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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger A holographic method for implementing a particular supersymmetry-preserving deformation to 
4d SCFTs is presented. At the heart of the procedure is a soliton solution of minimal 𝑑 = 5 gauged 
supergravity. Embedding this solution into ten- and eleven-dimensional string theory backgrounds 
of the form AdS5 ×𝑀 , we systematically construct a range of new solutions. Each holographically 
realizes a twisted compactification of the SCFT4 dual to the original background. In the IR, 
the resulting SQFTs flow to gapped three-dimensional systems. Using a variety of holographic 
observables, we give evidence for this interpretation and for confinement in the deformed SQFTs. 
Our method applies to any holographic solutions admitting a consistent truncation to minimal 
𝑑 = 5 gauged supergravity, and can likely be generalized to solutions with other AdS𝑑 factors.
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1. Introduction

In this rather long and dense paper we study the holographic description of UV CFTs that are deformed by VEVs, flowing to con-

fining and gapped systems. The topic is motivated from both the holographic and field-theoretic viewpoints. We start the introduction 
with our general motivation (in a historical framework), describe the more particular deformation we aim to apply, and then discuss 
the systems in which we study it, ending with a summary of the contents of this work. The introduction is lengthy so that the reader 
interested in just the basic idea can focus on section 1.2, while the level of detail in the rest of the paper is intended for colleagues 
who may want to work in this area. A shorter companion paper [1] presents the highlights.

1.1. Background and motivation

After the formulation of the AdS/CFT correspondence [2] and its initial refinements [3,4], extending the idea to Quantum Field 
Theories (QFTs) with less symmetries than  = 4 Super Yang-Mills became a natural goal. The extension to either gapped theories or 
conformal theories with less symmetries allowed for the study of phenomena like confinement, symmetry breaking, and the presence 
of condensates from the new holographic point of view.

Papers like [5] and [6] dealing with non-conformal field theories in different dimensions initiated this line of research. These were 
followed by [7–9], which studied QFTs with minimal or no-SUSY in four dimensions using their geometric realisations. Soon after 
that, the works [10–16], produced a very clear geometric picture of non-perturbative aspects of a two node quiver field theory with 
 = 1 SUSY (a quasi-marginal deformation of the Klebanov-Witten  = 1 conformal field theory, flowing to a confining IR  = 1
QFT). For a summary of these developments, see [17].

A second line of work based on wrapped branes was pursued in [7,18–29], extending the duality between gauge fields and strings 
to non-conformal QFTs in diverse dimensions. See [30–32] for pedagogical reviews of this work, which gave a geometric interpretation 
to various non-perturbative aspects of QFT. These two lines of research were joined beautifully in the works [33–36].

The addition of fields transforming in the fundamental representation of the gauge group was discussed first in the quenched/probe 
approximation. See [37–43] for some representative papers and a review. This was later improved by including the backreaction of 
these sources. The flavour branes were ‘smeared’ so that one can work with BPS ODEs rather than BPS PDEs [44–52].

However, some unwelcome features of these models are the following:

• When the high-energy behaviour of the QFT is field theoretical and represented by a deformed 4d UV-CFT, the IR part of the 
holographic dual background is singular. This is the case e.g. for the models in [8,9,53,54].

• On the other hand, for the wrapped brane models [18–29] or for the two node quiver system described above [10–16], the high 
energy behaviour of the QFT does not strictly reach a conformal point in the UV. This is reflected in the fact that the holographic 
dual is not strictly asymptotically AdS, making the application of holographic renormalisation technically challenging.

• The addition of a large number of flavours, as explained above, is technically cumbersome, requiring the smearing of branes. As 
a consequence, it is hard to study CFTs with flavours in four or more dimensions.

Our motivation is to remedy some of these unwelcome features. To do this we consider four-dimensional super-conformal field theories 
(SCFTs), whose dual backgrounds have an AdS5 factor in the geometry. The SCFTs include a large number of (localised) flavour branes. 
These SCFTs are deformed by VEVs and a RG-flow is triggered, ending in a confining and gapped system. The holographic description 
mirrors this, featuring an asymptotically AdS5 space that ends smoothly at a fixed value of the radial coordinate. Non-perturbative 
aspects of the RG-flow in the QFT can be consistently studied. To implement these ideas, we consider a deformation on the holographic 
2

side, which we describe below.
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1.2. The deformation

The goal of this work is to establish a general holographic mechanism to obtain confining, (2+1)-dimensional SQFTs from known 
(3+1)-dimensional SCFTs. Our inspiration is [55] (see also [56–62] for related work), in which a supersymmetry-preserving AdS5
soliton solution is identified. From the perspective of AdS5∕CFT4, the solution of [55] realizes a compactification of  = 4 SYM, 
leading to an  = 2 SYM theory (plus massive multiplets) in three dimensions. Crucially, some supersymmetry remains unbroken, 
thanks to a mixing of the R-symmetry of  = 4 SYM with the isometry for the compact circle. We refer to this as a ‘twisted’ 
compactification throughout, although the compact manifold is just a circle (and thus flat). The field theory story for  = 4 SYM is 
discussed in detail in [63].

We have generalized this mechanism to a variety of SCFTs with holographic duals of the form

AdS5 ×𝑀𝑛, (1.1)

where 𝑛 = 5 for Type II and 𝑛 = 6 for 11d supergravity examples. In particular, using known embeddings of 𝑑 = 5 minimal gauged 
supergravity solutions into backgrounds the form (1.1), we have uplifted the soliton solution of [55]. The result is new families of 
smooth string theoretic backgrounds of the form

ÂdS5 ×𝑀𝑛 (1.2)

where the hats denote a deformation which can be summarized as follows:

• Compactify one of the AdS5 directions to a circle 𝑆1
𝜙

of size 𝐿𝜙∕2𝜋.

• Deform the AdS5 geometry by introducing a warping function 𝑓 (𝑟) which smoothly caps off the 𝑆1
𝜙

circle at a finite radius 𝑟 = 𝑟⋆, 
at which 𝑓 (𝑟⋆) = 0,

𝑟2

𝑙2
(−𝑑𝑡2 + 𝑑𝑥21 + 𝑑𝑥

2
2 + 𝑑𝜙

2) + 𝑙
2

𝑟2
𝑑𝑟2 →

𝑟2

𝑙2
(−𝑑𝑡2 + 𝑑𝑥21 + 𝑑𝑥

2
2 + 𝑓 (𝑟)𝑑𝜙

2) + 𝑙
2

𝑟2
𝑑𝑟2

𝑓 (𝑟)
, (1.3)

with the solution parameters constrained by 𝐿𝜙 =
𝑙2

𝑟2⋆

4𝜋
𝑓 ′(𝑟⋆)

to avoid conical singularities.

• Identify an appropriate 𝑈 (1) inside the isometry group of the internal manifold 𝑀𝑛, and gauge it by

 = 𝑞

(
1
𝑟2

− 1
𝑟2⋆

)
𝑑𝜙 , (1.4)

suitably modifying all the fluxes to ensure the full ten- or eleven-dimensional supergravity equations of motion are satisfied.

Requiring 𝑟⋆ = (𝑞𝑙)1∕3 ensures the preservation of four supercharges for the 𝑑 = 5 gauged supergravity solution we are uplifting [55]. 
Thanks to the embedding frameworks we are relying on [64–66], this ensures the preservation of higher-dimensional supersymme-

try. As a result, all of the examples we will present preserve ten- or eleven-dimensional supersymmetry for this choice of solution 
parameters.

Let us return to the field-theoretic interpretation of these new solutions. The internal manifold 𝑀𝑛 of the undeformed backgrounds 
(1.1) encodes various data of the dual SCFT4. In our examples, we will encounter not only the case of 𝑀5 = 𝑆5 and the  = 4 SYM 
dual, but also 𝑀5 = 𝑌 𝑝,𝑞 describing  = 1 toric quiver field theories, internal manifolds describing  = 2 linear quivers, as well 
as some for  = 1 non-Lagrangian SCFTs. When we deform each background in the sense described above, we are implementing a 
particular twisted compactification in the dual field theory.

When compactifying on 𝑆1
𝜙

one needs to specify boundary conditions for the various fields in the SCFT. This generically breaks 
SUSY, as the scalars and gauge fields are assigned periodic boundary conditions while the fermions are anti-periodic. As alluded to 
earlier, SUSY can be preserved by turning on a background gauge field  =𝜙 𝑑𝜙 which mixes a 𝑈 (1) inside the R-symmetry with 
the 𝑈 (1)𝜙 isometry of the compact circle.1 The reason is that the background gauge field modifies the covariant derivative. If its 
charge is tuned appropriately, massless fermions can exist and enter into supermultiplets.

The introduction of the background gauge field and the scale 𝐿𝜙 into the field theory break conformality while preserving some 
supersymmetry (again, for an appropriate choice of parameters). At low energies, our holographic construction of this twisted com-

pactification takes the original SCFT4 to a strongly coupled SQFT3, thanks to the closing of 𝑆1
𝜙

by 𝑓 (𝑟). Employing a variety of 
holographic observables, we find clear indications of confinement in these (2+1)-dimensional IR theories.

1.3. Summary of contents

We will begin by reviewing 𝑑 = 5 minimal gauged supergravity and the soliton solution of [55] in section 2. The remainder of 
the paper will concern uplifts of this solution to ten- and eleven-dimensional supergravity and how holography can tell us about the 
resulting QFT duals.
3

1 While the background gauge field is constant in the boundary field theory, it has a non-trivial holonomy, and thus cannot be absorbed by a gauge transformation.
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In section 3, we use the embedding prescriptions of [64,67] to lift into backgrounds in Type IIB. Specifically we review how 
to obtain the deformation of AdS5 × 𝑆5 first noted in [55], and introduce new deformed AdS5 × 𝑌 𝑝,𝑞 backgrounds. To uplift into 
massive Type IIA, in section 4 we use the embedding scheme developed in [66]. This allows us to write down our deformation for any 
AdS5 solution in massive IIA dual to an  = 1 SCFT. We focus on two particular families, based on the work of [68–70]. Section 5

utilizes the fact that minimal 𝑑 = 5 gauged supergravity can be treated as a truncation of 𝑑 = 5 Romans’ 𝑆𝑈 (2) ×𝑈 (1) supergravity, 
allowing us to lift from there to eleven-dimensional supergravity using [65]. Backgrounds based on the LLM family of solutions [71]

are presented. Restricting to the “electrostatic case” allows us to make contact with the holographic solutions of Gaiotto-Maldacena 
[72].

Having presented a wide range of deformed backgrounds, in section 6 we study the features of their dual QFTs. Wilson, ’t Hooft 
loop, and Entanglement Entropy calculations reveal signatures of confinement in the IR three-dimensional systems, as presented 
in sections 6.1, 6.2, and 6.3. Probing the (deformed) AdS directions, these observables show universalities across all the examples 
studied. In section 6.4, we present an observable capturing the number of degrees of freedom along the full flow from UV SCFT4 to 
IR (S)QFT3, known as the flow central charge. Holographic complexity is also studied. Other probes engaging the internal manifold 
are presented to study particularities of the SQFTs in section 6.6. The spontaneous symmetry breaking of 𝑈 (1)𝜙 is considered in 6.7, 
appearing as a massive vector mode in the bulk.

We conclude with a discussion section and several appendices collecting more technical details.

2. Review of the supersymmetric AdS𝟓 soliton

In this section, we study the original 5d minimal gauged supergravity solution of [55], which is used as a seed to obtain different 
backgrounds investigated in this paper. The supersymmetry of the solution is discussed in appendix A

Consider the Einstein-Maxwell-AdS system in five dimensions, developed in different works [67,73–77]. The bosonic part of the 
action is

𝑆 (𝑔,𝐴) = 1
16𝜋𝐺 ∫ 𝑑5𝑥

√
−𝑔

(
𝑅+ 12

𝑙2
− 3

4
𝜇𝜈𝜇𝜈

)
+ 1

16𝜋𝐺 ∫  ∧  ∧ , (2.1)

where 𝑙 is the AdS radius. The equations of motion are

𝑑 ⋆ + ∧  = 0 ,

𝑅𝜇𝜈 −
1
2𝑔𝜇𝜈𝑅− 3

2

[𝜇𝜌 𝜈𝜌 − 1
6𝑔𝜇𝜈𝜌𝜎𝜌𝜎

]
− 6
𝑙2
𝑔𝜇𝜈 = 0 . (2.2)

We restrict to solutions that satisfy  ∧  = 0, so the Chern-Simons term will not play a role.

One can obtain the solution of [55] from a double Wick rotation of an electrically charged black hole with a flat boundary. The 
result reads

𝑑𝑠25 =
𝑟2

𝑙2
(−𝑑𝑡2 + 𝑑𝑥21 + 𝑑𝑥

2
2) +

𝑙2𝑑𝑟2

𝑟2𝑓 (𝑟)
+ 𝑟

2

𝑙2
𝑓 (𝑟)𝑑𝜙2, 𝑓 (𝑟) = 1 − 𝜇𝑙

2

𝑟4
− 𝑞

2𝑙2

𝑟6
,

 = 𝑞

(
1
𝑟2

− 1
𝑟2⋆

)
𝑑𝜙,  = 𝑑 = −2𝑞

𝑟3
𝑑𝑟 ∧ 𝑑𝜙, (2.3)

where 𝑟⋆ is the largest positive root of 𝑓 (𝑟), 𝑓 (𝑟⋆) = 0. One can write

𝜇 =
(𝑟6⋆ − 𝑞2𝑙2)

𝑙2𝑟2⋆
. (2.4)

Note that the 𝜙-coordinate parameterizes a compact circle which has a finite size at 𝑟 →∞, but shrinks at 𝑟 = 𝑟⋆. In order to have a 
smooth solution there, the periodicity of 𝜙 is fixed to

𝐿𝜙 =
4𝜋𝑙2

𝑟2⋆𝑓
′(𝑟⋆)

. (2.5)

The magnetic flux through the 𝜙 direction at 𝑟 →∞ is Φ = − ∮  = 𝑞

𝑟2⋆
𝐿𝜙.

To understand the solution space, it is more natural to invert these relations and write the bulk parameters 𝑟⋆ , 𝑞, 𝜇 in terms of 
the asymptotic boundary parameters 𝐿𝜙, Φ. We have

𝑞 = 𝑟2⋆
Φ
𝐿𝜙
, 𝑟⋆ = 𝜋𝑙2

2𝐿𝜙

(
1 ±

√
1 − Φ2

Φ2
𝑚𝑎𝑥

)
, (2.6)

where Φ𝑚𝑎𝑥 =
𝜋𝑙√
2
. The parameter 𝜇 can then be written in terms of boundary data using (2.4). For Φ <Φ𝑚𝑎𝑥, there are two branches 

of solutions. As Φ → 0, the + branch of the solution approaches the pure AdS soliton, and the − branch approaches Poincaré-AdS. 
4

We are interested in the solution of the + branch. The two branches coalesce at Φ =Φ𝑚𝑎𝑥.
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As explained in appendix A, preserving supersymmetry requires 𝜇 = 0. This occurs for 𝑟6⋆ = 𝑞2𝑙2, that is, when

𝑟2⋆ = Φ2𝑙2

𝐿2
𝜙

⇒ 2 − 3 Φ2

Φ2
𝑚𝑎𝑥

± 2

√
1 − Φ2

Φ2
𝑚𝑎𝑥

= 0. (2.7)

On the + branch one finds that the supersymmetric point corresponds to Φ𝑆 = 2𝜋
3 𝑙. We will assume this condition is satisfied on any 

occasion when a supersymmetric background is considered.

From the dual field theory perspective, it is convenient to introduce a new parameter 𝑄 such that the boundary gauge field is 
simply

(𝑟→∞) =𝑄𝑑𝜙 (2.8)

at the supersymmetric point in the parameter space. This can be accomplished by re-parameterizing as 𝑞 = −𝑄3𝑙2. The condition 
𝜇 = 0 for the solution to preserve supersymmetry is then 𝑟2⋆ = (𝑄𝑙)2. All together, the supersymmetric soliton is given by

𝑑𝑠25 =
𝑟2

𝑙2
(−𝑑𝑡2 + 𝑑𝑥21 + 𝑑𝑥

2
2) +

𝑙2

𝑟2
𝑑𝑟2

𝑓 (𝑟)
+ 𝑟

2

𝑙2
𝑓 (𝑟)𝑑𝜙2, 𝑓 (𝑟) = 1 −

(
𝑙𝑄

𝑟

)6
, (2.9)

 =
(
𝑄− 𝑙

2𝑄3

𝑟2

)
𝑑𝜙,  = 𝑑 = 2𝑙2𝑄3

𝑟3
𝑑𝑟 ∧ 𝑑𝜙.

Note that the holonomy of the boundary gauge field is fixed as

Φ= ∮  = 2𝜋
3
𝑙. (2.10)

3. Deformed backgrounds in Type IIB

As noted by Anabalon and Ross in [55], the supersymmetric AdS5 soliton summarized in the previous section can be obtained 
from a dimensional reduction of Type IIB supergravity. Here we review the reduction ansatz first given in [55], in which the soliton is 
embedded into the background AdS5 ×𝑆5, before presenting a new infinite family of solutions obtained from AdS5 ×𝑌 𝑝,𝑞 backgrounds. 
As explained in section 1.2, the ten-dimensional solutions obtained in this fashion can be understood as implementing a particular 
deformation in the corresponding SCFT duals.

3.1. AdS5 ×𝑆5 embedding

The embedding of the solution (2.3) into the Type IIB background AdS5 × 𝑆5 yields the metric [55,67]

𝑑𝑠210 = 𝑑𝑠
2
5 + 𝑙

2
{
𝑑𝜃2 + sin2 𝜃𝑑𝜑2 + sin2 𝜃 sin2𝜑

(
𝑑𝜑1 +


𝑙

)2
(3.1)

+ sin2 𝜃 cos2𝜑
(
𝑑𝜑2 +


𝑙

)2
+ cos2 𝜃

(
𝑑𝜑3 +


𝑙

)2}
.

Note that the three 𝑈 (1) factors in the Cartan of the 𝑆5 isometry group are uniformly fibered with 𝜙-circle inside 𝑑𝑠25 . In each example, 
we will see a particular 𝑈 (1) inside the isometry group for the internal manifold mixing with the 𝑈 (1) of the 𝑆1

𝜙
. The smoothness 

and supersymmetry-preserving features (for 𝜇 = 0) of the five-dimensional solution are inherited by its embedding in ten dimensions. 
The range of the various angular coordinates is

0 ≤ 𝜃 ≤ 𝜋∕2, 0 ≤ 𝜑 ≤ 𝜋∕2, 0 ≤ 𝜑𝑖 ≤ 2𝜋 𝑖 = 1,2,3. (3.2)

It’s convenient to introduce,

𝜇1 = sin𝜃 sin𝜑, 𝜇2 = sin𝜃 cos𝜑, 𝜇3 = cos𝜃, (3.3)

satisfying 𝜇21 + 𝜇
2
2 + 𝜇

2
3 = 1. We can then write the five-form field strength solving the Type IIB supergravity equations of motion for 

the metric (3.1) as

𝐹5 =𝐺5 +⋆𝐺5, 𝐺5 =
4
𝑙

vol5 − 𝑙2
3∑
𝑖=1
𝜇𝑖𝑑𝜇𝑖 ∧

(
𝑑𝜑𝑖 +


𝑙

)
∧⋆5 . (3.4)

Here and throughout this work, we use ⋆5 to denote the Hodge star with respect to the 5d metric in (2.3). Explicitly we have

vol5 =
𝑟3

𝑙3
𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑟 ∧ 𝑑𝜙, ⋆5 = −2𝑞

𝑙3
𝑑𝑡 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2. (3.5)
5

We can of course understand 𝐹5 as sourced by a stack of D3-branes, whose number is related to the quantization of flux by
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𝑄𝐷3 =
1

(2𝜋)4 ∫ 𝐹5 =
𝑙4

4𝜋
, (3.6)

where we have suppressed factors of 𝑔𝑠 and 𝛼′ = 𝓁2
𝑠 . The field theory dual of this construction is a twisted compactification of  = 4

SYM, which still preserves four supercharges when we set 𝜇 = 0 in (2.3).

3.2. AdS5 × 𝑌 𝑝,𝑞 embeddings

Having reviewed the holographic realization of the deformation procedure for the dual of  = 4 SYM, we now consider its 
application to duals of SCFTs with less supersymmetry. In particular, we deform Type IIB backgrounds with Sasaki-Einstein internal 
manifolds 𝑌 𝑝,𝑞 [78],

𝑑𝑠210 = 𝑑𝑠
2
AdS5

+ 𝑙2𝑑𝑠2𝑌 , 𝑑𝑠2𝑌 = 𝑑𝑠2𝐵 + 1
9
(𝑑𝜓 +𝐴)2,

𝐹5 = (1 +⋆)𝐺5, 𝐺5 =
4
𝑙

volAdS5
(3.7)

Here 𝐵 is a four-dimensional Kähler-Einstein base. Its Kähler form 𝐽 is related to the one-form 𝐴 as 𝑑𝐴 = 6𝐽 . This 𝑆1
𝜓 fibration over 

𝐵 corresponds to the U(1) R-symmetry of the dual  = 1 superconformal field theories, which are the IR fixed points of quiver gauge 
theories labelled by the integers 𝑝 and 𝑞. In each example we will provide explicit expressions for 𝑑𝑠2

𝑌
.

