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In this paper, we investigate confluence and the Church-Rosser property—two well-studied properties8

of rewriting and the λ-calculus—from the viewpoint of proof complexity. With respect to confluence,9

and focusing on orthogonal term rewrite systems, our main contribution is that the size, measured10

in number of symbols, of the smallest rewrite proof is polynomial in the size of the peak. For the11

Church-Rosser property we obtain exponential lower bounds for the size of the join in the size of12

the equality proof. Finally, we study the complexity of proving confluence in the context of the13

λ-calculus. Here, we establish an exponential (worst-case) lower bound of the size of the join in the14

size of the peak.15
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1 Introduction21

Confluence and the Church-Rosser property are two (very) well-known properties of rewriting22

that have been studied for several decades. Confluence expresses that if we have terms23

s, t, t′, where s can be successively rewritten to t, as well as to t′, then t and t′ have a24

common descendent in the rewriting relation, cf. Figure 1 i). In short, if there is a peak:25

t ∗← s→∗ t′, we conclude the existence of a rewrite proof : t→∗ · ∗← t′. The Church-Rosser26

property—illustrated in Figure 1 ii)—expresses that from the equality between t and t′
27

(t↔∗ t′), we conclude the existence of a rewrite proof: t→∗ · ∗← t′. It is a folklore result28

that both properties are equivalent. And, as indicative in the name, their intensive study29

goes back to work by Church and Rosser [7].30

Despite the large body of work on confluence and the Church-Rosser property, it seems31

that the, to us, natural question about the inherent proof complexities has only received32

scarce attention. A noteworthy exception is work by Ketema and Grue Simonsen [10].33

Focusing on orthogonal term rewrite systems and employing the number of reductions as34

measure of proof complexity, they obtain in the context of confluence optimal exponential35

upper bounds on the size of the rewrite proof in relation to the size of the peak. With36

respect to the Church-Rosser property only a non-elementary upper bound can be shown.37

Related results have been obtained for the λ-calculus, where again non-elementary bounds38

are obtained for both properties, cf. [9].39

If, however, proof complexity is measured more in the tradition of computational com-40

plexity, that is, as the number of symbols occurring in a proof, then more tractable results41

are possible. For example for orthogonal term rewrite systems, we prove that for confluence42

the size of the least rewrite proof is always polynomially bounded in the size of the peak.43
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23:2 On Complexity of Confluence and Church-Rosser Proofs

i confluence ii Church Rosser

Figure 1 Confluence and Church-Rosser property

Motivation. These results may open the way for the application of rewriting techniques in44

complexity theoretic studies, in particular in the context of Bounded Arithmetic [5]. A major45

open problem in Bounded Arithmetic is the separation of its fragments, which has deep46

connections to similar questions about the separation of computational complexity classes47

like the Polynomial Time Hierarchy, including the P vs. NP problem. Consider equational48

theories, restricted to term equations that define functions symbols exclusively by recursion.49

As established in [4] by the first author, consistency of such equational theories can be50

proved in the fragment of Bounded Arithmetic S1
2 . This is remarkable, as it disproves the51

general impression in Bounded Arithmetic, that consistency statements cannot be used for52

separation arguments - consistency of equational theories with a richer set of axioms are53

usually unprovable in Bounded Arithmetic [6].54

In the proof in [4], the given equational proof is reconstructed in S1
2 using a technically55

involved process of “approximation” and “calculation”. An alternative, much more elegant,56

proof could employ the Church-Rosser property of the induced term rewrite system. To our57

best knowledge it is, however, unclear whether this property (or confluence) is formalisable58

in S1
2 . The results of this paper are conceivable as a first step towards this direction.59

Contributions. In summary, we make the following contributions, where we are only60

concerned with orthogonal term rewrite systems.61

1) Our main result, Theorem 17, shows that the size—measured in the number of symbols—62

of the smallest possible rewrite proofs is in the worst-case polynomially bounded in the63

size of the peak, cf. Figure 1. This shows that confluence properties are polynomial time64

computable, hence are formalisable in Bounded Arithmetic.65

The polynomial (in fact biquadratic) upper bound stems from a quadratic bound on the66

number of reductions in the rewrite proof in the size of the peak, and a quadratic bound67

on the size of each term in the rewrite proof.68

2) For the Church-Rosser property we give an exponential worst-case lower bound to the69

size of the join in the size of the equality proof, cf. Theorem 19. This shows that it is70

not possible to formalise Church-Rosser properties directly in Bounded Arithmetic. The71

(worst-case) bound is precise.72

3) We give matching (worst-case) upper and lower bounds based on different complexity73

measures. For confluence, we show that the size of the join is linear in the size of the74

product of the end terms in the peak, cf. Corollary 15 and Proposition 10. For the Church-75

Rosser property, we show that the size of the join is polynomial in the product of the sizes76

of the intermediary terms in the equational proof, cf. Theorem 22 and Proposition 21.77

4) Finally, we study the complexity of proving confluence in the context of the λ-calculus.78

We obtain that the size of the join is at least exponential in the size of the peak. Hence,79

confluence is also not formalisable directly in Bounded Arithmetic.80
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Outline.81

