
Journal of Heuristics (2025) 31:11
https://doi.org/10.1007/s10732-025-09548-3

Heuristics for the run-length encoded Burrows–Wheeler
transform alphabet ordering problem

Lily Major1 · Amanda Clare1 · Jacqueline W. Daykin1,2,3 ·
Benjamin Mora4 · Christine Zarges1

Received: 18 July 2023 / Revised: 16 September 2024 / Accepted: 8 January 2025
© The Author(s) 2025

Abstract
The Burrows–Wheeler Transform (BWT) is a string transformation technique widely
used in areas such as bioinformatics and file compression. Many applications com-
bine a run-length encoding (RLE) with the BWT in a way which preserves the ability
to query the compressed data efficiently. However, these methods may not take full
advantage of the compressibility of the BWT as they do not modify the alphabet order-
ing for the sorting step embedded in computing the BWT. Indeed, any such alteration
of the alphabet ordering can have a considerable impact on the output of the BWT,
in particular on the number of runs. For an alphabet � containing σ characters, the
space of all alphabet orderings is of size σ !. While for small alphabets an exhaustive
investigation is possible, finding the optimal ordering for larger alphabets is not fea-

Amanda Clare, Jacqueline W. Daykin, Benjamin Mora and Christine Zarges contributed equally to this
work.

B Lily Major
jam86@aber.ac.uk

Amanda Clare
afc@aber.ac.uk

Jacqueline W. Daykin
jwd6@aber.ac.uk

Benjamin Mora
b.mora@swansea.ac.uk

Christine Zarges
chz8@aber.ac.uk

1 Department of Computer Science, Aberystwyth University, Penglais, Aberystwyth SY23 3DB,
UK

2 Department of Information Science, Stellenbosch University, Merriman Avenue, Stellenbosch
7602, South Africa

3 Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie
Univ, LITIS UR 4108, F-76000 Rouen, France

4 Computer Science Department, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN,
UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-025-09548-3&domain=pdf
http://orcid.org/0000-0002-5783-8432
http://orcid.org/0000-0001-8315-3659
http://orcid.org/0000-0003-1123-8703
http://orcid.org/0000-0002-2945-3519
http://orcid.org/0000-0002-2829-4296

 11 Page 2 of 29 L. Major et al.

sible. Therefore, there is a need for a more informed search strategy than brute-force
sampling the entire space, which motivates a new heuristic approach. In this paper, we
explore the non-trivial cases for the problem of minimizing the size of a run-length
encoded BWT (RLBWT) via selecting a new ordering for the alphabet. We show
that random sampling of the space of alphabet orderings usually gives sub-optimal
orderings for compression and that a local search strategy can provide a large improve-
ment in relatively few steps. We also inspect a selection of initial alphabet orderings,
including ASCII, letter appearance, and letter frequency. While this alphabet ordering
problem is computationally hard we demonstrate gain in compressibility.

Keywords Alphabet ordering · Burrows–Wheeler transform · Compression · Local
search · Random sampling · Run-length encoding

1 Introduction

The Burrows–Wheeler Transform (BWT), originally known as block-sorting com-
pression, is a text transformation scheme which computes a permutation of an input
string of data (Burrows andWheeler 1994). The transformation is achieved by sorting
the matrix of all circular shifts (rotations) of a string into lexicographic order and
extracting the last column from the matrix. The algorithm can be implemented using a
suffix array data structure with overall linear time complexity. Furthermore, using the
index of the original string in the sorted matrix, the transform can be inverted in linear
time, enabling efficient recovery of the input data. Hence the BWT is applicable to
lossless compression activities, notably as a pre-processor preparing the data for com-
pression. An important property of the transform is that it groups together characters
with similar context, which are often identical characters, that is, it has a tendency to
rearrange a string of characters into runs of the same character.

The computational efficiency of this remarkably simple innovation has enabled
wide-ranging applications related to the indexing, searching, and compression of text
(Adjeroh et al. 2008). The BWT is implemented in the popular open-source file com-
pressor Bzip2 (Seward 1996), as well as in bioinformatic sequence alignment utilities
including Bowtie2 (Langmead and Salzberg 2012), BWA (Li and Durbin 2009), and
SOAP2 (Li et al. 2009), and additionally in image compression (Syahrul et al. 2008).

A large amount of research has been conducted to improve the space complexity of
the BWT and common data structures used to query the BWT such as the FM-index.
Such improvements include applying run-length encoding (RLE) to the transformed
text or other structures.

This was first investigated by Mäkinen and Navarro as the run-length encoded FM-
index (RLFM-index) (Mäkinen andNavarro 2005) and improved on (Sirén et al. 2008),
includingmuchmore recently byGagie, Navarro, and Prezza (Gagie et al. 2020), using
a run-length encoded BWT (RLBWT) and suffix array samples (r -index). The r -index
provides a full-text searchable index in O(r) space, where r is the number of runs
in the BWT, and has been of interest for the finding maximal exact matches step in
bioinformatics read alignment (Rossi et al. 2022).

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 3 of 29 11

The order of the characters in the compressed BWT text heavily relies on the
alphabet ordering used to sort the suffixes. By varying the alphabet ordering used for
the BWT, the output can be influenced to further group characters, improving over
the extended ASCII alphabet ordering which is typically implemented in software
utilities.

Alphabet orderings for the BWT have been considered by Chapin and Tate (Chapin
and Tate 1998), where both a hand-picked ordering and orderings created from a
heuristic algorithm were used and tested on both text and imaging data. It is sug-
gested that placing similar characters together in the alphabet (vowels, consonants,
and punctuation) yield greater compression over ASCII in their pipeline involving the
BWT.

Related BWT research has been conducted which, for a given ordered alphabet �,
investigate a variety of non-lexicographic orderings of�∗, providing tailored methods
to order the set of strings rather than reordering the alphabet. The ABWT is based on
alternating lexicographical order (Giancarlo et al. 2018, 2020), which flips the order
relation between < and > at each subsequent position during the scan of two strings
being compared. The context adaptive BWT specifies an ordering for each longest
common prefix in the Burrows–Wheeler Matrix (Giancarlo et al. 2023). The V -BWT
is based on V -order which repeatedly deletes a V -type letter and at the penultimate
stage of equality applies co-lexorder (Daykin and Smyth 2014). The D-BWT, which is
applied to degenerate (also known as indeterminate) strings where each string position
consists of a nonempty subset of letters over �, determines a lex-extension to sort the
conjugates (Daykin andWatson 2017). The binary B-BWT applies binary block order
and yields not one but twin transforms (Daykin et al. 2016).

Ordering texts within a collection has also been examined (Cox et al. 2012; Cazaux
and Rivals 2019; Bentley et al. 2020), which involves adding a unique separator to
each text in the collection. A notable result is that finding a minimal number of runs r
by ordering of the texts can be done in linear time (Cazaux and Rivals 2019; Bentley
et al. 2020), though this approach does not perform reordering of the alphabet within
each text. Pibiri (2023) has implemented a graph-based algorithm for ordering the
biological sequences within a collection such that the k-mers can be efficiently stored
in a hash table. The ordering is chosen to ensure that the corresponding k-mer counts
can be compressed using RLE while still enabling queries of the k-mer counts.

Reordering the alphabet to minimize r has been shown to be APX-hard (Gibney
2021; Bentley et al. 2020). In addition, Bentley, Gibney, and Thankachan showed that
finding an alphabet ordering to ensure r < t for a given threshold t is NP-complete
(Bentley et al. 2020). We also know that r is limited to no more than twice the number
of runs in the original text (Mantaci et al. 2017), providing a bound to the quality of
any worst case alphabet ordering.

