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Abstract
The Burrows-Wheeler Transform (BWT) is a string transformation tech-
nique widely used in areas such as bioinformatics and file compression.
Many applications combine a run-length encoding (RLE) with the BWT
in a way which preserves the ability to query the compressed data ef-
ficiently. However, these methods may not take full advantage of the
compressibility of the BWT as they do not modify the alphabet or-
dering for the sorting step embedded in computing the BWT. Indeed,
any such alteration of the alphabet ordering can have a considerable
impact on the output of the BWT, in particular on the number of
runs. For an alphabet Σ containing σ characters, the space of all al-
phabet orderings is of size σ!. While for small alphabets an exhaustive
investigation is possible, finding the optimal ordering for larger alpha-
bets is not feasible. Therefore, there is a need for a more informed
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2 Heuristics for the RLBWT Alphabet Ordering Problem

search strategy than brute-force sampling the entire space, which motiv-
ates a new heuristic approach. In this paper, we explore the non-trivial
cases for the problem of minimizing the size of a run-length encoded
BWT (RLBWT) via selecting a new ordering for the alphabet. We
show that random sampling of the space of alphabet orderings usu-
ally gives sub-optimal orderings for compression and that a local search
strategy can provide a large improvement in relatively few steps. We
also inspect a selection of initial alphabet orderings, including ASCII,
letter appearance, and letter frequency. While this alphabet ordering
problem is computationally hard we demonstrate gain in compressibility.

Keywords: Alphabet ordering, Burrows-Wheeler Transform, Compression,
Local search, Random sampling, Run-Length Encoding

1 Introduction
The Burrows-Wheeler Transform (BWT), originally known as block-sorting
compression, is a text transformation scheme which computes a permutation
of an input string of data (Burrows & Wheeler, 1994). The transformation
is achieved by sorting the matrix of all circular shifts (rotations) of a string
into lexicographic order and extracting the last column from the matrix. The
algorithm can be implemented using a suffix array data structure with over-
all linear time complexity. Furthermore, using the index of the original string
in the sorted matrix, the transform can be inverted in linear time, enabling
efficient recovery of the input data. Hence the BWT is applicable to lossless
compression activities, notably as a pre-processor preparing the data for com-
pression. An important property of the transform is that it groups together
characters with similar context, which are often identical characters, that is,
it has a tendency to rearrange a string of characters into runs of the same
character.

The computational efficiency of this remarkably simple innovation has
enabled wide-ranging applications related to the indexing, searching, and com-
pression of text (Adjeroh, Bell, & Mukherjee, 2008). The BWT is implemented
in the popular open-source file compressor Bzip2 (Seward, 1996), as well as
in bioinformatic sequence alignment utilities including Bowtie2 (Langmead &
Salzberg, 2012), BWA (H. Li & Durbin, 2009), and SOAP2 (R. Li et al., 2009),
and additionally in image compression (Syahrul, Dubois, Vajnovszki, Saidani,
& Atri, 2008).

A large amount of research has been conducted to improve the space com-
plexity of the BWT and common data structures used to query the BWT such
as the FM-index. Such improvements include applying run-length encoding
(RLE) to the transformed text or other structures.

This was first investigated by Mäkinen and Navarro as the run-length
encoded FM-index (RLFM-index) (Mäkinen & Navarro, 2005) and improved
on (Sirén, Välimäki, Mäkinen, & Navarro, 2008), including much more recently
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by Gagie, Navarro, and Prezza (Gagie, Navarro, & Prezza, 2020), using a
run-length encoded BWT (RLBWT) and suffix array samples (r-index). The
r-index provides a full-text searchable index in O(r) space, where r is the
number of runs in the BWT, and has been of interest for the finding maximal
exact matches step in bioinformatics read alignment (Rossi et al., 2022).

The order of the characters in the compressed BWT text heavily relies
on the alphabet ordering used to sort the suffixes. By varying the alphabet
ordering used for the BWT, the output can be influenced to further group
characters, improving over the extended ASCII alphabet ordering which is
typically implemented in software utilities.

Alphabet orderings for the BWT have been considered by Chapin and
Tate (Chapin & Tate, 1998), where both a hand-picked ordering and orderings
created from a heuristic algorithm were used and tested on both text and
imaging data. It is suggested that placing similar characters together in the
alphabet (vowels, consonants, and punctuation) yield greater compression over
ASCII in their pipeline involving the BWT.

Related BWT research has been conducted which, for a given ordered al-
phabet Σ, investigate a variety of non-lexicographic orderings of Σ∗, providing
tailored methods to order the set of strings rather than reordering the al-
phabet. The ABWT is based on alternating lexicographical order (Giancarlo,
Manzini, Restivo, Rosone, & Sciortino, 2018, 2020), which flips the order re-
lation between < and > at each subsequent position during the scan of two
strings being compared. The V -BWT is based on V -order which repeatedly
deletes a V -type letter and at the penultimate stage of equality applies co-
lexorder (Daykin & Smyth, 2014). The D-BWT, which is applied to degenerate
(also known as indeterminate) strings where each string position consists of a
nonempty subset of letters over Σ, determines a lex-extension to sort the con-
jugates (Daykin & Watson, 2017). The binary B-BWT applies binary block
order and yields not one but twin transforms (Daykin et al., 2016).

Ordering texts within a collection has also been examined (Bentley, Gibney,
& Thankachan, 2020; Cazaux & Rivals, 2019; Cox, Bauer, Jakobi, & Rosone,
2012), which involves adding a unique separator to each text in the collection.
A notable result is that finding a minimal number of runs r by ordering of the
texts can be done in linear time (Bentley et al., 2020; Cazaux & Rivals, 2019),
though this approach does not perform reordering of the alphabet within each
text. Pibiri (2023) has implemented a graph-based algorithm for ordering the
biological sequences within a collection such that the k-mers can be efficiently
stored in a hash table. The ordering is chosen to ensure that the corresponding
k-mer counts can be compressed using RLE while still enabling queries of the
k-mer counts.