The next section introduces basic notions and results. In Section 3 we establish the mentioned82

lower bound results for rewriting. Section 4 introduces technical notions that underly the83

methodology of our main results, to be presented in Section 5. In Section 6 we study lower84

and upper bounds on the complexity of Church-Rosser proofs. The lower bound of confluence85

proofs is established in Section 7. Section 8 discusses related works. Finally, in Section 9, we86

conclude and present future work.87

2 Preliminaries88

We assume (at least nodding) acquaintance with term rewriting [1, 11], however recall basic89

definitions and notations for ease of readability.90

General. Let R be a binary relation. We write R∗ for the reflexive and transitive closure91

of R. Let V denote a countable infinite set of variables, and F a countable infinite set92

of function symbols (also called signature). The set of terms over F and V is denoted93

by T (F ,V).94

Let t be a term (over F and V). A position p is a finite sequence of positive integers. Via95

positions, we uniquely identifying subterms of t, denoted as t|p. We write p∥q to indicate96

parallel positions, generalising the notions suitably to sets of positions. We write Var(t) to97

denote the set of variables occurring in t, ie. Var t = {x | t|p is a variable for some position p}98

and we write rt(t) to denote its root symbol. For example, for {x, y} ⊆ V , Var(x + y) = {x, y}99

and rt(x + y) = +. The size |t| of term t is defined as the number of symbol occurrences100

in t, for example, |x + y|= 3. A term t is linear if every variable in t occurs only once.101

Term Rewriting. A rewrite rule is a pair l→ r of terms, such that (i) the left-hand side l102

is not a variable and (ii) Var(l) ⊇ Var(r). A term rewrite system (TRS) over F is a finite set103

of rewrite rules R; it will be denoted by the pair (F ,R). If the signature F is clear from104

context, we simply denote a TRS by its set of rules R. If l → r is a rewrite rule and σ a105

renaming, then the rule lσ → rσ is called a variant of l→ r. A TRS is said to be variant-free,106

if it does not contain rewrite rules that are variants. In the following we assume that TRSs107

are variant-free.108

The rewrite relation based on R is denoted as →R and its transitve and reflexive closure109

as →∗
R. If the TRS is clear from context, we will simply write → and →∗ respectively. Let s110

be a redex in term t. Here a redex is an occurrence of a term s that is an instance of the111

left-hand side l of a rule l→ r ∈ R. We write t s−→R t′ to indicate that redex s is contracted112

in the rewrite step. A term t over T (F ,V) is in normal form with respect to a TRS R, if t113

does not contain any redex. We call a substitution σ normalised (with respect to R), if all114

terms in the range of σ are in normal form. The innermost rewrite relation i−→R of a TRS115

R is defined as follows: s i−→R t if there exists a rewrite rule l → r ∈ R, a context C, and116

a substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal117

forms of R.118

An overlap for R is a triple ⟨l→ r, p, l′ → r′⟩, such that (i) l→ r, l′ → r′ are rules in R,119

whose variables are disjoint, (ii) p is not a variable position in l′, (iii) l and l′|p are unifiable,120

(iv) if p = ε, then l → r, l′ → r′ are not variants. A TRS is left-linear if the left-hand121

sides of all rules are linear. A TRS R without overlap is called non-ambiguous; a left-linear,122

non-ambiguous TRS is called orthogonal.123

Let s and t be terms. Then an (innermost) derivation D : s →∗
R t with respect to a124

TRS R is a finite sequence of (innermost) rewrite steps. Given an equational system E , we125
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can define, as usual, a TRS R such that126

s =E t iff s↔∗
R t .127

(See [1, 11] for the straightforward construction.) A finite sequence of equational steps:128

t1 ↔R t2 · · · ↔R tn is called an equational proof.129

A term s ∈ T (F ,V) is confluent, if for all t, t′ ∈ T (F ,V) with t ∗← s→∗ t′, there exists130

a common reduct v, that is, t→∗ v ∗← t′. A TRS (F ,R) is confluent if all terms in T (F ,V)131

are confluent. We call the equational proof t ∗← s →∗ t′ a peak, the term v the join and132

the derivations t→∗ v ∗← t′ a rewrite proof. A peak is local, if it consists of one step each:133

t← s→ t′. Confluence is equivalent to the Church-Rosser property, which states that for134

any equational proof t ↔∗ t′ there is a rewrite proof t →∗ v ∗← t′. A rewrite relation →135

has the diamond property, if any local peak over → can be joined immediately, that is, if136

← · → ⊆ → · ← holds.137

Descendants and Residuals. Let (F ,R) be a TRS and let L be a set of labels. The138

labelled TRS (FL,RL) is defined by setting (i) FL := F ∪ {f ℓ | f ∈ F and ℓ ∈ L}, (ii) the139

projection ⟨t⟩ of a term t ∈ T (FL,V) removes all labels, and (iii)RL := {l→ r | ⟨l⟩ → r ∈ R}.140

The next proposition is from Terese [11, Proposition 4.2.3].141

▶ Proposition 1. Consider a left-linear TRS (F ,R) and a set of labels L. Let s ∈ T (F ,V)142

and let s′ be a labelled term such that ⟨s′⟩ = s. Then each reduction step s→ t can be lifted143

to a reduction step s′ → t′ in the labelled TRS (FL,RL) such that ⟨t′⟩ = t.144

In the following, we write RL in short for the labelled TRS (FL,RL), if the (labelled)145

signature is clear from context.146

▶ Definition 2. Let t be a term in a TRS R, let s be a redex and let f be a function symbol147

occurring at position p in t, ie. f = rt(t|p). Let tf denote the term that results from t by148

labelling this occurrence of f with label ℓ ∈ L. Then the reduction step t s−→ t′ (contracting149

redex s) is lifted to a reduction step tf → t′′ in RL.150

The occurrences of f in t′ that have label ℓ in t′′ are the descendants of the original symbol151

occurence of f in t. Conversely, the original f is called the ancestor of its descendants.152

