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Abstract

Social preferences are a powerful determinant of human behavior. We study their
behavioral implications within the context of a network game. A key feature of
our game is the existence of multiple equilibria that widely differ in terms of their
payoff distributions. Determining which equilibrium is most plausible is thus a
key concern. We show that introducing social preferences into the game can resolve
the problem of equilibrium multiplicity. However, the selected equilibria do not
necessarily yield more efficient or egalitarian payoff distributions. Rather, they just
reinforce the inequality that is already inherent in a network structure. We validate
these predictions in an experiment and discuss their implications for managerial
practice and behavior in larger networks.
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1 Introduction

In our daily lives, we are involved in many social interactions and constantly strug-

gle to divide our time, effort, and resources with others. The time and effort we spend

in this way can be viewed as a local public good that we share with our interaction

partners. To give some examples, the preventive measures we take in a pandemic to
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protect our contacts, the time we dedicate to a joint project with our co-workers, or our

experimentation with new technologies, which reduces the adoption costs for others,

all these investments can be viewed as our contribution to a local public good.

Not all of us have access to the same interaction partners, however, and so, not all

of us have access to the same public goods investments by others. The network struc-

ture of social interactions thus has major consequences for the distribution of the costs

and benefits within a group or society. This is where social preferences come into play.

Numerous experimental and empirical studies have consistently demonstrated that so-

cial preferences shape our behavior in the provision of public goods, especially within

small groups. A recurring finding is that individuals contribute higher and more eq-

uitable amounts to these groups than what would be anticipated from a purely selfish

viewpoint (see, e.g., Andreoni and Bernheim, 2009; Eckel and Harwell, 2015).As such,

social preferences may indeed have the potential to also overcome the inequalities in

our social interactions.

It is not clear, however, how social preferences play out in a network of interdepen-

dent public goods. We study this topic for the first time in both theory and experiment.

Our starting point is the seminal public goods game by Bramoullé and Kranton (2007),

which shares many similarities with the social dilemmas described above: Players are

embedded in a fixed network and make investments in a local public good shared with

their direct network neighbors. In particular, there exists a privately optimal level of

the good that even a pure payoff maximizer would contribute to. The key question,

therefore, is who is willing to provide the public good and who is going to free ride. To

frame it in game theory terms, the game has multiple Nash equilibria that significantly

differ in terms of total welfare and the payoff distributions they induce.

Three important questions emerge from here: Do social preferences help to main-

tain public good investments beyond the private optima? Do they resolve the problem

of equilibrium multiplicity in this game? And, if so, do they facilitate more equitable or

more efficient payoff distributions when a network structure itself is asymmetric? To

structure our thoughts on these questions, we first extend the Bramoullé and Kranton

2



(2007) game by allowing the players to possess other-regarding preferences. Specifi-

cally, we adopt the utility model proposed by Charness and Rabin (2002), which en-

compasses various different social preference types that real people have been shown

to care about, including altruism, inequity aversion, and competitiveness, among oth-

ers.1 We then study the Nash equilibria of our modified game.

Our main result is as follows: Many of the Nash equilibria that emerge in the orig-

inal game with payoff-maximizing players are no longer sustainable when players

possess social preferences. Specifically, the key insight is that when players’ social

preferences satisfy certain conditions explained below, their strive for a certain payoff

ordering in their local network neighborhood leads to a significant simplification and

sharpening of the equilibrium predictions. In a Nash equilibrium on a star network,

for instance, an inequity-averse player in the center position must earn more than the

players in the periphery positions when at least one of them is inequity-averse as well.

In the original game, by contrast, a second equilibrium exists where the center player

earns less than everybody else. Similarly, in any equilibrium on a fully connected net-

work, a group of inequity-averse players will invest the same and consequentially earn

the same, while in the original game, a wide range of investment profiles can be sup-

ported. The underlying mechanism in both examples is that the socially concerned

players share a common understanding of which equilibrium to play.

There are two important aspects of this result that we would like to stress here.

Firstly, many of our predictions are robust to the “strength” of players’ social pref-

erences, that is, the weights they assign to other players’ payoffs. This is important

because it means that our predictions can be applied to various social contexts, irre-

spective of whether social comparison concerns play a prominent or minor role there.

Nevertheless, our predictions become actually even sharper when players have weaker

social preferences. In fact, in the limit of marginal comparison concerns, our predicted

equilibrium set is even a proper subset of the equilibrium set in the original game for

1See Bruhin et al. (2019) and Falk et al. (2018) for empirical evidence on the diversity of social prefer-
ences, and Kerschbamer and Müller (2020) and Reuben and Riedl (2013) for how this diversity can, for
instance, explain differences in political attitudes or contribution norms.
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many of the networks we study. In this sense, introducing social preferences into the

Bramoullé and Kranton (2007) game results in equilibrium selection.

Secondly, however, we find that social preferences do not always lead to a refined

equilibrium set across all networks and for all types of social preferences. Rather, this

is tied to two conditions. First, players must have what we term compatible social

preferences, which means that their preferences need to align with their positions in a

network. Preference compatibility is satisfied, for instance, when all players in a net-

work are competitive, inequity averse, or have social welfare concerns. It is violated,

by contrast, when an altruistic player in the center position of a star interacts with a

group of competitive players in the periphery positions. In such cases, the equilibrium

set might even be larger than in the original game. Second, the network in which play-

ers are embedded must be nested in the sense that the neighborhoods of some players

in the network must be contained in the neighborhoods of others (Mariani et al., 2019).

In particular, the ideal constellation for our predictions to apply is when one player

nests the neighborhoods of all other players as in the star. In contrast, our theory pre-

dicts no refined equilibrium set when no player nests the neighborhood of any other

player, such as in the circle network. Here, players cannot agree on the equilibrium to

be played, irrespective of their social preferences.

In the second part of our paper, we validate the key predictions and mechanisms

behind our theory in an experiment. Our tests leverage one of the useful features of

the two conditions behind our predictions, nestedness and preference compatibility,

namely that they are readily measurable. Consequently, we compare investment pro-

files across networks with varying degrees of nestedness and among subject groups ex-

hibiting different a-priori elicited social preference combinations to assess whether the

observed investments move as predicted. Our experimental design incorporates two

additional features to facilitate the test: first, a large strategy space allowing for the full

set of Nash equilibria and deviations thereof to emerge and, second, a continuous-time

framework, enabling subjects to freely adjust their choices over a specific time interval.

To provide an outlook on our findings, we do not observe any evidence suggesting
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that social preferences lead to a more equitable or more efficient payoff distribution

than expected from a group of purely payoff-maximizing players. Instead, the majority

of investments in our experiment closely align with the equilibrium predictions for the

original game. Nevertheless, groups with compatible social preferences managed to

coordinate their choices in two aspects better: they reached the predicted equilibrium

profiles more frequently, and they converged to their final investments in a shorter

time.

In the next section, we relate our contribution to the existing literature. Section 3

delves into our theoretical predictions, Section 4 outlines the experimental design, and

Section 5 analyzes our findings. In Section 6, we explore the practical implications of

our results for managerial practices and the broader social interaction networks that in-

spired our study. Section 7 concludes. The proofs of all our formal statements, supple-

mentary evidence from the experiment, and the replication instructions can be found

in the appendix.

2 Related literature

Our paper relates to the literature on social preferences and social networks. In the

domain of social networks, our primary contribution lies in being the first to theoret-

ically explore a network game with socially concerned players. While a few earlier

theories have studied settings of socially concerned agents in a network, most notably

Ghiglino and Goyal (2010), Immorlica et al. (2017), and Bourlès et al. (2017), a key

distinction lies in their focus on contexts devoid of any strategic interactions between

the agents, if it were not for their social comparison concerns. Their motivations stem

from peer comparisons in otherwise anonymous markets, financial transfers between

family members, or an individual’s status in a large neighborhood. In contrast, we

study a game where players not only observe but also influence each other, resulting

in complex interactions and multiple strategy profiles in Nash equilibrium.2 Thus,

2One other notable exception of a network game with socially concerned players is the paper by
Richefort (2018). Nevertheless, similar to all the other theories, also his game yields a unique equilibrium
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by resolving the issue of equilibrium multiplicity, social preferences play an entirely

different role in our theory.

With this finding, we also contribute to another important branch in the theoretical

networks literature that aims to tackle the pervasive problem of equilibrium multiplic-

ity. As emphasized by Bramoullé et al. (2014) and Allouch (2015), this issue is most

severe in games where players’ actions are strategic substitutes, so precisely the class

of games looked at in our study. Previous efforts to resolve the problem have con-

sidered Nash tâtonnement stability (Bramoullé and Kranton, 2007), stochastic stability

(Boncinelli and Pin, 2012), and limited information about the network structure (Ga-

leotti et al., 2010) as equilibrium refinement concepts. While their predictions broadly

coincide with those derived from our theory for all the star-like networks, our theory

provides additional insights into phenomena unexplained by previous theories. For

instance, it is able to explain why individuals tend to split their investments equally

when they interact in pairs or why they fail to coordinate their choices within loosely

connected local interaction structures, such as the circle network. Both these phenom-

ena, while empirically very relevant, remained previously unaddressed.3

In the experimental networks literature, the central question mirrors that of the the-

ory: which equilibrium prevails on which network structure, and why? Yet, the em-

pirical support for the aforementioned theories remains, at best, mixed. For instance,

Charness et al. (2014) delved into the role of incomplete information about the network

structure, finding that it does not inherently facilitate coordination. Instead, in their ex-

periment, risk dominance emerged as the guiding principle for equilibrium selection.

Moreover, in an experimental design similar to ours, Rosenkranz and Weitzel (2012)

compared the predictions of Nash tâtonnement stability, risk dominance, and quantal-

point regardless of whether the players are socially concerned or not. As such, social preferences merely
“shift” the unique equilibrium point in his theory, whereas in our theory, they play a crucial role in
helping players decide which equilibrium to coordinate on. Another noteworthy distinction lies in the
fact that all earlier theories, including Richefort’s, focus on one specific type of social preference, such
as altruism or competitiveness. We, in contrast, look at the empirically more relevant case of preference
heterogeneity.

3For instance, equal sharing is the by far most common outcome in the two-player public goods
games reviewed in Andreoni and Bernheim (2009). Moreover, the experiments of Berninghaus et al.
(2002) and Cassar (2007) made clear how difficult it is to coordinate on loosely connected local interac-
tion structures.

6



response theory, providing no more than partial support for all three concepts.4

Both of these experiments share a common limitation: social preferences have never

been given a chance to reveal their full potential as an equilibrium-refinement device.

One reason is that much of their evidence is derived from games on asymmetric net-

works, where all the existing refinement concepts, including ours, predict just the same

equilibrium. Another issue arises from their use of a binary strategy space that pre-

cludes equal divisions by design or their implementation of a simultaneous choice for-

mat, making coordination difficult in the complex environment of a network game. In

contrast, we follow Berninghaus et al. (2002) and Goyal et al. (2017) in implementing

a continuous-time version of the Bramoullé and Kranton game. This version main-

tains the large strategy space of the original game while still enabling coordination, as

players can learn about their investments before the final payout period.

Our paper is finally related to the extensive literature on social preferences. It is

particularly close to an emerging group of studies that goes beyond the influence of

social-comparison concerns in standard linear public goods or bargaining games. Sim-

ilar to us, also these studies find a major role of social preferences in coordinating our

choices. Binmore (2005), for example, argues that they help us navigate unfamiliar

social dilemmas. Moreover, Reuben and Riedl (2013) and Fehr and Schurtenberger

(2018) demonstrate how social preference influences the foundation of social norms,

and Kahneman et al. (1986) and Eyster et al. (2021) illustrate their impact on a mar-

ket’s resistance to change. Closest to our study, Dufwenberg and Patel (2017) present

a theoretical model showing how social preferences can reduce the number of Nash

equilibria in a threshold-level public goods game. However, the arguments underly-

ing their result differ entirely from ours. Moreover, while their theory speaks to public

goods provision in small communities, the application we have in mind is the alloca-

4The only other experimental study on the role of social preferences in networks that we are aware
of is Zhang and He (2021). However, much like the theory papers mentioned above, they study a
dominant-strategy game, where social preferences merely shift the observed investments. Social pref-
erences in our context, by contrast, make up the difference between a center- or a periphery-specialized
equilibrium and, thus, between being the sole contributor to a public good or a free rider. Moreover, we
should mention another related line of experimental work investigating the influence of communication
in network games (Choi and Lee, 2014; Charness et al., 2023). This work has revealed another effective
means of coordination.
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tion of scarce resources in a network of interdependent public goods.

3 Theory

3.1 The rules of the basic game

Figure 1: Networks in the experiment

dyad

line

circle

d-boxcore-
periphery

star

complete

We study the role of social preferences in the Bramoullé and Kranton (2007) local

public goods game. The rules are as follows: n players are embedded in a fixed net-

work g, some of which are illustrated in Figure 1. All players simultaneously select

an investment ei ∈ [0, ē] that contributes to their own local public good and that of

their direct neighbors in g.5 Let e−i = (ej)j 6=i represent the investments of all players

except player i, and let Ni = {j ∈ N\{i} : ij ∈ g} indicate the set of players in i’s

neighborhood. Player i’s payoff is determined by the following expression:

πi(ei, e−i) = b
(
ei + ∑

j∈Ni

ej
)
− cei . (1)

Here, c > 0 denotes the investment cost per unit and b(·) the social benefit function.

This function is strictly increasing and concave on [0, nē] and satisfies b(0) = 0 and

b′(0) > c > b′(ē). In most parts of our theory, we will more concretely assume that
5One might think of these partner-independent investments as the efforts in organizing parties for

friends, the experimentation with new tools, or neighborhood beautification efforts, all vis-à-vis the time
a person spends on her own personal projects.

8



b(·) is a quadratic function with |b′′| > (2b′(0)− c)/ē, so that, regardless of a player’s

“strength” of social preferences, no player ever invests ē.

There are two important observations to be made about the Bramoullé and Kranton

game. First, the exists a positive investment level e∗ in the game, defined by e∗ =

(b′)−1(c), that even a payoff-maximizing player would be willing to contribute to if the

sum of her neighbors’ investments is smaller. As a result, the investments of any two

neighbors are strategic substitutes because the higher the neighboring investments, the

less a player has to contribute herself to fill the gap until e∗.

Second, every network structure has multiple Nash equilibria as illustrated in Fig-

ure 2 for three of the networks in our experiment (where e∗ = 12). Most strikingly, the

Nash equilibria differ markedly in terms of both the investment and payoff distribu-

tions they induce among players. For instance, in the star, core-periphery, line, and d-

box of Figure 1, the equilibrium set includes both a center-specialized public good, where

the center player invests ec = e∗ and all the other players free ride, and a periphery-

specialized public good, where the center player free rides on the investments of others.

In the dyad and complete network, the equilibrium set even encompasses a continuum

of profiles, ranging from an equal-split profile to a specialized equilibrium, where e∗ is

provided by a single player.

As this pattern emerges consistently on every other network structure as well, a

major drawback of the game is that it does not predict any systematic relationship

between the structure of a network and players’ behavior within it. However, as we

will see below, introducing social preferences into the game has the potential to sig-

nificantly refine the equilibrium set. Moreover, the equilibria selected in this way are

empirically highly relevant.

3.2 The social preference function

Social preferences are commonly understood as the human tendency to take the

well-being of others into account when making a decision (e.g., Fehr and Schmidt,

1999). However, beneath this general tendency lies a significant amount of hetero-
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Figure 2: Nash equilibria on three networks
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NOTES: For the complete network, only two out of a continuum of Nash equilibria (with ∑i∈N ei =
e∗ = 12 as the only condition) are illustrated. In the circle network, there exists a third equilibrium
where the players in the upper left and the lower right corners each invest 12.

geneity in terms of when and how individuals take other’s well-being into account.6

To address this heterogeneity, the theoretical literature has developed various util-

ity models aiming to capture social preferences within specific contexts (see Fehr and

Charness, 2023, for a review). Our preferred model is an n-player extension of the dis-

tributional preference model by Charness and Rabin (2002) and Schulz and May (1989).

This extension proves particularly useful as it nests many of the social preference types

identified in the literature in a very parsimonious way.7

According to this model, a player’s utility is as expressed as follows:

Ui(ei, e−i) = πi +
σi

|Ri| ∑
j∈R−i

(
πj − πi

)
+

ρi

|Ri| ∑
j∈R+

i

(
πj − πi

)
. (2)

Here, Ri denotes the player’s reference group, and ρi and σi represent her social pref-

erence parameters, satisfying the conditions (i): 1 > ρi ≥ σi > −1 and (ii): |σi| ≥ |ρi| if

ρi > 0 > σi.

A player’s utility is thus a linear combination of her own material payoff πi and a

social preference component. The latter reflects the (dis-)utility a player derives from

comparing her payoff with that of other players. With whom a player compares is

defined by her reference group Ri. In our network context, it may be reasonable for
6See, for instance, the empirical evidence in Falk et al. (2018) and Bruhin et al. (2019).
7The distributional preference model also nests several of the utility functions used in the aforemen-

tioned literature on social networks. Notably, Ghiglino and Goyal (2010) assume what we term spiteful
players, while Immorlica et al. (2017) assume what we refer to as competitive players. Bourlès et al.
(2017), by contrast, develop a model wherein players know each other well, enabling them to incorpo-
rate each others’ utilities, rather than just payoffs, into their own utility functions.
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this group to just comprise the direct neighbors in a network (i.e., Ri = Ni), as these

players can be directly influenced. Alternatively, it may be reasonable that a player also

compares herself with players beyond her direct neighborhood, particularly in small

networks. Our theory is flexible enough to accommodate both scenarios.

Regardless of the reference group’s size, a player distinguishes between peers who

are behind (j ∈ R+ = {j ∈ R : πj < πi}) and peers who are ahead (j ∈ R− = {j ∈

R : πj > πi}). The parameters ρi and σi then govern the (dis-)utility that a player

derives from comparing her payoff with those behind and those ahead. In combina-

tion, these two parameters define various meaningful social preference types: Uncon-

ditional altruists (ρi ≥ σi > 0), for instance, always assign a positive weight to their

peers’ payoffs, regardless of whether they are ahead or behind. Also, social welfare

types (ρi > σi = 0) assign a positive weight to their peers’ payoffs unless they earn less

than everybody else in their reference group. In such a case, they behave like ordinary

payoff maximizers, aiming to fill the gap between their neighbors’ investments and

e∗. In the negative domain, spiteful players (0 > ρi ≥ σi) always assign a negative

weight to their peers’ payoffs. Competitive types (0 = ρi > σi), by contrast, behave

like ordinary payoff maximizers when their payoffs are higher than everybody else’s.

The two domains are connected by the inequity-averse types (ρi > 0 > σi) who assign

a positive or negative weight to their peers’ payoffs depending on whether they are

ahead or behind them. In sum, utility function (2) captures a broad spectrum of em-

pirically relevant preference types and, as we will see below, it is also simple enough

to generate sharp predictions within the context of a network game.

3.3 The rules of the modified game

Consistent with the broader empirical reality, and the specific context of our ex-

periment in particular, we envision a game where players differ in their social prefer-

ences. Specifically, we assume that the social preference type of each player, denoted

as τi = (ρi, σi, Ri), is determined before the start of the game through a random draw

from a common support T, which we assume is a finite subset of the set of all types
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compatible with utility function (2). All players become aware of their own types, but

they may only possess partial information about the types of the other players.

This naturally prompts the question of how much players know about the social

preferences of others. Throughout the main text, we make the straightforward as-

sumption that all players are completely informed about the preference types of every

other player. As we will see in Section 5.1, this assumption, albeit highly stylized,

yields predictions that are readily applicable in the context of our experimental game.