While the theoretical hardness of choosing the best alphabet ordering is clear, we
still know little about the potential to efficiently and substantially improve on ASCII
orderings. In this paper, we first randomly sample widely from the space and then
use heuristic search to understand more about potential improvements to the alphabet
ordering which could be made cheaply and quickly, reducing the size of RLBWT
compressed texts.

123

 11 Page 4 of 29 L. Major et al.

We show that most randomly sampled alphabet orders achieved little improvement
in size reduction. However, we show that a First-Improvement local search can quickly
improve on randomly sampled alphabet orderings, even when using a limited number
of steps. Additionally we consider initializing the search with promising initial order-
ings to seed the search, taking into account character frequency and appearance, and
showing how they affect the speed of improvement of the search over time. We also
evaluate a variety of operators for directing the search and find that a combined search
strategy of two standard operators Swap and Insert (Eiben and Smith 2015) may
improve the local minima depending on the order of their use. We further consider
varied orderings of the neighbors of an alphabet ordering, searching them lexicograph-
ically, reverse-lexicographically, and randomly (Sect. 4.2).

Section 2 introduces and formalizes the problem and terminology. We discuss the
special cases for small alphabets in Sect. 3, and First-Improvement local search meth-
ods for larger alphabets in Sect. 4. Our experimental setup is discussed in Sect. 5.1. A
detailed discussion of our results can be found in Sect. 5. We summarize our contri-
bution in Sect. 6 and provide an overview of future research directions.

2 Notation, problem definition, andmodeling

In this section, we provide formal definitions for BWT and RLE with examples given
for the key definitions. We also formally state the considered optimization problem.
For each of the following definitions it is assumed that we have the following:

Analphabet�, is anorderednon-empty set of unique characters {x0, x1, . . . , xσ−1},
where x0 < x1 < · · · < xσ−1 and xi < x j implies xi precedes x j . The standard
‘Roman’ alphabet ordering as implemented in the ASCII table is denoted as �R .

A string s = c0c1 . . . cn−1 = s[0..n − 1] over an alphabet �, is a finite sequence
of characters of length n = |s|, such that ci ∈ �, ci = s[i]. The individual characters
ci will be denoted as s[i] subsequently.

2.1 Key definitions

ABWT(Definition 2) is computed byfirst forming aBurrows–WheelerMatrix (BWM,
Definition 1) – the sorted list of strings formed by all cyclic rotations of a string – and
taking the last column of the matrix. This has a tendency to group identical characters
together and is useful for compressing with an RLE.

Alphabet reordering allows us to impact the ordering of the rows within a BWM.
For any string s of length n with an alphabet � of size σ , there is a total of σ ! possible
alphabet orderings.

Definition 1 (Burrows–Wheeler Matrix / BWM) Let s and s′ be two strings over the
same alphabet �. The string s′ is said to be a cyclic rotation of s if and only if there
exists two strings u and v with |v| = 1 such that s = uv and s′ = vu.

The lexicographically ordered, row-arranged set of all cyclic rotations of s$ sorted
according to the order of �, with $ least in �, and denoted as BWM(s, �) is the
BWM of s. The BWM of s without adding an implicit $ is denoted as BWM∗(s, �).

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 5 of 29 11

It should be noted that we do not consider the end marker (normally $) to be
movable within the alphabet ordering, instead always appearing first as an implicit
least character. We illustrate Definition 1 in the following example. For the sake of
simplicity we use the standard ‘Roman’ alphabet ordering �R .

Example 1 Let a string s = cacatcg and using �R , the BWM is as follows, where F
and L denote the first and last columns of the matrix respectively:

BWM(s, �R) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
$ c a c a t c g
a c a t c g $ c
a t c g $ c a c
c a c a t c g $
c a t c g $ c a
c g $ c a c a t
g $ c a c a t c
t c g $ c a c a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Using Definition 1 we can now formally define a BWT as the last column L of the
BWM.

Definition 2 (Burrows–Wheeler Transform / BWT) For an input string s of length n
and an ordered alphabet�, we define the BWT as BWT(s,�) = BWM(s,�)[i , n−1],
∀i such that 0 < i < n − 1. The BWT of s without implicitly adding a $ is denoted
as BWT∗(s, �).

For example, the BWT for the string in Example 1 with the ordering�R is therefore
obtained from the last column L of the BWM as gcc$atca.

In general, for any alphabet ordering �, the BWT can be computed from the suffix
array (SA) of s as follows:

L[i] =
{

$, if SA[i]=0

s[SA[i]-1], otherwise.

The suffix array may be computed in linear time (Ko and Aluru 2005; Kim et al.
2005) and enables BWT construction with the same time complexity. Inversion of the
BWT may be achieved through the last-first mapping (Burrows and Wheeler 1994).
For a string s, the BWT(s, �) may be updated for a modified string s′, BWT(s′, �)
in sub-linear time (Kempa and Kociumaka 2022). Recent developments have led to
an efficient algorithm for directly constructing the RLBWT (Nishimoto et al. 2022)
in O(n + r log r) time but O(n) time for strings where r = O(n/ log n), and working
space O(r log n) of bits.

Definition 3 (Substring) For a string s, u is a substring of s if there are possibly empty
strings a and b such that s = aub, and u is bounded by the indexes (i , j) where
0 ≤ i ≤ j ≤ n − 1.

123

 11 Page 6 of 29 L. Major et al.

Definition 4 (Run / Maximal Unary Substring) For a string s, r is a run of s if it is a
substring of s and:

• Consisting of identical characters; r[j] = r[k] ∀ j, k < |r|.
• Of maximal length in s.

Definition 5 (Run-Length Encoding / RLE) Let p0 p1 p2 . . . pn−1 be the sequence of
runs of a string s such that s = p0 p1 p2 . . . pn−1. RLE(s) is the string where each
run of identical characters pi in s is replaced by a single copy of that character and a
count of the characters in the run. We denote the length of each run of characters in
superscript, for instance: RLE(s) = p0[0]| p0| p1[0]| p1| . . . pn−1[0]| pn−1|.

We illustrate Definition 5 with an example using �R .

Example 2 Let a string s = cacatcg using�R , The output L column of BWM(s, �R)

is gcc$atca. This is encoded as RLE(BWT (s, �R)) = g1c2$1a1t1c1a1,
|RLE(BWT (s, �R))| = 14.

We are interested in overall memory usage for the RLE, so each run is encoded as
the byte (character) and then the length of the run up to 255. Any runs over 255 in
length are encoded as additional bytes (Sect. 2.2). This is represented as |RLE(s)|.

To demonstrate the influence an alphabet ordering can have on the BWM, BWT
and RLE, we consider the same example string using an alternative alphabet ordering.

Example 3 Let a string s = cacatcg, � = $ < a < g < c < t .

BWM(s, �) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
$ c a c a t c g
a c a t c g $ c
a t c g $ c a c
g $ c a c a t c
c a c a t c g $
c a t c g $ c a
c g $ c a c a t
t c g $ c a c a

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

With this neworderingof�, RLE(BWT (s, �)) = g1c3$1a1t1a1, |RLE(BWT (s, �))|
= 12.

Definition 6 (r value) The number of runs in the BWT.
Let p0 p1 p2 . . . pn−1 be the sequence of runs of a string s, then r(s, �) = n.

We clarify Definition 6 with an example.

Example 4 For example, let s = acacacbbacbac and � = a < b < c.
BWT∗(s, �) = bccbccbcaaaaa. As there are 7 runs in the BWT output, r = 7.