The deformation is accomplished by embedding the soliton solution (2.3) into (3.7). The appropriate reduction ansatz of Type IIB 
to minimal 5d gauged supergravity is given in [64], or in a more general form in [79], for example. In this case it reads

𝑑𝑠210 = 𝑑𝑠
2
5 + 𝑙

2
[
𝑑𝑠2𝐵 + 1

9
(𝑑𝜓 +𝐴+ 3

𝑙
)2

]
,

𝐹5 = (1 +⋆)𝐺5, 𝐺5 =
4
𝑙

vol5 − 𝑙2 𝐽2 ∧⋆5 , (3.8)

with 𝑑𝑠25, , and  given by (2.3). We provide explicit examples for 𝑇 1,1 (equivalently 𝑌 1,0) and generic 𝑌 𝑝,𝑞 below.

𝑇 1,1 example

For the case of 𝑇 1,1, the base manifold 𝐵 is 𝑆2 ×𝑆2, so that

𝑑𝑠2𝑌 = 1
6

2∑
𝑖=1

(
𝑑𝜃2𝑖 + sin2 𝜃𝑖𝑑𝜙2𝑖

)
+ 1

9

(
𝑑𝜓 +

2∑
𝑖=1

cos𝜃𝑖𝑑𝜙𝑖

)2

. (3.9)

The coordinates (𝜃𝑖, 𝜙𝑖) on the two-spheres have canonical 𝜋 and 2𝜋 periodicities, respectively, while 𝜓 ∈ [0, 4𝜋]. The deformed 
ten-dimensional metric can then be expressed

𝑑𝑠210 = 𝑑𝑠
2
5 + 𝑙

2
⎡⎢⎢⎣16

2∑
𝑖=1

(
𝑑𝜃2𝑖 + sin2 𝜃𝑖𝑑𝜙2𝑖

)
+ 1

9

(
𝑑𝜓 +

2∑
𝑖=1

cos𝜃𝑖𝑑𝜙𝑖 +
3
𝑙

)2⎤⎥⎥⎦ , (3.10)

again with 𝑑𝑠25 and  as in (2.3). The RR five-form field strength can be computed from

𝐹5 =𝐺5 +⋆𝐺5, 𝐺5 =
4
𝑙

vol5 +
𝑙2

6
(sin𝜃1 𝑑𝜃1 ∧ 𝑑𝜙1 + sin𝜃2 𝑑𝜃2 ∧ 𝑑𝜙2) ∧⋆5 , (3.11)

where vol5 and ⋆5 are as in (3.5). The quantized charge associated to 𝐹5 is found by integrating over 𝑇 1,1,

𝑄𝐷3 =
1

(2𝜋)4 ∫ 𝐹5 =
4𝑙4
27𝜋

. (3.12)

This can be interpreted as the number of D3-branes sitting at the tip of a cone over 𝑇 1,1 . The field theory we are deforming via this 
holographic construction is the Klebanov-Witten CFT [10].

Generic 𝑌 𝑝,𝑞 example

For the more general case in which 𝑀5 is any 𝑌 𝑝,𝑞 manifold, the deformed metric reads

𝑑𝑠210 = 𝑑𝑠
2
5+𝑙

2
[
1 − 𝑦
6

(
𝑑𝜃2 + sin2 𝜃𝑑𝜑2)+ 1

𝑤(𝑦)𝑣(𝑦)
𝑑𝑦2 + 𝑤(𝑦)𝑣(𝑦)

36
(𝑑𝛽 + cos𝜃𝑑𝜑)2

+1
9

(
𝑑𝜓 − cos𝜃𝑑𝜑+ 𝑦 (𝑑𝛽 + cos𝜃𝑑𝜑) + 3

𝑙
)2] , (3.13)
6

where the functions 𝑤(𝑦), 𝑣(𝑦) are controlled by a single parameter 𝑎,
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𝑤(𝑦) = 2(𝑎− 𝑦2)
1 − 𝑦

, 𝑣(𝑦) = 𝑎+ 2𝑦3 − 3𝑦2

𝑎− 𝑦2
. (3.14)

The base space 𝐵 parameterized by coordinates

0 ≤ 𝜃 ≤ 𝜋, 0 ≤ 𝜑 ≤ 2𝜋, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 0 ≤ 𝛽 ≤ 2𝜋, (3.15)

is ensured to be smooth and compact if one chooses

0 < 𝑎 < 1, (3.16)

and the endpoints 𝑦1, 𝑦2 are constrained appropriately— see e.g. [78]. Note the integers 𝑝, 𝑞 are related to integrals of the Kähler 
form over two-cycles in 𝐵. This two-form is given by

𝐽2 =
1
6
(1 − 𝑦) sin𝜃 𝑑𝜃 ∧ 𝑑𝜑+ 1

6
𝑑𝑦 ∧ (𝑑𝛽 + cos𝜃 𝑑𝜑), (3.17)

and so the RR field strength 𝐹5 can be expressed

𝐹5 =𝐺5 +⋆𝐺5, 𝐺5 =
4
𝑙

vol5 −
𝑙2

6
[(1 − 𝑦) sin𝜃 𝑑𝜃 ∧ 𝑑𝜑+ 𝑑𝑦 ∧ (𝑑𝛽 + cos𝜃 𝑑𝜑)] ∧⋆5 . (3.18)

The associated quantized charge is found to be

𝑄𝐷3 =
1

(2𝜋)4 ∫ 𝐹5 =
2𝑙4
27𝜋

(𝑦1 − 𝑦2)(𝑦2 + 𝑦1 − 2). (3.19)

We have verified explicitly that the backgrounds presented above in eqs. (3.13)-(3.18) solve the full Type IIB supergravity equations 
of motion.

Let us close this section with brief words about the  = 1 SCFTs associated with any generic member of the 𝑌 𝑝,𝑞 family. After the 
construction of this family of Sasaki-Einstein manifolds [78], the dual SCFTs were constructed in [80], see also [81] for a summary.

The quiver associated is constructed in terms of two basic ‘unit-cells’ denoted by 𝜎, 𝜏 that are put together like Legos. 𝑌 𝑝,𝑞 has 
𝑝 unit cells, of which 𝑞 are of the 𝜎-type. There are bifundamental fields (𝑈𝛼, 𝑉 𝛼, 𝑌 , 𝑍) with 𝛼 = 1, 2 is an 𝑆𝑈 (2) index. All gauge 
nodes are 𝑆𝑈 (𝑁). The superpotential is constructed by summing cubic and quartic terms of the form

𝑊 ∼𝑊3 +𝑊4, 𝑊3 ∼ 𝜖𝛼𝛽 (𝑈𝛼𝐿𝑉
𝛽𝑌 +𝑈𝛼𝑅𝑉

𝛽𝑌 ), 𝑊4 ∼ 𝜖𝛼𝛽𝑍𝑈𝛼𝑅𝑌 𝑈
𝛽
𝐿
. (3.20)

The cubic terms are associated with 𝜎-cells and the quartic ones with 𝜏-cells. Imposing the vanishing of the NSVZ beta functions for 
the gauge groups and the superpotentials (consequently the vanishing of R-symmetry anomalies) leaves us with a two-dimensional 
space of anomalous dimensions.

There are some known deformations of the conformal quivers. For example, a quasi-marginal deformation that triggers a cascade 
[81]. Another possibility is to switch on a VEV represented by the parameter 𝑞, the R-symmetry fibration and the replacement of 
AdS5 by 𝑑𝑠25 as indicated in (3.13). Let us now discuss a different infinite family of backgrounds.

4. Deformed backgrounds in Type IIA

Let us begin this section by reviewing the general form of supersymmetric AdS5 backgrounds in massive Type IIA supergravity, 
dual to  = 1 SCFTs. Given such a background, we can embed the five-dimensional supergravity solution (2.3) using the framework of 
[66], which we will then summarize in a slightly modified form. Finally, we will present examples of several deformed backgrounds 
obtained in this way. The full massive IIA equations of motion and Bianchi identities have been explicitly checked for each new 
background discussed.

Supersymmetric AdS5 solutions in massive Type IIA supergravity were first classified in [69]. Subsequent work by the authors of 
[70] reduced the number of BPS equations controlling the classification, writing the metric in terms of a pair of functions 𝐷𝑠, 𝐷𝑢 as

𝑑𝑠210 = 𝑒
2𝑊

[
𝑑𝑠2

AdS5
+ 𝑒2𝐴(𝑑𝑣21 + 𝑑𝑣

2
2) +

1
3
𝑒−6𝜆𝑑𝑠23

]
(4.1)

𝑑𝑠23 = − 4
𝜕𝑠𝐷𝑠

𝐷𝜓2 − 𝜕𝑠𝐷̃𝑠𝑑𝑠2 − 2𝜕𝑢𝐷𝑠𝑑𝑢𝑑𝑠− 𝜕𝑢𝐷𝑢𝑑𝑢2,

where 𝐷𝑠, 𝐷𝑢 depend only on the coordinates (𝑣1, 𝑣2, 𝑠, 𝑢), and we have defined

𝐷̃𝑠 =𝐷𝑠 −
3
2
log 𝑠, and 𝐷𝜓 = 𝑑𝜓 − 1

2
⋆2 𝑑2𝐷𝑠. (4.2)

Note that the subscripts on the Hodge star ⋆2 and total derivative 𝑑2 restrict these operators to the coordinates (𝑣1, 𝑣2). In the 
examples we will discuss, this subspace describes a constant-curvature Riemann surface. The angular coordinate 𝜓 parameterizes a 
U(1) isometry of the spacetime, corresponding to an R-symmetry in the SCFT dual. We can express the warp factors appearing in the 
metric in terms of 𝐷𝑠, 𝐷𝑢 as

−𝜕𝑠𝐷𝑠 det(ℎ)𝑒𝐷𝑠 det(ℎ)
7

𝑒4𝑊 =
3det(ℎ)

, 𝑒2𝐴 =
24

, 𝑒−6𝜆 =
8𝑠det(𝑔)

, (4.3)
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where the determinants refer to the (𝑢, 𝑠) subspace,

det(𝑔) = 𝜕𝑢𝐷𝑢𝜕𝑠𝐷̃𝑠 − (𝜕𝑢𝐷𝑠)2, det(ℎ) = 𝜕𝑢𝐷𝑢𝜕𝑠𝐷𝑠 − (𝜕𝑢𝐷𝑠)2. (4.4)

The dilaton takes the form

𝑒2Φ = 𝑒6𝑊 𝑒−6𝜆, (4.5)

and the RR and NSNS field strengths are given in terms of 𝐷𝑠, 𝐷𝑢 as

𝐹0 = 36
√
2𝑠

𝜕2𝐷𝑠
𝜕𝑢(𝜕𝑠𝐷𝑢 − 𝜕𝑢𝐷𝑠), (4.6)

𝐹2 =
1
3
𝐹0 𝜉 ∧𝐷𝜓 − 𝑑

[
⋆2𝑑2𝐷𝑢 + 2

𝜕𝑢𝐷𝑠
𝜕𝑠𝐷𝑠

𝐷𝜓

]
+Δ2𝐷𝑢 𝑑𝑣1 ∧ 𝑑𝑣2

− 𝜕𝑢(𝑠𝑒𝐷𝑠det(𝑔))𝑑𝑣1 ∧ 𝑑𝑣2 +⋆2𝑑2(𝜕𝑢𝐷𝑠 − 𝜕𝑠𝐷𝑢) ∧ 𝑑𝑠,

𝐹4 =
1
3
𝐹2 ∧ 𝜉 ∧𝐷𝜓 − 1

36
𝑑
(√

2𝑠 𝑒𝐷𝑠det(ℎ)𝑑𝑣1 ∧ 𝑑𝑣2 ∧𝐷𝜓 − 2
√
2𝑠𝑑(⋆2𝑑2𝐷𝑠) ∧𝐷𝜓

)
+ 1

36
√
2𝑠

𝜕𝑢𝐷𝑠
𝜕𝑠𝐷𝑠

[
2𝑑𝑢 ∧ 𝑑(⋆2𝑑2𝐷𝑠) + 𝑒𝐷𝑠det(ℎ)𝑑𝑢 ∧ 𝑑𝑣1 ∧ 𝑑𝑣2 + 3𝑑(𝜕𝑢𝐷𝑠𝑒𝐷𝑠 ) ∧ 𝑑𝑣1 ∧ 𝑑𝑣2

]
∧𝐷𝜓

𝐻3 =
1
3
𝑑

[
𝜉 ∧𝐷𝜓 + 1

8
𝑒𝐷𝑠√
2𝑠
𝜕𝑢𝐷𝑠 𝑑𝑣1 ∧ 𝑑𝑣2

]
+ 1

36
√
2𝑠
𝑑𝑢 ∧ 𝑑 ⋆2 𝑑2𝐷𝑠 −

𝑒𝐷𝑠

12
det(𝑔) 𝜉 ∧ 𝑑𝑣1 ∧ 𝑑𝑣2.

Borrowing from the notation in [66], we have written the field strengths in terms of a one-form 𝜉,

𝜉 = − 1
6det(𝑔)

√
2𝑠

( 3
2𝑠
𝜕𝑢𝐷𝑠 𝑑𝑠+ det(ℎ)𝑑𝑢

)
. (4.7)

The functions 𝐷𝑠, 𝐷𝑢 are constrained by the Bianchi identities for the field strengths. The Bianchi identity for 𝐹0 requires it to be 
piece-wise constant, yielding a first differential equation for 𝐷𝑠 , 𝐷𝑢. The Bianchi identities for 𝐻3 and 𝐹2, respectively, then translate 
to two additional equations,

Δ2𝐷𝑠 = 𝜕𝑠(𝑠det(𝑔)𝑒𝐷𝑠 ) +
𝐹0
24
𝜕𝑠(𝑒𝐷𝑠 )√

2𝑠
, (4.8)

Δ2(𝜕𝑢𝐷𝑢) = 𝜕2𝑢 (𝑠det(𝑔)𝑒𝐷𝑠 ) +
𝑠𝐹0
36
𝜕𝑠(det(ℎ)𝑒𝐷𝑠 )√

2𝑠
. (4.9)

The Bianchi for 𝐹4 is satisfied automatically.

4.1. Embedding into IIA duals of  = 1 SCFTs

As shown in [66], five-dimensional minimal gauged supergravity can be embedded into the massive IIA system presented above 
by making the following substitutions

𝑑𝑠2
AdS5

→ 𝑑𝑠25, (4.10)

𝐹4 → 𝐹𝑔4 −
(
⋆5 − 1

3
 ∧𝜓) ∧ 𝑑𝑠√

2𝑠
+
√
2𝑠
3

 ∧ volΣ

𝐹2, 𝐻3 → 𝐹𝑔2 , 𝐻
𝑔
3 , 𝐹6, 𝐹8, → −⋆𝐹𝑔4 , ⋆𝐹

𝑔
2 ,

where 𝑑𝑠25 and  are the line element and two-form field strength of a given solution to the five-dimensional action (2.1), and the 
superscripts 𝑔 (𝑔 for gauging) denote the substitutions

𝐷𝜓 → 𝜓 =𝐷𝜓 − 3, (4.11)

taken inside of all potentials, before acting with total derivatives to compute the corresponding field strengths. In other words, if in 
the initial background one has

𝐻3 = 𝑑𝐵2, 𝐹2 = 𝐹0𝐵2 + 𝑑𝐶1, 𝐹4 = 𝑑𝐶3 +𝐵2 ∧ 𝐹2 −
1
2
𝐹0𝐵2 ∧𝐵2, (4.12)

then 𝐻𝑔
3 , 𝐹

𝑔
2 , 𝐹

𝑔
4 are computed here by first implementing (4.11) on 𝐵2, 𝐶1, 𝐶3 to obtain 𝐵𝑔2 , 𝐶

𝑔
1 , 𝐶

𝑔
3 , and then constructing the 
8

gauged field strengths from these new potentials. As an aside, note that we have chosen to write (4.10) in the form 𝐹4 → 𝐹𝑔4 + (⋯), 
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at the cost of introducing the term proportional to  ∧ volΣ, which is not present in [66, Eq. (3.17)].2 The results are the same. We 
are also using a different normalization of the five-dimensional gauge vector , resulting in additional factors of 3 compared to [66].

The 5d solution we are interested in embedding is of course the 𝑑𝑠25, , and  given in (2.3), as a mechanism to cap off the geometry 
and deform the dual SCFT. It is worth emphasizing that the calculations performed in [66] ensure that for any supersymmetric AdS5
solution in massive Type IIA, (4.1)-(4.8), one can make the substitutions (4.10) to implement this deformation. For 𝜇 = 0 (in which case 
(2.3) can be expressed as (2.9)) the resulting deformed SQFT dual will no longer be conformal, but will preserve some supersymmetry, 
and become effectively three-dimensional as it flows to the IR. We now consider several examples.

4.2. Application to reductions of 6d theories on Σ2

For the solutions to the system (4.1)-(4.8) which we are interested in, the coordinates (𝜓, 𝑠, 𝑢) describe a submanifold which is 
fibered over a Riemann surface Σ with coordinates (𝑣1, 𝑣2). This requires the warp factor 𝑒2𝐴 to separate into a product of functions 
on these two submanifolds, which we can accomplish by adopting the ansatz

𝐷𝑠 = 𝐹𝑠(𝑠, 𝑢) + 2𝐴0(𝑣1, 𝑣2), 𝐷𝑢 = 𝐹𝑢(𝑠, 𝑢) + 2𝐴̃0(𝑣1, 𝑣2) (4.13)

The Bianchi identity (4.8) then implies

Δ2𝐴0 = −𝜅𝑒2𝐴0 , (4.14)

where Δ2 = 𝜕2𝑣1 + 𝜕
2
𝑣2

, and 𝜅 is the curvature of the surface, which we parameterize as 𝜅 ∈ {−1, 0, 1}. An appropriate solution for 𝐴0
can be written

𝑒𝐴0 = 2
1 + 𝜅(𝑣21 + 𝑣

2
2)
. (4.15)

We will focus specifically on the hyperbolic case 𝜅 = −1. The function 𝐴̃0(𝑣1, 𝑣2) is actually unconstrained, since it does not contribute 
to 𝑠, 𝑢 derivatives of 𝐷𝑢, and the instances in which 𝐷𝑢 is acted on only by 𝑣1, 𝑣2 derivatives cancel against one another. The local 
metric and volume form on the Riemann surface can then be written

𝑑𝑠2Σ = 𝑒2𝐴0 (𝑑𝑣21 + 𝑑𝑣
2
2), volΣ = 𝑑𝐴Σ = 𝑒2𝐴0 𝑑𝑣1 ∧ 𝑑𝑣2, 𝐴Σ ≡⋆2𝑑2𝐴0. (4.16)

The one-form 𝐴Σ is precisely the connection appearing in 𝐷𝜓 ,

𝐷𝜓 = 𝑑𝜓 − 1
2
⋆2 𝑑2𝐷𝑠 = 𝑑𝜓 −𝐴Σ. (4.17)

Finally, note that for higher-genus examples, the volume 𝑉Σ of the Riemann surface is given by

𝑉Σ = ∫ volΣ = 4𝜋(𝑔 − 1). (4.18)

The separable ansatz (4.13) encompasses many interesting solutions for specific choice of 𝐹𝑠 and 𝐹𝑢, including not only those 
first introduced in [69] and [70], but also the reductions to IIA of the GMSW solution [82], the solution of BBBW [83], and that of 
Maldacena-Nuñez [84].

4.2.1. AFPRT example

First we consider deformations to an infinite family of backgrounds first introduced by Apruzzi, Fazzi, Passias, Rota and Tomasiello 
in [68,69] (abbreviated AFPRT). These are dual to non-Lagrangian SCFTs, and can be interpreted as twisted compactifications of a 
D6-D8-NS5 system on a negative curvature Riemann surface Σ. The 6d ‘parent’ SCFTs should be UV descriptions of linear quiver 
gauge theories. To obtain the AFPRT solutions from the general AdS5 massive IIA system, in (4.13) take

𝐹𝑠 = log
(
2𝛼(𝑧)2 sin2 𝜃

)
, 𝐹𝑢 =

𝛼̈(𝑧)
182𝜋2

log
(
2 1 + cos𝜃
1 − cos𝜃

)
, (4.19)

and transform the coordinates (𝑠, 𝑢) as

𝑢 = 𝛼(𝑧) cos𝜃, 𝑠 = 1
2

(
𝛼̇(𝑧)
18𝜋

)2
. (4.20)

These solutions are controlled by a single function 𝛼(𝑧), constrained as

𝛼(𝑧) = −162𝜋3 𝐹0. (4.21)

Recall 𝐹0 is the Romans mass. We allow it to be piece-wise constant with discontinuities at the positions of flavour D8 branes. The 
function 𝛼 is related to the rank function  in the associated 6d linear quiver theory by

2 In presenting the general system in (4.1)-(4.6), we have also written 𝐹4 differently from [66, Eqn. (2.31)], to put it in a form where gauging inside all total 
9

derivatives appearing reproduces 𝐹𝑔4 obtained from gauged potentials.
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(𝑧) = − 𝛼̈

81𝜋2
. (4.22)

Note the coordinate 𝑧 can be thought of like a continuum version of the direction along the quiver, in the sense developed in [85].

