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Abstract: Climate risk assessment is critical for organisations, especially in sectors such as the
processed food sector in Colombia. This study addresses the identification and assessment of the
main climate transition risks using an approach that combines fuzzy logic with several multi-criteria
decision-making methods. This approach makes it possible to handle the inherent imprecision
of these risks and to use linguistic expressions to better describe them. The results indicate that
the most critical risks are price volatility and availability of raw materials, the shift towards less
carbon-intensive production models, increased carbon taxes, technological advances, and associated
development or implementation costs. These risks are the most significant for the organisation
studied and underline the need for investments to meet regulatory requirements, which are the main
financial drivers for organisations. This analysis highlights the importance of a robust framework to
anticipate and mitigate the impacts of the climate transition.
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1. Introduction

Climate-related risks have wide-reaching implications, causing economic, material,
environmental, and social damage. To mitigate these losses, data-driven models that
analyse historical data are emerging, helping to improve the assessment of these risks
and achieve a more accurate and comprehensive understanding of the potential impacts
associated with climate-related hazards [1]. By leveraging the insights gained from the
analysis of historical data, companies aim to improve the ability to anticipate, prepare for,
and respond to the challenges posed by climate-related risks. There are several methods to
assess climate risk and make decisions accordingly, and the most appropriate approach
greatly depends on factors such as data requirements, time frame, and organisational
purpose [2].

Increasingly severe weather conditions pose growing systemic risks to businesses
in the global economy [3], with climate change impacting natural ecosystems through
rising sea levels, increased average temperatures, changes in precipitation patterns, and
temperature fluctuations. These physical effects generate significant risks for companies,
commonly referred to as climate physical risks, which can lead to financial losses due to
asset damage or business interruptions [4]. In response to the recognition of these risks,
regulatory measures are being implemented to address the impacts of climate change. This
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has led to an increase in climate regulations that impose financial risks on organisations,
often resulting in additional operating and investment costs. Moreover, climate transition
risks, which are associated with the process of adapting to a low-carbon economy, also
arise. These risks can be classified into four categories: regulatory risks, which encompass
changes aimed at mitigating climate change and promoting decarbonisation; technological
risks, related to the shift from greenhouse gas (GHG)-generating technologies to cleaner
alternatives; market risks, which involve shifts in supply and demand dynamics driven by
new production and consumption patterns focused on GHG reduction; and reputational
risks, stemming from changes in stakeholder perceptions of a company’s contribution to a
low-carbon economy [4].

In essence, both climate physical and transition risks are intertwined, as the physical
impacts of climate change and the necessity to transition towards a sustainable economy
present various challenges to businesses. The combined effect of these risks underscores
the importance of understanding and managing the regulatory, technological, market, and
reputational risks that arise as organisations navigate the transition to a low-carbon future.

The correlation between physical risk and transition risk is clear: as transition poli-
cies are implemented, the impact of physical risks is generally mitigated. Furthermore,
when physical risks are more likely to manifest, the need for effective transition measures
increases [5].

Climate change has become one of the most pressing global issues. It is essential to
analyse the science of climate change and the uncertainties associated with it, as well as to
identify and explain the associated climate change risks and the financial implications [5].

Predicting the future has always been a human desire, but when it comes to climate
change, its impacts, mitigation, and adaptation, there is a great deal of uncertainty. Scientists
have estimated the probability of different outcomes for greenhouse gas emissions (GHG)
and temperatures, but this still carries some risk.

The exact nature, timing, frequency, intensity, and location of the effects of climate
change cannot be predicted due to the uncertainties involved. These uncertainties are based
on a variety of demographic and socioeconomic elements, such as technology, values and
preferences, and policies [6]. In addition, our limited understanding of the climate system
leads to scientific uncertainty [7].

Companies must recognise, quantify, monitor, control, and communicate their expo-
sure and vulnerability to these risks to their stakeholders. Companies must demonstrate
how they are mitigating significant risks and have in place reliable policies or regulations
to manage these risks.

In this situation, according to [8] a successful risk management system should have
three goals: first, to identify the main sources of climate risk and how it is spread; second,
to map and assess climate-related exposure and any areas of risk concentration; and third,
to create financial risk metrics for climate risks. In this investigation, we address the first
two points; the third point will be addressed in future research.

However, a primary task is the timely identification of climate risks for an organisation.
This is articulated with the most recent regulation implemented in Colombia, the External
Circular 031 of the Superintendencia Financiera (SFC), Colombia’s financial regulator,
which requires companies that are listed to identify the risks related to climate change to
which they are exposed and to disclose them to their stakeholders.

To address this complexity, a comprehensive and integrative model is needed to
weigh these factors in an interconnected way. Multi-criteria decision making (MCDM)
methods provide a structured and analytical approach to this problem, allowing for the
consideration of multiple variables and the evaluation of various scenarios that could
affect an organisation’s risk profile. MCDM thus offers a more informed and strategic
decision-making framework in the ever-changing climate context.

Companies often turn to risk matrices to make decisions, which are intended to assess
the probability and effect of different risks. However, traditional approaches are inadequate
to accurately model certain climate risks due to their unpredictable and ever-changing
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nature [6]. To address this, tools that are not only easy to update but also promote effective
communication within the organisation are needed. Here, fuzzy logic (FL) can be beneficial.
FL enables the consideration of multiple factors and relationships in a flexible manner and
is capable of dealing with the uncertainty associated with risk assessment. Furthermore, it
is well suited to the need for adaptability and communication effectiveness, making it a
powerful tool for risk assessment in the unpredictable climate environment.

Therefore, this research focuses on identifying and measuring the risks of climate
transition that can affect a company in the processed food sector in Colombia; this is
achieved by building a risk matrix where the probability of occurrence and impact are
evaluated and analysed from a financial perspective in the organisation, as well as the level
of risk exposure, using computational techniques and expert judgement. To achieve this
objective, 10 MCDM methods and the FL approach are compared, and the one that best
fits the analysed problem is selected. We selected a fuzzy method because FL can work
with uncertainty and imprecision and solve problems where there are no defined limits or
precise values [9]. This situation occurs in the concept of a risk assessment matrix, due to
the uncertainty of climate change.

In this context, we introduce a comprehensive system for identifying and addressing
climate transition risks, with the aim of mitigating their potentially disruptive effects on
business. Our system’s main objective is to provide organisations with a robust framework
that streamlines the identification and assessment of these risks and enables them to
proactively implement measures that effectively minimise their impact. For organisations,
identifying and assessing climate-related risks constitutes a multifaceted challenge due to
their heterogeneous nature. Unlike conventional methods, our approach employs fuzzy
logic to handle the ambiguity of these risks and contrasts them with various multi-criteria
decision-making techniques in the literature. This novel method enables the use of linguistic
terms for risk analysis, offering a more accurate description of risks and their impacts. We
find that critical risks for this organisation include price volatility, raw material availability,
the transition to less carbon-intensive patterns, higher carbon taxes, technological advances,
and development or implementation costs. This highlights the need for investments to meet
regulatory requirements, which are the primary financial motivators for organisations. Our
research identifies key risks and provides a comprehensive classification and quantitative
analysis using fuzzy logic, marking significant progress in the field.

The novelty of the paper lies in the integration of the TOPSIS method with a fuzzy
logic system for transitional climate risk assessment. Unlike previous approaches that
use TOPSIS up to the weighted normalised matrix, and then, calculate distances to ideal
solutions, this study applies fuzzy logic to create an expert rule-based risk matrix after
obtaining the weights with TOPSIS. This hybrid approach (TOPSIS-Fuzzy) allows for
managing uncertainty and imprecision in risk assessment, providing a more accurate and
contextualised representation of climate risks for organisations, especially in the processed
food sector in Colombia.

The remainder of this article is structured as follows:

• Section 2 reviews and comments on relevant studies in the literature;
• Section 3 describes the data and the methods employed in this research and pro-

vides some background information to better understand and motivate our research
approach;

• Section 4 presents the proposed fuzzy system;
• Section 5 presents and comments on the obtained results;
• Section 6 draws the conclusions of this study.