The r value for anyBWTof a string is not necessarily less than the r value of a string
itself. A classic example is the string mississippi$ where the BWT is i pssm$pissii
which also shows that computing the BWT permutation of the input data does not
necessarily make the data more compressible.

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 7 of 29 11

2.2 Problem statement

We wish to investigate the sample space of alphabet orderings. Since reordering the
alphabet to minimize the number of runs has been shown to be APX-hard, we will use
and investigate different heuristics.

We evaluate the fitness of any new alphabet ordering � by the total length of its
RLE. Aswe use the input data bytewise, the ‘characters’ in our alphabet are these bytes
and not another encoding such as UTF. We do not use the total number of identical
character runs in the BWT(r) as the fitness since we are interested in overall memory
consumption of the representation. Each input file is read bytewise, so multi-byte
(non-ASCII) characters are represented as more than one ‘character’ in the alphabet.

We encode the RLE as a sequence of byte pairs, with the first byte of each pair
representing the run’s character, and the second byte representing the length of the
run. As the maximum value that may be represented in a byte is 255, any larger runs
will be represented with multiple pairs of bytes.

We therefore seek to minimize the size of RLE for our tested texts.

RLBWT Alphabet Ordering Problem

Input: A string s of length n over an alphabet � of size σ

Output: A reordering of � for RLE(BWT (s, �)) that minimizes
|RLE(BWT (s, �))|.

3 Methods for small alphabets

3.1 Binary alphabet orderings

We consider the simplest non-trivial case where there are only 2 characters and show
that when using the reverse of an alphabet ordering that r remains the same for both
orderings for primitive strings.

Lemma 1 Let s be a binary string over � = {a, b} of length n. Let �1 = a < b,
�2 = b < a. Then r(s, �1) = r(s, �2).

Proof Suppose s is primitive, then all of its conjugates are distinct (Petersen 1996).
Let p = p0 . . . pn−1 and q = q0 . . . qn−1 be two adjacent rows in BWM∗(s, �1) such
that p is lexicographically less than q. Assume that s contains two distinct characters
(otherwise the claim is trivial), then let t be the minimal index such that pt �= qt ,
thus pt = a < b = qt . On the other hand in BWM∗(s, �2), q is lexicographically
less than p. The argument holds for all pairs of adjacent rows showing that the two
matrices are flipped row-wise, hence have the same r value.

In the case that s is not primitive (thus having some cyclic rotations which are not
distinct) and has the form uk , k > 1, then all groups of k identical and adjacent rows
in BWM∗(s, �1) will likewise be adjacent in BWM∗(s, �2) after the flipping. ��

Observe that using transitivity the argument on reversing an alphabet extends to
an arbitrary finite alphabet which motivates our search for effective orderings. We
illustrate concepts with the following ternary example:

123

 11 Page 8 of 29 L. Major et al.

Example 5 (Ternary primitive)
Let s = aabbcc, and �1 = a < b < c:

BWM∗(s, �1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
a a b b c c
a b b c c a
b b c c a a
b c c a a b
c a a b b c
c c a a b b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

BWT∗(s, �1) = caabcb, r(s, �1) = 5.
In the case with �2 = c < b < a:

BWM∗(s, �2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
c c a a b b
c a a b b c
b c c a a b
b b c c a a
a b b c c a
a a b b c c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

BWT∗(s, �2) = bcbaac, r(s, �1) = 5.
Thus both orderings have the same r value.

Example 6 (Ternary non-primitive) Let s = abcabc, and �1 = a < b < c:

BWM∗(s, �1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
a b c a b c
a b c a b c
b c a b c a
b c a b c a
c a b c a b
c a b c a b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Likewise for �2 = c < b < a it is trivial to see that the r value of both orderings
is the same.

BWM∗(s, �2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

F L
c a b c a b
c a b c a b
b c a b c a
b c a b c a
a b c a b c
a b c a b c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 9 of 29 11

Table 1 Percentage difference in
file size using each of the 24
alphabet orderings for the
alphabet {a,c,g,t} for the 150
concatenated E.coli data files
when using the RLBWT

Min % change Max % change Mean Std

− 91.576 − 91.627 − 91.597 0.02

3.2 Exhaustive search on biological data

For small alphabets it may be feasible to search through all possible alphabet orderings
to find the one(s) that provide(s) the best RLBWT compression of the data.

For example, in the case of genomic data, such as a collection of the genome
sequences of many E. coli bacteria, we could expect a limited 4-letter alphabet
{a,c,g,t} representing nucleotides giving 24 possible alphabet orderings. For such
a collection, the genomes would share much in common, and the RLBWT of a con-
catenation of these sequences should capture the commonalities effectively. However,
almost all bioinformatics algorithms choose to use the ASCII ordering a < c < g < t ,
even though this may not provide the best results.

We took a collection of 150 diverse E. coli genomes from NCBI and compared
the compression obtained using each possible alphabet ordering on the concatenated
150 genomes—this totaled 724,548,306 bytes. The ordering t < c < a < g provided
the best compression (−91.627% change), and the worst ordering was c < g <

t < a (−91.576% change)—for further details see Table 1. Although an exhaustive
search through all possible alphabet orderings is often prohibitively expensive, this
example demonstrated that better choices can make improvements, and motivated our
investigation to find such orderings and examine the search space of orderings for its
properties.

4 Methods for larger alphabets

Since the permutation space of the alphabet ordering for an alphabet of size σ is
σ !, in most practical cases, exhaustive enumeration of all alphabet orderings is not
a feasible approach. We therefore consider different variants of a First-Improvement
local search for larger alphabets. We use different types of texts, considering a variety
of different text lengths and alphabet sizes. Themain goal of our experimental analysis
is to provide insights into the working principles of the considered methods for the
given problem and to provide guidelines for their use. The considered algorithms are
introduced in Sects. 4.1 and 4.2.

4.1 Baseline: random sampling

We use uniform random sampling as a baseline approach to inspect the statistical
distribution of potential compression gains that could bemade by reordering the alpha-
bet. The results are compared with the results of First-Improvement local search as
described in the next section.

123

 11 Page 10 of 29 L. Major et al.

An interesting property of random sampling is that the mean number of improve-
ments to be expected is actually bounded by the logarithm of number of trials.
Indeed, as every new sample (i.e., alphabet order) is independent of the previous
samples, the chance of obtaining a better compression after T sampling steps with a
new sample would be Pimproving(T) = 1

T+1 , should the compression value obtained
be unique for every sampling event. Therefore, the expected number of successive
improvements in compression using T random samples would be simply given by
∑T

i=0
1

i+1 = O(log T). In practice, the compression value will belong to a limited set
of integer values, and each new sample result may just be equal to the best compression
value obtained so far. As such, the actual chance Pimproving(T) after T samples to
improve compression is less than 1

T+1 , and O(log T) becomes an upper bound for the
total number of improvements expected from T random samples.

4.2 First-improvement local search

We consider a variant of First-Improvement Local Search as our main optimisation
approach. Pseudocode for this approach is given in Algorithm 1. The algorithm takes
as input a text and its alphabet. It starts from some initial alphabet ordering π (line 3)
and tries to improve the ordering until a provable local optimum is reached (line 15).
In each loop it considers all neighbors of the current ordering π in a given order (line
7). If an improvement is found (line 8), the algorithm moves to the better ordering
(line 10) and repeats the process (updating the neighborhood as needed, line 11). The
fittest ordering is returned.

In our experiments, we consider 9 different initialization methods in line 3 of
Algorithm 1 as discussed in Sect. 4.2.1. We also consider 12 different neighborhoods
as discussed in Sect. 4.2.2, leading to a total number of 108 algorithm configurations.