The descendant/ancestor relation is extended to subterm occurrences via their root153

symbols. The descendant of a redex is called a residual. For a set of redexes S, we call the154

set of residuals of redexes in S simply the set of residuals of S. The descendant/ancestor155

relation naturally generalises to sequence of rewrite steps, that is, derivations. Note that the156

ancestor relation is unique, that is, for any derivation D : s→∗ t the ancestor of a subterm u157

in t is given as a unique occurrence of a subterm u′ in s, if it exists, cf. [11, Chapter 4].158

Orthogonality. It is well-known that every orthogonal TRS is confluent, which can159

for example be verified by repeated applications of the Parallel Moves Lemma, cf. [11,160

Lemma 4.3.3].161

▶ Lemma 3 (Parallel Moves Lemma). In an orthogonal TRS, let t→∗ t2 be given. Let t s−→ t1162

be a one-step reduction by contraction of redex s. Then a common reduct t3 of t1 and t2 can163

be found by contracting in t2 of all residuals of redex s. Observe that all residuals will be164

pairwise disjoint.165

In order to prove the Parallel Moves Lemma, one makes use of the parallel rewriting166

relation, formalising the notion of contraction of pairwise disjoint redexes.167

▶ Definition 4. Let R be a TRS. We define the parallel rewriting relation ⇒R as follows168
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1. x⇒R x for any variable x,169

2. f(s⃗)⇒R f (⃗t) for any function symbol f , if for all i si ⇒R ti, and170

3. lσ ⇒R rσ, if l→ r ∈ R and σ a substitution.171

We often omit R and simply write s =⇒ t, if the TRS is clear from context.172

Note that →R ⊆ ⇒R ⊆ →∗
R, in particular we have that →∗

R = ⇒R
∗. Making use173

of parallel rewriting, we can state the Parallel Moves Lemma succinctly as follows. A174

strengthening of the lemma has been stated and proven in [10].175

▶ Lemma 5. Parallel rewriting has the diamond property for every orthogonal TRS R, that176

is, if t⇐R s⇒R t′, then there exists a join t′′ such that t′ ⇒R t′′ ⇐R t.177

Let TRS R be fixed and let s =⇒ t denote a paralel rewriting step with respect to R.178

Suppose the (occurrences of) disjoint redexes contracted are collected in set S. Then179

we succinctly write s
S
=⇒ t. Due to the Parallel Moves Lemma, we obtain the following180

proposition, cf. [11, Proposition 4.5.6].181

▶ Proposition 6. Let R be an orthogonal TRS, and let t ∈ T (F ,V). Let S, T be sets of182

pairwise disjoint redexes in t and let t
S
=⇒ t′. Then the set of residuals of T in t′ is unique,183

that is, independent of the order in which redexes in S are contracted.184

Proof. This is a direct consequence of the diamond property of =⇒. Actually a stronger results185

holds. The single parallel rewriting step employed, is generalisable to a complete development186

step, without affecting the validity of the proposition, cf. [11, Proposition 4.5.6]. ◀187

Based on Proposition 6 we denote with T/S the (unique) set of residuals of T in t′ that188

are obtained by the parallel rewriting step t
S
=⇒ t′. With Lemma 3 we observe that T/S189

consists of pairwise disjoint redexes in t′.190

Following the definition of the functions cvsR and vsR in [10], we define functions that191

compute the worst case of joining derivations based on peaks, resp. equation proofs, of a192

given size in the most effective way. Let ∥D∥ denote the number of symbol occurrences in D.193

▶ Definition 7. Let R be an orthogonal term rewrite system. With jR(t, t′) we denote the194

minimal size of a joining derivation of terms t and t′, if it exist:195

jR(t, t′) =
{

min{∥D′∥ : D′ : t→∗
R · ∗←R t′} if t and t′ have a joining derivation

∞ otherwise
196

The worst case join complexities for confluence Conf and Church-Rosser CR are defined as197

Conf(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t←∗
R · →∗

R t′, R orthogonal TRS }198

CR(n) = max{jR(t, t′) : ∃D; ∥D∥ = n, D : t↔∗
R t′, R orthogonal TRS } .199

In the following we will give some (worst-case) upper and (worst-case) lower bounds to200

those functions. Our main result will be a polynomial upper bound to Conf in Corollary 18.201

We also provide an exponential lower bound to CR in Corollary 20.202

For the remainder of the paper, we restrict to orthogonal TRSs.203

CVIT 2016
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3 Lower Bounds for Confluence204

For our lower bound considerations we use the following big-O facts, which follow easily from205

definitions.206

▶ Lemma 8. 1. If e1(n) = O(e(n)) and e2(n) = Ω(e(n)) then e2(n) = Ω(e1(n)).207

2. If e1(n) = e(n)O(1) and e2(n) = e(n)Ω(1), then e2(n) = e1(n)Ω(1).208

We first give a linear lower bound to the number of steps for joining a peak in the size of209

the splitting sequence. We will provide a corresponding upper bound in Corollary 16.210