Moreover, as demonstrated in Appendix A.2.5, our key results remain robust even in

a richer setting where players have incomplete information about each other.

3.4 Equilibrium predictions

We are now ready to present the Nash equilibrium predictions for our modified

game featuring socially concerned players, henceforth referred to as the other-regarding

equilibria (ORE). A first notable observation is that our modified game readily lends it-

self to well-established fixed-point theorems, as summarized in Dasgupta and Maskin

(1986). Consequentially, the game is guaranteed to have at least one pure-strategy ORE

for any combination of player types τ = (τ1, .., τn):

Proposition 1 (Equilibrium Existence). The Bramoullé and Kranton game with socially con-

cerned players and a quadratic social benefit function has at least one Nash equilibrium in pure

strategies for every network g.

Refer to Appendix A.1 for the proof. This raises several equally intriguing follow-

up questions: How many OREs does the game possess on each network? How are the

investments and payoffs distributed in these equilibria? And, crucially, how do both

these aspects depend on the social preferences of the players? The following examples

elucidate the fundamental intuition behind our main results.

Example 1 (Star with an Altruist in the Center). Let us first consider the 4-player

star network depicted in Figure 1. Suppose that the center position is occupied by an

unconditional altruist (with ρc = σc > 0), while the three players in the periphery are
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payoff maximizers (i.e., ρp = σp = 0). Then, one can readily show that the following

three profiles describe all possible OREs:8

1. center-specialized: ec = ê(ρc) , ep = 0

2. distributed: ec =
3e∗−e∗(ρc)

2 , ep = e∗(ρc)−e∗
2 if e∗(ρc) < 3e∗

3. periphery-specialized: ec = 0 , ep = e∗ if e∗(ρc) < 3e∗

Here, e∗(ρc) denotes the total investment desired by the altruist when the payoff maxi-

mizers each make a positive investment, while ê(ρc) depicts the altruist’s total desired

investment when the payoff maximizers do not invest, with e∗(ρc) = (b′)−1(1−2ρc
1−ρc

c) >

ê(ρc) = (b′)−1((1− ρc)c) > e∗.

This example illustrates one of the complicating factors introduced into the game

when players are socially concerned. Not only can the original Nash equilibria of

the Bramoullé and Kranton game be sustained as ORE, but additional equilibria may

emerge that are not Nash when the players have pure monetary concerns. In Exam-

ple 1, this is exemplified by the distributed equilibrium profile where all four players

make a positive contribution to the public good. This is an ORE because the altruist is

willing to maintain a total desired investment in her neighborhood that is greater than

e∗. Hence, even if all the money maximizers invest ep = e∗ − ec > 0, the altruist is

still inclined to make an extra contribution. Only in the extreme case where the altruist

cares a lot about the payoffs of the other players (i.e., when e∗(ρc) ≥ 3e∗) does the ORE

set collapse to a unique equilibrium where the altruist solely provides the public good.

We do not pay much attention to this case, however, because it is unlikely that any

individual is so altruistic.9

As demonstrated in our next example, social preferences indeed have the poten-

tial to narrow the equilibrium set, even under the more realistic condition of small to

moderate social preferences.

8For the distributed ORE profile, use the first-order conditions ∂Uc(e)
∂ec

=
(
b′(ec + 3ep)− c

)(
1− σc

)
+

σcb′(ec + ep) = 0 and ∂πp(e)
∂ep

= b′(ec + ep)− c = 0.
9See, for instance, Figure 4 for evidence on this.
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Example 2 (Star with a Spiteful Player in the Center). Let’s revisit the star network

again, with three payoff maximizers in the peripheral positions. However, this time,

the center player is of a competitive or spiteful type (with σc < 0). In this case, the

game has a unique periphery-specialized ORE, where ec = 0 and ep = e∗.

Why are the other two profiles of Example 1 no equilibria anymore when the star

center player is of a competitive or spiteful type? Suppose the center player would

make a positive contribution as in these profiles. His total desired investment would be

no larger than e∗ when he is competitive, and it would even be less than e∗ when he is

spiteful or when he invests the lion’s share so that πc(e) < πp(e). Hence, the periphery

players must make a contribution themselves to fill the gap until their desired e∗. Yet,

for any contribution in the periphery, the center player reduces his own investment,

leading to further investment increases in the periphery, etc. Hence, a competitive or

spiteful player in the center position of a star destabilizes any center-specialized or

distributed profile.

Nevertheless, as our following example illustrates, this does not mean that compet-

itive or spiteful players free ride in all network positions alike.

Example 3 (Circle with Spiteful Players). Consider a circle network with players

labeled 1− 4. Suppose that players 1 and 3 are of a spiteful type (with ρi = σi < 0) and

suppose they compare their payoffs only with their direct neighbors 2 and 4, who are

again payoff maximizers. The set of ORE is in this scenario defined by

1. 1-and-3-specialized: e1 = e3 = ê(σ) , e2 = e4 = 0 if 2ê(σ) > e∗

2. distributed: e1 = e3 = 2e∗−e∗(σ)
3 , e2 = e4 = 2e∗(σ)−e∗

3 if 2e∗(σ) > e∗

3. 2-and-4-specialized: e1 = e3 = 0 , e2 = e4 = e∗

where e∗(σ) denotes the total desired investment of the spiteful players when the pay-

off maximizers make a positive contribution, and ê(σ) their total desired investment

when the payoff maximizers refrain from investing, with e∗(σ) < ê(σ) < e∗.
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In other words, as long as players 1 and 3 are not too spiteful (i.e., 2ê(σ) > e∗), the

same large equilibrium set emerges on the circle as in the original game with payoff-

maximizing players. In particular, there is an ORE where the public good is entirely

provided by the spiteful players 1 and 3.

Our final example makes clear that the same large equilibrium set emerges on the

circle under other preference constellations as well:

Example 4 (Circle with Inequity Averse Players). Consider the circle network again,

but with inequity averse players (with ρi > 0 > σi and |σi| = |ρi|) in all four positions.

The ORE set is then given by10

1. 1-and-3-specialized: e1 = e3 = ê(σ) , e2 = e4 = 0 if 2ê(σ) > ê(ρ)

2. distributed: e∗(σ)
3 ≤ ei = ej ≤ e∗(ρ)

3

3. 2-and-4-specialized: e1 = e3 = 0 , e2 = e4 = ê(σ) if 2ê(σ) > ê(ρ)

So, why can the equilibria from the original game be supported as ORE on the circle

regardless of the players’ preference types, while only one of them survives on the star

when a spiteful player occupies the center position? The answer lies in the distinct

network structures. In the circle, each player’s neighbors have one neighbor of their

own which they do not need to share with the player. As a consequence, in the 1-and-

3-specialized equilibrium, players 2 and 4 can access the investments of the spiteful

players 1 and 3, while the latter only have access to their own investments. And as the

total investment received by players 2 and 4 is beyond e∗, they are unwilling to make

the extra contribution that would make players 1 and 3 reduce theirs. As a result, a

public good sponsored by players 1 and 3 can be supported in an ORE on the circle.

10Note that there is no other distributed equilibrium profile besides the equal-split equilibrium. In
particular, there is no ORE with e1 = e3 > e2 = e4 because the necessary first-order conditions,

∂U1

∂e1
(e) =

(
b′(e1 + 2e2)− c

)(
1− σ

)
+ σb′(e2 + 2e1) = 0

∂U2

∂e2
(e) =

(
b′(e2 + 2e1)− c

)(
1− ρ

)
+ ρb′(e1 + 2e2) = 0 ,

can only be satisfied simultaneously when e1 = e2.
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The situation is different for the peripheral players in the star network who do not

receive any investment that the spiteful player in the center position would not have

access to as well. The crucial distinction from the circle network is that the center player

in the star nests the neighborhoods of all other players in the following sense:

Definition 1 (Nestedness). Player i nests the neighborhood of player j when Nj ∪ {j} ⊆

Ni ∪ {i}.

However, the stark difference in predictions between Examples 1 and 2 made clear

that another additional condition must be satisfied for social preferences to lead to a

refined equilibrium set. While the center player’s spitefulness in Example 2 helped to

refine the equilibrium set, the center’s altruism in Example 1 did not. As previously

explained, the key difference is that the spiteful player is determined to undo any pay-

off differences in his own disadvantage if there is a need to, while the altruist is not.

More generally, equilibrium selection through social preferences requires that the more

powerful nesting positions of a network should be occupied by competitive or spiteful

types. Conversely, the weaker nested positions should be occupied by social-welfare

or altruistic types because these types are willing to undo any payoff disadvantages

for their more powerful neighbors (even though Example 2 demonstrated that payoff

maximizers suffice as well). Inequity-averse types, finally, fit into any network position

because they are willing to rectify both their own and their neighbors’ payoff disad-

vantages. To summarize, the following combination of preference types is sufficient

for social preferences to lead to a refined ORE set:

Definition 2 (Preference compatibility). Consider two neighbors i and j in a network such

that i nests the neighborhood of j. We say that their preferences are compatible with their

network positions if τi ∈ Tc and τj ∈ Tp, where

(
Tc = {inequity averse, competitive, spite} AND Tp = T\{spite}

)
OR(

Tc = T\{altruist} AND Tp = {altruist, social welfare, inequity averse}
)

.
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Finally, while not crucial for most of our predictions, they can oftentimes be signif-

icantly refined when all players in the game possess small social preferences (i.e., their

ρi- and σi-parameters are small in absolute terms). As demonstrated by our previous

examples, the Nash equilibria of the original game and the corresponding ORE of the

same type typically diverge in their precise investment levels, and these differences

can grow substantial when players possess strong social preferences. Determining the

complete ORE set can, therefore, be intricate in these cases. Therefore, it is often more

fruitful to first confine the ORE set based on the maximum deviation that each player

is willing to make from a best-response investment of a payoff maximizer. We refer to

this as a player’s social preference strength.

To formally define it, let fi(τi, e−i) denote the best-response investment of a type-

τi player in network position i, and let fi(e−i) denote the best response of a payoff

maximizer in the same position. We say that

Definition 3 (Social preference strength). The social preference strength of a type-τi player

in network position i is given by the smallest εi ∈ R+ to satisfy

εi = max
{∣∣ fi(τi, e−i)− fi(e−i)

∣∣ : ∀ e−i ∈ [ 0, ē ]n−1
}

.

The social preference strength of all players in a network is then given by ε ≡ maxi∈N{εi}.

In the following, we will utilize our three definitions to fully characterize the ORE

sets for all seven networks in our experiment. The proofs of our statements are pro-

vided in Appendix A.2.

3.4.1 Star, core-periphery, and d-box

The star, core-periphery, and d-box are the three networks in our experiment where

one or two players nest the neighborhoods of all the other players. Yet, when all play-

ers are payoff maximizers, this fact has little impact on the structure of equilibria, as

both periphery- and center-sponsored public goods can emerge in equilibrium, where

the center player(s) earn(s) the most or the least, respectively.
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The same ambiguous predictions emerge from our theory when the players in these

networks are socially concerned but have the wrong preference combination. In con-

trast, the set of ORE is much refined when the players hold social preferences that are

compatible with their respective network positions. Specifically,

• in the star: τc ∈ Tc for the center player and τp ∈ Tp for at least one peripheral

player p,

• in the core-periphery: τc ∈ Tc for the center player and τj ∈ Tp\{inequity averse,

competitive} for at least one non-center player j, and

• in the d-box: τc ∈ Tc\{inequity averse, social wel f are} for both centers c ∈ C and

τp ∈ Tp\{inequity averse, competitive} for at least one peripheral player p.

In this case, no center-specialized equilibrium (with ej = 0 for all j ∈ N\C) can emerge

in an ORE because the center player(s) must earn more than at least one other player:

πc(e) ≥ min
j∈N\C

{πj(e)} for all c ∈ C . (3)

The intuition extends immediately from Example 2. The ORE set can be refined even

further on the star, core-periphery, or d-box when all four players possess small social

preference concerns. The intuition is simple as well. Condition (3) cannot be satisfied in

any distributed investment profile, where all four players make a positive contribution,

given that ε is smaller than some critical value ε, with εdbox < εstar = εcore defined in

Appendix A.2. In other words, when players’ social preferences are sufficiently small,

an ORE must entail a periphery-specialized ORE, where the public good is entirely

sponsored by the non-center players:

periphery-specialized: ec = 0 , ep ∈ [e∗ ± ε] , and ∑
d∈D

ed ∈ [e∗ ± ε] . (4)

In the limit of ε → 0, the ORE set, thus, even becomes a proper subset of the Nash

equilibria of the original game.

18



3.4.2 Line

The two center players in the line network each have one periphery player whose

neighborhood they nest. When all four players are payoff maximizers, this has, just as

in the star, core-periphery, and d-box, little impact on the structure of equilibria because

the only requirement on a Nash equilibrium is that epi = e∗, eci = 0, and ecj + epj = e∗

for i ∈ {1, 2} and j 6= i.

Again, the same holds true when players are socially concerned, but have the

wrong preference combination. Also, in this case, an ORE might entail a periphery-

specialized (with epj ≥ ecj) or a distributed (with epj < ecj) investment profile. How-

ever, when players’ social preferences are compatible with their respective line posi-

tions, and they possess sufficiently weak social preference, that is, when τc ∈ Tc for

both line middle players, τp ∈ Tp for both end players, and ε < εline = e∗/5, then an

ORE must be

periphery-specialized: πci(e) ≥ πpi(e) and epi ≥ eci for i ∈ {1, 2} . (5)

Hence, social preferences can also resolve the problem of equilibrium multiplicity on

the line network. Yet, they do so less effectively than on the star, core-periphery, or d-

box because the fact that each center player only nests one other player’s neighborhood

means that all four players need to have compatible preferences for our equilibrium

selection argument to apply.

3.4.3 Dyad and complete network

On the dyad and complete network, a wide range of investment profiles can be

supported in a Nash equilibrium when players are payoff maximizers. The only re-

quirement is that ∑i∈N ei = e∗.

Social preferences lead, in the first instance, to even more equilibria, as any profile

can be supported in an ORE with arbitrary preference types as long as ∑i∈N ei ∈ [e∗ ±

ε]. However, our theory predicts a much more refined ORE set when each player meets
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both compatibility conditions of Definition 2. Specifically,11

• in the dyad: τi ∈ Tc ∩ Tp for both i = {1, 2},

• in the complete network: τi ∈ Tc ∩ Tp for all i ∈ N and all ρi-parameters, as well

as all σi-parameters, are sufficiently close together.

In this case, our theory even predicts a unique ORE where the players split their total

investment equally

equal-split: ei = ej = e , with e ∈
[ e∗ ± ε

n
]

. (6)

The intuition is straightforward. Suppose that not all investments are equal. The fact

that players’ neighborhoods are mutually nested means that the player with the high-

est investment earns weakly less than everybody else, while the player with the lowest

investment earns weakly more. At least one of them would thus feel insulted in her

understanding of fairness and, accordingly, adjust her investment up- or downward.

Such adjustments can only be avoided when all players invest exactly the same.12

3.4.4 Circle

As already highlighted in Examples 3 and 4, the absence of nested neighborhoods

in the circle puts an end to the equilibrium selection property of social preferences. All

that can be said about the ORE set is summarized in these examples: It is as large as

the equilibrium set of the original game, and it collapses with it when players’ social

preferences become small (ε → 0). A refined ORE set is just possible when players

11The condition τi ∈ Tc ∩ Tp implies, for the dyad and the complete network, that (i) no player should
be an altruist or a spiteful type, (ii) no two or more players should be payoff maximizers, and (iii) no two
or more players should have distinct types from the set {payoff maximizer, social welfare, competitive}.

12Note that the strength of social preferences does not influence the emergence of an equal-split equi-
librium on the dyad or complete network. It solely affects the extent by which the total investment of all
players differs from e∗. A total investment of ne > e∗ can, for instance, be maintained by the aversion
to guilt. As long as the material benefits from a downward deviation are smaller than the moral cost of
guilt, and thus as long as ne is not too far away from e∗, players prefer their equilibrium investment e.

Note also that this equal-split prediction does not derive from any of the other established equilibrium
refinement concepts, such as Nash tâtonnement stability, efficiency, or stochastic stability.

20



have certain combinations of strong social preferences, for instance, when two spiteful

types interact with two money maximizers.

3.4.5 General networks

The insights gained from the previous analysis can be extended to arbitrarily large

network structures, provided that the network has some nested neighborhoods and

the players within these neighborhoods possess compatible social preferences. In this

case, the following result applies:

Proposition 2. Consider two players i and j in a nested neighborhood of a network g who have

compatible social preferences, that is, τi ∈ Tc and τj ∈ Tp. Then, in an ORE, player i (j) must

earn weakly more (less) than at least one other player in i’s (j’s) neighborhood:

πi(e) ≥ min
k∈Ni
{πk(e)} OR πj(e) ≤ max

l∈Nj
{πl(e)} . (7)

While the result establishes rather weak bounds on the relative payoffs within a

local network neighborhood, we already know how to strengthen it under some addi-

tional conditions on the network structure. For instance, when player j is solely con-

nected to player i such as in the periphery position of a star, then πi(e) ≥ mink∈Ni{πk(e)}.

And, when i is also exclusively connected to j, then it even follows that πi(e) = πj(e).

3.4.6 Network ranking

So far, we have seen that incorporating social preferences into the Bramoullé and

Kranton (2007) game allows one to refine the equilibrium predictions for most of the

networks in Figure 1. Crucially, we successfully eliminated all those equilibria that go

against the intuitive expectations regarding the ranking of investments and payoffs in

these networks, namely center-sponsored public goods in the star-like networks and

unequal contributions in the dyad and complete network.

Our theory predicts more, however, because it also suggests systematic differences

between these networks in terms of how likely a refined ORE can be expected to
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emerge on them when players are randomly assigned to their network positions, as in

our experiment. One immediate implication of random assignment is that we would

expact a large share of groups with compatible social preferences on the dyad com-

pared to the complete network. The rationale is straightforward: in the dyad, it is

easier to assemble a sufficient number of players who share a common understanding

of fairness and, thus, a common understanding of which equilibrium to play. When we

now add the plausible assumption that players coordinate on a random profile from

the set of all ORE profiles consistent with their social preference types, τ = (τ1, ..., τn),

we arrive at our first prediction: the likelihood of observing an equal-split ORE is

higher on the dyad than on the complete network,

P
(
equal-split | gdyad) ≥ P

(
equal-split | gcomp) . (8)

Our theory also predicts marked differences between all the other networks. We

already know from our analysis of the circle that in the absence of any nested neigh-

borhoods, a network is prone to multiple equilibria. Thus, at least some degree of nest-

edness is a prerequisite for a refined ORE set. But even among the nested networks of

Figure 1, there are some important differences. In particular, there is some asymmetry

with regard to the ideal number of central positions (nc) in a network, which nest other

positions’ neighborhoods, and the ideal number of peripheral positions (np), whose

neighborhoods are nested. The larger nc (e.g., comparing the star and the d-box), the

more likely it is that an incompatible altruist or social-welfare type is assigned to one

of the center positions, thus a type who is willing to provide the public good on her

own. The larger nc, therefore, the smaller the likelihood that we observe a periphery-

specialized ORE in a network. The number of peripheral positions has the opposite

effect. The larger np, the more likely it is that at least one altruist or social-welfare

type is assigned to such a position, so a type who is willing to contribute to the public

good if the central players invest less than e∗. The larger np, therefore, the higher the

likelihood of a periphery-specialized equilibrium in a network.
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Applied to our networks, we thus arrive at the following rankings:13

(i) P
(
periphery-spec. | gstar) ≥

max
{

P
(
periphery-spec. | gdbox) ; P

(
periphery-spec. | gline)} , (9)

(ii) P
(
periphery-spec.|gcore) ≥ P

(
periphery-spec.|gdbox) .