2. Literature Review
2.1. Fuzzy Systems in the Risk Assessment Domain

Fuzzy logic (FL) is a widely used paradigm for modelling and assessing risks in
various domains [10,11]. While modern artificial intelligence (AI) methods such as con-
volutional neural networks and decision-making frameworks are gaining popularity for
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risk assessment, see, e.g., [12], FL still holds a crucial role in modelling risk variables and
their probabilities. As a result, there are numerous studies in the current literature that
combine FL with AI techniques. The most effective hybrid systems can be categorised into
four groups:

1. FL combined with multi-criteria decision-making methods (MCDMs);
2. FL and neural networks;
3. FL and Bayesian networks (BNs);
4. FL integrated with quantitative risk assessment (QRA).

Each category has its own advantages and disadvantages that make it more appropri-
ate for specific contexts.

Due to their flexibility, MCDM methods have been widely used in conjunction with
fuzzy logic, especially in risk management. These approaches provide decision-makers
with the means to overcome the limitations of conventional risk prioritisation methods,
making them valuable tools in the field [13]. The relevant work is given in [14,15]. These use
the “analytical hierarchy process” method to define the mutual impact of partial indicators
(occurrence, severity, and detectability) on the risk. To enhance the accuracy of the results,
the fuzzy model incorporates the Technique of Preference Order in Similarity to the Ideal
Solution (TOPSIS), which helps minimise the dispersion of the results. By extending this
approach to fuzzy sets, the model further improves the accuracy and reliability of the results.
An interesting review of the literature focused on the application of TOPSIS for provider
selection is presented in [16]. In this study, three experts evaluated five alternative TOPSIS-
based systems using fuzzy logic linguistic expressions. Similarly, the study in [17] uses a
fuzzy decision matrix to assess options based on expert ratings based on various criteria,
using TOPSIS as the MCDM method. Failure Modes and Effects Analysis (FMEA) [13]
is another commonly used MCDM method for risk analysis. However, it is important to
note that FMEA has certain limitations. For example, it can produce the same level of risk
for different combinations of risk variable scores, which can lead to misleading results in
practical risk analysis. Furthermore, FMEA assigns equal weights to each risk parameter,
which can be a disadvantage when determining the criteria weights. To address these
limitations, researchers have integrated fuzzy logic and TOPSIS with the classical FMEA
method to provide a more comprehensive and effective approach to risk assessment.

In the field of risk management within healthcare organisations, the work in [18]
highlights the implementation of a decision support system (DSS) that integrates fuzzy
logic theory with Failure Mode and Effects Analysis (FMEA). The proposed methodology,
referred to as fuzzy FMEA, addresses the limitations of traditional FMEA by providing
fuzzy values for the risk priority number (RPN). This approach is complemented by
advanced techniques such as artificial neural networks for risk tolerance classification and
support vector machines for prioritising intolerable risks. The developed DSS demonstrated
high effectiveness, achieving over 98% accuracy in risk tolerance classification and 74%
in prioritising intolerable risks. However, there remains a need to extend the study to
other healthcare departments to validate the system’s applicability and efficiency across
different contexts. On the other hand, risk management in supply chains requires a robust
methodology capable of handling uncertainty and imprecise information. To this end,
the study in [19] proposes a hybrid model based on the intuitionistic fuzzy set (IF) and
the TOPSIS technique. This model, applied in a steel plant, significantly enhances risk
management by prioritising critical supply chain factors. The fuzzy methodology enables
an efficient representation of uncertain information, improving the quality of supply chain
control and offering a more accurate alternative to the traditional RPN system. In the
dynamic environment of business operations, risk prevention is a crucial measure. The
work done in [20] introduces a Fuzzy Optimisation Membership Estimation (FOME) model,
based on Choquet expectation theory, to evaluate and optimise risk prevention systems. The
FOME model is implemented using the CICIDS dataset for cyber attack analysis, achieving
99.89% accuracy in attack detection. The proposed approach combines fuzzy logic and
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optimisation to manage uncertainty and provide a robust solution for risk management in
critical organisational environments.

In the context of corporate sustainability, managing risks related to Environmental,
Social, and Governance (ESG) aspects is essential. For example, the work in [21] employs
the VIKOR method, a multi-criteria technique, to prioritise organisational risks with a
focus on sustainability. The methodology includes the evaluation of sub-risks in categories
such as geopolitical, economic, social, technological, and environmental risks, based on
the analysis of global reports and the participation of experts from various sectors. The
results from the VIKOR method enable a ranking of risks that facilitates strategic decision
making and enhances the alignment of organisations with sustainable practices. On the
other hand, in Yemen’s banking sector, managing information security risks is crucial for
maintaining operational resilience. The authors of [22] applied an integrated Criterion
Impact Loss (CILOS)-TOPSIS model to assess and improve ISRM practices in Yemeni banks.
The model helps identify and prioritise key factors in security risk management, such as the
existence of a comprehensive business continuity plan and the frequency of data backups.
The application of this approach provides a robust framework to guide decision making
and effectively allocate resources in managing information security risks.

Neurofuzzy logic systems have shown promise in improving the decision-making pro-
cess and generating meaningful risk classifications [23]. For example, in a study conducted
in [24], a five-layer adaptive neurofuzzy inference system (ANFIS) with two input variables
is used to predict wind power and its variability under future climate change scenarios
in the northern Caspian Sea. The system employs four Gaussian membership functions
for data processing in the first stage with good classification results. Similarly, studies
in [25,26] apply multiple ANFIS systems to predict drought and estimate a quantitative
measure of drought in the form of the standardised precipitation index on time scales
from 1 to 12 months. The results are satisfactory and show high accuracy in the prediction
of drought.

The combination of FL and BN has been explored in research studies such as [27,28]
to address the limitations of risk assessment, as BNs offer a compact representation of joint
probability distributions, while FL provides a means of handling vagueness and ambiguity
in probabilistic risk assessment. The assignment of appropriate probabilities to the nodes
in the BN architecture is crucial to obtaining meaningful results. By incorporating fuzzy
sets, the fuzzy Bayesian network (FBN) approach enables the modelling and management
of uncertainty by utilising linguistic values in the decision-making process. An FBN is
particularly useful when there is little or insufficient data to determine the probability
values of the nodes in the network.

Finally, in the domain of quantitative risk assessment (QRA), a combination of fuzzy
logic and quantitative methods has been explored. For example, in the context of the oil
industry, the study in [29] proposed a fuzzy QRA approach based on fuzzy logic. This
approach allows for the analysis, evaluation, and mitigation of key risks associated with
the industry. The models developed in this study consider factors such as frequency and
severity of consequences, as well as the level of individual and social risk. The authors
used a multistep methodology that included the calculation of the fuzzy frequency of
consequences and the individual risk associated with each variable.

These risk assessment systems have been used in several application domains, such as
construction [30–32], the mining industry [23,33,34], the health sector [35], the manufactur-
ing sector [36–39], and climate physical risks [25,26,40–42]. However, currently there is no
significant study using these approaches in the context of transition risks associated with
climate change.

2.2. Multi-Criteria Decision-Making (MCDM) Methods

The purpose of MCDM methods is to generate a ranking of alternatives or variables
considering the evaluation of multiple criteria simultaneously. However, decision making
becomes complex when there are several criteria, so various methods have been developed
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to facilitate this process [43]. These methods have been widely studied and have been
applied to various problems to facilitate decision making.

When analysing a specific problem, there is no standard process for selecting a method
and employing it for the solution. This dilemma has been discussed in the literature
because, depending on the applied MCDM method, the results may be different [44]. For
the above reasons, we will present in general terms several methods widely used by experts,
and then, compare the results in constructing a climate transition risk ranking.

TOPSIS is a method that finds the best alternatives by measuring the distance between
the chosen alternatives and the ideal solutions (the ideal solution refers to the phenomenon
being evaluated). It is based on the concept that the chosen alternatives should have the
shortest distance from the positive ideal solution and the longest distance from the negative
ideal solution. This means that the best alternatives are those that are closest to the positive
ideal solution and farthest from the negative ideal solution [45].

The COPRAS method was developed in 1996 by Zavadskas and Kaklauskas [46]. Like
TOPSIS, this method selects the most appropriate alternative considering the best and
worst ideal solutions [47].

The BORDA counting method was developed by Jean-Charles de Borda in 1784. It is
a procedure that aims to classify the alternatives according to the sum of the individual
preferences of the decision-makers. This is a data aggregation technique that reduces two or
more classification formats to a more rational one. The method is quite easy to apply [48].

