 0, which are inde-
pendent of ε. Finally, if limf (ε)/g(ε) = 1 as ε → ε0, then we write f (ε) � g(ε) as ε → ε0.

2. Main results

Consider the family of rescalings

v(x) = εsu(εtx).

It is easy to see that if we choose s = − 2+α
4(p−1)

and t = − 1
2 then (Pε) transforms to the equation

−�v + v = (Iα ∗ |v|p)|v|p−2v + ε�1 |v|q−2v,
617
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where

�1 = q(2 + α) − 2(2p + α)

4(p − 1)

⎧⎪⎨
⎪⎩

> 0, if q >
2(2p+α)

2+α
,

= 0, if q = 2(2p+α)
2+α

,

< 0, if q <
2(2p+α)

2+α
.

If we choose s = − 1
q−2 and t = − 1

2 then (Pε) transforms to the equation

−�v + v = ε�2(Iα ∗ |v|p)|v|p−2v + |v|q−2v,

where

�2 = 2(2p + α) − q(2 + α)

2(q − 2)

⎧⎪⎨
⎪⎩

< 0, if q >
2(2p+α)

2+α
,

= 0, if q = 2(2p+α)
2+α

,

> 0, if q <
2(2p+α)

2+α
.

Motivated by this scaling consideration, in what follows we consider the equations

−�v + v = (Iα ∗ |v|p)|v|p−2v + λ|v|q−2v, in RN, (Qλ)

and

−�v + v = μ(Iα ∗ |v|p)|v|p−2v + |v|q−2v, in RN, (Qμ)

where λ, μ > 0 are parameters and we assume p ∈ [N+α
N

, N+α
N−2 ], q ∈ (2, 2∗]. It is well-known 

that with these assumptions on the powers p and q the problems (Qλ) and (Qμ) are variationally 
well-posed in H 1(RN), and the corresponding energy functionals, defined by

Iλ(v) := 1

2

∫
RN

|∇v|2 + |v|2 − 1

2p

∫
RN

(Iα ∗ |v|p)|v|p − λ

q

∫
RN

|v|q

and

Iμ(v) := 1

2

∫
RN

|∇v|2 + |v|2 − μ

2p

∫
RN

(Iα ∗ |v|p)|v|p − 1

q

∫
RN

|v|q,

respectively, are of class C1 on H 1(RN). The ground states energies given by

mλ := inf
v∈Mλ

Iλ(v) and mμ := inf
v∈Mμ

Iμ(v)

are well-defined, here Mλ and Mμ denote the corresponding Nehari manifolds

Mλ :=

⎧⎪⎨
⎪⎩v ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
N

|∇v|2 + |v|2 =
∫
N

(Iα ∗ |v|p)|v|p + λ

∫
N

|v|q
⎫⎪⎬
⎪⎭ ,
R R R

618
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Mμ :=

⎧⎪⎨
⎪⎩v ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇v|2 + |v|2 = μ

∫
RN

(Iα ∗ |v|p)|v|p +
∫
RN

|v|q
⎫⎪⎬
⎪⎭ .

The ground state solutions of (Qλ) and (Qμ) will be denoted by vλ and vμ respectively. The 
existence of these kind of solutions is proved in [24,25]. In particular, the following theorems are 
proved in [25].

Theorem A. Let N ≥ 3, α ∈ (0, N), p = N+α
N

and λ > 0. Then there is a constant λ0 > 0 such 
that (Qλ) admits a positive ground state vλ ∈ H 1(RN) which is radially symmetric and radially 
nonincreasing if one of the following conditions holds:

(1) q ∈ (2, 2 + 4
N

);

(2) q ∈ [2 + 4
N

, 2∗) and λ > λ0.

Theorem B. Let N ≥ 3, α ∈ (0, N), p = N+α
N−2 and λ > 0. Then there is a constant λ1 > 0 such 

that (Qλ) admits a positive ground state vλ ∈ H 1(RN) which is radially symmetric and radially 
nonincreasing if one of the following conditions holds:

(1) N ≥ 4 and q ∈ (2, 2∗);
(2) N = 3 and q ∈ (4, 2∗);
(3) N = 3, q ∈ (2, 4] and λ > λ1.

Theorem C. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N

, N+α
N−2

)
, q ∈ (2, 2∗) and λ > 0. Then (Qλ) admits 

a positive ground state vλ ∈ H 1(RN) which is radially symmetric and radially nonincreasing.

The exponents p = N+α
N

and p = N+α
N−2 are known in the literature as lower and upper critical 

exponents for the Choquard type equations, respectively. The case covered in Theorem C is 
known as Choquard subcritical.

We are interested in the asymptotic behaviour and limit profiles of the ground states vλ when 
λ is small or large.

In lower critical case p = N+α
N

, and when λ > 0 is small, we are going to show that after a 
suitable rescaling the limit equation for (Qλ) is given by the critical Hardy-Littlewood-Sobolev 
equation

U = (Iα ∗ |U |N+α
N )U

α
N , in RN. (2.1)

It is well-known [31], that the radial ground states of (2.1) are given by the function

U1(x) :=
(

A

1 + |x|2
)N

2

(2.2)

with a suitable constant A > 0, and the family of its rescalings

Uρ(x) := ρ− N
2 U1(x/ρ), ρ > 0. (2.3)

In the lower critical case we prove the following.
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Theorem 2.1. If p = N+α
N

, q ∈ (2, 2 + 4
N

), and {vλ} is a family of radial ground states of (Qλ), 
then for small λ > 0

vλ(0) ∼ λ
N

4−N(q−2) ,

‖∇vλ‖2
2 ∼ λ

4
4−N(q−2) , ‖vλ‖q

q ∼ λ
N(q−2)

4−N(q−2) ,∫
RN

(Iα ∗ |vλ|N+α
N )|vλ|N+α

N = S
N+α

α

1 + O(λ
4

4−N(q−2) ),

‖vλ‖2
2 = S

N+α
α

1 + O(λ
4

4−N(q−2) ).

Moreover, there exists ζλ ∈ (0, +∞) verifying

ζλ ∼ λ
− 2

4−N(q−2)

such that for small λ > 0, the rescaled family of ground states

wλ(x) = ζ
N
2

λ vλ(ζλx)

satisfies

‖∇wλ‖2
2 ∼ ‖wλ‖q

q ∼
∫
RN

(Iα ∗ |wλ|N+α
N )|wλ|N+α

N ∼ ‖wλ‖2
2 ∼ 1,

and as λ → 0, wλ converges in H 1(RN) to the extremal function Uρ0 , where

ρ0 =
(

2q
∫
RN |∇U1|2

N(q − 2)
∫
RN |U1|q

) 2
4−N(q−2)

. (2.4)

Furthermore, the least energy mλ of the ground sate satisfies

α

2(N + α)
S

N+α
α

1 − mλ ∼ λ
4

4−N(q−2) ,

as λ → 0, where

S1 = inf
u∈H 1(RN)\{0}

∫
RN |u|2

(
∫
RN (Iα ∗ |u|N+α

N )|u|N+α
N )

N
N+α

. (2.5)

In the upper critical case p = N+α
N−2 and when λ > 0 is small, we are going to show that after 

a suitable rescaling the limit equation for (Qλ) is given by the critical Choquard equation

−�V = (Iα ∗ |V |N+α
N−2 )V

2+α
N−2 in RN. (2.6)
620
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It is known [12] that the radial ground states of (2.6) are given by the function

V1(x) := [N(N − 2)]N−2
4

(
1

1 + |x|2
)N−2

2

(2.7)

and the family of its rescalings

Vρ(x) := ρ− N−2
2 V1(x/ρ), ρ > 0. (2.8)

In the upper critical case we prove the following.

Theorem 2.2. Let p = N+α
N−2 and q ∈ (2, 2∗), and {vλ} be a family of radial ground states of (Qλ). 

If N ≥ 5, then for small λ > 0

vλ(0) ∼ λ
− 1

q−2 ,

‖vλ‖q
q ∼ λ

2N−q(N−2)
(N−2)(q−2) , ‖vλ‖2

2 ∼ λ
4

(N−2)(q−2) ,

‖∇vλ‖2
2 = S

N+α
2+α

α + O(λ
4

(N−2)(q−2) ),∫
RN

(Iα ∗ |vλ|N+α
N−2 )|vλ|N+α

N−2 = S
N+α
2+α

α + O(λ
4

(N−2)(q−2) ).

Moreover, there exists ζλ ∈ (0, +∞) verifying

ζλ ∼ λ
2

(N−2)(q−2) ,

such that for small λ > 0, the rescaled family of ground states

wλ(x) = ζ
N−2

2
λ vλ(ζλx)

satisfies

‖∇wλ‖2
2 ∼ ‖wλ‖q

q ∼
∫
RN

(Iα ∗ |wλ|N+α
N−2 )|wλ|N+α

N−2 ∼ ‖wλ‖2
2 ∼ 1,

and as λ → 0, wλ converges in H 1(RN) to Vρ0 with

ρ0 =
(

2(2∗ − q)
∫
RN |V1|q

q(2∗ − 2)
∫
RN |V1|2

) 2
(N−2)(q−2)

. (2.9)

In the lower dimension cases, we assume that q ∈ (2, 4) if N = 4, and q ∈ (4, 6) if N = 3, then 
for small λ > 0
621
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vλ(0) ∼
{

λ
− 1

q−2 (ln 1
λ
)

1
q−2 , if N = 4,

λ
− 1

q−4 , if N = 3,

‖vλ‖q
q ∼

{
λ

4−q
q−2 (ln 1

λ
)
− 4−q

q−2 , if N = 4,

λ
6−q
q−4 , if N = 3,

‖vλ‖2
2 ∼

{
λ

2
q−2 (ln 1

λ
)
− 4−q

q−2 , if N = 4,

λ
2

q−4 , if N = 3,

‖∇vλ‖2
2 = S

N+α
2+α

α +
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3,∫
RN

(Iα ∗ |vλ|N+α
N−2 )|vλ|N+α

N−2 = S
N+α
2+α

α +
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3,

and there exists ζλ ∈ (0, +∞) verifying

ζλ ∼
{

λ
1

q−2 (ln 1
λ
)
− 1

q−2 , if N = 4,

λ
2

q−4 , if N = 3,

such that for small λ > 0, the rescaled family of ground states

wλ(x) = ζ
N−2

2
λ vλ(ζλx)

satisfies

‖∇wλ‖2
2 ∼ ‖wλ‖q

q ∼
∫
RN

(Iα ∗ |wλ|N+α
N−2 )|wλ|N+α

N−2 ∼ 1,

‖wλ‖2
2 ∼

{
ln 1

λ
, if N = 4,

λ
− 2

q−4 , if N = 3,

and as λ → 0, wλ converges in D1,2(RN) and Lq(RN) to V1. Furthermore, the least energy mλ

of the ground state satisfies

2 + α

2(N + α)
S

N+α
2+α

α − mλ ∼

⎧⎪⎪⎨
⎪⎪⎩

λ
4

(N−2)(q−2) , if N ≥ 5,

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 , if N = 4,

λ
2

q−4 , if N = 3,

as λ → 0, where

Sα := inf
v∈D1,2(RN)\{0}

∫
RN |∇v|2(∫

N (Iα ∗ |v|N+α
N−2 )|v|N+α

N−2

) N−2
N+α

. (2.10)
R
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Remark 2.1. If N ≥ 5 and α > N − 4, we can choose ζλ = λ
2

(N−2)(q−2) in Theorem 2.2.

In the subcritical regime the limit equations are given by “formal” direct limits with no rescal-
ings involved, both when λ → 0 or μ → 0.

Theorem 2.3. Let p ∈ (N+α
N

, N+α
N−2 ) and q ∈ (2, 2∗]. Let vλ be the radial ground state of (Qλ), 

then for any sequence λn → 0, there exists a subsequence, still denoted by λn, such that vλn

converges in H 1(RN) to a positive solution v0 ∈ H 1(RN) of the equation

−�v + v = (Iα ∗ |v|p)vp−1. (2.11)

Moreover, as λ → 0, there holds

‖vλ‖2
2 = N + α − p(N − 2)

2p
S

p
p−1
p + O(λ), if q <

2(2p + α)

2 + α
,

‖vλ‖2
2 = N + α − p(N − 2)

2p
S

p
p−1
p − �(λ), if q ≥ 2(2p + α)

2 + α
,

‖∇vλ‖2
2 = N(p − 1) − α

2p
S

p
p−1
p + O(λ),

and the least energy mλ of the ground state satisfies

p − 1

2p
S

p
p−1
p − mλ ∼ λ,

as λ → 0, where

Sp = inf
v∈H 1(RN)\{0}

∫
RN |∇v|2 + |v|2

(
∫
RN (Iα ∗ |v|p)|v|p)

1
p

. (2.12)

Theorem 2.4. If p ∈ [N+α
N

, N+α
N−2 ] and q ∈ (2, 2∗). Let vμ be the radial ground state of (Qμ), 

then as μ → 0, vμ converges in H 1(RN) to the unique positive solution v0 ∈ H 1(RN) of the 
equation

−�v + v = vq−1. (2.13)

Moreover, as μ → 0, there holds

‖vμ‖2
2 = 2N − q(N − 2)

2q
S

q
q−2
q + O(μ), if q >

2(2p + α)

2 + α
,

‖vμ‖2
2 = 2N − q(N − 2)

2q
S

q
q−2
q − �(μ), if q ≤ 2(2p + α)

2 + α
,

‖∇vμ‖2
2 = N(q − 2)

S

q
q−2
q + O(μ),
2q
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‖uμ‖q
q ∼

∫
RN

(Iα ∗ |uμ|p)|uμ|p ∼ 1,

and the least energy mμ of the ground state satisfies

q − 2

2q
S

q
q−2
q − mμ ∼ μ,

as μ → 0, where

Sq = inf
v∈H 1(RN)\{0}

∫
RN |∇v|2 + |v|2
(
∫
RN |v|q)

2
q

. (2.14)

Remark 2.2. The key novel results in the present paper are:
(I) In the lower critical case in Theorem 2.1 for all N ≥ 3 and the upper critical case in 

Theorem 2.2 for N ≥ 5, we obtain optimal explicit rescaling in a sense that it is unique up to a 
multiplicative constant such that the rescaled family of ground states converges in H 1(RN) to a 
particular solution of the limit equation.

(II) This paper is inspired by [36], but the technique in the present paper is very different from 
that used in [36]. In [36], the second author and C. Muratov studied the asymptotic properties of 
ground states for a combined powers Schrödinger equation with a focusing exponent p > 2 and 
a defocusing exponent q > p. By considering a Berestycki-Lions type constrained minimization 
problem, the authors in [36] obtain a precise estimate of least energy which implies the uniform 
boundedness of the rescaled family of ground states in Lq(RN). Berestycki-Lions constraint 
technique is not applicable in the nonlocal problems which involve multiple scaling regimes 
associated with the gradient and nonlocal parts of the problem. Instead, in the present paper, we 
first use the Nehari manifold and Pohožaev identity to obtain the uniform boundedness of the 
rescaled family of ground states in Lq(RN) and then establish a precise estimate of least energy.

Connection with problem (Pε). Converting equations (Qλ) and (Qμ) back to the original equa-
tion (Pε) using the explicit rescalings introduced in the beginning of this section, we can deduce 
from Theorems A, B, C and Theorems 2.1–2.4 asymptotic properties of ground states of (Pε). 
Figs. 1 and 2 below depict the limit equations of (Pε) as ε → ∞ and ε → 0 when (p, q) belongs 
to different regions in the (p, q) plane, and reveal the asymptotic behaviour of rescaled family of 
ground states to (Pε) as ε → ∞ and ε → 0, respectively.

In what follows we denote

M(0) := lim
ε→0

M(ε), M(∞) := lim
ε→∞M(ε).

The following three propositions give a summary of our main results in this paper, stated in terms 
of equation (Pε). They are direct consequences of Theorems 2.1–2.4, Theorems A, B, C [24,25], 
and Lemma A.1, which is formulated and proved in the Appendix.

Proposition 2.1. If p = N+α
N

and q ∈ (2, 2 + 4
N

), then the problem (Pε) admits a positive ground 
state uε ∈ H 1(RN), which is radially symmetric and radially nonincreasing. Furthermore, the 
following statements hold true:
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Fig. 1. The limit equations of (Pε) as ε → ∞. (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 2. The limit equations of (Pε) as ε → 0.

(I ) As ε → 0, there exists ξε ∼ ε
− N(q−2)

α[4−N(q−2)] such that the rescaled family of ground states

wε(x) =
⎧⎨
⎩ ε

− 1
q−2 uε(ε

− 1
2 x), if q ∈ (2,2 + 4α

N(2+α)
),

ε− N
2α ξ

N
2

ε uε(ξεx), if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

converges in H 1(RN) to the unique positive solution of the equation −�w + w = wq−1 if q ∈
(2, 2 + 4α

N(2+α)
) and converges in H 1(RN) to the extremal function U1 if q ∈ (2 + 4α

N(2+α)
, 2 + 4

N
). 

Moreover,
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uε(0) ∼
⎧⎨
⎩ ε

1
q−2 , if q ∈ (2,2 + 4α

N(2+α)
],

ε
2N

α[4−N(q−2)] , if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

‖uε‖2
2 ∼

⎧⎨
⎩ ε

4−N(q−2)
2(q−2) if q ∈ (2,2 + 4α

N(2+α)
],

ε
N
α if q ∈ (2 + 4α

N(2+α)
,2 + 4

N
),

‖∇uε‖2
2 ∼

⎧⎨
⎩ ε

2N−q(N−2)
2(q−2) , if q ∈ (2,2 + 4α

N(2+α)
],

ε
N[2N−q(N−2)]
α[4−N(q−2)] , if q ∈ (2 + 4α

N(2+α)
,2 + 4

N
),

E(uε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
2N−q(N−2)

2(q−2)

[
− 4−N(q−2)

4q
S

q
q−2
q + O(ε

− N(2+α)(q−2)−4α
2N(q−2) )

]
, if q ∈ (2,2+ 4α

N(2+α)
),

ε
N+α

α

[
− N

2(N+α)
S

N+α
α

1 + O(ε
N(2+α)(q−2)−4α

α[4−N(q−2)] )

]
, if q ∈ (2+ 4α

N(2+α)
,2+ 4

N
).

(II ) As ε → ∞, there exists ξε ∼ ε
− N(q−2)

α[4−N(q−2)] such that the rescaled family of ground states

wε(x) =
⎧⎨
⎩ ε− N

2α ξ
N
2

ε uε(ξεx), if q ∈ (2,2 + 4α
N(2+α)

),

ε
− 1

q−2 uε(ε
− 1

2 x), if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

converges in H 1(RN) to the extremal function U1 if q ∈ (2 + 4α
N(2+α)

, 2 + 4
N

), and converges in 

H 1(RN) to the unique positive solution of the equation −�w+w = wq−1 if q ∈ (2, 2 + 4α
N(2+α)

). 
Moreover,

uε(0) ∼
⎧⎨
⎩ ε

2N
α[4−N(q−2)] , if q ∈ (2,2 + 4α

N(2+α)
],

ε
1

q−2 , if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

‖uε‖2
2 ∼

⎧⎨
⎩ ε

N
α , if q ∈ (2,2 + 4α

N(2+α)
],

ε
4−N(q−2)

2(q−2) , if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

‖∇uε‖2
2 ∼

⎧⎨
⎩ ε

N[2N−q(N−2)]
α[4−N(q−2)] , if q ∈ (2,2 + 4α

N(2+α)
],

ε
2N−q(N−2)

2(q−2) , if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

),

E(uε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
N+α

α

[
− N

2(N+α)
S

N+α
α

1 + O(ε
N(2+α)(q−2)−4α

α[4−N(q−2)] )

]
, if q ∈ (2,2+ 4α

N(2+α)
),

ε
2N−q(N−2)

2(q−2)

[
− 4−N(q−2)

4q
S

q
q−2
q + O(ε

− N(2+α)(q−2)−4α
2N(q−2) )

]
, if q ∈ (2+ 4α

N(2+α)
,2+ 4

N
).

(III ) M(0) = 0, M(+∞) = +∞, and if M(ε) is of class C1 for small ε > 0 and large ε > 0, 
then there exist some small ε0 > 0 and some large ε∞ > 0 such that

M ′(ε) > 0, for all ε ∈ (0, ε0) ∪ (ε∞,+∞).

In the upper critical case we have the following.
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Proposition 2.2. If p = N+α
N−2 , q ∈ (2, 2∗) for N ≥ 4 and q ∈ (4, 6) for N = 3, then the problem 

(Pε) admits a positive ground state uε ∈ H 1(RN), which is radially symmetric and radially 
nonincreasing. Furthermore, the following statements hold true:

(I ) As ε → ∞, there exists ξε ∈ (0, +∞) verifying

ξε ∼

⎧⎪⎪⎨
⎪⎪⎩

ε
− 2

(N−2)(q−2) , if N ≥ 5, q ∈ (2,2∗),
(ε ln ε)

− 1
q−2 , if N = 4, q ∈ (2,4),

ε
− 1

q−4 , if N = 3, q ∈ (4,6),

such that the rescaled family of ground states wε(x) = ξ
N−2

2
ε uε(ξεx) converges to V1 in H 1(RN)

if N ≥ 5 and in D1,2(RN) ∩ Lq(RN) if N = 4, 3. Moreover,

uε(0) ∼

⎧⎪⎪⎨
⎪⎪⎩

ε
1

q−2 , if N ≥ 5, q ∈ (2,2∗),
(ε ln ε)

1
q−2 , if N = 4, q ∈ (2,4),

ε
1

2(q−4) , if N = 3, q ∈ (4,6),

‖uε‖2
2 ∼

⎧⎪⎪⎨
⎪⎪⎩

ε
− 4

(N−2)(q−2) , if N ≥ 5, q ∈ (2,2∗),
ε
− 2

q−2 (ln ε)
− 4−q

q−2 , if N = 4, q ∈ (2,4),

ε
− q−2

2(q−4) , if N = 3, q ∈ (4,6),

‖∇uε‖2
2 = S

N+α
2+α

α +

⎧⎪⎪⎨
⎪⎪⎩

O(ε
− 2N−q(N−2)

(N−2)(q−2) ), if N ≥ 5, q ∈ (2,2∗),
O((ε ln ε)

− 4−q
q−2 ), if N = 4, q ∈ (2,4),

O(ε
− 6−q

2(q−4) ), if N = 3, q ∈ (4,6),

E(uε) = 2 + α

2(N + α)
S

N+α
2+α

α −

⎧⎪⎪⎨
⎪⎪⎩

�(ε
− 2N−q(N−2)

(N−2)(q−2) ), if N ≥ 5, q ∈ (2,2∗),
�((ε ln ε)

− 4−q
q−2 ), if N = 4, q ∈ (2,4),

�(ε
− 6−q

2(q−4) ), if N = 3, q ∈ (4,6).