Moreover, a refined ORE set is easier achieved in an asymmetric than in a symmetric

nested network because, in the latter, players must match the preference compatibility

requirements for both the nesting as well as the nested positions. We would, therefore,

expect that14

P
(
periphery-spec. | gdbox) ≥ P(equal-split | gcomp) . (10)

Altogether, we thus arrive at the following testable predictions:

Hypothesis 1: In the networks of Figure 1, except the circle, a group of players with com-

patible social preferences is more likely to coordinate on a refined ORE, i.e., a profile satisfying

(3)–(6), than a group without compatible preferences.

Hypothesis 2: Suppose that players are randomly assigned to network positions from a

common pool of players. Then, the likelihood of observing a refined ORE on the seven networks

of Figure 1 can be ranked according to the inequalities in (8)–(10).

Finally, for the circle network, our theory predicts that even if all the preference

requirements of Definition 2 are met by a player group, this group does nevertheless

not coordinate more likely on either a specialized or a distributed profile on the circle

13Beyond the intuition provided in the text, the rankings can be readily derived from the compati-
bility requirements outlined in Sections 3.4.1 and 3.4.2. These conditions also make clear why the line
cannot be unambiguously compared to neither the core-periphery nor the d-box.

One can furthermore not rank the star and the core-periphery network because even though the com-
patibility requirements are stronger in the latter, the likelihood that a group with incompatible prefer-
ences hits a refined ORE profile by chance is higher on the core-periphery, as there are just more of these
profiles.

14There is no comparable ordering of the line and the complete network because, for a compatible
preference combination in the line, one requires that ε < εline, while there is no such restriction on the
social preference strength in the complete network.
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than a group that does not match the criteria.

4 Experiment

We tested our hypotheses within a dynamic extension of the Bramoullé and Kran-

ton (2007) game. Our choice is motivated by the insights gained from prior experi-

ments on this game, which made it clear that many subjects find it difficult to coordi-

nate their choices in any meaningful manner, especially in experiments that adopted

the original large strategy space (e.g., Rosenkranz and Weitzel, 2012). As a substantive

share of equilibrium play is essential for our theory testing, however, we implemented

a continuous-time version of the game.

In particular, following the approaches of Callander and Plott (2005) and Berning-

haus et al. (2006), every round of our game lasted between 30 and 90 seconds. During

that time, subjects could continuously adjust their choices, choosing from the full set

of positive integer values. Moreover, subjects received full information about the mo-

mentary investments and payoffs of every other player, which were updated five times

per second (see Appendix C.2 for a screenshot).

Nevertheless, to adhere to the static environment of our theory, the actual payoffs

in a round were solely determined by the momentary investments at the round ends.

These ends were randomly determined by a draw from the uniform distribution on

[30, 90]. At that point in time, investments were frozen and points were calculated

based on the following linear-quadratic payoff function:

πi(e) =


(
ei + ∑j∈Ni

ej
)(

29− ei −∑j∈Ni
ej
)
− 5ei if ei + ∑j∈Ni

ej ≤ 14

196 + ei + ∑j∈Ni
ej − 5ei otherwise

. (11)

As we will see below, equilibrium play was greatly facilitated by these design

choices. A major factor certainly is that subjects did not need to formulate beliefs about

the payoffs and investments of the other player because they could observe them di-
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rectly.15 At the same time, our implemented random stopping rule eliminated last-

round effects.

4.1 Experimental procedure

We administered our experiment at the Experimental Laboratory for Sociology and

Economics (ELSE) at Utrecht University, the Netherlands, in June 2008. The experi-

ment was programmed in z-tree 3.0 (Fischbacher, 2007) and subjects were recruited

via ORSEE (Greiner, 2015). A total of 120 students participated in eight sessions. No

subject attended more than once.16

In a typical session, participants played each one of the seven networks illustrated

in Figure 1 in one trial round and four payoff-relevant rounds. This resulted in a total

of 960 network-level observations that we could use for our analysis: 120 rounds per

four-player network (120 subjects divided by 4 players times 4 payoff-relevant rounds)

and 240 rounds from the dyad. Each participant engaged in 28 payoff-relevant rounds,

spent approximately 80 minutes in our laboratory, and earned, on average, 11.82 Euros,

including a 3 Euro show-up fee.

Our choice for such a within-subject design was not only motivated by experimen-

tal efficiency but also because we could use our network game in this way to estimate

our subjects’ social preference parameters from it (see below for details). To mitigate

the confounding impact of factors associated with our choice, we implemented several

additional measures. Firstly, to minimize the impact of between-treatment spillovers,

we adopted a balanced treatment order, ensuring that each network appeared equally

often at different points in our sessions (see Table 11 in Appendix C.1 for the orders).

Furthermore, to mitigate repeated game effects that typically emerge when the same

groups of players interact multiple times (Andreoni, 1995; Fehr and Gächter, 2000),

15From a theoretical viewpoint, the observation of other players’ investments and payoffs is, in fact,
all a socially concerned player needs to know to formulate her own best-response investment. This is
because utility function (2) is solely affected by the investments but not the preference parameters of the
other players.

16Clearance for this experiment has been granted by the Ethical Review Committee of Utrecht Uni-
versity’s Faculty of Law, Economics, and Governance. Further experimental details can be found in
Appendix C.
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we randomly reassigned our subjects to new groups and new network positions after

every round.

4.2 Social preference elicitation

Key to our testing of Hypothesis 1 is that we also have an estimate of the social

preference parameters of our subjects at hand. We estimated these parameters directly

from their behavior in our network game.17 Concretely, we assumed that in each round

r and at each time point t , a subject chose an investment level x ∈N+ to maximize

Ui(x, e−i,t−1,r) + θi,x,t,r , (12)

where Ui(·) is the utility function in (2) and θi,x,t,r an iid type-1 extreme value dis-

tributed random utility component. A subject thereby only compared her payoff with

that of her direct network neighbors, i.e., Ri,r = Ni,r.

Consequentially, we estimated, for each subject, the (ρ̂i, σ̂i)-pair that maximized the

conditional likelihood for their actual sequence of investments (eit) to be favored over

any alternative sequence. For our estimations, we used all the available information

from our experiment and, accordingly, estimated a subject’s parameters based on her

choices during all decision moments t ∈ [30, tmax] in all the 28 payoff-relevant rounds

in our experiment. For practical reasons, we limited the alternative investments to

x ∈ {0, 1, 2, ..., 15}, however.18

With our estimated (ρ̂i, σ̂i)-pairs at hand, we then categorized our subjects based

17There is mainly a practical reason for this. Our experiment was already 80 minutes long and we
worried that subjects’ fatigue would jeopardize the quality of our data collection if we added additional
preference elicitation tasks. In fact, achieving the necessary precision in the parameter estimates would
demand a considerable amount of time for these additional tasks. Bruhin et al. (2019), for instance, esti-
mate a comparable utility model from 39 dictator games, a process that consumed at least 20 additional
minutes in their experiment.

18This constraint is anyhow satisfied by 99.9% of all investments. Moreover, we ensured that the
estimated (ρ̂i, σ̂i)-pair falls into the feasible range 1 > ρi ≥ σi > −1. Accordingly, we replaced the
parameters of (2) by inverse logistic transformations of some deeper, unconstrained parameters ρr

i , σr
i ∈

R:

ρi = −1 + 2
exp(ρr

i )

1 + exp(ρr
i )

and σi = −1 + 2
exp(σr

i )

1 + exp(σr
i )

,

and then solved our maximum likelihood function for ρ̂r
i and σ̂r

i , computing heteroskedasticity-
consistent standard errors.
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Figure 3: Investments by network position over time

on their revealed social preference types and revealed preference strengths. For the

preference type classification, we simply applied the parameter cutoffs presented in

Section 3.2. For the preference strength classification, in turn, we utilized a theoretical

result developed in Appendix A.3, which shows how to map a (ρ̂i, σ̂i)-pair into an

upper bound ε̂i for a subject’s true strength εi.19

5 Results

We first provide an overview of our experimental findings before we turn to our

hypothesis tests.
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5.1 Descriptive findings

We begin with a brief assessment of whether our static theory predictions make

sense in the context of our dynamic experimental game. To this end, we plot in Fig-

ure 3 the evolution of the median investments and the 10–90 percentile investment

ranges for each position in our seven networks over time. Clearly, with the exception

of maybe the d-box edge position, the median investments in all positions converged

consistently over time to some steady-state value, typically reached within the first 30

seconds already.20 Furthermore, with the exception of possibly the positions in the

circle network, the 10–90 percentile ranges shrank consistently over time, with an in-

vestment at the 90th-percentile that never surpasses the total desired investment of

e∗ = 12 that maximizes our experimental payoff function (11). We see all this as confir-

mation that our subjects were myopically updating their choices in an attempt to reach

an individually optimal investment in the payoff-relevant decision moments after 30

seconds. Accordingly, we interpret the evolution of investments as a best-response

dynamic converging to a static equilibrium.

In support of this view, Figure 4 takes a closer look at the distributions of invest-

ments at the random round ends. The findings are much in line with our static ORE

predictions. 21 For instance, the unique distributional modes in the two-player dyad

and the complete network are, with three and six units respectively, consistent with

the predicted equal-split equilibrium. Moreover, the prevalent zero contributions in

the central positions of the star, core-periphery, d-box, and line, coupled with the sub-

stantial investments made in the peripheral positions of these networks, lend support

to our anticipated periphery-specialized equilibrium. Even the somewhat dispersed

pattern in the circle network, marked by minor peaks at zero, three, and twelve units,
19Obviously, we made several choices during our preference elicitation procedure, each carrying

potential consequences for the precision of our parameter estimates. We discuss their implications for
the purpose of our study are discussed at the end of Section 5.2.

20The seeming disturbance in this pattern after the 70-second mark, which is most pronounced in the
d-box edge position, is simply due to the fact that many rounds ended before that time.

21The patterns in Figure 4 are highly robust. Very similar pictures emerge, for instance, when look-
ing at the investment distributions across all payoff-relevant decision moments, t ∈ [30, tmax], or when
examining the investment distributions in the first and second halves of our experimental sessions sep-
arately. This reinforces our view that the findings in Figure 4 are not just driven by last-round effects or
the specific order of networks in our sessions.
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seems to be in line with our theoretical predictions, as we argued that social prefer-

ences would not help to solve the coordination problem on this network. Thus, a first

glance at the data suggests that the behavior in our experiment is much in line with

our static ORE predictions.

Nonetheless, this last statement requires further verification because it is clear that,

in equilibrium, the investments of all players need to “fit” together. For this reason,

we briefly describe the observed investment patterns at the network level, now. Ta-

ble 1 presents the shares of investment profiles per network that are either consistent

with the wider class of ORE, which we predicted for any group of socially concerned

players, or the narrower class of refined ORE, which we just predicted for a group

with compatible social preferences. The profiles are further classified based on their

deviations from a standard Nash equilibrium for money-maximizing players, and we

distinguish between zero (χ = 0), two (χ < 3), and any unit (any χ) of deviation from

a standard best-response investment.22

We first have a look at column 3 (ORE with χ = 0). There, we see that, on the

asymmetric networks (star, core-periphery, d-box, and line), our earlier position-level

findings are fully confirmed: Virtually all groups concluding their rounds with an ORE

profile (52 in total) coordinated their investments on a periphery-specialized public

good. The only exception to this rule is two groups playing the line network (1.6% of

all groups playing the line), who coordinated on a distributed equilibrium where one

of the end players earned more than her neighbor in the line middle.

Very similar patterns emerge for the dyad and the circle network. On the dyad,

a large majority of groups (32.1%) converged on an equal-split equilibrium, a pattern

that was already visible in Figure 4. Moreover, on the circle, we observe the same

dispersed investment pattern that we already saw before: 7.5% of groups playing this

network converged on a specialized equilibrium, that is, a profile with (12, 0, 12, 0)

22The exact criteria for the Nash equilibria with money-maximizing players and our (refined) ORE
predictions are outlined in Table 7 in Appendix A. We chose a critical value of χ < 3 because a deviation
of up to two units is the maximum deviation for which a periphery-specialized public good emerges
as the unique refined ORE in all asymmetric networks (except in the d-box, where the critical value is
already at χ < 2).
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Figure 4: Investments by network position

NOTES: Observations from random round ends in the 960 payoff-relevant rounds of the ex-
periment. One investment in the dyad with value 29 dropped for better display.
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Table 1: Frequencies of other-regarding equilibria

Deviation from money-
maximizing equilibrium

Network Equilibrium type zero moderate any
(χ = 0) (χ < 3) (any χ)

Dyad equal split (rfd) 32.1% 45.8% 49.2%
other 8.8% 33.0% 50.8%

Complete equal split (rfd) 0.8% 0.8% 0.8%
other 20.8% 62.5% 99.2%

Star per-spec. (rfd) 15.8% 33.3% 62.5%
distr. with πc ≥ πj (rfd) — — 36.6%
cent-spec. or distr. 0% 0.8% 0.8%

Circle specialized 7.5% 16.7% 29.2%
distributed 3.3% 27.5% 55.0%

Core per-spec. (rfd) 17.5% 43.3% 68.3%
distr. with πc ≥ πj (rfd) — — 31.7%
cent-spec. or distr. 0% 0% 0%

D-box per-spec. (rfd) 8.3% 15.0% 25.8%
distr. with πc ≥ πj (rfd) — 1.7% 64.2%
cent-spec. or distr. 0% 9.2% 10.0%

Line end-spec. (rfd) 0.8% 40.1% 49.2%
distr. with πm ≥ πe (rfd) 8.3% 13.3% 16.7%
mid-spec. or distr. 1.6% 8.3% 34.1%

NOTES: Percentages of investment profiles consistent with an other-
regarding equilibrium (ORE) at random round ends. 240 observations
for the dyad, and 120 for all other networks. Refined OREs are indicated
with "(rfd)".

or (0, 12, 0, 12), and another 3.3% on a fully distributed equilibrium, with (4, 4, 4, 4).

Only on the complete network, merely one group (0.8%) reached the predicted equal-

split equilibrium, as opposed to 25 groups (20.8%) who ended their rounds with an

uneven distribution of a total investment of twelve units. Nonetheless, even this low

share of refined ORE is not entirely surprising from the viewpoint of our theory. As

we hypothesized, the size of the complete network renders coordination a challenging

task, in particular for a group of players who differ in their social preferences (see

Hypothesis 2).

Columns 4 and 5 tell a similar story. There, we look at the wider classes of ORE

where some deviations from a money-maximizing equilibrium are considered consis-

tent with our theory as well as long as these deviations are in line with the conditions in

(3)–(6) . In the star, core, d-box, and line, the vast majority of investment profiles (87%

across the four networks) were either consistent with a periphery-specialized ORE or
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with a distributed ORE profile where, however, the center player earned more than

at least one peripheral player. Similarly, on the dyad, 49.2% of all round-end invest-

ment profiles were consistent with our predicted equal-split equilibrium, while on the

circle, the shares of specialized and distributed investment profiles remain both on a

high level. In sum, thus, the numbers in Table 1 largely confirm our theoretical predic-

tions.23

5.2 Test of Hypothesis 1: The role of preference compatibility

So far, we have seen that many subject groups in our experiment coordinated their

choices on a refined ORE. Nevertheless, this observation does not apply to all subject

groups alike because there was also a sizable number of groups that failed to converge

to a refined ORE, in particular when we look at OREs in the narrower sense (with χ <

3). That heterogeneity is, however, part of our theory as well. Specifically, Hypothesis

1 posited that coordination is only easy to achieve for groups with compatible social

preferences. Groups with incompatible preferences have, in contrast, a much harder

time to coordinate because they face the same large number of equilibria to coordinate

on as the players in the original game.

Social preference estimates: To test this hypothesis, we first needed to estimate the

social preferences of our subjects. We did this based on the estimation strategy out-

lined in Section 4.2. Table 2 summarizes the resulting point estimates and categorizes

them into their revealed preference types.24 Consistent with the findings from earlier

experiments (e.g., Bruhin et al., 2019; Kerschbamer and Müller, 2020), the table indi-

23To put these findings into perspective, we also compared the predictive power of our theory
with that of several alternative equilibrium refinement concepts that were previously applied to the
Bramoullé and Kranton game, notably efficiency, Nash tâtonnement stability, and quantal-response
equilibrium. Our findings are detailed in Appendix B.1. To sum them up here, our key finding is
that our refined ORE concept predicts the observed investment profiles at least as well as any of the
alternative refinement concepts across all network structures investigated in our experiment. The spe-
cific power of our theory is that it selects the “natural” equilibria on most of these networks, such as an
equal-split equilibrium on the dyad and a periphery-specialized equilibrium on the star, core-periphery,
and d-box. At the same time, it can explain the observed behavioral heterogeneity on the line and the
circle network, something that the other concepts are incapable of.

24The somewhat lengthy Table 9 that also categorizes our estimated (ρ̂i, σ̂i)-pairs into their revealed
preference strengths is relegated to Appendix A.3.
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Table 2: Social preference types

Preference type Share

altruism (ρ̂i ≥ σ̂i > 0) 11.7%
social welfare (ρ̂i > σ̂i = 0) 15.0%
inequity averse (ρ̂i > 0 > σ̂i) 29.2%
competitive (0 = ρ̂i > σ̂i) 10.0%
spiteful (0 > ρ̂i ≥ σ̂i) 23.3%
payoff maximizer (ρ̂i = σ̂i = 0) 4.2%
asocial (σ̂i > 0 > ρ̂i) 6.7%

100.0%

NOTES: Categorization of estimated (σ̂i, ρ̂i)-pairs into
their revealed preference types. Insignificant estimates
(i.e., p-values ≥ 0.05) or estimates with −0.05 ≤ x ≤
0.05 for x ∈ {σ̂i, ρ̂i} are set to zero because a subject
with such a small preference parameter would make a
decision indistinguishable from a payoff maximizer in
our experiment.

cates substantive between-subject heterogeneity in social preferences. In particular,

there was a sizable number of subjects in our experiment who displayed a behavior

consistent with each one of the preference types identified by utility model (2).

Preference compatibility: In the next step, we used our estimates to classify all sub-

ject groups playing one of the six nested networks in our experiment into whether

their members met the network-specific preference compatibility requirements or not.

The criteria are outlined in Sections 3.4.1–3.4.3, and our classification results are pre-

sented in Table 3.25 Clearly, the table indicates that, for at least four of the six networks,

there was a substantial number of groups that had the required preference combina-

tion, while another large number did not have it. As expected as well, the share of

groups with compatible preferences go down, sometimes quite substantively, when

we focus on those groups that displayed small or moderate social preferences.26 With

this classification at hand, we can thus turn to our main question.

25To verify the additional requirement regarding the relative preference strengths of the players in
the complete network, we demanded that all four subjects must exhibit either small (ε̂ < 1), moderate
(1 ≤ ε̂ < 3), or large (3 ≤ ε̂) social comparison concerns.