▶ Proposition 9. There is an orthogonal TRS R satisfying the following: Let D1 : a→∗ b211

and D2 : a→∗ c be derivations over R, such that b→k d, and c→l d holds for numbers k, l,212

and term d. Then k + l = Ω(∥D1∥+ ∥D2∥), that is, k + l is at least linear in the number of213

symbols in D1 and D2 together.214

Proof. Consider the TRS R1 given by215

f(x)→ g(x, x) a(x)→ b(x, x) . (1)216

We define meta term symbols via A(T ) := a(T ), B(T ) := b(T, T ), F (T ) := f(T ), G(T ) :=217

g(T, T ). For a meta term symbol T let T (n) denote its n-fold iteration.218

We define219

Sn = F (n)(A(n)(0)) Un = F (n)(B(n)(0))220

Vn = G(n)(A(n)(0)) Wn = G(n)(B(n)(0)) ,221

and compute222

|Sn|= O(n) |Un|= O(2n) |Vn|= O(n2n) .223

Consider the following peak in R1, rewriting innermost redexes first.224

D1 : Sn
a−→ F (n)(A(n−1)(B(0))) a−→ F (n)(A(n−2)(B(2)(0))) a−→ · · · a−→ Un225

D2 : Sn
f−→ F (n−1)(G(A(n)(0))) f−→ F (n−2)(G(2)(A(n)(0))) f−→ · · · f−→ Vn .226

To discern ambiguity, we have identified the root symbol of the redex above the rewrite227

relation.228

The size of each term in the first derivation is O(2n), hence the overall size of D1 is229

O(n2n). The size of the k-th term in the second derivation is O(n2k), so adding them up230

for k ⩽ n gives a bound of O(n2n) for the overall derivation length of D2 as well. Hence231

(∥D1∥+ ∥D2∥) = O(n2n).232

The ’fastest’ join of Un and Vn is given by rewriting innermost redexes first:233

Un
f−→1 F (n−1)(G(B(n)(0))) f−→1 F (n−2)(G(2)(B(n)(0))) f−→1 · · · f−→1 Wn234

Vn
a−→2n

G(n)(A(n−1)(B(0))) a−→2n

G(n)(A(n−2)(B(2)(0))) a−→2n

· · · a−→2n

Wn .235

The length of the first derivation is n, and of the second n2n, respectively.236

Thus, a lower bound to the number of steps Sjoin of any derivations that join Un and Vn237

is n2n: Sjoin = Ω(n2n). Together with (∥D1∥+∥D2∥) = O(n2n) and Lemma 8.(1), we obtain238

Sjoin = Ω(∥D1∥+ ∥D2∥). Hence, Sjoin must be at least linear in the size of the derivations239

D1 and D2 constituting the peak. ◀240
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We also give a linear lower bound to the size of the join of the diamond in the product241

of the sizes of meet-able terms in a peak. The corresponding upper bound will be given in242

Corollary 15.243

▶ Proposition 10. There is an orthogonal TRS R satisfying the following: Let b ∗← a→∗ c244

be a peak over R with consequent join d such that b→∗ d and c→∗ d. Then |d|= Ω(|b|·|c|),245

that is, the size |d| of d is at least linear in |b|·|c|.246

Proof. Fix n. We will basically follow the example from the proof of Proposition 9, with a247

slight modification to obtain optimal bounds.248

With the notation from the proof of Proposition 9, expand TRS R1, cf. (1), with the rule249

h→ A(n)(0). Let the resulting TRS be denoted as R2. We define250

S′
n = F (n)(h) Un = F (n)(B(n)(0))251

V ′
n = G(n)(h) Wn = G(n)(B(n)(0)) ,252

and compute253

|Un|= O(2n) |V ′
n|= O(2n) |Wn|= Ω(22n) .254

Consider the following peak:255

S′
n

h−→ F (n)(A(n)(0)) a−→∗ Un256

S′
n

f−→ F (n−1)(G(h)) f−→ F (n−2)(G(2)(h)) f−→∗ V ′
n .257

The ’smallest’ join of Un and Vn is given by rewriting only residuals:258

Un
f−→∗ Wn259

V ′
n

h−→∗ G(n)(A(n)(0)) a−→∗ Wn .260

We compute |Un|·|V ′
n|= O(22n). Together with |Wn|= Ω(22n) and (1) we obtain |Wn|=261

Ω(|Un|·|V ′
n|). Hence, the size of any join must be at least linear in the product of the sizes262

of Un and V ′
n. ◀263

4 Injectivity264

For the sequel, we fix an orthogonal TRS R. Let t′ ∗← s→∗ t denote a peak over R.265

Consider the tiling diagramme in Figure 2 obtained by repeated applications of Lemma 5.266

We assume that H0,ν denotes a singleton set of one redex in s0,ν , for ν = 0 . . . , i−1, and that267

Vµ,0 denotes a singleton set of one redex in sµ,0, for µ = 0 . . . , j−1. Note that this implies268

|H0,ν |= 1 and |Vµ,0|= 1. Further, we obtain269

Vµ,ν+1 = Vµ,ν/Hµ,ν Hµ+1,ν = Hµ,ν/Vµ,ν ,270

as sets of residuals using Proposition 6. Moreover, using Proposition 6, we have that Hµ,ν271

and Vµ,ν are sets of pairwise disjoint redexes in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1.272

Recall that a redex is an occurrence of a term t that is an instance of the left-hand side l of273

a rule l→ r ∈ R.274

CVIT 2016
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Figure 2 The tiling situation.