(I I ) As ε → 0, the rescaled family of ground states wε(x) = ε
− 1

q−2 uε(ε
− 1

2 x) converges in 
H 1(RN) to the unique positive solution of the equation −�w + w = wq−1. Moreover,

uε(0) ∼ ε
1

q−2 , if

{
N ≥ 4, q ∈ (2,2∗),
N = 3, q ∈ (4,6),

‖uε‖2
2 ∼ ε

4−N(q−2)
2(q−2) , if

{
N ≥ 4, q ∈ (2,2∗),
N = 3, q ∈ (4,6),

‖∇uε‖2
2 ∼ ε

2N−q(N−2)
2(q−2) , if

{
N ≥ 4, q ∈ (2,2∗),
N = 3, q ∈ (4,6),

E(uε) = ε
2N−q(N−2)

2(q−2)

[
N(q − 2) − 4

S

q
q−2
q + O(ε

(2+α)(2N−q(N−2))
2(q−2) )

]
.

4q
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(III ) If N ≥ 4, q ∈ (2, 2 + 4
N

), then M(0) = M(+∞) = 0, and if M(ε) is of class C1 for 
small ε > 0 and large ε > 0, then there exist some small ε0 > 0 and large ε∞ > 0 such that

M ′(ε) > 0, for ε ∈ (0, ε0), M ′(ε) < 0, for ε ∈ (ε∞,+∞).

If N ≥ 4, q ∈ (2 + 4
N

, 2∗), or N = 3, q ∈ (4, 6), then M(0) = +∞, M(+∞) = 0, and if M(ε) is 
of class C1 for small ε > 0 and large ε > 0, then there exist some small ε0 > 0 and large ε∞ > 0
such that

M ′(ε) < 0, for ε ∈ (0, ε0) ∪ (ε∞,+∞).

In the subcritical case we establish the following results.

Proposition 2.3. If p ∈ (N+α
N

, N+α
N−2 ) and q ∈ (2, 2∗), then the problem (Pε) admits a positive 

ground state uε ∈ H 1(RN), which is radially symmetric and radially nonincreasing. Further-
more, let Sp and Sq be the constants given in Theorems 2.3 and 2.4, respectively, then the 
following statements hold true:

(I) As ε → 0, the rescaled family of ground states

wε(x) =
{

ε
− 1

q−2 uε(ε
− 1

2 x), if q <
2(2p+α)

2+α
,

ε
− 2+α

4(p−1) uε(ε
− 1

2 x), if q >
2(2p+α)

2+α
,

converges in H 1(RN) (up to a subsequence) to a positive solution of the equation

{
−�w + w = wq−1, if q <

2(2p+α)
2+α

,

−�w + w = (Iα ∗ |w|p)wp−1, if q >
2(2p+α)

2+α
.

Moreover,

uε(0) ∼
{

ε
1

q−2 , if q ≤ 2(2p+α)
2+α

,

ε
2+α

4(p−1) , if q >
2(2p+α)

2+α
,

‖uε‖2
2 ∼

⎧⎨
⎩ ε

4−N(q−2)
2(q−2) , if q ≤ 2(2p+α)

2+α
,

ε
2+α−N(p−1)

2(p−1) , if q >
2(2p+α)

2+α
,

and

‖∇uε‖2
2 � N(q − 2)

2q
S

q
q−2
q ε

2N−q(N−2)
2(q−2) , if q �= 2(2p + α)

2 + α
.

If q �= 2(2p+α) , then as ε → 0
2+α
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M(ε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
4−N(q−2)

2(q−2)

(
2N−q(N−2)

2q
S

q
q−2
q − �(ε

2(2p+α)−q(2+α)
2(q−2) )

)
, if q <

2(2p+α)
2+α

,

ε
2+α−N(p−1)

2(p−1)

(
N+α−p(N−2)

2p
S

p
p−1
p − �(ε

q(2+α)−2(2p+α)
4(p−1) )

)
, if q >

2(2p+α)
2+α

,

E(uε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
2N−q(N−2)

2(q−2)

(
N(q−2)−4

4q
S

q
q−2
q + O(ε

2(2p+α)−q(2+α)
2(q−2) )

)
, if q <

2(2p+α)
2+α

,

ε
N+α−p(N−2)

2(p−1)

(
N(p−1)−2−α

4p
S

p
p−1
p + O(ε

q(2+α)−2(2p+α)
4(p−1) )

)
, if q >

2(2p+α)
2+α

.

(II) As ε → ∞, the rescaled family of ground states

wε(x) =
{

ε
− 2+α

4(p−1) uε(ε
− 1

2 x), if q <
2(2p+α)

2+α
,

ε
− 1

q−2 uε(ε
− 1

2 x), if q >
2(2p+α)

2+α
,

converges in H 1(RN) (up to a subsequence) to a positive solution of the equation

{
−�w + w = (Iα ∗ |w|p)wp−1, if q <

2(2p+α)
2+α

,

−�w + w = wq−1, if q >
2(2p+α)

2+α
.

Moreover,

uε(0) ∼
{

ε
2+α

4(p−1) , if q ≤ 2(2p+α)
2+α

,

ε
1

q−2 , if q >
2(2p+α)

2+α
,

‖uε‖2
2 ∼

⎧⎨
⎩ ε

2+α−N(p−1)
2(p−1) , if q ≤ 2(2p+α)

2+α
,

ε
4−N(q−2)

2(q−2) , if q >
2(2p+α)

2+α
,

and

‖∇uε‖2
2 � N(p − 1) − α

2p
S

p
p−1
p ε

N+α−p(N−2)
2(p−1) , if q �= 2(2p + α)

2 + α
.

If q �= 2(2p+α)
2+α

, then as ε → ∞

M(ε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
2+α−N(p−1)

2(p−1)

(
N+α−p(N−2)

2p
S

p
p−1
p + O(ε

− 2(2p+α)−q(2+α)
4(p−1) )

)
, if q <

2(2p+α)
2+α

,

ε
4−N(q−2)

2(q−2)

(
2N−q(N−2)

2q
S

q
q−2
q + O(ε

− q(2+α)−2(2p+α)
2(q−2) )

)
, if q >

2(2p+α)
2+α

,

E(uε) =

⎧⎪⎪⎨
⎪⎪⎩

ε
N+α−p(N−2)

2(p−1)

(
N(p−1)−2−α

4p
S

p
p−1
p + O(ε

− 2(2p+α)−q(2+α)
4(p−1) )

)
, if q <

2(2p+α)
2+α

,

ε
2N−q(N−2)

2(q−2)

(
N(q−2)−4

4q
S

q
q−2
q + O(ε

− q(2+α)−2(2p+α)
2(q−2) )

)
, if q >

2(2p+α)
2+α

.
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(III ) Let p0 := 1 + 2+α
N

and q0 := 2 + 4
N

, then

M(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if q < q0 or p < p0,

2
N+2S

N+2
2

q0 , if q = q0 and p > p0,

2+α
N+2+α

S
N+2+α

2+α
p0 , if q > q0 and p = p0,

∞, if q > q0 and p > p0,

and

M(∞) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if q > q0 or p > p0,

2
N+2S

N+2
2

q0 , if q = q0 and p < p0,

2+α
N+2+α

S
N+2+α

2+α
p0 , if q < q0 and p = p0,

∞, if q < q0 and p < p0.

Moreover, if q �= 2(2p+α)
2+α

and M(ε) is of class C1 for small ε > 0 and large ε > 0, then there 
exists a small ε0 > 0 such that for any ε ∈ (0, ε0),

⎧⎪⎪⎨
⎪⎪⎩

M ′(ε) > 0, if q < q0 or p < p0,

M ′(ε) < 0, if q = q0 and p > p0
M ′(ε) < 0, if q > q0 and p = p0
M ′(ε) < 0, if q > q0 and p > p0,

(2.15)

and there exists a large ε∞ > 0 such that for any ε ∈ (ε∞, +∞),

{
M ′(ε) < 0, if q > q0 or p > p0,

M ′(ε) > 0, if q < q0 and p < p0.
(2.16)

Remark 2.3. From the asymptotic expressions for M(ε) in Propositions 2.1–2.3, and under an 
additional assumption that M(ε) is of class C1 for small and large ε, the sign of M ′(ε) follows 
from Lemma A.1 in the Appendix. Note that by Proposition 2.3(I), as ε → 0 we have

M(ε) = 2

N + 2
S

N+2
2

q0 − �(ε
N(p−1)−2−α

2 ), if q = q0 and p > p0,

M(ε) = 2 + α

N + 2 + α
S

N+2+α
2+α

p0 − �(ε
N(q−2)−4

4 ), if q > q0 and p = p0.

Therefore, to prove the second and third inequalities in (2.15), we replace M(ε) by

2

N + 2
S

N+2
2

q0 − M(ε) and
2 + α

N + 2 + α
S

N+2+α
2+α

p0 − M(ε),

in Lemma A.1, respectively.
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Fig. 3. The variation of M(ε) for small and large ε, here (·, ·) = (M(0),M(∞)).

Fig. 3 outlines the limits of M(ε) as ε → 0 and ε → ∞ and reveals the variation of M(λ)

for small ε > 0 and large ε > 0 when (p, q) belongs to different regions in the (p, q) plane, as 
described in Propositions 2.1-2.3.

Connection with normalised solutions of (Pε). It is clear that if uε ∈ H 1(RN) is a ground state 
of (Pε), and for some c > 0 it holds

M(ε) = ‖uε‖2
2 = c2, (2.17)

then uε is a normalized solution of (1.4) with λ = −ε. We denote this normalized solution 
by a pair (uc, λc) with λc = −ε, or just uc for simplicity. As direct consequences of Proposi-
tions 2.1–2.3, we deduce the following results.

Corollary 2.1. Let p = N+α
N

, q ∈ (2, 2 + 4
N

), then for any c > 0 the problem (1.4) has at least 
one positive normalized solution uc ∈ H 1(RN), which is radially symmetric and radially nonin-
creasing. Moreover, as c → 0,

‖∇uc‖2
2 ∼ c

2(2N−q(N−2))
4−N(q−2) → 0,

E(uc) ∼
⎧⎨
⎩−c

2(2N−q(N−2))
4−N(q−2) → 0−, if q ∈ (2,2 + 4α

N(2+α)
),

−c
2(N+α)

N → 0−, if q ∈ (2 + 4α
N(2+α)

,2 + 4
N

).

As c → ∞,

‖∇uc‖2
2 ∼ c

2(2N−q(N−2))
4−N(q−2) → +∞,

E(uc) ∼
⎧⎨
⎩−c

2(N+α)
N → −∞, if q ∈ (2,2 + 4α

N(2+α)
),

−c
2(2N−q(N−2))

4−N(q−2) → −∞, if q ∈ (2 + 4α ,2 + 4 ).

N(2+α) N
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Corollary 2.2. If p = N+α
N−2 , q ∈ (2, 2∗) for N ≥ 4 and q ∈ (4, 6) for N = 3, then the following 

statements hold true:
(I) If q < q0, then there exists a constant c0 > 0 such that for any c ∈ (0, c0), the problem (1.4)

has at least two positive normalized solutions u1
c, u

2
c ∈ H 1(RN), which are radially symmetric 

and radially nonincreasing. Moreover,

‖∇u1
c‖2

2 ∼ c
2(2N−q(N−2))

4−N(q−2) → 0, as c → 0,

E(u1
c) � 4q

N(q − 2)
S

q
q−2
q c

2(2N−q(N−2))
4−N(q−2) → 0−, as c → 0,

‖∇u2
c‖2

2 � S
N+α
2+α

α , E(u2
c) � 2 + α

2(N + α)
S

N+α
2+α

α , as c → 0.

(II) If q > q0, then for any c > 0 the problem (1.4) has at least one positive normalized 
solution uc ∈ H 1(RN), which is radially symmetric and radially nonincreasing. Moreover,

‖∇uc‖2
2 � S

N+α
2+α

α , E(uc) � 2 + α

2(N + α)
S

N+α
2+α

α , as c → 0,

‖∇uc‖2
2 ∼ c

2(2N−q(N−2))
4−N(q−2) → 0, as c → ∞,

E(uc) � 4q

N(q − 2)
S

q
q−2
q c

2(2N−q(N−2))
4−N(q−2) → 0+, as c → ∞.

Corollary 2.3. Let p ∈ (N+α
N

, N+α
N−2 ), q ∈ (2, 2∗), then the following statements hold true:

(I) If p < p0, q < q0 or p > p0, q > q0, then for any c > 0 the problem (1.4) has at least one 
positive normalized solution uc ∈ H 1(RN). Moreover, if p < p0, q < q0 and q <

2(2p+α)
2+α

, then

‖∇uc‖2
2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)
2q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0, as c → 0,

N(p−1)−α
2p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞, as c → ∞,

E(uc) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)−4
4q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0−, as c → 0,

N(p−1)−2−α
4p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → −∞, as c → ∞.

If p < p0, q < q0 and q >
2(2p+α)

2+α
, then

‖∇uc‖2
2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(p−1)−α
2p

S

p
p−1
p

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) (q−2)(N+α−p(N−2))

(p−1)(4−N(q−2)) → +∞, as c → ∞,

N(q−2)
2q

S

q
q−2
q

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
) (p−1)(2N−q(N−2))

(q−2)(2+α−N(p−1)) → 0, as c → 0,
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E(uc) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)−4
4q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → −∞, as c → ∞,

N(p−1)−2−α
4p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → 0−, as c → 0.

If p > p0, q > q0 and q <
2(2p+α)

2+α
, then

‖∇uc‖2
2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)
2q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0, as c → ∞,

N(p−1)−α
2p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞, as c → 0,

E(uc) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)−4
4q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0+, as c → ∞,

N(p−1)−2−α
4p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞, as c → 0.

If p > p0, q > q0 and q >
2(2p+α)

2+α
, then

‖∇uc‖2
2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(q−2)
2q

S

q
q−2
q

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
) (p−1)(2N−q(N−2))

(q−2)(2+α−N(p−1)) → 0, as c → ∞,

N(p−1)−α
2p

S

p
p−1
p

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) (q−2)(N+α−p(N−2))

(p−1)(4−N(q−2)) → +∞, as c → 0,

E(uc) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N(p−1)−2−α
4p

S

p
p−1
p

(
2p

N+α−p(N−2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → 0+, as c → ∞,

N(q−2)−4
4q

S

q
q−2
q

(
2q

2N−q(N−2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → +∞, as c → 0.

(II) If p = p0 and q �= q0 (resp. q = q0 and p �= p0), then for any c ∈ (0, 
√

2+α
N+2+α

S
N+2+α
2(2+α)

p0 )

(resp. c ∈ (0, 
√

2
N+2S

N+2
4

q0 )), the problem (1.4) has at least one positive normalized solution uc ∈
H 1(RN). Moreover, if p = p0, q < q0, then as c → 0,

‖∇uc‖2
2 � N(q − 2)

2q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0,

E(uc) � N(q − 2) − 4

4q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0−.

If p = p0, q > q0, then as c → 0,
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‖∇uc‖2
2 � N

N + 2 + α
S

N+2+α
2+α

p0

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2(q−2)

4−N(q−2) → +∞,

E(uc) � N(q − 2) − 4

4q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → +∞,

and as c →
√

2+α
N+2+α

S
N+2+α
2(2+α)

p0 ,

‖∇uc‖2
2 ∼ N(q − 2)

2q
S

q
q−2
q

(
2 + α

N + 2 + α
S

N+2+α
2+α

p0 − c2
) 2(2N−q(N−2))

(q−2)(N(q−2)−4) → 0,

E(uc) = O

(
(

2 + α

N + 2 + α
S

N+2+α
2+α

p0 − c2)
N(q−2)

N(q−2)−4

)
→ 0.

If p < p0, q = q0, then as c → 0,

‖∇uc‖2
2 � N

N + 2
S

N+2
2

q0

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
) 2(p−1)

2+α−N(p−1) → 0,

E(uc) � N(p − 1) − 2 − α

4p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → 0−.

If p > p0, q = q0, then as c → 0,

‖∇uc‖2
2 � N(p − 1) − α

2p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞,

E(uc) � N(p − 1) − 2 − α

4p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞,

and as c →
√

2
N+2S

N+2
4

q0 ,

‖∇uc‖2
2 ∼ N

N + 2
S

N+2
2

q0

(
2

N + 2
S

N+2
2

q0 − c2
) 2

N(p−1)−2−α → 0,

E(uc) = O

(
(

2

N + 2
S

N+2
2

q0 − c2)
N(p−1)−α

N(p−1)−2−α

)
→ 0.

(III) If p < p0, q > q0, then for any c ∈ (0, supε>0
√

M(ε)) the problem (1.4) has two positive 
normalized solutions u1

c and u2
c satisfying

‖∇u1
c‖2

2 � N(q − 2)
S

q
q−2
q

(
2p

S
− p

p−1
p c2

) (p−1)(2N−q(N−2))
(q−2)(2+α−N(p−1)) → 0, as c → 0,
2q N + α − p(N − 2)
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E(u1
c) � N(p − 1) − 2 − α

4p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → 0−, as c → 0,

‖∇u2
c‖2

2 � N(p − 1) − α

2p
S

p
p−1
p

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) (q−2)(N+α−p(N−2))

(p−1)(4−N(q−2)) → +∞, as c → 0,

E(u2
c) � N(q − 2) − 4

4q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → +∞, as c → 0.

If p > p0, q < q0, then for any c ∈ (0, supε>0
√

M(ε)), the problem (1.4) has two positive nor-
malized solutions u1

c and u2
c satisfying

‖∇u1
c‖2

2 � N(q − 2)

2q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0, as c → 0,

E(u1
c) � N(q − 2) − 4

4q
S

q
q−2
q

(
2q

2N − q(N − 2)
S

− q
q−2

q c2
) 2N−q(N−2)

4−N(q−2) → 0−, as c → 0,

‖∇u2
c‖2

2 � N(p − 1) − α

2p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞, as c → 0,

E(u2
c) � N(p − 1) − 2 − α

4p
S

p
p−1
p

(
2p

N + α − p(N − 2)
S

− p
p−1

p c2
)N+α−p(N−2)

2+α−N(p−1) → +∞, as c → 0.

We note that some similar existence results on normalized solutions are already obtained in 
[26–29,51,52] in the whole possible range of parameters, but the precise asymptotic behaviour 
of the normalized solutions is not addressed there.

Remark 2.4. In the case N = 3, p = 2, q = 4 and α ∈ (0, 3), the problem (Pε) is known in 
astrophysics as the Gross-Pitaevskii-Poisson equation [4,8,47]. By Theorem 2.3, Theorem 2.4
and Proposition 2.3 we conclude that (Pε) admits a positive ground state uε ∈ H 1(RN), which 
is radially symmetric and radially nonincreasing. Moreover, as ε → 0, we have

uε(0) ∼ ε
2+α

4 , ‖∇uε‖2
2 � 3

4
S2

qε
1
2 ,

M(ε) := ‖uε‖2
2 = ε

α−1
2

(
1 + α

4
S2

p − �(ε
α
2 )

)
, E(uε) = ε

1+α
2

(
1 − α

8
S2

p + O(ε
α
2 )

)
.

As ε → ∞, we have

uε(0) ∼ ε
1
2 , ‖∇uε‖2

2 � 3 − α

4
S2

pε
1+α

2 ,

M(ε) := ‖uε‖2
2 = ε− 1

2

(
1

4
S2

q + O(ε− α
2 )

)
, E(uε) = ε

1
2

(
1

8
S2

q + O(ε− α
2 )

)
.

Therefore, we conclude that
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(1) when α ∈ (1, 3) and c ∈ (0, supε>0
√

M(ε)), (1.4) admits two positive normalized solu-
tions u1

c and u2
c satisfying

‖u1
c‖∞ ∼

(
4

1 + α
S−2

p c2
) 2+α

2(α−1) → 0, as c → 0,

‖∇u1
c‖2

2 � 3

4
S2

q

(
4

1 + α
S−2

p c2
) 1

α−1 → 0, as c → 0,

E(u1
c) � −α − 1

8
(

4

1 + α
)

1+α
α−1 S

− 4
α−1

p c
2(1+α)
α−1 → 0−, as c → 0,

‖u2
c‖∞ ∼ 1

4
S2

qc−2 → +∞, as c → 0,

‖∇u2
c‖2

2 � 3 − α

4
S2

p

(
1

16
S4

qc−4
) 1+α

2 → +∞, as c → 0,

E(u2
c) � 1

32
S4

qc−2 → +∞, as c → 0.

Moreover, as c → 0, the rescaled family

w1
c (x) := ε

− 2+α
4

1c u1
c(ε

− 1
2

1c x), ε1c � (
4

1 + α
)

2
α−1 S

− 4
α−1

p c
4

α−1 ,

converges in H 1(R3), up to a subsequence, to a positive solution w0 of

−�w + w = (Iα ∗ |w|2)w, x ∈R3, (2.18)

if α = 2, the positive solution w0 of (2.18) is unique [30] and w1
c → w0 in H 1(R3), and as c → 0, 

the rescaled family

w2
c (x) := ε

− 1
2

2c u2
c(ε

− 1
2

2c x), ε2c � 1

16
S4

qc−4,

converges in H 1(R3) to the unique positive solution w∞ of −�w + w = w3.