The simple additive weighting (SAW) method is one of the most widely used additive
weighting methods for aggregating a decision-maker’s preferences defined by multiple
criteria. In this technique, the criteria are mutually independent. Preferences are based on
the performance score of an alternative for each criterion, which is weighted by the weight
of the respective criterion. The decision-maker defines the weight of the criterion. The
overall evaluation score of an alternative is calculated by summing the weighted score of
that alternative according to several criteria [49].

The ELECTRE method involves a comparison of alternatives based on how their evalu-
ations and preference weights correspond to the pairwise dominance between them. It looks
at both the agreement between the preference weights and the dominance relationships, as
well as the difference between the weighted scores. This process is known as “concordance
and discordance” and is also known as concordance analysis [50]. The concordance and
discordance measure the satisfaction and dissatisfaction from the decision-maker’s per-
spective. The threshold concept is then used to create a core of preferred alternatives [51].
Thus, ELECTRE is an “outranking” method.

The VIKOR technique was developed by Serafim Opricovic to solve decision-making
issues with conflicting and incommensurable criteria, with the understanding that com-
promise is an acceptable way to resolve conflicts. This approach focuses on ranking and
selecting from a group of options and determines the compromise solution that is closest to
the optimal solution [50].

In 2020, Stevic introduced the MARCOS method for supplier selection in the healthcare
industry. This method takes a novel approach to problem solving by considering both
anti-ideal and ideal solutions in the early stages. It also proposes a new way of calculating
utility functions and combining them. This should help to ensure stability when dealing
with a large number of alternatives and criteria [52].

The PROMETHEE approach is used for top-level ranking. This method uses a function
that reflects the degree of benefit of one option over another, as well as the degree of
disadvantage. PROMETHEE involves a mutual comparison of each pair of alternatives
with respect to the given criteria. PROMETHEE I is designed to generate a partial ranking.
Partial rankings concentrate on the best choice, not on a full ranking. The PROMETHEE II
method produces a full ranking, from the best to the worst alternative [53].

The weighted sum method is a popular choice among WSM techniques, as it is easy
to use and follows a logical process. The basic assumption of WSM is that the attributes
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are independent of each other, which means that the contribution of each attribute to the
overall score is not affected by the values of the other attributes [51].

Finally, the CODAS method was first proposed by Ghorabaee et al. 2016, this decision-
making technique uses two distance measures, the Euclidean distance and the Hamming
distance, to assess the desirability of alternatives by measuring the distance from the ideal
negative solution [54].

Table 1 summarises the main characteristics of the MCDM methods analysed.

Table 1. MCDM methods.

Method Name Characteristics

TOPSIS Technique for Order Preference by Similarity to Ideal Solution Compares options with ideal and anti-ideal solutions

COPRAS Complex Proportional Assessment Evaluates alternatives according to benefits and costs

BORDA Borda Count Method Ranks options by summation of items in ordered lists

SAW Simple Additive Weighting Weighted sum of normalised values

ELECTRE Élimination et Choix Traduisant la Realité Uses trade-off relations to rank alternatives

VIKOR Vice Kriterijumsa Optimizacija I Kompromisno Resenje Balances conflicting criteria by means of compromise solution

MARCOS Measurement Alternatives and Ranking According to the Compromise Solution Evaluates alternatives according to distances to compromise solutions

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluations Based on preferences and positive and negative flows

WSM Weighted Sum Model Weighted sum of decision criteria

CODAS Combinative Distance-Based Assessment Uses Euclidean and Manhattan distances to evaluate options

The research gap lies in the lack of comprehensive methodologies to assess transitional
climate risks; there are several defined for other types of risks, but none specifically for
transitional climate risks. Our innovation is the novel application of an MCDM model
(comparing several of the most widely used in the literature, including fuzzy-MCM, and
obtaining TOPSIS as the one that gives the most consistent results) to derive criteria weights,
followed by a fuzzy rule-based system for the final development of a climate risk matrix
for the organisation, taking advantage of expert knowledge to address the uncertainties
inherent in risk assessment. This methodological advancement allows for a more accurate
and context-specific risk assessment.

3. Materials and Methods

In the field of organisational risk management, the first step involves assessing the
potential risk of sources. In the specific context of climate transition risks, this process
consists of first identifying the different risks, and then, prioritising them. The latter
activity is particularly important because it allows the organisation to lay a foundation
to understand potential challenges, gain valuable information about various sources and
levels of risk associated with climate change, make more effective decisions, and allocate
resources to mitigation and adaptation strategies.

In this study, we identified several risks by reviewing the literature on the most
important risks for organisations in the processed food sector in Colombia. To validate our
findings, we used expert judgement from an organisation in this sector, which allowed
better assessment and understanding of the variables selected previously.

Group decision making can significantly reduce the uncertainty of individual opinions
by incorporating diverse perspectives and knowledge, thus minimising cognitive biases.
In our study, decision-makers include industry experts and academic researchers, all with
extensive experience and knowledge of climate transition risks in the Colombian processed
food sector. This ensures a comprehensive and informed decision-making process.

3.1. Risk Matrix Construction

An example of a risk matrix is shown in Figure 1. This visual representation allows
for a rapid assessment of risks by providing an intuitive way to gauge their likelihood
and the resulting impact with the naked eye. It is important that the risk matrix shows
the organisation’s appetite for climate change risk. It is also easy to create and read even
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without in-depth technical or domain expertise. For these reasons, the risk matrix is a
popular and widely used tool in organisations to determine which risks are more important
and require more attention. Note that this method is based on a subjective definition of
risk that combines the severity of the consequences and the expected frequency of the
event [55].

Low impact

Low–Medium impact

Medium impact

Medium–High impact

High impact

Very likely

Likely

Medium likelihood

Unlikely

Very unlikely

Figure 1. Risk matrix example. Green is used to indicate low risk, yellow to indicate medium risk,
orange to indicate high risk, and red to indicate critical risk.

The development of the risk matrix was executed in multiple phases. Initially, risk
variables were identified and chosen through an extensive literature review and expert
consultations. Subsequently, probability and impact scores were allocated to each risk
using fuzzy membership functions. Finally, MCDM techniques were employed to rank the
risks, and fuzzy logic was utilised to ascertain risk levels. The final matrix offers a clear
visual depiction of the severity and probability of various climate risks.

3.2. Variables Selection (Climate Transition Risk Identification)

The initial step in developing a risk management plan is to classify the sources of risk
within an organisation. To achieve this, we conducted an extensive review of the literature
to identify the major risks of climate change that affect the processed food industry. This
enabled us to identify the relevant variables to be considered in our system and rank them
according to their severity. Risks were identified for the four types of risks that make up the
climate transition risk, which are regulatory, technological, market, and reputational risk.

3.3. Multi-Criteria Decision-Making Methods and Their Comparison

The choice of the MCDM methods was guided by several important criteria: the
capacity to manage multiple variables, adaptability to various contexts, and robustness in
evaluating complex risks. The selected methods were chosen due to their broad acceptance
in the academic literature and their relevance to climate risk studies. Each method was
assessed based on how well it aligned with our research goals, particularly its capability to
offer a detailed and quantitative classification of climate risks.

We employ a variety of MCDM methods to guarantee a thorough and resilient evalua-
tion of climate risks. Each method brings its own viewpoint and tackles different facets of
the issue, collectively offering a more detailed and nuanced understanding. By utilising
these diverse approaches, we can compare and contrast outcomes, ensuring that the final
decisions are well-informed and more dependable.

This study considers a varied set of multiple state-of-the-art MCDM methods that have
very different logic and combine them with fuzzy logic to construct a climate transition
risk matrix. These methods are listed below.

• Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [45];
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• Complex Proportional Assessment (COPRAS) [46];
• Borda count method (BORDA) [48];
• Simple additive weighting (SAW) [49];
• Élimination et Choix Traduisant la Realité (ELECTRE) [50];
• Vice Kriterijumsa Optimizacija I Kompromisno Resenje (VIKOR) [50];
• Measurement Alternatives and Ranking According to the Compromise Solution (MAR-

COS) [52];
• Preference Ranking Organization Method for Enrichment Evaluations

(PROMETHEE) [53];
• Weighted Sum Model (WSM) [51];
• Combinative Distance-Based Assessment (CODAS) [54].

The Python pyDecision library is used to allow a fair and extensive comparison of the
different methods and variables considered. This comparative analysis includes established
approaches from the literature, where the weights used in the risk assessment process are
traditionally obtained with an FL-based system, and our innovative approach that uses
TOPIS to obtain a weight for each risk variable. Using pyDecision, we can rank each of the
methods under consideration (that is, the Kendall rank correlation coefficient [56] is used to
measure the association with the number of concordances and discordances in the paired
observations) and select the most appropriate one for the case at hand.