Reordering the alphabet to minimize r has been shown to be APX-
hard (Bentley et al., 2020; Gibney, 2021). In addition, Bentley, Gibney, and
Thankachan showed that finding an alphabet ordering to ensure r < t for a
given threshold t is NP-complete (Bentley et al., 2020). We also know that
r is limited to no more than twice the number of runs in the original text
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(Mantaci, Restivo, Rosone, Sciortino, & Versari, 2017), providing a bound to
the quality of any worst case alphabet ordering.

While the theoretical hardness of choosing the best alphabet ordering is
clear, we still know little about the potential to efficiently and substantially
improve on ASCII orderings. In this paper, we first randomly sample widely
from the space and then to use heuristic search to understand more about
potential improvements to the alphabet ordering which could be made cheaply
and quickly, reducing the size of RLBWT compressed texts.

We show that most randomly sampled alphabet orders achieved little im-
provement in size reduction. However, we show that a First-Improvement local
search can quickly improve on randomly sampled alphabet orderings, even
when using a limited number of steps. Additionally we consider initializing
the search with promising initial orderings to seed the search, taking into ac-
count character frequency and appearance, and showing how they affect the
speed of improvement of the search over time. We also evaluate a variety of
operators for directing the search and find that a combined search strategy
of two standard operators Swap and Insert (Eiben & Smith, 2015) may
improve the local minima depending on the order of their use. We further
consider varied orderings of the neighbors of an alphabet ordering, searching
them lexicographically, reverse-lexicographically, and randomly (Section 4.2).

Section 2 introduces and formalizes the problem and terminology. We dis-
cuss the special cases for small alphabets in Section 3, and First-Improvement
local search methods for larger alphabets in Section 4. Our experimental setup
is discussed in Section 5.1. A detailed discussion of our results can be found
in Section 5. We summarize our contribution in Section 6 and provide an
overview of future research directions.

2 Notation, Problem Definition, and Modeling
In this section, we provide formal definitions for BWT and RLE with examples
given for the key definitions. We also formally state the considered optimiza-
tion problem. For each of the following definitions it is assumed that we have
the following:

An alphabet Σ, is an ordered non-empty set of unique characters
{x0, x1, . . . , xσ−1}, where x0 < x1 < · · · < xσ−1 and xi < xj implies xi pre-
cedes xj . The standard ‘Roman’ alphabet ordering as implemented in the
ASCII table is denoted as ΣR.

A string s = c0, c1, . . . , cn−1 = s[0..n − 1] over an alphabet Σ, is a finite
sequence of characters of length n = |s|, such that ci ∈ Σ, ci = s[i]. The
individual characters ci will be denoted as s[i] subsequently.

2.1 Key Definitions
A BWT (Definition 2) is computed by first forming a Burrows-Wheeler Matrix
(BWM, Definition 1) – the sorted list of strings formed by all cyclic rotations
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of a string – and taking the last column of the matrix. This has a tendency to
group identical characters together and is useful for compressing with an RLE.

Alphabet reordering allows us to impact the ordering of the rows within
a BWM. For any string s of length n with an alphabet Σ of size σ, there is a
total of σ! possible alphabet orderings.

Definition 1 (Burrows-Wheeler Matrix / BWM) Let s and s′ be two strings over
the same alphabet Σ. The string s′ is said to be a cyclic rotation of s if and only
if there exists two strings u and v with |v| = 1 such that s = uv and s′ = vu.
The lexicographically ordered, row-arranged set of all cyclic rotations of s$ sorted
according to the order of Σ, with $ least in Σ, and denoted as BWM(s,Σ) is the
BWM of s. The BWM of s without adding an implicit $ is denoted as BWM∗(s,Σ).

It should be noted that we do not consider the end marker (normally $) to
be movable within the alphabet ordering, instead always appearing first as an
implicit least character. We illustrate Definition 1 in the following example.
For the sake of simplicity we use the standard ‘Roman’ alphabet ordering ΣR.

Example 1 Let a string s = cacatcg and using ΣR, the BWM is as follows, where F
and L denote the first and last columns of the matrix respectively:

BWM(s,ΣR) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
$ c a c a t c g
a c a t c g $ c
a t c g $ c a c
c a c a t c g $
c a t c g $ c a
c g $ c a c a t
g $ c a c a t c
t c g $ c a c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Using Definition 1 we can now formally define a BWT as the last column

L of the BWM.

Definition 2 (Burrows-Wheeler Transform / BWT) For an input string s of length
n and an alphabet ordering Σ, we define the BWT as BWT(s, Σ) = BWM(s, Σ)[i,
n − 1], ∀i such that 0 < i < n − 1. The BWT of s without implicitly adding a $ is
denoted as BWT∗(s,Σ).

The BWT for the string in Example 1 with the ordering ΣR is therefore
obtained from the last column L of the BWM as gcc$atca. The BWT can be
computed from the suffix array (SA) of s as follows:

L[i] =

{
$, if SA[i]=0
s[SA[i]-1], otherwise.
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The suffix array may be computed in linear time (Kim, Sim, Park, &
Park, 2005; Ko & Aluru, 2005)and enables BWT construction with the same
time complexity. Inversion of the BWT may be achieved through the last-first
mapping (Burrows & Wheeler, 1994). For a string s, the BWT(s, Σ) may
be updated for a modified string s′, BWT(s′, Σ) in sub-linear time (Kempa
& Kociumaka, 2022). Recent developments have led to an efficient algorithm
for directly constructing the RLBWT (Nishimoto, Kanda, & Tabei, 2022) in
O(n + r log r) time but O(n) time for strings where r = O(n/ log n), and
working space O(r log n) of bits.