(2) when α = 1 and c ∈ (0, 
√

2
2 Sp), (1.4) admits a positive normalized solution uc satisfying

‖uc‖∞ ∼ 1

4
S2

qc−2 → +∞, as c → 0,

‖∇uc‖2
2 � 1

32
S2

pS4
qc−4 → +∞, as c → 0,

E(uc) � 1

32
S4

qc−2 → +∞, as c → 0,

‖uc‖∞ ∼ (
1
S2

p − c2)
3
2 → 0, as c →

√
2
Sp,
2 2
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‖∇uc‖2
2 ∼ 3

4
S2

q(
1

2
S2

p − c2) → 0, as c →
√

2

2
Sp,

E(uc) = O

(
(
1

2
S2

p − c2)3
)

→ 0, as c →
√

2

2
Sp.

Moreover, as c →
√

2
2 Sp , the rescaled family

wc(x) := ε
− 3

4
c uc(ε

− 1
2

c x), εc ∼ (
1

2
S2

p − c2)2,

converges in H 1(R3), up to a subsequence, to a positive solution w0 of (2.18) with α = 1, and as 
c → 0, the rescaled family

wc(x) := ε
− 1

2
c uc(ε

− 1
2

c x), εc � 1

16
S4

qc−4,

converges in H 1(R3) to the unique positive solution w∞ of −�w + w = w3.
(3) when α ∈ (0, 1) and c > 0, (1.4) admits a positive normalized solution uc satisfying

‖uc‖∞ ∼ 1

4
S2

qc−2 → +∞, as c → 0,

‖∇uc‖2
2 � 3 − α

4
S2

p

(
1

4
S2

qc−2
)1+α

→ +∞, as c → 0,

E(uc) � 1

32
S4

qc−2 → +∞, as c → 0,

‖uc‖∞ ∼
(

4

1 + α
S−2

p c2
) 2+α

2(α−1) → 0, as c → ∞,

‖∇uc‖2
2 � 3

4
S2

q

(
4

1 + α
S−2

p c2
) 1

α−1 → 0, as c → ∞,

E(uc) � 1 − α

8
(

4

1 + α
)

1+α
α−1 S

− 4
α−1

p c
2(1+α)
α−1 → 0+, as c → ∞.

Moreover, as c → ∞, the rescaled family

wc(x) := ε
− 2+α

4
c uc(ε

− 1
2

c x), εc � (
4

1 + α
)

2
α−1 S

− 4
α−1

p c
4

α−1 ,

converges in H 1(R3), up to a subsequence, to a positive solution w0 of (2.18), and as c → 0, the 
rescaled family

wc(x) := ε
− 1

2
c uc(ε

− 1
2

c x), εc � 1

16
S4

qc−4,

converges in H 1(R3) to the unique positive solution w∞ of −�w + w = w3.
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3. Preliminaries

In this section, we present some preliminary results which are needed in the proof of our main 
results. First, we consider the following Choquard type equation with combined nonlinearities:

−�u + u = μ(Iα ∗ |u|p)|u|p−2u + λ|u|q−2u, in RN, (Qμ,λ)

where N ≥ 3, α ∈ (0, N), p ∈ [N+α
N

, N+α
N−2 ], q ∈ (2, 2∗], μ > 0 and λ > 0 are two parameters.

It has been proved in [25] that any weak solution of (Qμ,λ) in H 1(RN) has additional regular-
ity properties, which allows us to establish the Pohožaev identity for all finite energy solutions.

Lemma 3.1. If u ∈ H 1(RN) is a solution of (Qμ,λ), then u ∈ W
2,r
loc (RN) for every r > 1. More-

over, u satisfies the Pohožaev identity

Pμ,λ(u) := N − 2

2

∫
RN

|∇u|2 + N

2

∫
RN

|u|2 − N + α

2p
μ

∫
RN

(Iα ∗ |u|p)|u|p − N

q
λ

∫
RN

|u|q = 0.

It is well known that any weak solution of (Qμ,λ) corresponds to a critical point of the action 
functionals Iμ,λ defined by

Iμ,λ(u) := 1

2

∫
RN

|∇u|2 + |u|2 − μ

2p

∫
RN

(Iα ∗ |u|p)|u|p − λ

q

∫
RN

|u|q, (3.1)

which is well defined and is of C1 in H 1(RN). A nontrivial solution uμ,λ ∈ H 1(RN) of (Qμ,λ)

is called a ground state if

Iμ,λ(uμ,λ) = mμ,λ := inf{Iμ,λ(u) : u ∈ H 1(RN) \ {0} and I ′
μ,λ(u) = 0}. (3.2)

In [24,25] (see also the proof of the main results in [25]), it has been shown that

mμ,λ = inf
u∈Mμ,λ

Iμ,λ(u) = inf
u∈Pμ,λ

Iμ,λ(u), (3.3)

where Mμ,λ and Pμ,λ are the corresponding Nehari and Pohožaev manifolds defined by

Mμ,λ :=

⎧⎪⎨
⎪⎩u ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇u|2 + |u|2 = μ

∫
RN

(Iα ∗ |u|p)|u|p + λ

∫
RN

|u|q
⎫⎪⎬
⎪⎭

and

Pμ,λ :=
{
u ∈ H 1(RN) \ {0} ∣∣ Pμ,λ(u) = 0

}
,

respectively. Moreover, the following min-max descriptions are valid:
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Lemma 3.2. Let

ut (x) =
{

u(x
t
), if t > 0,

0, if t = 0,

then

mμ,λ = inf
u∈H 1(RN)\{0}

sup
t≥0

Iμ,λ(tu) = inf
u∈H 1(RN)\{0}

sup
t≥0

Iμ,λ(ut ). (3.4)

In particular, we have mμ,λ = Iμ,λ(uμ,λ) = supt>0 Iμ,λ(tuμ,λ) = supt>0 Iμ,λ((uμ,λ)t ).

When μ = 1 and λ = 0, then the equation (Qμ,λ) reduces to

−�u + u = (Iα ∗ |u|p)|u|p−2u, in RN, (Q1,0)

when μ = 0 and λ = 1, then the equation (Qμ,λ) reduces to

�u + u = |u|q−2u, in RN. (Q0,1)

Then the corresponding Nehari manifolds are as follows.

M1,0 =

⎧⎪⎨
⎪⎩u ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇u|2 + |u|2 =
∫
RN

(Iα ∗ |u|p)|u|p
⎫⎪⎬
⎪⎭ .

M0,1 =

⎧⎪⎨
⎪⎩u ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇u|2 + |u|2 =
∫
RN

|u|q
⎫⎪⎬
⎪⎭ .

It is known that

m1,λ = inf
u∈M1,λ

I1,λ(u), m1,0 := inf
u∈M1,0

I1,0(u), (3.5)

and

mμ,1 := inf
u∈Mμ,1

Iμ,1(u), m0,1 := inf
u∈M0,1

I0,1(u) (3.6)

are well-defined and positive.

Let uμ,λ be the ground state for (Qμ,λ), then we have the following.

Lemma 3.3. The solution sequences {u1,λ} and {uμ,1} are bounded in H 1(RN).
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Proof. It is not hard to see that m1,λ ≤ m1,0 ≤ C < +∞. If q ≥ 2p, then

m1,λ = I1,λ(u1,λ) = I1,λ(u1,λ) − 1
2p

I ′
1,λ(u1,λ)u1,λ

=
(

1
2 − 1

2p

)∫
RN |∇u1,λ|2 + |u1,λ|2 +

(
1

2p
− 1

q

)
λ
∫
RN |u1,λ|q

≥
(

1
2 − 1

2p

)∫
RN |∇u1,λ|2 + |u1,λ|2,

and if q < 2p, then

m1,λ = I1,λ(u1,λ) = I1,λ(u1,λ) − 1
q
I ′

1,λ(u1,λ)u1,λ

=
(

1
2 − 1

q

)∫
RN |∇u1,λ|2 + |u1,λ|2 +

(
1
q

− 1
2p

)∫
RN (Iλ ∗ |u1,λ|p)|u1,λ|p

≥
(

1
2 − 1

q

)∫
RN |∇u1,λ|2 + |u1,λ|2.

Therefore, we conclude that {u1,λ} is bounded in H 1(RN).
Arguing as above, we show that {uμ,1} is bounded in H 1(RN). The proof is completed. �
The following well known Hardy-Littlewood-Sobolev inequality can be found in [31].

Lemma 3.4. Let p, r > 1 and 0 < α < N with 1/p + (N − α)/N + 1/r = 2. Let u ∈ Lp(RN)

and v ∈ Lr(RN). Then there exists a sharp constant C(N, α, p), independent of u and v, such 
that ∣∣∣∣∣∣∣

∫
RN

∫
RN

u(x)v(y)

|x − y|N−α

∣∣∣∣∣∣∣≤ C(N,α,p)‖u‖p‖v‖r .

If p = r = 2N
N+α

, then

C(N,α,p) = Cα(N) = π
N−α

2
�(α

2 )

�(N+α
2 )

{
�(N

2 )

�(N)

}− α
N

.

Remark 3.1. By the Hardy-Littlewood-Sobolev inequality, for any v ∈ Ls(RN) with s ∈ (1, N
α

), 

Iα ∗ v ∈ L
Ns

N−αs (RN) and

‖Iα ∗ v‖ Ns
N−αs

≤ Aα(N)C(N,α, s)‖v‖s . (3.7)

Lemma 3.5. (P. L. Lions [32]) Let r > 0 and 2 ≤ q ≤ 2∗. If (un) is bounded in H 1(RN) and if

sup
y∈RN

∫
Br(y)

|un|q → 0, as n → ∞,

then un → 0 in Ls(RN) for 2 < s < 2∗. Moreover, if q = 2∗, then un → 0 in L2∗
(RN).
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Lemma 3.6. Let r > 0, N ≥ 3, α ∈ (0, N) and N+α
N

≤ p ≤ N+α
N−2 . If (un) be bounded in H 1(RN)

and if

lim
n→∞ sup

z∈RN

∫
Br (z)

∫
Br(z)

|un(x)|p|un(y)|p
|x − y|N−α

dxdy = 0,

then

lim
n→∞

∫
RN

|un|sdx = lim
n→∞

∫
RN

(Iα ∗ |un|t )|un|t dx = 0,

for any 2 < s < 2∗ and N+α
N

< t < N+α
N−2 . Moreover, if p = N+α

N−2 , then

lim
n→∞

∫
RN

|un|2∗
dx = lim

n→∞

∫
RN

(Iα ∗ |un|N+α
N−2 )|un|N+α

N−2 dx = 0.

Proof. Similar to the proof of [6, Lemma 3.8], for any p ∈ [N+α
N

, N+α
N−2 ], it is easy to show that

lim
n→∞ sup

z∈RN

∫
Br(z)

∫
Br (z)

|un(x)|p|un(y)|p
|x − y|N−α

dxdy = 0

is equivalent to the following condition

lim
n→∞ sup

z∈RN

∫
Br (z)

|un|
2Np
N+α dx = 0.

Then the conclusion follows from Lemma 3.5. The proof is complete. �
Lemma 3.7. (Radial Lemma A.II, H. Berestycki and P. L. Lions [3]) Let N ≥ 2, then every radial 
function u ∈ H 1(RN) is almost everywhere equal to a function ũ(x), continuous for x �= 0, such 
that

|ũ(x)| ≤ CN |x|(1−N)/2‖u‖H 1(RN) for |x| ≥ αN, (3.8)

where CN and αN depend only on the dimension N .

Lemma 3.8. (Radial Lemma A.III. H. Berestycki and P. L. Lions [3]) Let N ≥ 3, then every 
radial function u in D1,2(RN) is almost everywhere equal to a function ũ(x), continuous for 
x �= 0, such that

|ũ(x)| ≤ CN |x|(2−N)/2‖u‖D1,2(RN) for |x| ≥ 1, (3.9)

where CN only depends on N .
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Lemma 3.9. Let 0 < α < N and 0 ≤ f ∈ L1(RN). Assume that

lim|x|→∞

∫
|y|≤|x| f (y)|y|dy

|x| = 0, (3.10)

lim|x|→∞

∫
|y−x|≤|x|/2

f (y)dy

|x − y|N−α
= 0. (3.11)

Then as |x| → ∞,

∫
RN

f (y)dy

|x − y|N−α
= ‖f ‖L1

|x|N−α
+ o

(
1

|x|N−α

)
. (3.12)

Note that f ∈ L1(RN) alone is not sufficient to obtain (3.12) even if f is radially symmetric, 
see [42].

Proof. Fix 0 �= x ∈RN , we decompose RN as the union of three sets B = {y : |y − x| < |x|/2}, 
A = {y /∈ B : |y| ≤ |x|} and C = {y �∈ B : |y| > |x|}.

We want to estimate the quantity

∣∣∣∣∣∣
∫

A∪C

f (y)

(
1

|x − y|N−α
− 1

|x|N−α

)
dy

∣∣∣∣∣∣≤
∫

A∪C

f (y)

∣∣∣∣ 1

|x − y|N−α
− 1

|x|N−α

∣∣∣∣dy.

Since |x|/2 ≤ |x − y| ≤ 2|x| for all y ∈ A, by the Mean Value Theorem we have

∣∣∣∣ 1

|x − y|N−α
− 1

|x|N−α

∣∣∣∣≤ c1|y|
|x|N−α+1 , (y ∈ A),

where c1 = (N − α)2N−α+1. Thus

∣∣∣∣∣∣
∫
A

f (y)

(
1

|x − y|N−α
− 1

|x|N−α

)
dy

∣∣∣∣∣∣≤
c1

|x|N−α+1

∫
A

f (y)|y|dy.

On the other hand, since |x − y| > |x|/2 for all y ∈ C, then

∣∣∣∣ 1

|x − y|N−α
− 1

|x|N−α

∣∣∣∣≤ 1

|x|N−α
, (y ∈ C),

from which we compute that

∣∣∣∣∣∣
∫

f (y)

(
1

|x − y|N−α
− 1

|x|N−α

)
dy

∣∣∣∣∣∣≤
1

|x|N−α

∫
f (y)dy.
C A∪C
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Then ∣∣∣∫RN
f (y)

|x−y|N−α dy − ‖f ‖
L1

|x|N−α

∣∣∣
≤ c1

|x|N−α+1

∫
A

f (y)|y|dy + ∫
B

f (y)

|x−y|N−α dy + 1
|x|N−α

∫
B∪C

f (y)dy.

The conclusion follows from (3.10), (3.11) and since f ∈ L1(RN). �
Lemma 3.10. Let 0 < α < N , 0 ≤ f (x) ∈ L1(RN) be a radially symmetric function such that

lim|x|→+∞f (|x|)|x|N = 0. (3.13)

If α ≤ 1, we additionally assume that f is monotone non-increasing. Then as |x| → +∞, we 
have ∫

RN

f (y)

|x − y|N−α
dy = ‖f ‖L1

|x|N−α
+ o

(
1

|x|N−α

)
. (3.14)

Proof. Using (3.13) by l’Hospital rule we conclude that

∫
|y|≤|x|

f (y)|y|dy =
|x|∫

0

f (r)rNdr = o(|x|), (|x| → ∞),

so (3.10) holds.
For |x| � 1, using radial estimates on the Riesz kernels in [13, Lemma 2.2] and (3.13) we 

obtain for α > 1:

∫
|y−x|≤|x|/2

f (y)dy

|x − y|N−α
� |x|α−1

3|x|/2∫
|x|/2

f (r)dr = o(|x|−(N−α));

for α = 1, additionally using monotonicity of f :

∫
|y−x|≤|x|/2

f (y)dy

|x−y|N−α �
∫ 3|x|/2
|x|/2 f (r) log 1

1−r/|x|dr

≤ f (|x|/2)
∫ 3|x|/2
|x|/2 log 1

1−r/|x|dr = o(|x|−(N−1));

for α < 1, additionally using monotonicity of f :

∫
|y−x|≤|x|/2

f (y)dy

|x−y|N−α �
∫ 3|x|/2
|x|/2

f (r)

|r−|x||1−α dr

≤ f (|x|/2)
∫ 3|x|/2
|x|/2

1
|1−|x||1−α dr = o(|x|−(N−α));

so (3.12) holds. This completes the proof. �
The following Moser iteration lemma is given in [1, Proposition B.1]. See also [33] and [14].
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Lemma 3.11. Assume N ≥ 3. Let a(x) and b(x) be functions on B4, and let u ∈ H 1(B4) be a 
weak solution to

−�u + a(x)u = b(x)u in B4. (3.15)

Suppose that a(x) and u satisfy that

a(x) ≥ 0 for a. e. x ∈ B4, (3.16)

and ∫
B4

a(x)|u(x)v(x)|dx < ∞ for each v ∈ H 1
0 (B4). (3.17)

(i) Assume that for any ε ∈ (0, 1), there exists tε > 0 such that

‖χ[|b|>tε]b‖LN/2(B4)
≤ ε,

where [|b| > t] := {x ∈ B4 : |b(x)| > t}, and χA(x) denotes the characteristic function of A ⊂
RN . Then for any r ∈ (0, ∞), there exists a constant C(N, r, tε) such that

‖|u|r+1‖H 1(B1)
≤ C(N, r, tε)‖u‖L2∗

(B4)
.

(ii) Let s > N/2 and assume that b ∈ Ls(B4). Then there exists a constant C(N, s, ‖b‖Ls(B4))

such that

‖u‖L∞(B1) ≤ C(N, s,‖b‖Ls(B4))‖u‖L2∗
(B4)

.

Here, the constants C(N, r, tε) and C(N, s, ‖b‖Ls(B4)) in (i) and (ii) remain bounded as long as 
r, tε and ‖b‖Ls(B4) are bounded.

4. Proof of Theorem 2.1

In this section, we always assume that p = N+α
N

, q ∈ (2, 2 + 4
N

) and λ > 0 is a small param-
eter. It is easy to see that under the rescaling

w(x) = λ
− N

4−N(q−2) v(λ
− 2

4−N(q−2) x), (4.1)

the equation (Qλ) is reduced to

−λσ �w + w = (Iα ∗ |w|p)|w|p−2w + λσ |w|q−2w, (Q̄λ)

where σ := 4
4−N(q−2)

> 1. The corresponding functional is given by

Jλ(w) := 1

2

∫
N

λσ |∇w|2 + |w|2 − 1

2p

∫
N

(Iα ∗ |w|p)|w|p − 1

q
λσ

∫
N

|w|q .
R R R
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Lemma 4.1. Let λ > 0, v ∈ H 1(RN) and w be the rescaling (4.1) of v. Then
(1) ‖w‖2

2 = ‖v‖2
2, 

∫
RN (Iα ∗ |w|p)|w|p = ∫RN (Iα ∗ |v|p)|v|p ,

(2) λσ ‖∇w‖2
2 = ‖∇v‖2

2, λσ ‖w‖q
q = λ‖v‖q

q ,
(3) Iλ(v) = Jλ(w).

We define the Nehari manifolds as follows.

Nλ =

⎧⎪⎨
⎪⎩w ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣ λ
σ

∫
RN

|∇w|2 +
∫
RN

|w|2 =
∫
RN

(Iα ∗ |w|p)|w|p + λσ

∫
RN

|w|q
⎫⎪⎬
⎪⎭

and

N0 =

⎧⎪⎨
⎪⎩w ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|w|2 =
∫
RN

(Iα ∗ |w|p)|w|p
⎫⎪⎬
⎪⎭ .

Then

mλ := inf
w∈Nλ

Jλ(w), and m0 := inf
u∈N0

J0(u)

are well-defined and positive. Moreover, J0 is attained on N0 and

m0 := inf
w∈N0

J0(w) = α

2(N + α)
S

N+α
α

1 .

For w ∈ H 1(RN) \ {0}, we set

τ1(w) =
∫
RN |w|2∫

RN (Iα ∗ |w|p)|w|p . (4.2)

Then (τ1(w))
N
2α w ∈ N0 for any w ∈ H 1(RN) \ {0}, and w ∈N0 if and only if τ1(w) = 1.

Define the Pohožaev manifold as follows

Pλ := {w ∈ H 1(RN) \ {0} | Pλ(w) = 0},

where

Pλ(w) : = λσ (N−2)
2

∫
RN |∇w|2 + N

2

∫
RN |w|2

−N+α
2p

∫
RN (Iα ∗ |w|p)|w|p − λσ N

q

∫
RN |w|q .

(4.3)

Let vλ ∈ H 1(RN) be the ground state for (Qλ) and

wλ(x) = λ
− N

4−N(q−2) vλ(λ
− 2

4−N(q−2) x).
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Then by Lemma 3.1, wλ ∈ Pλ. Moreover, we have the following minimax characterizations for 
the least energy level mλ.

mλ = inf
w∈H 1(RN)\{0}

sup
t≥0

Jλ(tw) = inf
w∈H 1(RN)\{0}

sup
t≥0

Jλ(wt ). (4.4)

In particular, we have mλ = Jλ(wλ) = supt>0 Jλ(twλ) = supt>0 Jλ((wλ)t ). A similar result also 
holds for m0 and J0.

Lemma 4.2. The rescaled family of solutions {wλ} is bounded in H 1(RN).

Proof. Since {wλ} is bounded in L2(RN), it suffices to show that it is also bounded in D1,2(RN). 
By wλ ∈ Nλ ∩Pλ, we obtain

λσ

∫
RN

|∇wλ|2 +
∫
RN

|wλ|2 =
∫
RN

(Iα ∗ |wλ|p)|wλ|p + λσ

∫
RN

|wλ|q,

λσ (N − 2)

2

∫
RN

|∇wλ|2 + N

2

∫
RN

|wλ|2 = N + α

2p

∫
RN

(Iα ∗ |wλ|p)|wλ|p + λσ N

q

∫
RN

|wλ|q .