This analysis of risk prioritisation systems enables us to evaluate the current state of
the field and comprehend how far along it is based on the judgements and views expressed
by experts in the literature.

3.4. Data Collection

A validation questionnaire was designed to collect feedback from experts from a
Colombian organisation (the organisation providing us with feedback and data decided
to remain anonymous) in the sector. The questionnaire consists of six sections, and a
facsimile version can be viewed and taken from [57]. The individuals who completed
the questionnaire were selected because they had experience and area-specific knowledge
associated with this type of risk. A total of 16 experts from different areas of the organisation
participated in the study, with the aim of capturing as much knowledge as possible.

3.4.1. Dataset Preparation

The real data, that is, in the form obtained from this collection phase, could not be
directly used and disclosed in this article to avoid leaks of confidential information, as
previously agreed with the organisation supporting this research.

Therefore, the real dataset was modelled by deriving the corresponding distributions
to be used to generate all the data for this study instead. The latter imitates the original
dataset, being equally distributed, and it is not subject to any non-disclosure agreement.
We discussed this with our business partners, who agreed to adopt this approach.

3.4.2. Design Considerations on the Data Collection Form

The first section of the questionnaire is designed to evaluate the five criteria chosen to
analyse the risk variables: vulnerability, resilience, exposure, probability, and impact. These
are key to risk assessment in organisations and should all be considered when performing
a detailed analysis aimed at a high-quality assessment. In fact, it is vital to consider
probability, noting that risk is not limited to hazard and exposure alone, as there are other
important aspects to consider, such as vulnerability, resilience, and financial impact [58].
It should be noted that the Intergovernmental Panel on Climate Change (IPCC) argues
that the risks of climate disasters are composed of exposure, vulnerability, and risk. This
approach is also useful for assessing the financial impacts of climate transition risks. Often,
economic and financial analyses consider only the exposure of an organisation, but it is
essential to consider vulnerability, resilience, and economic impact to fully understand the
potential materialisation of these climate-related risks, as these concepts are interdependent.
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For example, if a company is less resilient than others, then its exposure may be higher; if a
company is more vulnerable, then its exposure may also be higher [59].

Due to the considerations above, we decided to determine the importance of the risk
assessment criteria with feedback from experts in the field. Therefore, in the first section
of the questionnaire, they were asked to rate the criteria on a “Likert scale” ranging from
1 to 5, with 1 representing the minimum importance and 5 representing the maximum
importance (see Figure 2).

Figure 2. Section 1 of the questionnaire: transitional climate risk criteria rating.

In the second section of the data collection form, we introduce four regulatory climate
risks (see example of one of the risks analysed in regulatory risks in Figure 3).

In this section, assessors were asked to rate criteria on a scale of 1 to 5, with 1 being
the lowest rating and 5 being the highest for each criterion. The financial effect of each
risk on an organisation is reflected in the qualitative ratings. It is worth pointing out that
what may be considered as having a high impact by one expert may be considered to have
a medium impact by another. Therefore, because of their “fuzzy” nature, we agreed that
converting them into fuzzy variables would be the most logical approach.

Similar considerations were made for each of the four remaining variables when
deciding what to include in the questionnaire form. With reference to [57], one can see
that variables such as market and reputation are addressed in sections 3, 4, and 5 of the
proposed questionnaire.

Finally, the sixth section of the form focuses on defining the rules to use in the fuzzy
logic model. In this section, experts were asked to assign the level of risk (low, medium,
high, or critical) to the 25 combinations of rules introduced in Section 4 of this manuscript.
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Figure 3. Section 2 of the questionnaire: regulatory risks.

4. The Proposed Fuzzy System

Perception of risk and the relationship between its variables can vary between individ-
uals. Fuzzy logic is a valuable tool in risk management and assessment because it allows
the use of human expertise to create fuzzy IF–THEN rules. It is essential to take advantage
of the knowledge of risk managers and experts and convert it into rules that can be used by
a fuzzy inference system (FIS) to automate risk assessment.

The application of fuzzy logic in the risk evaluation process was executed through
multiple phases. Initially, the input data were converted into fuzzy values using normalised
trapezoidal membership functions. Next, IF–THEN fuzzy rules were employed to translate
these input values into output fuzzy sets. Lastly, the centroid method was utilised for
defuzzification, resulting in a distinct numerical value for each risk.

Let xi be an input variable representing a risk metric (e.g., frequency or severity). This
variable is converted into a fuzzy value µAi (xi) using a trapezoidal membership function,
defined as

µAi (xi) =


0, if xi ≤ a1 or xi ≥ a4,
xi−a1
a2−a1

, if a1 < xi ≤ a2,

1, if a2 < xi ≤ a3,
a4−xi
a4−a3

, if a3 < xi ≤ a4.

(1)

where a1, a2, a3, and a4 are the parameters defining the trapezoidal membership function.
For the sake of reproducibility, the code that implements the FIS described in the rest

of this article is made available as an attachment to the online version of this manuscript.
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Fuzzy logic was employed to manage the uncertainty intrinsic to climate risk evalua-
tion. This approach enabled us to deal with vague and subjective information, capturing
uncertainty with fuzzy sets and membership functions. Utilising IF–THEN rules and
the centroid method for defuzzification, we can achieve more precise and realistic risk
evaluations, taking into account the variability and uncertainty of the data at hand.

Figure 4 summarises the methodology proposed for our study.

Figure 4. The proposed methodology—an overview.

4.1. Fuzzy Risk Matrix Sets Definition (Fuzzification)

After assessing the risks with the help of experts, we proceed to the fuzzification stage.
In this stage, the data are transformed into fuzzy values by mapping the input values into
fuzzy set membership functions. These fuzzy values are then processed by the reasoning
system, also known as FIS [60].

To create a fuzzy risk matrix, it is necessary to select the relevant and available input
variables and divide their range into fuzzy sets. In addition, different forms of membership
functions can be used, depending on the characteristics of the variables, and this choice
depends on the applications where the fuzzy systems will be implemented. For the case
of risk analysis, the normalised trapezoidal membership function type is generally used,
which is a commonly used option to quantify the certainty of expert opinions. These
membership functions are represented by a tuple (a1, a2, a3, a4), where a1 ≤ a2 ≤ a3 ≤ a4,
and have a height of 1. This choice is considered the most natural for this type of system [61].

Normalised trapezoidal membership functions were selected due to their capability to
effectively capture uncertainty and ambiguity in the input data. These functions enable
a seamless transition between various risk levels, which is crucial for evaluating climate
risks with indistinct boundaries. The selection of trapezoidal functions aids in the interpre-
tation and analysis of the outcomes, offering a more precise and flexible depiction of the
fuzzy data.

4.2. Fuzzy Inference System

An FIS uses rules based on risk knowledge to map fuzzy input sets (frequency and
severity) to fuzzy output risk sets. This is accomplished by using fuzzy IF–THEN rules.
The fuzzy rule structure for the fuzzy risk matrix is as follows: IF the probability is pn AND
the impact of the consequences is in THEN the risk level is rn, where pn, in, and rn are the
fuzzy sets for the probability, impact, and risk level defined over the discourse universes,
respectively [9].

In this case, five levels of probability and five levels of impact are used, generating a
total of 25 rules representing the risk categories. These fuzzy rules capture the knowledge
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and experience of experts through linguistic variables and are combined with data analysis
to obtain more accurate and realistic results (see Table 2).

Table 2. Fuzzy rules set.