Following the embedding procedure to lift the five-dimensional solution (2.3) into this background, we obtain the new deformed 
solution [1]

d𝑠210 = 18𝜋
√

− 𝛼

6𝛼̈

[
d𝑠25 +

1
3 d𝑠

2
Σ − 𝛼̈

6𝛼 d𝑧
2 − 𝛼𝛼̈

6𝛼̇2−9𝛼𝛼̈

(
d𝜃2 + sin2 𝜃𝜓2)] , d𝑠2Σ =

4(d𝑣21+d𝑣
2
2)

(1−𝑣21−𝑣
2
2)
2 ,

𝜓 = d𝜓 − 3−𝐴Σ,  = 𝑞
(

1
𝑟2

− 1
𝑟2∗

)
d𝜙, 𝐴Σ = 2(𝑣1 d𝑣2−𝑣2 d𝑣1)

1−𝑣21−𝑣
2
2

. (4.23)

The dilaton is given by

𝑒−4Φ = 1
25317𝜋10

(
− 𝛼̈
𝛼

)3 (
2𝛼̇2 − 3𝛼𝛼̈

)2
, (4.24)

and the fluxes are

𝐻3 = d𝐵𝑔2 , 𝐹2 = 𝐹0𝐵
𝑔
2 + d𝐶𝑔1 , (4.25)

𝐹4 =
(
d𝐶𝑔3 +𝐵𝑔2 ∧ 𝐹2 −

1
2
𝐹0𝐵

𝑔
2 ∧𝐵

𝑔
2

)
− 𝛼̈

18𝜋
d𝑧 ∧

(
⋆5 − 1

3
 ∧𝜓)− 𝛼̇

54𝜋
 ∧ volΣ,

𝐵𝑔2 =
1
3
𝜉 ∧𝜓, 𝐶𝑔1 = 𝛼̈

162𝜋2
cos𝜃𝜓, 𝐶𝑔3 = 𝛼̇

162𝜋
𝜓 ∧ volΣ.

We have expressed these in terms of the one-form

𝜉 = 3𝜋
(
cos𝜃d𝑧− 2𝛼𝛼̇

2𝛼̇2 − 3𝛼𝛼̈
sin𝜃d𝜃

)
. (4.26)

The coordinate 𝑧 takes values in a finite interval, while the angles 𝜃, 𝜓 range from 0 to 𝜋 and 0 to 2𝜋, respectively, parameterizing a 
deformed two-sphere. Depending on the boundary conditions for 𝛼 on the 𝑧-interval, these solutions describe various brane systems, 
including:

• D6-branes at endpoints where 𝛼 has a single zero while 𝛼̈ ≠ 0.

• O6-D6 sources at endpoints where 𝛼̈ has a single zero, with 𝛼 ≠ 0.

• O8-D8 sources at single zeros of both 𝛼̈ and 2𝛼̇2 − 3𝛼𝛼̈.

If both 𝛼 and 𝛼̈ have single zeros, the (deformed) 𝑆2 shrinks smoothly and the metric is regular. For the moment, let us restrict 
attention to setups with these regular boundary conditions. So

𝛼 = 𝛼̈ = 0 at 𝑧 = 𝑧𝑖, 𝑧𝑓 , 𝑧 ∈ [𝑧𝑖, 𝑧𝑓 ]. (4.27)

In this case, the quantized 𝐻3 field strength evaluates to

𝑄NS5 =
1

(2𝜋)2 ∫ 𝐻3 =
(
𝑧− 2𝛼𝛼̇

2𝛼̇2 − 3𝛼𝛼̈

)|||||
𝑧𝑓

𝑧𝑖

= 𝑧𝑓 − 𝑧𝑖 (4.28)

Thus we restrict to 𝑧-intervals of integer-valued width. Moving to the Page charge associated to 𝐹2 , there are two-cycles on both Σ and 
the 𝑆2 defined by the coordinates (𝜃, 𝜓) to consider. Each are defined at fixed values 𝑧 = 𝑧∗, and at fixed points on the complementary 
two-manifold. First, we compute

𝑄D6 =
1
2𝜋 ∫

Σ

(𝐹2 −𝐵2𝐹0) = −
𝛼̈|𝑧∗
162𝜋2

cos𝜃∗ 𝑉Σ. (4.29)

We also have

𝑄D6 =
1
2𝜋 ∫

𝑆2

(𝐹2 −𝐵2𝐹0) = −
𝛼̈|𝑧∗
81𝜋2

. (4.30)

The interpretation of this flux quanta in terms of the number of D6-branes in the associated Hanany-Witten setup is somewhat subtle. 
Consider a linear quiver consisting of some number of rank-𝑁𝑘 gauge nodes, described by

(𝑧) = − 𝛼̈

81𝜋2
=𝑁𝑘 + (𝑁𝑘+1 −𝑁𝑘)(𝑧− 𝑘) for 𝑧 ∈ [𝑘,𝑘+ 1], 𝑘 ∈ℤ. (4.31)

Equation (4.30) only appears to correctly count the number of D6-branes at the integer interval boundaries, 𝑧∗ = 𝑘. To exclude 
additional D6-charges induced on D8 sources, we can implement the large gauge transformation
10

𝐵2 →𝐵2 − 𝑑[𝜋(𝑧− 𝑘) cos𝜃𝜓], (4.32)
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which, after using (4.21), has the effect of shifting (4.30) to

𝑄D6 = −
𝛼̈|𝑧∗
81𝜋2

+
𝛼|𝑧∗
81𝜋2

(𝑧∗ − 𝑘). (4.33)

For the rank function in (4.31) this evaluates to 𝑁𝑘, for any 𝑧∗ the 𝑘th interval. The Page charge associated to 𝐹4 evaluates to 
zero, signalling the absence of D4-branes. These remarks on the regularity and Page charges apply both to the original AdS5 × Σ
backgrounds and the deformed versions we have given in (4.23)-(4.25).

There are multiple sources of evidence that the undeformed backgrounds of this class are dual to compactifications of six-

dimensional  = (1, 0) SCFTs— specifically UV-completions of linear quiver gauge theories.3 First, the conjectured duality between 
corresponding AdS7 solutions and the six-dimensional linear quivers has passed a variety of checks, see for example [85], [86]. Sec-

ond, very simple analytic maps between each AdS5 ×Σ solution and a corresponding AdS7 solution exist [68], as well as holographic 
solutions interpolating along such a flow [87]. Third, direct comparison of observables between the AdS5 × Σ solutions and the re-

ductions of the 6d linear quivers shows a match in the appropriate limits (even though a quiver-like description of the 4d theories is 
not known) [87].

As an example, in appendix B we show that the anomaly polynomial for the reductions of 6d linear quiver theories reproduces 
the holographic central charge result at leading order. Now, recall that the latter is essentially set by the lower-dimensional Newton 
constant (𝐺5, here). This was hinted at already in the 1980s— see [88]. If we simply had a direct product space one would have 𝑎
proportional to 𝑙3∕𝐺5, with 1∕𝐺5 in turn proportional to the volume of the internal manifold. For metrics of the form (4.1), the warp 
factor 𝑒𝑊 instead acts as the effective AdS5 radius. Following the reasoning of [85] and others, we can deal with the dependence on 
internal coordinates by averaging over the space 𝑀5. The resulting formula for 𝑎 from gravity gives

𝑎 = 𝜋
8

1
𝐺10 ∫ 𝑒8𝑊 −2Φvol𝑀5

=
𝑉Σ

(6𝜋)5 ∫ −𝛼𝛼̈𝑑𝑧, (4.34)

where the factors of 𝑒Φ from the change between string and Einstein frames. Note that one has 𝑒8𝑊 rather than 𝑒3𝑊 because we have 
defined vol𝑀5

as the volume form for 𝑑𝑠2(𝑀5) without the overall 𝑒2𝑊 factor. For explicit choices of 𝛼(𝑧) and the associated quiver, 
we find that the reduction of the 6d anomaly polynomial 𝐼8 to the 4d polynomial 𝐼6 gives the same answer for 𝑎 as (4.34) (in the 
appropriate holographic, long-quiver limit).

This check may also tell us something about the 4d SCFTs we are deforming (or at least what they are not). A heuristic 4d quiver 
proposal for these theories was given in [87], but we find it fails to reproduce the leading-order coefficients agreed on by both the 
anomaly polynomial and holography. It seems likely to us that these 4d theories do not admit a quiver description, as described in 
more detail in appendix B.

4.2.2. BPT example

The solutions found by Bah, Passias and Tomasiello in [70] (which we abbreviate as BPT) can be obtained from (4.13) by choosing

𝐹𝑠 = log
[
8𝐹 2

0 𝑧
3(1 − 𝑘3)𝑝(𝑧)

]
, 𝐹𝑢 =

𝐹0
6
𝑧𝑘 log

[
2𝑝(𝑧)

𝑧3(1 − 𝑘3)

]
, (4.35)

𝑝(𝑧) = (𝑧0 − 𝑧)[3𝓁𝑧21 − 𝜅(𝑧
2 + 𝑧0𝑧+ 𝑧20)], (4.36)

where we have introduced new coordinates (𝑧, 𝑘) related to (𝑠, 𝑢) by

𝑢 = 𝐹0𝑧3(2 − 𝑘3) 𝑠 = 1
8
(𝐹0𝑧2𝑘2)2. (4.37)

Note 𝓁 = ±1 and 𝑧0, 𝑧1 are positive constants parameterizing this family of backgrounds. The physics of the solutions is quite rich, 
as they describe a system of D6-branes, D4-branes smeared in a continuous distribution, and O8-planes with D8-branes on them. In 
the following, we will restrict attention to the case

𝜅 = −1, 𝓁 = +1 (4.38)

for which the field-theoretic interpretation is best understood.4

Applying the embedding procedure outlined earlier, we deform these BPT backgrounds to obtain new solutions. The new metric 
is

𝑑𝑠210 = 𝑒
2𝑊

[
𝑑𝑠25 −

𝑝′(𝑧)
9𝑧2

𝑑𝑠2Σ + 𝑑𝑠23

]
, d𝑠2Σ =

4(d𝑣21 + d𝑣22)

(1 − 𝑣21 − 𝑣
2
2)

2
, (4.39)

𝑑𝑠23 = − 𝑝′(𝑧)
3𝑧𝑝(𝑧)

𝑑𝑧2 − 𝑧𝑝′(𝑧)
3𝑝(𝑧) − 𝑧𝑝′(𝑧)

[
𝑘𝑑𝑘2

1 − 𝑘3
+ 4

3
𝑝(𝑧)(1 − 𝑘3)

3𝑝(𝑧) − 𝑧𝑝′(𝑧)(1 − 𝑘3)
𝜓2

]
, (4.40)

3 This applies to the case of regular boundary conditions for 𝛼. These can, however, be relaxed if the 6d quiver is suitably modified— see the next example.
4 Taking, for example, 𝓁 = 𝜅 = 1, the scaling of the holographic 𝑎-anomaly suggests instead a five-dimensional ‘parent’ theory rather than a six-dimensional origin 
11

as seen here.
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𝜓 = d𝜓 − 3−𝐴Σ,  = 𝑞

(
1
𝑟2

− 1
𝑟2∗

)
d𝜙, 𝐴Σ =

2(𝑣1 d𝑣2 − 𝑣2 d𝑣1)
1 − 𝑣21 − 𝑣

2
2

, (4.41)

𝑒4𝑊 = −𝑧
𝑘𝑝′(𝑧)

[3𝑝(𝑧) − 𝑧𝑝′(𝑧)(1 − 𝑘3)], (4.42)

where 𝑑𝑠25,  are as in (2.3), and the dilaton is given by

𝑒−4Φ = 𝐹 4
0 𝑧

3𝑘5
−𝑝′(3𝑝− 𝑧𝑝′)2

[3𝑝− 𝑧𝑝′(1 − 𝑘3)]3
. (4.43)

The various mIIA fluxes are

𝐻3 = 𝑑𝐵
𝑔
2 , 𝐹2 =𝐹0𝐵

𝑔
2 + 𝑑𝐶

𝑔
1 , (4.44)

𝐹4 =
(
𝑑𝐶𝑔3 +𝐵𝑔2 ∧ 𝐹2 −

1
2
𝐹0𝐵

𝑔
2 ∧𝐵

𝑔
2

)
+ 𝐹0𝑧𝑘𝑑(𝑧𝑘) ∧

(
⋆5 − 1

3
 ∧𝜓)+

𝐹0
6
𝑧2𝑘2  ∧ volΣ,

𝐵𝑔2 =
1
3
𝜉 ∧𝜓+ 𝑘

9𝑧
(3𝑧2𝜅 − 𝑝′)volΣ,

𝐶𝑔1 = 𝐹0
𝑧𝑘

3
3𝑝+ (1 − 𝑘3)𝑧𝑝′

3𝑝− (1 − 𝑘3)𝑧𝑝′
𝜓, 𝐶𝑔3 =

𝐹0
18
𝑧2𝑘2

(
4𝑧−2𝑝′𝑝+ 9𝑝+ (1 − 𝑘3)𝑧𝑝′

3𝑝− (1 − 𝑘3)𝑧𝑝′

)
𝜓 ∧ volΣ,

where the one-form 𝜉 in this case is

𝜉 = −𝑘𝑑𝑧− 3𝑝+ 𝑧𝑝′

3𝑝− 𝑧𝑝′
𝑧𝑑𝑘. (4.45)

Positivity of the metric can be ensured by restricting the range of the coordinates as

0 ≤ 𝑘 ≤ 1, 0 ≤ 𝑧 ≤ 𝑧0. (4.46)

Note that for the choice of parameters (4.38), 𝑧0 is the only real zero of 𝑝, and 𝑝′ = −3(𝑧2 +𝑧21) has no real zeros. In [70] a careful study 
is made of the original backgrounds near the endpoints of the 𝑧 and 𝑘 intervals. The system of branes identified can be summarized 
as follows:

• 2𝑄D8-many D8-branes inside an O8 plane positioned at 𝑘 = 0, with

𝑄D8 = 8 − 2𝜋𝐹0 (4.47)

• 𝑄D6-many D6-branes, positioned at the point (𝑘 = 1, 𝑧 = 𝑧0) and extended on AdS5 and Σ. The integer 𝑄D6 is related to the 
solution parameters by

𝑄D6 =
1
2𝜋 ∫

2
(𝐹2 −𝐵2𝐹0) =

2𝑧0
3
𝐹0, (4.48)

where 2 is the appropriate two-cycle, which is locally a sphere near (𝑘 = 1, 𝑧 = 𝑧0).

• 𝑄D4-many D4-branes at 𝑧 = 0. They are extended on AdS5 and smeared in a continuous distribution over the Riemann surface. 
In the dual field theory, they play the role of simple punctures in the reduction on Σ. In terms of the volume 𝑉Σ = 4𝜋(𝑔 − 1) of 
the Riemann surface

𝑄D4 =
1

(2𝜋)2 ∫4
(𝐹4 −𝐵2 ∧ 𝐹2 +

1
2
𝐹0𝐵2 ∧𝐵2) =

𝑉Σ𝑧
2
1

18𝜋2
𝐹0, (4.49)

where 4 is a four-cycle at 𝑧 = 0 built from Σ and a local two-sphere.

Note that at the other boundaries, so 𝑧 = 𝑧0 away from 𝑘 = 0 or 1, and 𝑘 = 1 away from the 𝑧 = 0 or 𝑧0, the 𝜓 -circle shrinks smoothly. 
In addition to the quantized charges given above there is the number 𝑄NS5 of NS5-branes, whose near-horizon yields the AdS5
background. This is found by integrating the NS-NS flux 𝐻3 and is related to the other flux quanta by 2𝜋𝐹0𝑄NS5 =𝑄D6.

The regularity analysis and charge quantization is completely analogous for the deformed backgrounds, (4.39)-(4.44).

Now, in the ‘punctureless’ case 𝑄D4 = 0 (obtained by setting the parameter 𝑧1 to zero) these BPT backgrounds are an instance of 
(4.23)-(4.25). Renaming the coordinate 𝑧 appearing there to 𝜁 , the function 𝛼 required to get the BPT solution is

𝛼 = (3𝜋)3𝐹0(𝜁30 − 𝜁3), (4.50)

with constants identified as 𝑧0 = 3𝜋𝜁0. To see this one should use the change of coordinates

𝑧𝑘 𝑧30 − (2 − 𝑘3)𝑧3
12

𝜁 =
3𝜋
, cos𝜃 =

𝑧30 − 𝑧
3𝑘3

. (4.51)
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Recall the six-dimensional origin of the AFPRT backgrounds. With 𝑛 non-zero, the backgrounds of BPT describe an analogous reduction 
of a six-dimensional (1, 0) theory on a Riemann surface, but with simple punctures. These are the 4d SCFTs which we are deforming via 
the solutions in (4.39)-(4.44). The parent six-dimensional theories are E-string theories coupled to quiver gauge theories, as described 
in [70]. The appearance of an additional, exceptional flavour group in the 6d theories is related to the relaxation of regular boundary 
conditions for 𝛼, interpreted as O8-D8 sources at that endpoint of the 𝑧-interval (at 𝜁 = 0, in the example above).

5. Deformed backgrounds in 11d

In this section, we study the embedding of the solution in (2.3) into the family of solutions introduced by Lin, Lunin and Maldacena 
(LLM) [71] and also those of Gaiotto and Maldacena (GM) [72] in the electrostatic form. These embeddings are accomplished using 
the fact that minimal, 𝐷 = 5 gauged supergravity is a consistent truncation of Romans’ 𝐷 = 5 𝑆𝑈 (2) × 𝑈 (1) supergravity, which 
can in turn be uplifted to 𝐷 = 11 supergravity using the results of [65]. Thus, we begin with a review of the bosonic content of 
the 5d Romans’ supergravity and the embedding of (2.3) into it. We will also describe the dual field theory interpretation of these 
constructions in terms of quiver theories.

5.1. Embedding via 5d Romans supergravity

The bosonic field content of Romans’ 𝐷 = 5 𝑆𝑈 (2) ×𝑈 (1) gauged supergravity [89] is a scalar field 𝑋, a metric, 𝑈 (1) and 𝑆𝑈 (2)
gauge fields 𝐵 and 𝐴𝑖, 𝑖 = 1, 2, 3, and a complex two-form 𝐶 that is charged under the 𝑈 (1) gauge field. The corresponding field 
strengths for these potentials are

𝐺 = d𝐵,

𝐹 𝑖 = d𝐴𝑖 − 1√
2
𝑚𝜖𝑖𝑗𝑘𝐴

𝑗 ∧𝐴𝑘,

𝐹 = d𝐶 + 𝑖𝑚𝐵 ∧𝐶, (5.1)

where 𝑚 is related to the gauge coupling of the non-Abelian field. The equations of motion for the scalar and the gauge fields will 
read

d
(
𝑋−1⋆d𝑋

)
= 1

3𝑋
4⋆𝐺 ∧𝐺 − 1

6𝑋
−2 (⋆𝐹 𝑖 ∧ 𝐹 𝑖 +⋆𝐶 ∧ 𝐶̄)

− 4
3𝑚

2 (𝑋2 −𝑋−1)⋆1,

d
(
𝑋4⋆𝐺

)
= −1

2𝐹
𝑖 ∧ 𝐹 𝑖 − 1

2 𝐶̄ ∧𝐶,

𝐷(𝑋−2⋆𝐹 𝑖) = −𝐹 𝑖 ∧𝐺,

𝑋2⋆𝐹 = 𝑖𝑚𝐶 , (5.2)

in which 𝐷(𝑋−2 ⋆ 𝐹 𝑖) ≡ d
(
𝑋−2 ⋆𝐹 𝑖

)
+
√
2𝑚𝜖𝑖𝑗𝑘𝐴𝑘 ∧ (𝑋−2 ⋆ 𝐹 𝑗 ), and 𝜖01234 = +1 for the five-dimensional space. 𝐶̄ is the complex 

conjugate of 𝐶 . The Einstein equation is

𝑅𝜇𝜈 = 3𝑋−2 𝜕𝜇𝑋 𝜕𝜈𝑋 − 4
3𝑚

2 (𝑋2 + 2𝑋−1)𝑔𝜇𝜈
+1

2𝑋
4 (𝐺𝜇𝜌𝐺𝜈𝜌 −

1
6𝑔𝜇𝜈 𝐺𝜌𝜎𝐺

𝜌𝜎) + 1
2𝑋

−2 (𝐹 𝑖 𝜌𝜇 𝐹
𝑖
𝜈𝜌 −

1
6𝑔𝜇𝜈 𝐹

𝑖
𝜌𝜎𝐹

𝑖𝜌𝜎)

+ 1
2𝑋

−2 (𝐶(𝜇
𝜌 𝐶̄𝜈)𝜌 −

1
6𝑔𝜇𝜈 𝐶𝜌𝜎𝐶̄

𝜌𝜎) . (5.3)

These equations of motion can be derived from the following 5d Lagrangian

 =𝑅⋆1− 3𝑋−2⋆d𝑋 ∧ d𝑋 − 1
2𝑋

4⋆𝐺 ∧𝐺 − 1
2𝑋

−2 (⋆𝐹 𝑖 ∧ 𝐹 𝑖 +⋆𝐶(2) ∧ 𝐶̄)

− 𝑖

2𝑚
𝐶 ∧ 𝐹 − 1

2𝐹
𝑖 ∧ 𝐹 𝑖 ∧𝐵 + 4𝑚2(𝑋2 + 2𝑋−1)⋆1 . (5.4)

Note that if we restrict the various fields as

𝑋 = 1, 𝐹 1 = 𝐹 2 = 𝐶 = 0, 𝐹 3 =
√
2𝐺 (5.5)

the equations of motion (5.2) truncate to the equations of motion for minimal 𝐷 = 5 gauged supergravity, (2.2) with the U(1) gauge 
fields  and 𝐵 identified. We are interested in the soliton solution in (2.3), which we repeat here for convenience:

𝑑𝑠2 = 𝑟
2

𝑙2
(−𝑑𝑡2 + 𝑑𝑣21 + 𝑑𝑣

2
2) +

𝑙2𝑑𝑟2

𝑟2𝑓 (𝑟)
+ 𝑟

2

𝑙2
𝑓 (𝑟)𝑑𝜙2, 𝑓 (𝑟) = 1 − 𝜇𝑙

2

𝑟4
− 𝑞

2𝑙2

𝑟6
,

𝐵 = = 𝑞

(
1
𝑟2

− 1
𝑟2⋆

)
𝑑𝜙, 𝐺 =  = −2𝑞

𝑟3
𝑑𝑟 ∧ 𝑑𝜙. (5.6)
13

Now we present the uplift to the LLM setup.
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5.2. LLM embedding

The geometry of the most general AdS5 solutions in 𝐷 = 11 supergravity dual to 4d  = 2 SCFTs was first presented in [71]. It 
was proven that these supergravity solutions are determined by solutions to a continuous three-dimensional Toda equation. In [90], 
the same conditions were found from a different perspective.