Definition 3 (Run-Length Encoding / RLE) For a string s, u is a substring of s if
there are possibly empty strings a and b such that s = aub, and u is bounded by
the indexes (i, j) where 0 ≤ i ≤ j ≤ n − 1. Let p0p1p2 . . .pn−1 be a sequence of
substrings of s such that s = p0p1p2 . . .pn−1 and pi[j] = pi[k] ∀j, k < |pi| (i.e.,
each pi is a sequence containing identical characters). RLE(s) is the string where each
run of identical characters pi in s is replaced by a single copy of that character and
a count of the characters in the run. We denote the length of each run of characters
in superscript, for instance: RLE(s) = p0[0]

|p0|p1[0]
|p1| . . .pn−1[0]

|pn−1|.

We illustrate Definition 3 with an example using ΣR.

Example 2 Let a string s = cacatcg using ΣR, The output L column of
BWM(s,ΣR) is gcc$atca. This is encoded as RLE(BWT (s,Σ)) = g1c2$1a1t1c1a1,
|RLE(BWT (s,Σ))| = 14.

We are interested in overall memory usage for the RLE, so each run is
encoded as the byte (character) and then the length of the run up to 255. Any
runs over 255 in length are encoded as additional bytes (Section 2.2). This is
represented as |RLE(s)|.

To demonstrate the influence an alphabet ordering can have on the BWM,
BWT and RLE, we consider the same example string using an alternative
alphabet ordering.

Example 3 Let a string s = cacatcg, Σ = $ < a < g < c < t.

BWM(s,Σ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
$ c a c a t c g
a c a t c g $ c
a t c g $ c a c
g $ c a c a t c
c a c a t c g $
c a t c g $ c a
c g $ c a c a t
t c g $ c a c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
With this new ordering Σ, RLE(BWT (s,Σ)) = g1c3$1a1t1a1,
|RLE(BWT (s,ΣR))| = 12.
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Definition 4 (r) The number of maximal length runs in the BWT. For example,
let s = acacacbbacbac and Σ = a < b < c. BWT∗(s,Σ) = bccbccbcaaaaa. As there
are 7 runs in the BWT output, r = 7.

The r value for any BWT of a string is not necessarily less than the r value
of a string itself. A classic example is the string mississippi$ where the BWT
is ipssm$pissii which also shows that computing the BWT permutation of
the input data does not necessarily make the data more compressible.

2.2 Problem Statement
We wish to investigate the sample space of alphabet orderings. Since reordering
the alphabet to minimize the number of runs has been shown to be APX-hard,
we will use and investigate different heuristics.

We evaluate the fitness of any new alphabet ordering Σ by the total length
of its RLE. As we use the input data bytewise, the ‘characters’ in our alphabet
are these bytes and not another encoding such as UTF. We do not use the total
number of identical character runs in the BWT(r) as the fitness since we are
interested in overall memory consumption of the representation. Each input
file is read bytewise, so multi-byte (non-ASCII) characters are represented as
more than one ‘character’ in the alphabet.

We encode the RLE as a sequence of byte pairs, with the first byte of each
pair representing the run’s character, and the second byte representing the
length of the run. As the maximum value that may be represented in a byte
is 255, any larger runs will be represented with multiple pairs of bytes.

We therefore seek to minimize the size of RLE for our tested texts.
RLBWT Alphabet Ordering Problem
Input: A string s of length n over an alphabet Σ of size σ
Output: A reordering of Σ for RLE(BWT (s,Σ)) that minimizes

|RLE(BWT (s,Σ))|.

3 Methods for Small Alphabets
3.1 Binary Alphabet Orderings
We consider the simplest non-trivial case where there are only 2 characters
and show that when using the reverse of an alphabet ordering that r remains
the same for both orderings for primitive strings.

Lemma 1 Let s be a binary string over Σ = {a, b} of length n. Let Σ1 = a < b,
Σ2 = b < a. Then r(s,Σ1) = r(s,Σ2).

Proof Suppose s is primitive, then all of its conjugates are distinct (Petersen, 1996).
Let p = p0 . . . pn−1 and q = q0 . . . qn−1 be two adjacent rows in BWM∗(s,Σ1) such
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that p is lexicographically less than q. Assume that s contains two distinct charac-
ters (otherwise the claim is trivial), then let t be the minimal index such that pt ̸= qt,
thus pt = a < b = qt. On the other hand in BWM∗(s,Σ2), q is lexicographically
less than p. The argument holds for all pairs of adjacent rows showing that the two
matrices are flipped row-wise, hence have the same r value.

In the case that s is not primitive and has the form uk, k > 1, then all
groups of k identical and adjacent rows in BWM∗(s,Σ1) will likewise be adjacent in
BWM∗(s,Σ2) after the flipping. □

Observe that using transitivity the argument on reversing an alphabet
extends to an arbitrary finite alphabet which motivates our search for effective
orderings. We illustrate concepts with the following ternary example:

Example 4 (Ternary primitive)
Let s = aabbcc, and Σ1 = a < b < c:

BWM∗(s,Σ1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
a a b b c c
a b b c c a
b b c c a a
b c c a a b
c a a b b c
c c a a b b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
BWT∗(s,Σ1) = caabcb, r(s,Σ1) = 5.

In the case with Σ2 = c < b < a:

BWM∗(s,Σ2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
c c a a b b
c a a b b c
b c c a a b
b b c c a a
a b b c c a
a a b b c c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
BWT∗(s,Σ2) = bcbaac, r(s,Σ1) = 5.

Thus both orderings have the same r value.

Example 5 (Ternary non-primitive)
Let s = abcabc, and Σ1 = a < b < c:

BWM∗(s,Σ1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
a b c a b c
a b c a b c
b c a b c a
b c a b c a
c a b c a b
c a b c a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Likewise for Σ2 = c < b < a it is trivial to see that the r value of both orderings

is the same.
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BWM∗(s,Σ2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F L
c a b c a b
c a b c a b
b c a b c a
b c a b c a
a b c a b c
a b c a b c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
3.2 Exhaustive Search on Biological Data
For small alphabets it may be feasible to search through all possible alphabet
orderings to find the one(s) that provide(s) the best RLBWT compression of
the data.