Rule Description

1 IF the likelihood is low and the impact is low, THEN the risk level is low
2 IF the likelihood is low and the impact is low-medium, THEN the risk level is low
3 IF the likelihood is low and the impact is medium, THEN the risk level is low
4 IF the likelihood is low and the impact is medium–high, THEN the risk level is medium
5 IF the likelihood is low and the impact is high, THEN the risk level is medium
6 IF the likelihood is low–medium and the impact is low, THEN the risk level is low
7 IF the likelihood is low–medium and the impact is low–medium, THEN the risk level is low
8 IF the likelihood is low–medium and the impact is medium, THEN the risk level is medium
9 IF the likelihood is low–medium and the impact is medium–high, THEN the risk level is medium

10 IF the likelihood is low–medium and the impact is high, THEN the risk level is high
11 IF the likelihood is medium and the impact is low, THEN the risk level is low
12 IF the likelihood is medium and the impact is low–medium, THEN the risk level is low
13 IF the likelihood is medium and the impact is medium, THEN the risk level is medium
14 IF the likelihood is medium and the impact is medium.high, THEN the risk level is high
15 IF the likelihood is medium and the impact is high, THEN the risk level is high
16 IF the likelihood is medium–high and the impact is low, THEN the risk level is low
17 IF the likelihood is medium–high and the impact is low–medium, THEN the risk level is medium
18 IF the likelihood is medium–high and the impact is medium, THEN the risk level is medium
19 IF the likelihood is medium–high and the impact is medium–high, THEN the risk level is high
20 IF the likelihood is medium–high and the impact is high, THEN the risk level is critical
21 IF the likelihood is high and the impact is low, THEN the risk level is low
22 IF the likelihood is high and the impact is low–medium, THEN the risk level is medium
23 IF the likelihood is high and the impact is medium, THEN the risk level is high
24 IF the likelihood is high and the impact is medium–high, THEN the risk level is critical
25 IF the likelihood is high and the impact is high, THEN the risk level is critical

Mamdani’s fuzzy inference algorithm is used to convert qualitative rules into quan-
titative results. Mamdani systems are advantageous for expert system applications due
to their intuitive and straightforward rule bases, which are derived from human expert
knowledge. This model employs the min operator for AND logic and the implication of the
output set. The output fuzzy sets are aggregated from the evaluated rules. The aggregate
membership function for an output fuzzy risk category is calculated using the maximum
of the minima between the frequency sets, severity sets, and risk sets (see Equation (8)).
The model was implemented using the “sckit-fuzzy” library in Python.

In addition, the graph of Figure 5 shows the membership functions. Linguistic terms
provide a more adaptable and precise way to represent risks, which can often be ambiguous
or subjective. For example, instead of assigning a specific probability to a risk, we can
describe it as ’high’, ’medium’, or ’low’, which aligns better with the uncertain nature
of climate risks. In this case, a study involving a processed food company in Colombia,
phrases such as ‘very likely’ or ‘significant impact’ were used to assess the identified risks.
This approach improved communication and understanding among experts and made the
risk assessment process more effective.

(a) Probability (b) Impact (c) Risk level

Figure 5. Membership functions.
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In particular, Figure 5a shows the trapezoidal membership functions of the first entry
of the risk matrix, which was designed based on an FIS related to the probability of the
risk on a level of five scales: very unlikely, unlikely, neutral probability, probable, and
very probable.

On the other hand, Figure 5b shows the membership functions of the second entry of
the risk matrix, with respect to the impact on the low, medium–low, medium–high, and
high scale.

Finally, Figure 5c shows the third component of the membership functions of the
matrix fuzzy system model, the risk levels, which are represented on the scale low, medium,
high, and critical.

Table 3 summarises the classification and descriptions of the risk levels identified by
the case study organisation.

Table 3. Risk levels.

Risk Level Description

Low The probability that an adverse event will occur is low and the consequences are minimal or manageable.
This type of risk can be easily mitigated with preventive measures.

Medium The probability that an adverse event will occur is moderate, with significant but not severe consequences.
Adequate risk management is required to reduce the probability of occurrence and mitigate impacts.

High The probability that an adverse event will occur is high and has significant consequences. A careful risk
management and a proactive approach are required to minimise risk and possible negative consequences.

Critical
The probability that an adverse event will occur is extremely high and has catastrophic consequences.

These can include both severe financial losses and a deleterious impact on the environment.
This type of risk requires rigorous management and complete contingency planning.

The inference engine of the system evaluates each rule stored in the knowledge base
and performs fuzzy inference. This is achieved by determining the strength of each fuzzy
rule, considering the degree of coincidence and the fuzzy connectors used in the antecedents
of the rule. This allows decisions to be made in a system that considers not only true or
false values, but also fuzzy values [62].

The defuzzification module of the model is responsible for producing a single-scalar
output or a crisp value based on the inference result. Since in the fuzzification module, the
crisp values of the input variables are fuzzified into the fuzzy sets, this final stage extracts
the precise value from the range of the fuzzy set for the output variable. In this case, the
centroid method, also known as the centre of the area (CAO) method or centre of gravity,
is used since the centroid is the point along the x-axis around which the fuzzy set would
balance [62].

According to [9], the COA calculates the weighted average of a fuzzy set. The result
of applying the COA defuzzification to the risk index can be expressed with Equation (2),
which is shown below.

r =
∫

µR(r)rdr∫
µR(r)rdr

(2)

The questionnaire form introduced in Section 3.4 was used to collect feedback from
experts to create our dataset and produce results through our proposed system.

4.3. TOPSIS Method

TOPSIS is based on the premise that the selected options should be as close as possible
to the positive ideal solution and as distant as possible from the negative ideal solution.
The chosen alternatives can be ranked and assessed based on their relative proximity to the
ideal solution. The following are the detailed steps to follow.

Obtain a standardised matrix. The standardised value ai j is calculated as
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aij =
xij√

∑m
i=1(xij)2

(1 ≤ i ≤ m, 1 ≤ j ≤ n) (3)

Calculate the weighted standardised matrix D:

D = (aij × wj) (1 ≤ i ≤ m, 1 ≤ j ≤ n) (4)

where wj is the weight of the criteria and ∑n
i=1 wj = 1.

Calculate the positive ideal solution V∗ and the negative ideal solution V−:

V∗ = {v∗1 , v∗2 , . . . , v∗n} =

{
max

i
vij | j ∈ J, min

i
vij | j ∈ J′

}
(5)

V− = {v−1 , v−2 , . . . , v−n } =

{
min

i
vij | j ∈ J, max

i
vij | j ∈ J′

}
(6)

Calculate the separation measures by applying the m-dimensional Euclidean distance.

S+
i =

√√√√ n

∑
j=1

(V j
i − V∗)2 (1 ≤ i ≤ m, 1 ≤ j ≤ n) (7)

S−
i =

√√√√ n

∑
j=1

(V j
i − V−)2 (1 ≤ i ≤ m, 1 ≤ j ≤ n) (8)

Calculate the relative proximity,

Yi =
S−

i
S+

i − S−
i

(1 ≤ i ≤ m), (9)

where Yi ∈ (0, 1); the closer Yi is to 1, the closer the alternative is to the ideal solution.
Prioritisation ranking: the greater Yi, the better the chosen alternative.

5. Experimental Phase and Results Discussion

Our results refer to the data and methods described in Section 3.

5.1. Selected Variables

A critical step in managing climate transition risks in an organisation is to categorise
and prioritise risk sources, allowing the allocation of the necessary resources to mitigate
their impacts [60]. In this regard, variables based on each of the four types of risks were
identified during the review of the literature.

Table 4 shows the variables selected for expert evaluation using the questionnaire
explained in Section 3.4. The risks are classified by type, including regulatory, technological,
market, and reputational risks, as well as their description and the sources supporting
their selection.

Table 4. Climate transition variables selected.

Risk Name Risk Type Description Sources

Cap and trade schemes

Regulatory

Emission trading systems with pre-established caps are systems [1–3]in which companies can trade their emissions

Carbon tax increase Regulatory strategy to reduce greenhouse gas emissions from companies
[1–4,23,30–34]
[25,26,35–41]

Climate change-related litigation
Legal risks for non-compliance with climate change-related responsibilities,

[3,23,33,39,42]including harm to individuals or the environment

Obligation to report emissions
Companies are obliged to disclose the greenhouse gas emissions they produce to

[1,2,13,24,35]comply with general regulations or identify any excess emissions



Mathematics 2024, 12, 2713 16 of 27

Table 4. Cont.