26Interestingly also, the cross-network variation in the numbers of groups with compatible social
preferences is much in line with the frequencies of refined ORE observed in Table 1. This already indi-
cates that preference compatibility is a major driver behind the observed pattern of play.
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Table 3: Preference compatibility and refined ORE

Networks Dyad Star Core D-box Line Complete
Groups

Any preference strength (any ε̂):
No. of groups 240 120 120 120 120 120

Groups with com-
patible preferences 31.3% 80.0% 40.0% 4.2% 26.7% 4.2%

Refined ORE share (any χ):
Compatible groups 61.2%** 99.8%** 100%** 100%** 77.9%** 0%
Incompatible groups 41.4% 95.8% 98.9% 88.8% 70.2% 1.7%

Moderate preference strength (ε̂ < 3):
No. of groups 240 48 49 22 49 120

Groups with com-
patible preferences 31.3% 75.0% 42.9% 0% 28.6% 4.2%

Refined ORE share (χ < 3):
Compatible groups 57.9%** 27.1% 34.6%** — 57.2%** 0%
Incompatible groups 35.9% 25.7% 28.8% 8.2% 42.6% 1.4%

Refined ORE share (χ = 0):
Compatible groups 40.1%** 15.7%** 11.8% — 10.5%** 0%
Incompatible groups 22.7% 7.3% 10.3% 8.2% 2.2% 1.4%

NOTES: Preference compatibility and shares of refined ORE for all subject groups playing a
nested network. Refined ORE shares are separately shown for groups with compatible and in-
compatible social preferences: ∗∗ indicates a significant difference at p < 0.05.

Hypothesis test: Do groups with compatible social preferences play a refined ORE

more often than groups without the required preference combination? To answer this

question, we refer to Table 3 again. There, we also contrasted the shares of refined ORE

played by groups with and without a compatible preference combination respectively,

as percentage shares of their total number of payoff-relevant investment decisions. The

results generally support Hypothesis 1: While preference compatibility does not guar-

antee refined ORE play, it clearly facilitated coordination on these profiles. In the top

panel of Table 3, which compares refined ORE profiles in the widest sense (any χ), the

difference is still hardly visible for three of the six networks.27 Nevertheless, when we

focus on refined ORE in a narrower sense (with χ < 3 or χ = 0)—–and consequently

narrow our sample to groups with moderate social preference strengths (ε̂ < 3)—, we

27This small gap is not surprising. As we already saw in Table 1, nearly all groups coordinated their
choices on such a broadly defined ORE profile.
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find a noticeable gap for four of the six nested networks.28

The systematic gap in refined ORE play can be further supported through multino-

mial logit regressions. Table 4 presents the coefficients and test statistics for two such

models, both with the same dependent variable. The variable categorizes all conceiv-

able investment profiles into six different outcome classes: Outcomes (1)–(3) capture

our refined ORE predictions, while outcomes (4)–(6) encompass the remaining non-

refined ORE.29 Both outcome classes are further subdivided into the same deviations

from a money-maximizing equilibrium that we already considered in Table 1.

The main explanatory variable in Model 1 is our social preference compatibility in-

dicator. Model 2 further distinguishes between compatible groups with strong (ε̂ ≥ 3)

and moderate (ε̂ < 3) social preferences. Both models additionally include a number

of control variables to account for several alternative factors that might explain why

a certain investment profile is chosen more often than another. In particular, we in-

cluded five network indicators to capture network-level factors and four group-level

variables (gender, nationality, number of friends, and experience with the experimen-

tal game) to account for subject group characteristics that may be correlated with the

social preferences of its members.

The results of these regressions lend further support to Hypothesis 1. The most

compelling evidence comes from a series of post-estimation Wald tests following Model

1, where we test the impact of preference compatibility on various broader outcome

classes. For instance, the Wald test (1–3) versus (rest) examines whether groups with

compatible preferences played a refined ORE in the broadest sense (any χ) more often

than any other profile. This is indeed confirmed, with a χ2-statistic significant at the

0.01-level. The other two Wald tests concentrate on the refined ORE play in a narrower

sense (χ < 3). Consistent with our earlier observations, the results are more mixed

here. As we already saw in Table 3, there was a considerable number of groups with

strong social preferences in our experiment, and we would expect that these groups

28The two exceptions are the d-box and the complete network, where a meaningful comparison
was simply impossible due to the limited number of groups meeting the demanding compatibility and
preference-strength criteria for these networks.

29All other out-of-equilibrium profiles are subsumed under outcome (6).
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also deviate significantly from a money-maximizing equilibrium.

Table 4: Test of Hypothesis 1—Multinomial logit estimations

Refined ORE Non-refined ORE
χ = 0 0 < χ < 3 3 ≤ χ χ = 0 0 < χ < 3 3 ≤ χ

(1) (2) (3) (4) (5) (6)

Model 1:
Compatibility 0.92 0.78 0.81 -0.91 0.19 base

(0.32) (0.31) (0.31) (0.45) (0.27) outcome

Wald test of Compatibility=0:
(1) versus (rest) 4.08**
(1–2) versus (rest) 6.02**
(1–3) versus (rest) 13.53***

Model 2:
Compatibility (ε̂ ≥ 3) 0.17 0.59 0.52 -11.73 -1.05 —

(0.72) (0.67) (0.65) (0.89) (0.89)
Compatibility (ε̂ < 3) 1.07 0.76 0.78 -0.81 0.29 —

(0.33) (0.31) (0.32) (0.45) (0.28)

Wald tests:
Compatibility (ε̂ ≥ 3)=0

(1) versus (rest) 0.33
(1–2) versus (rest) 0.38
(2–3) versus (rest) 2.95*

Compatibility (ε̂ < 3)=0
(1) versus (rest) 6.93***
(1–2) versus (rest) 8.54***
(2–3) versus (rest) 0.76

NOTES: Coefficients and standard errors (clustered at group level) of two multinomial logit
models. 24,299 observations from all payoff-relevant decision moments (t ∈ [30, tmax]) in
all networks but the circle. Models include five unreported network indicators, seven ses-
sion indicators, group characteristics (same sex, same nationality, number of friends), and
two measures of group experience: general experience with our experiment (measured by
the round number in a session) and experience with the current network (measured by the
number of repetition). Wald tests report χ2-statistics: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

To assess whether these groups also behaved as predicted, we developed Model 2.

In line with our expectations, the associated post-estimation Wald tests validated that

groups with compatible and strong social preferences (compatibility (ε̂ ≥ 3)), indeed,

tended to coordinate on the broader class of ORE, while groups with compatible and

weaker social preferences leaned towards the narrower ORE profiles. Thus, in sum,

our findings from this section largely support our theoretical predictions that, within

nested networks, preference compatibility enhances group coordination on a refined

ORE. Combined with our earlier findings, they furthermore suggest that primarily the
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Figure 5: Preference compatibility and time to convergence

compatible preferences
(any strength)

rest

difference

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
Sh

ar
e 

of
 g

ro
up

s 
co

nv
er

ge
d

0 10 20 30 40 50 60 70 80 90
Second

compatible preferences
(moderate strength)

rest

difference

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
Sh

ar
e 

of
 g

ro
up

s 
co

nv
er

ge
d

0 10 20 30 40 50 60 70 80 90
Second

NOTES: Shares of groups within the six nested networks converging already at time t to
their final investment profile at tmax. Shares are shown separately for groups with compatible
and incompatible preferences. Gray solid lines indicate between-group differences, and gray
dashed lines their 90% confidence intervals.

groups with compatible social preferences played the most frequently observed refined

ORE profiles in our experiment.

Time to convergence: Based on the above, one might wonder whether preference

compatible also has an impact on the time to coordination. Even though not explicit

part of our theory, it is intuitively plausible that a shared understanding of the expected

investment profile reduces the time a group needs to coordinate its choices.

This question is examined in Figure 5, which investigates, for all the six nested

networks combined, how many groups reached already at time t the final investment

profile they will play in tmax. Clearly, the figure supports the expected accelerating

impact of preference compatibility, in particular in the middle of a round between 30

and 50 seconds (left panel). The advantage becomes even more pronounced for groups

with at most moderate social preferences (ε̂ < 3), where the difference is already visible

as early as 10 seconds after a round commenced (right panel). From the viewpoint of

our theory, this is not surprising because we even predicted a unique ORE for these

groups.

Discussion: Undeniably, the outcomes presented above ultimately depend on the

precision of our social preference estimates. For pragmatic reasons, we chose an in-
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game measurement of these estimates. Consequently, they may be confounded by

some other social preference concerns of our participants, such as their concern for

reciprocity (Charness and Rabin, 2002; Dufwenberg and Patel, 2017). It is important to

note, however, that any imprecision at this stage only works against us because it intro-

duces measurement error into our preference compatibility indicator. In other words,

we likely incorrectly classified several subject groups as having the right or wrong

preference combination for a certain network. However, such misclassifications only

introduce downward bias in our estimate for the true effect of preference compatibil-

ity because groups that truly had an easy time coordinating their choices might have

been mistakenly mixed up with those facing greater coordination challenges, and vice

versa.

Nevertheless, despite this potential source of error, we also have good reasons to

believe that its impact on our findings is relatively mild. One part of the reason is that

in all the asymmetric networks (star, core, d-box, line), a wide range of social prefer-

ence types is compatible with the requirements in the critical central positions. This

renders it unlikely that we have erroneously classified a substantive share of our par-

ticipants as having incompatible preferences for these positions. Moreover, it is equally

unlikely that we have misclassified a significant number of subject groups with gen-

uinely incompatible preferences as being compatible with the dyad or the complete

network. The stringent requirements for these networks would necessitate major mea-

surement errors for multiple group members. Thus, we expect our above results to be

quite robust.

To substantiate this claim, we conducted further sensitivity checks. For this pur-

pose, we drew on social preference estimates from prior experimental studies on com-

parable student populations (Fehr and Charness, 2023) and simulated the impact of

various degrees of measurement error in our own estimates. The results of these

checks, detailed in Appendix B.3, indicate that any additional 10% chance of measure-

ment error at the individual level reduces, on average across all networks, the effect of

preference compatibility on refined ORE shares by 3 percentage points. For a sizable
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Table 5: Placebo test on the circle

Preference strength Strong (ε̂ ≥ 3) Weak (ε̂ < 3)
Compatibility requirements Complete Line Complete Line

No. of groups 103 103 17 17

Groups with com-
patible preferences 2.9% 27.2% 11.7% 35.3%

Refined ORE share: widest (any χ) narrow (χ < 3)

Compatible groups 100%** 9.8% 53.1% 4.3%
Incompatible groups 52.6% 10.4% 60.7% 0%

NOTES: Preference compatibility and shares of refined ORE for all sub-
ject groups playing the circle network. Shares are shown separately for
groups with preference combinations that are (are not) compatible with
the criteria for the complete network or the line: ∗∗ indicates a significant
difference at p < 0.05.

measurement error chance of 30%, for instance, this amounts to an effect reduction

from 17 to still 8 percentage points, so a distorting effect well below the one found in

other contexts (e.g. Gillen et al., 2019).

5.3 Test of Hypothesis 2: The impact of network nestedness

Our second hypothesis posited significant differences in the capacity of our exper-

imental networks to promote coordination. More concretely, we conjectured that a

refined ORE profile would be reached more easily within the nested networks, partic-

ularly in those networks where a single player nests the neighborhoods of all the other

players. Two pieces of evidence support this conjecture.

Placebo test on the circle: According to our theory, social preferences should not

facilitate group coordination on any of the three Nash equilibrium profiles on the circle

network, even not when all four players are inequity-averse, competitive, or social-

welfare types. The intuition here is that, due to the absence of nested neighborhoods

in this network, players are unlikely to reach consensus on which equilibrium to play.

Only in cases where all four players possess strong social preferences can an impact of

their preference types be expected. Examples 3 and 4 illustrate this point most clearly.
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Table 6: Frequency of refined ORE per network

Shares of Star Core D-box Line Complete
refined ORE
any χ: 0.99 0.99 0.89 0.72 0.02
χ < 3: 0.29 0.30 0.17 0.52 0.01
χ = 0: 0.12 0.10 0.08 0.08 0.01

NOTES: Data from all payoff-relevant decision moments
in a network. All between-network differences of size
|d| > 0.01 are statistically significant in two-sided t-tests
at p < 0.05.

To put this to a test, we thus sought subject groups playing the circle network with a

preference combination that proved effective in other networks. Specifically, we looked

for subject groups whose preferences aligned with the compatibility requirements for

the complete network and asked whether these were the groups that played the fre-

quently observed distributed ORE profiles on the circle. Similarly, we searched for

groups that matched the preference requirements for the line network and examined

whether they were more likely to play the equally frequent specialized OREs on the cir-

cle. A systematic relationship should only be expected when groups exhibited strong

social preferences in addition. Our findings, summarized in Table 5, support this as-

sertion. The figure suggests no systematic relationship between preference types and

group behavior when groups had at most moderate social preferences, but a noticeable

relationship when groups exhibited strong social preferences. Most notably, groups

that matched the preference compatibility requirements for the complete network al-

most always played the predicted distributed ORE profile.

Network comparisons: Our second piece of evidence comes from a comparison of

the refined ORE shares across different networks. Hypothesis 2 predicted a negative

impact of the complete network’s size but a positive impact of the degree of nestedness,

especially when all players’ neighborhoods are nested within the neighborhood of a

single player, such as in the star or core-periphery network. As we already saw in

Section 5.1, our subjects evidently coordinated much more often on a refined ORE in

the dyad than in the complete network, so this aspect is supported. Regarding the
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role of nestedness, Table 6 reproduces the shares of refined OREs for the star, core-

periphery, d-box, line, and complete network. Consistent with our hypothesis, the

shares are highest in the star and core-periphery, intermediate in the d-box and line,

and lowest in the complete network. With a single exception, this ranking can also be

confirmed in two-sided t-tests.30

Time to convergence: Similar to the previous section, it also seems plausible to ask

whether the structure of a network has an impact on the time a group needs to co-

ordinate its choices. This is looked at in Figure 6, where the upper left panel clearly

confirms the detrimental impact of the complete network’s size. In contrast, the other

three panels illustrate how a network’s nestedness helps to expedite the time to coor-

dination. The most demonstration of this can be found in the lower right panel, where

it becomes evident that a group takes much longer to coordinate on the circle network

compared to even the complete network. Altogether, thus, our findings in this section

strongly support the second key prediction of our theory that coordination is more

readily achieved when a network is nested.

6 Implications

Social preferences are a powerful trait in human behavior that can help foster coop-

eration, increase public goods provisions, or establish norms of good behavior. Social

networks, by contrast, impose a constraint on the feasible distributions of the resulting

gains and costs within a group or society. Our theory and experiment indicated that, in

the realm of public goods provisions in small-scale networks, the network constraint

prevails. In particular, we found that a group of socially concerned players does not

deviate much from the behavior that also a group of pure maximizers would display.

Nevertheless, when players’ social preferences align with their network positions, they

coordinate their behavior more easily and more swiftly on one of the game’s equilibria.

30The exception is the ordering observed for the star and the line network, which deviates from our
predictions when we consider the class of refined ORE in a narrower sense (χ < 3), but nor when we
consider refined ORE in the narrowest sense (χ = 0).
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Figure 6: Time to convergence per network
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NOTES: Shares of groups per network converging already at time t to their final investment
profile at tmax. Solid gray lines indicate between-network differences, gray dashed lines their
90% confidence intervals. Shares for star, core-periphery, and d-box are merged because of
small within-differences.

In the following, we discuss two domains where these insights find practical ap-

plications: the organization of co-worker teams and public goods provisions in larger

networks.

6.1 Organization of co-worker teams

Teams have gained increasing prominence in work settings, especially within knowledge-

intensive organizations (e.g., Jones, 2021; Jarosch et al., 2021). Our findings provide in-

sights int the optimal management of such knowledge-intensive organizations, where

workers typically engage in multiple teamwork projects, and the network of teams

shapes the spillovers between workers.

In these settings, managers often lack the means to enforce individual efforts from
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workers. However, they can influence the spillover network by, for instance, fixing the

reporting lines or creating co-working spaces. Moreover, they can appoint the ideal

candidates to the various positions in the network, taking (proxies for) their social

preferences into account. Our findings highlight the importance of the suitable social

preference types for each position within a network. Depending on the managers’

goals, different network structures and types of workers are optimal. For instance, if

the primary goal is to maximize the total effort of all workers in the shortest possible

time, a star network with a competitive or spiteful type in the center position is the

ideal form. On the other hand, if the aim is to maintain “social peace” and achieve the

highest total effort under a fair distribution of inputs, then a complete network with

inequity-averse or social-welfare types in each position should be the preferred choice.

6.2 Public goods in larger networks

Our empirical findings initially speak to the behavior in small-scale network games,

such as the game implemented in our experiment. However, informed by our theory,

they might empower us to speculate about the behavior in the larger social interaction

networks that motivated our study. Can we expect social preferences help to eradicate

the (in-)equality that is inherent in the structure of these network? In particular, do

social preferences support more equitable payoff distributions when a network itself is

asymmetric?

Proposition 2 allows us to make a clear-cut prediction under two conditions: first,

the individuals reside in the same nested neighborhood of a network, and second, their

social preferences align with their respective network positions. In this case, the indi-

viduals’ payoffs and behaviors should simply reflect their centrality in the network. In

other words, the social preferences of these individuals merely reinforce the inequality

that is already inherent in the network structure.

In fact, the first of the two conditions is satisfied in many contexts. Nestedness

is a well-documented topology of many social networks (Mariani et al., 2019) and it

emerges as the outcome of various network formation processes (e.g., König et al.,
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2014). While little is known about the distribution of social preferences in networks,

our theory suggests a stronger connection between the structure of a network and the

distribution of payoffs in a more homogeneous (e.g., same-sex, same-age) group or

society with shared social preferences.

7 Conclusion

We set out to study how social preferences shape behavior in a complex network

game with multiple equilibria. Towards this end, we endowed the players in the local

public goods game of Bramoullé and Kranton (2007) with social preferences and con-

ducted an experiment to test our game’s predictions. The results largely confirm the

key prediction from our theory that social preferences can facilitate coordination on

specific investment profiles, given the players’ networks are mutually nested and their

social preferences are compatible with their respective positions in the network.

As suggested by our theory, the key mechanism underlying our findings is that

preference compatibility fosters a common understanding among players regarding

which equilibrium to play. In the small-scale networks of our experiment, numerous

player groups indeed appeared to share this common understanding. However, the

question remains whether the same logic also extends to larger networks. We leave

this question for future studies to explore.
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A Theory Appendix

A.1 Existence of other-regarding equilibrium (ORE)
Proof of Proposition 1. We verify that the modified Bramoullé and Kranton game, featur-
ing socially concerned players, satisfies the sufficient conditions for the existence of a pure-
strategy Nash equilibrium by Debreu, Glicksberg and, Fan: convexity and compactness of the
strategy space, along with continuity and quasiconcavity of the utility function.

Obviously, [0, ē] is convex and compact. Moreover, utility function (2) is continuous for all
e = (ei)i∈N . It remains to show that Ui(e) is also strictly quasiconcave in ei. Since Ui(e) is
differentiable almost everywhere, this means that for all e−i ∈ [0, ē]n−1 and any two 0 ≤ e′i <
e′′i ≤ ē, we need that

Ui(e′′i , e−i) ≥ Ui(e′i, e−i) ⇒
∂Ui(e′i, e−i)

∂ei
> 0 , (A.1)

whenever Ui(·) is differentiable at e′i.
31

To prove this, suppose, to the contrary, that ∂Ui
∂ei
≤ 0 at some e′i. We will show that then

Ui(e′′i , e−i) < Ui(e′i, e−i). To show this, suppose, first, that no corner point (with πi = πj for
some j ∈ Ri) is passed when player i’s investment is increased from e′i to e′′i . Let R−i (ei) (R+

i (ei))
denote the sets of players who earn strictly more (less) than i at an investment ei ∈ [e′i, e′′i ].
Likewise, let N−i (ei) (N+

i (ei)) denote the subsets of i’s neighbors who earn strictly more (less)
than i at ei. Under the assumption of a quadratic payoff function, we then get for any ei ∈
[e′i, e′′i ]:

∂2Ui

∂e2
i

= b′′
(

1− ρi
|R+

i (ei)|
|Ri|

− σi
|R−i (ei)|
|Ri|

)
+

ρi

|Ri| ∑
j∈N+

i (ei)

b′′ +
σi

|Ri| ∑
j∈N−i (ei)

b′′

= b′′
(

1− ρi
|R+

i (ei)| − |N+
i (ei)|

|Ri|
− σi
|R−i (ei)| − |N−i (ei)|

|Ri|

)
(A.2)

< 0 ,

because b′′ < 0 and 1 > ρi ≥ σi > −1. Hence, we get

Ui(e′′i , e−i)−Ui(e′i, e−i) =
∫ e′′i

e′i

∂Ui

∂x
dx <

∂Ui(e′i, e−i)

∂ei
(e′′i − e′i) ≤ 0 .