Following [65], we consider the embedding of the solution of the previous section (5.5, 5.6) into the LLM background in 11d. The 
result is

𝑑𝑠211
𝜅2∕3

= 𝑒2𝜆
[
4𝑑𝑠25 + 𝑦

2𝑒−6𝜆 𝐷𝜇𝑖 𝐷𝜇
𝑖 + 4

1 − 𝑦𝜕𝑦𝐷0
𝐷𝜒2 −

𝜕𝑦𝐷0

𝑦
𝑑𝑦2 −

𝜕𝑦𝑒
𝐷0

𝑦
(𝑑𝑣21 + 𝑑𝑣

2
2)

]

𝐷𝜒 = 𝑑𝜒 + 𝑎1 +,  = 𝑞

(
1
𝑟2

− 1
𝑟2⋆

)
𝑑𝜙, 𝑎1 =

1
2

(
𝜕𝑣2𝐷0 𝑑𝑣1 − 𝜕𝑣1𝐷0 𝑑𝑣2

)
. (5.7)

Where 𝜅 is the Newton constant in 11d, 𝑑𝑠25 is the line element in (5.6), the functions 𝜆(𝑣2, 𝑣2, 𝑦) and 𝐷0(𝑣1, 𝑣2, 𝑦) are related as

𝑒−6𝜆 =
−𝜕𝑦𝐷0

𝑦(1 − 𝑦𝜕𝑦𝐷0)
, (5.8)

and we have parameterized the deformed two-sphere by

𝐷𝜇1 = 𝑑𝜇1 +
√
2𝜇2𝐴(3) = 𝑑𝜇1 + 2𝜇2 (5.9)

𝐷𝜇2 = 𝑑𝜇2 −
√
2𝜇1𝐴(3) = 𝑑𝜇2 − 2𝜇1 (5.10)

𝐷𝜇3 = 𝑑𝜇3, (5.11)

with the 𝜇𝑖 are subject to the constraint 𝛿𝑖𝑗𝜇𝑖𝜇𝑗 = 1. For example, one can select

𝜇1 = sin𝜃 cos𝜑, 𝜇2 = sin𝜃 sin𝜑, 𝜇3 = cos𝜃. (5.12)

The four-form field strength is given by

𝐺4 =𝐺
𝑔
4 + 𝛽2 ∧ + 𝛽1 ∧⋆5 , (5.13)

where 𝐺𝑔4 can be obtained from the four-form field strength of the LLM background by taking 𝑑𝜒 + 𝑎1 → 𝐷𝜒 = 𝑑𝜒 + 𝑎1 + and 
𝑑𝜇𝑖→𝐷𝜇𝑖. Namely

𝐺𝑔4 = 2𝜅 vol 𝑆̃2 ∧
[
𝐷𝜒 ∧ 𝑑(𝑦3𝑒−6𝜆) + 𝑦(1 − 𝑦2𝑒−6𝜆)𝑑𝑎1 −

1
2
𝜕𝑦𝑒

𝐷0 𝑑𝑣1 ∧ 𝑑𝑣2
]

(5.14)

vol 𝑆̃2 = 1
2
𝜀𝑖𝑗𝑘𝜇𝑖𝐷𝜇𝑗 ∧𝐷𝜇𝑘, (5.15)

and we have defined

𝛽1 = 4𝜅 𝑑(𝜇3𝑦), (5.16)

𝛽2 = −4𝜅
[
𝑦3

2
𝑒−6𝜆vol 𝑆̃2 +

(
𝜇3𝑑𝑦+ 𝑦(1 − 𝑦2𝑒−6𝜆)𝑑𝜇3

)
∧𝐷𝜒 +

𝜇3
2
𝜕𝑦𝑒

𝐷0 𝑑𝑣1 ∧ 𝑑𝑣2
]
. (5.17)

When our deformation is turned off (𝜇 = 𝑞 = = 0), the 4d 𝑁 = 2 SCFT duals enjoy an 𝑆𝑈 (2) ×𝑈 (1) R-symmetry, which is manifest 
as the isometries of the internal metric. The isometries of the two-sphere parameterised by the 𝜇𝑖 correspond to the 𝑆𝑈 (2) part of 
the R-symmetry. The isometry 𝑆1

𝜒 corresponds to the 𝑈 (1) R-symmetry. The embedding we have presented twists a particular 𝑈 (1)
inside of this original 𝑆𝑈 (2) ×𝑈 (1) symmetry with the 𝑈 (1)𝜙 of the 5d soliton solution. This is reflected in the coefficients by which 
the one-form  contributes to 𝐷𝜒 and the 𝐷𝜇𝑖.

5.3. The electrostatic case

Let us move the new background in (5.7)-(5.16) to the electrostatic notation of e.g. [72]. This entails a transformation from the 
variables [𝑦, 𝑣1, 𝑣2, 𝐷0(𝑣1, 𝑣2, 𝑦)] to [𝜎, 𝜂, 𝑉 (𝜎, 𝜂)], assuming an additional isometry in the [𝑣1, 𝑣2] plane. In fact, defining

𝑣1 =𝑅 cos𝛽, 𝑣2 =𝑅 sin𝛽, 𝜒 = 𝜒 + 𝛽, 𝛽 = −𝛽 (5.18)

and imposing that 𝛽 is the isometry direction, we have the following Backlünd transformation,

𝑅2𝑒𝐷0(𝑅,𝑦) = 𝜎2, 𝑦 = 𝜎𝜕𝜎𝑉 = 𝑉̇ , log𝑅 = 𝜕𝜂𝑉 = 𝑉 ′. (5.19)
14

Following the steps detailed in the appendix A of the paper [91] we find that the eleven dimensional metric reads
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𝑑𝑠211
𝜅2∕3

=𝑓1
[
4𝑑𝑠25 + 𝑓2𝐷𝜇𝑖𝐷𝜇

𝑖 + 𝑓3(𝑑𝜒 +)2 + 𝑓4(𝑑𝜎2 + 𝑑𝜂2) + 𝑓5
(
𝑑𝛽 + 𝑓6𝑑𝜒 + 𝑓6)2 ],

𝑓1 =
(
𝑉̇ Δ̃
2𝑉 ′′

) 1
3
, 𝑓2 =

2𝑉 ′′𝑉̇

Δ̃
, 𝑓3 =

4𝜎2
Λ
, 𝑓4 =

2𝑉 ′′

𝑉̇
,

𝑓5 =
2Λ𝑉 ′′

𝑉̇ Δ̃
, 𝑓6 =

2𝑉̇ 𝑉̇ ′

𝑉 ′′Λ
, 𝑓7 = − 𝑉̇

2𝑉 ′′

Δ̃
, 𝑓8 =

1
2

(
𝑉̇ 𝑉̇ ′

Δ̃
− 𝜂

)
,

Δ̃ = Λ(𝑉 ′′)2 + (𝑉̇ ′)2, Λ= 2𝑉̇ − 𝑉
𝑉 ′′ . (5.20)

Defining 𝐷𝜒 = 𝑑𝜒 + the four-form field strength can be written

𝐺4 =4𝜅 𝑑
[
𝑓7𝐷𝜒 + 𝑓8𝑑𝛽

]
∧ vol𝑆̃2 + 4𝜅 𝑑(𝜇3𝑉̇ ) ∧⋆5 (5.21)

+ 8𝜅(𝑓7𝐷𝜒 + 𝑓8𝑑𝛽) ∧ 𝑑𝜇3 ∧ − 4𝜅
[
𝑑(𝜇3𝑉̇ ) ∧𝐷𝜒 + 𝑑(𝜇3𝜂) ∧ 𝑑𝛽

]
∧ .

Then, reducing to Type IIA along the 𝛽-direction to preserve SUSY, as explained in [91], we find the string frame background,

𝑑𝑠2 = 𝑓
3
2
1 𝑓

1
2
5

[
4𝑑𝑠25 + 𝑓2𝐷𝜇𝑖𝐷𝜇

𝑖 + 𝑓4(𝑑𝜎2 + 𝑑𝜂2) + 𝑓3𝐷𝜒2
]
,

𝑒
4
3 Φ = 𝑓1𝑓5, 𝐻3 = 4𝜅 𝑑

[
𝑓8vol𝑆̃2 − 𝜂𝜇3] , 𝐶1 = 𝑓6𝐷𝜒,

𝐶3 = 4𝜅𝑓7𝐷𝜒 ∧ vol𝑆̃2 + 4𝜅 𝜇3𝑉̇
(
⋆5 −𝐷𝜒 ∧) .

(5.22)

We have used the relation 𝑑[vol𝑆̃2] = −2𝑑𝜇3 ∧ . Hence

𝐹4 = 𝑑𝐶3 −𝐻3 ∧𝐶1 = 4𝜅 𝑑
[
𝑓7𝐷𝜒 ∧ vol𝑆̃2 + 𝜇3𝑉̇

(
⋆5 −𝐷𝜒 ∧ )]−𝐻3 ∧𝐶1.

In the 𝑟 →∞ limit, the background asymptotes to the original GM background. In this limit, the 5d subspace in 5.22 with metric 𝑑𝑠25
reduces to AdS5, and the fibered sphere 𝑆̃2 can be written as a round sphere 𝑆2 by absorption of the constant factors in the fibered 
metric. This procedure can be done locally in the 𝑟 →∞ limit. Page charges of the background solution can be calculated in this limit 
following [72,91], which we will review in the next section. These will be the only relevant brane charges present in the background, 
as the deformation does not introduce any new cycles carrying relevant fluxes.

5.3.1. Rank function and Page charges

Boundary conditions for the function 𝑉 (𝜎, 𝜂) encode the data of a particular dual linear-quiver field theory, via a Rank function. 
The formalism is described in [92] and [91], and we provide a very brief summary here. It is in this logic that we have an infinite 
number of background solutions in this family, each one of them associated with a distinct 4d linear quiver  = 2 SCFT. In our 
configuration, these UV fixed points are deformed by compactification on the 𝜙-circle into a confining QFT.

We are interested in solutions of the Laplace equation

1
𝜎
𝜕𝜎(𝜎𝜕𝜎𝑉 ) + 𝜕2𝜂𝑉 ≡ 𝑉 + 𝜎2𝑉 ′′ = 0. (5.23)

Suitable boundary conditions must be imposed on 𝑉 (𝜎, 𝜂). We choose the following conditions

𝑉̇
|||𝜂=0,𝑃 = 0, 𝑉̇ |𝜎=0 =(𝜂), 𝑉

|||𝜎→∞
= 0 (5.24)

We can reproduce a linear quiver consisting of 𝑃 − 1 nodes associated to 𝑆𝑈 (𝑁𝑖) vector multiplets by choosing the rank function 
[91,92] as

(𝜂) =
⎧⎪⎨⎪⎩

𝑁1𝜂 𝜂 ∈ [0,1]
𝑁𝑖 + (𝑁𝑖+1 −𝑁𝑖)(𝜂 − 𝑖) 𝜂 ∈ [𝑖, 𝑖+ 1] 𝑖 = 1,⋯ , 𝑃 − 2

𝑁𝑃−1(𝑃 − 𝜂) 𝜂 ∈ [𝑃 − 1, 𝑃 ],
(5.25)

so that the range of 𝜂 is between 0 and the integer 𝑃 . For this choice of rank function, one has

𝑉 (𝜎, 𝜂) = −
∞∑
𝑛=1

𝑛 sin
(
𝑛𝜋

𝑃
𝜂

)
𝐾0

(
𝑛𝜋

𝑃
𝜎

)
, (5.26)

𝑛 = 2
𝑃

𝑃

∫
0

(𝜂) sin
(
𝑛𝜋

𝑃
𝜂

)
𝑑𝜂 = 2𝑃

(𝑛𝜋)2

𝑃∑
𝑘=1
𝑏𝑘 sin

(
𝑛𝜋𝑘

𝑃

)
, 𝑏𝑘 = 2𝑁𝑘 −𝑁𝑘+1 −𝑁𝑘−1,

with 𝐾0(𝜎) the modified Bessel function of the second kind and 𝑁𝑖 = 0 for 𝑖 = 0 and 𝑖 = 𝑃 . Now we quote the Page charges associated 
15

to different D-branes in the bulk geometry. The details of the calculation can be found in Appendix C.



Nuclear Physics, Section B 1006 (2024) 116659D. Chatzis, A. Fatemiabhari, C. Nunez et al.

• There are quantized charges of the NS5 branes in the background,

𝑄NS5 = − 1
(2𝜋)2 ∫

𝑆3

𝐻3 = 𝑃 , (5.27)

with 𝑆3 being parameterised by the (𝜂, 𝑆̃2) coordinates in the metric of 5.22

• There are D6 branes in each interval of 𝜂 = [𝑖, 𝑖 + 1] with the corresponding Page charges

𝑄𝑖
𝐷6 = − 1

2𝜋 ∫̃
𝑆2

𝐹2 = 2𝑁𝑖 −𝑁𝑖−1 −𝑁𝑖+1. (5.28)

The integration contour is given in the Appendix C. These branes support the flavour degrees of freedom in the dual quiver field 
theory.

• We can also define a quantized Page charge for D4 branes

𝑄𝑖
𝐷4 = − 1

(2𝜋)3 ∫
S2×S̃

2

𝐹4 = − 1
(2𝜋)3 ∫

S2×S̃
2

(𝐹4 −𝐵2 ∧ 𝐹2) =𝑁𝑖 −𝑁𝑖−1. (5.29)

The choice of integration contour is discussed in Appendix C. This is the total amount of charge of D4 branes, including the ‘true’ 
colour D4 present in the background and the D4 charge induced on the D6 and NS branes. The ‘true’ D4 charge in the interval 
[𝑖, 𝑖 +1], related to the colour degrees of freedom in the QFT, is 𝑁𝑖. These are interpreted as colour branes and support the vector 
multiplets in the dual QFT.

Let us provide a brief interpretation of the associated field theory. The electrostatic backgrounds in (5.22) whose functions are written 
in terms of a rank function, as in (5.26) admit a very simple field theory dual. In fact, they can be thought as the field theory associated 
with the low-energy limit of a Hanany-Witten set-up consisting of 𝑃 NS five branes, that bound 𝑁𝑘 D4 branes in the k-th interval. 
There are 𝐹𝑘 = (2𝑁𝑘−𝑁𝑘+1 −𝑁𝑘−1) D6 branes in the same interval. The dual UV-SCFT is an  = 2 quiver with (𝑃 −1) gauge nodes of 
rank 𝑁𝑘 and 𝐹𝑘 flavours. These UV SCFTs are deformed by the presence of a VEV (proportional to the parameter 𝑞). The deformation 
introduces the fibration of a diagonal U(1) group inside the R-symmetry with the compact 𝜙-direction. This is the interpretation of 
the infinite family of backgrounds in (5.22).

The SCFTs associated with the more generic backgrounds in (5.7) is slightly more elaborated, in the sense that the UV SCFT is 
non-Lagrangian. These QFTs were uncovered by Gaiotto in [93]. The deformation on those SCFTs is again via a VEV for an 𝑈 (1)
R-symmetry current. This is holographically realised, as above, by the fibration between a diagonal 𝑈 (1) group in the R-symmetry 
and the compact 𝜙-direction. This triggers a flow ending in a confining and gapped system.

Let us now study non-perturbative aspects of all of the RG-flows in QFTs associated with the backgrounds in the previous sections.

6. Observables

In this section we will calculate a plethora of observables in the field theories dual to the new families of supergravity backgrounds 
introduced in sections 3 and 4. We will review how the calculations are realized holographically and then present the results for each 
case. An important feature highlighted here is the universality of many of the observables. Although from the geometric point of view 
this is to be expected by construction, we appreciate the fact that even though the dual QFT𝑠 are very different, they all bear certain 
common characteristics. A significant example being the key signatures of confinement exhibited by all of the QFTs obtained from our 
deformation procedure. This feature can be attributed as a consequence of the Gauntlett and Varela conjecture [79] about consistent 
Kaluza-Klein truncations of wrapped products of AdS spaces with Riemannian manifolds. We will comment further on this in the 
discussion section.

6.1. Wilson loop

To compute the Wilson loop holographically, we embed a probe string with fixed endpoints at 𝑥1 = ±𝐿∕2 and 𝑟 =∞, which enters 
the bulk in a U-shaped fashion (see [94]) while keeping the rest of the coordinates constant. Choosing to parameterise the worldsheet 
as 𝜏 = 𝑡, 𝑥1 = 𝜎 while letting 𝑟 = 𝑟(𝑥1), in each example the induced metric on the string is:

d𝑠2ind = − 𝑟
2

𝑙2
d𝑡2 +

(
𝑟2

𝑙2
+ 𝑙2

𝑟2𝑓 (𝑟)
𝑟′2
)
d𝑥21. (6.1)

We emphasize that because the string embedding extends only in the ÂdS5 subspace, common to all of the backgrounds, (6.1) is 
going to be the same for every case covered in this paper, modulo an overall constant factor depending on the internal coordinates. 
This is responsible for the universal behaviour of the Wilson loop. The Nambu-Goto action for the probe string takes the form:

𝑆NG = 
′

𝐿∕2

d𝑥1
√
𝐹 2(𝑟) +𝐺2(𝑟)𝑟′2, (6.2)
16

2𝜋𝛼 ∫
−𝐿∕2
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Fig. 1. Plots of the length and energy of separation of the quark-anti-quark system (6.6) as a function of the turning point of the string 𝑟0, for the deformed AdS× S5
case. The parameters are fixed to 𝑙 = 𝜇 = 𝑞 = 1. We emphasize that the results depicted in these plots, as well as Fig. 2, are the same for all the families of solutions 
we presented.

where we introduce the functions:

𝐹 (𝑟) = 𝑟
2

𝑙2
, 𝐺(𝑟) = 1√

𝑓 (𝑟)
. (6.3)

The fact that 𝐹 (𝑟⋆) = 𝑟2⋆∕𝑙
2 ≠ 0 reveals a nonzero effective tension of the chromoelectric string and already hints at confining be-

haviour [95–98]. Following [95,97] we can write an approximate expression for the length of separation 𝐿̂ of the quark anti-quark 
pair, as a function of the turning point of the string (denoted by 𝑟0):

𝐿̂(𝑟0) =
𝜋𝐺(𝑟)
𝐹 ′(𝑟)

||||𝑟0 = 𝑙2𝜋

2𝑟
√
𝑓 (𝑟0)

=
𝜋𝑙2𝑟20

2
√
𝑟60 − 𝜇𝑙

2𝑟20 − 𝑞
2𝑙2
. (6.4)

Studying this expression we get further evidence for confinement: As the string reaches the end of the spacetime, that is 𝑟0 → 𝑟⋆, 
𝐿̂(𝑟0) diverges, allowing for an infinite separation of the pair. We can then calculate the effective potential, see [99], which controls 
the equation of motion of the string5:

𝑉eff (𝑟) =
𝐹 (𝑟)

𝐹 (𝑟0)𝐺(𝑟)

√
𝐹 2(𝑟) − 𝐹 2(𝑟0) =

√
𝑟4 − 𝑟40
𝑟20𝑙

2𝑟

√
𝑟6 − 𝑙2(𝜇𝑟2 + 𝑞2). (6.5)

This diverges ∼ 𝑟4 as 𝑟 →∞ and vanishes as 𝑟 → 𝑟0, satisfying the conditions for confinement [99]. Then one can write the separation 
and the energy6 of the pair as the following integrals (Fig. 1):

𝐿𝑄𝑄(𝑟0) = 2

∞

∫
𝑟0

d𝑟
𝑉eff (𝑟)

= 2𝑙2𝑟20

∞

∫
𝑟0

d𝑟𝑟√(
𝑟4 − 𝑟40

) [
𝑟6 − 𝑙2(𝑞2 + 𝑟2𝜇)

] , (6.6)

𝐸𝑄𝑄(𝑟0) =
𝑟20
𝑙2
𝐿𝑄𝑄(𝑟0) + 2

∞

∫
𝑟0

d𝑟

√
𝑟4 − 𝑟40

𝑟2
√
𝑓 (𝑟)

− 2

∞

∫
𝑟⋆

d𝑟√
𝑓 (𝑟)

, (6.7)

where in the case of 𝑞 = 𝜇 = 0 we see that the length and energy reduce to the standard AdS5 expressions:

5 The equation of motion reads:

d𝑟
d𝑥

= ±𝑉ef f (𝑟),

where the ± sign refers to the left and right branches of the string around 𝑟0.
17

6 Where we normalize the expression by subtracting the contribution of an infinitely massive quark and antiquark.
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Fig. 2. Parametric plot of the energy (6.7) with respect to the length of the separation of the pair for the deformed AdS × S5 with 𝑙 = 𝜇 = 𝑞 = 1. This interpolates 
between a Coulomb-like behaviour dictated by conformality and a linear behaviour for large values of 𝐿, signaling confinement.