Algorithm 1 First-improvement local search
1: Input: A string w over an alphabet � of size σ

2: Output: An ordering π of �

3: π ← initialiseOrder(�)
 Initialisation (Section 4.2.1)
4: N ← initialiseNeighborhood(π)
 Neighbors of π (Section 4.2.2)
5: do
6: improvementFound = false
7: for all π ′ ∈ N do
8: if f (π ′) < f (π) then
 Neighbor is improvement
9: improvementFound = true
10: π ← π ′
11: N ← updateNeighborhood(π)

12: break
13: end if
14: end for
15: while (improvementFound)
16: return π

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 11 of 29 11

4.2.1 Initialization

We consider the following 9 initialization methods in line 3 of Algorithm 1. With the
exception of random initialization, all methods are deterministic and based on some
heuristic or standard ordering from the literature.

• Random: We determine 20 random orderings using Fisher-Yates shuffle (Knuth
1998a). The same 20 orderings are used for all experiments using random initial-
ization.

• ASCII: The (extended) ASCII ordering of the alphabet.
• First appearance: Characters are ordered by their order of appearance in the text.
• Least frequent: Characters are ordered by the number of occurrences in the text,
least frequent first.

• Most frequent: Characters are ordered by the number of occurrences in the text,
most frequent first.

• Chapin tate: A hand-tuned ordering used by Chapin and Tate (Chapin and Tate
1998)1 for a similar compression problem based around the BWT. The ASCII
alphabet ordering, however ‘@’ replaces ‘!’, ‘+,-.’ is rearranged to ‘+-,.’, AEIOU
and aeiou are both brought to the front of each block of both upper and lower case.
The consonants are reorganised as B < C < D < G < F < H < R < L < S <

M < N < P < Q < J < K < T < W < V < X < Y < Z .

• Inverse permutation Chapin Tate: The inverse permutation (Knuth 1998b) of
the Chapin Tate ordering, spacing out the vowels and reordering the consonants.
Since grouping vowels is important for the Chapin Tate ordering we investigate
the effects of not doing this.
The vowels are ordered as A < I < O < U < E , however they are interspersed
through the ordering instead of being together at the start of the ordering. This
results in an ordering of A < F < G < H < B < J < I < K < C < S < T <

M < O < P < D < Q < R < L < N < U < E < W < V < X < Y < Z .
Other changes to the ordering such as ‘!’ and ‘@’ being swapped, and the ‘+-,.’
rearrangement are also present in this ordering.

• Vowels: Vowels (aeiouAEIOU) are placed at the beginning of the ordering. Similar
to the Chapin Tate ordering, the main aim is to explore if grouped punctuation and
the consonant reordering really helps the problem, or if moving the vowels alone
will yield a better initial ordering.

• FDA: The FDA algorithm was introduced to determine an alphabet ordering for a
variant of the Lyndon factorization problem (Major et al. 2020). The main motiva-
tion to include this method is to explore if these orderings might be more generally
useful for alphabet ordering problems on strings.
It should be noted that FDAdetermines a partial alphabet ordering. A total ordering
is produced from the partial ordering by topological sort.

For each of these orderings, we place the selected end marker character (usually $)
as least in the ordering when performing the BWT.

1 And personal communications with B. Chapin.

123

 11 Page 12 of 29 L. Major et al.

4.2.2 Local search neighborhoods

For the neighborhoods in lines 4 and 11 of Algorithm 1 we consider combinations of
two standard operators for permutation sample spaces, namely Swap (aka Exchange)
and Insert (aka Jump) (Eiben and Smith 2015). Swap picks two integers 0 ≤ i <

j ≤ σ − 1 and swaps the characters at positions i and j . Insert picks two integers
0 ≤ i, j ≤ σ −1 with i �= j . It moves the character at position i to position j , shifting
all subsequent characters to the right.

Looking at the two operators in isolation we observe that Swap yields a neighbor-
hood of size σ(σ − 1)/2 while Insert yields a neighborhood of size σ(σ − 1). Both
neighborhood sizes are quadratic in σ , the size of the alphabet.

We first consider both operators in isolation and investigate three different orderings
of the neighbors in the neighborhoods:

• Random order: Using a random order of the neighbors is the most common
approach.

• Lexicographic order (LEX): We hypothesize that it maybe be beneficial to first
fix characters at the start of the ordering. We therefore consider the fixed lexi-
cographic order of neighbors. For example, for Swap we consider i- j-pairs in
the following order: (0, 1), (0, 2), ..., (0, σ − 1), (1, 2), ..., (σ − 2, σ − 1). Any
unspecified neighborhood ordering should be assumed to be Lex.

• Reverse lexicographic order (REVLEX): We consider the opposite case by
reversing the lexicographic order given above.

Finally, we consider a combination of Swap and Insert. More precisely, we first
try all possible Swaps followed by all possible Inserts and vice versa. For each of
the two lists of neighbors we consider all three orders defined above, ensuring that all
Swaps are sorted before all Inserts (and vice versa) as appropriate. If a combination
of operators is used, the second operator will only be used until an improvement is
found. The algorithm then returns to using the first operator.

5 Results and discussion

5.1 Experimental setup

All our main experiments are run on Super Computing Wales2 on a single node (2x
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with 20 cores each) and Aberystwyth
DCS cluster on a single node (2x Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz
with 48 cores each). As usual, we report the number of objective function evaluations
rather than wall-clock time.

We remark that we use super computing resources to extensively explore the search
space, but on the other hand for a targeted application, for instance on a specified
dataset, a commodity machine has been found to be time-efficient in practice. To
demonstrate this, we used a single core of an AMDRyzen 7 PRO 3700U@ 2.30GHz,
and the alice29.txt file (See Table 2). As we show in Table 5, the number of

2 https://portal.supercomputing.wales/index.php/about-sunbird/.

123

https://portal.supercomputing.wales/index.php/about-sunbird/

Heuristics for the run-length encoded Burrows–Wheeler… Page 13 of 29 11

local search steps to beat the best ordering that was randomly sampled is relatively
small. Thus we report the wall-clock time taken to run for only 1000 steps (fitness
evaluations) using Swap, Lex only (See Sects. 4.2.1 and 4.2.2). We found that this
took an average of 47.5 s for each of the 28 initializations. Though it should be noted
that this time increases linearly with the number of cores and in practice it is likely
that a single initialization will be used.

For each stochastic variant of First-Improvement local search, we report statistics
on the results of 20 independent runs. However, to avoid the distortion of our results
due to different random starting points, all variants with random initialization use
the same 20 starting points which were randomly determined prior to running our
experiments. This way we can analyze the effect of different neighborhoods on the
same starting points without introducing additional variables. For each run we report
the number of function evaluations as ‘steps’.

We define C as the percentage change in file size relative to the uncompressed size
(measured as a percentage in bytes):

C =
(
Compressed Size − Uncompressed Size

Uncompressed Size

)

· 100 (1)

We present C as raincloud plots (Allen et al. 2021) (a combination of a distribution,
boxplot, and jittered point cloud) to give an indication of the density and shape of
the sample space. A negative value for C demonstrates a reduction in size while a
positive value demonstrates an increase in size. The smaller the value for C the better
the compression. The number of steps presented is hitting time and not exhaustive
checking of the neighbors.