A contradiction to (A.1).
Next, suppose that we do pass a corner point (with πi = πj for some j ∈ Ri) when we

increase i’s investment from e′i to e′′i . Let êi denote the first corner point to pass. Because Ui(e) is
strictly concave in ei whenever it is differentiable (see (A.2)), we have ∂Ui

∂ei
< 0 for all ẽi ∈ [e′i, êi).

We will now show that it must then also be ∂Ui
∂ei

< 0 for all ei > êi.
To do so, let R−i (ẽi) (R+

i (ẽi)) denote, as before, the sets of players who earn strictly more
(less) than i at ẽi. Likewise, let N−i (ẽi) (N+

i (ẽi)) denote the sets of i’s neighbors who earn strictly
more (less) than i at ẽi. Moreover, let ∆R+

i (∆R−i ) denote the sets of players who migrate from
R−i (ẽi) to R+

i (ei) (respectively, from R+
i (ẽi) to R−i (ei)) at the corner point êi, and let ∆N+

i (∆N−i )
be similarly defined. Note first that at least one of the migration sets must, by definition of a

31Clearly, Ui(e′i , e−i) is not differentiable whenever πi(e′i , e−i) = πj(e′i , e−i) for some j ∈ Ri. Never-
theless, in these cases, condition (A.1) must hold for all ei in a small open neighborhood around e′i .
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corner point, be non-empty. Note next that at ẽi ∈ [e′i, êi) it must be

∂πi(ẽi, e−i)

∂ei
> (<)

∂πj(ẽi, e−i)

∂ei

for every j who migrates from R−i (ẽi) to R+
i (ei) (respectively, from R+

i (ẽi) to R−i (ei)). Otherwise,

j would not migrate. Note finally that it is possible to write ∂πj(ei)
∂ei

=
∂πj(ẽi)

∂ei
+ b′′(ei − ẽi) for any

j ∈ Ni ∪ {i} and ∂πj
∂ei

= 0 for any j ∈ Ri\Ni. Altogether, this means that for any ei larger than
the first corner point êi (and smaller than the second corner point) that

∂Ui(ei)

∂ei
=

∂πi(ẽi)

∂ei

(
1− ρi

|R+
i (ẽi)|+ |∆R+

i | − |∆R−i |
|Ri|

− σi
|R−i (ẽi)| − |∆R+

i |+ |∆R−i |
|Ri|

)
+

ρi

|Ri| ∑
j∈N+

i (ẽi)

∂πj(ẽi)

∂ei
+

σi

|Ri| ∑
j∈N−i (ẽi)

∂πj(ẽi)

∂ei

+
ρi − σi

|Ri|

(
∑

j∈∆R+
i

∂πj(ẽi)

∂ei
− ∑

j∈∆R−i

∂πj(ẽi)

∂ei

)

+
∂2Ui(ei)

∂e2
i

(ei − ẽi)

=
∂Ui(ẽi)

∂ei
+

∂2Ui(ei)

∂e2
i

(ei − ẽi)

− ρi − σi

|Ri|

(
∂πi(ẽi)

∂ei
|∆R+

i | − ∑
j∈∆R+

i

∂πj(ẽi)

∂ei
− ∂πi(ẽi)

∂ei
|∆R−i |+ ∑

j∈∆R−i

∂πj(ẽi)

∂ei

)
,

where ∂2Ui(ei)/∂e2
i denotes the expression in (A.2) evaluated at ei. Because all three summands

in the final two lines are negative (and at least one of them is strictly negative), we get ∂Ui(ei)
∂ei

<
0.

Applying the same argument to all further corner points to pass, we thus get more generally
∂Ui(ei)

∂ei
< 0 for any ei ∈ [e′i, e′′i ] whenever Ui(e) is differentiable. This, in turn, means that

Ui(e′′i , e−i) − Ui(e′i, e−i) =
∫ e′′i

e′i
∂Ui
∂x dx < 0 or, in other words, Ui is strictly quasiconcave in ei.

Moreover, it follows from here that player i possesses a unique best response on every e−i. �

A.2 ORE characterization
Here, we provide a complete characterization of set of other-regarding equilibria (ORE)

for the seven networks in our experiment, as well as a partial characterization of this set for
a general network structure. The detailed predictions for our experimental networks are also
summarized in Table 7.
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Table 7: Predictions

Payoff-max. equilibria ORE Refined ORE

Dyad and ∑i∈N ei = 12 (S,E) ∑i∈N ei ∈ [12± ε] ei = ej ∈ [ 12±ε
n ]

complete (Q: ei = ej =
12
n ) if τi ∈ Tc ∩ Tp ∀i ∈ N

and ρi ≈ ρj, σi ≈ σj
in complete network

Star (i) ec = 0, ep = 12 (i) ec = 0, ep ∈ [12± ε] πc ≥ minp∈P{πp}
(ii) ec = 12, ep = 0 (ii) ec ∈ [12− 7ε

3 , 12 + ε], if τc ∈ Tc and ∃ p ∈ P : τp ∈ Tp
(E: (ii) selected)

If also ε < 3:
ec = 0, ep ∈ [12± ε]

Core (i) ec = 0, ep = 12, (i) ec = 0, ep ∈ [12± ε], πc ≥ minj 6=c{πj}
periphery ∑d∈D ed = 12 ∑d∈D ed ∈ [12± ε] if τc ∈ Tc and ∃ j 6= c :

(ii) ec = 12, e−c = 0 (ii) ec ∈ [12− 7ε
3 , 12 + ε], τj ∈ Tp\{ineq.av. , comp.}

(S: (i) selected) ∑j 6=c ej ≤ 4ε

(Q: (i) with ed = 6) If also ε < 3:
(E: (ii) selected) ec = 0, ep ∈ [12± ε],

∑d∈D ed ∈ [12± ε]

D-box (i) ec = 0, ep = 12 (E) (i) ec = 0, ep ∈ [12± ε] πc ≥ minp∈P{πp}
(ii) ep = 0, (ii) ∑ ec ∈ [12− 3ε, 12 + ε], if τc ∈ Tc\{wel f are} ∀c ∈ C

∑ ec = 12 (E) ∑ ep ≤ 4ε and ∃p ∈ P :
(S,Q: (i) selected) τp ∈ Tp\{ineq.av. , comp.}

If also ε < 2:
ec = 0, ep ∈ [12± ε]

Line (i) epi = 12, eci = 0, ∀i : ei + ∑j∈Ni
ej ≥ e∗ − ε πc ≥ πp and ec ≤ ep

ecj + epj = 12 (S) if ε < 3 and
(ii) epi = 12, eci = 0, (Q) If also ε < 4: τc ∈ Tc ∀c ∈ C and

ecj = 0, epj = 12 (i) epi ∈ [12± ε], eci = 0, τp ∈ Tp ∀p ∈ P
(iii) epi = 12, eci = 0, ecj + epj ∈ [12± ε]

ecj = 12, epj = 0 (E) (ii) ep ∈ [12− 3ε, 12 + ε],
ec ≤ 2ε

Circle (i) ei = 0, ei+1 = 12 ∀i : ei + ∑j∈Ni
ej ≥ e∗ − ε

(ii) ei = 4
(S,E: (i) selected) If also ε < 3:
(Q: (ii) selected) (i) ei = 0, ei+1 ∈ [12± ε]

(ii) ei ∈ [4± ε]

NOTES: (Other-regarding) equilibria for the seven networks in our experiment with payoff function (11)
and e∗ = 12. For comparison, the equilibria selected by several alternative refinement concepts are high-
lighted as well: (S) asymptotic stability, (Q) quantal response equilibria with marginal decision errors,
(E) efficient equilibria.

A.2.1 Star, core-periphery, d-box

ORE set: Building on Definition 3 (preference strength), we show that an ORE on the star,
core-periphery, or d-box must either result in a center-specialized, periphery-specialized, or
distributed public good.

Suppose, first, that ec = 0 for all players in the center position(s) c ∈ C (periphery-specialization).
A payoff maximizer in a periphery position p ∈ P would then respond with fp(e−p) = e∗. By
Definition 3, a socially concerned player responds with ep ≡ fp(τp, e−p) ∈ [e∗ ± εp], and two
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social concerned players in the duo positions of the core-periphery with ed ≡ fd(τd, e−d), where
∑d∈D ed ∈ [e∗ ± εd]. Using ε ≡ max{εp, εd}, we immediately arrive at the investment bound-
aries in a periphery-specialized ORE.

Next, suppose that ec > 0 for at least one c ∈ C (center-specialized or distributed). By Defini-
tion 3, the best-response investments of socially concerned players in the center, periphery, and
duo positions must satisfy

ec ∈ [e∗ −∑
j 6=c

ej ± εc] , (A.3)

ep ∈ [e∗ − ∑
c∈C

ec ± εp] , (A.4)

∑
d∈D

ed ∈ [e∗ − ec ± εd] . (A.5)

It follows from (A.3) that ∑i∈N ei ≤ e∗ + εc and from (A.4) and (A.5) that ep + ∑c∈C ec ≥ e∗ − εp
and ec + ∑d∈D ed ≥ e∗ − εd. In combination, this means that the periphery players in the star
and d-box (except for one peripheral player p1) jointly contribute at most

∑
j∈P\{p1}

ej = ∑
j∈P

ej + ∑
c∈C

ec −
(

∑
c∈C

ec + ep1

)
≤ e∗ + max

c∈C
{εc} −

(
e∗ −max

p∈P
{εp}

)
= max

c∈C
{εc}+ max

p∈P
{εp} .

Drawing the same conclusion for any other periphery player p2, we again get ∑j∈P\{p2} ej ≤
maxc∈C{εc}+ maxp∈P{εp} and, thus, the total contribution received by the center player(s) is
at most

∑
p∈P

ep ≤ ∑
j∈P\{p1}

ej + ∑
j∈P\{p2}

ej ≤ 2(max
c∈C
{εc}+ max

p∈P
{εp}) . (A.6)

Similarly, in the core-periphery, the periphery and duo players contribute at most

ep = ∑
l∈N\{c}

el + ec −
(
ec + ep

)
≤ εp + εc ,

∑
d∈D

ed = ∑
l∈N\{c}

el + ec −
(
ec + ∑

d∈D
ed
)
≤ max

d∈D
{εd}+ εc .

The total contribution received by the center player is thus at most

∑
d∈D

ed + ep < 2εc + εp + max
d∈D
{εd} . (A.7)

For the peripheral player(s), (A.4) implies that their total investment received is constrained
from below by minp∈P{ep}+ ∑c∈C ec ≥ e∗ −maxp{εp}. Similarly, in the core-periphery, (A.5)
implies that ∑d∈D ed is constrained from below by mind∈D

{
∑d∈D ed

}
+ ec ≥ e∗ −maxd∈D{εd}.

Thus, the center players’ investments in the star and d-box are larger than

∑
c∈C

ec ≥ e∗ −max
p∈P
{εp} −max{min

p∈P
{ep}} (A.8)

≥ e∗ −max
p∈P
{εp} −

2(maxc∈C{εc}+ maxp∈P{εp})
n− |C| ,

where the lower bound in the second line is determined by a situation where all peripheral
players equally share 2(maxc∈C{εc} + maxp∈P{εp}). Similarly, in the core-periphery, define
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εj ≡ max{εp, εd}. Then, the center’s investment is larger than

ec ≥ e∗ − εj −max{min{ep, ∑
d∈D

ed}} ≥ e∗ − εj −
2(εc + εj)

n− 1
. (A.9)

Finally, (A.3) implies that the center player(s)’ investment is smaller than

∑
c∈C

ec ≤ e∗ + max
c∈C
{εc} . (A.10)

Together, conditions (A.6)–(A.10) define the investment boundaries in a center-specialized or
distributed ORE.

Refined ORE on star: We show that when τc ∈ Tc for the center player c and τp ∈ Tp for at
least one peripheral player p, then

πc(e) ≥ min
j∈N\C

{πj(e)} . (A.11)

To see this, suppose that, contrary to (A.11), πc(e) < πp(e) for all p ∈ P. For this to occur
in an ORE, we require for the center player c and any periphery player p that their first-order
conditions are satisfied:32

(i)
∂Uc(e)

∂ec
= (b′c − c)(1− σc) +

σc

3 ∑
p∈P

b′p = 0

(ii)
∂Up(e)

∂ep
= (b′p − c)

(
1− ρp

|R+
p |
|Rp|

− σp
|R−p |
|Rp|

)
+

ρp

|Rp|
b′c ≤ 0 .

Here, b′c and b′p are our shorthand notations for b′(ec + ∑p∈P ep) and b′(ep + ec) respectively.
Moreover, player p may either just compare with c (i.e., |Rp| = |R+

p | = 1) or with some other
peripheral players in addition (i.e., |Rp| > 1).

Now, it follows from τc ∈ Tc and τp ∈ Tp that σc ≤ 0 and ρp ≥ 0 with at least one inequality
being strict. As a result, condition (i) implies b′c − c ≥ 0. And because b′p ≥ b′c > 0, we also
get b′p − c ≥ 0. Yet, this means that ∂Up/∂ep > 0. A contradiction to the other necessary
equilibrium condition (ii). We must therefore have πc(e) ≥ minj∈N\C{πj(e)}.

Refined ORE on core-periphery: We show that when τc ∈ Tc for the center player c and
τj ∈ Tp\{inequity averse , competitive} for at least one non-center player j 6= c, then payoff
ranking (A.11) must apply in an ORE.

Suppose, to the contrary, that πc(e) < πj(e) for all j 6= c. For this to arise in an ORE, we
need to have for the center c and the player j with τj ∈ Tp that their first-order conditions
are satisfied. By the same argument as for the star network, this cannot be true when j is a
periphery player. When j is a duo player, the most ideal constellation for an ORE is the one
where πj(e) = πk(e) for j, k ∈ D. This means that the following conditions need to hold for

32Here, we have assumed that πp 6= πl for all l ∈ Rp. Nevertheless, because Up(e) is continuous, a
very similar first-order condition to (ii) must hold for some small h > 0 and all e′p ∈ (ep, ep + h).
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some small h > 0 and any e′j ∈ (ej, ej + h):

(i)
∂Uc(e)

∂ec
= (b′c − c)(1− σc) +

σc

3 ∑
i 6=c

b′i = 0

(ii)
∂Uj(e′j, e−j)

∂ej
= (b′j − c)

(
1− ρj

|R+
j |
|Rj|

− σj
|R−j |
|Rj|

)
+

ρj

2
b′c +

σj

2
b′k ≤ 0 .

However, when τc ∈ Tc and τj ∈ Tp\{inequity averse , competitive}, it follows that σc ≤ 0 and
ρj ≥ σj ≥ 0. Thus, we can again apply the same argument as for the star network to conclude
that (i) implies ∂Uj(e′j, e−j)/∂ej > 0. A contradiction to the necessary equilibrium condition (ii).
In an ORE, πc(e) ≥ minj∈N\C{πj(e)} therefore needs to hold.

Refined ORE on d-box: When τc ∈ Tc\{inequity averse, social wel f are} for both centers
c ∈ C and τp ∈ Tp\{inequity averse, competitive} for at least one p ∈ P, then payoff ranking
(A.11) must apply to both centers in an ORE.

Suppose, to the contrary, that for at least one c1 ∈ C it holds πc1(e) < πp(e) for both
p ∈ P. For this to occur in an ORE, we require for the center c1 and some periphery player
p1 that their first-order conditions are satisfied. In particular, one of the favorable equilibrium
constellations is the one where the other center player c2 earns more than p1, i.e., πc1(e) <
min{πp1(e), πp2(e)} < πc2(e). This means that the following conditions need to apply:

(i)
∂Uc1(e)

∂ec1

= (b′c1
− c)(1− σc1) +

σc1

3 ∑
i 6=c1

b′i = 0

(ii)
∂Up1(e)

∂ep1

=
(
b′p1
− c
)(

1− ρp1

|R+
p1
|

|Rp1 |
− σp1

|R−p1
|

|Rp1 |
)
+

ρp1

2
b′c1

+
σp1

2
b′c2
≤ 0 .

However, when τc1 ∈ Tc and τp1 ∈ Tp\{inequity averse, competitive}, we get σc1 ≤ 0 and
σp1 ≥ 0 and, thus, by the same arguments as made for the star network, condition (i) implies
∂Up1(e)/∂ep1 > 0. A contradiction to an ORE.

The other favorable equilibrium constellation is the one where πc1(e) = πc2(e) < min{πp1(e),
πp2(e)}. For this to establish an ORE, we require for some small h > 0 and any e′c1

∈ (ec1 −
h, ec1):

(i)
∂Uc1(e

′
c1

, e−c1)

∂ec1

= (b′c1
− c)

(
1− 2σc1

3
− ρc1

3
)
+

σc1

3 ∑
p∈P

b′p +
ρc1

3
b′c2
≥ 0

(ii)
∂Up1(e)

∂ep1

= (b′p1
− c)

(
1− ρp1

|R+
p1
|

|Rp1 |
− σp1

|R−p1
|

|Rp1 |
)
+

ρp1

2
(
b′c1

+ b′c2

)
≤ 0 .

However, when τc1 ∈ Tc\{inequity averse, social wel f are} and τp1 ∈ Tp, we have σc1 ≤ ρc1 ≤ 0
and ρp1 ≥ 0. Hence again, we again arrive at a contradiction between the two necessary ORE
conditions. The payoff condition (A.11) thus needs to hold to both center players in the d-box.

Refined ORE with limited preference strength: The payoff ranking condition (A.11)
even translates into an investment ranking when the social preference of all players are suffi-
ciently weak. To see how, note that in a center-specialized or distributed equilibrium, the center’s
investment converges, by (A.8) and (A.10), to

lim
(εp,εc,εd)→(0,0,0)

∑
c∈C

ec = e∗ .
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Moreover, the investments of the non-center players j ∈ N\C converge, by (A.6) and (A.7), to

lim
(εp,εc,εd)→(0,0,0)

ej = 0 .

Thus, there exist εstar = εcore ≡ max{εp, εc, εd} and εdbox ≡ max{εp, εc} such that for any
smaller ε condition πc(e) ≥ minj∈N\C{πj(e)} cannot be fulfilled.

The critical values can be determined as follows: in a center-specialized or distributed equilib-
rium on the star or core-periphery, the center’s payoff is, by (A.6) and (A.7), lower than

πc(e) ≤ b
(
e∗
)
− c
(
e∗ − 4εstar) ≡ max πc(e) .

Moreover, because the center invests, by (A.8) and (A.9), more than e∗ − (7εstar)/3 and each
non-center player less than 2εstar, the non-center players’ payoffs are larger than

πj(e) ≥ b
(
e∗ − 7εstar

3
)
≡ min πj(e) .

Hence, the critical value is defined by the largest εstar to satisfy max πc(e) < min πj(e) or
equivalently,

c >
b(e∗)− b

(
e∗ − 7

3 εstar)
e∗ − 4εstar .

On the d-box, the critical value is given as follows: in a center-specialized or distributed equi-
librium, the minimum of the center players’ payoffs is, by (A.6), smaller than

min
i∈C
{πi(e)} ≤ b

(
e∗
)
− c

e∗ − 4εdbox

2
≡ max{min πc(e)} .