𝐿AdS5 (𝑟0) =
2𝑙2
𝑟0

∞

∫
1

d𝑦

𝑦2
√
𝑦4 − 1

= 2𝑙2
𝑟0

√
2𝜋3∕2

Γ2
(
1
4

) ,
𝐸AdS5 (𝑟0) = 2𝑟0

⎡⎢⎢⎣
∞

∫
1

d𝑦

(
𝑦2√
𝑦4 − 1

− 1

)
− 1

⎤⎥⎥⎦ ,
𝐸AdS5 (𝐿) = −

8𝜋2
√

2𝑔2YM𝑁

Γ4
(
1
4

) 1
𝐿AdS5

.

(6.8)

We make use of numerical methods in order to study (6.6) and (6.7) and parametrically plot the energy as a function of the length 
in Fig. 2. Indeed, we see a linear behaviour for large separations that is characteristic of confinement.

One can address the question regarding the stability of the U-shaped embedding that gives (6.1). Although this question should be 
addressed by studying the equations of motion of fluctuations around the embedding, this being the most trusted way that can also 
detect instabilities originating from internal directions of the background, see [100–102], a usual and convenient way of extracting 
information about this is by calculating the derivative of the length function with respect to the turning point 𝑟0 and looking at its 
sign [56,96–98,103]. Since here our functions 𝐹 and 𝐺 do not depend on internal space coordinates, we can use the approximate 
expression (6.4) to get:

𝑍(𝑟0) ∶=
d𝐿̂(𝑟0)
d𝑟0

= −
𝑙2𝜋

[
2𝑓 (𝑟0) + 𝑟0𝑓 ′(𝑟0)

]
4𝑟2𝑓 3∕2(𝑟0)

= − 𝑙4𝜋

4𝑟30𝑓
3∕2(𝑟0)

(
4𝑞2

𝑟50

+
2𝑟0
𝑙2

+ 2𝜇
𝑟30

)
< 0, (6.9)

which is negative and therefore the embedding is deemed stable. The reasoning behind this criterion is that there are two conditions 
that need to be satisfied: That the derivative of 𝐸(𝐿) with respect to the length is positive, producing an attractive force (this is 
satisfied, as it is proportional to 𝐹 (𝑟) > 0) and also that the force is a non increasing function of the separation (concavity condition) 
[103]. The sign of 𝐸′′(𝐿) is governed by 𝐿′(𝑟0) =𝑍(𝑟0). Thus the regions of 𝑟0 where 𝑍(𝑟0) > 0 are unphysical and destabilize the 
embedding.

We make note that the universal character of the results presented here is surprising from a purely QFT perspective. By following 
our deformation procedure and tuning 𝜇 = 0, one obtains many families of supersymmetric QFTs that are in general very different 
from each other (some of them not even admitting Lagrangian descriptions). Yet we have shown they all have the same confining 
behaviour. This showcases once more the power of holography, as from the gravity perspective the common geometric origin of 
this behaviour is very clear. One more thing to emphasize is that it would be interesting to probe other directions in the Wilson 
loop embeddings, in particular those that span 𝑀5 . In that we might extract new information about the QFTs and new physical 
18

phenomena.
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6.2. ’t Hooft loop

To calculate the ’t Hooft loop, that is the magnetic analogue of the Wilson loop, we probe the background with either a D3 or 
a D4 brane, depending on whether the background is in Type IIB or IIA, that extends at least on a ℝ1,2[𝑡, 𝑥, 𝜙] submanifold of the 
background with 𝑟 = 𝑟(𝑥), where 𝑥 is a field theory direction and 𝜙 the shrinking circle. Then, we calculate the Dirac-Born-Infeld 
action for the D-brane using the induced metric. After integrating the compact coordinates, which give a different overall factor for 
each background, we get a similar expression to the integral in (6.2) for the effective 2d string:

𝑆D𝑝 = 𝑇D𝑝 ∫ d𝑝+1𝜎𝑒−Φ
√
−det(𝑔ind) ∝

𝐿
2

∫
− 𝐿2

d𝑥
√
𝐹 2
𝑡 (𝑟) +𝐺

2
𝑡 (𝑟)𝑟′2, 𝑝 = 3,4, (6.10)

but with different functions 𝐹𝑡 and 𝐺𝑡. By probing the circular direction 𝜙 with the brane, we get a factor of the function 𝑓 (𝑟) in the 
determinant which leads to screening, expressed as the vanishing of the function 𝐹𝑡 in the IR: Teff = 𝐹𝑡(𝑟⋆) = 0.

This fact is also true for the Entanglement Entropy studied in the next section, which has a phase transition as well. This can be 
attributed as a generic feature of cigar-like geometries [95].

Below we list the calculation of (6.10) carried out for each background, emphasising the universal character given by the integral 
above.

Deformed 𝐀𝐝𝐒𝟓×𝐒𝟓 We will study the dynamics of the ’t Hooft loop for the background (3.1) by introducing a D3 brane on the 
subspace spanned by the coordinates [𝑡, 𝑥1, 𝜙, 𝜑3] keeping 𝜃 = 0 and 𝑟 = 𝑟(𝑥1). The induced metric on this subspace then reads:

d𝑠2ind =
𝑟2

𝑙2

[
−d𝑡2 +

(
1 + 𝑙4

𝑟4𝑓 (𝑟)
𝑟′2
)
d𝑥21 + 𝑓 (𝑟)d𝜙

2
]
+ 𝑙2

(
d𝜑3 +


𝑙

)2
. (6.11)

The Dirac-Born-Infeld action for this metric and a trivial dilaton, reduces to the following7:

𝑆D3 = ∫ d4𝜎𝑒−Φ
√
−det(𝑔ind) = 𝑇D3𝐿𝜙𝐿𝜑3

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
𝑡 (𝑟) +𝐺

2
𝑡 (𝑟)𝑟′2 , (6.12)

where the functions 𝐹𝑡 and 𝐺𝑡 read:

𝐹𝑡(𝑟) =
𝑟3
√
𝑓 (𝑟)
𝑙2

, 𝐺𝑡(𝑟) = 𝑟. (6.13)

As mentioned, 𝐹𝑡 vanishes as 𝑟0 → 𝑟⋆, giving off a zero effective tension. We then expect the system to screen. To prove this, we 
use (6.13) to calculate the approximate length 𝐿̂MM, effective potential, length 𝐿MM and energy 𝐸MM functions of 𝑟0, in the same 
fashion as in the Wilson loop case. These are given below:

𝐿̂MM(𝑟0) =
𝜋𝑙2𝑟30

3𝑟40 − 𝑙
2𝜇

√
𝑓 (𝑟0), (6.14)

𝑉eff (𝑟) =
𝑟2
√
𝑓 (𝑟)

𝑙4𝐹𝑡(𝑟0)

√
𝑟6 − 𝑙2(𝑞2 + 𝑟2𝜇) − 𝐹 2

𝑡 (𝑟0)𝑙4, (6.15)

𝐿MM(𝑟0) = 2𝑙4𝐹𝑡(𝑟0)

∞

∫
𝑟0

d𝑟

𝑟2
√
𝑓 (𝑟)

[
𝑟6 − 𝑙2(𝑞2 + 𝜇𝑟2) − 𝑙4𝐹 2

𝑡 (𝑟0)
] , (6.16)

𝐸MM(𝑟0) =

√
𝑓 (𝑟0)𝑟30
𝑙2

𝐿MM(𝑟0) + 2

∞

∫
𝑟0

d𝑟

√
𝑓 (𝑟)𝑟6 − 𝑓 (𝑟0)𝑟60
𝑟2
√
𝑓 (𝑟)

− 2

∞

∫
𝑟⋆

d𝑟𝑟. (6.17)

Notice again the factor 
√
𝑓 (𝑟0) multiplying the first term in (6.17) which is responsible for the vanishing of the effective tension 

[94,98]: The monopole-antimonopole pair can be arbitrarily separated with no energy cost. This can be also seen as a phase transition: 
The system favours the disconnected embedding of two straight strings extending from 𝑟 = ∞ to 𝑟 = 𝑟∗, over the U-shaped one 
described in the Wilson loop section. This embedding expresses two infinitely massive probe monopoles moving freely.
19

7 Here, 𝐿𝜙 and 𝐿𝜑3
are the periods of each cycle.
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Fig. 3. Plots of the length function, its approximate expression and the energy as a function of the length, for the monopole-anti-monopole pair for the ’t Hooft loop, 
with 𝑙 = 𝜇 = 𝑞 = 1 fixed. We see the double-valuedness of the energy, which expresses screening as a phase transition.

To figure out the stability of this embedding, following the logic explained around (6.14):

𝑍(𝑟0) =
d𝐿̂MM
d𝑟0

= −
𝑙2𝜋

[
12𝑓 2(𝑟0) − 𝑟20𝑓

′2(𝑟0) + 2𝑟0𝑓 (𝑟0)
(
5𝑓 ′(𝑟0) + 𝑟0𝑓 ′′(𝑟0)

)]
𝑟20
√
𝑓 (𝑟0)

(
6𝑓 (𝑟0) + 𝑟0𝑓 ′(𝑟0)

)2
=
𝜋𝑙2

[
𝑙4𝜇2 − 3𝑟80 + 6𝑙2(2𝑞2𝑟20 + 𝑟

4
0𝜇)

]
(𝑙2𝑟𝜇 − 3𝑟50)

2
√
𝑓 (𝑟0)

,

(6.18)

which changes sign around its single root. The root can be seen in Fig. 3 as the maximum of 𝐿: The left branch describes an unstable 
embedding (𝑍(𝑟0) > 0) while the right branch, which corresponds to the zero energy configuration, is stable (𝑍(𝑟0) < 0). As was 
discussed in [100], the study of small linear fluctuations agrees with these regions being unphysical, as these are the regions of 𝑟0 for 
which their spectrum has negative eigenfrequencies.

Deformed 𝐀𝐝𝐒𝟓×𝐓𝟏,𝟏 We take a D3 probe brane in (3.10) extended on the submanifold spanned by [𝑡, 𝑥1, 𝜙, 𝜓] and keep 𝜃1 = 0 = 𝜃2, 
𝜙1 = const, 𝜙2 = const, 𝑟 = 𝑟(𝑥1). The induced metric on the D3 reads:

d𝑠2ind = − 𝑟
2

𝑙2
d𝑡2 +

[
𝑟2

𝑙2
+ 𝑙2𝑟′2

𝑟2𝑓 (𝑟)

]
d𝑥21 +

𝑟2𝑓 (𝑟)
𝑙2

d𝜙2 + 𝑙
2

9

(
d𝜓 + 

𝑙

)2
, (6.19)

and the action takes the form:

𝑆D3 =
𝑇D3 𝐿𝜓𝐿𝜙

3

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
𝑡 (𝑟) + 𝑟′2𝐺

2
𝑡 (𝑟), (6.20)

having exactly the same functions as in the AdS5 × S5 uplift (6.13), so the results for the approximate length, length and energy 
functions will be the same as in (6.14)-(6.17). We again have a vanishing 𝐹𝑡(𝑟⋆) which signals screening.

Deformed 𝐀𝐝𝐒𝟓×𝐘𝐩,𝐪 We will use in (3.13) the same embedding for the D3 brane as in the T1,1 case that is extended in the 
coordinates [𝑡, 𝑥1, 𝜙, 𝜓] while setting 𝑟 = 𝑟(𝑥1), 𝜃 = 0 and 𝜑, 𝑦, 𝛽 constant. The induced metric is then:

d𝑠2
ind

= 𝑟
2

𝑙2

[
−d𝑡2 +

(
1 + 𝑙

4 𝑟′2

𝑟4

)
d𝑥21 + 𝑓 (𝑟)d𝜙

2
]
+ 𝑙

2

9

(
d𝜓 +

𝐴1
𝑙

)2
, (6.21)

which is the same as (6.19) and we therefore get the exact same expressions for the ’t Hooft loop in the Y𝑝,𝑞 uplift.

Deformed 𝐀𝐝𝐒𝟓×𝐀𝐅𝐏𝐑𝐓 Now turning to the type IIA solutions, we consider a probe D4 brane in the background (4.23) extended 
in [𝑡, 𝑥1, 𝜙, 𝜃, 𝜓] with 𝑟 = 𝑟(𝑥1) and 𝑥2, 𝑧, 𝑣1, 𝑣2 = const. We can then write the induced metric:

2
√

𝛼
{
𝑟2
[

2
(

𝑙4𝑟′2
)

2 2
]

𝛼𝛼̈ ( 2 2 2)}

20

d𝑠ind = 18𝜋 −
6𝛼̈ 𝑙2

−d𝑡 + 1 +
𝑟4𝑓 (𝑟)

d𝑥1 + 𝑓 (𝑟)d𝜙 −
6𝛼̇2 − 9𝛼𝛼̈

d𝜃 + sin 𝜃𝐷𝜓 . (6.22)
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In this case, the action takes the form:

SD4 =
4𝜋
3
TD4 𝐿𝜙

√
−

𝛼3(𝑧0)𝛼̈(𝑧0)
6𝛼̇2(𝑧0) − 9𝛼(𝑧0)𝛼̈(𝑧0)

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
𝑡 (𝑟) + 𝑟′2𝐺

2
𝑡 (𝑟), (6.23)

where 𝑧0 is a constant value and now 𝐹𝑡 and 𝐺𝑡 differ from (6.13) by a factor of 𝑙−1:

𝐹𝑡(𝑟) =
𝑟3
√
𝑓 (𝑟)
𝑙3

, 𝐺𝑡(𝑟) =
𝑟

𝑙
, (6.24)

Deformed 𝐀𝐝𝐒𝟓×𝐆𝐌 For the background (5.22), we will again consider a D4 brane that extends in the submanifold [𝑡, 𝑥1, 𝜙, 𝜑, 𝜒]
setting 𝜃 = 𝜋

2 and all the other coordinates constant, as well as 𝑟 = 𝑟(𝑥1). The induced metric on the D4 is then8:

d𝑠2ind = 𝑓
3∕2
1 𝑓

1∕2
5

{
4 𝑟

2

𝑙2

[
−d𝑡2

(
1 + 𝑙4𝑟′2

𝑟4𝑓 (𝑟)

)
d𝑥21 + 𝑓 (𝑟)d𝜙

2
]
+ 𝑓2(d𝜑− 2)2 + 𝑓3𝐷𝜒2

}
. (6.25)

From this, we get the following action, that is again indicating screening:

𝑆D4 = 32TD4 𝐿𝜙𝜋2𝑓1(𝜎0, 𝜂0)3√𝑓2(𝜎0, 𝜂0)𝑓3(𝜎0, 𝜂0)𝑓5(𝜎0, 𝜂0) 𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
𝑡 (𝑟) +𝐺

2
𝑡 (𝑟)𝑟′2, (6.26)

where (𝜎0, 𝜂0) are constant values of the coordinates and 𝐹𝑡 and 𝐺𝑡 are the same as (6.24).

6.3. Entanglement entropy

For the calculation of the Entanglement Entropy, we will consider a codimension 2 manifold Σ8 connecting two entangled regions 
and take one of them to be of width 𝐿EE while the remaining space comprises the other region [95,104,105]. Then we write down 
the action, that is the square root of the determinant of the induced metric on Σ8 multiplied by a power of the dilaton (in the cases 
where Φ ≠ 0). One integrates out the 7 coordinates and ends up with an integral expression:

𝑆EE = 1
4𝐺𝑁 ∫

Σ8

d8𝜎
√
𝑒−4Φdet

(
𝑔Σ8

)
∝

𝐿
2

∫
− 𝐿2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟′2, (6.27)

where 𝐺𝑁 denotes Newton’s constant in 10 dimensions.

We will now present the results for each background, calculating the action to observe that 𝐹EE and 𝐺EE are the same functions 
as in the ’t Hooft loop (6.24). This will entail a phase transition in the Entanglement Entropy. This has been argued to be yet another 
signal for confinement [105].

Deformed 𝐀𝐝𝐒𝟓×𝐒𝟓 To calculate the Entanglement Entropy for this background, we consider the 8 dimensional manifold 
Σ8[𝑥1, 𝑥2, 𝜙, 𝜃, 𝜑, 𝜑1, 𝜑2, 𝜑3] and 𝑟 = 𝑟(𝑥1). The induced metric is:

d𝑠2ind =
𝑟2

𝑙2

[(
1 + 𝑙4𝑟′2

𝑟4𝑓 (𝑟)

)
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2
]
+ 𝑙2dΩ̃5, (6.28)

where dΩ̃5 denotes the element on the fibered five-sphere spanned by [𝜑, 𝜃, 𝜑1, 𝜑2, 𝜑3]. After computing the determinant, the action 
(6.27) reads:

𝑆EE = VS̃5
𝐿𝑥2𝐿𝜙𝑙

5

4𝐺𝑁

𝐿∕2

∫
−𝐿∕2

d𝑥1

√
𝑟6

𝑙6
𝑓 (𝑟)

[
1 + 𝑙4𝑟′ 2

𝑟4𝑓 (𝑟)

]

=
𝑙5𝐿𝑥2𝜋

3𝐿𝜙

4𝐺𝑁

𝐿∕2

∫
−𝐿∕2

d𝑥1

√
𝑟6

𝑙6
𝑓 (𝑟)

[
1 + 𝑙4𝑟′ 2

𝑟4𝑓 (𝑟)

]
.

(6.29)
21

8 Where we used that 𝐷𝜇𝑖𝐷𝜇𝑖|||𝜃=𝜋∕2 = sin2 𝜑(d𝜑 − 2)2 + cos2 𝜑(d𝜑 − 2)2 = (d𝜑 − 2)2 from (5.11) and (5.12).



Nuclear Physics, Section B 1006 (2024) 116659D. Chatzis, A. Fatemiabhari, C. Nunez et al.

Here, VS̃5 denotes the volume of the five-sphere mentioned above9 and 𝐿𝑥2 the extent of the variable 𝑥2. We see that one gets the 
same functions as in (6.24) (we chose to keep the extra 𝑙 factor here by having 𝑙5 in the coefficient), therefore the length function and 
the behaviour will be the same. That is, Teff = 0 in the IR and the system exhibits a phase transition, which is a sign of confinement.

Deformed 𝐀𝐝𝐒𝟓×𝐓𝟏,𝟏 We define the codimension two submanifold spanned by all the compact and two spatial directions of the 
five-dimensional solution and T1,1: Σ8[𝑥1, 𝑥2, 𝜙, 𝜃1, 𝜃2, 𝜙1, 𝜙2, 𝜓] with 𝑟 = 𝑟(𝑥1). The metric induced on Σ8 is:

d𝑠2ind =
[
𝑟2

𝑙2
+ 𝑙2𝑟′2

𝑟2𝑓 (𝑟)

]
d𝑥21 +

𝑟2

𝑙2
d𝑥22 +

𝑙2𝑓 (𝑟)
𝑟2

d𝜙2

+ 𝑙
2

6

2∑
𝑖=1

(
d𝜃2𝑖 + sin2 𝜃𝑖d𝜙2𝑖

)
+ 𝑙

2

9

(
d𝜓 +

2∑
𝑖=1

cos𝜃𝑖d𝜙𝑖 +

𝑙

)2

.

(6.30)

We now calculate the action, for which we find:

𝑆EE =
𝑙5𝐿𝜙𝐿𝑥2VT1,1

4𝐺𝑁

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟

′2, (6.31)

where the volume is:

VT1,1 =
1

108 ∫
T1,1

d𝜃1d𝜃2d𝜙1d𝜙2d𝜓 sin𝜃1 sin𝜃2 =
16𝜋3
27

, (6.32)

and once again we get the same functions as in (6.24). Using the same arguments, we conclude that a phase transition takes place, 
signaling confinement.