Generalised Ancestors.275

Given a sequence of rewrite steps276

t→s′ t′ →s′′ t′′ → . . .→s(n−1) t(n−1) →s(n) t(n)
277

we generalise the notion of ancestor to trace any subterm in the sequence back to t—we278

denote this generalised ancestor, or short g.-ancestor.279

Ancestors are also g.-ancestors. Consider a subterm uj in t(j), and its ancestors uj−1 in280

t(j−1), etc., until ui in t(i) cannot be extended any further. Let f denote the root symbol of281

ui in t(i). As f does not have an ancestor in t(i−1), we must be in the following situation:282

There exist a context C[∗], substitution σ, and rule l → r in R, such that t(i−1) = C[lσ],283

t(i) ≡ C[rσ], and f occurs in r. We now define the generalised ancestor of f in t(i) as the root284

symbol of l in C[lσ] = t(i−1). Continue until t is reached.285

▶ Proposition 11. In the tiling diagramme in Figure 2, the generalised ancestors of any286

symbol occurrence are unique, that is, independent of the path chosen to compute them.287

Proof. Arguing inductively, it suffices to prove the statement for a single square:288

sµ,ν
Hµ,ν===⇒ sµ,ν+1

⇓Vµ,ν ⇓Vµ,ν+1

sµ+1,ν
Hµ+1,ν=====⇒ sµ+1,ν+1 .

289

Recall that using Proposition 6, we have that Hµ,ν and Vµ,ν are sets of disjoint redexes290

in sµ,ν , for all µ = 0 . . . , j−1, ν = 0 . . . , i−1. Thus, in proof of the claim, we can assume291

without loss of generality that |Hµ,ν | = |Vµ,ν | = 1.292

Let u be a subterm of sµ+1,ν+1. First, suppose u has an ancestor in sµ,ν . Then, this293

ancestor is unique, as mentioned above.294
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Second, suppose u has only generalised ancestors in sµ,ν . Then, we distinguish cases on295

the relative positioning of redexes in Hµ,ν and Vµ,ν , respectively. Recall, that by assumption296

the redexes in Hµ,ν and Vµ,ν are pairwise disjoint.297

Case. Suppose Hµ,ν∥Vµ,ν , that is, the redexes in Hµ,ν ∪ Vµ,ν are all pairwise disjoint. Then298

the claim is obvious.299
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Figure 3 Critical cases where generalised ancestors occur

Case. Suppose there exists rules l → r, l′ → r′ ∈ R, and substitutions σ, σ′ such that300

lσ ∈ Hµ,ν and l′σ′ ∈ Vµ,ν . Further l′σ′ ◁ lσ. (The case lσ = l′σ is trivial, because we must301

have (l→ r) = (l′ → r′) due to orthogonality of R.) As u does not have an ancestor in sµ,ν ,302

rt(u) either occurs in r or in r′. The situation of this case is depicted in Figure 3.303

Wlog. rt(u) occurs in r′ and thus u occurs in any of the occurrences of r′σ′ in sµ+1,ν+1.304

By assumption on lσ and l′σ′, u has an ancestor in sµ+1,ν and a generalised ancestor in305

sµ,ν+1, which are both unique and consequently their join in sµ,ν is unique, too. ◀306

▶ Definition 12. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i. Let f307

be a function symbol occurrence in sµ,ν , and let µ′ ⩽ µ, ν′ ⩽ ν. We define gaµ,ν
µ′,ν′(f) as the308

g.-ancestor of f in sµ′,ν′ .309

We now formulate the main result of this section.310

▶ Lemma 13. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i, and µ′ ⩽ µ,311

ν′ ⩽ ν. The mapping of function symbol occurrences f in sµ,ν to the pair (gaµ,ν
µ,ν′(f), gaµ,ν

µ′,ν(f))312

is an injection.313

Proof. This claim can be proven by induction on ν − ν′. The case for ν = ν′ is obvious,314

because gaµ,ν
µ,ν is the identity, which is injective.315

For the induction step from ν′ + 1 to ν′ we can assume by induction hypothesis that the316

claim is true for (µ′, ν′ + 1). We then show the claim for (µ′, ν′), depicted as follows.317
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For sake of contradiction assume the claim is wrong for (µ′, ν′). That is, there are f, g319

occurring in sµ,ν with f, g different symbol occurrences, such that gaµ,ν
µ′,ν(f) = gaµ,ν

µ′,ν(g) and320

gaµ,ν
µ,ν′(f) = gaµ,ν

µ,ν′(g). By i.h. we must have gaµ,ν
µ,ν′+1(f) ̸= gaµ,ν

µ,ν′+1(g). Let r1 = gaµ,ν
µ,ν′+1(f),321

r2 = gaµ,ν
µ,ν′+1(g), and r0 = gaµ,ν

µ,ν′(f) = gaµ,ν
µ,ν′(g). This situation is depicted below.322  

Hair fSmit Smith is Smir
in

Hun
Smit Smith Said

to
f

I K 19323

We must be in the following situation: There are rule l → r in R, substitution ρ,324

terms u1, . . . , uk, context C[∗1, . . . , ∗k], such that Hµ,ν′ = {u1, . . . , uk}, u1 = lρ, sµ,ν′ =325

C[u1, . . . , uk], and r1 and r2 occur in rρ in sµ,ν′+1 = C[rρ, . . . ], and either326

A) the roots of r1 and r2 occur already in r in C[rρ, . . . ], hence their joint g.-ancestor r0 is327

the root of l in C[lρ, u2, . . . , uk], see Figure 4a;328

B) or we have a variable x occuring in l which occurs multiple times in r, e.g. as Cr[∗1, ∗2]329

with r = C[x, x] – hence rρ = Crρ[xρ, xρ] – and r1 occurs in the first xρ, r2 occurs in330

the second xρ, and their joint ancestor r0 occurs in xρ in lρ in sµ,ν′ , see Figure 4b.331