Therefore, we have

‖∇vλ‖2
2 = λσ ‖∇wλ‖2

2 = N(q − 2)

2q
λσ

∫
RN

|wλ|q = N(q − 2)

2q
λ

∫
RN

|vλ|q .

Particularly, we have

‖∇wλ‖2
2 = N(q − 2)

2q
‖wλ‖q

q . (4.5)

By the Gagliardo-Nirenberg Inequality, we obtain

‖vλ‖q
q ≤ C‖∇vλ‖

N(q−2)
2

2 ‖vλ‖
2N−q(N−2)

2
2 .

Therefore, we get

‖∇vλ‖
4−N(q−2)

2
2 ≤ C

N(q − 2)

2q
λ‖vλ‖

2N−q(N−2)
2

2 .

Hence,

λσ ‖∇wλ‖2
2 = ‖∇vλ‖2

2 ≤ C̃λσ ‖vλ‖
2[2N−q(N−2)]

4−N(q−2)

2 ,

which together with the boundedness of ‖vλ‖2 implies that wλ is bounded in D1,2(RN). �
Now, we give the estimates on τ1(wλ) and the least energy mλ.
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Lemma 4.3. 1 < τ1(wλ) ≤ 1 + O(λ) and mλ = m0 + O(λ) as λ → 0.

Proof. First, since wλ ∈ Nλ, by (4.5), it follows that

τ1(wλ) =
∫
RN |wλ|2∫

RN (Iα ∗ |wλ|p)|wλ|p >

∫
RN λσ |∇wλ|2 + |wλ|2 − λσ

∫
RN |wλ|q∫

RN (Iα ∗ |wλ|p)|wλ|p = 1 (4.6)

and by Lemma 4.1 and the Sobolev inequality, we have

τ1(wλ) =
∫
RN |wλ|2∫

RN (Iα∗|wλ|p)|wλ|p

≤
∫
RN λσ |∇wλ|2+|wλ|2∫

RN (Iα∗|wλ|p)|wλ|p+λσ
∫
RN |wλ|q−λσ

∫
RN |wλ|q

= ‖vλ‖2

‖vλ‖2−λ‖vλ‖q
q

≤ 1
1−λC‖vλ‖q−2 .

(4.7)

Since ‖vλ‖ is bounded, it follows that 1 < τ1(wλ) ≤ 1 + O(λ) as λ → 0.
For w ∈ H 1(RN), let

wt(x) =
{

w(x/t) t > 0,

0, t = 0.

Then by Lemma 3.2 and Pohožaev’s identity, it is easy to show that supt≥0 Jλ((wλ)t ) = Jλ(wλ) =
mλ. Therefore, we get

m0 ≤ supt≥0 J0((wλ)t ) = J0((wλ)t )|t=τ1((wλ))1/α

≤ supt≥0 Jλ((wλ)t ) + λσ (τ1(wλ))
N/α

∫
RN |wλ|q

≤ mλ + λ(1 + O(λ))N/α‖vλ‖q
q

= mλ + O(λ).

On the other hand, let U ∈ N ⊂ H 1(RN) be such that

S1 =
∫
RN |U |2(∫

RN (Iα ∗ |U |p)|U |p)1/p
.

Then 
∫
RN |U |2 = ∫

RN (Iα ∗ |U |N+α
N )|U |N+α

N = S
N+α

α

1 and m0 = J0(U) = α
2(N+α)

S
N+α

α

1 . By 
Lemma 3.2 again, we obtain

mλ ≤ supt≥0 Jλ(tU)

= supt≥0

{
t2

2

∫
RN λσ |∇U |2 + |U |2 − t2p

2p

∫
RN (Iα ∗ |U |p)|U |p − λσ tq

q

∫
RN |U |q

}
≤ supt≥0

{
t2

2

∫
RN |U |2 − t2p

2p

∫
RN (Iα ∗ |U |p)|U |p

}
+ λσ supt≥0

{
t2

2

∫
RN |∇U |2 − tq

q

∫
RN |U |q

}
= J0(U) + O(λσ )

= m0 + o(λ).

The proof is completed. �
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Lemma 4.4. ‖wλ‖2
2 ∼ 1 as λ → 0.

Proof. By the definition of τ1(wλ), Lemma 4.3 and the Hardy-Littlewood-Sobolev inequality, 
for small λ > 0, we have

‖wλ‖2
2 = τ1(wλ)

∫
RN

(Iα ∗ |wλ|p)|wλ|p ≤ 2S
−p

1 ‖wλ‖2p

2 ,

and thus it follows that

‖wλ‖2
2 ≥ 2− N

α S
N+α

α

1 ,

which together with the boundedness of wλ implies that ‖wλ‖2
2 ∼ 1 as λ → 0. The proof is 

completed. �
Now, we give the following estimates on the least energy.

Lemma 4.5. Let N ≥ 3 and q ∈ (2, 2 + 4
N

), then

m0 − mλ ∼ λσ as λ → 0.

Proof. By Lemma 3.2, Lemma 4.3 and the boundedness of {wλ}, we find

m0 ≤ supt≥0 J0((wλ)t ) = J0((wλ)tλ)

≤ supt≥0 Jλ((wλ)t ) + λσ

(
tNλ
q

∫
RN |wλ|q − tN−2

λ

2

∫
RN |∇wλ|2

)
≤ mλ + Cλσ ,

(4.8)

where

tλ =
( ∫

RN |wλ|2∫
RN (Iα ∗ |wλ|p)|wλ|p

) 1
α

= (τ1(wλ))
1
α .

For each ρ > 0, the family Uρ(x) := ρ− N
2 U1(x/ρ) are radial ground states of v = (Iα ∗

|v|p)vp−1, and verify that

‖∇Uρ‖2
2 = ρ−2‖∇U1‖2

2,

∫
RN

|Uρ |q = ρN− N
2 q

∫
RN

|U1|q . (4.9)

Let g0(ρ) = 1
q

∫
RN |Uρ |q − 1

2

∫
RN |∇Uρ |2. Then there exists ρ0 = ρ(q) ∈ (0, +∞) with

ρ0 =
(

2q
∫
RN |∇U1|2

N(q − 2)
∫

N |U1|q
) 2

4−N(q−2)
R
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such that

g0(ρ0) = sup
ρ>0

g0(ρ) = 4 − N(q − 2)

2N(q − 2)

(
N(q − 2)

∫
RN |U1|q

2q
∫
RN |∇U1|2

) 4
4−N(q−2)

∫
RN

|∇U1|2.

Let U0 = Uρ0 , then there exists tλ ∈ (0, +∞) such that

mλ ≤ supt≥0 Jλ(tU0) = Jλ(tλU0)

= t2
λ

2

∫
RN |U0|2 − t

2p
λ

2p

∫
RN (Iα ∗ |U0|p)|U0|p − λσ { t

q
λ

q

∫
RN |U0|q − t2

λ

2

∫
RN |∇U0|2}

≤ supt≥0

(
t2

2 − t2p

2p

)∫
RN |U0|2 − λσ { t

q
λ

q

∫
RN |U0|q − t2

λ

2

∫
RN |∇U0|2}

= m0 − λσ { t
q
λ

q

∫
RN |U0|q − t2

λ

2

∫
RN |∇U0|2}.

(4.10)
If tλ ≥ 1, then

∫
RN

|U0|2 + λσ

∫
RN

|∇U0|2 ≥ t
min{ 2α

N
,q−2}

λ

⎧⎪⎨
⎪⎩
∫
RN

(Iα ∗ |U0|p)|U0|p + λσ

∫
RN

|U0|q
⎫⎪⎬
⎪⎭ .

Hence

tλ ≤
( ∫

RN |U0|2 + λσ
∫
RN |∇U0|2∫

RN (Iα ∗ |U0|p)|U0|p + λσ
∫
RN |U0|q

) 1
min{ 2α

N
,q−2}

.

If tλ ≤ 1, then

∫
RN

|U0|2 + λσ

∫
RN

|∇U0|2 ≤ t
min{ 2α

N
,q−2}

λ

⎧⎪⎨
⎪⎩
∫
RN

(Iα ∗ |U0|p)|U0|p + λσ

∫
RN

|U0|q
⎫⎪⎬
⎪⎭ .

Hence

tλ ≥
( ∫

RN |U0|2 + λσ
∫
RN |∇U0|2∫

RN (Iα ∗ |U0|p)|U0|p + λσ
∫
RN |U0|q

) 1
min{ 2α

N
,q−2}

.

Since ∫
RN

(Iα ∗ |U0|p)|U0|p =
∫
RN

|U0|2 and
∫
RN

|U0|q >

∫
RN

|∇U0|2,

we conclude that

( ∫
RN |U0|2 + λσ

∫
RN |∇U0|2∫

N (Iα ∗ |U0|p)|U0|p + λσ
∫

N |U0|q
) 1

min{ 2α
N

,q−2}
≤ tλ ≤ 1. (4.11)
R R
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Therefore, limλ→0 tλ = 1 and hence there exists a constant C > 0 such that

mλ ≤ m0 − Cλσ ,

for small λ > 0. The proof is complete. �
Denote

D(u) :=
∫
RN

(Iα ∗ |u|N+α
N )|u|N+α

N .

The following result is a special case of the classical Brezis-Lieb lemma [5] for Riesz potentials, 
for a proof, we refer the reader to [37, Lemma 2.4].

Lemma 4.6. Let N ∈ N, α ∈ (0, N), and (wn)n∈N be a bounded sequence in L2(RN). If wn →
w almost everywhere on RN as n → ∞, then

lim
n→∞D(wn) −D(wn − w0) = D(w0).

Lemma 4.7. ‖wλ‖2
2 ∼ D(wλ) ∼ ‖∇wλ‖2

2 ∼ ‖wλ‖q
q ∼ 1 as λ → 0.

Proof. It follows from Lemma 4.3 that

m0 ≤ J0((τ1(wλ))
N
2α wλ)

= 1
2 (τ1(wλ))

N
α ‖wλ‖2

2 − 1
2p

(τ1(wλ))
N+α

α

∫
RN (Iα ∗ |wλ|p)|wλ|p

≤ (τ1(wλ))
N
α

[
1
2‖wλ‖2

2 − 1
2p

∫
RN (Iα ∗ |wλ|p)|wλ|p

]
.

(4.12)

Since wλ ∈ Nλ, by Lemma 4.4, we obtain

τ1(wλ) =
∫
RN |wλ|2∫

RN (Iα∗|wλ|p)|wλ|p

=
∫
RN |wλ|2∫

RN |wλ|2+λσ (
∫
RN |∇wλ|2−∫RN |wλ|q )

=
∫
RN |wλ|2∫

RN |wλ|2−λσ 2N−q(N−2)
2q

∫
RN |wλ|q

≤ 1 + C1λ
σ ‖wλ‖q

q .

(4.13)

Therefore, by (4.5), (4.12) and (4.13), we obtain

mλ = 1
2

∫
RN λσ |∇wλ|22 + |wλ|22 − 1

2p

∫
RN (Iα ∗ |wλ|p)|wλ|p − λσ

q

∫
RN |wλ|q

≥ λσ ( 1
2‖∇wλ‖2

2 − 1
q
‖wλ‖q

q) + m0

(τ1(wλ))
N
α

≥ λσ N(q−2)−4
4q

‖wλ‖q
q + m0 − C1λ

σ ‖wλ‖q
q .

Recall that by Lemma 4.5, we have m0 − mλ ≥ C2λ
σ . Hence, we get
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4 − N(q − 2)

4q
‖wλ‖q

q ≥ C2 − C1‖wλ‖q
q,

which yields

‖wλ‖q
q ≥ 4qC2

4 − N(q − 2) + 4qC1
> 0.

Since wλ is bounded in H 1(RN), it follows that ‖wλ‖q
q ∼ 1 as λ → 0.

Since ‖wλ‖2
2 ∼ 1 as λ → 0, the Gagliardo-Nirenberg inequality implies

‖wλ‖q
q ≤ C‖∇wλ‖

N(q−2)
2

2 ,

which together with the boundedness of wλ in H 1(RN) yields ‖∇wλ‖2
2 ∼ 1 as λ → 0.

Finally, by the definition of τ1(wλ), Lemma 4.3 and Lemma 4.4, it follows that

D(wλ) =
∫
RN

(Iα ∗ |wλ|N+α
N )|wλ|N+α

N = (τ1(wλ))
−1‖wλ‖2

2 ∼ 1,

as λ → 0. The proof is complete. �
Lemma 4.8. Let N ≥ 3 and q ∈ (2, 2 + 4

N
), then for any λn → 0, there exists ρ ∈ [ρ0, +∞), 

such that, up to a subsequence, wλn → Uρ in L2(RN), where

ρ0 = ρ0(q) :=
(

2q
∫
RN |∇U1|2

N(q − 2)
∫
RN |U1|q

) 2
4−N(q−2)

.

Moreover, wλn → Uρ in D1,2(RN) if and only if ρ = ρ0.

Proof. Note that wλn is a positive radially symmetric function, and by Lemma 4.2, {wλn} is 
bounded in H 1(RN). Then there exists w0 ∈ H 1(RN) such that

wλn ⇀ w0 weakly in H 1(RN), wλn → w0 in Lp(RN) for any p ∈ (2,2∗), (4.14)

and

wλn(x) → w0(x) a. e. on RN, wλn → w0 in L2
loc(R

N). (4.15)

Observe that

J0(wλn) = Jλn(wλn) + λσ
n

q

∫
RN

|wλn |q − λσ
n

2

∫
RN

|∇wλn |2 = mλn + on(1) = m0 + on(1),

and
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J ′
0(wλn)w = J ′

λn
(wλn)w + λσ

n

∫
RN

|wλn |q−2wλnw − λσ
n

∫
RN

∇wλn∇w = on(1).

Therefore, {wλn} is a PS sequence of J0 at level m0 = α
2(N+α)

S
N+α

α

1 .
By Lemma 4.7, we have w0 �= 0, and hence m0 ≤ J0(w0). By Lemma 4.5 and Lemma 4.6, we 

have

on(1) = mλn − m0

≥ λσ
n

2 ‖∇wλn‖2
2 + 1

2 [‖wλn‖2
2 − ‖w0‖2

2] − N
2(N+α)

[D(wλn) −D(w0)] − λσ
n

q
‖wλn‖q

q

= 1
2‖wλn − w0‖2

2 − N
2(N+α)

D(wλn − w0) + on(1),

0 = 〈J ′
λn

(wλn) − J ′
0(w0),wλn − w0〉

= λσ
n

∫
RN ∇wλn(∇wλn − ∇w0) + ∫RN |wλn − w0|2

− ∫RN (Iα ∗ |wλn |
N+α

N )w
α
N

λn
(wλn − w0) + ∫RN (Iα ∗ |w0|N+α

N )w
α
N

0 (wλn − w0)

−λσ
n

∫
RN |wλn |q−2wλn(wλn − w0)

= ‖wλn − w0‖2
2 −D(wλn − w0) + on(1).

Hence, it follows that

‖wλn − w0‖2
2 ≤ N

N + α
D(wλn − w0) + on(1) = N

N + α
‖wλn − w0‖2

2 + on(1),

and hence

‖wλn − w0‖2 → 0, as λn → 0.

By the Hardy-Littlewood-Sobolev inequality and Lemma 4.6, it follows that

lim
λn→0

D(wλn) = D(w0).

Since τ1(wλn) → 1 as λn → 0 by Lemma 4.3, it follows that w0 ∈N0.
On the other hand, by Lemma 4.1 and the boundedness of vλn in H 1(RN), we have

mλn = Jλn(wλn)

= 1
2

∫
RN λσ

n |∇wλn |2 + |wλn |2 − 1
2p

∫
RN (Iα ∗ |wλn |

N+α
N )|wλn |

N+α
N − λσ

n

q

∫
RN |wλn |q

= 1
2

∫
RN |∇vλn |2 + |wλn |2 − 1

2p

∫
RN (Iα ∗ |wλn |

N+α
N )|wλn |

N+α
N − λn

q

∫
RN |vλn |q

≥ 1
2

∫
RN |wλn |2 − 1

2p

∫
RN (Iα ∗ |wλn |

N+α
N )|wλn |

N+α
N − Cλn.

Sending λn → 0, it then follows from Lemma 4.5 that

m0 ≥ 1

2

∫
RN

|w0|2 − 1

2p

∫
RN

(Iα ∗ |w0|N+α
N )|w0|N+α

N = J0(w0).

Therefore, note that w0 ∈N0, we obtain J0(w0) = m0. Thus, w0 = Uρ for some ρ ∈ (0, +∞).
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Moreover, by (4.5), we obtain

‖∇w0‖2
2 ≤ lim

λn→0
‖∇wλn‖2

2 = N(q − 2)

2q

∫
RN

|w0|q,

from which it follows that

ρ ≥
(

2q
∫
RN |∇U1|2

N(q − 2)
∫
RN |U1|q

) 2
4−N(q−2)

.

If ρ = ρ0, then (4.5) implies that limn→∞ ‖∇wλn‖2
2 = ‖∇Uρ0‖2

2, and hence wλn → Uρ0 in 
D1,2(RN). �
Proof of Theorem 2.1. Let

Mλ = wλ(0), zλ = Mλ[Uρ0(0)]−1,

where ρ0 is given in Lemma 4.8. We further perform a scaling

w̃λ(x) = z−1
λ wλ(z

− 2
N

λ x),

then

w̃λ(0) = z−1
λ wλ(0) = Uρ0(0)M−1

λ wλ(0) = Uρ0(0),

and w̃λ satisfies the rescaled equation

−λσ z
4
N

λ �w̃ + w̃ = (Iα ∗ |w̃|p)|w̃|p−2w̃ + λσ z
q−2
λ |w̃|q−2w̃.

The corresponding functional is given by

Jλ(wλ) = 1

2

∫
RN

λσ z
4
N

λ |∇w̃λ|2 + |w̃λ|2 − 1

2p

∫
RN

(Iα ∗ |w̃λ|p)|w̃λ|p − 1

q
λσ z

q−2
λ

∫
RN

|w̃λ|q .

Moreover, we have
(1) ‖w̃‖2

2 = ‖w‖2
2, 

∫
RN (Iα ∗ |w̃|p)|w̃|p = ∫RN (Iα ∗ |w|p)|w|p ,

(2) z
4
N

λ ‖∇w̃‖2
2 = ‖∇w‖2

2, z
q−2
λ ‖w̃‖q

q = ‖w‖q
q .

By Lemma 4.8, for any λn → 0, there exists ρ ≥ ρ0 such that

Mλn = wλn(0) → Uρ(0) = ρ− N
2 U1(0) ≤ ρ

− N
2

0 U1(0) < +∞,

which yields that Mλ ≤ C for some C > 0 and any small λ > 0.
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Suppose that there exists a sequence λn → 0 such that Mλn → 0. By Lemma 4.8, up to a 
subsequence, Mλn = wλn(0) → Uρ(0) �= 0 for some ρ ∈ (0, +∞). This leads to a contradiction. 
Therefore, there exists some c > 0 such that Mλ ≥ c > 0.

Let

ζλ = z
− 2

N

λ λ
− 2

4−N(q−2) .

Then

ζλ ∼ λ
− 2

4−N(q−2)

and for small λ > 0, the rescaled family of ground states

w̃λ(x) = ζ
N
2

λ vλ(ζλx)

satisfies

‖∇w̃λ‖2
2 ∼ ‖w̃λ‖q

q ∼
∫
RN

(Iα ∗ |w̃λ|N+α
N )|w̃λ|N+α

N ∼ ‖w̃λ‖2
2 ∼ 1,

and as λ → 0, w̃λ converges in L2(RN) to the extremal function Uρ0 . Then by Lemma 4.8, we 
also have w̃λ → Uρ0 in D1,2(RN). Thus we conclude that w̃λ → Uρ0 in H 1(RN).

Since wλ ∈Nλ, it follows that

mλ = ( 1
2 − 1

2p
)λσ

∫
RN |∇wλ|2 + ( 1

2 − 1
2p

)
∫
RN |wλ|2 − ( 1

q
− 1

2p
)λσ

∫
RN |wλ|q

= α
2(N+α)

λσ
∫
RN |∇wλ|2 + α

2(N+α)

∫
RN |wλ|2 − 2p−q

2pq
λσ
∫
RN |wλ|q

= α
2(N+α)

∫
RN |wλ|2 + O(λσ ).

Similarly, we also have

m0 = α

2(N + α)

∫
RN

|U1|2.

Then it follows from Lemma 4.5 that∫
RN

|U1|2 −
∫
RN

|wλ|2 = 2(N + α)

α
(m0 − mλ) + O(λσ ) = O(λσ ).

Since ‖U1‖2
2 = ∫RN (Iα ∗ |U1|p)|U1|p = S

N+α
α

1 , we conclude that

‖w̃λ‖2
2 = ‖wλ‖2

2 = S
N+α

α

1 + O(λσ ).

Finally, by wλ ∈ Nλ, we also have
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∫
RN

(Iα ∗ |w̃λ|N+α
N )|w̃λ|N+α

N =
∫
RN

(Iα ∗ |wλ|N+α
N )|wλ|N+α

N = ‖wλ‖2
2 + O(λσ ) = S

N+α
α

1 + O(λσ ).

The statements on vλ follow from the corresponding results on wλ and w̃λ, and the proof is 
complete. �
5. Proof of Theorem 2.2

In this section, we always assume that p = N+α
N−2 and q ∈ (2, 2∗) if N ≥ 4, and q ∈ (4, 6) if 

N = 3. It is easy to see that under the rescaling

w(x) = λ
1

q−2 v(λ
2∗−2

2(q−2) x), (5.1)

the equation (Qλ) is reduced to

−�w + λσ w = (Iα ∗ |w|p)|w|p−2w + λσ |w|q−2w, (Q̄λ)

where σ := 2∗−2
q−2 > 1. The associated functional is defined by

Jλ(w) := 1

2

∫
RN

|∇w|2 + λσ |w|2 − 1

2p

∫
RN

(Iα ∗ |w|p)|w|p − 1

q
λσ

∫
RN

|w|q .