5.2 Benchmarking

We use a standard benchmark for data compression for our analysis, namely the
Canterbury corpus (Arnold and Bell 1997). Table 2 lists the different files contained in
the corpus, including the size of each file and the corresponding alphabet size. The file
kennedy.xls is excluded from our experiments for technical reasons: our BWT
implementation relies on a unique end marker character and the alphabet size of 256
leaves no available character if the file is used bytewise. We reorder the alphabet by
mapping the input text characters to new ones based on the order of characters in the
alphabet.We then use the SAIS suffix array implementation by YutaMori3 to compute
the suffix array (Nong et al. 2011; Ko and Aluru 2005). Another implementation is
also provided in our repository4 but was not used due to speed.

We do not run to completion for some files in the corpus (for example: ptt5, sum,
xargs.1) for some of the Swap then Insert and Insert then Swap methods due
to prohibitive runtimes. Instead we run to a limit of 10,000 steps as this is more than

3 https://web.archive.org/web/20230309123010/https://sites.google.com/site/yuta256/sais.
4 https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows--Wheeler-Transform-Alph
abet-Ordering-Problem.

123

https://web.archive.org/web/20230309123010/https://sites.google.com/site/yuta256/sais
https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows--Wheeler-Transform-Alphabet-Ordering-Problem
https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows--Wheeler-Transform-Alphabet-Ordering-Problem

 11 Page 14 of 29 L. Major et al.

Table 2 Files in the Canterbury corpus with their size in bytes and the number of unique bytes in their
alphabet

File Description Bytes Alphabet

alice29.txt The text of Alice’s adventures in Wonderland 152,089 74

asyoulik.txt Text from Shakespeare’s play as you like it 125,179 68

cp.html HTML with a large number of links 24,603 86

fields.c C source code 11,150 90

grammar.lsp LISP source code 3721 76

kennedy.xls Microsoft excel document 1,029,744 256

lcet10.txt Conference proceedings 426,754 84

plrabn12.txt Text from John Milton’s Paradise lost 481,861 81

ptt5 Fax data 513,216 159

sum Sun SPARC executable 38,240 255

xargs.1 GNU man page for xargs 4227 74

the maximum number of steps to outperform a random sample (Table 5). A full list of
the files and methods run until 10,000 steps only is available in our repository.

5.3 Randomly sampled alphabet orderings

We inspected the landscape of percentage change in compression that can be achieved
using the RLBWT by changing the alphabet order, and sampled 240,000 alphabet
orders uniformly at random (by Fisher-Yates shuffle) for each of the texts. We do this
to learn more about the shape of the sample space and to understand whether there are
many best orderings to be found or few.

The number of samples was chosen since it was large but remained tractable to
compute on a local machine (Intel(R) i7-8700K CPU @ 3.70GHz with 12 cores). To
exemplify our findings, the results for files alice29.txt, sum and fields.c are
shown in Fig. 1. The number of samples may be few in comparison with the very large
σ ! space, however due to the smooth overall distributions without outliers we can see
that the sampling already gives a clear picture of the shape of the space from which
further random samples would be obtained. The distributions are bell-shaped but not
normally distributed (scistats.normaltest Virtanen et al. (2020)), having a long thin tail
downwards where better solutions can be found.

These distributions demonstrate a spread of percentage compression for different
alphabet orders, with the majority being sub-optimal choices and the sample space
having only a thin tail of better choices. These figures also highlight the surprisingly
good compression achieved by the ASCII ordering, lying far below most random
choices of alphabet order, even for executable files such as sum. The full set of figures
for all corpus files can be seen in our repository.

However, most texts in the corpus can be compressed to be smaller than the original
by using the RLBWT, despite the fact that most randomly chosen alphabets are poor
choices (See Table 3). This is true even with the worst choice of alphabet order. The

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 15 of 29 11

Fig. 1 A raincloud plot of the
percentage change in
compression for 240,000 random
samples of alphabet orderings
used with the RLBWT for three
of the corpus texts. Similar
shaped distributions can be seen
for the novel alice29.txt,
SPARC executable file sum and
C source file fields.c.
Horizontal blue line represents
the ASCII ordering, which
outperforms most of the
randomly sampled orderings

best alphabet order found when randomly sampling for ptt5 reduced the file size
by 74.207%. The file plrabn12.txt does not compress well and the best alphabet
order sampled for this file increased the size by 1.019%, and ASCII performs worse
than the best randomly sampled alphabet order.

While formost files, randomly sampled alphabet orderingsmay compress the size of
the file somewhat, few sampled orderings improve on the ASCII alphabet ordering. In

123

 11 Page 16 of 29 L. Major et al.

Table 3 Percentage difference compared to the original file size for each file when using the 240,000
orderings found using random sampling

File Min % change Max % change Mean Std

alice29.txt − 12.171 − 10.694 − 11.385 0.172

asyoulik.txt − 0.533 1.028 0.324 0.177

cp.html − 25.375 − 23.156 − 24.163 0.255

fields.c − 38.565 − 34.942 − 36.725 0.407

grammar.lsp − 28.353 − 21.903 − 24.955 0.711

lcet10.txt − 22.116 − 21.140 − 21.554 0.113

plrabn12.txt 1.019 2.073 1.633 0.109

ptt5 − 74.207 − 73.664 − 73.914 0.080

sum − 29.111 − 26.935 − 27.967 0.251

xargs.1 − 6.269 0.781 − 2.484 0.735

The minimum, maximum, and mean percentage changes are shown for each text

fact, several of the initialization orderingmethods (Sect. 4.2.1) also already outperform
even the best of the randomly sampled orderings for many of the files. The heatmap
in Fig. 2 shows the rankings of the initialization orderings for the different files. The
benefits of ASCII and Chapin Tate orderings can be seen clearly in this figure. It can
also be seen from this figure that even after randomly sampling 240,000 orderings, the
best of these is not good enough. Random sampling is therefore a too costly search
strategy and necessitates another solution.

5.4 Improved fitness with local search

In contrast to the compression obtained via random sampling of alphabet orders
(Sect. 5.3), even the most simple of our local search methods—Swap, Lex—can
achieve a better fitness value for our tested data. Figure3 shows the contrast between
the best solutions found during a local search (using the Swap operator) and the results
of the random sampling. This figure shows alice29.txt, sum and fields.c.
Other corpus files have similar plots, which can be seen in our repository. The large
gap between their distributions indicates that there are excellent alphabet orderings
that have not previously been sampled, even when sampling 240,000 orderings.

5.5 The impact of initialization on local search

When performing a local search, the initial alphabet order makes a difference to the
best solution that can be found by the local search using the Swap operator.

Table 4 showswhich initialization ordering achieves the best compression when the
search terminates at the local minimum or after 1000 steps. While randomly chosen
orders are competitive if the search is terminated early after 1000 steps, ASCII, Chapin
Tate, and Inverse Permutation Chapin Tate perform best if the search is allowed to
complete.

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 17 of 29 11

Fig. 2 Ranking of each initialization method and the best randomly sampled ordering for each file before
local search is applied

The plots in Fig. 4 exemplify how the results improve over the time taken by the
search. A steep drop in the size of the file is observed followed by a large number of
steps until the local optima is reached. The initialization order that leads to the best
local minimum at the end of the search is not obvious at the start of the search, nor
is there consistently an initialization order that would produce a good local minimum
across all files. The range of random sample fitness may completely cover the fixed
start positions as in alice29.txt or lay above many of the best fitness starts as
in fields.c. Overall the range of random sample starts covers a large amount of
solutions that are found using the fixed start positions in our tested files.

The steep improvement early in the search suggests that a limited search may still
be beneficial. If the search is terminated early, ASCII and Chapin Tate are the best
orderings from which to start the search (Fig. 5).

While using a random initialization still yields an improvement in fitness over time,
the overall change in fitness is not as good as choosing a fixed initialization for the
explored texts. It may be possible for multiple orderings to achieve around the same
fitness for 1000 neighbor evaluations.