Let r̂ = gaµ,ν
µ′,ν(f) = gaµ,ν

µ′,ν(g) be the g.-ancestor of f and g in sµ′,ν .332

Hµ,ν′ are residuals of Hµ′,ν′ , hence the ancestors r̃0 of r0 in sµ′,ν′ and r̃1, r̃2 of r1, r2 in333

sµ′,ν′+1 will occur in lρ′ and rρ′ for some ρ′. In particular in A), the roots of r̃1 and r̃2 are334



A. Beckmann and G. Moser 23:11

in r, and r̃0 is at the root of l. In case B) we have that rρ′ = Crρ′[xρ′, xρ′] with r̃1 occuring335

in 1st and r̃2 in 2nd of xρ′.336

In both cases we have that r̃1 and r̃2 are two distinct g.-ancestors of f and g in sµ′,ν′+1,337

resp., by following from sµ,ν the derivation first to sµ,ν′+1 and then to sµ′,ν′+1. However, by338

following from sµ,ν the derivation to sµ′,ν , f and g have a joint ancestor r̂, hence can only339

have one joint ancestor in sµ′,ν′+1 when following the derivation from sµ′,ν to sµ′,ν′+1 to the340

left. This contradicts Proposition 11 that g.-ancestors are unique. ◀341

▶ Lemma 14. Let the tiling diagramme in Figure 2 be given, and let µ < j, ν < i.342

Assuming |H0,ν |= 1, the mapping of each redex in Hµ,ν to their generalised ancestors in343

sµ,ν′ for ν′ < ν is an injection.344

Similar for Vµ,ν : Assuming |Vµ,0|= 1, the mapping of each redex in Vµ,ν to their generalised345

ancestors in sµ′,ν for µ′ < µ is an injection.346

Proof. We only consider the first assertion, the second is dual. Ie., we are in the following347

situation.348  

Son So 9 f How

Hur
Said i Said

got f a i f
349

Let s be a term, H a set of redexes in s, and f a function symbol occurrence in s. We350

succinctly write f ∈ H to indicate that f is the occurrence of the root symbol of some redex351

in H.352

By Lemma 13 we have that the mapping353

f ∈ Hµ,ν 7→ (gaµ,ν
µ,ν′(f), gaµ,ν

0,ν (f))354

is an injection. By assumption we have that |H0,ν |= 1, hence H0,ν = {r̂} for some r̂. This355

implies that gaµ,ν
0,ν (f) = r̂ for all f ∈ Hµ,ν . Hence356

f ∈ Hµ,ν 7→ gaµ,ν
µ,ν′(f)357

must be injective. ◀358

5 Upper Bounds on Confluence359

In this short section, we state and prove our main result that the size, that is, the number of360

symbols, of a rewrite proof is polynomial in the size of the peak, cf. Figure 1. First, we draw361

two easy corollaries from Lemma 13 and Lemma 14, respectively.362

▶ Corollary 15. Consider the tiling diagramme in Figure 2. The size of the join t′′ is bounded363

by the product of the sizes of t and t′:364

|t′′| ⩽ |t|·|t′| .365

Proof. This is a direct consequence of Lemma 13. ◀366

CVIT 2016



23:12 On Complexity of Confluence and Church-Rosser Proofs

▶ Corollary 16. Consider the tiling diagramme in Figure 2, assuming |H0,ν |= 1 and |Vµ,0|= 1.367

In this situation, the number of (sequential) reduction steps needed to join t and t′ via t′′, is368

bounded by the square of the size of the initial sequence. More precisely:369

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ⩽ i · |t′| + j · |t|370

⩽
( j∑

µ=0
|sµ,0|+

i∑
ν=1
|s0,ν |

)2 .371

Proof. By Lemma 14, |Hj,ν |≤ |t′| for ν < i, and |Vµ,i|≤ |t| for µ < j. ◀372

Now, our main result follows with ease.373

▶ Theorem 17. Let R be an orthogonal TRS and assume the existence of a peak D : t′ ∗←374

s →∗ t. Then there exists a rewriting proof D′ : t′ →∗ t′′ ∗← t whose size is polynomially375

bounded in the size of D. In fact, the size of D′ is biquadratic in the size of D.376

Proof. This is a consequence of Corollaries 15 and 16. Let D′ be the joining derivation given377

by the tiling diagram in Figure 2, where s0,0 = s, s0,ν is the ν-th term in s→i t, and sµ,0378

the µ-th term in s→j t′. Employing the notation of that figure, we obtain379

∥D∥ =
j∑

µ=0
|sµ,0|+

i∑
ν=1
|s0,ν | .380

Recall that ∥D∥ denotes the number of symbol occurrences in D. Due to Corollary 15, we381

have, for each µ, ν (0 ⩽ µ ⩽ j, 0 ⩽ ν ⩽ i), that382

|sµ,ν | ⩽ |sµ,0|·|s0,ν | ⩽ ∥D∥2 . (2)383

Moreover, due to Corollary 16, the number of joining steps in D′ is bounded by ∥D∥2:384

number of
joining steps ⩽

i−1∑
ν=0
|Hj,ν | +

j−1∑
µ=0
|Vµ,i| ≤ ∥D∥2 . (3)385

Combining (2) and (3), we conclude that ∥D′∥ ⩽ ∥D∥4. ◀386

▶ Corollary 18. Conf is biquadratically bounded, i.e. Conf(n) = O(n4).387

A closer inspection of the example in the proof of Proposition 10 establishes a cubic lower388

bound, i.e. Conf(n) = Ω(n3).389

6 Lower and Upper Bounds for the Church-Rosser Property390

In the case of the Church-Rosser property, we first give an exponential lower bound to the size391

of the join, which in particular gives an exponential lower bound to the join complexity CR.392