Furthermore, because the centers invest, by (A.8), jointly more than e∗ − 3εdbox and each pe-
riphery player less than 2εdbox, the peripherals’ payoffs are larger than

πp(e) ≥ b
(
e∗ − 3εdbox) ≡ min πp(e) .

Hence, the critical value is defined by the largest εdbox to satisfy max{min πc(e)} < min πj(e)
or equivalently,

c >
b(e∗)− b

(
e∗ − 3εdbox)

e∗ − 4εdbox .

A.2.2 Line

ORE set: We show that an ORE must either entail an end-specialized or a distributed invest-
ment profile, given that players’ social preferences are sufficiently weak.

Fix the sequence of players in the order p1, c1, c2, and p2, and suppose that all players
possess small social preferences, in particular ε ≡ max{εc, εp} < e∗/3. Then, all ORE fall into
one of the following two classes:

(end-sponsored) :
(
[e∗ − 3ε, e∗ + ε] , [0, 2ε] , [0, 2ε] , [e∗ − 3ε, e∗ + ε]

)
,

(distributed) :
(
[e∗ ± ε] , 0 , epi + eci ∈ [e∗ ± ε]

)
. (A.12)

To show this, exclude out-of-equilibrium profiles:

a) Obviously, no investment profile can be an ORE where three or more players invest noth-
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ing.

b) There are three possible ORE where two players invest nothing:

(i) :
(
[e∗ ± ε] , 0 , 0 , [e∗ ± ε]

)
,

(ii) :
(
[e∗ ± ε] , 0 , [e∗ ± ε] , 0

)
,

(iii) :
(
0 , [e∗ ± ε] , [e∗ ± ε] , 0

)
.

Profiles (i) and (ii) are contained in the classes of ORE described above. In profile (iii),
the sum of c1’s and c2’s investments must, by Definition 3, be weakly smaller than e∗ + ε.
Hence, profile (iii) is not an ORE when 2(e∗ − ε) > e∗ + ε and thus when ε < e∗/3.

c) There are two ORE where one player invests nothing:

(iv) :
(
[e∗ ± ε] , 0 , ec2 + ep2 ∈ [e∗ ± ε]

)
,

(v) :
(
0 , [e∗ ± ε] , ec2 + ep2 ∈ [e∗ ± ε]

)
.

Profile (iv) is contained in the classes of ORE described above. Profile (v) is not an equi-
librium when for player c2:

max{ec2} = e∗ + ε < min
{

∑
i∈N

ei
}
= 2(e∗ − ε)

and hence when e∗ + ε < 2(e∗ − ε) ⇔ ε < e∗/3.

d) When all players make a positive investment, it follows from the best-response conditions
of the end players p1 and p2 that

epi + eci ∈ [e∗ ± ε] . (A.13)

At the same time, the best response of a middle player requires that

epi + eci + ecj ∈ [e∗ ± ε] . (A.14)

Combining (A.13) and (A.14), it follows that

epi ≥ e∗ − ε− eci ≥ e∗ − ε− (e∗ + ε− ecj − epi) ⇔ ecj ≤ 2ε

Hence, we get 0 < eci ≤ 2ε. Using (A.13) again, we moreover get e∗ − 3ε ≤ epi < e∗ + ε
and, thus, we arrive at a profile that is contained in the classes of ORE described above.

Refined ORE: When τc ∈ Tc for both center players c ∈ C, τp ∈ Tp for both peripheral
players p ∈ P, and ε < e∗/5, then

πci(e) ≥ πpi(e) ∀ i ∈ {1, 2} . (A.15)

To see this, suppose, to the contrary, that πc1(e) < πp1(e) (or πc2(e) < πp2(e) or both). Then,
we must have a distributed profile with

(ep2 = [e∗ ± ε] , ec2 = 0 , ep1 + ec1 ∈ [e∗ ± ε])

because ε < e∗/5 implies that in an end-specialized profile it holds eci < epi and thus πci(e) >
πpi(e). In particular, for a distributed profile to arise in ORE, the first-order conditions for the
center player c1 and the periphery player p1 need to be satisfied, while at the same time, it must
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be πc1(e) < πc2(e).
33 Hence, we require

(i)
∂Uc1(e)

∂ec1

= (b′c1
− c)

(
1− ρc1

|R+
c1
|

|Rc1 |
− σc1

|R−c1
|

|Rc1 |
)
+

σc1

2
(
b′p1

+ b′c2

)
= 0

(ii)
∂Up1(e)

∂ep1

= (b′p1
− c)

(
1− ρp1

|R+
p1
|

|Rp1 |
− σp1

|R−p1
|

|Rp1 |
)
+ ρp1 b′c1

≤ 0 .

However, it follows from the same argument as made for the star network that condition (i)
implies ∂Up1(e)/∂ep1 > 0. A contradiction to the necessary equilibrium condition (ii). In an
ORE on the line network, payoff ranking (A.15) must therefore apply.

Refined ORE with limited preference strength: Payoff ranking (A.15) even translates
into an investment ranking when ε < e∗/5. To see this, note that, by (A.12), it holds eci < epi

for both i ∈ {1, 2} in an end-specialized equilibrium. Moreover, as condition (A.15) implies that
πci(e) ≥ πpi(e), we also get eci ≤ epi for both i ∈ {1, 2} in a distributed equilibrium. Thus, we
have πci(e) ≥ πpi(e) and epi ≥ eci for i ∈ {1, 2}.

A.2.3 Dyad and complete network

ORE set: It immediately follows from Definition 3 that ∑i∈N ei ∈ [e∗ ± ε] must hold.

Refined ORE on dyad: We show that τi ∈ Tc ∩ Tp for both players i, then it must be

ei = ej = e ∈
[ e∗ ± ε

n
]

. (A.16)

To see this, note that utility in the dyad can be written as

Ui(e) = b
(
ei + ej

)
− cei + ρi|N+

i |(ei − ej)c + σi|N−i |(ei − ej)c ,

where |N+
i | = 1 and |N−i | = 0 iff πi(e) > πj(e) ⇔ ei < ej. Suppose now that, contrary to

(A.16), ei > ej ≥ 0. For this to be an ORE, we require

(i)
∂Ui(e)

∂ei
= b′ − c + σic = 0

(ii)
∂Uj(e)

∂ej
= b′ − c + ρjc ≤ 0 .

However, since ρj ≥ 0 ≥ σi (where at least one inequality is strict since τi, τj ∈ Tc ∩ Tp),
conditions (i) and (ii) cannot be satisfied simultaneously. Hence, in an ORE, ei = ej = e needs
to hold.

33It must be πc1(e) < πc2(e) because in a distributed profile, it is

πc2(e) ≥ b(ec1 + e∗ − ε)

and
πc1(e) = b(ec1 + ep1)− cec1 .

Moreover, in a distributed profile, πc1(e) < πp1(e) implies that ec1 > ep1 . Thus, suppose to the contrary
that πc1(e) ≥ πc2(e). Then ec1 > ep1 > e∗ − ε must hold. This is however incompatible with ep1 + ec1 ∈
[e∗ ± ε] when ε < e∗/3.
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Refined ORE on complete network: Suppose that τi ∈ Tc ∩ Tp for all players i. Suppose
moreover that ρi and ρj, respectively σi and σj, are sufficiently close together for all i, j ∈ N.
Then, an ORE must entail the equal split in (A.16).

To show this, note that utility in the complete network can be written as

Ui(e) = b
(

∑
i∈N

ei
)
− cei +

ρi

3 ∑
j∈N+

i

(ei − ej)c +
σi

3 ∑
j∈N−i

(ei − ej)c .

Suppose now that, contrary to the statement, there are some players i and j with ei < ej. For
this to be an ORE, it must hold for player i (j) with the lowest (highest) investment, for some
small h > 0, and any e′i ∈ (ei + h, ei) and e′j ∈ (ej − h, ej) that

(i)
∂Ui(e′i, e−i)

∂ei
= b′ − c + ρi

|N+
i |

3
c + σi

|N−i |
3

c ≤ 0

(ii)
∂Uj(e′j, e−j)

∂ej
= b′ − c + ρj

|N+
j |

3
c + σj

|N−j |
3

c ≥ 0 .

These two conditions cannot be met simultaneously, however, when ρi and ρj, respectively σi
and σj, are sufficiently close together because for (i) and (ii) to be satisfied we need that

|N+
i |ρi + |N−i |σi ≤ |N+

j |ρj + |N−j |σj . (A.17)

And since |N+
i | ≥ |N

+
j |+ 1 and |N−i | ≤ |N

−
j | − 1, (A.17) requires

ρi − σi ≤ |N+
j |(ρj − ρi) + |N−j |(σj − σi) . (A.18)

Note now that τi ∈ Tc ∩ Tp implies ρi − σi > 0. This however means that (A.18) cannot be met
by any i ∈ N when ρj − ρi ≤ x and σj − σi ≤ y for all i, j ∈ N and some small x, y > 0. We
thus arrive at a contradiction between the two necessary equilibrium conditions (i) and (ii). In
an ORE, it must therefore be ei = ej = e.

A.2.4 Circle

ORE set: Suppose that ε < e∗/5. Then, the ORE set on the circle resembles the Nash equilib-
rium set from the original game, that is, an ORE entails either a specialized or a fully distributed
investment profile.

To show this, fix the sequence of players in the order i, j, k, l. Suppose first that em > 0 for all
m ∈ N (fully distributed). Based on Definition 3, every em must lie inside an interval 3e ≤ em ≤ ē,
where

e + 2ē = e∗ − ε and ē + 2 e = e∗ + ε .

Solving these equations and simplifying gives

em ∈
[ e∗

3
± ε
]

for all m ∈ N .

Next, suppose that ei = 0 for some player i (specialized). It follows that i’s neighbors, j and
l, must make a positive investment because suppose, to the contrary, that ej = 0 (or el = 0,
or both are equal to zero). Then, ek > 0 since otherwise ei + ej + ek = 0. In fact, we need
ek ≥ e∗ − ε and el ≥ e∗ − ε for this to be a best-response profile for i and j. This however leads
to a contradiction to the best-response condition of player k because when el ≥ e∗ − ε player k
invests at most 2ε. Yet, this is at odds with ek ≥ e∗ − ε when ε < e∗/3. Thus, when ei = 0 then
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it must be ej > 0 and el > 0.
In fact, ei = 0, ej > 0, and el > 0 implies that ek = 0 because suppose, to the contrary, ek > 0.

As the total investments received by players j, k, and l must satisfy

ej + ek ∈ [e∗ ± ε] , ej + ek + el ∈ [e∗ ± ε] , and ek + el ∈ [e∗ ± ε]

respectively, it follows that ej ≤ 2ε and el ≤ 2ε. This however means that the total investment
received by player i is no larger than 4ε. And when ε < e∗/5, then ej + el ≤ 4ε < e∗ − ε.
A contradiction to ei = 0. Thus, in an ORE on the circle, it must be ek = 0 when ei = 0. In
particular, together with the equilibrium conditions for j and l, we get (0 , [e∗ ± ε] , 0 , [e∗ ± ε]).

A.2.5 General networks and incomplete information

In this section, we generalize our basic model from the main text to allow for incomplete
information regarding the social preference types of the other players. Moreover, we provide
the missing proof of Proposition 2 for a general network structure.

To incorporate incomplete information, suppose that the exact preference type τi of each
player is privately known only to that individual. The exact types of the other players remain
unknown. Suppose, however, that each player possesses a vague impression of the other play-
ers’ preferences, possibly gained through prior encounters. Formally, let τ = (τi)i∈N represent
one potential type constellation in Ω = T1 × ...× Tn, where the type sets Ti are potentially het-
erogeneous. Then, our assumption is that the probability function p(τ) : Ω→ (0, 1) is common
knowledge.

In line with our basic setting, each player’s utility depends on her relative standing among
the players in her reference group also in this setting as well. We assume that a player compares
her own expected payoff with that of her peers. Formally, let τ−i = (τj)j 6=i denote one potential
type constellation for all other players j 6= i, and let e−i = (eτj)τ−i∈Ω−i denote the profile of
investments for all possible types of j 6= i. The expected utility of a type-τi of player i at
investments (eτi , e−i) is given by

Eτ−i [Ui|τi] = Eτ−i [πi|τi] +
στi

|Ri| ∑
j∈R−i

(
Eτ−i [πj|τi]−Eτ−i [πi|τi]

)
(A.19)

+
ρτi

|Ri| ∑
j∈R+

i

(
Eτ−i [πj|τi]−Eτ−i [πi|τi]

)
,

where R−i (R+
i ) denote the subsets of players in i’s reference group who earn more (less) in

expectation, with expected payoffs given by Eτ−i [πi|τi] = ∑τ−i∈Ω−i
p(τ−i|τi)b(eτi + ∑k∈Ni

eτk)−
ceτi and Eτ−i [πj|τi] = ∑τ−i∈Ω−i

p(τ−i|τi)b(eτj + ∑k∈Nj
eτk)− ceτj .

The following result, which generalizes Proposition 2 from the main text, can be verified in
this extended setting:

Proposition 3. Consider two players i and j in a nested neighborhood of a network g such that all their
types have compatible social preferences (i.e., Ti ⊂ Tc and Tj ⊂ Tp). In an ORE, it must then hold for at
least one τi ∈ Ti and τj ∈ Tj that

Eτ−i [πi|τi] ≥ min
k∈Ni
{Eτ−i [πk|τi]} OR Eτ−j [πj|τj] ≤ max

l∈Nj
{Eτ−j [πl |τj]} .

Proof. Suppose that, contrary to the statement, all types of player i earn strictly less in ex-
pectation than all k ∈ Ni and all types of player j earn strictly more in expectation than all
l ∈ Nj. One immediate implication is that Eτ−i [πi|τi] < Eτ−i [πj|τi] ∀ τi ∈ Ti. Because player j’s
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neighborhood is nested in player i’s, we moreover have for all τ ∈ Ω that

eτi + ∑
k∈Ni

eτk ≥ eτj + ∑
l∈Nj

eτl . (A.20)

In combination, eτi > 0 ∀ τi ∈ Ti thus needs to hold because i has access to more investments
than j in any τ−i ∈ Ω−i, while at the same time i earns less in expectation.

The first-order conditions for all possible types τi ∈ Ti of player i and all possible τj ∈ Tj of
player j thus become34

(i)
∂Eτ−i [Ui|τi]

∂eτi

= ∑
τ−i∈Ω−i

p(τ−i|τi)

[(
b′
(
eτi + ∑

k∈Ni

eτk

)
− c
)(

1−
|R−τi
|

|Rτi |
ρτi −

|R−τi
|

|Rτi |
στi

)
+

στi

|Rτi |
∑

k∈Ni

b′
(
eτk + ∑

m∈Nk

eτm

)]
= 0 (A.21)

(ii)
∂Eτ−j [Uj|τj]

∂eτj

= ∑
τ−j∈Ω−j

p(τ−j|τj)

[(
b′
(
eτj + ∑

l∈Nj

eτl

)
− c
)(

1−
|R−τj
|

|Rτj |
ρτj −

|R−τj
|

|Rτj |
στj

)

+
ρτj

|Rj| ∑
l∈Nj

b′
(
eτl + ∑

m∈Nl

eτm

)]
≤ 0 .

Because all τi ∈ Ti and τj ∈ Tj have compatible social preferences, it is στi ≤ 0 and ρτj ≥ 0 with
at least one inequality being strict. For condition (i) to be satisfied for all τi ∈ Ti, we thus need
that

∑
τ−i∈Ω−i

p(τ−i|τi) b′
(
eτi + ∑

k∈Ni

eτk

)
≥ c ∀ τi ∈ Ti .

Summing up over all τi, this gives ∑τ∈Ω p(τ) b′
(
eτi + ∑k∈Ni

eτk

)
≥ c, or equivalently

∑
τj∈Tj

p(τj) ∑
τ−j∈Ω−j

p(τ−j|τj) b′
(
eτi + ∑

k∈Ni

eτk

)
≥ c . (A.22)

Because i nests the neighborhood of j (see (A.20)) and because b(·) is strictly concave, we addi-
tionally have

b′
(
eτj + ∑

l∈Nj

eτl

)
≥ b′

(
eτi + ∑

k∈Ni

eτk

)
∀ τ ∈ Ω . (A.23)

In combination, (A.22) and (A.23) imply

∑
τ−j∈Ω−j

p(τ−j|τj) b′
(
eτi + ∑

k∈Ni

eτk

)
≥ c

for at least one τj ∈ Tj because otherwise the weighted average on the left-hand side of (A.22)
could not be greater than c. Yet, together with the parameter conditions for preference com-
patibility, this means that the first-order condition in (A.21) is violated for at least one τj. In an
ORE, payoffs must therefore be ordered as stated in the proposition. �

At least two aspects of Proposition 3 are noteworthy: Firstly, for social preferences to result

34Here, we have implicitly assumed that Eτ−i [πi(eτi , e−i)|τi] 6= Eτ−i [πk(eτi , e−i)|τi] for all k ∈ Ri and
that the same holds for player j and her peers. Nevertheless, because Ui(eτi , e−i) is continuous, very
similar first-order conditions must hold for all e′τi

and e′τj
in some small open neighborhoods around eτi

and eτj .
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in the predicted payoff ranking, it is imperative that all potential types of players i and j have
compatible social preferences (i.e., Ti ⊂ Tc and Tj ⊂ Tp). Otherwise, there could be a type of
player j in Tj who is unwilling to contribute to the public good in case that player i’s investment
falls short of e∗. As a consequence, player i could not afford to lower his investment below e∗,
even though the “real” type of player j is willing to fill the gap. Secondly, the assumption that
the type sets of i and j are common knowledge is essential as well. Otherwise, a player j of
the correct type might mistakenly believe that player i is in need, or player i might wrongly
believe that j is not willing to contribute, etc. In other words, equilibrium refinement through
social preferences not only requires a compatible preference combination but also a common
understanding of this.

A.3 Measuring social preference strengths
Here, we establish a result to map a pair of social preference parameters, (ρi, σi), into an

upper bound ε̂i for a player’s true preference strength εi, which is valid for all the two- and
four-player networks in our experiment.

Lemma 1. Consider a player with utility function (2) and a quadratic payoff function (1) who occupies
a position in one of the seven networks of Figure 1. An upper bound ε̂i for the player’s true social
preference strength εi is given by:

• for i in a nested position (e.g., periphery position in the star, core, d-box, or line, duo position in
the core, or position in the dyad or complete network):

altruists and social-welfare types :
ρice∗

b′(0)− c

inequity-averse types : max
{ −σi|Ri|ce∗

(|Ri| − ρi(|Ri| − |Ni|))(b′(0)− c)
;

ρice∗

b′(0)− c
}

competitive and spiteful types :
−σice∗

b′(0)− c

• for i in a non-nested position (e.g., center position in the star, core-periphery, d-box, or line, or
position in the circle):

altruists and social-welfare types :
ρib′
(
e∗/|Ni|

)
e∗

b′(0)− c

inequity-averse types : max
{ −σi((|Ni| − 1)b′(0)− c)e∗

(|Ni| − σi(|Ni| − 1)− ρi
(|Ri |−|Ni |) |Ni |

|Ri | )(b′(0)− c)
;

ρib′
(
e∗/|Ni|

)
e∗

b′(0)− c
}

competitive and spiteful types :
−σi((|Ni| − 1)b′(0)− c)e∗

(|Ni| − σi(|Ni| − 1))(b′(0)− c)
.

