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Part I

Introduction

1 Noncommutative Differential Geometry

In classical differential geometry, the objects of study are (infinitely) differentiable man-

ifolds, and the vector fields and differential forms associated with them. On a differ-

entiable manifold M , on each local coordinate patch (also called a chart) there are

vector fields ∂
∂xi

which span the tangent bundle TM . Dual to these are 1-forms dxi

which span the cotangent bundle T ∗M . Note that it only makes sense to talk about

these on local coordinate patches. Denoting C∞(M) for the algebra of smooth (i.e. in-

finitely differentiable) real-valued functions M → R, the duality is by the bimodule map

ev : TM ⊗ T ∗M → C∞(M) given on local coordinate patches by ev( ∂
∂xi
, dxj) = δi,j.

Globally we write Ω1(M) for the space of 1-forms, which is regarded abstractly as the

image of the linear map d : C∞(M) → Ω1(M) satisfying df =
∑
i

∂f
∂xi

dxi and the Leibniz

rule d(fg) = fd(g) + d(f)g. Higher differential forms Ωn(M) can also be defined via the

wedge product ∧ : Ωn(M) ⊗ Ωm(M) → Ωn+m(M). For example, Ω2(R2) contains the

2-form dx1 ∧ dx2. In particular the extension of the differential to higher calculi squares

to zero, giving the following cochain complex, called the de Rham complex.

0 C∞(M) Ω1(M) Ω2(M) Ω3(M) · · ·d d d d

Associated to this cochain complex are the de Rham cohomology groups, defined as:

Hn(M) = ker(d : Ωn(M) → Ωn+1(M))/im(d : Ωn−1(M) → Ωn(M)).

However, in noncommutative differential geometry, it was observed that all of this theory,

along with other objects such as metrics and connections on vector bundles, can also be

defined when C∞(M) is replaced by any algebra A, usually associative and unital, but

which need not be commutative. The objective of the field is to find as many noncommu-

tative analogues of classical constructions as possible, along with considering differential

phenomena which occur only in a noncommutative setting. In the preliminaries section
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below this, we give an overview of the key definitions and results in noncommutative

differential geometry.

The Gelfand-Naimark theorem [28] gives an interpretation of these noncommutative ana-

logues, giving a one-to-one correspondence between compact Hausdorff spaces and com-

mutative unital C*-algebras. Thus we interpret noncommutative unital C*-algebras as

algebras of functions on hypothetical “noncommutative” compact Hausdorff spaces. The

theory of C*-algebras was developed in the early 20th century by Von Neumann [44], and

many others including Gelfand and Naimark [28].

Also in the early 20th century, it was observed that the algebra of observables in quantum

theory is noncommutative. These were connected in the 1980s by Alain Connes [19],

whose theory of spectral triples gave a noncommutative analogue of the Dirac operator

from physics, and also an idea of a differential on noncommutative algebras as da = [D, a].

However, the notion of calculus that we work with in this paper is the one proposed by

Woronowicz in 1989 [58] for quantum groups such as Cq[SU2], which are noncommutative

analogues of Lie groups.

This thesis contains no physics, but noncommutative differential geometry finds various

applications in physics, including to noncommutative space time models by Majid such as

in [32] and Chapter 9 of [10], to gauge theories and the standard model by Chamseddine

and Connes in [18], and to geodesics in quantum mechanics by Beggs and Majid [9].

Within mathematics, there are applications to Hopf algebras as in chapter 2 of [10], and

applications to Hopf algebroids by Majid and Simão [37], where the study of bimodule

connections from algebroids gives rise to a theory of jet bundles. There are also ap-

plications to C*-algebras by considering differentiation of the KSGNS construction (see

chapter 5 of [30] for details on the KSGNS construction), as was used in [6] to study non-

commutative geodesics, and also as we use extensively in Parts V and VI of this thesis.