▶ Theorem 19. There is an orthogonal TRS R satisfying the following: Let D be a derivation393

of a ↔∗ b over R, such that a →∗ c and b →∗ c holds, then |c| is exponential in ∥D∥ in394

general, i.e. |c|= 2∥D∥Ω(1) .395



A. Beckmann and G. Moser 23:13

Proof. Consider the TRS R3 given by396

fi(x)→ ai(x, x) gi(x)→ ai(x, x) (i = 1, . . . , k) . (4)397

We define meta term symbols via Ai(T ) := ai(T, T ), define398

Sk
i = g1(. . . gi−1(gi(fi+1(. . . fk(0) . . . ))) . . . ) Uk = A1(. . . Ak(0) . . . )399

T k
i = g1(. . . gi−1(Ai(fi+1(. . . fk(0) . . . ))) . . . ) ,400

and compute401

|Sk
i | = O(k) |T k

i | = O(k) Sk
i

gi−→ T k
i Sk

i
fi+1−−−→ T k

i+1 .402

Consider the following derivation:403

D := T k
1 ← Sk

1 → T k
2 ← Sk

2 → T k
3 . . . T k

k−1 ← Sk
k−1 → T k

k404

The unique Church-Rosser join is given by T k
i →∗ U for all i = 1, . . . , k. From now on we405

drop the superscript k.406

Let SD = ∥D∥ and SU = |U |. We compute SD = O(n2) and SU = Ω(2n). Thus SD ⩽ ck2
407

for some c > 0, hence k ⩾
√

1
c SD ⩾ SD

ϵ for small ϵ > 0. Thus SU ⩾ 2k ⩾ 2SD
ϵ . ◀408

▶ Corollary 20. CR(n) is exponential in n, i.e. CR(n) = 2nΩ(1) .409

Inspecting our upper bounds, Corollaries 15 and 16, establishes that this bound is optimal410

up to the degree, i.e. CR(n) = 2nO(1) .411

We now show that the size of the join in the case of Church-Rosser is polynomially related412

to the product of the sizes of the terms in the starting derivation. We first state the lower413

bound.414

▶ Proposition 21. There is an orthogonal TRS R satisfying the following: Let a1 ↔ a2 ↔415

· · · ↔ ak be a derivation over R such that a1 →∗ b and ak →∗ b for some b. Then |b| is416

polynomial in |a1|·|a2|· · · · · |ak| in general, i.e. |b|= (|a1|·|a2|· · · · · |ak|)Ω(1).417

Proof. We modify the TRS from the previous proof so that the starting terms are of constant418

size: Expand the TRS from the proof of Theorem 19 by419

f̄k
i → fi(̄fk

i+1) ḡk
i (x)→ ḡk

i−1(gi(x)) (i = 1, . . . , k) (5)420

where f̄k
k+1 represents 0. We define421

S̄k
i = ḡk

i (̄fk
i+1) T̄ k

i = ḡk
i−1(Ai(̄fk

i+1)) ,422

and compute423

|S̄k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) ḡk
i−→ ḡk

i−1(gi(̄fk
i+1)) gi−→ ḡk

i−1(Ai(̄fk
i+1)) = T̄ k

i424

|T̄ k
i | = O(1) S̄k

i = ḡk
i (̄fk

i+1) f̄k
i+1−−→ ḡk

i (fi+1(̄fk
i+2)) fi+1−−→ ḡk

i (Ai+1(̄fk
i+2)) = T̄ k

i+1 .425

From now on we will drop the superscript k. Consider the following derivation:426

D̄ := T̄1 ←2 S̄1 →2 T̄2 ←2 S̄2 →2 T̄3 . . . T̄k−1 ←2 S̄k−1 →2 T̄k .427

The unique Church-Rosser join is again given by T̄i →∗ r for all i = 1, . . . , k.428

Let S̄ = Πt∈D̄|t| and Sr = |r|. We compute S̄ = c2k for some c = O(1) which is an upper429

bound on the size of terms occurring in D̄. Hence S̄ = (2k)O(1). We also have Sr = (2k)Ω(1).430

Hence Sr = S̄Ω(1) using Lemma 8(2). ◀431
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We also have a corresponding upper bound.432

▶ Theorem 22. Let R be an orthogonal TRS. Given a derivation a1 ↔ a2 ↔ · · · ↔ ak over433

R, there is a join a1 →∗ b ∗← ak for some b, such that |b| is bounded by |a1|·|a2|· · · · · |ak|.434

Proof. The upper bound is obtained by induction on k using the related upper bound for435

confluence, Corollary 15: Assume a1 ↔ · · · ↔ ak ↔ ak+1. By induction hypothesis there are436

some b, a1 →∗ b and ak →∗ b such that |b| is bounded by |a1|·|a2|· · · · · |ak|. If ak+1 → ak437

then b is also the join for a1 and ak+1 and we are already done. Otherwise, ak → ak+1.438

Using that ak →∗ b, we can join this peak with some c of size ⩽ |b|·|ak+1| using Corollary 15.439

Thus |c| ⩽ |b|·|ak+1| ⩽ |a1|·|a2|· · · · · |ak|·|ak+1|. ◀440

7 A Lower Bound for the Lambda Calculus441

For this section, we assume(at least nodding) acquaintance with the (untyped) λ-calculus [2, 3].442