For example, in the case of genomic data, such as a collection of the gen-
ome sequences of many E. coli bacteria, we could expect a limited 4-letter
alphabet {a,c,g,t} representing nucleotides giving 24 possible alphabet order-
ings. For such a collection, the genomes would share much in common, and the
RLBWT of a concatenation of these sequences should capture the commonal-
ities effectively. However, almost all bioinformatics algorithms choose to use
the ASCII ordering a < c < g < t, even though this may not provide the best
results.

We took a collection of 150 diverse E. coli genomes from NCBI and com-
pared the compression obtained using each possible alphabet ordering. The
ordering t < c < a < g provided the best compression (-91.627% change), and
the worst ordering was c < g < t < a (-91.576% change) – for further details
see Table 1. Although an exhaustive search through all possible alphabet or-
derings is often prohibitively expensive, this example demonstrated that better
choices can make improvements, and motivated our investigation to find such
orderings and examine the search space of orderings for its properties.

Table 1 Percentage difference in file size using each of the 24 alphabet orderings for the
alphabet {a,c,g,t} for the 150 concatenated E.coli data files when using the RLBWT.

Min % Change Max % Change Mean Std
−91.576 −91.627 −91.597 0.02

4 Methods for Larger Alphabets
Since the permutation space of the alphabet ordering for an alphabet of size σ
is σ!, in most practical cases, exhaustive enumeration of all alphabet orderings
is not a feasible approach. We therefore consider different variants of a First-
Improvement local search for larger alphabets. We use different types of texts,
considering a variety of different text lengths and alphabet sizes. The main goal
of our experimental analysis is to provide insights into the working principles
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of the considered methods for the given problem and to provide guidelines for
their use. The considered algorithms are introduced in Sections 4.1 and 4.2.

4.1 Baseline: Random Sampling
We use uniform random sampling as a baseline approach to inspect the
statistical distribution of potential compression gains that could be made
by reordering the alphabet. The results are compared with the results of
First-Improvement local search as described in the next section.

An interesting property of random sampling is that the mean number of
improvements to be expected is actually bounded by the logarithm of number
of trials. Indeed, as every new sample (i.e., alphabet order) is independent of
the previous samples, the chance of obtaining a better compression after T
sampling steps with a new sample would be Pimproving(T ) =

1
T+1 , should the

compression value obtained be unique for every sampling event. Therefore, the
expected number of successive improvements in compression using T random
samples would be simply given by

∑T
i=0

1
i+1 = O(log T ). In practice, the

compression value will belong to a limited set of integer values, and each
new sample result may just be equal to the best compression value obtained
so far. As such, the actual chance Pimproving(T ) after T samples to improve
compression is less than 1

T+1 , and O(log T ) becomes an upper bound for the
total number of improvements expected from T random samples.

4.2 First-Improvement Local Search
We consider a variant of First-Improvement Local Search as our main optim-
isation approach. Pseudocode for this approach is given in Algorithm 1. The
algorithm takes as input a text and its alphabet. It starts from some initial
alphabet ordering π (line 3) and tries to improve the ordering until a provable
local optimum is reached (line 15). In each loop it considers all neighbors of
the current ordering π in a given order (line 7). If an improvement is found
(line 8), the algorithm moves to the better ordering (line 10) and repeats the
process (updating the neighborhood as needed, line 11). The fittest ordering
is returned.

In our experiments, we consider 9 different initialization methods in line
3 of Algorithm 1 as discussed in Section 4.2.1. We also consider 12 different
neighborhoods as discussed in Section 4.2.2, leading to a total number of 108
algorithm configurations.

4.2.1 Initialization
We consider the following 9 initialization methods in line 3 of Algorithm 1.
With the exception of random initialization, all methods are deterministic and
based on some heuristic or standard ordering from the literature.
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Algorithm 1 First-Improvement Local Search
1: Input: A string w over an alphabet Σ of size σ
2: Output: An ordering π of Σ
3: π ← initialiseOrder(Σ) ▷ Initialisation (Section 4.2.1)
4: N ← initialiseNeighborhood(π) ▷ Neighbors of π (Section 4.2.2)
5: do
6: improvementFound = false
7: for all π′ ∈ N do
8: if f(π′) < f(π) then ▷ Neighbor is improvement
9: improvementFound = true

10: π ← π′

11: N ← updateNeighborhood(π)
12: break
13: end if
14: end for
15: while (improvementFound)
16: return π

• Random: We determine 20 random orderings using Fisher-Yates
shuffle (Knuth, 1998a). The same 20 orderings are used for all experiments
using random initialization.

• ASCII: The (extended) ASCII ordering of the alphabet.
• First Appearance: Characters are ordered by their order of appearance

in the text.
• Least Frequent: Characters are ordered by the number of occurrences in

the text, least frequent first.
• Most Frequent: Characters are ordered by the number of occurrences in

the text, most frequent first.
• Chapin Tate: A hand-tuned ordering used by Chapin and Tate (Chapin

& Tate, 1998)1 for a similar compression problem based around the BWT.
The ASCII alphabet ordering, however ‘@’ replaces ‘!’, ‘+,-.’ is rearranged
to ‘+-,.’, AEIOU and aeiou are both brought to the front of each block of
both upper and lower case. The consonants are reorganised as B < C <
D < G < F < H < R < L < S < M < N < P < Q < J < K < T < W <
V < X < Y < Z.