There are also applications to noncommutative generalisations of grassmanians and Lie

theory such as in [17] and [16]

In this thesis, we begin with a review of preliminaries from noncommutative differential

geometry, closely following definitions and notation used in the book [10]. The overarching

theme of the thesis is to introduce noncommutative analogues of various concepts from

topology, and calculate a number of examples of each, with an emphasis on quantum

10



group examples and discrete examples.

Section II contains the first original content, where we give a diagrammatic differential

calculus on Temperley-Lieb algebras. This calculus is new to the extent of our knowledge,

and the section also serves as an illustration of a number of techniques we use throughout

the thesis.

In Section III we introduce a new possible definition for noncommutative submanifolds,

and prove a number of results about the differential geometric properties of algebras

satisfying this definition.

In Section IV we take an existing definition for noncommutative fibre bundles via algebra

maps and generalise it to use bimodules and completely positive maps instead, showing

we can still obtain a Leray-Serre spectral sequence. We also uploaded this to the arXiv

as [7].

In Section V we look at ideas for noncommutative analogues of retracts and neighbour-

hood retracts. Since we only began work on this section quite late in the project, our

investigations are still in the early stages and there is a lot of future work we could do.

Lastly, in Section VI we look at what Quillen’s definition of cofibration might mean in a

noncommutative differential context. We focus on the problem of lifting time-dependent

states, which correspond to paths, since lifting paths is a necessary first step towards lift-

ing homotopies. This section is just a few initial ideas and calculations towards something

whose completed version, if it exists, would be much more complicated.

With the possible exception of the section on Temperley-Lieb algebras, all the subjects

in this thesis — submanifolds, fibre bundles, retracts, and cofibrations — are related

classically. Classical embedded submanifolds give neighbourhood retracts via tubular

neighbourhoods. One definition of topological cofibrations is in terms of neighbourhood

deformation retracts. Fibre bundles are examples of fibrations, and fibrations are dual to

cofibrations.

2 Preliminaries

The key definitions and notation we use closely follow the setup of the book [10], but

so that this thesis can be read as a self-contained document we also present them here.
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The first thing we do with an algebra is to equip it with a calculus, after which we can

consider structures like connections on modules over the algebra.

Definition 2.1. A vector space A over C is called an algebra if there is a multiplication

operation which is distributive with respect to the vector space addition. Further, we say

that A is associative if a(bc) = (ab)c for all a, b, c ∈ A, and call A unital if there exists an

element 1 ∈ A such that 1.a = a.1 for all a ∈ A.

In this thesis, we will assume all algebras are associative and unital unless otherwise

stated. The one non-unital algebra we consider is the algebra D in the retracts section.

Definition 2.2. ([10] Section 1.1) Given algebras A and B, we call vector space E:

(1) A left A-module if there is a left action a ▷ e ∈ E of A on E which respects algebra

multiplication in the sense that (a1a2) ▷ e = a1 ▷ (a2 ▷ e). We write E ∈ AM.

(2) A right B-module if there is a right action e◁b ∈ E of B on E which respects algebra

multiplication in the sense that e ◁ (b1b2) = (e ◁ b1) ◁ b2. We write E ∈ MB.

(3) An A-B bimodule if E is both a left A-module and a right B-module and the actions

commute in the sense that (a▷ e) ◁ b = a▷ (e ◁ b). We write E ∈ AMB. An A-A bimodule

is called an A-bimodule for short.

Actions on modules, especially on calculi, may be also written as a.e or simply ae. In

the example CG for G a finite group, we actually see both the triangle and dot notations

appearing, where the dot is the action on the calculus and the triangle is the action on a

representation.

We can take the tensor product of an A-B bimodule E with a B-C bimodule F , and obtain

an A-C bimodule E⊗BF . This has actions a.(e⊗f) = (a.e)⊗f and (e⊗f).c = e⊗(f.c).

The characteristic property of ⊗B is that e.b ⊗ f = e ⊗ b.f — i.e. that we can move

elements of B across the tensor product.