Lemma 5.1. Let λ > 0, v ∈ H 1(RN) and w be the rescaling (5.1) of v. Then
(1) ‖∇w‖2

2 = ‖∇v‖2
2, 

∫
RN (Iα ∗ |w|p)|w|p = ∫RN (Iα ∗ |v|p)|v|p ,

(2) λσ ‖w‖2
2 = ‖v‖2

2, λσ ‖w‖q
q = λ‖v‖q

q ,
(3) Iλ(u) = Jλ(w).

We define the Nehari manifolds as follows:

Nλ =

⎧⎪⎨
⎪⎩w ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇w|2 + λσ

∫
RN

|w|2 =
∫
RN

(Iα ∗ |w|p)|w|p + λσ

∫
RN

|w|q
⎫⎪⎬
⎪⎭

and

N0 =

⎧⎪⎨
⎪⎩w ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|∇w|2 =
∫
RN

(Iα ∗ |w|p)|w|p
⎫⎪⎬
⎪⎭ .

Then

mλ := inf
w∈Nλ

Jλ(w), and m0 := inf
u∈N0

J0(u)

are well-defined and positive. Moreover, J0 is attained on N0.
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For w ∈ H 1(RN) \ {0}, we set

τ2(w) =
∫
RN |∇w|2∫

RN (Iα ∗ |w|p)|w|p . (5.2)

Then (τ2(w))
N−2

2(2+α) w ∈N0 for any w ∈ H 1(RN) \ {0}, and w ∈N0 if and only if τ2(w) = 1.
Define the Pohožaev manifold as follows:

Pλ := {w ∈ H 1(RN) \ {0} | Pλ(w) = 0},

where

Pλ(w) : = N−2
2

∫
RN |∇w|2 + λσ N

2

∫
RN |w|2

−N+α
2p

∫
RN (Iα ∗ |w|p)|w|p − λσ N

q

∫
RN |w|q .

(5.3)

Then by Lemma 3.1, wλ ∈ Pλ. Moreover, we have a similar minimax characterizations for the 
least energy level mλ as in Lemma 3.2.

Lemma 5.2. The rescaled family of solutions {wλ} is bounded in H 1(RN).

Proof. First, we show that {wλ} is bounded in H 1(RN). Since {wλ} is bounded in D1,2(RN), it 
suffices to show that it is also bounded in L2(RN). By wλ ∈Nλ ∩Pλ, we obtain

∫
RN

|∇wλ|2 + λσ

∫
RN

|wλ|2 =
∫
RN

(Iα ∗ |wλ|p)|wλ|p + λσ

∫
RN

|wλ|q,

N − 2

2

∫
RN

|∇wλ|2 + λσ N

2

∫
RN

|wλ|2 = N + α

2p

∫
RN

(Iα ∗ |wλ|p)|wλ|p + λσ N

q

∫
RN

|wλ|q .

Thus, we obtain

∫
RN

|wλ|2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|wλ|q . (5.4)

By the Sobolev embedding theorem and the interpolation inequality, we obtain

∫
RN

|wλ|q ≤
⎛
⎜⎝ ∫
RN

|wλ|2
⎞
⎟⎠

2∗−q

2∗−2
⎛
⎜⎝ ∫
RN

|wλ|2∗

⎞
⎟⎠

q−2
2∗−2

≤
⎛
⎜⎝ ∫
RN

|wλ|2
⎞
⎟⎠

2∗−q

2∗−2
⎛
⎜⎝ 1

S

∫
RN

|∇wλ|2
⎞
⎟⎠

2∗(q−2)

2(2∗−2)

,

where S is the best Sobolev constant. Therefore, we have
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⎛
⎜⎝ ∫
RN

|wλ|2
⎞
⎟⎠

q−2
2∗−2

≤ 2(2∗ − q)

q(2∗ − 2)

⎛
⎜⎝ 1

S

∫
RN

|∇wλ|2
⎞
⎟⎠

2∗(q−2)

2(2∗−2)

.

It then follows from Lemma 5.1 that

∫
RN

|wλ|2 ≤
(

2(2∗ − q)

q(2∗ − 2)

) 2∗−2
q−2

⎛
⎜⎝ 1

S

∫
RN

|∇vλ|2
⎞
⎟⎠

2∗/2

, (5.5)

which together with the boundedness of vλ in H 1(RN) implies that wλ is bounded in 
L2(RN). �

Now, we give the following estimate on the least energy:

Lemma 5.3. If N ≥ 5 and q ∈ (2, 2∗), then

m0 − mλ ∼ λσ as λ → 0.

If N = 4 and q ∈ (2, 4), or N = 3 and q ∈ (4, 6), then

m0 − mλ � λσ , as λ → 0.

Proof. First, we claim that there exists a constant C > 0 such that

1 < τ2(wλ) ≤ 1 + Cλσ . (5.6)

In fact, since wλ ∈ Nλ, we see that

τ2(wλ) =
∫
RN |∇wλ|2∫

RN (Iα ∗ |wλ|p)|wλ|p = 1 + λσ

∫
RN |wλ|q − ∫RN |wλ|2∫
RN (Iα ∗ |wλ|p)|wλ|p .

Since

∫
RN

|wλ|q ≤
⎛
⎜⎝ ∫
RN

|wλ|2
⎞
⎟⎠

2∗−q

2∗−2
⎛
⎜⎝ ∫
RN

|wλ|2∗

⎞
⎟⎠

q−2
2∗−2

,

we see that

∫
RN |wλ|q − ∫RN |wλ|2∫

RN |wλ|2∗ ≤ ζ
θq

λ (1 − ζ
1−θq

λ ) ≤ θ

θq
1−θq
q (1 − θq) := G(q),

where
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θq = 2∗ − q

2∗ − 2
, ζλ =

∫
RN |vλ|2∫
RN |vλ|2∗ .

Therefore, by the boundedness of wλ in D1,2(RN), we get

τ2(wλ) ≤ 1 + λσ G(q)

∫
RN |wλ|2∗∫

RN (Iα∗|wλ|p)|wλ|p

≤ 1 + λσ G(q)S− N
N−2

(
∫
RN |∇wλ|2) N

N−2∫
RN (Iα∗|wλ|p)|wλ|p

= 1 + λσ G(q)S− N
N−2 τ2(wλ)(

∫
RN |∇wλ|2) 2

N−2

≤ 1 + λσ Cτ2(wλ),

and hence for small λ > 0, there holds

τ2(wλ) ≤ 1

1 − λσ C
= 1 + λσ C

1 − λσ C
≤ 1 + 1

2
Cλσ .

On the other hand, by (5.4), we have that 
∫
RN |wλ|2 = 2(2∗−q)

q(2∗−2)

∫
RN |wλ|q <

∫
RN |wλ|q , therefore, 

we get τ2(wλ) > 1. This proved the claim.
If N ≥ 3, by Lemma 3.2 and the boundedness of {wλ}, we find

m0 ≤ supt≥0 Jλ((wλ)t ) + λσ tNλ

(
1
q

∫
RN |wλ|q − 1

2

∫
RN |wλ|2

)
≤ mλ + Cλσ ,

(5.7)

where

tλ =
( ∫

RN |∇wλ|2∫
RN (Iα ∗ |wλ|p)|wλ|p

) 1
2+α

= (τ2(wλ))
1

2+α .

For each ρ > 0, the family Vρ(x) := ρ− N−2
2 V1(x/ρ) are radial ground states of −�v = (Iα ∗

|v|p)vp−1, and verify that

‖Vρ‖2
2 = ρ2‖V1‖2

2,

∫
RN

|Vρ |q = ρN− N−2
2 q

∫
RN

|V1|q . (5.8)

Let g0(ρ) = 1
q

∫
RN |Vρ |q − 1

2

∫
RN |Vρ |2. Then there exists ρ0 = ρ(q) ∈ (0, +∞) with

ρ0 =
( [2N − q(N − 2)] ∫RN |V1|q

2q
∫
RN |V1|2

) 2
(N−2)(q−2)

such that

g0(ρ0) = sup
ρ>0

g0(ρ) = (N − 2)(q − 2)

4q

( [2N − q(N − 2)] ∫RN |V1|q
2q
∫
RN |V1|2

) 2∗−q
q−2

∫
N

|V1|q .
R
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Let V0 = Vρ0 , then there exists tλ ∈ (0, +∞) such that

mλ ≤ supt≥0 Jλ(tV0) = Jλ(tλV0)

= t2
λ

2

∫
RN |∇V0|2 − t

2p
λ

2p
(Iα ∗ |V0|p)|V0|p − λσ { t

q
λ

q

∫
RN |V0|q − t2

λ

2

∫
RN |V0|2}

≤ supt≥0

(
t2

2 − t2p

2p

)∫
RN |∇V0|2 − λσ { t

q
λ

q

∫
RN |V0|q − t2

λ

2

∫
RN |V0|2}

= m0 − λσ { t
q
λ

q

∫
RN |V0|q − t2

λ

2

∫
RN |V0|2}.

(5.9)

If tλ ≥ 1, then

∫
RN

|∇V0|2 + λσ

∫
RN

|V0|2 ≥ t
q−2
λ

⎧⎪⎨
⎪⎩
∫
RN

(Iα ∗ |V0|p)|V0|p + λσ

∫
RN

|V0|q
⎫⎪⎬
⎪⎭ .

Hence

tλ ≤ max

⎧⎨
⎩1,

( ∫
RN |∇V0|2 + λσ

∫
RN |V0|2∫

RN (Iα ∗ |V0|p)|V0|p + λσ
∫
RN |V0|q

) 1
q−2

⎫⎬
⎭ .

If tλ ≤ 1, then

∫
RN

|∇V0|2 + λσ

∫
RN

|V0|2 ≤ t
q−2
λ

⎧⎪⎨
⎪⎩
∫
RN

(Iα ∗ |V0|p)|V0|p + λσ

∫
RN

|V0|q
⎫⎪⎬
⎪⎭ .

Hence

tλ ≥ min

⎧⎨
⎩1,

( ∫
RN |∇V0|2 + λσ

∫
RN |V0|2∫

RN (Iα ∗ |V0|p)|V0|p + λσ
∫
RN |V0|q

) 1
q−2

⎫⎬
⎭ .

Since ∫
RN

(Iα ∗ |V0|p)|V0|p =
∫
RN

|∇V0|2 and
∫
RN

|V0|q >

∫
RN

|V0|2,

we conclude that

( ∫
RN |∇V0|2 + λσ

∫
RN |V0|2∫

RN (Iα ∗ |V0|p)|V0|p + λσ
∫
RN |V0|q

) 1
q−2

≤ tλ ≤ 1. (5.10)

Therefore, limλ→0 tλ = 1 and hence there exists a constant C > 0 such that

mλ ≤ m0 − Cλσ ,
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for small λ > 0. The proof is complete. �
Lemma 5.4. In the lower dimension cases, there exists a constant � = �(q) > 0 such that for 
λ > 0 small,

mλ ≤
⎧⎨
⎩m0 − λσ

(
ln 1

λ

)− 4−q
q−2 � = m0 − λ

2
q−2
(
ln 1

λ

)− 4−q
q−2 �, if N = 4,

m0 − λ
σ+ 2(6−q)

(q−4)(q−2) � = m0 − λ
2

q−4 �, if N = 3 and q ∈ (4,6).

Proof. Let ρ > 0 and R be a large parameter, and ηR ∈ C∞
0 (R) is a cut-off function such that 

ηR(r) = 1 for |r| < R, 0 < ηR(r) < 1 for R < |r| < 2R, ηR(r) = 0 for |r| > 2R and |η′
R(r)| ≤

2/R.
For � � 1, a straightforward computation shows that

∫
RN

|∇(η�V1)|2 =
{

2(N+α)
2+α

m0 + O(�−2), if N = 4,
2(N+α)

2+α
m0 + O(�−1), if N = 3.

∫
RN

(Iα ∗ |η�V1|p)|η�V1|p = 2(N + α)

2 + α
m0 + O(�−N),

∫
RN

|η�V1|2 =
{

ln�(1 + o(1)), if N = 4,

�(1 + o(1)), if N = 3.

By Lemma 3.2, we find

mλ ≤ supt≥0 Jλ((ηRVρ)t ) = Jλ((ηRVρ)tλ)

≤ supt≥0

(
tN−2

2

∫
RN |∇(ηRVρ)|2 − tN+α

2p

∫
RN (Iα ∗ |ηRVρ |p)|ηRVρ |p

)
−λσ tNλ

[∫
RN

1
q
|ηRVρ |q − 1

2 |ηRVρ |2
]

= (I ) − λσ (II ),

(5.11)

where tλ ∈ (0, +∞) is the unique critical point of the function g(t) defined by

g(t) = tN−2

2

∫
RN |∇(ηRVρ)|2 + tN

2 λσ
∫
RN |ηRVρ |2

− tN+α

2p

∫
RN (Iα ∗ |ηRVρ |p)|ηRVρ |p − tN

q
λσ
∫
RN |ηRVρ |q .

That is, t = tλ solves the equation �1(t) = �2(t), where

�1(t) := N − 2

2t2

∫
RN

|∇(ηRVρ)|2

and

�2(t) := N + α

2p
tα
∫
N

(Iα ∗ |ηRVρ |p)|ηRVρ |p + N

q
λσ

∫
N

|ηRVρ |q − N

2
λσ

∫
N

|ηRVρ |2.

R R R
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If tλ ≥ 1, then

N−2
2t2

λ

∫
RN |∇(ηRVρ)|2 ≥ N+α

2p

∫
RN (Iα ∗ |ηRVρ |p)|ηRVρ |p

+N
q
λσ
∫
RN |ηRVρ |q − N

2 λσ
∫
RN |ηRVρ |2,

and hence

tλ ≤
( ∫

RN |∇(ηRVρ)|2∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p+2∗λσ { 1

q

∫
RN |ηRVρ |q− 1

2

∫
RN |ηRVρ |2}

) 1
2

≤
( ∫

RN |∇(ηRVρ)|2∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p

) 1
2

.

(5.12)

If tλ ≤ 1, then

N−2
2t2

λ

∫
RN |∇(ηRVρ)|2 ≤ N+α

2p

∫
RN (Iα ∗ |ηRVρ |p)|ηRVρ |p

+N
q
λσ
∫
RN |ηRVρ |q − N

2 λσ
∫
RN |ηRVρ |2,

and hence

tλ ≥
( ∫

RN |∇(ηRVρ)|2∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p+2∗λσ { 1

q

∫
RN |ηRVρ |q− 1

2

∫
RN |ηRVρ |2}

) 1
2

≥
( ∫

RN |∇(ηRVρ)|2∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p

) 1
2
{

1 − 2∗λσ
1
q

∫
RN |ηRVρ |q− 1

2

∫
RN |ηRVρ |2∫

RN (Iα∗|ηRVρ |p)|ηRVρ |p
}

.

(5.13)

Therefore, we obtain

|tλ − 1| ≤
∣∣∣∣∣
( ∫

RN |∇(ηRVρ)|2∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p

) 1
2 − 1

∣∣∣∣∣
+λσ

( ∫
RN |∇(ηRVρ)|2∫

RN (Iα∗|ηRVρ |p)|ηRVρ |p
) 1

2 2∗φ(ρ)∫
RN (Iα∗|ηRVρ |p)|ηRVρ |p ,

where φ(ρ) := 1
q

∫
RN |ηRVρ |q − 1

2

∫
RN |ηRVρ |2.

Set � = R/ρ, then

(I ) = 2+α
2(N+α)

(
∫
RN |∇(η�V1)|2)

N+α
2+α

(
∫
RN (Iα∗|η�V1|p)|η�V1|p)

N−2
2+α

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2+α
2(N+α)

(
2(N+α)

2+α
m0+O(�−2))

N+α
2+α

(
2(N+α)

2+α
m0+O(�−4))

N−2
2+α

, if N = 4,

2+α
2(N+α)

(
2(N+α)

2+α
m0+O(�−1))

N+α
2+α

(
2(N+α)

2+α
m0+O(�−3))

N−2
2+α

, if N = 3,

=
{

m0 + O(�−2), if N = 4,

m + O(�−1), if N = 3.

(5.14)
0
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Since

φ(ρ) = 1
q

∫
RN |ηRVρ |q − 1

2

∫
RN |ηRVρ |2

= 1
q
ρN− N−2

2 q
∫
RN |η�V1|q − 1

2ρ2
∫
RN |η�V1|2

take its maximum value ϕ(ρ�) at the unique point

ρ� : =
( [2N−q(N−2)] ∫RN |η�V1|q

2q
∫
RN |η�V1|2

) 2
(N−2)(q−2)

∼
⎧⎨
⎩ (ln�)

− 2
(N−2)(q−2) if N = 4,

�
− 2

(N−2)(q−2) if N = 3,

we obtain

φ(ρ�) = supρ≥0 φ(ρ)

= 4+q(N−2)−2N
4q

ρ
N− N−2

2 q

�

∫
RN |η�V1|q

= 4+q(N−2)−2N
4q

(
2N−q(N−2)

2q

) 2N−q(N−2)
(N−2)(q−2) (

∫
RN |η�V1|q )

4
(N−2)(q−2)

(
∫
RN |η�V1|2)

2N−q(N−2)
(N−2)(q−2)

≤ 4+q(N−2)−2N
4q

(
2N−q(N−2)

2q

) 2N−q(N−2)
(N−2)(q−2) ∫

RN |η�V1|2∗

→ 4+q(N−2)−2N
4q

(
2N−q(N−2)

2q

) 2N−q(N−2)
(N−2)(q−2) ∫

RN |V1|2∗
,

as � → +∞, where we have used the interpolation inequality

∫
RN

|η�V1|q ≤
⎛
⎜⎝ ∫
RN

|η�V1|2
⎞
⎟⎠

2∗−q

2∗−2
⎛
⎜⎝ ∫
RN

|η�V1|2∗

⎞
⎟⎠

q−2
2∗−2

.

Since ∫
RN

|η�V1|q →
∫
RN

|V1|q,

as � → +∞, it follows that

φ(ρ�) = 4+q(N−2)−2N
4q

( [2N−q(N−2)] ∫RN |η�V1|q
2q
∫
RN |η�V1|2

) 2N−q(N−2)
(N−2)(q−2) ∫

RN |η�V1|q

=
⎧⎨
⎩C(ln�(1 + o(1))

− 2N−q(N−2)
(N−2)(q−2) if N = 4,

C(�(1 + o(1))
− 2N−q(N−2)

(N−2)(q−2) if N = 3.

Since φ(ρ) is bounded, we find
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|tλ − 1| ≤
∣∣∣∣∣
( ∫

RN |∇(η�V1)|2∫
RN (Iα∗|η�V1|p)|η�V1|p

) 1
2 − 1

∣∣∣∣∣
+λσ

( ∫
RN |∇(η�V1)|2∫

RN (Iα∗|η�V1|p)|η�V1|p
) 1

2
2∗C∫

RN (Iα∗|η�V1|p)|η�V1|p
→ 2∗Cλσ∫

RN (Iα∗|V1|p)|V1|p ,

as � → +∞. Thus, for small λ > 0, we have

(II ) = φ(ρ�) + (tNλ − 1)φ(ρ�)

∼
{

(ln�)
− 2N−q(N−2)

(N−2)(q−2) , if N = 4,

�
− 2N−q(N−2)

(N−2)(q−2) , if N = 3.

It follows that if N = 4, then

mλ ≤ (I ) − λσ (II )

≤ m0 + O(�−2) − Cλσ (ln�)
− 2N−q(N−2)

(N−2)(q−2) .
(5.15)

Take � = (1/λ)M . Then

mλ ≤ m0 + O(λ2M) − Cλσ M
− 2N−q(N−2)

(N−2)(q−2) (ln
1

λ
)
− 2N−q(N−2)

(N−2)(q−2) .

If M > 1
q−2 , then 2M > σ , and hence

mλ ≤ m0 − λσ (ln
1

λ
)
− 2N−q(N−2)

(N−2)(q−2) � = m0 − λ
2

q−2 (ln
1

λ
)
− 4−q

q−2 �, (5.16)

for small λ > 0, where

� = 1

2
CM

− 2N−q(N−2)
(N−2)(q−2) .

If N = 3, then

mλ ≤ (I ) − λσ (II )

≤ m0 + O(�−1) − Cλσ �
− 2N−q(N−2)

(N−2)(q−2) .
(5.17)

Take � = δ−1λ−τ . Then

mλ ≤ m0 + δO(λτ ) − Cλσ δ
2N−q(N−2)
(N−2)(q−2) λ

τ
2N−q(N−2)
(N−2)(q−2)

If q ∈ (4, 6) and

τ = 2(N − 2) = 2
,

2 + q(N − 2) − 2N q − 4
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then

mλ ≤ m0 + (δO(1) − Cδ
2N−q(N−2)
(N−2)(q−2) )λ

2
q−4 .

Since

1 >
2N − q(N − 2)

(N − 2)(q − 2)
,

it follows that for some small δ > 0, there exists � > 0 such that

mλ ≤ m0 − λ
2

q−4 �.

This completes the proof. �
Combining Lemma 5.3 and Lemma 5.4, we get the following.

Lemma 5.5. Let δλ := m0 − mλ, then

λσ � δλ �

⎧⎪⎨
⎪⎩

λσ , if N ≥ 5,

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 , if N = 4,

λ
2

q−4 , if N = 3 and q ∈ (4,6).

Lemma 5.6. Assume N ≥ 5. Then ‖wλ‖q ∼ 1 as λ → 0.

Proof. By (5.7), we have

m0 ≤ mλ + λσ (τ2(wλ))
N

2+α
q − 2

q(2∗ − 2)

∫
RN

|wλ|q .