Deformed 𝐀𝐝𝐒𝟓×𝐘𝐩,𝐪 In the same manner as previously, we define the eight dimensional manifold to be Σ8[𝑥1, 𝑥2, 𝜙, 𝜃, 𝜑, 𝑦, 𝛽, 𝜓], 
𝑟 = 𝑟(𝑥1) and the induced metric reads:

d𝑠2ind =
𝑟2

𝑙2

[(
1 + 𝑙

4 𝑟′2

𝑟4

)
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2
]
+ (1 − 𝑦)𝑙2

6
(
d𝜃2 + sin2 𝜃d𝜑2)

+ 𝑙2

𝑤(𝑦)𝑣(𝑦)
d𝑦2 + 𝑤(𝑦)𝑣(𝑦)𝑙

2

36
(d𝛽 + cos𝜃d𝜑)2

+ 𝑙
2

9

(
d𝜓 − cos𝜃d𝜑+ 𝑦 (d𝛽 + cos𝜃d𝜑) +

𝐴1
𝑙

)2
,

(6.33)

which yields the following action:

𝑆EE =
𝐿𝑥2𝐿𝜙𝐿𝛽𝐿𝜓𝜋𝑙

5

108𝐺𝑁

𝑦2

∫
𝑦1

d𝑦(𝑦− 1)

𝐿∕2

∫
−𝐿∕2

d𝑥1

√
𝑟6

𝑙6
𝑓 (𝑟) + 𝑟

2

𝑙2
𝑟′2

=
𝐿𝑥2𝐿𝜙𝑙

5

4𝐺𝑁
VY𝑝,𝑞

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟′2,

(6.34)

which once again gives off (6.24). We can also substitute the formula of the volume of the Sasaki-Einstein manifold for completeness, 
that is given in terms of 𝑝 and 𝑞 [106]:

VY𝑝,𝑞 =
1

108 ∫
Y𝑝,𝑞

d𝜃d𝜑d𝑦d𝛽d𝜓(𝑦− 1) sin𝜃 = 8𝜋3
27

𝑦2

∫
𝑦1

d𝑦(𝑦− 1)

=
𝑞2
(
2𝑝+

√
4𝑝2 − 3𝑞2

)
𝜋3

3𝑝2
(
3𝑞2 − 2𝑝2 + 𝑝

√
4𝑝2 − 3𝑞2

) ,
(6.35)

where the reader can check that this reproduces the volume of T1,1 as (𝑝, 𝑞) → (1, 0). We can therefore write the general expression:

9 We make note that the volume of the internal spaces is preserved by the fibration, in this case, VS5 = VS̃5 . We also use throughout this paper the convention that 
22

vol denotes the volume form of a manifold , while V its integrated volume.
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𝑆EE =
𝐿𝑥2𝐿𝜙𝑞

2
(
2𝑝+

√
4𝑝2 − 3𝑞2

)
𝜋3𝑙5

12𝐺𝑁𝑝2
(
3𝑞2 − 2𝑝2 + 𝑝

√
4𝑝2 − 3𝑞2

) 𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟′2. (6.36)

Deformed 𝐀𝐝𝐒𝟓×𝐀𝐅𝐏𝐑𝐓 For this calculation, we choose the eight-manifold as Σ8[𝑥1, 𝑥2, 𝜙, 𝜃, 𝜓, 𝑣1, 𝑣2, 𝑧] with 𝑟 = 𝑟(𝑥1). The 
induced metric on Σ8 is written as:

d𝑠2ind = 18𝜋
√

− 𝛼
6𝛼̈

{
𝑟2

𝑙2

[(
1 + 𝑙4𝑟′ 2

𝑟4𝑓 (𝑟)

)
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2
]
+ 1

3
d𝑠2Σ − 𝛼̈

6𝛼
d𝑧2

− 𝛼𝛼̈

6𝛼̇2 − 9𝛼𝛼̈
(
d𝜃2 + sin2 𝜃𝜓2)}, (6.37)

and the action reads:

𝑆EE =
𝐿𝑥2𝐿𝜙

486𝐺𝑁
VΣ

𝑃

∫
0

d𝑧 (−𝛼𝛼̈)

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) + 𝑟′2𝐺

2
EE(𝑟), (6.38)

where the volume of the Riemann surface is given by

VΣ = 4∫
d𝑣1d𝑣2

(𝑣21 + 𝑣
2
2 − 1)2

. (6.39)

Here 𝑃 denotes the number of nodes in the dual quiver description and the functions 𝐹EE and 𝐺EE are again the same as in (6.24). 
Note that the factor ∫ d𝑧𝛼𝛼̈ is seen also in (4.34) and will make its appearance in the calculation of the flow central charge and 
holographic complexity studied in the upcoming sections.

Deformed 𝐀𝐝𝐒𝟓×𝐆𝐌 Here we take the 8-manifold to extend in Σ8[𝑥1, 𝑥2, 𝜙, 𝜃, 𝜑, 𝜎, 𝜂, 𝜒] and let 𝑟 = 𝑟(𝑥1) as usual. The metric on 
Σ8 then reads:

d𝑠2ind = 𝑓
3∕2
1 𝑓

1∕2
5

{
4 𝑟

2

𝑙2

[(
1 + 𝑙4𝑟′2

𝑟4𝑓 (𝑟)

)
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2
]

+ 𝑓2𝐷𝜇𝑖𝐷𝜇𝑖 + 𝑓4(d𝜎2 + d𝜂2) + 𝑓3𝐷𝜒2

}
.

(6.40)

Then, the action can be written using the definitions of the various 𝑓𝑖 ’s from (5.20), in the following form:

𝑆EE =
64𝜋2𝐿𝜙𝐿𝑥2

𝐺𝑁

𝑃

∫
0

d𝜂

∞

∫
0

d𝜎𝜎𝑉̇ 𝑉 ′′

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟′2, (6.41)

where again, we end up with the same functions (6.24) in the 𝑥1 integral.

Concluding this section, we emphasize that our results for the Entanglement entropy are all of the form:

𝑆EE =
i
4

𝐿∕2

∫
−𝐿∕2

d𝑥1
√
𝐹 2
EE(𝑟) +𝐺

2
EE(𝑟)𝑟′2, (6.42)

where the functions 𝐹EE and 𝐺EE are found to be the same as in the case of the ’t Hooft loop. This implies a phase transition which 
following [95,105] is indicative of confinement. We will see that the constants 𝑖 , that depend on the details of each background, 
are related to the counting of the degrees of freedom and complexity of the system as analysed more closely in sections 6.4, 6.5. 
These are given along with formulas like (6.42) for the observables describing the aforementioned properties in Table 1 towards the 
end of subsection 6.5.

6.4. Flow central charge

In a generic CFT the central charge of the theory captures the number of degrees of freedom and is equivalent to the free energy of 
the system. The observable studied here called the holographic flow central charge, is a monotonic function that extends this notion 
in holography for a flow across dimensions. The quantity takes a constant value at the CFT fixed points and describes the number of 
degrees of freedom as the system flows between them [107,108]. We make note that the dimension of the QFT changes along the RG
flow in the backgrounds studied here. The flow central charge is capable of detecting if the theory is gapped as well as the existence 
23

of any conformal fixed points.
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At the CFT points, the central charge is proportional to the volume of the internal space 𝑀5 . The flow central charge is defined 
following this fact. We start by writing a background dual to a (𝑑 + 1)-dimensional QFT in the form [108]:

d𝑠2 = −𝛼0d𝑡2 + 𝛼1d𝑥21 + 𝛼2d𝑥
2
2 +⋯+ 𝛼𝑑d𝑥2𝑑 +

(
𝛼1𝛼2⋯𝛼𝑑

) 1
𝑑 𝛽(𝑟)d𝑟2 + 𝑔𝑖𝑗 (d𝜃𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ),

Φ=Φ(𝑟, 𝜃𝑖), (6.43)

for some functions 𝛼𝑖(𝑟), 𝛽(𝑟). The last part expresses the internal manifold. We then define the submanifold that includes the field 
theory directions and the internal space:

𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 = 𝛼1d𝑥21 + 𝛼2d𝑥
2
2 + ....+ 𝛼𝑑d𝑥

2
𝑑 + 𝑔𝑖𝑗 (d𝜃

𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ). (6.44)

For our purpose we have 𝑑 = 3. Then, the flow central charge can be calculated by first working out the following quantity:

𝐻(𝑟) =
[
∫ d5𝜃

√
𝑒−4Φdet

(
𝐺𝑖𝑗

)]2
. (6.45)

Following [87,108], we have that:

𝑐f low =
𝑑𝑑𝛽

𝑑∕2
0 𝐻

2𝑑+1
2

𝐺(10)
𝑁

(𝐻 ′)𝑑
. (6.46)

We list the calculation of 𝑐f low for all the different backgrounds below, where once more we find the different dual QFTs to have 
a universal character for this observable as well.

Deformed 𝐀𝐝𝐒𝟓×𝐒𝟓 We can rewrite the background in the form (6.43), where:

𝛼0 =
𝑟2

𝑙2
= 𝛼2 , 𝛼1 =

𝑟2

𝑙2
𝑓 (𝑟) , 𝛽0 =

𝑙4

𝑟4
𝑓−4∕3(𝑟), (6.47)

and the last part expresses the fibered five-sphere:

𝑔𝑖𝑗
(
d𝜃𝑖 −𝐴(𝑖))(d𝜃𝑗 −𝐴(𝑗)) = 𝑙2dΩ̃2

5 = 𝑙
2

{
d𝜃2 + sin2 𝜃d𝜑2 + sin2 𝜃 sin2𝜑

(
d𝜑1 +

𝐴1
𝑙

)2

+ sin2 𝜃 cos2𝜑
(
d𝜑2 +

𝐴1
𝑙

)2
+ cos2 𝜃

(
d𝜑3 +

𝐴1
𝑙

)2
}
.

(6.48)

We now define the subspace:

𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 = 𝛼1d𝜙2 + 𝛼2(d𝑥21 + d𝑥22) + 𝑔𝑖𝑗 (d𝜃
𝑖 −𝐴(𝑖))(d𝜃𝑗 −𝐴(𝑗))

= 𝑟
2

𝑙2
𝑓 (𝑟)d𝜙2 + 𝑟

2

𝑙2

(
d𝑥21 + d𝑥22

)
+ 𝑙2dΩ̂5,

(6.49)

after taking the determinant and calculating (6.45) to be:

𝐻(𝑟) =
(
VS5 𝑙

2𝑟3
√
𝑓 (𝑟)

)2
= 𝑙4𝜋6𝑟6𝑓 (𝑟), (6.50)

we find:

𝑐f low =
𝑙8VS̃5

8𝐺𝑁

[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3

= 27𝑙8𝜋3𝑟3
8𝐺𝑁

(
𝑟6 − 𝑙2𝑟2𝜇 − 𝑙2𝑞2

)3∕2(
3𝑟4 − 𝑙2𝜇

)3 . (6.51)

We immediately notice by power counting that this function takes a fixed value at infinity:

𝑐UV = lim
𝑟→∞

𝑐(𝑟) = 𝑙8𝜋3

8𝐺𝑁
, (6.52)

which is indicative of the conformal symmetry of the 4-dimensional QFT in the UV, and depends on the details of the internal space 
for each background (S̃5, in the present example). We also notice as the system flows towards the IR, 𝑐f low vanishes due to the 𝑓
factor in the numerator. This expresses the absence of dynamical degrees of freedom in the deep IR, where the system is gapped and 
governed by a TQFT. These facts are true for all the solutions studied here, all having a similar functional form as (6.51).

Deformed 𝐀𝐝𝐒𝟓×𝐓𝟏,𝟏 Here, we have again

𝛼0 =
𝑟2

𝑙2
= 𝛼2 , 𝛼1 =

𝑟2

𝑙2
𝑓 (𝑟) , 𝛽0 =

𝑙4

𝑟4
𝑓−4∕3(𝑟), (6.53)
24

and the internal space is written as:
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Fig. 4. Plot of the flow central charge normalized to its UV value for the deformed AdS5 ×T1,1 (keeping 𝑙 = 𝜇 = 𝑞 = 1): It interpolates between an IR gapped 3d system 
(expressing a TQFT in the deep IR) and the 4d SCFTs in the UV, where the value it takes depends on the details of the internal space of the theory. This behaviour is 
similar for all the supergravity solutions in this work.

𝑔𝑖𝑗 (d𝜃𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ) = 𝑙2
⎧⎪⎨⎪⎩
1
6

2∑
𝑖=1

(
d𝜃2𝑖 + sin2 𝜃𝑖d𝜙2𝑖

)
+ 1

9

(
d𝜓 +

2∑
𝑖=1

cos𝜃𝑖d𝜙𝑖 +
3
𝑙

)2⎫⎪⎬⎪⎭ . (6.54)

Then, we consider the following 8-dimensional subspace

𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 =
𝑟2

𝑙2
𝑓 (𝑟)d𝜙2 + 𝑟

2

𝑙2

(
d𝑥21 + d𝑥22

)
+ 𝑙

2

6

2∑
𝑖=1

(
d𝜃2𝑖 + sin2 𝜃𝑖d𝜙2𝑖

)
+ 𝑙

2

9

(
d𝜓 +

2∑
𝑖=1

cos𝜃𝑖d𝜙𝑖

)2

,

(6.55)

and in a very similar calculation, we find 𝐻 to be:

𝐻(𝑟) =
(
VT1,1 𝑙

2𝑟3
√
𝑓 (𝑟)

)2
= V2

T1,1 𝑙
4𝑟6𝑓 (𝑟). (6.56)

This leads to the following flow central charge:

𝑐f low =
𝑙8VT1,1

8𝐺𝑁

[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3

=
2𝑙8𝜋3𝑟3

(
𝑟6 − 𝑙2𝑟2𝜇 − 𝑙2𝑞2

)3∕2
𝐺𝑁 (3𝑟4 − 𝑙2𝜇)3

. (6.57)

We emphasize that the form of this expression is nearly the same as in (6.51) with the difference being the volume of the internal 
manifold. Here the UV value reads:

𝑐UV = 2𝑙8𝜋3
27

, (6.58)

and we present the plot of 𝑐f low∕𝑐UV for this case in Fig. 4 where the previously described universal behaviour is apparent.

Deformed 𝐀𝐝𝐒𝟓×𝐘𝐩,𝐪 For the Y𝑝,𝑞 calculation, the internal space is:

𝑔𝑖𝑗 (d𝜃𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ) =𝑙2
[
1 − 𝑦
6

(
d𝜃2 + sin2 𝜃d𝜑2)+ 1

𝑤(𝑦)𝑣(𝑦)
d𝑦2 + 𝑤(𝑦)𝑣(𝑦)

36
(d𝛽 + cos𝜃d𝜑)2

+1
9

(
d𝜓 − cos𝜃d𝜑+ 𝑦 (d𝛽 + cos𝜃d𝜑) + 3

𝑙
)2] , (6.59)
25

and the functions 𝛼0, 𝛼1, 𝛼2, 𝛽 are the same. Then, by defining:
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𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 =
𝑟2

𝑙2
𝑓 (𝑟)d𝜙2 + 𝑟

2

𝑙2

(
d𝑥21 + d𝑥22

)
+ 𝑙2

[
1 − 𝑦
6

(
d𝜃2 + sin2 𝜃d𝜑2)+ 1

𝑤(𝑦)𝑣(𝑦)
d𝑦2

+𝑤(𝑦)𝑣(𝑦)
36

(d𝛽 + cos𝜃d𝜑)2 + 1
9

(
d𝜓 − cos𝜃d𝜑+ 𝑦 (d𝛽 + cos𝜃d𝜑) + 3

𝑙
)2] , (6.60)

we find

𝐻(𝑟) =
(
VY𝑝,𝑞 𝑙

2𝑟3
√
𝑓 (𝑟)

)2
= V2

Y𝑝,𝑞 𝑙
4𝑟6𝑓 (𝑟), (6.61)

with the volume of Y𝑝,𝑞 given in (6.35). Then the expression for the flow central charge is found to be the generalisation of (6.57)

for a generic Y𝑝,𝑞 :

𝑐f low =
𝑙8VY𝑝,𝑞

8𝐺𝑁

[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3

=
𝑞2
(
2𝑝+

√
4𝑝2 − 3𝑞2

)
𝜋3

3𝑝2
(
3𝑞2 − 2𝑝2 + 𝑝

√
4𝑝2 − 3𝑞2

) 𝑙8𝑟3 (𝑟6 − 𝑙2𝑟2𝜇 − 𝑙2𝑞2)3∕2
8𝐺𝑁 (3𝑟4 − 𝑙2𝜇)3

, (6.62)

where we make note that this expression is also of the same form as (6.51) and (6.57).

Deformed 𝐀𝐝𝐒𝟓×𝐀𝐅𝐏𝐑𝐓 In this case we have the following functions:

𝛼1 = 𝛼2 = 18𝜋
√

−𝛼
𝛼̈

𝑟2

𝑙2
, 𝛼3 = 18𝜋

√
−𝛼
𝛼̈

𝑟2

𝑙2
𝑓 (𝑟) , 𝛽 = 𝑙4

𝑟4𝑓 4∕3(𝑟)
, (6.63)

and the internal space metric is:

𝑔𝑖𝑗 (d𝜃𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ) = 18𝜋
√

− 𝛼
6𝛼̈

[
1
3
d𝑠2Σ − 𝛼̈

6𝛼
d𝑧2 − 𝛼𝛼̈

6𝛼̇2 − 9𝛼𝛼̈
(
d𝜃2 + sin2 𝜃𝜓2)] . (6.64)

We then take the subspace

𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 = 𝛼1d𝜙2 + 𝛼2(d𝑥21 + d𝑥22) + 𝑔𝑖𝑗 (d𝜃
𝑖 −𝐴(𝑖))(d𝜃𝑗 −𝐴(𝑗))

= 𝛼1d𝜙2 + 𝛼2(d𝑥21 + d𝑥22) + 18𝜋
√

− 𝛼
6𝛼̈

[
1
3
d𝑠2Σ −

𝛼̈

6𝛼
d𝑧2 − 𝛼𝛼̈

6𝛼̇2 − 9𝛼𝛼̈
(
d𝜃2 + sin2 𝜃𝜓2)] , (6.65)

and compute its determinant weighted by the dilaton to get:

𝐻(𝑟) =
⎛⎜⎜⎝∫S2 d𝜃d𝜓 sin𝜃 ∫

Σ

d𝑣1d𝑣2

𝑃

∫
0

d𝑧
2𝑟3

√
𝑓 (𝑟) sin𝜃𝛼𝛼̈

243𝑙3𝜋(𝑣21 + 𝑣
2
2 − 1)2

⎞⎟⎟⎠
2

=
⎛⎜⎜⎝
2𝑟3VΣ

√
𝑓 (𝑟)

243𝑙3

𝑃

∫
0

d𝑧𝛼𝛼̈
⎞⎟⎟⎠
2

.

(6.66)

This 𝐻 function leads to the flow central charge:

𝑐f low =
𝑙3VΣ
972𝐺𝑁

[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3 𝑃

∫
0

d𝑧 (−𝛼𝛼̈) . (6.67)

We notice the expression ∫ d𝑧(−𝛼𝛼̈) that was foreshadowed in (4.34).

Deformed 𝐀𝐝𝐒𝟓×𝐆𝐌 In the Gaiotto-Maldacena case, (5.22) gives off:

𝛼1 = 𝛼2 = 4(𝑓 3
1 𝑓5)

1∕2 𝑟
2

𝑙2
, 𝛼3 = 4(𝑓 3

1 𝑓5)
1∕2 𝑟

2

𝑙2
𝑓 (𝑟), 𝛽 = 𝑙4

𝑟4𝑓 4∕3(𝑟)
, (6.68)

while the 5-dimensional internal metric has the form:

𝑔𝑖𝑗 (d𝜃𝑖 −𝐴𝑖)(d𝜃𝑗 −𝐴𝑗 ) = 𝑓
3
2
1 𝑓

1
2
5
[
𝑓2𝐷𝜇𝑖𝐷𝜇𝑖 + 𝑓4(d𝜎2 + d𝜂2) + 𝑓3𝐷𝜒2] . (6.69)

By defining

𝐺𝑖𝑗d𝜉𝑖d𝜉𝑗 = 𝑓
3∕2
1 𝑓

1∕2
5

{
4 𝑟

2

𝑙2

[
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2]
2 2 2

} (6.70)
26

+ 𝑓2𝐷𝜇𝑖𝐷𝜇𝑖 + 𝑓4(d𝜎 + d𝜂 ) + 𝑓3(d𝜒 +) ,
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and computing the 𝐻 function to be:

𝐻(𝑟) =
⎛⎜⎜⎝∫S2 d𝜃d𝜙 sin𝜃 ∫ d𝜒

∞

∫
0

d𝜎

𝑃

∫
0

d𝜂
8𝑓 9∕2

1 𝑓2𝑓4𝑟
3√𝑓3𝑓5𝑓 (𝑟)
𝑙3

⎞⎟⎟⎠
2

=
⎛⎜⎜⎝
256𝜋2𝑟3

√
𝑓 (𝑟)

𝑙3

∞

∫
0

d𝜎

𝑃

∫
0

d𝜂𝜎𝑉̇ 𝑉 ′′
⎞⎟⎟⎠
2

,

(6.71)

we find the central charge to be:

𝑐f low = 32𝑙3𝜋2
𝐺𝑁

[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3 ∞

∫
0

d𝜎

𝑃

∫
0

d𝜂𝜎𝑉̇ 𝑉 ′′. (6.72)

As in the previous section, we will make note that all of the results for 𝑐f low are captured by the following formula using the factors 
defined in the Table 1:

𝑐f low =
𝑠𝑖𝑙

3

8

( 𝑖

𝐿𝑥2𝐿𝜙

)[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6𝑓
′(𝑟)

]3

, (6.73)

where 𝑠𝑖 = 1 if 𝑖 ∈ {S5, Y𝑝,𝑞 , AFPRT} and 𝑠𝑖 = 8 for 𝑖 =GM.

6.5. Holographic complexity

Here we will calculate another quantity called holographic complexity, which is very related to the holographic central charge. 
In general, given a quantum circuit, computational complexity measures how many elementary gates one needs in order to construct 
a specific state in the Hilbert space from a reference one. Let us review the prescription to calculate this observable in holography, 
given in [59], as for the type of backgrounds we work in here a special prescription is needed. We will use the CV conjecture (a 
review of different conjectures is given in [109]). The bottom line is that writing the backgrounds in the form

d𝑠210,st = −𝑔𝑡𝑡d𝑡2 + d𝑠29, (6.74)

we should compute, according to [59],

𝑉 = 1
𝐺𝑁 ∫ d9𝑥

√
𝑒−4Φ det

(
𝑔9
)

A
, (6.75)

where 𝐴 denotes an overall conformal factor in the metric of each background. Let us perform the explicit calculation for the three 
families of solutions we have.