• Inverse Permutation Chapin Tate: The inverse permutation (Knuth,
1998b) of the Chapin Tate ordering, spacing out the vowels and reordering
the consonants. Since grouping vowels is important for the Chapin Tate
ordering we investigate the effects of not doing this.
The vowels are ordered as A < I < O < U < E, however they are inter-
spersed through the ordering instead of being together at the start of the
ordering. This results in an ordering of A < F < G < H < B < J < I <
K < C < S < T < M < O < P < D < Q < R < L < N < U < E < W <

1And personal communications with B. Chapin
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V < X < Y < Z. Other changes to the ordering such as ‘!’ and ‘@’ being
swapped, and the ‘+-,.’ rearrangement are also present in this ordering.

• Vowels: Vowels (aeiouAEIOU) are placed at the beginning of the ordering.
Similar to the Chapin Tate ordering, the main aim is to explore if grouped
punctuation and the consonant reordering really helps the problem, or if
moving the vowels alone will yield a better initial ordering.

• FDA: The FDA algorithm was introduced to determine an alphabet order-
ing for a variant of the Lyndon factorization problem (Major et al., 2020).
The main motivation to include this method is to explore if these orderings
might be more generally useful for alphabet ordering problems on strings.
It should be noted that FDA determines a partial alphabet ordering. A total
ordering is produced from the partial ordering by topological sort.

For each of these orderings, we place the selected end marker character
(usually $) as least in the ordering when performing the BWT.

4.2.2 Local Search Neighborhoods
For the neighborhoods in lines 4 and 11 of Algorithm 1 we consider combina-
tions of two standard operators for permutation sample spaces, namely Swap
(aka Exchange) and Insert (aka Jump) (Eiben & Smith, 2015). Swap picks
two integers 0 ≤ i < j ≤ σ − 1 and swaps the characters at positions i and j.
Insert picks two integers 0 ≤ i, j ≤ σ − 1 with i ̸= j. It moves the character
at position i to position j, shifting all subsequent characters to the right.

Looking at the two operators in isolation we observe that Swap yields a
neighborhood of size σ(σ − 1)/2 while Insert yields a neighborhood of size
σ(σ−1). Both neighborhood sizes are quadratic in σ, the size of the alphabet.

We first consider both operators in isolation and investigate three different
orderings of the neighbors in the neighborhoods:
• Random Order: Using a random order of the neighbors is the most

common approach.
• Lexicographic Order (Lex): We hypothesize that it maybe be beneficial

to first fix characters at the start of the ordering. We therefore consider the
fixed lexicographic order of neighbors. For example, for Swap we consider i-
j-pairs in the following order: (0, 1), (0, 2), ..., (0, σ−1), (1, 2), ..., (σ−2, σ−1).
Any unspecified neighborhood ordering should be assumed to be Lex.

• Reverse Lexicographic Order (RevLex): We consider the opposite case
by reversing the lexicographic order given above.

Finally, we consider a combination of Swap and Insert. More precisely,
we first try all possible Swaps followed by all possible Inserts and vice versa.
For each of the two lists of neighbors we consider all three orders defined
above, ensuring that all Swaps are sorted before all Inserts (and vice versa)
as appropriate. If a combination of operators is used, the second operator will
only be used until an improvement is found. The algorithm then returns to
using the first operator.
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5 Results and Discussion
5.1 Experimental Setup
All our experiments are run on Super Computing Wales2 on a single node
(2x Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with 20 cores each) and
Aberystwyth DCS cluster on a single node (2x Intel(R) Xeon(R) Gold 6248R
CPU @ 3.00GHz with 48 cores each). As usual, we report the number of
objective function evaluations rather than wall-clock time.

For each stochastic variant of First-Improvement local search, we report
statistics on the results of 20 independent runs. However, to avoid the distor-
tion of our results due to different random starting points, all variants with
random initialization use the same 20 starting points which were randomly
determined prior to running our experiments. This way we can analyze the
effect of different neighborhoods on the same starting points without intro-
ducing additional variables. For each run we report the number of function
evaluations as ‘steps’.

We define C as the percentage change in file size relative to the uncom-
pressed size (measured as a percentage in bytes):

C =

(
Compressed Size−Uncompressed Size

Uncompressed Size

)
· 100 (1)

We present C as raincloud plots (Allen et al., 2021) (a combination of a distri-
bution, boxplot, and jittered point cloud) to give an indication of the density
and shape of the sample space. A negative value for C demonstrates a reduc-
tion in size while a positive value demonstrates an increase in size. The smaller
the value for C the better the compression. The number of steps presented is
hitting time and not exhaustive checking of the neighbors.

5.2 Benchmarking
We use a standard benchmark for data compression for our analysis, namely
the Canterbury corpus (Arnold & Bell, 1997). Table 2 lists the different files
contained in the corpus, including the size of each file and the corresponding
alphabet size. The file kennedy.xls is excluded from our experiments for
technical reasons: our BWT implementation relies on a unique end marker
character and the alphabet size of 256 leaves no available character if the file is
used bytewise. We reorder the alphabet by mapping the input text characters
to new ones based on the order of characters in the alphabet. We then use the
SAIS suffix array implementation by Yuta Mori3 to compute the suffix array
(Ko & Aluru, 2005; Nong, Zhang, & Chan, 2011). Another implementation is
also provided in our repository but was not used due to speed.

We do not run to completion for some files in the corpus (for example: ptt5,
sum, xargs.1) for some of the Swap then Insert and Insert then Swap

2https://portal.supercomputing.wales/index.php/about-sunbird/
3https://sites.google.com/site/yuta256/sais
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File Description Bytes Alphabet
alice29.txt The text of Alice’s Adventures in Wonderland 152 089 74
asyoulik.txt Text from Shakespeare’s play As You Like It 125 179 68
cp.html HTML with a large number of links 24 603 86
fields.c C source code 11 150 90
grammar.lsp LISP source code 3721 76
kennedy.xls Microsoft Excel document 1 029 744 256
lcet10.txt Conference Proceedings 426 754 84
plrabn12.txt Text from John Milton’s Paradise Lost 481 861 81
ptt5 Fax data 513 216 159
sum Sun SPARC executable 38 240 255
xargs.1 GNU Man page for xargs 4227 74

Table 2 Files in the Canterbury corpus with their size in bytes and the number of unique
bytes in their alphabet

methods due to prohibitive runtimes. Instead we run to a limit of 10,000 steps
as this is more than the maximum number of steps to outperform a random
sample (Table. 5). A full list of the files and methods run until 10,000 steps
only is available in our repository4.