Risk Name Risk Type Description Sources

Shift to less carbon-intensive

Technological

Use of fuels with lower greenhouse gas emission factors for thermal energy generation [1,2,14]production or consumption patterns

Technological progress in renewable Investments in products, processes, or services aimed at reducing carbon footprint [1,2,14,34]energies and energy efficiency and improving environmental conditions, but that do not meet expectations

Technological change New technological advancements that enable improved outcomes [3,4,14,15,41](development of new technology) in the company’s energy processes

Failed investments in new Development of new technologies with a less harmful impact on climate or the [16,17,23,26,36,38]technologies to reduce emissions environment, rendering them obsolete or uncompetitive (stranded assets)

Change in the demand for

Market

Changes in the demand for products and services [1,3,13,23,24,26,27,30,41]products and services driven by concerns about climate change

Raw materials and supplies Changes in prices, demand, volatility, and other aspects related [1,2,13,30](price volatility and availability) to climate change that impact the supply of raw materials

Stakeholder concerns Concern among market stakeholders and/or other [1–3,23,34]on climate change affected government and social groups, creating uncertainty

Poor adaptation to change Limited adaptability of business models to changing [1,2]in customers’ behavior needs, desires, and customer behaviors regarding climate change

Changes in customer preferences

Reputational

Reputation risk from loss or change in preference for a company’s product [1,2,4,15,23,28–30,33]

Increasing pressure from Pressure exerted by non-governmental organisations on companies’ actions [24]non-governmental organisations with environmental impact generates media attention and cause reputational harm

Negative news and comments News on environmental responsibility enhances shareholder value, [1,2,13,16]Information about the company while negative news can have a deleterious impact on it

Changes in market sentiment due Shifts in sentiment due to awareness of climate issues that [34]to potential future climate risks the future may hold if we cannot react promptly

5.2. Calculation of Criteria Weights

First, the TOPSIS method was used to perform calculations to determine the scores
according to the individual importance assigned by the experts and the ranking of the
criteria determined by the climate transition risk assessment. The experts used a scale
from 1 to 5 to rate each criterion, where 1 means “not at all important” and 5 means “very
important”. Table 5 shows the weights of the criteria as a result of applying the TOPSIS
method. The modelling of the TOPSIS method equations was coded using the Python
programming language to facilitate the calculations involved.

Table 5. Ranking criteria.

Criteria Weights

Vulnerability 0.211
Resilience 0.183
Exposure 0.204

Likelihood 0.151
Impact 0.250

According to the weights assigned to the criteria, likelihood is the criterion with the
lowest weight. It is important to note that both probability and impact are criteria used
to determine the level of risk in multiple variables and in most risk assessment contexts.
However, according to [58], the impact is the result of the interaction between vulnerability,
resilience, and exposure. This means that the results of the analysis can be interpreted as
consistent from a theoretical point of view.

5.3. MCDM Method Comparison

The similarity or difference between different MCDM methods can be determined
using various metrics, such as correlation coefficients. By examining the ranking table
of the 10 selected methods, those that classify alternatives similarly are COPRAS, SAW,
MARCOS, and WSM. On the other hand, some methods, such as VIKOR, PROMETHEE,
and ELECTRE, appear to classify these variables differently from the others. However, the



Mathematics 2024, 12, 2713 17 of 27

choice of the most similar or dissimilar methods depends on the method chosen to measure
this similarity.

The RM2 risk is consistently high in most of the methods evaluated, as it is always
in the first and second positions. On the other hand, the alternative or variable Rrep4 for
reputational climate risk consistently ranks last in all methodologies.

There are clear distinctions between the techniques used for analysis. For example, the
RM2 risk is generally the most appropriate option by most methods, with the exception of
TOPSIS, BORDA, VIKOR, and PROMETHEE. These discrepancies may be due to variations
in decision criteria, weighting methods [63], or even the decision matrix, which differs from
method to method. MCDM methods have different mathematical approaches, decision-
making principles, focus on different aspects, and also have different advantages and
disadvantages. Some methods take into account the relative importance (weights) of the
criteria, while others do not. This can result in different methods producing different
rankings or evaluations of alternatives and is one of the main causes of inconsistent results.

The complexity of real-world problems, the accuracy of the data, the possible rela-
tionships between criteria, the variation of trade-off indices, and different types of scales
can all influence the results. In this scenario of the climate transition risk analysis, there
is consensus among most of the methods. Looking at the results, it is clear that the risk
RM2 is ranked number 1 by most methods (6/10), the risk Reg2 is ranked number 2
(7/10 methods), and the risk RT3 is ranked number 3 (9/10 methods); see Table 6.

Table 6. Ranking of MCDM methods.

Risk TOPSIS COPRAS BORDA SAW ELECTRE VIKOR MARCOS PROMETHEE WSM CODASDescription Code

Cap and trade schemes Rreg1 6 7 7 7 8 10 7 6 7 7

Carbon tax increase Rreg2 1 2 1 2 2 2 2 1 2 2

Climate change-related litigation Rreg3 12 12 13 12 15 7 12 13 12 12

Obligation to report emissions Rreg4 10 10 10 10 10 11 10 11 10 10

Shift to less carbon-intensive RT1 5 5 5 5 4 5 5 5 5 4production or consumption patterns

Technological progress in renewable RT2 7 6 6 6 7 6 6 7 6 6energies and energy efficiency

Technological change RT3 3 3 3 3 3 1 3 3 3 3(development of new technology)

Failed investments in new RT4 13 13 12 13 12 14 13 12 13 13technologies to reduce emissions

Change in the demand for RM1 14 15 14 15 13 15 15 14 15 14products and services

Raw materials and supplies RM2 2 1 2 1 1 4 1 2 1 1(price volatility and availability)

Stakeholder concerns RM3 4 4 4 4 5 13 4 4 4 5on climate change

Poor adaptation to change RM4 15 14 15 14 14 3 14 15 14 15in customers’s behaviour

Changes in customers preferences Rrep1 11 11 11 11 11 8 11 10 11 11

Increasing pressure from Rrep2 8 8 8 8 6 12 9 8 8 9non-governmental organisations

Negative news and comments Rrep3 9 9 9 9 9 9 9 9 9 8Information about the company

Changes in market sentiment due Rrep4 16 16 16 16 16 16 16 16 16 16to potential future climate risks
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The comparative study of the outcomes derived from various MCDM methods shows
notable differences in risk classification due to each method’s unique strengths and weak-
nesses. TOPSIS and SAW are notable for their simplicity and efficiency in managing large
datasets, identifying price volatility (RM2) as the most crucial risk. In contrast, VIKOR
and PROMETHEE, despite being more intricate, are favoured in scenarios with conflicting
criteria, emphasising the significance of regulatory risk (Rreg2). COPRAS and FRAMES,
though less straightforward, enable direct comparisons based on proportional relationships
and incorporate ideal and anti-ideal solutions, respectively, offering a comprehensive and
balanced evaluation.

Due to their simplicity, the BORDA and WSM methods are straightforward to use but
might oversimplify intricate issues, both identifying RM2 as a significant risk. Conversely,
ELECTRE and CODAS, being robust and detailed, necessitate a deeper understanding
and more intensive calculations, emphasising regulatory and technological risks as critical.
This variation underscores the necessity of selecting the appropriate MCDM method based
on the specific context and goals, offering a nuanced and comprehensive perspective that
enables decision-makers to choose the optimal mitigation strategy for each type of risk.

However, it is important to analyse the correlation between the MCDM methods;
the following figure shows the correlation coefficients of the different methods evaluated
(Figure 6).

Figure 6. Correlation matrix.

Examining the correlation of weights between different MCDM techniques provides
information to understand the similarities and differences between MCDM methods. Each
method has its own algorithm and analytical approach for assigning weights to each deci-
sion criterion, which shows the relative importance of each criterion. Thus, the correlation
of weights between different methods can be a useful indicator of the degree of agreement
between these methods in prioritising decision criteria.

The rankings produced by the different MCDM methods show a high correlation,
which implies that the options are considered similar due to their characteristics. This
could be an indication of the reliability and robustness of the results, as different methods
with different assumptions and procedures produce similar results.

It is important to keep in mind that although a strong correlation may be reassuring,
no MCDM approach should be considered the “correct” one. There may be elements that
affect the overall score of an option that are not taken into account or are not fully taken into
account by the different MCDM techniques. Therefore, it is still necessary to understand
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the assumptions of each method and interpret the results accordingly. For example, some
techniques may be more appropriate for certain types of decision contexts or depend on
the availability of certain types of data or its quality.

Considering that MCDM methods only allow the generation of a ranking of alterna-
tives, there is a limitation in the construction of risk matrices, as the results are not classified
by risk level (low, medium, high, and critical), as shown in the risk matrix in Figure 1.
However, based on the results of the analysis of all MCDM methods, it can be determined
that the risks RM2, Reg2, RT3, and RM3 are the most critical risks for the organisation of
this sector. On the other hand, risks RT1, RT2, and Reg1 could be classified in the high level
of the risk matrix, followed by risks Rrep2, Rrep3, Reg4, Rrep1, Rep3, RT4, RM4, RM1, and
Rrep4, in the medium level of the risk matrix.