Deformed 𝐀𝐝𝐒𝟓×𝐒𝟓 We start by writing a constant time slice of the 10-dimensional metric (3.1), that is:

d𝑠29 =
𝑟2

𝑙2

[
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2]+ 𝑙2d𝑟2

𝑟2𝑓 (𝑟)
+ 𝑙2

{
d𝜃2 + sin2 𝜃d𝜑2 + sin2 𝜃 sin2𝜑

(
d𝜑1 +


𝑙

)2
+ sin2 𝜃 cos2𝜑

(
d𝜑2 +


𝑙

)2
+ cos2 𝜃

(
d𝜑3 +


𝑙

)2}
,

(6.76)

while the conformal prefactor A and the dilaton factor are trivial: 𝑒−4Φ = A = 1. Then, the square root of the determinant yields:√
det(𝑔9) = 𝑙3𝑟2 cos𝜃 sin3 𝜃 sin𝜑 (6.77)

𝑉 =
𝑙3𝜋3𝐿𝑥1𝐿𝑥2𝐿𝜙

𝐺𝑁

ΛUV

∫
𝑟⋆

d𝑟𝑟2 =
𝑙3𝜋3𝐿𝑥1𝐿𝑥2𝐿𝜙

3𝐺𝑁
(Λ3

UV − 𝑟3⋆). (6.78)

Compare this result with (6.29) and (6.51) to find the common features mentioned previously.

Deformed 𝐀𝐝𝐒𝟓×𝐘𝐩,𝐪 By looking at the metric (3.13) of the 10d background, we write:

d𝑠29 =
𝑟2

𝑙2

[
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2]+ 𝑙2d𝑟2

𝑟2𝑓 (𝑟)
+ 𝑙2

[
1 − 𝑦
6

(
d𝜃2 + sin2 𝜃d𝜑2)+ 1

𝑤(𝑦)𝑣(𝑦)
d𝑦2

𝑤(𝑦)𝑣(𝑦) 2 1 ( 3 )2] (6.79)
27

+
36

(d𝛽 + cos𝜃d𝜑) +
9

d𝜓 − cos𝜃d𝜑+ 𝑦 (d𝛽 + cos𝜃d𝜑) +
𝑙
 ,
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Table 1

Summary of the results for the EE, flow central charge and complexity.

ÂdS5 × Ŝ5 ÂdS5 × Ŷ𝑝,𝑞 ÂdS5 × ÂFPRT ÂdS5 × ĜM

𝑖

𝑙5𝐿𝑥2𝐿𝜙VS5

𝐺𝑁

𝑙5𝐿𝑥2𝐿𝜙VY𝑝,𝑞

𝐺𝑁

𝐿𝑥2𝐿𝜙VS2VΣ

486𝜋𝐺𝑁

𝑃

∫
0

d𝑧(−𝛼𝛼̈)
32𝐿𝑥2𝐿𝜙𝐿𝜒VS2

𝐺𝑁

𝑃

∫
0

d𝜂

∞

∫
0

d𝜎𝜎𝑉̇ 𝑉 ′′

EE
𝑖

4

𝐿∕2

∫
−𝐿∕2

d𝑥1

√
𝑟6

𝑙6

[
𝑓 (𝑟) + 𝑙

4𝑟′2

𝑟4

]

𝑐f low
𝑠𝑖𝑙

3

8

( 𝑖

𝐿𝑥2𝐿𝜙

)[ √
𝑓 (𝑟)

𝑓 (𝑟) + 𝑟

6
𝑓 ′(𝑟)

]3

𝑠𝑖 =

{
1, 𝑖 ∈ {S5 ,Y𝑝,𝑞 ,AFPRT},
8, 𝑖 =GM

𝑉 𝑚𝑖
3𝑙2

(
𝐿𝑥1𝑖

)(
Λ3

UV − 𝑟3⋆
)

𝑚𝑖 =

{
1, 𝑖 ∈ {S5,Y𝑝,𝑞 ,AFPRT},
2, 𝑖 =GM

and again 𝐴 and the dilaton are trivial. We then have:√
det(𝑔9) =

𝑙3𝑟2(𝑦− 1) sin𝜃
108

, (6.80)

which gives off the following complexity:

𝑉 =
𝐿𝑥1𝐿𝑥2𝐿𝜙𝑙

3

𝐺𝑁
VY𝑝,𝑞

ΛUV

∫
𝑟⋆

d𝑟𝑟2 =
𝐿𝑥1𝐿𝑥2𝐿𝜙𝑙

3

3𝐺𝑁
VY𝑝,𝑞 (Λ3

UV − 𝑟3⋆), (6.81)

where we used a cutoff ΛUV to regularize the expression. This can also be compared with equations (6.36) and (6.62). The result for 
T1,1 can be obtained by taking (𝑝, 𝑞) → (1, 0). The fact that this is proportional to the UV cutoff reflects the infinite dimensional space 
of states of the system and the difficulty of connecting different states.

Deformed 𝐀𝐝𝐒𝟓×𝐀𝐅𝐏𝐑𝐓 In this case, comparing with (4.23) we have:

d𝑠29 = 18𝜋
√

− 𝛼
6𝛼̈

{
𝑟2

𝑙2

[
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2]+ 𝑙2d𝑟2

𝑟2𝑓 (𝑟)
+ 1

3
d𝑠2Σ − 𝛼̈

6𝛼
d𝑧2 − 𝛼𝛼̈

6𝛼̇2 − 9𝛼𝛼̈
(
d𝜃2 + sin2 𝜃𝜓2)} ,

A= 18𝜋
√

− 𝛼
6𝛼̈
, 𝑒−4Φ = 1

25317𝜋10
(
− 𝛼̈
𝛼

)3 (
2𝛼̇2 − 3𝛼𝛼̈

)2
.

(6.82)

Given this, we find the holographic complexity to be:

𝑉 =
𝐿𝑥1𝐿𝑥2𝐿𝜙VS2VΣ

1458𝜋𝑙2𝐺𝑁

𝑃

∫
0

d𝑧 (−𝛼𝛼̈)

ΛUV

∫
𝑟⋆

d𝑟𝑟2

=
𝐿𝑥1𝐿𝑥2𝐿𝜙VS2VΣ

1458𝜋𝑙2𝐺𝑁

𝑃

∫
0

d𝑧 (−𝛼𝛼̈)
(
Λ3
UV − 𝑟4⋆

)
.

(6.83)

Deformed 𝐀𝐝𝐒𝟓×𝐆𝐌 For this solution, we have from (5.22):

d𝑠29 = (𝑓 3
1 𝑓5)

1∕2
{

4𝑟2

𝑙2

[
d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2]+ 4𝑙2d𝑟2

𝑟2𝑓 (𝑟)
+ 𝑓2𝐷𝜇𝑖𝐷𝜇𝑖 + 𝑓4(d𝜎2 + d𝜂2) + 𝑓3𝐷𝜒2

}
,

A= (𝑓 3
1 𝑓5)

1∕2, 𝑒−4Φ = (𝑓1𝑓5)−3,
(6.84)

and the complexity reads:

𝑉 =
64𝐿𝑥1𝐿𝑥2𝐿𝜙𝐿𝜒VS2

3𝑙2𝐺𝑁

(
Λ3
UV − 𝑟3⋆

) ∞

∫
0

d𝜎

𝑃

∫
0

d𝜂𝑉̇ 𝑉 ′′𝜎, (6.85)

and can be compared with (6.41) and (6.72). Finally, we provide the following formula that summarizes the results of this subsection:

V =
𝑚𝑖
3𝑙2

(
𝐿𝑥1𝑖

)(
Λ3 − 𝑟3⋆

)
, (6.86)
28

where 𝑚𝑖 = 1 for 𝑖 ∈ {S5, Y𝑝,𝑞}, 𝑚𝑖 = 1∕2 for 𝑖 =AFPRT and 𝑚𝑖 = 2 for 𝑖 =GM and 𝑖 can be found in Table 1.
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6.6. Gauge coupling

In this subsection, we attempt to define a gauge coupling and see how it flows to the IR of the dual QFT. All of our backgrounds 
correspond to a dual QFT that at high energies extends in [𝑡, 𝑥1, 𝑥2, 𝜙], being 𝜙 the periodic direction that we mix with the R-symmetry 
in a twisting-like fashion. We will use the Dirac-Born-Infeld action for a probe Dp-brane that extends along the field theory directions 
and contains a gauge field on its worldvolume Σ𝑝+1. We will read the gauge coupling as the coefficient of the gauge kinetic term 
−1

4𝐹
2
𝜇𝜈 , while the 𝑟 dependence in our results will be interpreted as the running of the coupling constant. We will briefly review the 

procedure which was nicely summarized in [56], the main idea being that the general action for the Dp-brane consists of two terms: 
The DBI10 and the Wess-Zumino term,

𝑆D𝑝 = 𝑆D𝑝,DBI +𝑆D𝑝,WZ, (6.87)

which for a zero NS 𝐵 field read

𝑆D𝑝,DBI = 𝑇D𝑝 ∫
Σ𝑝+1

d𝑝+1𝜎
√
−𝑒−2Φdet(ℎ+ 𝐹 ), (6.88)

𝑆D𝑝,WZ = −𝑇D𝑝 ∫
Σ𝑝+1

 ∧ 𝑒−𝐹 , (6.89)

where ℎ is the induced metric on Σ𝑝+1, 𝐹 = 𝐹𝜇𝜈d𝑥𝜇 ∧ d𝑥𝜈 (𝜇, 𝜈 = 0, … , 𝑝 + 1) the field strength of the gauge field on Σ𝑝+1 and 
denotes the RR polyform. Although for our purpose we will focus solely on the DBI part of the action, we note that the WZ term 
contains important information regarding the BPS status of the brane and the 𝜃-term in the field theory. We will consider a small 
field strength expansion which brings (6.88) to the form:

𝑆D𝑝,DBI = 𝑇D𝑝 ∫
Σ𝑝+1

d𝑝+1𝜎
√
−𝑒−2Φdet(ℎ)

(
1 + 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 +(𝐹 4)
)
, (6.90)

with the indices being raised with ℎ𝜇𝜈 . For the cases studied in this paper, we can without loss of generality turn on only the 𝑡 − 𝑥1
component of 𝐹𝜇𝜈 and define the part of the induced metric extending over the field theory directions, which is of the form:

ℎ(3)𝜇𝜈 ≡ ℎ𝑖𝑗 =𝐾(𝑟, 𝜃𝑎)𝜂𝑖𝑗 , (6.91)

where we introduced the flat indices 𝑖, 𝑗 ∈ {𝑡, 𝑥1, 𝑥2} and a function 𝐾 of the holographic coordinate that for the type IIA solutions 
also depends on the internal space coordinates, denoted as {𝜃𝑎}. Then the quadratic in 𝐹𝜇𝜈 term on Σ𝑝+1 gives off:

𝐹𝜇𝜈𝐹
𝜇𝜈 ≡ 𝐹𝑖𝑗𝐹 𝑖𝑗 = ℎ𝑖𝑘ℎ𝑗𝑙𝐹𝑘𝑙𝐹𝑖𝑗 = 2

𝐾2 𝐹𝑡𝑥1𝐹𝑡𝑥1 (6.92)

By performing the 𝜙 integral and separating the remaining integral on the worldvolume to the field theory part and the rest of 
the directions in (6.90), we get the following Maxwell term included in the DBI action11:

𝑆D𝑝,DBI ⊃ 𝐿𝜙TD𝑝 ∫ d2+1𝑥 ∫
Σint

d𝑝−3𝜎
√
−𝑒−2Φdet(ℎ) 1

2
𝐾−2𝐹 2

𝑡𝑥1

= 1
4

⎡⎢⎢⎢⎣𝐿𝜙TD𝑝 ∫
Σint

d𝑝−3𝜎
√
−𝑒−2Φdet(ℎ)𝐾−2

⎤⎥⎥⎥⎦2∫ d2+1𝑥𝐹 2
𝑡𝑥1
.

(6.93)

From this term one can read off the object inside the square brackets tho be the Yang-Mills gauge coupling of the 3-dimensional 
effective theory:

1
𝑔2YM

=𝐿𝜙TD𝑝 ∫
Σint

d𝑝−3𝜎
√
−𝑒−2Φdet(ℎ)𝐾−2(𝑟, 𝜃𝑎) (6.94)

Let us see the details of applying this formula in each of the backgrounds.

Deformed 𝐀𝐝𝐒𝟓×𝐒𝟓, 𝐘p,q For the deformed uplifts of the five-sphere and Sasaki-Einstein manifolds, we consider a D3 probe brane 
extended along [𝑡, 𝑥1, 𝑥2, 𝜙] and switch on a field strength in the 𝑡 −𝑥1 directions as described above. The induced metric on the brane 
for the S5 background can be read from (3.1) to be12:

10 We use the convention where there is no 2𝜋 in front of 𝐹
11 Here Σint stands for the part of the worldvolume consisting of internal coordinates, depending on the specific probe.
29

12 By 𝜙 we denote the component of the one form .
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d𝑠2ind,D3 = ℎ𝜇𝜈d𝑥
𝜇d𝑥𝜈 = 𝑟

2

𝑙2

[
−d𝑡+ d𝑥21 + d𝑥22 + (𝑓 (𝑟) +2

𝜙)d𝜙
2
]
, (6.95)

where the quadratic term of the component of the gauge field originates from the ∝ d𝜙2 part of the fibration. The 3d metric then 
reads:

ℎ𝑖𝑗 =𝐾(𝑟)𝜂𝑖𝑗 , 𝐾(𝑟) = 𝑟
2

𝑙2
. (6.96)

We see that in this case there are no remaining internal coordinates in the worldvolume to integrate over and the dilaton is trivial, 
therefore (6.94) yields the following 3d coupling:

1
𝑔2YM

=𝐿𝜙𝑇D3

√
𝑓 (𝑟) + 𝑙

2

𝑟2
𝜙. (6.97)

This expression reveals the strongly coupled nature governing the IR dynamics of the QFT3 since for 𝑟 → 𝑟⋆ the coupling constant 
diverges. As for the UV limit 𝑟 → ∞ we note that this takes the value of the classical gauge coupling of the circle reduced QFT4. 
Finally, we comment that the case for the Y𝑝,𝑞 uplift is extremely similar, and one can derive it by setting 𝜙 → 3𝜙 in (6.97).

Deformed 𝐀𝐝𝐒𝟓×𝐀𝐅𝐏𝐑𝐓 Here we will use a D4 brane to probe the [𝑡, 𝑥1, 𝑥2, 𝜙, 𝜓] directions with 𝜃, 𝑟, 𝑣1, 𝑣2, 𝑧 = const. We switch 
on the same field strength as before in the worldvolume (𝐹𝑡𝑥1 ≠ 0) and the induced metric on the D4 is:

d𝑠2ind,D4 = 18𝜋
√

−𝛼
𝛼̈

{
𝑟2

𝑙2

(
−d𝑡2 + d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2)− 𝛼𝛼̈ sin2 𝜃0
6𝛼̇2 − 9𝛼𝛼̈

(d𝜓 − 3)

}
. (6.98)

In this case the conformal factor of the 3d field theory metric reads:

𝐾(𝑟) = 18𝜋

√
−
𝛼(𝑧0)
6𝛼̈(𝑧0)

𝑟2

𝑙2
. (6.99)

Then, applying (6.94) we find the gauge coupling of the 3d field theory to be:

1
𝑔2YM

= −
sin𝜃0𝐿𝜙𝐿𝜓𝑇D4𝛼̈(𝑧0)

162𝜋2
√
𝑓 (𝑟). (6.100)

We notice that this also diverges in the 𝑟 → 𝑟⋆ limit and takes a constant value in the UV. This expression also depends on the node 
of the quiver in the dual description, which amounts to focusing on one of the colour groups.

Deformed 𝐀𝐝𝐒𝟓×𝐆𝐌 For the last case of the deformed Gaiotto-Maldacena background, we will also use a D4 brane with 𝐹𝑡𝑥1 ≠ 0
that extends along [𝑡, 𝑥1, 𝑥2, 𝜙, 𝜒] keeping the rest of the coordinates constant. The induced metric reads:

d𝑠2ind,D4 = 𝑓
3∕2
1 𝑓

1∕2
5

{
4 𝑟

2

𝑙2

(
−d𝑡2 + d𝑥21 + d𝑥22 + 𝑓 (𝑟)d𝜙

2)+ 4𝑓22 + 𝑓3(d𝜒 +)2
}
, (6.101)

and the field theory prefactor function is:

𝐾(𝑟) = 4𝑓 3∕2
1 (𝜎0, 𝜂0)𝑓

1∕2
5 (𝜎0, 𝜂0)

𝑟2

𝑙2
. (6.102)

Using this, we get the expression:

1
𝑔2YM

=𝐿𝜙𝑇D4𝐿𝜒

√
𝑓3(𝜎0, 𝜂0)
𝑓5(𝜎0, 𝜂0)

√
𝑓 (𝑟) + 𝑓2(𝜎0, 𝜂0)

𝑙2

𝑟2
2
𝜙
, (6.103)

enjoying the same IR and UV behaviour as (6.97) and (6.100) and also depending on the choice of a certain point on the quiver.

6.7. Global 𝑈 (1) symmetry breaking

Some SUSY field theories possess a classical 𝑈 (1) R-symmetry that is broken into a discrete subgroup by quantum mechanical 
effects. The holographic dual to this field theory should contain this information. The fact that the Ramond potentials are gauge 
invariant under the R-symmetry is essential in this context. Since the global symmetries are realized as gauged symmetries in the 
bulk, the breaking of the global R-symmetry in the QFT appears as a spontaneous symmetry breaking in the bulk. The vector field 
in the bulk corresponding to the R-symmetry current should acquire a mass. We check this phenomenon in our backgrounds. For 
simplicity and to uncover the universal behaviour of symmetry breaking, we focus on the 5d background introduced in Section 2.

We perturb the 𝑈 (1)𝜙 symmetry of the metric and 𝜇𝜈 . Then, the Lagrangian up to the second order in fluctuations and the 
equations of motion for these fluctuations up to the first order are derived. The appearance of a massive gauge field from the 
30

fluctuation is interpreted as the symmetry breaking in supergravity.
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Following [110], we gauge the isometry in the 𝜙 direction by replacing in the metric of (1.3)

𝑑𝜙→ 𝑑𝜙+ a, 𝜙→ 𝜙+ 𝜃. (6.104)

A gauge transformation as 𝜙 → 𝜙 + 𝜃 is absorbed by a → a + 𝑑𝜃. a is a new one-form with legs only in (𝑡, 𝑥, 𝑦) direction. Here, one 
can choose a gauge in which 𝜃 = 0, which simplifies the expressions. Now, we derive the Lagrangian for the fluctuating gauge fields 
a by replacing them in the action (2.1). The action reads

𝑆 (𝑔,,a) = 𝑆 (𝑔,,a = 0) + 1
16𝜋𝐺 ∫ 𝑑5𝑥

(√
−𝑔𝑓 (𝑟)

[
−1
2
f𝜇𝜈 f

𝜇𝜈 − 6𝑞2a𝜇a𝜇
])

(6.105)

The equation of motion for the fluctuation f is

𝑑 [⋆f] = −12𝑞2

𝑟6
a, (6.106)

which features a mass term for the new gauge field. This equation is derivable from the 𝜇𝜙 component of the Einstein equations 
(2.2).

Note that the introduction of the background gauge field  enables us to preserve SUSY in our solution. The Killing spinors 
given in (A.8), depend explicitly on the 𝜙 coordinate. This is reminiscent of the fact that the isometry of the 𝜙 circle is acting as an 
R-symmetry generator, mixing with the other SUSY algebra elements. In this line of thought, the spontaneous breaking of the gauged 
symmetry in bulk corresponds to the 𝑈 (1) global R-symmetry in the dual field theory breaking.

7. Discussion

In the preceding sections, we use holography to implement a SUSY-preserving deformation to a variety of 4d SCFTs. In essence 
this deformation is a twisted compactification, triggering a flow to a gapped three-dimensional field theory. Our method should 
apply to any SCFT whose holographic dual admits a consistent truncation to 𝑑 = 5 minimal gauged supergravity. The field theories 
encountered in this work can be divided into two basic categories.

• Field theories that admit a weakly coupled description in terms of elementary fields and a Lagrangian. Examples in this cate-

gory are  = 4 SYM and the  = 2 theories of Gaiotto-Maldacena (in the electrostatic case). After the deformation, the dual 
descriptions of those QFTs at strong coupling are given by the backgrounds in (3.1) and (5.20), respectively.

• Field theories that do not admit a weakly coupled description and/or do not have a Lagrangian description. The field theories 
associated with the BPT, AFPRT and LLM backgrounds are examples in this category. The QFTs and associated UV-SCFTs are non-

Lagrangian and strongly coupled. In contrast, the field theories dual to the 𝑇 1,1 and 𝑌 𝑝,𝑞 backgrounds are intrinsically strongly 
coupled (as the anomalous dimensions of the elementary fields are large), but one can still write down a superpotential.

Here we study both sets of examples using holographic observables. A summary of the key results is shown in Table 1. Since the 
string theoretic duals are always weakly curved, the QFTs described in our work are all at strong coupling. For the QFTs in the first 
category one can also gain insight from the perturbative description, as done in [63] for the  = 4 SYM case. It would be interesting 
to apply a similar analysis to the Lagrangian Gaiotto-Maldacena theories. For the QFTs in the second category, additional holographic 
observables or perhaps algebraic methods could be used to learn more.

Let us summarize some of the key conclusions of the paper.

• When the deformation parameter 𝜇 in (2.3) is set to zero, the dual QFT preserves four supercharges. This SUSY-preservation in 
the ten- or eleven-dimensional background is ‘inherited’ from the preservation of four supercharges in the 5d minimal gauged 
supergravity solution. We also know that in each case, the R-symmetry is broken by the VEV of a current in the QFT. This 
breaking is controlled by the parameter 𝑞 in eq. (2.3).