Note that since every module over C can be regarded as a C module by multiplication,

we can always take B = C and get a tensor product E ⊗C F , which it is customary to

write as E ⊗ F .

Definition 2.3. ([10] Definition 1.1) For an associative unital algebra A, we say that an

A-bimodule Ω1
A is a (differential) calculus on A if Ω1

A = span{a′da | a, a′ ∈ A} for a linear

map d : A→ Ω1
A satisfying d(ab) = adb+ da.b, which we call the exterior derivative.
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The calculus is called connected if ker d = K.1, where K is the field of scalars of A.

Here we always take K = C. If we drop the condition that Ω1
A is spanned by elements

of the form a′da and allow elements not of this form, then Ω1
A is called a generalised

calculus. We consider generalised calculi in the Temperley-Lieb algebras section.

There are potentially many different calculi that any given algebra can be equipped with,

and so we always need to specify which calculus we are using. If we talk about a calculus

Ω1
A on an algebra A without specifying which calculus it is, then Ω1

A is arbitary.

Note that while in the calculus on a manifold we always have db.a = a.db, this non-

commutative definition makes no such assumption, and this gives rise to a number of

phenomena such as inner calculi which only appear in a noncommutative setting due to

commutators not vanishing.

Definition 2.4. ([10] Definition 1.3) If there exists an element θ ∈ Ω1
A such that da =

[θ, a] for all a ∈ A, where [θ, a] = θa− aθ denotes the commutator, then we say that the

calculus Ω1
A is inner by θ.

Definition 2.5. ([10] Chapter 6) For an algebra A with calculus Ω1
A, right vector fields

on A are the set of right module maps

XR
A = HomA(Ω

1
A, A),

i.e. which satisfy X(ξ.a) = X(ξ).a for ξ ∈ Ω1
A, a ∈ A.

The left vector fields on A are the set of left module maps

XL
A = AHom(Ω1

A, A),

i.e. which satisfy X(a.ξ) = aX(ξ) for ξ ∈ Ω1
A, a ∈ A.

The vector fields are an A-bimodule, with X ∈ XR
A having actions

(aX)(ξ) = a.X(ξ), (Xa)(ξ) = X(aξ),

and X ∈ XL
A having actions

(aX)(ξ) = X(ξ.a), (Xa)(ξ) = X(ξ).a.

13



The actions on left vector fields look a little strange, but this comes from the requirement

that the evaluation map ev : Ω1
A ⊗A XL

A → A be a bimodule map.

In the classical case where 1-forms commute with functions on a manifold, this definition

is equivalent to derivations on C∞(M), but in the noncommutative case these do not

coincide, and we have to choose one definition over another. In Section III we go into

more detail as to why we have chosen to take vector fields as dual to 1-forms instead of

being derivations, but in short the main reason is because we can’t take connections on

it otherwise.

Definition 2.6. ([10] Definition 3.1) A right A-module F is said to be right finitely gen-

erated projective if there are a finite number of module elements fi ∈ F and right module

maps ei ∈ HomA(E,A) such that each f ∈ F can be decomposed as f =
∑
i

fi.e
i(f).

It follows that each e ∈ HomA(E,A) can be decomposed as e =
∑
i

e(fi).e
i, and that

HomA(E,A) is a left A-module and is left finitely generated projective.

If the calculus Ω1
A is right finitely generated projective, the vector fields XR

A are left finitely

generated projective. Likewise, if Ω1
A is left finitely generated projective, then XL

A is right

finitely generated projective.