Comparing the results generated by the MCDM and fuzzy logic methods, we can
see that RM2 and Reg2 are the most critical risks according to the results. However, not
all risks were in the same order; in fact, only the risks RT4 and Rrep4 coincided, which
were placed at positions 11 and 16, respectively, in both techniques used. However, the
advantages of using methods such as fuzzy logic are the possibility not only to generate a
ranking of alternatives, risks in this case, but also to classify them in different risk scales, as
sought in this study. Furthermore, the results obtained with fuzzy logic coincide to a certain
extent with those reported in the literature and by different organisations that analyse and
monitor climate transition risks. The results obtained with the fuzzy logic method, which
was selected for this study, are analysed below.

Fuzzy MCDM Methods

Many studies have combined fuzzy logic with various MCDM techniques, using the
latter for the prioritisation of a set of alternatives. Determining the relative importance of
various criteria in MCDM problems implies a high degree of subjectivity derived from the
personal preferences of decision-makers. However, the values of linguistic variables in
expert judgement are often vague, representing interval values rather than fixed values;
therefore, fuzzy MCDM methods often deal with this uncertain, imprecise, and vague
information in decision-making problems [64]. Among the different hybrid methods, we
find combinations of fuzzy logic with TOPSIS, AHP, ELECTRE, VIKOR, COPRAS, and
VSM, among others.

Usually, when applying the Fuzzy-TOPSIS method (FT), the membership function
is constructed first in the fuzzy method, then the calculations of the fuzzy risk priority
numbers are performed by multiplying the probability and impact membership functions,
and finally, these fuzzy risk-level results are prioritised using the TOPSIS method [65].

Table 7 shows the results of applying the FT method and the conventional TOPSIS
method, showing a difference in the classification results. On the one hand, the risk
prioritised by the FT method is market risk 3 (RM3), while in the TOPSIS method it is
regulatory risk 2 (Rreg2). On the other hand, the second most important risks for the FT
and TOPSIS methods were regulatory risk 2 (Rreg2) and market risk 2 (RM2), respectively.
Overall, there are some similarities in the results, but given the differences in the application
of the methods, there are obvious discrepancies.

In fact, the results of the Fuzzy-TOPSIS method differ to some extent from the results
of the previously tested MCDM methods and the modified fuzzy method in this study. In
this scenario, the results of the TOPSIS method are more consistent with the results of the
previous section and with the individual responses of the consulted experts; for this reason,
TOPSIS is selected as a complement to generate the weights in the fuzzy method proposed
in this study. The final results obtained are discussed in the following subsection.
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Table 7. Fuzzy-TOPSIS vs. TOPSIS methods.

Risk Rank
Code Fuzzy-TOPSIS TOPSIS

Rreg1 8 6

Rreg2 2 1

Rreg3 15 12

Rreg4 14 10

RT1 16 5

RT2 7 7

RT3 6 3

RT4 12 13

RM1 11 14

RM2 5 2

RM3 1 4

RM4 10 15

Rrep1 9 11

Rrep2 4 8

Rrep3 3 9

Rrep4 13 16

5.4. Fuzzy Risk Matrix Analysis

In this study, we used the centre of the area, also known as centroid defuzzification,
which produces as a result a single numerical value corresponding to the fuzzy sets. Table 8
reports these numerical values for each of the 16 risks evaluated. Note that these results
are obtained by processing the data from the procedure described in Section 3.4 with the
proposed TOPSIS approach, which allowed us to quantify the probability and impact
criteria evaluated by the experts completing our questionnaire. The TOPSIS method was
selected as an alternative for determining the weights because, when analysing the results
of the experts’ opinions, it was clear that the opinions were very much in line with the
weighting carried out by the TOPSIS method. These results reflect the concrete data
obtained after applying the fuzzy inference model in the analysis of identified risks.

Table 8. Crisp risk values.

Risk Likelihood Impact Risk level
Code % Linguistic % Linguistic % Linguistic

Rreg1 0.3929 Unlikely 0.9371 High 0.6000 High

Rreg2 0.7321 Likely 0.9720 High impact 0.8644 Critical

Rreg3 0.2000 Very unlikely 0.8252 Medium–high 0.4000 Medium

Rreg4 0.6071 Medium 0.7552 Medium–high 0.6000 High

RT1 0.8393 Likely 0.9720 High 0.8519 Critical

RT2 0.4643 Medium 0.9091 High 0.6000 High
RT3 0.6786 Likely 0.9441 High 0.7883 Critical

RT4 0.2000 Very unlikely 0.8252 Medium–high 0.4000 Medium
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Table 8. Cont.

Risk Likelihood Impact Risk level
Code % Linguistic % Linguistic % Linguistic

RM1 0.2321 Very unlikely 0.8392 Medium–high 0.4696 Medium

RM2 1.0000 Very unlikely 1.0000 High 0.8667 Critical

RM3 0.4286 Unlikely 0.8741 High impact 0.5202 High

RM4 0.2000 Very unlikely 0.8042 Medium–high 0.4000 Medium

Rrep1 0.2143 Very unlikely 0.8531 Medium–high 0.4461 Medium

Rrep2 0.4286 Unlikely 0.8182 Medium–high 0.4559 Medium

Rrep3 0.3750 Unlikely 0.7832 Medium–high 0.4000 Medium

Rrep4 0.2000 Very unlikely 0.6853 Medium–high 0.3797 Medium

The above values were arranged in descending order to identify the most dominant
risks, which are represented in the risk matrix shown in Figure 7. When applying the fuzzy
logic model and comparing it with the TOPSIS model, it was determined that the most
critical and priority risks, in descending order, were RM2, RT3, Rreg2, and RT1, as can be
seen in the red highlighted section in the matrix. These risks have a high probability of
occurrence and a significant negative impact on the organisation, which is consistent with
what has been reported in the specialised literature.

Low impact

Low–Medium impact

Medium impact

Medium–High impact

High impact

Very likely

Likely

Medium likelihood

Unlikely

Very unlikely

RM2

Rreg2, RT3,
RT1

RT2

Rreg1, RM3Rrep2, Rreg3

Rrep1, Rreg3,
Rrep4,RT4,

RRM1, RM4

Figure 7. Climate transition risk matrix. Green is used to indicate low risk, yellow to indicate medium
risk, orange to indicate high risk, and red to indicate critical risk.

In terms of the most critical risk according to the results of experts’ opinions, changes
in prices, demand, volatility, and other aspects related to climate change will affect the
availability of raw materials and inputs for companies (RM2), generating uncertainty and
increased costs of these supplies, increasing costs and production capacity, due to changes
in prices of certain inputs such as energy, water, and fuels. However, none of the method-
ologies we have evaluated so far considers the market approach from this perspective, as it
is associated with the misperception of market climate risk as a long-term risk.

In relation to the increase in the carbon tax (Rreg2), which is a regulatory strategy
that seeks to reduce GHG emissions by companies, studies such as ours establish that one
of the impacts of this risk is a reduction in operating margin due to a higher cost of CO2
emissions; a reduction in the prices of investments and shares and few profits, and higher
interest rates, which in turn could limit access to financing and increase the cost of such
financing. Due to the additional payments resulting from the carbon tax, companies could
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face higher default costs and higher insurance premiums, as well as a possible impact on
credit quality with high GHG emissions.

It should be noted that most existing methodologies that estimate climate risk only
employ the regulatory variable of carbon tax. However, according to [66,67], carbon
emissions do not capture all aspects of climate transition risk; they are only a proxy of
climate-related regulatory risks given the multiple drivers and transmission channels, such
as the potential for technological innovation and litigation.

However, in terms of the risks of RT1, RT2, and RT3, unexpected or very rapid changes
in technological innovations related to climate, companies may also have economic and
financial consequences, regardless of climate-related regulations. These innovations can
turn companies’ assets into obsolete or stranded assets (RT3), resulting in lower profit
margins, higher operating costs, and financial destabilisation of the company.

On the other hand, the transition to less carbon-intensive energy-based production
patterns (RT1), which consists of the use of fuels with better GHG emission factors for the
generation of thermal power in companies, would entail costs associated with the adoption
of this new technology. However, companies that rely on these types of processes and
carbon-intensive technologies may become less competitive if they do not adopt these
technological innovations.