Proof. Our aim is to determine, for a given (ρi, σi) and a given network position i, an up-
per bound ε̂i for the difference between that player’s best-response investment, fi(τi, e−i), and
a payoff-maximizing best response, fi(e−i), for all possible e−i. More concretely, we aim to
determine an ei that constrains the deviation-maximizing best response in the following way:

ε̂i ≡
∣∣ei − fi(e−i)

∣∣ ≥ εi ≡ max
{∣∣ fi(τi, e−i)− fi(e−i)

∣∣ : ∀ e−i ∈ [ 0, ē ]n−1
}
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and that satisfies (|ρi|, |σi|) < (|ρ′i|, |σ′i |) ⇒ ε̂i(|ρi|, |σi|) < ε̂i(|ρ′i|, |σ′i |).
Nevertheless, as utility function Ui(e) is not differentiable at investments where πi(e) =

πj(e) for some j ∈ Ri, we need to make some case distinctions.

(I) Deviation-maximizing interior solutions: Suppose first that the deviation-maximizing
fi(τi, e−i) is such that πi( fi(τi, e−i), e−i) 6= πj( fi(τi, e−i), e−i) for all j ∈ Ri. Then, fi(τi, e−i) needs
to satisfy the first-order condition

∂Ui

∂ei
=

(
b′
(

fi(τi, e−i) + ∑
j∈Ni

ej
)
− c
)(

1− ρi
|R+

i |
|Ri|

− σi
|R−i |
|Ri|

)
+

σi

|Ri| ∑
j∈N−i

b′
(

fi(τi, e−i) + ej + ∑
l∈Nj\{i}

el
)

(A.24)

+
ρi

|Ri| ∑
j∈N+

i

b′
(

fi(τi, e−i) + ej + ∑
l∈Nj\{i}

el
)
≤ 0 ,

where N+
i (N−i ) denotes the set of neighbors with πi > (<)πj, and R+

i (R−i ) the set of peers
with πi > (<)πj. The corresponding condition for a payoff-maximizing investment fi(e−i) is

b′
(

fi(e−i) + ∑
j∈Ni

ej
)
− c ≤ 0 . (A.25)

In the first step, we determine an upper bound for a positive deviation, fi(τi, e−i) > fi(e−i),
before we proceed to a lower bound for a negative deviation, fi(τi, e−i) < fi(e−i).

(IA) Positive deviations: By definition of a positive deviation, it must be fi(τi, e−i) > 0
so that the condition in (A.24) must be satisfied with equality and, moreover, b′

(
fi(τi, e−i) +

∑j∈Ni
ej
)
− c < 0 in the first line of (A.24).

Hence, to establish an upper bound for them, set R+
i = Ri and R−i = ∅ in the first line

of (A.24). Moreover, set N+
i = Ri = Ni and N−i = ∅ in the second and third lines of (A.24).

Because ρi ≥ σi, this results in an increase in the terms in lines 1–3 and, consequentially, in
fi(τi, e−i), while leaving the condition in (A.25) and, by extension, the value for fi(e−i) unaf-
fected.

Our upper bound ei for fi(τi, e−i) thus satisfies35(
b′
(
ei + ∑

j∈Ni

ej
)
− c
)(

1− ρi
)

(A.26)

+
ρi

|Ni| ∑
j∈Ni

b′
(
ei + ej + ∑

l∈Nj\{i}
el
)
= 0 .

This immediately implies that ei − fi(e−i) > 0 if and only if ρi > 0. Yet, to be able to continue
from here, we need to make some additional case distinctions.

35Obviously, we ignore at this point the constraints on ei and e−i that are necessary for πi(e) > πj(e)
for all j 6= i. For this reason, ei is just an upper bound for a best-response investment, but it may not be
supported as a best response itself. However, ei may in fact be a best-response investment for a certain
player type in a certain network position.

61



(IA1) Positive deviations in nested positions: When i is in a nested network position,
i.e., Ni ∪ {i} ⊆ Nj ∪ {j} for all j ∈ Ni, equation (A.26) simplifies to(

b′
(
ei + ∑

j∈Ni

ej
)
− c
)(

1− ρi
)

(A.27)

+
ρi

|Ni| ∑
j∈Ni

b′
(
ei + ∑

j∈Ni

ej + ∑
l∈Nj\(Ni∪{i})

el
)
= 0 .

Because we have b′′(e) = b′′(e′) for all e, e′ ∈ [0, ē], the total derivative of (A.27) gives for any
player l who is not a neighbor of i (i.e., l ∈ Nj\(Ni ∪ {i})):

dei

del
≤ − ρi

|Ni|
< 0 .

Hence, to maximize ei − fi(e−i), set el = 0. As a result, (A.27) becomes

b′
(
ei + ∑

j∈Ni

ej
)
−
(
1− ρi

)
c = 0

⇔ ei + ∑
j∈Ni

ej = (b′)−1((1− ρi)c
)

. (A.28)

Now, because ei and ∑j∈Ni
ej are perfect strategic substitutes in both (A.28) and (A.25) and be-

cause (b′)−1((1 − ρi)c
)
> e∗, decrease ∑j∈Ni

ej from an initial high level down to the point
where the first-order condition (A.25) becomes just binding. We then get fi(e−i) = 0 and
∑j∈Ni

ej = e∗ and, thus, get an upper bound of

ε̂i = ei − fi(e−i) = (b′)−1((1− ρi)c
)
− e∗.

When we finally leverage the quadratic nature of function b(·), (A.28) can be written as ei +

∑j∈Ni
ej = (b′(0)− (1− ρi)c)/|b′′| and (A.25) as e∗ = (b′(0)− c)/|b′′|. So, we finally get

ε̂i = ρi
c

b′(0)− c
e∗ . (A.29)

It is important to note that this bound (along with all bounds to come) is even the smallest
possible upper bound because ei = ε̂i represents the best response on ∑j∈Ni

ej = e∗ of, for
instance, an altruistic player in a complete network. Note, moreover, that our assumption
|b′′| > (2b′(0)− c)/ē ensures that ε̂i + e∗ < ē.

(IA2) Positive deviations in non-nested positions: Suppose next that i’s neighborhood
is not nested in the neighborhoods of all players in i’s neighborhood (i.e., Ni ∪ {i} 6⊂ Nj ∪ {j}
for some j ∈ Ni). Starting from equation (A.26) again, the total derivative gives in this case

dei

del
≤ − ρi

|Ni|
< 0

for any l ∈ Nj\{i}. Hence, for a maximal positive deviation, set el = 0. The total derivative,
furthermore, gives for any j ∈ Ni

dei

dej
= −

(
1− ρi +

x ρi

|Ni|
)
≥ −1 =

d fi(e−i)

dej
,

where x ∈ {1, .., |Ni|} depending on how often player j is herself a neighbor of other k ∈ Ni\{j}.
Hence, because d fi(e−i)/dej is the total derivative of the first-order condition (A.25) for a payoff
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maximizer, decrease ∑j∈Ni
ej from an initial high level down to the point where the first-order

condition of a payoff maximizer is just satisfied with equality, that is, where ∑j∈Ni
ej = e∗ and

fi(e−i) = 0.
Now, as b′(e) > b′(e′) for e < e′ and as the term in line two of (A.26) increases in b′(ei + ej +

∑l∈Nj\{i} el), a maximal positive deviation is attained in a network position i, where none of i’s
neighbors are neighbors themselves (e.g., the star center). Our upper bound ε̂i = ei − fi(e−i) =
ei thus satisfies (

b′
(
ε̂i + e∗

)
− c
)(

1− ρi
)
+

ρi

|Ni| ∑
j∈Ni

b′
(
ε̂i + ej

)
= 0

⇔
(
b′
(
ε̂i + e∗

)
− c
)(

1− ρi
)
+ ρib′

(
ε̂i + e∗/|Ni|

)
= 0

⇔ ε̂i = ρi
b′
(
e∗/|Ni|

)
b′(0)− c

e∗ . (A.30)

where, in lines 2 and 3, we made use of the quadratic nature of b(·).

(IB) Negative deviations: Start from equations (A.24) and (A.25), again. Note first that
since ρi ≥ σi and b′ > 0, it must be σi < 0 and there must be at least one j ∈ N−i for player i to
deviate downwards from a payoff-maximizing best response.

Now, rewrite (A.24) as(
b′
(

fi(τi, e−i) + ∑
j∈Ni

ej
)
− c

)(
1− ρi

|R+
i | − |N

+
i |

|Ri|
− σi
|R−i | − |N

−
i |

|Ri|

)
+

σi

|Ri| ∑
j∈N−i

(
b′
(

fi(τi, e−i) + ej + ∑
l∈Nj\{i}

el
)
− b′

(
fi(τi, e−i) + ∑

j∈Ni

ej
)
+ c

)

+
ρi

|Ri| ∑
j∈N+

i

(
b′
(

fi(τi, e−i) + ej + ∑
l∈Nj\{i}

el
)
− b′

(
fi(τi, e−i) + ∑

j∈Ni

ej
)
+ c

)
≤ 0 . (A.31)

Hence, to establish our lower bound ei for fi(τi, e−i), the expressions in lines 1–3 need to be
minimized, while leaving condition (A.25) for a payoff maximizer unaffected. To achieve this,
set |R−i | = |N

−
i | in line 1 because ρi ≥ σi and b′( fi(τi, e−i) + ∑j∈Ni

ej) > c. To proceed from
here, we need to make some further case distinctions.

(IB1) Negative deviations when i is linked to everyone: When i is linked to every other
player, it is |R+

i | = |N
+
i | in the first line of (A.31). Moreover, the expressions in parentheses

in lines 2 and 3 are strictly positive because fi(τi, e−i) + ej + ∑l∈Nj\{i} el ≤ fi(τi, e−i) + ∑j∈Ni
ej

and thus b′( fi(τi, e−i) + ej + ∑l∈Nj\{i} el) ≥ b′( fi(τi, e−i) + ∑j∈Ni
ej). Therefore, to minimize

fi(τi, e−i), set N+
i = ∅ and N−i = Ni = Ri in lines 2 and 3 because ρi ≥ σi.

Suppose, now, that i is linked to every other player because i is in the dyad or complete
network. Based on the above steps, (A.31) simplifies to

b′
(

∑
i∈N

ei
)
−
(
1− σi

)
c ≤ 0 . (A.32)

Because ei and ∑j∈i
ej are perfect strategic substitutes in both (A.32) and (A.26), i.e., dei/(d ∑j∈i

ej) =
d fi(e−i)/(d ∑j∈i

ej) = −1, decrease ∑j∈Ni
ej from an initial high level down to the point where

condition (A.32) is just satisfied with equality, that is, where ei = 0. Our lower bound ε̂i is thus
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given by ε̂i = fi(e−i) = e∗ −∑j∈Ni
ej, where, by (A.32),

∑
j∈Ni

ej = (b′)−1((1− σi)c
)

.

When we finally make use of the quadratic nature of b(·), we can write

ε̂i =
−σic

b′(0)− c
e∗ ,

Suppose, next, that i is linked to every other player because i resides in the center position
of the star, core, or d-box. Inequality (A.31) then becomes(

b′
(

∑
i∈N

ei
)
− c
)(

1− σi
)
+

σi

n− 1 ∑
j∈N\{i}

b′
(
ei + ej

)
≤ 0 . (A.33)

Moreover, its total derivative with respect to ej (when (A.33) is satisfied with equality) gives for
any j ∈ Ni

dei

dej
= −(1− σi +

xσi

n− 1
) ≤ d fi(e−i)

dej
= −1 ,

where x ∈ {1, .., n− 1}, depending on how often j is a neighbor of other k ∈ Ni\{j}. Hence,
to obtain a maximal negative deviation, decrease ∑j∈Ni

ej from an initial high level down to the
point where condition (A.33) is just satisfied with equality, that is, where ei = 0.

More concretely, because b′(e) > b′(e′) for e < e′ and since (A.33) is declining in b′(ei + ej),
a maximal negative deviation is obtained in the star center position where none of i’s neighbors
are neighbors themselves. Our lower bound ε̂i is then given by ε̂i = fi(e−i) = e∗ − ∑j∈Ni

ej,
where (

b′( ∑
j∈Ni

ej)− c
)(

1− σi
)
+

σi

n− 1 ∑
j∈Ni

b′
(
ej
)
= 0 .

Making use of the quadratic function nature of b(·), again, we can write

(
b′( ∑

j∈Ni

ej)− c
)(

1− σi
)
+ σib′

(∑j∈Ni
ej

n− 1
)
= 0

⇔ ∑
j∈Ni

ej =
b′(0)− c(1− σi)

(1− σi +
σi

n−1 )(b
′(0)− c)

e∗ .

So, we finally get

ε̂i = −σi
(n− 2)b′(0)− c

(n− 1− σi(n− 2))(b′(0)− c)
e∗ .

(IB2) Negative deviations when i has a single neighbor: Start from (A.31), again. Be-
cause for a negative deviation (i.e., fi(τi, e−i) < fi(e−i)) we require |N−i | > 0, we immediately
get |N−i | = |Ni| = 1 and |N+

i | = 0 in lines 2 and 3 of (A.31). Moreover, for our maximal
negative deviation, in line 1, set |R+

i | = |Ri| − |Ni| if ρi > 0, and |R+
i | = |N

+
i | if ρi ≤ 0.

Now, because the total derivative of (A.31) with respect to el , l ∈ Nj\{i} (when (A.31) is
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satisfied with equality) is

dei

del
=

{
− σi
|Ri |−ρi(|Ri |−|Ni |) if ρi > 0
− σi
|Ri | otherwise

,

we have, dei/del > 0. Hence, to minimize ei, set el = 0 for all l ∈ Nj\{i}.
As a result, the term in parentheses in line 2 of (A.31) becomes strictly positive. Hence, set

|Ri| = |N−i | = 1 in this line, so that inequality (A.31) reduces to{ (
b′
(
ei + ej

)
− c
)(

1− ρi
|Ri |−|Ni |
|Ri |

)
+ σic ≤ 0 if ρi > 0

b′
(
ei + ej

)
− c
(
1− σi) ≤ 0 otherwise

. (A.34)

Finally, because ei and ej are perfect strategic substitutes in both (A.34) and (A.26), decrease
∑j∈Ni

ej from an initial high level down to the point where (A.34) is just satisfied with equality,
that is, where ei = 0. Our lower bound ε̂i is, thus, given by ε̂i = fi(e−i) = e∗ − ej, where

ej =

{
(b′)−1((1− |Ri |σi

|Ri |−ρi(|Ri |−|Ni |) )c
)

if ρi > 0
(b′)−1((1− σi)c

)
otherwise

.

For a quadratic function b(·), we then get

ε̂i =

{ −|Ri |σic
(|Ri |−ρi(|Ri |−|Ni |))(b′(0)−c) e∗ if ρi > 0
−σic

b′(0)−c e∗ otherwise
. (A.35)

(IB3) Negative deviations when i has two neighbors: Start from (A.31), again. Suppose
first that σi ≤ ρi ≤ 0. Then, to minimize the term in line 1 of (A.31), set |R+

i | = |N
+
i |. Moreover,

for the same reasons as in (IB2), set el = 0 for l ∈ Nj\(Ni ∪ {i}) and N−i = Ni = Ri in lines 2
and 3. Therefore, we have ∑l∈Nj\{i} el = ∑l∈Nj∩Ni

el so that (A.31) simplifies to

b′
(
ei + ∑

j∈Ni

ej
)
− c (A.36)

+
σi

|Ni| ∑
j∈Ni

(
b′
(
ei + ej + ∑

l∈Nj∩Ni

el
)
− b′

(
ei + ∑

j∈Ni

ej
)
+ c

)
≤ 0 .

Suppose next that ρi > 0 > σi. To minimize the term in line 1 of (A.31), now, set |R+
i | =

|Ri| − |N−i |. Regarding the terms in lines 2 and 3, note that in all network positions with two
neighbors (i.e., the line center, the circle, the d-box periphery, or the duo positions of the core),
i’s neighbors have no more than one neighbor l, l ∈ Nj\(Ni ∪ {i}), of their own. Remember,
moreover that we require |N−i | > 0. Because we have |ρi| ≤ |σi| when ρi > 0 > σi and because
b(·) is a quadratic function, set el = 0, N+

i = ∅, and N−i = Ni. Therefore, we get similar to
(A.36): (

b′
(
ei + ∑

j∈Ni

ej
)
− c

)(
1− ρi

|Ri| − |Ni|
|Ri|

)
(A.37)

+
σi

|Ni| ∑
j∈Ni

(
b′
(
ei + ej + ∑

l∈Nj∩Ni

el
)
− b′

(
ei + ∑

j∈Ni

ej
)
+ c

)
≤ 0 .

When we now assume that i has two neighbors because i resides in the d-box periphery or a
core duo position, we get ej + ∑l∈Nj∩Ni

el = ∑j∈Ni
ej. Hence, (A.36) and (A.37) simplify to the

condition (A.34) for a player with a single neighbor. Hence, our lower bound ε̂i is given by
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(A.35).
Assume, next, that i is in a line center or circle position. Then, Nj ∩ Ni = ∅. Moreover,

(A.36) and (A.37) become
(
b′
(
ei + ∑j∈Ni

ej
)
− c
)(

1− σi − ρi
|Ri |−|Ni |
|Ri |

)
+ σi
|Ni | ∑j∈Ni

b′
(
ei + ej

)
≤ 0 if ρi > 0(

b′
(
ei + ∑j∈Ni

ej
)
− c
)(

1− σi
)

+ σi
|Ni | ∑j∈Ni

b′
(
ei + ej

)
≤ 0 if ρi ≤ 0

(A.38)

Now, because

dei

dej
<

d fi(e−i)

dej
= −1 ,

decrease ∑j∈Ni
ej from an initial high level down to the point where condition (A.38) is just

satisfied with equality, that is, where ei = 0. Our lower bound ε̂i is then given by ε̂i = fi(e−i) =
e∗ −∑j∈Ni

ej, where ∑j∈Ni
ej solves

(
b′(∑j∈Ni

ej)− c
)(

1− σi − ρi
|Ri |−|Ni |
|Ri |

)
+ σib′

(∑j∈Ni
ej

|Ni |
)
= 0 if ρi > 0(

b′(∑j∈Ni
ej)− c

)(
1− σi

)
+ σib′

(∑j∈Ni
ej

|Ni |
)
= 0 if ρi ≤ 0

When we now make use of the quadratic function nature of b(·), we get

ε̂i =


−σi((|Ni |−1)b′(0)−c)

(|Ni |−σi(|Ni |−1)−ρi
(|Ri |−|Ni |)|Ni |

|Ri |
)(b′(0)−c)

e∗ if ρi > 0

−σi((|Ni |−1)b′(0)−c)
(|Ni |−σi(|Ni |−1))(b′(0)−c) e∗ if ρi ≤ 0

.

(II) Deviation-maximizing corner solutions: Next, we establish upper bounds for a deviation-
maximizing fi(τi, e−i) in the cases where fi(τi, e−i) involves at least one player j in i’s reference
group, such that πj(, e f i(τi, e−i)−i) = πi( fi(τi, e−i), e−i).

We start with the case fi(τi, e−i) > fi(e−i). Note that even though Ui(·) is not differentiable
at fi(τi, e−i), a best-response investment must still satisfy for some small h > 0 and all e′i ∈
( fi(τi, e−i)− h, fi(τi, e−i)):

∂Ui(e′i, e−i)

∂ei
≥ 0 . (A.39)

Let us ignore the requirements on e′i and e−i for a moment that lead to πj(e′i, e−i) < (>)πi(e′i, e−i)
and assume that R+

i (e
′
i) = R+

i ( fi(τi, e−i)) and R−i (e
′
i) = R−i ( fi(τi, e−i)) for all e′i ∈ ( fi(τi, e−i)−

h, fi(τi, e−i)).36 Then, the inequality in (A.39) suggests that our upper bound is given by the
(weakly) larger ei that satisfies the first-order condition (A.24) for an interior solution in (IA)
with equality. In other words, an upper bound for a deviation-maximizing corner solution is
just given by the upper bounds developed in (IA).