Therefore, it follows from (5.6) and Lemma 5.5 that

‖wλ‖q
q ≥ m0 − mλ

(τ2(wλ))
N

2+α

· q(2∗ − 2)

q − 2
λ−σ ≥ Cq(2∗ − 2)

(q − 2)(τ2(wλ))
N

2+α

≥ C > 0,

which together with the boundedness of {wλ} implies the desired conclusion. �
Lemma 5.7. Let N ≥ 5, α > N −4 and q ∈ (2, 2∗), then wλ → Vρ0 in H 1(RN) as λ → 0, where 
Vρ0 is a positive ground state of the equation −�V = (Iα ∗ |V |p)V p−1 with

ρ0 =
(

2(2∗ − q)
∫
RN |V1|q

q(2∗ − 2)
∫
RN |V1|2

) 2
(N−2)(q−2)

. (5.18)

In the lower dimension cases N = 4 and N = 3, there exists ξλ ∈ (0, +∞) with ξλ → 0 such that

wλ − ξ
− N−2

2 V1(ξ
−1·) → 0
λ λ
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as λ → 0 in D1,2(RN) and L2∗
(RN).

Proof. Note that wλ is a positive radially symmetric function, and by Lemma 5.2, {wλ} is 
bounded in H 1(RN). Then there exists w0 ∈ H 1(RN) verifying −�w = (Iα ∗ wp)wp−1 such 
that

wλ ⇀ w0 weakly in H 1(RN), wλ → w0 in Lp(RN) for any p ∈ (2,2∗), (5.19)

and

wλ(x) → w0(x) a. e. on RN, wλ → w0 in L2
loc(R

N). (5.20)

Observe that

J0(wλ) = Jλ(wλ) + λσ

q

∫
RN

|wλ|q − λσ

2

∫
RN

|wλ|2 = mλ + o(1) = m0 + o(1),

and

J ′
0(wλ)w = J ′

λ(wλ)w + λσ

∫
RN

|wλ|q−2wλw − λσ

∫
RN

wλw = o(1).

Therefore, {wλ} is a PS sequence of J0 at level m0 = 2+α
2(N+α)

S
N+α
2+α

α .

By Lemma 3.6, it is standard [46] to show that there exists ζ (j)
λ ∈ (0, +∞), w(j) ∈ D1,2(RN)

with j = 1, 2, · · · , k, k a non-negative integer, such that

wλ = w0 +
k∑

j=1

(ζ
(j)
λ )−

N−2
2 w(j)((ζ

(j)
λ )−1x) + w̃λ, (5.21)

where w̃λ → 0 in L2∗
(RN) and w(j) are nontrivial solutions of the limit equation −�v = (Iα ∗

vp)vp−1. Moreover, we have

lim sup
λ→0

‖wλ‖2
D1(RN)

≥ ‖w0‖2
D1(RN)

+
k∑

j=1

‖w(j)‖2
D1(RN)

(5.22)

and

m0 = J0(w0) +
k∑

j=1

J0(w
(j)). (5.23)

Moreover, J0(w0) ≥ 0 and J0(w
(j)) ≥ m0 for all j = 1, 2, · · · , k.

If N ≥ 5, then by Lemma 5.6, we have w0 �= 0 and hence J0(w0) = m0 and k = 0. Thus 
wλ → w0 in L2∗

(RN). Since J ′(wλ) → 0, it follows that wλ → w0 in D1,2(RN).
0
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Since wλ(x) is radial and radially decreasing, for every x ∈ RN \ {0}, we have

w2
λ(x) ≤ 1

|B|x||
∫

B|x|

|wλ|2 ≤ 1

|x|N
∫
RN

|wλ|2 ≤ C

|x|N ,

then

wλ(x) ≤ C|x|− N
2 , |x| ≥ 1. (5.24)

If α > N − 4, then we have p = N+α
N−2 > 2 and hence

|wλ|p|x|N ≤ C|x|− N
2 p+N = C|x|− N

2 (p−2) → 0, as |x| → +∞.

By virtue of Lemma 3.10, we obtain

(Iα ∗ |wλ|p)(x) ≤ C|x|−N+α, |x| ≥ 1,

and then

(Iα ∗ |wλ|p)(x)|wλ|p−2(x) ≤ C|x|− N2−Nα+4α
2(N−2) , |x| ≥ R̃. (5.25)

Since(
−� − C|x|− N2−Nα+4α

2(N−2)

)
wλ ≤

(
−� + λσ − (Iα ∗ |wλ|p)w

p−2
λ − λσ w

q−2
λ

)
wλ = 0,

for large |x|. We also have

(
−� − C|x|− N2−Nα+4α

2(N−2)

)
1

|x|N−2−ε0
=
(

ε0(N − 2 − ε0) − C|x|− (N−4)(N−α)+8
2(N−2)

)
1

|x|N−ε0
,

which is positive for |x| large enough. By (5.24) and the maximum principle on RN \ BR , we 
deduce that

wλ(x) ≤ wλ(R)RN−2−ε0

|x|N−2−ε0
≤ CRN/2−2−ε0

|x|N−2−ε0
, for |x| ≥ R. (5.26)

When ε0 > 0 is small enough, the domination is in L2(RN) for N ≥ 5, and this shows, by the 
dominated convergence theorem, that wλ → w0 in L2(RN). Thus, we conclude that wλ → w0
in H 1(RN). Moreover, by (5.4), we obtain

‖w0‖2
2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|w0|q,

from which it follows that w0 = Vρ with
0
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ρ0 =
(

2(2∗ − q)
∫
RN |V1|q

q(2∗ − 2)
∫
RN |V1|2

) 2
(N−2)(q−2)

.

If N = 4 or 3. By Fatou’s lemma, we have ‖w0‖2
2 ≤ lim infλ→0 ‖wλ‖2

2 < ∞, therefore, w0 = 0
and hence k = 1. Thus, we obtain J0(w

(1)) = m0 and hence w(1) = Vρ for some ρ ∈ (0, +∞). 
Therefore, we conclude that

wλ − ξ
− N−2

2
λ V1(ξ

−1
λ ·) → 0

in L2∗
(RN) as λ → 0, where ξλ := ρζ

(1)
λ ∈ (0, +∞) satisfying ξλ → 0 as λ → 0. Since

J ′
0(wλ − ξ

− N−2
2

λ V1(ξ
−1
λ ·)) = J ′

0(wλ) + J ′
0(V1) + o(1) = o(1)

as λ → 0, it follows that wλ − ξ
− N−2

2
λ V1(ξ

−1
λ ·) → 0 in D1,2(RN). �

Lemma 5.8. Let N ≥ 5 and q ∈ (2, 2∗), then there exists a ζλ ∈ (0, ∞) verifying

ζλ ∼ λ
2∗−2

2(q−2)

such that the rescaled ground states

wλ(x) = ζ
N−2

2
λ vλ(ζλx)

converge to Vρ0 in H 1(RN) as λ → 0, where Vρ0 is given in Lemma 5.7.

Proof. If α > N − 4, then the statement is valid with ζλ = λ
2∗−2

2(q−2) . If α ≤ N − 4, then for any 
λn → 0, up to a subsequence, we can assume that wλn → Vρ in D1,2(RN) with ρ ∈ (0, ρ0]. 
Moreover, wλn → Vρ in L2(RN) if and only if ρ = ρ0. Arguing as in the proof of Theorem 2.1, 

we can show that there exists a ζλ ∼ λ
2∗−2

2(q−2) such that wλ(x) = ζ
N−2

2
λ vλ(ζλx) converges to Vρ0 in 

L2(RN), and hence in H 1(RN). This completes the proof. �
In the lower dimension cases N = 4 and N = 3, we further perform a scaling

w̃(x) = ξ
N−2

2
λ w(ξλx), (5.27)

where ξλ ∈ (0, +∞) is given in Lemma 5.7. Then the rescaled equation is as follows

−�w̃ + λσ ξ2
λ w̃ = (Iα ∗ |w̃|N+α

N−2 )w̃
2+α
N−2 + λσ ξ

N− N−2
2 q

λ w̃q−1. (Rλ)

The corresponding energy functional is given by

J̃λ(w̃) := 1

2

∫
N

|∇w̃|2 +λσ ξ2
λ |w̃|2 − 1

2p

∫
N

(Iα ∗ |w̃|p)|w̃|p − 1

q
λσ ξ

N− N−2
2 q

λ

∫
N

|w̃|q . (5.28)
R R R
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Clearly, we have J̃λ(w̃) = Jλ(w) = Iλ(v).

Furthermore, we have the following lemma.

Lemma 5.9. Let v, w, w̃ ∈ H 1(RN) satisfy (5.1) and (5.27), then the following statements hold 
true

(1) ‖∇w̃‖2
2 = ‖∇w‖2

2 = ‖∇v‖2
2, 
∫
RN (Iα ∗ |w̃|p)|w̃|p = ∫RN (Iα ∗ |w|p)|w|p = ∫RN (Iα ∗

|v|p)|v|p ,

(2) ξ2
λ‖w̃‖2

2 = ‖w‖2
2 = λ−σ ‖v‖2

2, ξ
N− N−2

2 q

λ ‖w̃‖q
q = ‖w‖q

q = λ1−σ ‖v‖q
q .

Set w̃λ(x) = ξ
N−2

2
λ wλ(ξλx), then by Lemma 5.7, we have

‖∇(w̃λ − V1)‖2 → 0, ‖w̃λ − V1‖2∗ → 0, as λ → 0. (5.29)

Note that the corresponding Nehari and Pohožaev’s identities are as follows

∫
RN

|∇w̃λ|2 + λσ ξ2
λ

∫
RN

|w̃λ|2 =
∫
RN

(Iα ∗ |w̃λ|p)|w̃λ|p + λσ ξ
N− N−2

2 q

λ

∫
RN

|w̃λ|q (5.30)

and

1

2∗

∫
RN

|∇w̃λ|2 + 1

2
λσ ξ2

λ

∫
RN

|w̃λ|2 = 1

2∗

∫
RN

(Iα ∗ |w̃λ|p)|w̃λ|p + 1

q
λσ ξ

N− N−2
2 q

λ

∫
RN

|w̃λ|q,

(5.31)

it follows that (
1

2
− 1

2∗

)
λσ ξ2

λ

∫
RN

|w̃λ|2 =
(

1

q
− 1

2∗

)
λσ ξ

N− N−2
2 q

λ

∫
RN

|w̃λ|q .

Thus, we obtain

ξ
(N−2)(q−2)

2
λ

∫
RN

|w̃λ|2 = 2(2∗ − q)

q(2∗ − 2)

∫
RN

|w̃λ|q . (5.32)

To control the norm ‖w̃λ‖2, we note that for any λ > 0, w̃λ > 0 satisfies the linear inequality

−�w̃λ + λσ ξ2
λ w̃λ = (Iα ∗ |w̃λ|p)w̃

p−1
λ + λσ ξ

N− N−2
2 q

λ w̃
q−1
λ > 0, x ∈RN. (5.33)

Lemma 5.10. There exists a constant c > 0 such that

w̃λ(x) ≥ c|x|−(N−2) exp(−λ
σ
2 ξλ|x|), |x| ≥ 1. (5.34)

The proof of the above lemma is similar to that of [36, Lemma 4.8]. As consequences, we have 
the following lemma.
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Lemma 5.11. If N = 3, then ‖w̃λ‖2
2 � λ− σ

2 ξ−1
λ .

Lemma 5.12. If N = 4, then ‖w̃λ‖2
2 � − ln(λσ ξ2

λ ).

We remark that w̃λ is only defined for N = 4 and N = 3. But the following discussion also 
applies to the case N ≥ 5. To prove our main result, the key point is to show the boundedness of 
‖w̃λ‖q .

Lemma 5.13. Assume N ≥ 3, α > N − 4 and 2 < q < 2∗. Then there exist constants L0 > 0 and 
C0 > 0 such that for any small λ > 0 and |x| ≥ L0λ

−σ/2ξ−1
λ ,

w̃λ(x) ≤ C0λ
σ(N−2)/4ξ

(N−2)/2
λ exp(−1

2
λσ/2ξλ|x|).

Proof. By (5.25) and (5.26), if |x| ≥ L0λ
−σ/2ξ−1

λ with L0 > 0 being large enough, we have

(Iα ∗ |w̃λ|p)(x)|w̃λ|p−2(x) = ξ
(N−2)(p−1)−α
λ (Iα ∗ |wλ|p)(ξλx)|wλ|p−2(ξλx)

≤ Cξ2
λL

− N2−Nα+4α
2(N−2)

0 λ
σ · N2−Nα+4α

4(N−2)

≤ 1
4λσ ξ2

λ ,

here we have used the fact that

N2 − Nα + 4α

4(N − 2)
> 1,

which follows from the inequality N < N + 2 < 4(α+2)
α−N+4 , ∀α ∈ (N − 4, N).

By (5.24) and (5.26), for |x| ≥ L0λ
−σ/2ξ−1

λ , we get

λσ ξ
N− N−2

2 q

λ w̃
q−2
λ (x) = λσ ξ

N− N−2
2 q

λ ξ
N−2

2 (q−2)

λ w
q−2
λ (ξλx)

≤ λσ ξ2
λ · C|ξλx|− N

2 (q−2)

≤ CL
−N(q−2)/2
0 λσ+ σN

4 (q−2)ξ2
λ

≤ 1
4λσ ξ2

λ .

Therefore, we obtain

−�w̃λ(x) + 1

2
λσ ξ2

λ w̃λ(x) ≤ 0, for all |x| ≥ L0λ
−σ/2ξ−1

λ .

We adopt an argument as used in [1, Lemma 3.2]. Let R > L0λ
−σ/2ξ−1

λ , and introduce a 
positive function

ψR(r) := exp(−1

2
λσ/2ξλ(r − L0λ

−σ/2ξ−1
λ )) + exp(

1

2
λσ/2ξλ(r − R)).

It is easy to see that
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|ψ ′
R(r)| ≤ 1

2
λσ/2ξλψR(r), ψ ′′

R(r) = 1

4
λσ ξ2

λψR(r).

We use the same symbol ψR to denote the radial function ψR(|x|) on RN . Then for 
L0λ

−σ/2ξ−1
λ < r < R, if L0 ≥ 2(N − 1), then we have

−�ψR + 1
2λσ ξ2

λψR = −ψ ′′
R − N−1

r
ψ ′

R + 1
2λσ ξ2

λψR

≥ − 1
4λσ ξ2

λψR − N−1
L0

λσ/2ξλ · 1
2λσ/2ξλψR + 1

2λσ ξ2
λψR

≥ 0.

Furthermore, ψR(L0λ
−σ/2ξ−1

λ ) ≥ 1 and ψR(R) ≥ 1, thus we have

w̃λ(R) ≤ w̃λ(L0λ
−σ/2ξ−1

λ ) ≤ CL
− N−2

2
0 λ

σ(N−2)
4 ξ

N−2
2

λ min{ψR(L0λ
−σ/2ξ−1

λ ),ψR(R)}.

Hence, the comparison principle implies that if L0λ
−σ/2ξ−1

λ ≤ |x| ≤ R, then

w̃λ(x) ≤ CL
− N−2

2
0 λ

σ(N−2)
4 ξ

N−2
2

λ ψR(|x|).

Since R > L0λ
−σ/2ξ−1

λ is arbitrary, taking R → ∞, we find that

w̃λ(x) ≤ CL
− N−2

2
0 eL0/2λ

σ(N−2)
4 ξ

N−2
2

λ e− 1
2 λσ/2ξλ|x|,

for all |x| ≥ L0λ
−σ/2ξ−1

λ . The proof is complete. �
In the following proposition, we establish an optimal uniform with respect to λ decay estimate 

of w̃λ at infinity.

Proposition 5.14. Assume N ≥ 3, α > N −4 and 2 < q < 2∗. Then there exists a constant C > 0
such that for small λ > 0, there holds

w̃λ(x) ≤ C(1 + |x|)−(N−2), x ∈ RN.

To prove Proposition 5.14., we first consider the Kelvin transform of w̃λ. For any w ∈
H 1(RN), we denote by K[w] the Kelvin transform of w, that is,

K[w](x) := |x|−(N−2)w

(
x

|x|2
)

.

It is easy to see that ‖K[w̃λ]‖L∞(B1) � 1 implies that

w̃λ(x) � |x|−(N−2), |x| ≥ 1,

uniformly for small λ > 0.
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Thus, to prove Proposition 5.14, it needs to show that there exists λ0 > such that

sup
λ∈(0,λ0)

‖K[w̃λ]‖L∞(B1) < ∞. (5.35)

It is easy to verify that K[w̃λ] satisfies

−�K[w̃λ] + λσ ξ2
λ

|x|4 K[w̃λ] = 1

|x|4 (Iα ∗ |w̃λ|p)(
x

|x|2 )w̃
p−2
λ (

x

|x|2 )K[w̃λ] + λσ ξ
γ/2
λ

|x|γ K[w̃λ]q−1,

(5.36)

here and in what follows, we set

γ := 2N − (N − 2)q > 0.

We also see from Lemma 5.13 that if |x| ≤ λσ/2ξλ/L0, then

K[w̃λ](x) � 1

|x|N−2 λ
σ(N−2)

4 ξ
N−2

2
λ e− 1

2 λσ/2ξλ|x|−1
. (5.37)

Let

a(x) = λσ ξ2
λ

|x|4 , b(x) = 1

|x|4 (Iα ∗ |w̃λ|p)(
x

|x|2 )w̃
p−2
λ (

x

|x|2 ) + λσ ξγ/2

|x|γ K[w̃λ]q−2(x).

Then (5.36) reads as

−�K[w̃λ] + a(x)K[w̃λ] = b(x)K[w̃λ].

We shall apply the Moser iteration to prove (5.35).
We note that it follows from (5.37) that for any v ∈ H 1

0 (B4),

∫
B4

λσ ξ2
λ

|x|4 K[w̃λ](x)|v(x)|dx < ∞. (5.38)

Since w̃λ → V1 in L2∗
(RN) as λ → 0, and for any s > 1, the Lebesgue space Ls(RN) has the 

Kadets-Klee property, it is easy to see that

lim
λ→0

∫
RN

|w̃p
λ − V

p
1 | 2N

N+α dx = 0

and

lim
λ→0

∫
N

|w̃p−2
λ − V

p−2
1 | 2N

α−N+4 dx = 0.
R
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Therefore, by the Hölder inequality and the Hardy-Littlewood-Sobolev inequality, we find

∥∥∥ 1
|x|4 (Iα ∗ (|w̃λ|p − |V1|p))( x

|x|2 )w̃
p−2
λ ( x

|x|2 )

∥∥∥N/2

L
N
2 (RN)

= ∫RN
1

|x|2N |(Iα ∗ (|w̃λ|p − |V1|p))( x
|x|2 )|N/2|w̃p−2

λ ( x
|x|2 )|N/2dx

= ∫RN |(Iα ∗ (|w̃λ|p − |V1|p))(z)|N/2|w̃p−2
λ (z)|N/2dz

�
(∫

RN |w̃p
λ − V

p
1 | 2N

N+α

)N2−α2
4(N−2)

(∫
RN |w̃λ|2∗) α−N+4

4

→ 0, as λ → 0

(5.39)

and

∥∥∥ 1
|x|4 (Iα ∗ |V1|p)( x

|x|2 )[w̃p−2
λ ( x

|x|2 ) − V
p−2
1 ( x

|x|2 )]
∥∥∥N/2

L
N
2 (RN)

= ∫RN
1

|x|2N |(Iα ∗ |V1|p))( x
|x|2 )|N/2|w̃p−2

λ ( x
|x|2 ) − V

p−2
1 ( x

|x|2 )|N/2dx

= ∫RN |(Iα ∗ |V1|p)(z)|N/2|w̃p−2
λ (z) − V

p−2
1 (z)|N/2dz

�
(∫

RN |V1|2∗)N2−α2
4(N−2)

(∫
RN |w̃p−2

λ (z) − V
p−2
1 (z)| 2N

α−N+4

) α−N+4
4

→ 0, as λ → 0.

(5.40)

It follows from (5.39) and (5.40) that

∥∥∥ 1
|x|4 (Iα ∗ |w̃λ|p)( x

|x|2 )w̃
p−2
λ ( x

|x|2 ) − 1
|x|4 (Iα ∗ |V1|p)( x

|x|2 )V
p−2
1 ( x

|x|2 )

∥∥∥
L

N
2 (RN)

≤
∥∥∥ 1

|x|4 (Iα ∗ |V1|p)( x
|x|2 )

[
w̃

p−2
λ ( x

|x|2 ) − V
p−2
1 ( x

|x|2 )
]∥∥∥

L
N
2 (RN)

+
∥∥∥ 1

|x|4 (Iα ∗ (|w̃λ|p − |V1|p))( x
|x|2 )w̃

p−2
λ ( x

|x|2 )

∥∥∥
L

N
2 (RN)

→ 0, as λ → 0.

(5.41)

Lemma 5.15. Assume N ≥ 3 and 2 < q < 2∗. Then it holds that

lim
λ→0

∫
|x|≤4

∣∣∣∣∣λ
σ ξ

γ/2
λ

|x|γ K[w̃λ]q−2(x)

∣∣∣∣∣
N/2

dx = 0.