Complementing the analysis, the risks Rreg1, Rreg4, RT2, and RM3 are located in the
orange zone (high risk) of the risk matrix. According to [68], cap and trade schemes are
schemes in which companies can trade their emissions (Rreg1) through certain established
caps, which are more common in multinational companies. However, this can result
in a high price for tradable emission permits, leading to higher operating costs, asset
impairment, and early retirement of existing assets due to this change in regulation.

In relation to the Rreg4 risk, it is important to note that in Colombia the Superin-
tendency of Finance issued External Circular 031, which regulates and encourages the
disclosure of information on social, environmental, and climate issues, under a financial
materiality perspective. This regulation applies to companies listed on the Colombian Stock
Exchange (BVC), that is, publicly traded companies.

However, this requirement for companies to report the amount of GHG emissions
they produce and to determine whether they are in compliance with general regulations or
whether they are exceeding permitted GHG emission generation, may increase credit risk
for banks and entities that do business with these companies. In addition, the information
disclosed allows investors to make informed decisions about whether or not to invest in
companies with certain levels of emissions.

However, the technological progress of renewable energy and energy efficiency pro-
cesses (RT2), which consists of new technological developments that allow companies to
achieve better results in their energy processes, will also generate direct transition costs
with respect to renewable energy, as well as higher operating costs.

In the context of stakeholder concerns about climate change (RM3), this type of risk
could lead to investment aversion, resulting in losses on investments in companies, leading
to losses; as investors’ awareness and expectations about climate change are increasing,
they incorporate climate risk considerations into their investment decisions. Therefore,
further research on the impact of corporate sentiment on climate change would help to
improve our understanding of this transmission channel. Another impact that may be
caused by climate change concerns is an increase in counterparty litigation, which generates
other risks, such as reputational risks on certain environmental issues, which ultimately
leads to increased costs, and thus, to reduced investment in unsustainable assets.

However, it is very important for companies to pay attention to changes in the environ-
ment, regardless of the risk typology, taking into account that the risks RM1, RM4, Rrep1,
Rrep2, Rrep3, and Rrep4, have a medium risk rating, as the latter risks, which are related to
the feelings and expectations of individuals and companies, are the least investigated.
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6. Conclusions and Future Work

It is important to note that the MCDM methods are based on different principles and
algorithms, since each was designed to solve specific problems. Some techniques weight
the criteria differently, which can lead to different results for the same dataset. On the other
hand, if the data used are not at a similar level of analysis, it can distort the comparison.
This may require the use of standardisation or normalisation techniques.

However, even if two MCDM techniques have a high correlation, it does not mean
that one method influences the other; both could be influenced by external factors. It is
important to note that correlation does not imply causation. Each method was designed
for different problems or contexts, so it is important to understand the weaknesses and
strengths of each method and to verify that the method is appropriate for the problem being
addressed in each investigation. Therefore, there is no one method that is more appropriate
than another.

When comparing the results obtained by the MCDM and fuzzy logic techniques, it is
possible to determine that RM2 and Reg2 are the most serious risks according to the results.
Nevertheless, the advantage of using methods such as fuzzy logic is not only the ability to
generate a ranking of options, in this case, risks, but also to classify them into different risk
levels, as was intended in this research.

The use of fuzzy logic, in combination with other decision-making techniques, can
bring clarity and precision to the detailed study of the climate transition risks. The advan-
tage of using fuzzy logic instead of other traditional qualitative approaches is the ability to
transform vague and analogous information into unambiguous data that can be used to
make informed and unambiguous decisions on various issues, such as climate transition
risk management.

It can be concluded that technological risks are the most significant, followed by
regulatory and market risks, for the economic sector analysed. Notably:

• All risks evaluated have a medium-to-high impact.
• The technological risks are particularly notable because of their high probability of

occurrence and their considerable impact.
• The risks RT1, RT2, and RT3 have a significant probability of occurrence and high

impact, which makes them particularly critical.
• Market and regulatory risks are the most significant in terms of risk management. In

particular, RM2 is the most probable and has the most significant impact.
• Raw material price fluctuations are a common occurrence in the manufacturing sector,

but are difficult to anticipate due to their unpredictable nature.
• Reputational risks, although located in the lower right quadrant of the matrix, can

have a significant impact and are not as widely studied by experts. Although their
probability of occurrence is low, they can still have a significant impact, so it is essential
to keep them under control.

From the above findings and analysis, it can be established that technological risks
related to climate change are currently the most important for organisations in this sector,
followed by regulatory and market risks, which are the key drivers for organisations at the
financial level.

With this in mind, it is important to stress that:

• Climate regulations vigorously aim to internalise carbon externalities, positioning
them as a crucial driver of risk management. This is frequently achieved through
powerful incentive-based regulations, such as the impactful implementation of carbon
pricing mechanisms. The advent of groundbreaking technological advancements
significantly reduces costs, a phenomenon often stimulated by pioneering climate
regulations, thereby making low-carbon technologies more affordable than ever.

• Consumer and market preferences will drive demand and prices. Given this demand–
pull effect, market preferences can influence the pace of technology adoption and
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policy development, demonstrating the strong interaction between these three drivers
of climate change.

• It is essential for companies to pay attention to changes in the environment, regardless
of the type of risk, taking into account that the risks RM1, RM4, Rrep1, Rrep2, Rrep3,
and Rrep4 have a medium risk rating. This is because the latter risks, which relate to
the feelings and expectations of individuals and companies, are the least researched.

Therefore, efforts to better address and manage climate change are expected to drive
technological innovations that will enable the transition to low-carbon economies. This
could make the most polluting technologies relatively more expensive if carbon taxes
or other stricter regulations are introduced, as companies that rely on carbon-intensive
technologies could become less competitive if they do not adopt new technologies.

Some results presented in this study may differ from other analyses of climate transi-
tion risk assessment, taking into account that the experts assessed in this study belong to a
company in the economic sector analysed, and thus, know the reality of the company and
have knowledge associated with the risks, which is important in determining how exposed
the company may be to this type of climate risk.

The severity of the threat that can affect an organisation depends on its vulnerability
and resilience. Furthermore, the economic impact is the result of the interaction between
exposure, vulnerability, and resilience. Therefore, an assessment of the financial conse-
quences of climate transition risks seeks to quantify the economic impact on the underlying
unit of analysis.

However, companies are expected to create a culture of identifying, assessing, and
managing climate transition risks through this type of analytical tool. It should be noted that
this tool can be used not only for the identification of purely climatic risks, but also for any
type of traditional or emerging risk faced by companies, as well as climate physical risks.

This research aimed to identify climate transition risks that could affect organisations
that belong to the processed food sector. It is important to note that these specific risks were
identified for a specific company, taking into account its context and realities. Exposure to
a particular type of risk will depend largely on the sector and type of industry. Many risks
can be added to this matrix as necessary for the analysis given the needs and specificities of
each organisation.

The consequences of our findings for decision making are substantial. The key risks
identified, including price fluctuations and the availability of raw materials, require specific
mitigation and adaptation strategies from the organisations. For example, companies
should consider investing in less carbon-intensive technologies and preparing for potential
increases in carbon taxes. In addition, it is crucial to acknowledge the limitations of our
study, such as the dependence on historical data and the subjectivity of expert evaluations.
Future research could investigate the incorporation of real-time data and the application
of advanced artificial intelligence techniques to improve the precision and relevance of
risk assessments.

We present a methodology that uses a combination of known techniques in risk
environments and that returns a matrix with information that is easy to handle and interpret
for the organisation’s employees. The disadvantage is that, although it is a methodology
that can be easily adapted, it needs to be adapted to each organisation according to its
internal characteristics, so it needs experts within the organisation to be able to run the
TOPSIS model again and establish weights according to each organisation.

It is suggested that future research should focus on methods that can weigh vulnera-
bility, exposure, and resilience on the same impact criterion as input variables for the fuzzy
logic model. This would allow experts to capture more information, similar to the MCDM
model, since the literature suggests that there is a relationship between these four criteria.

However, it is suggested that for the application of this methodology in specific
companies, a representative sample of the different areas of the organisation should be used,
as it is important that all areas, without exception, are involved in the risk assessment and
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subsequent evaluation process; considering as experts people with knowledge associated
with the risks to which the business may be exposed.
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