5.3 Randomly Sampled Alphabet Orderings
We inspected the landscape of percentage change in compression that can
be achieved using the RLBWT by changing the alphabet order, and sampled
240,000 alphabet orders uniformly at random (by Fisher-Yates shuffle) for each
of the texts. We do this to learn more about the shape of the sample space
and to understand whether there are many best orderings to be found or few.

The number of samples was chosen since it was large but remained tract-
able to compute on a local machine (Intel(R) i7-8700K CPU @ 3.70GHz with
12 cores). To exemplify our findings, the results for files alice29.txt, sum
and fields.c are shown in Fig. 1. The number of samples may be few in
comparison with the very large σ! space, however due to the smooth overall
distributions without outliers we can see that the sampling already gives a
clear picture of the shape of the space from which further random samples
would be obtained. The distributions are bell-shaped but not normally dis-
tributed (scistats.normaltest Virtanen et al. (2020)), having a long thin tail
downwards where better solutions can be found.

These distributions demonstrate a spread of percentage compression for
different alphabet orders, with the majority being sub-optimal choices and
the sample space having only a thin tail of better choices. These figures also
highlight the surprisingly good compression achieved by the ASCII ordering,
lying far below most random choices of alphabet order, even for executable
files such as sum. The full set of figures for all corpus files can be seen in our
repository.

However, most texts in the corpus can be compressed to be smaller than
the original by using the RLBWT, despite the fact that most randomly chosen

4https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows-Wheeler
-Transform-Alphabet-Ordering-Problem
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Figure 1 A raincloud plot of the percentage change in compression for 240,000 random
samples of alphabet orderings used with the RLBWT for three of the corpus texts. Similar
shaped distributions can be seen for the novel alice29.txt, SPARC executable file sum and C
source file fields.c. Horizontal blue line represents the ASCII ordering, which outperforms
most of the randomly sampled orderings.
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Figure 2 Ranking of each initialization method and the best randomly sampled ordering
for each file before local search is applied.

alphabets are poor choices (See Tab. 3). This is true even with the worst choice
of alphabet order. The best alphabet order found when randomly sampling
for ptt5 reduced the file size by 74.207%. The file plrabn12.txt does not
compress well and the best alphabet order sampled for this file increased the
size by 1.019%, and ASCII performs worse than the best randomly sampled
alphabet order.

While for most files, randomly sampled alphabet orderings may compress
the size of the file somewhat, few sampled orderings improve on the ASCII
alphabet ordering. In fact, several of the initialization ordering methods (Sec
4.2.1) also already outperform even the best of the randomly sampled orderings
for many of the files. The heatmap in Figure 5.3 shows the rankings of the
initialization orderings for the different files. The benefits of ASCII and Chapin
Tate orderings can be seen clearly in this figure. It can also be seen from this
figure that even after randomly sampling 240,000 orderings, the best of these
is not good enough. Random sampling is therefore a too costly search strategy
and necessitates another solution.

5.4 Improved Fitness with Local Search
In contrast to the compression obtained via random sampling of alphabet or-
ders (Sec. 5.3), even the most simple of our local search methods – Swap,
Lex – can achieve a better fitness value for our tested data. Fig. 3 shows the
contrast between the best solutions found during a local search (using the
Swap operator) and the results of the random sampling. This figure shows
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Table 3 Percentage difference compared to the original file size for each file when using
the 240,000 orderings found using random sampling. The minimum, maximum, and mean
percentage changes are shown for each text.

File Min % Change Max % Change Mean Std
alice29.txt −12.171 −10.694 −11.385 0.172
asyoulik.txt −0.533 1.028 0.324 0.177
cp.html −25.375 −23.156 −24.163 0.255
fields.c −38.565 −34.942 −36.725 0.407
grammar.lsp −28.353 −21.903 −24.955 0.711
lcet10.txt −22.116 −21.14 −21.554 0.113
plrabn12.txt 1.019 2.073 1.633 0.109
ptt5 −74.207 −73.664 −73.914 0.080
sum −29.111 −26.935 −27.967 0.251
xargs.1 −6.269 0.781 −2.484 0.735

Table 4 Determining the best initialization orderings for an early-terminated search.
Local search was performed with the Swap, Lex neighborhood for each corpus file,
terminating after 1000 steps. IPCT=Inverse Permutation Chapin Tate, CT=Chapin Tate,
Random=Random Initialization.

After 1000 steps At local minimum
File Best initialization (1000) C (1000) Best initialization (all) C (all)
alice29.txt IPCT −12.368 Random −13.601
asyoulik.txt CT −1.108 CT −2.07
cp.html IPCT −25.92 Random −27.993
fields.c CT −40.359 ASCII −43.982
grammar.lsp Random −29.589 Random −33.996
lcet10.txt IPCT −22.503 Random −23.04
plrabn12.txt ASCII 0.948 Random 0.228
ptt5 IPCT −74.472 IPCT −74.748
sum ASCII −30.737 FDA −33.917
xargs.1 CT −7.783 CT −12.042

alice29.txt, sum and fields.c. Other corpus files have similar plots, which
can be seen in our repository. The large gap between their distributions indic-
ates that there are excellent alphabet orderings that have not previously been
sampled, even when sampling 240,000 orderings.

5.5 The Impact of Initialization on Local Search
When performing a local search, the initial alphabet order makes a difference
to the best solution that can be found by the local search using the Swap
operator.