• The density of degrees of freedom in the deformed QFTs is captured by a monotonic quantity, which we called c𝑓𝑙𝑜𝑤. It decreases 
along the flow to lower energies, interpolating between the undeformed SCFT value and zero.

• The QFTs are strongly coupled all along the flow. There are no degrees of freedom in the deep IR and so a TQFT must describe 
the system there.

• We found that the deformed QFTs confine external non-dynamical quarks, at least in the case where the Wilson loops do not 
explore the internal manifold. As expected from this, ’t Hooft loops display a screening behaviour.

• We found that some of our observables (Entanglement Entropy, c𝑓𝑙𝑜𝑤, Complexity) contain two multiplicative contributions: one 
coming from the UV SCFT and another related to the flow. One might say the UV contribution is of a kinematical character while 
the flow contribution is of dynamical character. This ‘factorization’ of observables could be a consequence of the conjecture 
by Gauntlett and Varela [79]. In particular, fields in the current multiplet of the SCFT may be responsible for the ‘dynamical’ 
contribution depending only on the truncated 5d supergravity solution (2.3).

The seed used to construct all of the new backgrounds presented here was the Anabalón-Ross soliton in 𝑑 = 5. Analogous solutions 
exist in gauged supergravities in other dimensions. It would be straightforward to apply the same methodology, embedding those 
31

solitons into string theoretic backgrounds with appropriate AdS𝑑 factor. This is one natural direction for future research. It would be 
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informative, wherever possible, to study this holographic implementation of the twisted 𝑆1
𝜙

compactification alongside a Lagrangian 
account of the deformation. In particular, understanding the effect of the compactification on fields transforming in the fundamental 
representation would be desirable.

The deep IR of the deformed QFTs is also worthy of further study. Based on [111], one expects the 3d IR description to reveal a 
Chern-Simons theory of level given by the number of colour branes. It would be nice to understand in detail how this story applies 
to the IR endpoints of the flows described here. Finally, it would be interesting to identify observables which do not ‘factorize’ into 
a contribution from the flow and another from the lift. Probes which extend on both the (deformed) AdS directions and the internal 
directions in more non-trivial ways could help break this pattern.
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Appendix A. SUSY variations in 5d

In this appendix we study the SUSY properties of the 5d solution provided in eq. (1.3). The supersymmetry transformation of the 
gravitino for the 5d gauged supergravity, which sets the equation for the Killing spinors, is [112]

𝛿𝜓𝜇𝑑𝑥
𝜇 = (𝑑 +𝑊 )Ψ = 0 ≡Ψ , (A.1)

with

𝐴 =𝐴𝜇𝑑𝑥𝜇 (A.2)

𝑊 = 1
4
𝜔𝑎𝑏𝛾

𝑎𝑏 −
𝑖
√
3

2𝑙
𝐴+

𝑖
√
3

4!
(
𝛾𝑐𝛾

𝑎𝑏 − 6𝛿𝑎𝑐 𝛾
𝑏
)
𝑒𝑐𝐹𝑎𝑏 +

1
2𝑙
𝛾𝑐𝑒

𝑐 .

The relation between the complex spinor Ψ and the symplectic Majorana spinor 𝜖𝑎 is Ψ = 𝜖1 + 𝑖𝜖2 (see [113]). The basis for the 
Clifford algebra used for 5d calculations is:

𝛾0 = −𝑖
(

0 𝜎2
𝜎2 0

)
, 𝛾1 = −

(
𝜎3 0
0 𝜎3

)
, 𝛾2 = 𝑖

(
0 −𝜎2
𝜎2 0

)
,

𝛾3 =
(
𝜎1 0
0 𝜎1

)
, 𝛾4 = 𝑖𝛾0𝛾1𝛾2𝛾3 . (A.3)

By acting with  for the second time on the eq. (A.1), one can reach to a consistency condition. The so-called 2-form integrability 
conditions are defined as

 ∧Ψ= (𝑑𝑊 +𝑊 ∧𝑊 )Ψ = 0. (A.4)

This equation has a non-trivial solution only if the determinant of the components of 𝑑𝑊 +𝑊 ∧𝑊 is zero.

This condition makes us choose 𝜇 = 0 to have a supersymmetric solution. At this supersymmetric point, we introduce a change of 
coordinate

𝑟 = |𝑞𝓁|2∕3 cosh(𝜌)1∕3, (A.5)

and the metric and gauge field will read

𝑑𝑠2 = 𝓁2

9
𝑑𝜌2 +

𝑟2⋆
𝓁2

[
cosh (𝜌)2∕3

(
−𝑑𝑡2 + 𝑑𝑦2 + 𝑑𝑧2

)
+ sinh (𝜌)2

cosh(𝜌)4∕3
𝑑𝜙2

]
, (A.6)

𝐴 =
√
3𝑞
2

(
1

2∕3 − 1
)
𝑑𝜙. (A.7)
32

𝑟⋆ cosh(𝜌)
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Here we have 𝑟⋆ = |𝑞𝓁|1∕3 and 𝐿𝜙 =
2𝜋𝓁5∕3
3𝑞1∕3 .

The solution to the Killing spinor equations on our background is

Ψ= cosh(𝜌)−1∕3𝑒
−𝑖𝜋 𝜙

𝐿𝜙

⎛⎜⎜⎜⎝
𝑒𝜌∕2𝑐1
𝑒−𝜌∕2𝑐2
−𝑖𝑒𝜌∕2𝑐2
−𝑖𝑒−𝜌∕2𝑐1

⎞⎟⎟⎟⎠ , (A.8)

which has two complex integration constants (𝑐1, 𝑐2).

Appendix B. 𝒂-anomaly match for reductions of 6d linear quivers

The ’t Hooft anomalies of a 𝑑-dimensional field theory can be represented with a 𝑑 + 2-form called the anomaly polynomial,13

𝐼𝑑+2 = 𝐴̂(𝑇 )ch(𝐸)|𝑑+2. (B.1)

The object 𝐴̂(𝑇 ), or A-hat genus, is an expansion in the Pontryagin classes of the tangent bundle 𝑇 to the space. ch(𝐸) is the Chern 
character of the bundle 𝐸 composed of all the gauge and global symmetries of the theory. Crucially this object is invariant along RG 
flows.

For the six-dimensional linear quiver theories mentioned in section 4.2, the anomaly polynomial is an eight-form 𝐼8 which can 
be written as an expansion in the second Chern class of the R-symmetry bundle 𝐶2(𝑅) (a four-form) and the first Pontryagin classes 
of the tangent bundle, 𝑝1 and 𝑝2 (four- and eight-forms, respectively). The coefficients encode the anomalies. As explained in [85], 
one can follow the methods developed in [114,115] for a linear quiver consisting of (𝑃 − 1)-many 𝑆𝑈 (𝑁𝑖) gauge nodes connected 
to 𝑆𝑈 (𝑓𝑖) flavour nodes to obtain

𝐼8 =
1
2
∑
𝑖𝑗

𝐶−1
𝑖𝑗 𝑁𝑖𝑁𝑗𝐶2(𝑅)2 +

1
24

[
2(𝑃 − 1) −

∑
𝑁2
𝑖

]
𝐶2(𝑅)2 (B.2)

+ 1
48

[
2(𝑃 − 1) −

∑
𝑁2
𝑖

]
𝐶2(𝑅)𝑝1

+ (𝑃 − 1)
23𝑝21 − 116𝑝2

5760
+ 1

2

[
2(𝑃 − 1) −

∑
𝑁𝑖𝑓𝑖

] 7𝑝21 − 4𝑝2
5760

,

where 𝐶−1
𝑖𝑗 is the inverse of the Cartan matrix for 𝐴𝑃−1,

𝐶𝑖𝑗 = 2𝛿𝑖,𝑗 − 𝛿𝑖,𝑗−1 − 𝛿𝑖,𝑗+1. (B.3)

To derive this result, in addition to the anomaly contributions from each species in the quiver theory, one needs to account for a 
Green-Schwarz term arising from couplings between the self-dual tensor and various gauge fields. Its form must be inferred from the 
cancellation of gauge anomalies.

Here we are interested in reductions of these 6d theories on a negative-curvature Riemann surface, of volume

𝑉Σ = ∫ volΣ = 4𝜋(𝑔 − 1), (B.4)

with a topological twist appropriate to preserve  = 1 SUSY in four dimensions. To implement this twisted reduction in the anomaly 
polynomial, we can follow the same approach used in [116] in the context of theories from wrapped M5-branes probing ℂ2∕ℤ𝑘
singularities, shifting the Chern root of the R-symmetry bundle as

𝐶2(𝑅)→ −
[
𝐶1(𝑅′) +

volΣ
4𝜋

]2
. (B.5)

The prime in 𝐶1(𝑅′) indicates that this symmetry need not always coincide with the four-dimensional R-symmetry, a subtlety which 
we can overlook in the present example. Following this procedure in (B.2) and integrating over the Riemann surface using (B.4), we 
find

∫
Σ𝑔

𝐼8 =
1
6
(𝑔 − 1)

[
12
∑
𝑖𝑗

𝐶−1
𝑖𝑗 𝑁𝑖𝑁𝑗 + 2(𝑃 − 1) −

∑
𝑁2
𝑖

]
𝐶1(𝑅′)3 (B.6)

− 1
24

(𝑔 − 1)
[
2(𝑃 − 1) −

∑
𝑁2
𝑖

]
𝐶1(𝑅′)𝑝1.

For a 4d SCFT with anomaly polynomial of the form

𝐼SCFT
6 = 1

6
𝛼𝐶1(𝑅)3 −

1
24
𝛽 𝐶1(𝑅)𝑝1, (B.7)
33

13 In this appendix we suppress wedge products for convenience.
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the relationship between the 𝑎 and 𝑐 anomalies and the ’t Hooft anomalies for the R-symmetry allows us to compute [117]

𝑎 = 3
32

(3𝛼 − 𝛽) , 𝑐 = 1
32

(9𝛼 − 5𝛽) . (B.8)

Interpreting (B.6) as the anomaly polynomial for the 4d theories in question, this allows us to make a check of the conjectured 
duality with the AFPRT AdS5 backgrounds. Now, for the purposes of comparison with the holographic result, we should focus on the 
leading-order contribution at large 𝑃 . The term 

∑
𝑖𝑗 𝐶

−1
𝑖𝑗 𝑁𝑖𝑁𝑗 dominates in this limit. The leading coefficients of both 𝑎 and 𝑐 are

𝑎, 𝑐 ∼ 27
8
(𝑔 − 1)

∑
𝑖,𝑗

𝐶−1
𝑖𝑗 𝑁𝑖𝑁𝑗. (B.9)

As discussed at length in [85], the role of the Cartan matrix in the holographic limit is like that of a discrete second derivative, so 
that (in the conventions of this paper)∑

𝑖,𝑗

𝐶−1
𝑖𝑗 𝑁𝑖𝑁𝑗 ∼

1
(9𝜋)4 ∫ −𝛼𝛼̈𝑑𝑧. (B.10)

This identification leads to a leading-order match between (B.9) and the holographic 𝑎-central charge in (4.34), which we can verify 
for a given quiver.

As an example, consider a balanced linear quiver with the same rank 𝑟 for all of (𝑃 − 1) gauge groups, and a pair of additional 
𝑆𝑈 (𝑟) flavour groups, one coupled to each of the first and last gauge nodes. In this case (B.9) gives∑

𝑖,𝑗

𝐶−1
𝑖𝑗 = 1

12
𝑃 (𝑃 − 1)(𝑃 + 1), 𝑎 ∼ 9

32
(𝑔 − 1)𝑟2𝑃 3, (B.11)

again with only the leading-order term shown. The function 𝛼(𝑧) associated to the holographic dual of this quiver is

𝛼(𝑧) = 27𝜋2
2

⎧⎪⎨⎪⎩
−𝑟𝑧3 + 3𝑟(𝑃 − 1)𝑧 0 ≤ 𝑧 ≤ 1
−3𝑟𝑧2 + 3𝑟𝑃𝑧− 𝑟 1 ≤ 𝑧 ≤ 𝑃 − 1
𝑟(𝑧− 𝑃 )3 + 3𝑟(𝑃 − 1)(𝑃 − 𝑧) 𝑃 − 1 ≤ 𝑧 ≤ 𝑃

, (B.12)

which satisfies (4.21) for 𝐹02𝜋 taking values {𝑟, 0, −𝑟} on the various intervals, and satisfies the boundary conditions 𝛼(0) = 𝛼(𝑃 ) = 0. 
Jumps in 𝐹0 at 𝑧 = 1 and 𝑧 = 𝑃 − 1 are sourced by D8 flavour branes. Computing the holographic central charge using eq. (4.34),

𝑎 =
𝑉Σ

(6𝜋)5 ∫ −𝛼𝛼̈𝑑𝑧 = 9
32

(𝑔 − 1)
(
𝑟2𝑃 3 +(𝑃 )) . (B.13)

This is a leading-order match to the field theory result (B.11) obtained from reducing the anomaly polynomial on Σ.

We conclude this appendix by commenting on the prospect for a quiver description of the 4d SCFTs in question. As noted in the 
main text, a heuristic proposal for such a description was made in [87]. There the proposed quiver consisted of the same basic content 
of vector and hyper multiplets as in the 6d quiver, but with a multiplicity proportional to volume of the Riemann surface. However, 
this proposal fails to reproduce the leading order 𝑎 anomaly derived here from both holographic and field-theoretic approaches.

In fact we can go further. In that proposal, the 4d fields contributing to the anomaly polynomial were the fermions of the vector 
and hypermultiplets, with the former of R-charge 𝑞𝑣 = 1 and the latter 𝑞ℎ = −1∕2. A natural generalization of that proposal would 
be to consider these same fermion species, and ask if there is any possible integer multiplicity of each that reproduces the anomaly 
polynomial in (B.6). In fact there is not. Furthermore, one can show that there is no rational R-charge assignment for 𝑞ℎ which could 
reproduce (B.6) (again assuming integer multiplicities of both hyper and vector multiplets). These observations make it appear even 
less likely that these theories admit a quiver description.

Appendix C. Gaiotto-Maldacena background Page charges

In this appendix we provide more details for the calculation of the Page charges in the GM background. For more details see [91].

Following the discussion in Section 5.3, we Fourier expand the Rank function and 𝑉̇ as

 =
∞∑
𝑛=1

𝑛 sin
(
𝑛𝜋

𝑃
𝜂
)
, 𝑉̇ = 𝜋

𝑃

∞∑
𝑛=1

𝑛𝜎 sin
(
𝑛𝜋

𝑃
𝜂

)
𝐾1

(
𝑛𝜋

𝑃
𝜎

)
. (C.1)

In some limits of the geometry, it is useful to have another parameterisation for 𝑉̇ [118],

𝑉̇ = 1
2

∞∑
𝑚=−∞

𝑃∑
𝑘=1
𝑏𝑘

(√
𝜎2 + (𝜂 − 2𝑚𝑃 + 𝑘)2 −

√
𝜎2 + (𝜂 − 2𝑚𝑃 − 𝑘)2

)
. (C.2)

In the 𝑘’th cell, with 𝜂 ∈ [𝑘, 𝑘 + 1] one has( )

34

𝐵𝑘2 = 2𝜅 −(𝜂 − 𝑘) + 1
4
𝑉̇ 𝑓5𝑓6 vol(S2), (C.3)
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hence there is a large gauge transformation 𝐵2 → 𝐵2 + 2𝜅 𝑘vol(S2) as we move through each sector while moving in the 𝜂 axis.

Now we consider the behaviour of the metric near special points which there is possibility of singularities or D-branes. All of the 
calculation are performed in the 𝑟 →∞ limit. In this limit, the 5d subspace in eq. 5.22 denoted by 𝑑𝑠25, asymptotes to AdS5 and the 
fibered sphere 𝑆̃2 can be re-written as a round sphere 𝑆2 by absorption of the constant factors in the metric fibration. First, we will 
focus on the boundary 𝜎→∞. Using the asymptotics relation 𝑥 →∞, 𝐾0(𝑥) →

√
𝜋(2𝑥)−

1
2 𝑒−𝑥 and the fact that the leading term in 

(5.26) is the 𝑛 = 1 term, one has

𝑉 = −1𝑒
− 𝜋
𝑃
𝜎

√
𝑃

2𝜎
sin

(2𝜋
𝑃
𝜂
)
+⋯ , (C.4)

leading to

𝑑𝑠2 = 𝜅
[
4𝜎
(
𝑑𝑠2(AdS5) + 𝑑𝜒2

)
+ 2𝑃
𝜋

(
𝑑
(
𝜋

𝑃
𝜎
)2

+ 𝑑
(
𝜋

𝑃
𝜂
)2

+ sin2
(
𝜋

𝑃
𝜂
)
𝑑𝑠2(S2)

)]
,

𝑒−Φ =
1𝜋

2

2𝑃
3
2
√
𝜅
𝑒−

𝜋
𝑃
𝜎
(
𝜋

𝑃
𝜎
)− 1

2
, 𝐻3 = −4𝜅𝑃

𝜋
sin2

(
𝜋

𝑃
𝜂
)
𝑑
(
𝜋

𝑃
𝜂
)
∧ vol(S2). (C.5)

The RR fluxes are zero at this order and the subspace ( 𝜋
𝑃
𝜂, S2) now forms a unit radius 3-sphere. One can show that by a change of 

coordinate 𝑟 = 𝑒−
𝜋
𝑃
𝜎( 𝜋
𝑃
𝜎)−

1
2 the metric reduces to the near horizon limit of a stack of spherically symmetric NS5 branes in flat space. 

By choosing 2𝜅 = 𝜋 we find the appropriately quantized charges of the NS5 branes,

𝑄NS5 = − 1
(2𝜋)2 ∫

𝑆3

𝐻3 = 𝑃 . (C.6)

By similar analysis, the limits for 𝜂 = 0, 𝑃 for 𝜎 far from its bounds show that the solution is regular except at 𝜎 = 0 which requires 
more detailed study.

For (𝜎 = 0, 𝜂 = 𝑘), in the range 0 < 𝑘 < 𝑃 , we use the coordinate change (𝜂 = 𝑘 − 𝑟 cos𝛼, 𝜎 = 𝑟 sin𝛼) for small 𝑟 and find that

𝑉̇ =𝑁𝑘, 𝑉 ′′ =
𝑏𝑘
2𝑟
, 𝑉̇ ′ =

𝑏𝑘
2
(1 + cos𝛼) +𝑁𝑘+1 −𝑁𝑘, (C.7)

leading to the asymptotic form of

𝑑𝑠2

2𝜅
√
𝑁𝑘

= 1√
𝑏𝑘
𝑟

(
4𝑑𝑠2(AdS5) + 𝑑𝑠2(S2)

)
+

√
𝑏𝑘
𝑟

𝑁𝑘

(
𝑑𝑟2 + 𝑟2𝑑𝑠2(S̃2)

)
, 𝑒−Φ =

(
𝑁𝑘𝑏

3
𝑘

26𝜅2𝑟3

) 1
4

.

(C.8)

This matches with the near horizon limit of a stack of D6 branes wrapping AdS5×S2 with S̃2 spanned by (𝛼, 𝜒). The RR fluxes to 
leading order are

𝐵2 = 0, 𝐶1 =
(
𝑏𝑘
2
(1 + cos𝛼) +𝑁𝑘+1 −𝑁𝑘

)
𝑑𝜒, 𝐶3 = −2𝜅𝑁𝑘𝑑𝜒 ∧ vol(S2). (C.9)

The Page charge of D6 branes is quantised and one gets

𝐹2 = −1
2
𝑏𝑘vol(S̃2) ⇒ 𝑄𝑘

𝐷6 = − 1
2𝜋 ∫̃

𝑆2

𝐹2 = 𝑏𝑘 = 2𝑁𝑘 −𝑁𝑘−1 −𝑁𝑘+1. (C.10)

The solution is regular everywhere else and has a stack of source NS5 branes at 𝜎 =∞ and stack of D6 branes at (𝜎 = 0, 𝜂 = 𝑘) for 
𝑘 = 1, ...𝑃 − 1.

We can also define a quantised Page charge for D4 branes sitting at 𝜎 = 0. At the loci of the D6 branes, near 𝜂 = 𝑘, with the help of 
(C.7) one can integrate on (𝜒, S2) and the semi circul defined by (𝜂 = 𝑘 − 𝑟 cos𝛼, 𝜎 = 𝑟 sin𝛼), with 𝑟 small and 0 ≤ 𝛼 ≤ 𝜋. Performing 
the integral one finds

𝑄𝑘
𝐷4 = − 1

(2𝜋)3 ∫
S2×S̃

2

𝐹4 =𝑁𝑘 −𝑁𝑘−1, (C.11)

which are interpreted as colour branes. The 𝐹4 is locally given by 𝑑𝐶3, or 𝐹4 = 𝐹4 −𝐵2 ∧ 𝐹2. The total charge of D6 and D4 branes 
reads

𝑃−1∑
𝑘

𝑃−1∑
𝑘

35

𝑄𝐷6 =
𝑘=1
𝑄
𝐷6 =𝑁𝑃−1 +𝑁1, 𝑄𝐷4 =

𝑘=1
𝑄
𝐷4 =𝑁𝑃−1. (C.12)
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This total amount of charge of D4 branes quoted above includes the ‘true’ colour D4 present in the background, but also the charge 
of four-brane induced on the D6 and NS branes. If one is interested only in the ‘true’ D4 charge in the interval [𝑘, 𝑘 + 1], excluding 
the charge of four-brane induced on the D6 and NS branes, there are 𝑁𝑘 of them.
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