Next, consider the case of a negative deviation with fi(τi, e−i) < fi(e−i). A best-response
investment must then satisfy for some small h > 0 and all e′i ∈ ( fi(τi, e−i), fi(τi, e−i) + h):

∂Ui(e′i, e−i)

∂ei
≤ 0 . (A.40)

That condition is, however, identical to condition (A.24) in (IB). A lower bound for a deviation-

36We implicitly made this same assumption at several places before.
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Table 8: Frequency of refined equilibria

Deviation from
payoff-maximizing equilibrium

Network Equilibrium type zero moderate any
(χ = 0) (χ < 3) (any χ)

Dyad equal split 32.1% (S,E,Q,rfd) 45.8% (rfd) 49.2% (rfd)
other 8.8% (S,E) 33.0% 50.8%

Complete equal split 0.8% (S,E,Q,rfd) 0.8% (rfd) 0.8% (rfd)
other 20.8% (S,E) 62.5% 99.2%

Star per-spec. 15.8% (S,Q,rfd) 33.3% (rfd) 62.5% (rfd)
distr.: πc ≥ πj — — 36.6% (rfd)
cent-sp. or distr. 0% (E) 0.8% 0.8%

Circle specialized 7.5% (S,E,rfd) 15.8% (rfd) 29.2% (rfd)
distributed 3.3% (Q,rfd) 27.5% (rfd) 55.0% (rfd)

Core per-spec. 17.5% (S,Q,rfd) 43.3% (rfd) 68.3% (rfd)
distr.: πc ≥ πj — — 31.7% (rfd)
cent-sp. or distr. 0% (E) 0% 0%

D-box per-spec. 8.3% (S,E,Q,rfd) 15.0% (rfd) 25.8% (rfd)
distr.: πc ≥ πj — 1.7% (rfd) 64.2% (rfd)
cent-sp. or distr. 0% (E) 9.2% 10.0%

Line per-spec. 0.8% (S,Q,rfd) 40.1% (rfd) 49.2% (rfd)
distr: πm ≥ πe 8.3% (S,rfd) 13.3% (rfd) 16.7% (rfd)
cent-sp. or distr. 1.6% (S,E) 8.3% 34.1%

NOTES: Percentages of (refined) Nash equilibrium profiles at the random round
ends. Refined equilibria are: (Q) quantal response, (S) stable, (E) efficient, (rfd)
refined other-regarding equilibria.

maximizing corner solution is just the lower bound of (IB). �

B Experimental Appendix

B.1 Alternative refinement concepts
Here, we compare the predictive power of our refined ORE concept with that of several al-

ternative equilibrium refinement concepts applied to the Bramoullé and Kranton (2007) game.
Table 8 summarizes the predictions of the most relevant concepts:

• Asymptotically stable equilibria based on the idea that, in our continuous-time experiment,
a best-response dynamic might lead back to a stable equilibrium following a single mis-
take by a player.

• Efficient equilibria rooted in the idea that subjects might utilize the time we give them to
coordinate on an equilibrium maximizing group welfare.

• Quantal response (logit) equilibria (McKelvey and Palfrey, 1995) based on the idea that sub-
jects play best responses to the fluctuating choices of their network neighbors.

As demonstrated in Table 8, particularly in Column 3 (χ = 0), the alternative refinement
concepts do not explain the experimental findings better than our preferred theory in any net-
work structure. On the contrary, the efficiency concepts fares worse across all networks, ei-
ther because it fails to refine the equilibrium set in certain networks or because it selects the
“wrong” equilibria. The predictive power of efficiency is particularly low in the star and the
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core-periphery network, where it is efficient when the public good is entirely provided by the
center player but where most investments are made in the peripheral positions (see Table 8).37

Asymptotic stability fares better than efficiency, especially in the star, core-periphery, and d-
box. Nevertheless, it fails to predict the empirically highly relevant equal-split equilibria on the
dyad, as all equilibrium profiles are asymptotically stable on this network.

Only the quantal-response concept comes close to our refined ORE predictions. As demon-
strated by Rosenkranz and Weitzel (2012), the theory selects a unique Nash equilibrium pro-
file on all the seven networks in our experiment when players make marginal decision errors.
Moreover, the selected equilibria align with our refined ORE predictions in most of these net-
works. Yet, quantal-response theory tends to generate a too fine-grained selection for the circle
network, where it predicts an equal split of twelve units as the only equilibrium outcome, even
though a specialized equilibrium is even more prevalent in the data. Similarly, on the line
network, quantal-response theory predicts a periphery-specialized equilibrium even though a
partially distributed public good is more frequently observed.

B.2 Distribution of social preference types and strengths
Table 9 outlines the results of our classification of each subject’s (ρ̂i, σ̂i)-pair into its revealed

preference type and its revealed preference strength.

Table 9: Revealed preference types and strengths

Preference strength
in nested positions in center positions in line middle and circle

any moderate marginal moderate marginal moderate marginal
Preference type (any ε̂i) (ε̂i < 3) (ε̂i < 1) (ε̂i < 3) (ε̂i < 1) (ε̂i < 3) (ε̂i < 1)

altruism 11.7% 11.7% 10.0% 9.2% 2.5% 10.0% 4.2%
social welfare 15.0% 15.0% 14.2% 11.7% 0.8% 10.0% 0.8%
inequity averse 29.2% 29.2% 5.8% 4.2% 0% 12.5% 0%
competitive 10.0% 10.0% 2.5% 2.5% 0% 5.8% 0%
spiteful 23.3% 15.8% 9.2% 10.0% 6.7% 15.0% 6.7%
payoff maximizer 4.2% 4.2% 4.2% 4.2% 4.2% 4.2% 4.2%
asocial 6.7% 6.7% 6.7% 1.7% 0% 1.7% 0%

100.0% 100.0% 47.5% 41.7% 14.2% 62.5% 15.8%

NOTES: Categorization of estimated (σ̂i, ρ̂i)-pairs into revealed preference types and revealed preference
strengths. Insignificant estimates (i.e., p-values ≥ 0.05) or estimates with −0.05 ≤ x ≤ 0.05 for x ∈ {σ̂i, ρ̂i}
are set to zero because a subject with such a small parameter would make a decision indistinguishable
from a payoff maximizer in our experiment.

B.3 Measurement error in tests of Hypothesis 1
In this appendix, we present the outcomes of our sensitivity tests for Hypothesis 1, where

we introduced measurement error in our social preference estimates.
The underlying assumption for all our tests is that the random assignment of subjects

to groups has effectively worked in our experiment, rendering our preference compatibility
indicator truly exogenous. Hence, without measurement error, a comparison between the
shares of refined ORE for groups with compatible and incompatible social preferences yields

37This is not entirely surprising. As suggested by Charness et al. (2014), efficiency concerns are par-
ticularly powerful in games where equilibrium outcomes can be Pareto ranked. Such a ranking is,
however, not possible in our game with strategic substitutes.
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an unbiased and consistent estimator for the true effect of preference compatibility, denoted as
P(ref ORE | c)− P(ref ORE | i), where c stands for compatible and i for incompatible.

By contrast, with measurement error, misclassification of several subject groups into having
the right or wrong preference combination is likely. To assess the resulting bias, let P(c) and
P(i) = 1− P(c) denote the likelihoods that a group truly has (in-)compatible social preferences
for a certain network. Both these likelihoods depend on the network-specific requirements
outlined in Sections 3.4.1 and 3.4.2. Moreover, let P(î|c) and P(ĉ|i) denote the conditional
likelihoods of a misclassification, which depend on the measurement error in our preference
estimates. The shares of refined OREs played by groups with seemingly compatible or incom-
patible preferences were then measured in expectation:

E[rĉ] =
P(ref ORE | c)P(ĉ|c)P(c) + P(ref ORE | i)P(ĉ|i)P(i)

P(ĉ|c)P(c) + P(ĉ|i)P(i)

E[rî] =
P(ref ORE | i)P(î|i)P(i) + P(ref ORE | c)P(î|c)P(c)

P(î|i)P(i) + P(î|c)P(c)
,

where P(ĉ|c) = 1 − P(î|c) and P(î|i) = 1 − P(ĉ|i). Thus, when our theory is correct, and
P(ref ORE | c) > P(ref ORE | i), then rĉ − rî underestimates the true effect of preference com-
patibility (higher type II error). In contrast, if our theory is incorrect, and P(ref ORE | c) =
P(ref ORE | i), measurement error does not distort the estimated effect (same type I error).

For our sensitivity checks, we solved the above equation system for P(ref ORE | c)− P(ref ORE | i).
We then utilized the social preference estimates from Table 1 of Fehr and Charness (2023) to
determine the likelihoods P(c) and P(i) for a typical WEIRD student population. Our key
assumption here is that our own subject pool is a representative sample of this population.38

Finally, we simulated the misclassification probabilities P(î|c) and P(ĉ|i) based on various as-
sumptions about the underlying measurement error at the individual level. In one specifica-
tion, we simulated slight measurement error, assuming that an ill-measured preference type is
only one type “to the right” from a subject’s true preference type on the scale: altruist-social
welfare-inequity averse-money maximizer-competitive-spiteful. This one-sided deviation is
motivated by the fact that our own preference estimates suggest a more “competitive” subject
pool than the typical WEIRD student population. For our second specification, we simulated
a more significant measurement error, assuming that an ill-measured type is randomly drawn
from the other five preference types. In both specifications, we additionally varied the misclas-
sification probabilities p.

38The estimates reviewed in Table 1 of Fehr and Charness (2023) suggest a combined share of 40%
altruists and social-welfare types, 10% inequity-averse types, 45% money maximizers, and 5% compet-
itive and spiteful types. Using the estimates from Bruhin et al. (2019) in addition, we then parsed the
first group into 15% altruists and 25% social-welfare types and the last group into 2.5% competitive
types and 2.5% altruists.
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Table 10: Measurement error in tests of Hypothesis 1

Error type observed neighbor random observed neighbor random
Error probability refined ORE 0.1 0.3 0.1 0.3 refined ORE 0.1 0.3 0.1 0.3

Groups with Any preference strength (any ε̂) Moderate preference strength (ε̂ < 3)

Star
Compatible pref. 1.00 1.00 1.00 1.00 1.00 0.16 0.16 0.16 0.16 0.17
Incompatible pref. 0.96 0.96 0.95 0.95 0.93 0.07 0.07 0.06 0.06 0.02
Dyad
Compatible pref. 0.61 0.65 0.79 0.64 0.79 0.58 0.63 0.78 0.61 0.78
Incompatible pref. 0.41 0.41 0.35 0.39 0.24 0.36 0.35 0.29 0.33 0.17
Line
Compatible pref. 0.78 0.79 0.8 0.79 0.84 0.57 0.58 0.60 0.59 0.67
Incompatible pref. 0.70 0.70 0.7 0.70 0.69 0.43 0.43 0.43 0.43 0.41
Core-periphery
Compatible pref. 1.00 1.00 1.00 1.00 1.00 0.35 0.35 0.35 0.35 0.35
Incompatible pref. 0.99 0.99 0.99 0.99 0.99 0.29 0.28 0.27 0.28 0.27

Avg. diff. 0.08 0.10 0.15 0.10 0.20 0.13 0.15 0.21 0.15 0.28

NOTES: Observed shares of refined ORE and estimated shares of refined ORE (corrected for measurement
error) for the four asymmetric networks supporting Hypothesis 1. Shares are shown separately for groups
with compatible and incompatible social preferences.

The results of our sensitivity tests are summarized in Table 10. Columns 2 and 7 reproduce
the observed ORE shares (rĉ and rî) for the four asymmetric networks that lent support to our
Hypothesis 1, as already seen in Table 3. Columns 3–6 and 8–11 then present our estimated
ORE shares, corrected for measurement error.

C Replication instructions

C.1 Experimental design
Our computerized experiment was programmed in z-tree 3.0 (Fischbacher, 2007) and took

place at the Experimental Laboratory for Sociology and Economics (ELSE) at Utrecht Univer-
sity between June 9 and June 18, 2008. We used the ORSEE recruitment system (Greiner, 2015)
to invite over 1,000 potential subjects for our study via email.

During the experiment, the participating students played a local public goods game on
the seven networks illustrated in Figure 1. A total of eight experimental sessions, each lasting
approximately one-and-a-half hours, were scheduled and successfully completed. On average,
15 students participated in each session, resulting in a total of 120 participants across eight
sessions. No student attended more than one session.

A typical session encompassed seven treatments (networks) with the treatment-ordering
detailed in Table 11. At the commencement of each session, participants received general in-
structions, as shown below. Following the instructions, they played the local public goods
game on each of the seven networks, repeating the same treatment five times in a row. Each
set of five repetitions, referred to as rounds, included one trial round and four payoff-relevant
rounds. To ensure anonymity, all choices were made in a manner that precluded their associa-
tion with individual participants after the rounds or at the end of the experiment.
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Table 11: Order of treatments by session

Session Ordering Treatment
1 2 3 4 5 6 7

1 1 Dyad Line Star Circle Core D-box Complete
2 2 Complete D-box Core Circle Star Line Dyad
3 3 Dyad Star Line Core Circle D-box Complete
4 4 Complete D-box Circle Core Line Star Dyad
5 3 Dyad Star Line Core Circle D-box Complete
6 2 Complete D-box Core Circle Star Line Dyad
7 1 Dyad Line Star Circle Core D-box Complete
8 4 Complete D-box Circle Core Line Star Dyad

At the onset of each round, participants were randomly assigned to new groups, consisting
of either one (in the dyad) or three other participants (in all other networks). Participants were
visually represented as circles on their computer screens, with self-identification facilitated by
color (see screenshot below for an illustration).

Every round followed the same structure and lasted between 30 and 90 seconds. Starting
from zero investments, participants could freely adjust their investments by clicking on two
buttons at the bottom of their screens. Full information about the momentary investments of
all other participants was continuously provided and updated five times per second. Also,
the resulting payoffs of all participants were continuously displayed on their screens. Never-
theless, the actual points earned in a round were solely determined by the momentary invest-
ments of the players at the random round end, where investments were frozen and payoffs
were counted. These round ends were randomly determined by the computer through a draw
from the uniform distribution on the interval [30, 90].

Taking the seven treatments together, each participant took part in 35 rounds within 35 dis-
tinct groups, of which 28 were payoff-relevant. At the end of the experiment, the experimental
points were converted into euros at a rate of 400 points = 1 Euro and discretely disbursed to
the participants. In addition, participants received a 3 Euro show-up fee.

C.2 Experimental instructions
-Instructions-

Please read the following instructions carefully. These instructions state everything you need
to know in order to participate in the experiment. If you have any questions, please raise your
hand. One of the experimenters will approach you to answer your question. The rules are
equal for all the participants.
You can earn money by means of earning points during the experiment. The number of points
that you earn depends on your own choices and the choices of other participants. At the end
of the experiment, the total number of points that you earn will be exchanged at an exchange
rate of:

400 points = 1 Euro

The money you earn will be paid out in cash at the end of the experiment without other par-
ticipants being able to see how much you earned. Further instructions on this will follow in
due time. During the experiment, you are not allowed to communicate with other participants.
Turn off your mobile phone and put it in your bag. Also, you may only use the functions on
the screen that are necessary for the functioning of the experiment. Thank you very much.
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-Overview of the Experiment-

The experiment consists of seven scenarios. Each scenario consists again of one trial round and
four paid rounds (altogether 35 rounds, of which 28 are relevant for your earnings).
In all scenarios, you will be grouped with either one or three other randomly selected partic-
ipants. At the beginning of each of the 35 rounds, the groups and the positions within the
groups will be randomly changed. The participants that you are grouped within one round are
very likely different participants from those you will be grouped within the next round. It will
not be revealed with whom you were grouped at any moment during or after the experiment.
The participants in your group (of two or four players, depending on the scenario) will be
shown as circles on the screen (see Figure 1). You are displayed as a blue circle, while the
other participants are displayed as black circles. You are always connected to one or more
other participants in your group. These other participants will be called your neighbors. These
connections differ per scenario and are displayed as lines between the circles on the screen (see
also Figure 1).
Each round lasts between 30 and 90 seconds. The end will be at an unknown and random
moment in this time interval. During this time interval, you can earn points by producing
know-how, but producing know-how also costs points. The points you receive in the end
depend on your own investment in know-how and the investments of your neighbors.

Figure 1

By clicking on one of the two buttons at the bottom of the screen, you increase or decrease your
investment in know-how. At the end of the round, you receive the amount of points that is
shown on the screen at that moment in time. In other words, your final earnings only depend
on the situation at the end of every round. Note that this end can be at any time between 30
and 90 seconds after the round is started, and that this moment is unknown to everybody. Also,
different rounds will not last equally long.
The points you will receive can be seen as the top number in your blue circle. The points others
will receive are indicated as the top number in the black circles of others. Next to this, the size
of the circles changes with the points that you and the other participants will receive: a larger
circle means that the particular participant receives more points. The bottom number in the
circles indicates the amount invested in know-how by the participants in your group.
Remarks:

• It can occur that there is a time-lag between your click and the changes of the numbers
on the screen. One click is enough to change your investment by one. A subsequent click
will not be effective until the first click is effectuated.

• Therefore wait until your investment in know-how is adapted before making further
changes!
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-Your Earnings-

Now we explain how the number of points that you earn depends on the investments. Read
this carefully. Do not worry if you find it difficult to grasp immediately. We also present an
example with calculations below. Next to this, there is a trial round for each scenario to gain
experience with how your investment affects your points.
In all scenarios, the points you receive at the end of each round depend in the same way on
two factors:

1. Every unit that you invest in know-how yourself will cost you 5 points.

2. You earn points for each unit that you invest yourself and for each unit that your neigh-
bors invest.

If you sum up all units of investment of yourself and your neighbors, the following table gives
you the points that you earn from these investments:

Your investment plus 0 1 2 3 4 5 6 7 8 9 10
your neighbors’ investments
Points 0 28 54 78 100 120 138 154 168 180 190

Your investment plus 11 12 13 14 15 16 17 18 19 20 21
your neighbors’ investments
Points 198 204 208 210 211 212 213 214 215 216 217

The higher the total investments, the lower are the points earned from an additional unit of
investment. Beyond an investment of 21, you earn one extra point for every additional unit
invested by you or one of your neighbors.
Note: if your and your neighbors’ investments add up to 12 or more, earnings increase by
less than 5 points for each additional unit of investment.

-Example-

Suppose

1. you invest 2 units;

2. one of your neighbors invests 3 units and another neighbor invests 4 units.

Then you have to pay 2 times 5 = 10 points for your own investment. The investments that
you profit from are your own plus your neighbors’ investments: 2 + 3 + 4 = 9. In the table,
you can see that your earnings from this are 180 points. In total, this implies that you receive
180− 10 = 170 points if this would be the situation at the end of the round. Figure 1 shows
this example as it would appear on the screen. The investment of the fourth participant in your
group does not affect your earnings. In the trial round before each of the seven scenarios, you
will have time to get used to how the points you will receive change with investments.

-Scenarios-

All rounds are basically the same. The only thing that changes between scenarios is whether
you are in a group of two or four participants and how participants are connected to each
other. Also, your own position randomly changes within scenarios and between rounds. We
will notify you each time on the screen when a new scenario and trial round starts. At the top
of the screen, you can also see when you are in a trial round (see top left in Figure 1). Paying
rounds are just indicated by “ROUND" while trial rounds are indicated by “TRIAL ROUND".
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-Questionnaire-

After the 35 rounds, you will be asked to fill in a questionnaire. Please take your time to fill in
this questionnaire accurately. In the meantime, your earnings will be counted. Please remain
seated until the payment has taken place.
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