Tab. 4 shows which initialization ordering achieves the best compression
when the search terminates at the local minimum or after 1000 steps. While
randomly chosen orders are competitive if the search is terminated early
after 1000 steps, ASCII, Chapin Tate, and Inverse Permutation Chapin Tate
perform best if the search is allowed to complete.

The plots in Fig. 4 exemplify how the results improve over the time taken
by the search. A steep drop in the size of the file is observed followed by a large
number of steps until the local optima is reached. The initialization order that
leads to the best local minimum at the end of the search is not obvious at the
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Figure 3 Raincloud plot showing that the best alphabet orders found at the conclusion
of local search (orange) give noticeably better compression than that achieved using either
randomly sampled alphabet orders (green) or the ASCII alphabet order (horizontal line).
The compression achieved by random samples of alphabet orderings are displayed in green.
The best achieved via local search with Swap only is shown in orange, (also see Section. 5.4).
The change in compression for the different local search initialization orderings at the start of
the search are shown in blue, and these overlap with the random samples. The compression
when using the ASCII alphabet is plotted as a horizontal blue line and can be seen at the
lower end of the random samples.
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start of the search, nor is there consistently an initialization order that would
produce a good local minimum across all files. The range of random sample
fitness may completely cover the fixed start positions as in alice29.txt or
lay above many of the best fitness starts as in fields.c. Overall the range of
random sample starts covers a large amount of solutions that are found using
the fixed start positions in our tested files.

The steep improvement early in the search suggests that a limited search
may still be beneficial. If the search is terminated early, ASCII and Chapin
Tate are the best orderings from which to start the search (Fig. 5).

While using a random initialization still yields an improvement in fitness
over time, the overall change in fitness is not as good as choosing a fixed
initialization for the explored texts. It may be possible for multiple orderings
to achieve around the same fitness for 1000 neighbor evaluations.

From this we conclude that the landscape has lots of local optima and
that the path through the landscape is therefore important. We examine other
methods such as reverse and random neighbor orderings, and using Insert to
make further jumps in the landscape.

5.6 Local Search Operators: Swap and Insert
The path that the local search explores through the search space is important
in determining where in the space the local optima is found. Evaluating more
local search neighbors may therefore lead to finding better neighbors and a
better overall optima. Since Swap moves two elements into new locations at
once. We therefore consider the Insert operator, either in combination with
Swap (as first or second operator) or alone.

Tab. 5 shows the number of steps taken using each of the different search
operators to find an ordering that performs better than the best of the 240,000
randomly sampled orderings. We note that local search only requires a few
steps before outperforming random sampling, independently of any search
operators, and typically takes only a few seconds to compute. Indeed, table 6
shows that methods based on local search create a large number of updates
when compared to a naive random sampling of the search space. While the
average number of updates obtained with the latter is close to the theoretical
one (12.4 vs. 12.38), we see that local search algorithms provide substantially
more updates. For instance, the Swap method using the lexicographic order
generates on average 236 updates across 10 files. Such a number of updates
with random sampling would on expectation require more than 10100 samples
(≈ e236.5), which is today not computable.

Methods involving randomized neighbor orderings perform well in the time
taken to beat the best of the 240,000 random samples compared to all other
methods. Of these, the Swap then Insert operator performs best.

However, to fully locate any local minimum may in some cases take a
very long time (Fig. 6). Our experiments are limited to 10 million steps for
any single run, which is reached for some configurations. When considering
the initialization that locates the best fitness for any method, we find an
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Figure 4 Local search using Swap, Lex from different alphabet order initialization methods
over time until a local minimum is reached. It can be observed that there is no best initial
order that consistently results in the best local minima for all texts.
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Figure 5 Local search for different alphabet order initialization methods over time with
Swap, Lex, limited to 1000 neighbor evaluations. It can be observed that there is no best
initial order that consistently results in the best local minima for all texts, and that the best
initialization order is dependent on the number of steps performed.
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Table 5 The minimum number of local search steps for the best initialization to find an
ordering performing better than the best ordering out of the 240,000 randomly sampled
orderings. Files asyoulik.txt, cp.html, fields.c, ptt5, lcet10.txt, and sum are not
shown because no local search steps were needed, as one of the initial orderings was
already better than the randomly sampled orderings without the need for search.
I=Insert, S=Swap, ItS=Insert then Swap, StI=Swap then Insert.

Method alice29.txt grammar.lsp plrabn12.txt xargs.1 All Others
I, Lex 1437 107 9254 553 0
I, Random 10 17 40 22 0
I, RevLex 57 1475 1009 1249 0
ItS, Lex 1437 107 9254 553 0
ItS, Random 16 15 33 54 0
ItS, RevLex 57 1475 1009 1249 0
S, Lex 96 87 302 178 0
S, Random 4 34 16 41 0
S, RevLex 105 421 235 428 0
StI, Lex 96 87 302 178 0
StI, Random 16 20 37 41 0
StI, RevLex 105 421 235 428 0

Table 6 Number of successive improvements obtained with two local search algorithms
compared to random sampling for ASCII ordering. Total number of steps are within
brackets. Random sampling has created on average 12.4 updates across the 10 files while
the theoretical mean number of updates for random sampling is approximately 12.38 for
240K samples (See section 4.1). In contrast, local search algorithms deliver significantly
more updates to the compression when compared to random sampling.