Proof. We divide the integral into two parts:

I
(1)
λ (

N

2
) :=

∫
|x|≤λσ/2ξλ/L0

∣∣∣∣∣λ
σ ξ

γ/2
λ

|x|γ K[w̃λ]q−2(x)

∣∣∣∣∣
N/2

dx,

I
(2)
λ (

N

2
) :=

∫
σ/2

∣∣∣∣∣λ
σ ξ

γ/2
λ

|x|γ K[w̃λ]q−2(x)

∣∣∣∣∣
N/2

dx.
λ ξλ/L0≤|x|≤4
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It follows from (5.37) and the Hölder inequality that

I
(1)
λ (N

2 ) = λ
σN

2 ξ
γN

4
λ

∫
λσ/2|x|≤ξλ/L0

|x|− γN
2 K[w̃λ]N

2 (q−2)(x)dx

� λ
σN

8 (4+(N−2)(q−2))ξ
N
4 (γ+(N−2)(q−2))

λ

· ∫|x|≤λσ/2ξλ/L0
|x|− γN

2 − N(N−2)(q−2)
2 e− N(q−2)

4 λσ/2ξλ|x|−1
dx

= λ
σN

8 (8−2γ−(N−2)(q−2))ξ
N
4 (4−γ−(N−2)(q−2))

λ

· ∫ +∞
L0

s
γN

2 − N(N−2)(q−2)
2 −N−1e− N(q−2)

4 sds

� λ
σN

8 (N−2)(q−2),

and

I
(2)
λ (N

2 ) = λ
σN

2 ξ
γN

4
λ

∫
λσ/2ξλ/L0≤|x|≤4 |x|− γN

2 K[w̃λ]N
2 (q−2)(x)dx

� λ
σN

2 ξ
γN

4
λ

(∫
λσ/2ξλ/L0≤|x|≤4 K[w̃λ]2∗

dx
)1− γ

4
(∫

λσ/2ξλ/L0≤|x|≤4 |x|−2Ndx
) γ

4

� λ
σN

2 ξ
γN

4
λ

(∫ 4
λσ/2ξλ/L0

r−N−1dr
) γ

4

� λ
σN

8 (N−2)(q−2).

From which the conclusion follows. �
Proof of Proposition 5.14. Since the Kelvin transform is linear and preserves the D1,2(RN)

norm, it follows from (5.38), (5.41), Lemma 5.15 and Lemma 3.11 (i) that for any r > 1, there 
exists λr > 0 such that

sup
λ∈(0,λr )

‖K[w̃λ]r‖H 1(B1)
≤ Cr. (5.42)

Since α > N − 4, we have 2N
N−α

> N
2 . Firstly, we show that for some r0 ∈ (N

2 , 2N
N−α

), there 
holds

lim
λ→0

Iλ(r0) = 0, (5.43)

where

Iλ(r0) :=
∫

|x|≤4

∣∣∣∣ 1

|x|4
[
(Iα ∗ |w̃λ|p)(

x

|x|2 ) − (Iα ∗ |V1|p)(
x

|x|2 )

]
w̃

p−2
λ (

x

|x|2 )

∣∣∣∣
r0

dx.

Since α > N − 4, for any r0 ∈ (N
2 , 2N

N−α
), we have

s1 = 2N

2N − (N − α)r0
> 1, s2 = 2N

(N − α)r0
> 1,

and
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1

s1
+ 1

s2
= 1.

Note that (N − α)r0s2 = 2N , by the Hardy-Littlewood-Sobolev inequality, we get

∫
RN

1
|x|(N−α)r0s2

|(Iα ∗ (|w̃λ|p − |V1|p))( x
|x|2 )|r0s2dx

= ∫RN |(Iα ∗ (|w̃λ|p − |V1|p))(z)|r0s2dz

≤ C
(∫

RN |w̃p
λ − V

p
1 | 2N

(N−2)p

) (N−2)p
(N−2)p−2α → 0, as λ → 0.

(5.44)

By the Hölder inequality, we have

Iλ(r0) = ∫
|x|≤4

∣∣∣ 1
|x|N−α (Iα ∗ (|w̃λ|p − |V1|p))( x

|x|2 )K[w̃λ]p−2(x)

∣∣∣r0
dx

=
(∫

|x|≤4 K[w̃λ](p−2)r0s1

) 1
s1

·
(∫

RN |x|−(N−α)r0s2

∣∣∣(Iα ∗ (|w̃λ|p − |V1|p))( x
|x|2 )

∣∣∣r0s2
dx
) 1

s2
,

which together with (5.42) and (5.44) yields (5.43).
Next, we consider the function

Jλ(r0) :=
∫

|x|≤4

∣∣∣∣ 1

|x|4 (Iα ∗ |V1|p)(
x

|x|2 )w̃
p−2
λ (

x

|x|2 )

∣∣∣∣
r0

dx.

Then it follows from the Hölder inequality that

Jλ(r0) = ∫
1
4 ≤|z|<∞ |z|4r0−2N

∣∣∣(Iα ∗ |V1|p)(z)w̃
p−2
λ (z)

∣∣∣r0
dz

≤
(∫

1
4 ≤|z|<∞ |z|(4r0−2N)s1 |(Iα ∗ |V1|p)(z)|r0s1dz

) 1
s1

·
(∫

RN |w̃p−2
λ (z)|r0s2dz

) 1
s2 ,

(5.45)

where

s1 = 2N

2N − (α − N + 4)r0
, s2 = 2N

(α − N + 4)r0
.

Since p = N+α
N−2 > N

N−2 , we have

N

2
<

2N

α − N + 4
= 2N

(N − 2)(p − 2)
.

Consider the function

h(r0) := (4r0 − 2N)s1 − (N − α)r0s1 + N.

It is easy to check that h(N ) = −N < 0, and hence h(r0) < 0 for r0 > N which is close to N .
2 2 2
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Since p > N
N−2 , we have 

∫
RN |V1|p < ∞. Notice that

|V1|p|x|N ≤ |x|−(N−2)p+N → 0

as |x| → ∞, by Lemma 3.10, we have

∫
1
4 ≤|z|<∞ |z|(4r0−2N)s1 |(Iα ∗ |V1|p)(z)|r0s1dz

�
∫

1
4 ≤|z|<∞ |z|(4r0−2N)s1 |z|−(N−α)r0s1dz

= ∫∞
1
4

r(4r0−2N)s1−(N−α)r0s1+N−1dr < ∞.

(5.46)

On the other hand, noting that r0s2 = 2N
(N−2)(q−2)

, we have

∫
RN

|w̃p−2
λ (z)|r0s2dz =

∫
RN

|w̃λ|2∗ =
∫
RN

|wλ|2∗
< C < ∞. (5.47)

Thus, from (5.45), (5.46) and (5.47), it follows that there is λ0 > 0 such that

sup
λ∈(0,λ0)

Jλ(r0) < +∞,

which together with (5.43) implies that for some λ0 > 0, there holds

sup
λ∈(0,λ0)

∫
|x|≤4

∣∣∣∣ 1

|x|4 (Iα ∗ |w̃λ|p)(
x

|x|2 )w̃
p−2
λ (

x

|x|2 )

∣∣∣∣
r0

dx < +∞.

It remains to prove that there exists r0 > N
2 and λ0 > 0 such that

sup
λ∈(0,λ0)

∫
|x|≤4

∣∣∣∣∣λ
σ ξ

γ/2
λ

|x|γ K[w̃λ]q−2(x)

∣∣∣∣∣
r0

dx ≤ Cr0 . (5.48)

It is easy to see that 0 < γ < 4. Put ηλ = λσ/2ξλ/L0. Let θ ∈ (0, 1) and s0 > 1, then by (5.42), 
(5.37) and the Hölder inequality, we have

I
(1)
λ (r0) : = λσr0ξ

γ r0/2
λ

(∫
|x|≤ηλ

1
|x|γ r0s0 K[w̃λ](q−2)θr0s0(x)dx

) 1
s0

·
(∫

|x|≤ηλ
K[w̃λ]

(q−2)(1−θ)r0s0
s0−1 (x)dx

)1− 1
s0

� λσr0+ σ(N−2)(q−2)θ
4 r0ξ

γ
2 r0+ (N−2)(q−2)θ

2 r0
λ

·
(∫

|x|≤ηλ
|x|−γ r0s0−(N−2)(q−2)θr0s0e− 1

2 (q−2)r0λ
σ/2ξλ|x|−1

dx
) 1

s0

� λ�1(r0,s0,θ)ξ
�2(r0,s0,θ)
λ

(∫ +∞
L0

tγ r0s0+(N−2)(q−2)θr0s0−N−1e− 1
2 (q−2)θr0s0t dt

) 1
s0 ,

where
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�1(r0, s0, θ) = σr0 + σ(N − 2)(q − 2)θr0

4
+ σ

2
[−γ r0 − (N − 2)(q − 2)θr0 + N

s0
],

�2(r0, s0, θ) = σr0

2
+ σ(N − 2)(q − 2)θr0

2
− γ r0 − (N − 2)(q − 2)θr0 + N

s0
.

Since �1(
N
2 , 1, 0) = σN

4 (4 −γ ) > 0 and �2(
N
2 , 1, 0) = N

2 (4 −γ ) > 0, we choose r0 > N
2 , s0 > 1

and θ > 0 such that �1(r0, s0, θ) > 0 and �2(r0, s0, θ) > 0. Therefore, we obtain

lim
λ→0

I
(1)
λ (r0) = 0. (5.49)

By (5.42) and the Hölder inequality, we also have

I
(2)
λ (r0) : = λσr0ξ

γ r0/2
λ

∫
ηλ≤|x|≤4

∣∣∣ 1
|x|γ K[w̃λ](q−2)(x)

∣∣∣r0
dx

≤ λσr0ξ
γ r0/2
λ

(∫
|x|≤4 K[w̃λ]

(q−2)r0s0
s0−1

)1− 1
s0
(∫

ηλ≤|x|≤4 |x|−γ r0s0dx
) 1

s0

� λσr0ξ
γ r0/2
λ

(∫ 4
ηλ

r−γ r0s0+N−1dr
) 1

s0

� λσr0ξ
γ r0/2
λ η

− γ r0s0−N

s0
λ = λ�3(r0,s0)ξ

�4(r0,s0)
λ ,

where �3(r0, s0) = σ
2s0

[N − (γ − 2)r0s0], and �4(r0, s0) = 1
2s0

[2N − γ r0s0]. Since �(N
2 , 1) =

σN
4 (4 −γ ) > 0 and �4(

N
2 , 1) = N

4 (4 −γ ) > 0, we choose r0 > N
2 , s0 > 1 such that �3(r0, s0) > 0

and �4(r0, s0) > 0. Therefore, we obtain

lim
λ→0

I
(2)
λ (r0) = 0. (5.50)

Finally, (5.48) follows from (5.49) and (5.50), thus, by Lemma 3.11 (ii), it follows that (5.35)
holds, and hence

w̃λ(x) � |x|−(N−2), |x| ≥ 1,

uniformly for small λ > 0.
Let â(x) = λσ ξ2

λ and

b̂(x) = (Iα ∗ |w̃λ|p)w̃
p−2
λ + λσ ξ

N− N−2
2 q

λ w̃
q−2
λ .

Then

−�w̃λ + â(x)w̃λ = b̂(x)w̃λ.

Applying the Moser iteration again, it is easy to show that there exists a constant λ̂0 > 0 such 
that

sup
ˆ

‖w̃λ‖L∞(B1) ≤ C < ∞.

λ∈(0,λ0)
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Thus, we conclude that w̃λ(x) � (1 +|x|)−(N−2). The proof of Proposition 5.14 is complete. �
Lemma 5.16. If q > N

N−2 , then ‖w̃λ‖q
q ∼ 1 as λ → 0. Furthermore, w̃λ → V1 in Lq(RN) as 

λ → 0.

Proof. Since w̃λ → V1 in L2∗
(RN), as in [36, Lemma 4.6], using the embeddings L2∗

(B1) ↪→
Lq(B1) we prove that lim infλ→0 ‖wλ‖q

q > 0.
On the other hand, by virtue of Proposition 5.14, there exists a constant C > 0 such that for 

all small λ > 0,

w̃λ(x) ≤ C

(1 + |x|)N−2 , ∀x ∈RN,

which together with the fact that q > N
N−2 implies that w̃λ is bounded in Lq(RN) uniformly for 

small λ > 0, and by the dominated convergence theorem w̃λ → V1 in Lq(RN) as λ → 0. �
Proof of Theorem 2.2. For N ≥ 5, the conclusion follows directly from Lemmas 5.5, 5.6 and 
5.8. We only consider the cases N = 4 and N = 3.

We first note that a result similar to Lemma 3.2 holds for w̃λ and J̃λ. By Lemma 5.9, we also 
have τ2(w̃λ) = τ2(wλ). Therefore, by (5.32), we get

m0 ≤ supt≥0 J̃λ((w̃λ)t ) + λσ τ2(w̃λ)
N
2

{
1
q
ξ

N− N−2
2 q

λ

∫
RN |w̃λ|q − 1

2ξ2
λ

∫
RN |w̃λ|2

}
= mλ + λσ τ2(w̃λ)

N
2

q−2
q(2∗−2)

ξ
N− N−2

2 q

λ

∫
RN |w̃λ|q,

(5.51)

which implies that

ξ
N− N−2

2 q

λ

∫
RN

|w̃λ|q ≥ λ−σ q(2∗ − 2)

(q − 2)τ2(wλ)
N
2

δλ.

Hence, by Lemma 5.5, we obtain

ξ
N− N−2

2 q

λ

∫
RN

|w̃λ|q � λ−σ δλ �
{

(ln 1
λ
)
− 4−q

q−2 , if N = 4,

λ
2(6−q)

(q−2)(q−4) , if N = 3.
(5.52)

Therefore, by Lemma 5.16, we have

ξλ �
{

(ln 1
λ
)
− 1

q−2 , if N = 4,

λ
4

(q−2)(q−4) , if N = 3.
(5.53)

On the other hand, if N = 3, then by (5.32) and Lemma 5.11 and Lemma 5.16, we have

ξ
q−2

2
λ � 1

2 � λ
σ
2 ξλ.
‖w̃λ‖2
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Then

ξ
q−4

2
λ � λ

σ
2 .

Hence, noting that σ = 2∗−2
q−2 = 4

q−2 , for q ∈ (4, 6), we have

ξλ � λ
4

(q−2)(q−4) . (5.54)

If N = 4, then by (5.32) and Lemma 5.12 and Lemma 5.16, we have

ξ
q−2
λ � 1

‖w̃λ‖2
2

� 1

− ln(λσ ξ2
λ )

.

Note that

− ln(λσ ξ2
λ ) = σ ln

1

λ
+ 2 ln

1

ξλ

≥ σ ln
1

λ
,

it follows that

ξ
q−2
λ � 1

‖w̃λ‖2
2

�
(

ln
1

λ

)−1

.

Hence, we obtain

ξλ �
(

ln
1

λ

)− 1
q−2

. (5.55)

Thus, it follows from (5.51), (5.54), (5.55) and Lemma 5.16 that

δλ = m0 − mλ � λσ ξ
N− N−2

2 q

λ �
{

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 , if N = 4,

λ
2

q−4 , if N = 3,

which together with Lemma 5.5 implies that

δλ ∼ λσ ξ
N− N−2

2 q

λ ∼
{

λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 , if N = 4,

λ
2

q−4 , if N = 3.
(5.56)

By (5.28) and (5.32), we get

mλ = 1

2

∫
RN

|∇w̃λ|2 − 1

2p

∫
RN

(Iα ∗ |w̃λ|p)|w̃p
λ − q − 2

q(2∗ − 2)
λσ ξ

N− N−2
2 q

λ

∫
RN

|w̃λ|q .

By (5.30) and (5.31), we get
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∫
RN

|∇w̃λ|2 =
∫
RN

(Iα ∗ |w̃λ|p)|w̃λ|p + N(q − 2)

2q
λσ ξ

N− N−2
2 q

λ

∫
RN

|w̃λ|q .

Therefore, we have

mλ = 2 + α

2(N + α)

∫
RN

|∇w̃λ|2 − α(N − 2)(q − 2)

4q(N + α)
λσ ξ

N− N−2
2 q

λ

∫
RN

|w̃λ|q .

Similarly, we have

m0 = 2 + α

2(N + α)

∫
RN

|∇V1|2.

Thus, by virtue of (5.56), we obtain

‖∇V1‖2
2 − ‖∇w̃λ‖2

2 = 2(N+α)
2+α

δλ − α(N−2)(q−2)
2q(2+α)

λσ ξ
N− N−2

2 q

λ

∫
RN |w̃λ|q

=
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3.

(5.57)

By (5.28) and (5.31), we have

mλ = ( 1
2 − 1

2∗ )
∫
RN |∇w̃λ|2 + ( 1

2∗ − 1
2p

)
∫
RN (Iα ∗ |w̃λ|p)|w̃λ|p

= 1
N

∫
RN |∇w̃λ|2 + α(N−2)

2N(N+α)

∫
RN (Iα ∗ |w̃λ|p)|w̃λ|p.

Similarly, we also have

m0 = 1

N

∫
RN

|∇V1|2 + α(N − 2)

2N(N + α)

∫
RN

(Iα ∗ |V1|p)|V1|p.

Then it follows from (5.56) and (5.57) that

∫
RN (Iα ∗ |V1|p)|V1|p − ∫RN (Iα ∗ |w̃λ|p)|w̃λ|p

= 2N(N+α)
α(N−2)

[
(m0 − mλ) − 1

N
(
∫
RN |∇V1|2 − ∫RN |∇w̃λ|2)

]
=
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3.

(5.58)

Since ‖∇V1‖2
2 = ∫RN (Iα ∗ |V1|p)|V1|p = S

N+α
2+α

α , it follows from (5.57) and (5.58) that

‖∇w̃λ‖2
2 = S

N+α
2+α

α +
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3,

and
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∫
RN

(Iα ∗ |w̃λ|p)|w̃λ|p = S
N+α
2+α

α +
{

O(λ
2

q−2 (ln 1
λ
)
− 4−q

q−2 ), if N = 4,

O(λ
2

q−4 ), if N = 3.

Finally, by (5.32), Lemma 5.11 and Lemma 5.12, we obtain

‖w̃λ‖2
2 ∼

{
ln 1

λ
, if N = 4,

λ
− 2

q−4 , if N = 3.

The statements on vλ follow from the corresponding results on wλ and w̃λ. This completes the 
proof of Theorem 2.2. �
6. Proofs of other results and final remarks

In this section first we prove Theorem 2.3 and Theorem 2.4. We consider (Qλ) and its limit 
equation

−�v + v = (Iα ∗ |v|p)|v|p−2v. (6.1)

The corresponding energies of ground states are given by mλ = infv∈Mλ
Iλ(v) and

m0 := inf
v∈M0

I0(v),

where

I0(v) = 1

2

∫
RN

|∇v|2 + |v|2 − 1

2p

∫
RN

(Iα ∗ |v|p)|v|p, (6.2)

and

M0 =

⎧⎪⎨
⎪⎩v ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|v|2 + |v|2 =
∫
RN

(Iα ∗ |v|p)|v|p
⎫⎪⎬
⎪⎭ .

Then mλ and m0 are well-defined and positive. Moreover, I0 is attained on M0 by positive 
solutions of (6.1).

Lemma 6.1. Assume that the assumptions of Theorem 2.3 hold. Then for small λ > 0, there holds

m0 − mλ ∼ λ.

Proof. The proof is similar to that of Lemma 4.5 and is omitted. �
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Proof of Theorem 2.3. Since vλ is bounded in H 1(RN), there exists v0 ∈ H 1(RN) verifying 
−�v + v = (Iα ∗ |v|p)|v|p−2v such that up to a subsequence, we have

vλ ⇀ v0 weakly in H 1(RN), vλ → v0 in Lp(RN) for any p ∈ (2,2∗),

and

vλ(x) → v0(x) a. e. on RN, vλ → v0 in L2
loc(R

N).

Being a ground state solution, vλ satisfies

mλ = 1

2

∫
RN

|∇vλ|2 + |vλ|2 − 1

2p

∫
RN

(Iα ∗ |vλ|p)|vλ|p − 1

q
λ

∫
RN

|vλ|q . (6.3)

Since vλ ∈ Mλ, we also have

∫
RN

|∇vλ|2 + |vλ|2 =
∫
RN

(Iα ∗ |vλ|p)|vλ|p + λ

∫
RN

|vλ|q . (6.4)

Furthermore, by Lemma 3.1, the Pohožaev identity is given by

N − 2

2

∫
RN

|∇vλ|2 + N

2

∫
RN

|vλ|2 = N + α

2p

∫
RN

(Iα ∗ |vλ|p)|vλ|p + N

q
λ

∫
RN

|vλ|q . (6.5)

Let

Aλ =
∫
RN

|∇vλ|2, Bλ =
∫
RN

|vλ|2, Cλ =
∫
RN

(Iα ∗ |vλ|p)|vλ|p, Dλ =
∫
RN

|vλ|q .

Then by (6.4) and (6.5), we have

{
Aλ − Cλ = −Bλ + λDλ,
N−2

2 Aλ − N+α
2p

Cλ = −N
2 Bλ + N

q
λDλ.

Solving this system to obtain

Aλ = 1

η

[
(N(p − 1) − α)Bλ + (N + α − 2Np

q
)λDλ

]
,

Cλ = 1

η

[
2pBλ + (p(N − 2) − 2Np

q
)λDλ

]
,

where η = N + α − p(N − 2) > 0. Therefore, we obtain
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mλ = 1
2Aλ + 1

2Bλ − 1
2p

Cλ − 1
q
λDλ

= p−1
η

Bλ + q(2+α)−2(2p+α)
2ηq

λDλ

= p−1
η

∫
RN |vλ|2 + q(2+α)−2(2p+α)

2ηq
λ
∫
RN |vλ|q .

Moreover, the ground state v0 of (6.1) also satisfies the following identities:

m0 = 1

2

∫
RN

|∇v0|2 + |v0|2 − 1

2p

∫
RN

(Iα ∗ |v0|p)|v0|p, (6.6)

∫
RN

|∇v0|2 + |v0|2 =
∫
RN

(Iα ∗ |v0|p)|v0|p, (6.7)

N − 2

2

∫
RN

|∇v0|2 + N

2

∫
RN

|v0|2 = N + α

2p

∫
RN

(Iα ∗ |v0|p)|v0|p. (6.8)

In a similar way, we show that

m0 = p − 1

η

∫
RN

|v0|2.

Therefore,

p − 1

η

∫
RN

|vλ|2 − |v0|2 = mλ − m0 − q(2 + α) − 2(2p + α)

2ηq
λ

∫
RN

|vλ|q,

which together with Lemma 6.1 and q ≥ 2(2p+α)
2+α

implies that

‖v0‖2
2 − ‖vλ‖2

2 ∼ λ.