From this we conclude that the landscape has lots of local optima and that the
path through the landscape is therefore important. We examine other methods such as

123

 11 Page 18 of 29 L. Major et al.

Fig. 3 Raincloud plot showing
that the best alphabet orders
found at the conclusion of local
search (orange) give noticeably
better compression than that
achieved using either randomly
sampled alphabet orders (green)
or the ASCII alphabet order
(horizontal line). The
compression achieved by
random samples of alphabet
orderings are displayed in green.
The best achieved via local
search with Swap only is shown
in orange, (also see Sect. 5.4).
The change in compression for
the different local search
initialization orderings at the
start of the search are shown in
blue, and these overlap with the
random samples. The
compression when using the
ASCII alphabet is plotted as a
horizontal blue line and can be
seen at the lower end of the
random samples

reverse and random neighbor orderings, and using Insert to make further jumps in
the landscape.

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 19 of 29 11

Table 4 Determining the best initialization orderings for an early-terminated search

After 1000 steps At local minimum
File Best initialization (1000) C (1000) Best initialization (all) C (all)

alice29.txt IPCT − 12.368 Random − 13.601

asyoulik.txt CT − 1.108 CT − 2.07

cp.html IPCT − 25.920 Random − 27.993

fields.c CT − 40.359 ASCII − 43.982

grammar.lsp Random − 29.589 Random − 33.996

lcet10.txt IPCT − 22.503 Random − 23.04

plrabn12.txt ASCII 0.948 Random 0.228

ptt5 IPCT − 74.472 IPCT − 74.748

sum ASCII − 30.737 FDA − 33.917

xargs.1 CT − 7.783 CT − 12.042

Local search was performed with the Swap, Lex neighborhood for each corpus file, terminating after 1000
steps. IPCT = Inverse Permutation Chapin Tate, CT = Chapin Tate, Random = Random Initialization

5.6 Local search operators: SWAP and INSERT

The path that the local search explores through the search space is important in deter-
mining where in the space the local optima is found. Evaluating more local search
neighbors may therefore lead to finding better neighbors and a better overall optima.
Since Swap moves two elements into new locations at once. We therefore consider
the Insert operator, either in combination with Swap (as first or second operator) or
alone.

Table 5 shows the number of steps taken using each of the different search operators
to find an ordering that performs better than the best of the 240,000 randomly sampled
orderings. We note that local search only requires a few steps before outperforming
random sampling, independently of any search operators, and typically takes only a
few seconds to compute. Indeed, Table 6 shows that methods based on local search
create a large number of updates when compared to a naive random sampling of the
search space. While the average number of updates obtained with the latter is close
to the theoretical one (12.4 vs. 12.38), we see that local search algorithms provide
substantially more updates. For instance, the Swap method using the lexicographic
order generates on average 236 updates across 10 files. Such a number of updates with
random sampling would on expectation require more than 10100 samples (≈ e236.5),
which is today not computable.

Methods involving randomized neighbor orderings perform well in the time taken
to beat the best of the 240,000 random samples compared to all other methods. Of
these, the Swap then Insert operator performs best.

However, to fully locate any local minimum may in some cases take a very long
time (Fig. 6). Our experiments are limited to 10 million steps for any single run, which
is reached for some configurations. When considering the initialization that locates
the best fitness for any method, we find an initial steep drop in fitness for all methods,
and that there are groupings of methods that perform similarly. Generally the methods

123

 11 Page 20 of 29 L. Major et al.

Fig. 4 Local search using Swap,

Lex from different alphabet
order initialization methods over
time until a local minimum is
reached. It can be observed that
there is no best initial order that
consistently results in the best
local minima for all texts

involving randomized neighbor orderings perform well in few steps and have a fitness
which remains competitive with the Lex and RevLexmethods. We observe that even
when the number of steps is limited to relatively few in comparison to the number
needed to reach a local minimum, the percentage change in file size reached may still
be good.

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 21 of 29 11

Fig. 5 Local search for different
alphabet order initialization
methods over time with Swap,

Lex, limited to 1000 neighbor
evaluations. It can be observed
that there is no best initial order
that consistently results in the
best local minima for all texts,
and that the best initialization
order is dependent on the
number of steps performed

This is further demonstrated when considering the final fitness achieved in all runs
across all methods. Across our tested files, the number of required steps to locate a
minimum splits the methods into three groups (in increasing order of steps): random
neighbor ordering methods, Swap and Swap-first methods, and Insert and Insert-
first methods (Fig. 7). Even when considering the final fitness achieved, a randomized
neighbor ordering remains competitive (Fig. 8). The file sum is not shown as it has

123

 11 Page 22 of 29 L. Major et al.

Table 5 Theminimum number of local search steps for the best initialization to find an ordering performing
better than the best ordering out of the 240,000 randomly sampled orderings

Method alice29.txt grammar.lsp plrabn12.txt xargs.1 All others

I, Lex 1437 107 9254 553 0

I, Random 10 17 40 22 0

I, RevLex 57 1475 1009 1249 0

ItS, Lex 1437 107 9254 553 0

ItS, Random 16 15 33 54 0

ItS, RevLex 57 1475 1009 1249 0

S, Lex 96 87 302 178 0

S, Random 4 34 16 41 0

S, RevLex 105 421 235 428 0

StI, Lex 96 87 302 178 0

StI, Random 16 20 37 41 0

StI, RevLex 105 421 235 428 0

Files asyoulik.txt, cp.html, fields.c, ptt5, lcet10.txt, and sum are not shown because
no local search steps were needed, as one of the initial orderings was already better than the randomly
sampled orderings without the need for search. I=Insert, S=Swap, ItS=Insert then Swap, StI=Swap then
Insert

data which was not run to completion due to prohibitive runtimes (Sect. 5.1). However,
the trend described also holds with the completed data for sum.

When completing the search to a local minimum, Insert and Insert-first methods
perform slightly better thanmethods involvingSwap, however the Insert and Insert-
first methods may take prohibitively long compared to Swap, as they search a wider
neighborhood, for very little gain.

6 Conclusion and future work

The BWT is an important string transformation, enabling a concise, searchable repre-
sentation of a string. It relies on ordering the characters in the string and this is usually
assumed to be ASCII ordering, without exploring whether alternatives might be more
effective.

We studied heuristics for the computationally hard RLBWT Alphabet Ordering
Problem which takes a string s of length n over an alphabet � of size σ and seeks
an ordering of � for RLE(BWT (s, �)) that minimizes |RLE(BWT (s, �))|. We
have performed extensive benchmarking using files from the Canterbury corpus and
implemented the experimentation on Super Computing Wales HPC. We started by
inspecting a large sample space of 240,000 randomly sampled alphabet orderings and
found only limited improvement over the ASCII ordering. This motivated searching
local neighborhoods to improve fitness - this was achieved using a First-Improvement
algorithm.