File Random Sampling Swap, Lex Insert, Lex
alice29.txt 14 (240K) 231 (205.84K) 319 (519.2K)
asyoulik.txt 11 (240K) 218 (125.32K) 310 (399.06K)
cp.html 17 (240K) 176 (242.68K) 241 (491.92K)
fields.c 10 (240K) 157 (249.31K) 169 (496.97K)
grammar.lsp 11 (240K) 67 (65.54K) 86 (161.88K)
lcet10.txt 11 (240K) 259 (340.97K) 380 (934.5K)
plrabn12.txt 15 (240K) 383 (435.92K) 457 (929.79K)
ptt5 12 (240K) 352 (1.25M) 549 (3.59M)
sum 10 (240K) 452 (4.03M) 561 (10M)
xargs.1 13 (240K) 70 (63.98K) 102 (192.87K)
average number of updates 12.4 236.5 317.4

initial steep drop in fitness for all methods, and that there are groupings of
methods that perform similarly. Generally the methods involving randomized
neighbor orderings perform well in few steps and have a fitness which remains
competitive with the Lex and RevLex methods. We observe that even when
the number of steps is limited to relatively few in comparison to the number
needed to reach a local minimum, the percentage change in file size reached
may still be good.

This is further demonstrated when considering the final fitness achieved in
all runs across all methods. Across our tested files, the number of required steps
to locate a minimum splits the methods into three groups (in increasing order
of steps): random neighbor ordering methods, Swap and Swap-first methods,
and Insert and Insert-first methods (Fig. 7). Even when considering the final
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fitness achieved, a randomized neighbor ordering remains competitive (Fig. 8).
The file sum is not shown as it has data which was not run to completion due
to prohibitive runtimes (Section. 5.1). However, the trend described also holds
with the completed data for sum.

When completing the search to a local minimum, Insert and Insert-first
methods perform slightly better than methods involving Swap, however the
Insert and Insert-first methods may take prohibitively long compared to
Swap, as they search a wider neighborhood, for very little gain.

6 Conclusion and Future Work
The BWT is an important string transformation, enabling a concise, search-
able representation of a string. It relies on ordering the characters in the string
and this is usually assumed to be ASCII ordering, without exploring whether
alternatives might be more effective.

We studied heuristics for the computationally hard RLBWT Alphabet
Ordering Problem which takes a string s of length n over an alphabet Σ
of size σ and seeks an ordering of Σ for RLE(BWT (s,Σ)) that minimizes
|RLE(BWT (s,Σ))|. We have performed extensive benchmarking using files
from the Canterbury corpus and implemented the experimentation on Super
Computing Wales HPC. We started by inspecting a large sample space of
240,000 randomly sampled alphabet orderings and found only limited improve-
ment over the ASCII ordering. This motivated searching local neighborhoods
to improve fitness - this was achieved using a First-Improvement algorithm.

Various initializations have been applied to the test files to attempt to
speed up the search which include: ASCII order, letter frequency and order
of appearance, and a hand-tuned ordering given by Chapin and Tate (1998).
Jumping around the complex landscape was implemented with neighborhood
search using Swap and Insert operators as well as combinations of these
operators. Additionally varying the neighbors of an alphabet ordering has
been explored, searching them lexicographically, reverse-lexicographically, and
randomly. Overall, we inspected a combination of 9 initializations, 4 oper-
ators, and 3 neighborhood search methods, giving a total of 108 algorithm
configurations.

The number of search steps needed to outperform the best result of random
sampling was found to be relatively few and could be computed in seconds,
but quickly increased for achieving a local minimum. Indeed, we demonstrated
that reaching a similar number of improvements with random sampling would
require investigating a much larger number of random samples (e.g., > 10100),
which is not feasible to compute.

The chosen initial alphabet order was found to influence the best solution
that can be found, and we demonstrated this using the Swap operator. While
we observed variation in the initial ordering which achieved the best fitness
within a time limit, there is not necessarily one best initial ordering. However,
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all initializations exhibit a clear decrease in file size followed by a large number
of steps until the local minimum is reached.

We observed that the random neighbor ordering methods perform well
in the early stages of the search, and while not the best they remain com-
petitive overall. Insert and Insert-first methods are slower than Swap and
Swap-first methods to reach a local minimum but will usually achieve a bet-
ter compression. Although our empirical evidence shows that local search is
indeed effective for improving the RLBWT, and trade-offs occur, nonetheless
we are still able to recommend a time-limited local search using Swap with
Random neighborhood exploration to improve rapidly upon the ASCII order-
ing. If more computational time is available to explore a better ordering then
we recommend a local search using Insert then Swap with Lexicographic
neighborhood exploration.

We found it surprising that the ASCII ordering performs very well when
compared to a random order. Also, it works relatively well as an initialization
for the local search. If limited time is available we recommend the Chapin Tate
ordering to start the search, or a random order to initialize a longer search.
However, there is no clear best initialization suiting different files considered
in the corpus.

This is a difficult problem in theory and we have now demonstrated that
this is a challenging problem in practice for the range of files in the Canterbury
Corpus, with no clear winning strategy. We have demonstrated that navig-
ating trade-offs can be worthwhile for enhancing compressibility. Our local
search performs much better (faster convergence, better fitness) than random
sampling and is useful even when computational time is limited.

In future work we intend to investigate further what constitutes a good
alphabet ordering, the effect that different changes to an ordering can have on
the transformed string, what factors contribute to the quality of an ordering for
a given string and why some orderings perform better than others, in relation
to the type of data (for instance natural language versus other structured
data).

We want to determine which characters can be moved to benefit the search
and to use this knowledge to inspire new and more specific local search op-
erators. This may include using operators which re-order multiple characters
at a time or incorporation of various crossover operators. In addition different
encoding methods for RLE may give better results and should be investigated.
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Figure 6 The best initialization at the minimum for corpus texts alice29.txt, sum, and
fields.c over time for different neighborhood search methods.
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Figure 7 Number of steps taken to find a local minimum for alice29.txt, fields.c, and
asyoulik.txt for each neighborhood method in local search. The variation in each box plot
shows the difference made by distinct initializations.
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Figure 8 Percentage change in compression for alice29.txt, fields.c, and asyoulik.txt
for each neighborhood method in local search. The variation in each box plot shows the
difference made by distinct initializations.
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