Arguing in a similar way, we show that

p − 1

Np − (N + α)

∫
RN

|∇vλ|2 − |∇v0|2 = mλ − m0 + α(q − 2)

2q[Np − (N + α)]λ
∫
RN

|vλ|q .

Therefore, we obtain

‖∇vλ‖2
2 − ‖∇v0‖2

2 = O(λ).

We have proved ‖∇vλ‖2 → ‖∇v0‖2 and ‖vλ‖2 → ‖v0‖2, therefore, we obtain vλ → v0 in 
H 1(RN). �
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Now, we consider (Qμ) and its limit equation

−�v + v = |v|p−2v. (6.9)

The corresponding energies of ground states are given by mμ = infv∈Mμ
Iμ(v) and

m0 := inf
v∈M0

I0(v),

where

I0(v) = 1

2

∫
RN

|∇v|2 + |v|2 − 1

q

∫
RN

|v|q, (6.10)

and

M0 =

⎧⎪⎨
⎪⎩v ∈ H 1(RN) \ {0}

∣∣∣∣∣∣∣
∫
RN

|v|2 + |v|2 =
∫
RN

|v|q
⎫⎪⎬
⎪⎭ .

Then mμ and m0 are well-defined and positive. Moreover, I0 is attained on M0 by the unique 
positive solution of (6.9).

Lemma 6.2. Assume that the assumptions of Theorem 2.4 hold. Then for small μ > 0, there holds

m0 − mμ ∼ μ.

Proof. The proof is similar to that of Lemma 4.5 and is omitted. �
Proof of Theorem 2.4. Arguing as in the proof of Theorem 2.3, Theorem 2.4 follows from 
Lemma 6.2 and the details will be omitted. �

Finally, we consider the case λ → ∞ in (Qλ) and μ → ∞ in (Qμ). It is easy to see that under 
the rescaling

w(x) = λ
1

q−2 v(x),

the equation (Qλ) is reduced to

−�w + w = λ
− 2(p−1)

q−2 (Iα ∗ |w|p)|w|p−2w + |w|q−2w.

Therefore, by Theorem 2.4, we have the following.
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Theorem 6.1. Let N ≥ 3, p ∈ [N+α
N

, N+α
N−2 ], q ∈ (2, 2∗) and vλ be the ground state of (Qλ), then 

as λ → ∞, the rescaled family of ground states w̃λ = λ
1

q−2 vλ converges in H 1(RN) to the unique 
positive solution w0 ∈ H 1(RN) of the equation

−�w + w = wq−1.

Moreover, as λ → ∞, there holds

‖vλ‖2
2 =

⎧⎪⎪⎨
⎪⎪⎩

λ
− 2

q−2

(
2N−q(N−2)

2q
S

q
q−2
q + O(λ

− 2(p−1)
q−2 )

)
, if q >

2(2p+α)
q−2 ,

λ
− 2

q−2

(
2N−q(N−2)

2q
S

q
q−2
q − �(λ

− 2(p−1)
q−2 )

)
, if q ≤ 2(2p+α)

q−2 ,

‖∇vλ‖2
2 = λ

− 2
q−2

(
N(q − 2)

2q
S

q
q−2
q + O(λ

− 2(p−1)
q−2 )

)
,

and the least energy mλ of the ground state satisfies

q − 2

2q
S

q
q−2
q − λ

2
q−2 mλ ∼ λ

− 2(p−1)
q−2 ,

as λ → ∞, where Sq is given in (2.14).

Under the rescaling

w(x) = μ
1

2(p−1) v(x),

the equation (Qμ) is reduced to

−�w + w = (Iα ∗ |w|p)|w|p−2w + μ
− q−2

2(p−1) |w|q−2w.

Then by Theorem 2.3 we have the following.

Theorem 6.2. Let N ≥ 3, p ∈ (N+α
N

, N+α
N−2 ), q ∈ (2, 2∗] and vμ be the ground state of (Qμ), then 

as μ → ∞, the rescaled family of ground states w̃μ = μ
1

2(p−1) vμ converges up to a subsequence 
in H 1(RN) to a positive solution w0 ∈ H 1(RN) of the equation

−�v + v = (Iα ∗ |v|p)vp−1.

Moreover, as μ → ∞, there holds

‖vμ‖2
2 =

⎧⎪⎪⎨
⎪⎪⎩

μ
− 1

p−1

(
N+α−p(N−2)

2p
S

p
p−1
p + O(μ

− q−2
2(p−1) )

)
, if q <

2(2p+α)
2+α

,

μ
− 1

p−1

(
N+α−p(N−2)

2p
S

p
p−1
p − �(μ

− q−2
2(p−1) )

)
, if q ≥ 2(2p+α)

2+α
,
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‖∇vμ‖2
2 = μ

− 1
p−1

(
N(p − 1) − α

2p
S

p
p−1
p + O(μ

− q−2
2(p−1) )

)
,

and the least energy mμ of the ground state satisfies

p − 1

2p
S

p
p−1
p − μ

1
p−1 mμ ∼ μ

− q−2
2(p−1) ,

as μ → ∞, where Sp is given in (2.12).

Our main results may be applied in other contexts. As an example, we consider

−ε2�u + u = (Iα ∗ |u|p)|u|p−2u + |u|q−2u, in RN, (Qε)

where p, q and α are the same as before, and ε > 0 is a parameter. Set v(x) = u(εx), then we 
have

−�v + v = εα(Iα ∗ |v|p)|v|p−2v + |v|q−2v, in RN,

then as a direct consequence of main results in this paper, we have the following result.

Theorem 6.3. If p ∈ (N+α
N

, N+α
N−2 ) and q ∈ (2, 2∗). Then the problem (Qε) admits a positive 

ground state uε ∈ H 1(RN), which is radially symmetric and radially nonincreasing, and the 
rescaled family uε(ε·) converges in H 1(RN) to the unique positive solution v0 ∈ H 1(RN) of the 
equation

−�v + v = vq−1.

Moreover, as ε → 0, there holds

‖uε‖2
2 = 2N − q(N − 2)

2q
S

q
q−2
q εN + O(εN+α), if q >

2(2p + α)

2 + α
,

‖uε‖2
2 = 2N − q(N − 2)

2q
S

q
q−2
q εN − �(εN+α), if q ≤ 2(2p + α)

2 + α
,

‖∇uε‖2
2 = N(q − 2)

2q
S

q
q−2
q εN−2 + O(εN−2+α),

and the least energy mε of the ground state satisfies

q − 2

2q
S

q
q−2
q − ε−Nmε ∼ εα,

as ε → 0, where Sq is given in (2.14).

Data availability

No data was used for the research described in the article.
685



S. Ma and V. Moroz Journal of Differential Equations 412 (2024) 613–689
Acknowledgments

Part of this research was carried out while S.M. was visiting Swansea University. S.M. thanks 
the Department of Mathematics for its hospitality. S.M. was supported by National Natural Sci-
ence Foundation of China (Grant Nos. 11571187, 11771182)

Appendix A

In this appendix, we prove the following elementary lemma.

Lemma A.1. Let η > 0 be a constant and M(ε) is of class C1 on (0, ∞). Then the following 
statements hold true:

(1) If M(ε) ∼ εη as ε → 0, then there is ε0 > 0 such that M ′(ε) > 0 for ε ∈ (0, ε0).
(2) If M(ε) ∼ ε−η as ε → 0, then there is ε0 > 0 such that M ′(ε) < 0 for ε ∈ (0, ε0).
(3) If M(ε) ∼ ε−η as ε → ∞, then there is ε∞ > 0 such that M ′(ε) < 0 for ε ∈ (ε∞, ∞).
(4) If M(ε) ∼ εη as ε → ∞, then there is ε∞ > 0 such that M ′(ε) > 0 for ε ∈ (ε∞, ∞).

Proof. Since η > 0, we can choose δ > 0 such that

max{1, η} < δ < η + 1.

To prove (1), we let M̃(ε) = ε1−δM(ε) for ε ∈ (0, ∞) and M̃(0) = 0. Since

0 ≤ M̃(ε) ≤ Cε1−δ+η → 0, as ε → 0,

it follows that M̃(ε) is of class C1 in (0, ∞) and continuous on [0, ∞). Moreover,

M̃ ′(0) := lim
ε→0+

M̃(ε) − M̃(0)

ε
= lim

ε→0+
M(ε)

εδ
≥ lim

ε→0+ cεη−δ = +∞.

Therefore, there exists ε0 > 0 such that M̃ ′(ε) > 0 for any ε ∈ (0, ε0). That is,

M̃ ′(ε) = (1 − δ)ε−δM(ε) + ε1−δM ′(ε) > 0,

which together with δ > 1 implies that

M ′(ε) > (δ − 1)ε−1M(ε) > 0.

The proof of (1) is complete.

To prove (2), we let M̃(ε) = − ε1−δ

M(ε)
for ε ∈ (0, ∞) and M̃(0) = 0. Since

0 ≥ M̃(ε) ≥ − ε1−δ

cε−η
→ 0, as ε → 0,

it follows that M̃(ε) is of class C1 in (0, ∞) and continuous on [0, ∞). Moreover,
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M̃ ′(0) := lim
ε→0+

M̃(ε) − M̃(0)

ε
= − lim

ε→0+
ε−δ

M(ε)
≤ − lim

ε→0+
ε−δ

Cε−η
= −∞.

Therefore, there exists ε0 > 0 such that M̃ ′(ε) < 0 for any ε ∈ (0, ε0). That is,

M̃ ′(ε) = − (1 − δ)ε−δM(ε) − ε1−δM ′(ε)
M(ε)2 < 0,

which together with δ > 1 implies that

M ′(ε) < (1 − δ)ε−1M(ε) < 0.

The proof of (2) is complete.
To prove (3), we let M̃(ε) = −ε1−δM( 1

ε
) for ε ∈ (0, ∞) and M̃(0) = 0. Since

0 ≥ M̃(ε) ≥ −Cε1−δ+η → 0, as ε → 0,

it follows that M̃(ε) is of class C1 in (0, ∞) and continuous on [0, ∞). Moreover,

M̃ ′(0) := lim
ε→0+

M̃(ε) − M̃(0)

ε
≤ −c lim

ε→0+ εμ−δ = −∞.

Therefore, there exists ε0 > 0 such that M̃ ′(ε) < 0 for any ε ∈ (0, ε0). That is,

M̃ ′(ε) = −(1 − δ)ε−δM(
1

ε
) + ε−1−δM ′(1

ε
) < 0,

which together with δ > 1 implies that

M ′(1

ε
) < (1 − δ)εM(

1

ε
) < 0.

Take ε∞ = 1
ε0

, then M ′(ε) < 0 for ε ∈ (ε∞, ∞). The proof of (3) is complete.

To prove (4), we let M̃(ε) = ε1−δ

M( 1
ε
)

for ε ∈ (0, ∞) and M̃(0) = 0. Since

0 ≤ M̃(ε) ≤ ε1−δ

cε−η
→ 0, as ε → 0,

it follows that M̃(ε) is of class C1 in (0, ∞) and continuous on [0, ∞). Moreover,

M̃ ′(0) := lim
ε→0+

M̃(ε) − M̃(0)

ε
≥ lim

ε→0+
ε−δ

Cε−η
= +∞.

Therefore, there exists ε0 > 0 such that M̃ ′(ε) > 0 for any ε ∈ (0, ε0). That is,

M̃ ′(ε) = (1 − δ)ε−δM( 1
ε
) + ε−1−δM ′( 1

ε
)

M( 1 )2
> 0,
ε
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which together with δ > 1 implies that

M ′(1

ε
) > (δ − 1)εM(

1

ε
) > 0.

Take ε∞ = 1
ε0

, then M ′(ε) > 0 for ε ∈ (ε∞, ∞). The proof of (4) is complete. �
References

[1] T. Akahori, S. Ibrahim, N. Ikoma, H. Kikuchi, H. Nawa, Uniqueness and nondegeneracy of ground states to nonlin-
ear scalar field equations involving the Sobolev critical exponent in their nonlinearities for high frequencies, Calc. 
Var. Partial Differ. Equ. 58 (2019) 120, 32 pp.

[2] T. Akahori, S. Ibrahim, H. Kikuchi, H. Nawa, Global dynamics above the ground state energy for the combined 
power type nonlinear Schrodinger equations with energy critical growth at low frequencies, Mem. Am. Math. Soc. 
272 (1331) (2021), v+130 pp.

[3] H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. 
Anal. 82 (1983) 313–345.

[4] C.G. Böhmer, T. Harko, Can dark matter be a Bose–Einstein condensate?, J. Cosmol. Astropart. Phys. (June 2007) 
025.

[5] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. 
Am. Math. Soc. 88 (1983) 486–490.

[6] D. Cassani, J. Van Schaftingen, Jianjun Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-
Sobolev lower critical exponent, Proc. R. Soc. Edinb., Sect. A 150 (2020) 1377–1400.

[7] T. Cazenave, P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. 
Math. Phys. 85 (1982) 549–561.

[8] P.-H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range in-
teractions: I. Analytical results, Phys. Rev. D 84 (2011) 043531.

[9] P.-H. Chavanis, Self-gravitating Bose-Einstein condensates, in: Quantum Aspects of Black Holes, in: Fundam. 
Theor. Phys., vol. 178, Springer, Cham, 2015, pp. 151–194.

[10] M. Coles, S. Gustafson, Solitary waves and dynamics for subcritical perturbations of energy critical NLS, Publ. 
Res. Inst. Math. Sci. 56 (2020) 647–699.

[11] S. Dovetta, E. Serra, P. Tilli, Action versus energy ground states in nonlinear Schrödinger equations, Math. Ann. 
385 (2023) 1545–1576.

[12] Du Lele, Minbo Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. 
Dyn. Syst. 39 (10) (2019) 5847–5866.

[13] J. Duoandikoetxea, Fractional integrals on radial functions with applications to weighted inequalities, Ann. Mat. 
Pura Appl. (4) 192 (2013) 553–568.

[14] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983, 
xiii+513 pp.

[15] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 
74 (1987) 160–197.

[16] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 
94 (1990) 308–348.

[17] Y. Il’yasov, On orbital stability of the physical ground states of the NLS equations, arXiv :2103 .16353v2.
[18] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997) 

1633–1659.
[19] L. Jeanjean, J. Jendrej, T. Le, N. Visciglia, Orbital stability of ground states for a Sobolev critical Schrödinger 

equation, J. Math. Pures Appl. (9) 164 (2022) 158–179.
[20] L. Jeanjean, T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann. 384 

(2022) 101–134.
[21] L. Jeanjean, Sheng-Shen Lu, On global minimizers for a mass constrained problem, Calc. Var. Partial Differ. Equ. 

61 (2022) 214, 18 pp.
[22] L. Jeanjean, J. Zhang, X. Zhong, A global branch approach to normalized solutions for the Schrödinger equation, J. 

Math. Pures Appl. 183 (2024) 44–75.
688

http://refhub.elsevier.com/S0022-0396(24)00529-1/bib1D6A5F33765FC628FEF502D34066F96Bs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib1D6A5F33765FC628FEF502D34066F96Bs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib1D6A5F33765FC628FEF502D34066F96Bs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib8F40149FE0D462BDB542BF525DF61A23s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib8F40149FE0D462BDB542BF525DF61A23s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib8F40149FE0D462BDB542BF525DF61A23s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibFB36A452404184E832D167CC78626BA3s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibFB36A452404184E832D167CC78626BA3s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibEBDF45BFFA828C1355E93DAF6B98D2E6s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibEBDF45BFFA828C1355E93DAF6B98D2E6s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib534AF25F65DF02275828D14787ECDBE1s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib534AF25F65DF02275828D14787ECDBE1s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib344A0E1119629FB27221416B41C7645Fs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib344A0E1119629FB27221416B41C7645Fs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib3AA600B0CC843E69749E30567ACF92F3s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib3AA600B0CC843E69749E30567ACF92F3s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib1599CCB3712095DFEDF0FEB7C866A129s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib1599CCB3712095DFEDF0FEB7C866A129s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib4C1E1AECA722D4E4D7C5FEC79C071ACBs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib4C1E1AECA722D4E4D7C5FEC79C071ACBs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib6A874B305FE9AC41F46C0F50BB53CD28s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib6A874B305FE9AC41F46C0F50BB53CD28s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib692BD67A426DA71525AA0BF7FFA38D94s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib692BD67A426DA71525AA0BF7FFA38D94s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib694F9BA0D216D57BE1C9BB672F0FA184s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib694F9BA0D216D57BE1C9BB672F0FA184s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib15798CCD2E2D528F218ADB8662137D21s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib15798CCD2E2D528F218ADB8662137D21s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibCD6A9BD2A175104EED40F0D33A8B4020s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibCD6A9BD2A175104EED40F0D33A8B4020s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib0D920BB3B0C9B38AB9DA5891FCB5A606s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib0D920BB3B0C9B38AB9DA5891FCB5A606s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibEAE1ED2E6141939F6615791FFF822FAFs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibEAE1ED2E6141939F6615791FFF822FAFs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibBB6B1114BE16BD0915616D8ED564DDF0s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibD4D5DF233735837662FB3AAA4A7C19AEs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibD4D5DF233735837662FB3AAA4A7C19AEs1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibCF2FC8E0155B2893982810B1F75F0164s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bibCF2FC8E0155B2893982810B1F75F0164s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib69AF52A6A117DF5C4F77F6472CDEDC78s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib69AF52A6A117DF5C4F77F6472CDEDC78s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib576F33BC1B2E854438CADF8DEB8FF6F1s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib576F33BC1B2E854438CADF8DEB8FF6F1s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib60AA9D95AD94F769667041E077EBA4B4s1
http://refhub.elsevier.com/S0022-0396(24)00529-1/bib60AA9D95AD94F769667041E077EBA4B4s1


S. Ma and V. Moroz Journal of Differential Equations 412 (2024) 613–689
[23] M. Lewin, S. Rota Nodari, The double-power nonlinear Schrödinger equation and its generalizations: uniqueness, 
non-degeneracy and applications, Calc. Var. Partial Differ. Equ. 59 (2020) 197, 49 pp.

[24] Xinfu Li, Shiwang Ma, Guang Zhang, Existence and qualitative properties of solutions for Choquard equations with 
a local term, Nonlinear Anal., Real World Appl. 45 (2019) 1–25.

[25] Xinfu Li, Shiwang Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math. 22 (2019) 
1950023.

[26] Xinfu Li, Existence and symmetry of normalized ground state to Choquard equation with local perturbation, arXiv :
2103 .07026v1.

[27] Xinfu Li, Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, qualitative 
properties and stability, Adv. Nonlinear Anal. 11 (2022) 1134–1164.

[28] Xinfu Li, Nonexistence, existence and symmetry of normalized ground states to Choquard equations with a local 
perturbation, Complex Var. Elliptic Equ. 68 (2023) 578–602.

[29] Xinfu Li, Jianguang Bao, Wenguang Tang, Normalized solutions to lower critical Choquard equation with a local 
perturbation, Discrete Contin. Dyn. Syst., Ser. B 28 (2023) 3216–3232.

[30] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. 
Math. 57 (1976/77) 93–105.

[31] E.H. Lieb, M. Loss, Analysis, American Mathematical Society, Providence, RI, 2001.
[32] P.H. Lions, The concentration-compactness principle in the calculus of variations: the locally compact cases, part I 

and part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984) 223–283.
[33] X.Q. Liu, J.Q. Liu, Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differ. 

Equ. 254 (2013) 102–124.
[34] Zeng Liu, V. Moroz, Limit profiles for singularly perturbed Choquard equations with local repulsion, Calc. Var. 

Partial Differ. Equ. 61 (2022) 160, 59 pp.
[35] S. Ma, V. Moroz, Asymptotic profiles for a nonlinear Schrödinger equation with critical combined powers nonlin-

earity, Math. Z. 304 (2023) 13, 26 pp.
[36] V. Moroz, C.B. Muratov, Asymptotic properties of ground states of scalar field equations with a vanishing parameter, 

J. Eur. Math. Soc. 16 (2014) 1081–1109.
[37] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and 

decay asymptotics, J. Funct. Anal. 265 (2013) 153–184.
[38] V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017) 773–813.
[39] A. Paredes, D.N. Olivieri, H. Michinel, From optics to dark matter: a review on nonlinear Schrödinger–Poisson 

systems, Phys. D: Nonlinear Phenom. 403 (2020) 132301.
[40] R. Ruffini, S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of an equation of 

state, Phys. Rev. 187 (1969) 1767–1783.
[41] J. Shatah, W. Strauss, Instability of nonlinear bound states, Commun. Math. Phys. 100 (1985) 173–190.
[42] D. Siegel, E. Talvila, Pointwise growth estimates of the Riesz potential, Dyn. Contin. Discrete Impuls. Syst. 5 (1999) 

185–194.
[43] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, 

J. Funct. Anal. 279 (2020) 108610.
[44] N. Soave, Normalized ground state for the NLS equations with combined nonlinearities, J. Differ. Equ. 269 (2020) 

6941–6987.
[45] T. Tao, M. Visan, X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Com-

mun. Partial Differ. Equ. 32 (2007) 1281–1343.
[46] K. Tintarev, K-H. Fieseler, Concentration Compactness: Functional-Analytic Grounds and Applications, Imperial 

College Press, 57 Shelton Street, London, 2007.
[47] X.Z. Wang, Cold Bose stars: self-gravitating Bose-Einstein condensates, Phys. Rev. D 64 (2001) 124009.
[48] J. Wei, Y. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlin-

earities, J. Funct. Anal. 283 (2022) 109574, 46 pp.
[49] J. Wei, Y. Wu, On some nonlinear Schrödinger equations in RN , Proc. R. Soc. Edinb., Sect. A 153 (2023) 

1503–1528.
[50] M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 

16 (1985) 472–491.
[51] Shuai Yao, Juntao Sun, Tsung-fang Wu, Normalized solutions for the Schrödinger equation with combined Hartree 

type and power nonlinearities, arXiv :2102 .10268v1.
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