While we refrain from re-stating (hopefully) well-known notions, the result should be easy to443

understand.444

We show that for confluence in λ-calculus, the size of the join is exponential in the product445

of the sizes of the starting terms in general.446

▶ Proposition 23. Given a peak D : b ←∗
λ a →∗

λ c, and a joining derivation b →∗
λ d ←∗

λ c.447

Then |d| is exponential in ∥D∥ as well as in |b|·|c| in general: |d| = 2∥D∥Ω(1) and |d| =448

2(|b|·|c|)Ω(1) .449

Proof. Let f, g, h, x, y be variables. Let A := λx.((λy.hyy)(gx)) and B := λx.(h(gx)(gx)).450

We have A λy−→λ B, |A|= Θ(1), |B|= Θ(1).451

Define terms T k, Uk, V k, W k as follows: Let T 0 = U0 = V 0 = W 0 = f , and inductively452

T k+1 = (A T k), Uk+1 = (B Uk), V k+1 = (λy.hyy)(gV k), W k+1 = h(gW k)(gW k) .453

Then |T k|= O(k), |Uk|= O(k), |V k|= O(k), and |W k|= Ω(2k). We have454

T k λy−→k
λ Uk T k λx−−→k

λ V k Uk λx−−→k
λ W k V k λy−→k

λ W k
455

by induction on k. Let D be Uk ←∗
λ T k →∗

λ V k. Then ∥D∥ = O(k2), hence k ⩾ (∥D∥)ϵ
456

for some ϵ > 0, hence |W k| = Ω(2k) = Ω(2(∥D∥)ϵ). As |b|·|d|= O(k2) as well, the same457

calculation applies in this case as well. ◀458

8 Related Works459

Ketema and Grue Simonsen have studied similar properties in [10]. For a given TRS R,460

they define functions cvsR and vsR, estimating the least number of reduction steps necessary461

in a rewrite proof, assuming an equational proof or a peak, respectively. More precisely,462

cvsR(m, n) denotes the least number of reduction steps required to complete a rewrite proof,463

given an equational proof involving at most n steps between two terms t, t′ of size at most m.464

Likewise, vsR(m, n) denotes the least number of reduction steps in a rewrite proof, given a465

peak t ∗← s→∗ t′, where the size of s is at most m and the reduction lengths are at most of466

size n. For orthogonal TRSs R they obtain optimal exponential upper bound on vsR and467

an upper bound on cvsR that belongs to the 4th-level of the Grzegorczyk hierarchy. I.e. the468

upper bound on cvsR is at least non-elementary. Wrt. the λ-calculus, confluence already469

requires an non-elementary upper bound. In subsequent work, Fujita proved that for the470
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λ-calculus cvsR is upper bounded in the 4th-level of the Grzegorczyk hierarchy, cf. [9]. Only471

optimality of the bound on vsR for orthogonal rewrite systems has been established.472

We emphasise that these results are orthogonal to our contributions, as we make use473

of a different notion of proof complexity: the number of symbols, rather than the number474

of reduction steps. While this measure is natural in the context of rewriting (or even the475

λ-calculus), it is less so in the context of computational complexity, from our point of view.476

In short, for orthogonal TRSs, this change allows us to provide (optimal) polynomial upper477

bounds on confluence proofs and (optimal) exponential upper bounds on Church-Rosser478

proofs, while we establish an exponential lower bound on confluence proofs for the λ-calculus.479

Note that our changed notion of size not only allows tractable upper bounds, but also480

differentiates precisely between the expressivity of (first-order) term rewrite systems and481

(higher-order) λ-calculus, a difference that got somewhat blurred in related works.482

To the best of our knowledge, confluence or Church-Rosser properties in term-rewriting483

have not been studied in general in Bounded Arithmetic (though they have been used as484

tools in the analysis of related artefacts, as in work by Das [8]). The closest we are aware of485

are the results by the first author [4] that formalises a restricted and very involved property486

the resembles elements of Church-Rosser, and which are used to prove the consistency of any487

equational theory that exclusively is based on recursive defining equations, in a weak theory of488

bounded arithmetic. These results were improved by Yamagata [12] by also allowing rules for489

substituting terms into equations in the equational reasoning while proving consistency in a490

weak theory of bounded arithmetic. However, Yamagata formalised ideas from programming491

semantics with no connection to rewriting.492

9 Conclusion493

In this paper, we have investigated two well-studied properties of rewriting and the λ-calculus,494

namely confluence and the Church-Rosser property, through the lens of proof complexity. In495

particular, for orthogonal TRSs, we have shown that the shortest rewrite proof obtained in a496

confluence argument is polynomially related to the size of the peak.497

This is in contrast to earlier results on upper bounds on the size of confluence and498

Church-Rosser proofs that used the number of steps as size measure. While this measure499

is natural in the context of rewriting (or even the λ-calculus), it is less so in the context of500

computational complexity, from our point of view. We emphasise that our changed notion of501

size not only allows tractable upper bounds, but also differentiates precisely between the502

expressivity of (first-order) term rewrite systems and (higher-order) λ-calculus, a difference,503

that got somewhat blurred in related works.504

We have established preliminary steps towards our motivation to study consistency proofs505

in weak theories of arithmetic through the lens of rewriting technologies. In future work we506

want to expand this direction.507

It seems natural to us to employ techniques from graph rewriting [11, Chapter 13] to508

overcome the exponential lower bound on the size of the join that we have established for509

the Church-Rosser property. Due to the succinct encoding of multiple occurrences in graph510

rewriting it could be possible to allow an alternative encoding of the join and of the rewrite511

proof, altogether. The latter could potentially give rise to a polynomial encoding. These512

investigations are left to future work.513
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