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 23 of 29 11

Table 6 Number of successive improvements obtained with two local search algorithms compared to
random sampling for ASCII ordering

File Random sampling Swap, Lex Insert, Lex

alice29.txt 14 (240 K) 231 (205.84 K) 319 (519.2 K)

asyoulik.txt 11 (240 K) 218 (125.32 K) 310 (399.06 K)

cp.html 17 (240 K) 176 (242.68 K) 241 (491.92 K)

fields.c 10 (240 K) 157 (249.31 K) 169 (496.97 K)

grammar.lsp 11 (240K) 67 (65.54 K) 86 (161.88 K)

lcet10.txt 11 (240 K) 259 (340.97 K) 380 (934.5 K)

plrabn12.txt 15 (240 K) 383 (435.92 K) 457 (929.79 K)

ptt5 12 (240 K) 352 (1.25 M) 549 (3.59 M)

sum 10 (240 K) 452 (4.03 M) 561 (10M)

xargs.1 13 (240 K) 70 (63.98 K) 102 (192.87 K)

average number of updates 12.4 236.5 317.4

Total number of steps are within brackets. Random sampling has created on average 12.4 updates across
the 10 files while the theoretical mean number of updates for random sampling is approximately 12.38 for
240K samples (See Sect. 4.1). In contrast, local search algorithms deliver significantly more updates to the
compression when compared to random sampling

Various initializations have been applied to the test files to attempt to speed up
the search which include: ASCII order, letter frequency and order of appearance, and
a hand-tuned ordering given by Chapin and Tate (1998). Jumping around the com-
plex landscape was implemented with neighborhood search using Swap and Insert

operators as well as combinations of these operators. Additionally varying the neigh-
bors of an alphabet ordering has been explored, searching them lexicographically,
reverse-lexicographically, and randomly. Overall, we inspected a combination of 9
initializations, 4 operators, and 3 neighborhood search methods, giving a total of 108
algorithm configurations.

The number of search steps needed to outperform the best result of random sam-
pling was found to be relatively few and could be computed in seconds, but quickly
increased for achieving a local minimum. Indeed, we demonstrated that reaching a
similar number of improvements with random sampling would require investigating
a much larger number of random samples (e.g., > 10100), which is not feasible to
compute.

The chosen initial alphabet order was found to influence the best solution that can
be found, and we demonstrated this using the Swap operator. While we observed
variation in the initial ordering which achieved the best fitness within a time limit,
there is not necessarily one best initial ordering. However, all initializations exhibit a
clear decrease in file size followed by a large number of steps until the local minimum
is reached.

We observed that the random neighbor ordering methods perform well in the early
stages of the search, and while not the best they remain competitive overall. Insert
and Insert-first methods are slower than Swap and Swap-first methods to reach a
local minimum but will usually achieve a better compression. Although our empirical

123

 11 Page 24 of 29 L. Major et al.

Fig. 6 The best initialization at
the minimum for corpus texts
alice29.txt, sum, and
fields.c over time for
different neighborhood search
methods

evidence shows that local search is indeed effective for improving the RLBWT, and
trade-offs occur, nonethelesswe are still able to recommend a time-limited local search
using Swap with Random neighborhood exploration to improve rapidly upon the
ASCII ordering. If more computational time is available to explore a better ordering

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 25 of 29 11

Fig. 7 Number of steps taken to
find a local minimum for
alice29.txt, fields.c,
and asyoulik.txt for each
neighborhood method in local
search. The variation in each box
plot shows the difference made
by distinct initializations

123

 11 Page 26 of 29 L. Major et al.

Fig. 8 Percentage change in
compression for
alice29.txt, fields.c,
and asyoulik.txt for each
neighborhood method in local
search. The variation in each box
plot shows the difference made
by distinct initializations

then we recommend a local search using Insert then Swap with Lexicographic
neighborhood exploration.

We found it interesting that the ASCII ordering performs very well when compared
to a random order. Also, it works relatively well as an initialization for the local search.
The reasons for ASCII performing well are hard to speculate, though we suspect that
ASCII commonly appears in the lower half of the search space.We found that thefitness

123

Heuristics for the run-length encoded Burrows–Wheeler… Page 27 of 29 11

of randomly sampled alphabet orderings is not normally distributed but instead the
distribution has long tails towards the best andworst solutions,which suggests that only
a few orderings are relatively good compared with other orderings in the search space.
Further exploration of the search space, exhaustively, for large alphabet sizes would
be required to fully understand the space. Our current research involves visualizing
different alphabet orderings and their effect on the Burrows–Wheeler Matrix with the
hope of better understanding such a search space.

If limited time is available we recommend the Chapin Tate ordering to start the
search, or a random order to initialize a longer search. However, there is no clear best
initialization suiting different files considered in the corpus.

This is a difficult problem in theory and we have now demonstrated that this is
a challenging problem in practice for the range of files in the Canterbury Corpus,
with no simple winning strategy. We have demonstrated that navigating trade-offs can
be worthwhile for enhancing compressibility. Our local search performs much better
(faster convergence, better fitness) than random sampling and is useful even when
computational time is limited.

In future work we intend to investigate further what constitutes a good alphabet
ordering, the effect that different changes to an ordering can have on the transformed
string, what factors contribute to the quality of an ordering for a given string and why
some orderings perform better than others, in relation to the type of data (for instance
natural language versus other structured data).

We want to determine which characters can be moved to benefit the search and to
use this knowledge to inspire new and more specific local search operators. This may
include using operators which re-order multiple characters at a time or incorporation
of various crossover operators. In addition different encoding methods for RLE may
give better results and should be investigated.

Acknowledgements We acknowledge the support of the Supercomputing Wales project, which is part-
funded by the European Regional Development Fund (ERDF) via Welsh Government.

Author Contributions All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by Lily Major. All authors wrote, read, and approved the final
manuscript.

Funding Thiswork is supportedby theUKRIAIMLACCDT,http://cdt-aimlac.org, grant no.EP/S023992/1,
and was part-funded by the European Regional Development Fund through the Welsh Government, grant
80761-AU-137 (West).

Data Availability Code is available in our repository https://github.com/jam86/Heuristics-for-the-Run-
length-Encoded-Burrows--Wheeler-Transform-Alphabet-Ordering-Problem, andhttps://doi.org/10.5281/
zenodo.8139504. Data from our experiments is available at https://doi.org/10.5281/zenodo.8139367.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123

http://cdt-aimlac.org
https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows--Wheeler-Transform-Alphabet-Ordering-Problem
https://github.com/jam86/Heuristics-for-the-Run-length-Encoded-Burrows--Wheeler-Transform-Alphabet-Ordering-Problem
https://doi.org/10.5281/zenodo.8139504
https://doi.org/10.5281/zenodo.8139504
https://doi.org/10.5281/zenodo.8139367

 11 Page 28 of 29 L. Major et al.

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows–Wheeler Transform: Data Compression, Suffix Arrays,
and Pattern Matching. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78909-5

Allen, M., Poggiali, D., Whitaker, K., Marshall, T., van Langen, J., Kievit, R.: Raincloud plots: a multi-
platform tool for robust data visualization.WellcomeOpenRes. 4, 63 (2021). https://doi.org/10.12688/
wellcomeopenres.15191.2

Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms. In: Proceedings DCC
’97. Data CompressionConference, (pp. 201–210) (1997). https://doi.org/10.1109/DCC.1997.582019

Bentley, J.W., Gibney, D., Thankachan, S.V.: On the complexity of BWT-runs minimization via alphabet
reordering. In: Grandoni, F., Herman, G., Sanders, P. (Eds.) 28th Annual European Symposium on
Algorithms (ESA 2020), (Vol. 173, pp. 15:1–15:13). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.15

Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. (Tech. Rep.). Palo Alto:
Digital Systems Research Center (1994)

Cazaux, B., Rivals, E.: Linking BWT and XBW via Aho-Corasick automaton: applications to run-length
encoding. In: Pisanti, N., Pissis, S.P. (Eds.) 30th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2019), (Vol. 128, pp. 24:1–24:20). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.24

Chapin, B., Tate, S.R.: Higher compression from the Burrows–Wheeler transform by modified sorting. In:
Data Compression Conference, DCC 1998, p. 532, (1998)

Cox, A.J., Bauer, M.J., Jakobi, T., Rosone, G.: Large-scale compression of genomic sequence databases
with the Burrows–Wheeler transform. Bioinformatics 28(11), 1415–1419 (2012). https://doi.org/10.
1093/bioinformatics/bts173

Daykin, J.W., Groult, R., Guesnet, Y., Lecroq, T., Lefebvre, A., Léonard, M., Prieur-Gaston, Élise.: Binary
block order Rouen transform. Theoret. Comput. Sci. 656, 118–134 (2016). https://doi.org/10.1016/j.
tcs.2016.05.028

Daykin, J.W., Smyth, W.F.: A bijective variant of the Burrows-Wheeler transform using V-order. Theoret.
Comput. Sci. 531, 77–89 (2014)

Daykin, J.W., Watson, B.: Indeterminate string factorizations and degenerate text transformations. Math.
Comput. Sci. 11(2), 209–218 (2017). https://doi.org/10.1007/s11786-016-0285-x

Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)
Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text searching in BWT-runs

bounded space. J. ACM (JACM) 67(1), 1–54 (2020). https://doi.org/10.1145/3375890
Giancarlo, R., Manzini, G., Restivo, A., Rosone, G., Sciortino, M.: Block sorting-based transformations on

words: beyond the magic BWT. In: Hoshi, M., Seki, S. (eds.) Developments in Language Theory, pp.
1–17. Springer International Publishing, Cham (2018)

Giancarlo, R., Manzini, G., Restivo, A., Rosone, G., Sciortino, M.: The alternating BWT: an algorithmic
perspective. Theoret. Comput. Sci. 812, 230–243 (2020)

Giancarlo, R., Manzini, G., Restivo, A., Rosone, G., Sciortino, M.: A new class of string transformations
for compressed text indexing. Inf. Comput. 294, 105068 (2023). https://doi.org/10.1016/j.ic.2023.
105068

Gibney, D.: Algorithms and lower bounds for ordering problems on strings. (Doctoral dissertation, Univer-
sity of Central Florida) (2021). https://stars.library.ucf.edu/etd2020/507/

Kempa, D., Kociumaka, T.: Dynamic suffix array with polylogarithmic queries and updates. In: Proceedings
of the 54th Annual ACMSIGACT Symposium on Theory of Computing, (pp. 1657–1670). NewYork,
NY, USA: Association for Computing Machinery (2022). https://doi.org/10.1145/3519935.3520061

Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time. J. Discr. Algorithms 3(2),
126–142 (2005). https://doi.org/10.1016/j.jda.2004.08.019

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-0-387-78909-5
https://doi.org/10.12688/wellcomeopenres.15191.2
https://doi.org/10.12688/wellcomeopenres.15191.2
https://doi.org/10.1109/DCC.1997.582019
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.4230/LIPIcs.CPM.2019.24
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1016/j.tcs.2016.05.028
https://doi.org/10.1016/j.tcs.2016.05.028
https://doi.org/10.1007/s11786-016-0285-x
https://doi.org/10.1145/3375890
https://doi.org/10.1016/j.ic.2023.105068
https://doi.org/10.1016/j.ic.2023.105068
https://stars.library.ucf.edu/etd2020/507/
https://doi.org/10.1145/3519935.3520061
https://doi.org/10.1016/j.jda.2004.08.019

Heuristics for the run-length encoded Burrows–Wheeler… Page 29 of 29 11

Knuth, D.E.: The Art of Computer Programming/Volume 2, Seminumerical algorithms. (3rd ed.). Reading:
Addison-Wesley (1998a)

Knuth, D.E.: The Art of Computer Programming, Volume 3: (2nd ed.) Sorting and Searching. Boston:
Addison Wesley Longman Publishing Co., Inc (1998b)

Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discr. Algorithms 3(2), 143–156
(2005). https://doi.org/10.1016/j.jda.2004.08.002

Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
https://doi.org/10.1038/nmeth.1923

Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics
25(14), 1754–1760 (2009)

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2: an improved ultrafast tool
for short read alignment. Bioinformatics 25(15), 1966–1967 (2009)

Major, L., Clare, A., Daykin, J.W., Mora, B., Peña Gamboa, L.J., Zarges, C.: Evaluation of a permutation-
based evolutionary framework for Lyndon factorizations. In: Bäck, T., et al. (Eds.) Parallel Problem
Solving from Nature–PPSN XVI, Springer, Cham (2020)

Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. In: Apostolico, A.,
Crochemore, M., Park, K. (eds.) Combinatorial Pattern Matching, pp. 45–56. Springer, Berlin (2005)

Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the clustering effect of BWT
via RLE. Theoret. Comput. Sci. 698, 79–87 (2017). https://doi.org/10.1016/j.tcs.2017.07.015

Nishimoto, T., Kanda, S., Tabei, Y.: An optimal-time RLBWT construction in bwt-runs bounded space.
In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (Eds.) 49th International Colloquium on Automata,
Languages, and Programming, ICALP 2022, July 4–8, 2022, Paris, France (vol. 229, pp. 99:1–99:20).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix array construction. IEEE
Trans. Comput. 60(10), 1471–1484 (2011). https://doi.org/10.1109/TC.2010.188

Petersen, H.: On the language of primitive words. Theoret. Comput. Sci. 161(1), 141–156 (1996). https://
doi.org/10.1016/0304-3975(95)00098-4

Pibiri, G.E.: On weighted k-mer dictionaries. Algorithms Mol. Biol. 18(1), 1–20 (2023)
Rossi, M., Oliva, M., Bonizzoni, P., Langmead, B., Gagie, T., Boucher, C.: Finding maximal exact matches

using the r-index. J. Comput. Biol. 29(2), 188–194 (2022)
Seward, J.: bzip2 and libbzip2. (1996). http://sourceware.org/bzip2/
Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-length compressed indexes are superior for highly

repetitive sequence collections. In: Amir, A., Turpin, A., Moffat, A. (eds.) String Processing and
Information Retrieval, pp. 164–175. Springer, Berlin (2008)

Syahrul, E., Dubois, J., Vajnovszki, V., Saidani, T., Atri, M.: Lossless image compression using Burrows
Wheeler Transform (methods and techniques). In: 2008 IEEE International Conference on Signal
Image Technology and Internet Based Systems, pp. 338–343 (2008). https://doi.org/10.1109/SITIS.
2008.40

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D. SciPy., 1.0 Con-
tributors,: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17,
261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1016/j.tcs.2017.07.015
https://doi.org/10.1109/TC.2010.188
https://doi.org/10.1016/0304-3975(95)00098-4
https://doi.org/10.1016/0304-3975(95)00098-4
http://sourceware.org/bzip2/
https://doi.org/10.1109/SITIS.2008.40
https://doi.org/10.1109/SITIS.2008.40
https://doi.org/10.1038/s41592-019-0686-2

	Heuristics for the run-length encoded Burrows–Wheeler transform alphabet ordering problem
	Abstract
	1 Introduction
	2 Notation, problem definition, and modeling
	2.1 Key definitions
	2.2 Problem statement

	3 Methods for small alphabets
	3.1 Binary alphabet orderings
	3.2 Exhaustive search on biological data

	4 Methods for larger alphabets
	4.1 Baseline: random sampling
	4.2 First-improvement local search
	4.2.1 Initialization
	4.2.2 Local search neighborhoods

	5 Results and discussion
	5.1 Experimental setup
	5.2 Benchmarking
	5.3 Randomly sampled alphabet orderings
	5.4 Improved fitness with local search
	5.5 The impact of initialization on local search
	5.6 Local search operators: Swap and Insert

	6 Conclusion and future work
	Acknowledgements
	References