So far we have looked at first order calculi Ω1
A, but similarly to the de Rham complex

in classical differential geometry we can define higher order calculi Ωn
A. This is given by

equipping the algebra with a differential graded algebra structure as in Definition 1.30 of

[10], where we extend the differential as

d(ω ∧ ρ) = (dω) ∧ ρ+ (−1)nω ∧ dρ

for ω ∈ Ωn
A, ρ ∈ Ωn

A, and following from the surjectivity condition of first order calculi, an

element of Ωn
A is the wedge product of n elements of Ω1

A. This formula for the differential

makes d2 = 0. So for example an element of Ω2
A is of the form da1 ∧ da2 for some

a1, a2 ∈ A, and satisfies da1.a3∧da2 = da1∧a3.da2 for a3 ∈ A. As for what relations this

wedge product satisfies, there are many possibilities, but one used very commonly and

which has a minimal number of relations is the maximal prolongation calculus, discussed

later in this section.

Next we look at connections on modules and bimodule connections on bimodules.
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The idea of a bimodule connection was introduced in [24], [23] and [42] and used in [27],

[31]. It was used to construct connections on tensor products in [15].

Definition 2.7. ([10] Definition 3.18) A left connection on a left A-module E is a linear

map ∇E : E → Ω1
A ⊗A E obeying the left Leibniz rule

∇E(a.e) = da⊗ e+ a.∇Ee, e ∈ E, a ∈ A.

Its curvature RE : E → Ω2
A ⊗A E is defined by

REe = (d⊗ id− id ∧∇E)∇Ee.

By Lemma 3.19 of [10], the curvature of a left connection is always a left A-module map.

A connection is said to be flat if its curvature is zero.

This is related to the classical definition of connection by the formulae

∇s = dxi ⊗∇is, ∇is = (ev ⊗ id)(
∂

∂xi
⊗∇s),

where s is a section.

There is a similar definition for right connections on right modules.

Definition 2.8. A right connection on a right A-module E is a linear map ∇̃E : E →

E ⊗A Ω1
A obeying the right Leibniz rule

∇̃E(e.a) = ∇̃E(e).a+ e⊗ da,

and its curvature R̃E : E → E ⊗A Ω2
A is defined by

R̃E(e) = (id⊗ d + ∇̃E ∧ id)∇̃Ee.

Similarly, the curvature of a right connection is always a right module map.

On a B-A bimodule, we can ask if a left connection satisfies a version of the right Leibniz

rule as well, i.e. whether the left connection is compatible with the right module structure.

Definition 2.9. ([10] Generalisation of Definition 3.66) We say that a left connection

∇E : E → Ω1
B ⊗B A on a B-A bimodule E is a bimodule connection if the map σE :

E ⊗A Ω1
A → Ω1

B ⊗B E given by

σE(e⊗ da) = ∇(e.a)−∇E(e).a, e ∈ E, a ∈ A

is a bimodule map.
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Since σE is defined in terms of ∇E, it is not additional data. Rather, after specifying the

right module structure, being a bimodule connection or not is a property of any given

left connection.

The bimodule map σE lets us move first-order calculi from one side of the bimodule to

another, but in order to move higher order calculi we require extendability.

Definition 2.10. ([10] Definition 4.10) A left bimodule connection ∇E on a B-A bi-

module E is called extendable if σE : E ⊗A Ω1
A → Ω1

B ⊗B E extends for all n ≥ 1 to

σE : E ⊗A Ωn
A → Ωn

B ⊗B E such that for all m ≥ 1

(∧ ⊗ id)(id⊗ σE)(σE ⊗ id) = σE(id⊗ ∧) : E ⊗A Ωn
A ⊗A Ωm

A → Ωn+m
B ⊗B E.

For a right bimodule connection extendability means that σE extends as σE : Ωn
B⊗BE →

E⊗AΩ
n
A by the formula σE(ξ∧η⊗e) = (σE∧ id)(ξ⊗σE(η⊗e)). This can also be written

as (id⊗ ∧)(σE ⊗ id)(id⊗ σE) = σE(∧ ⊗ id).

We use extendability in the fibre bundles section.

Definition 2.11. ([10] Lemma 1.32) Every first order calculus Ω1 on A has a ’maximal

prolongation’ Ωmax to an exterior algebra, where for every relation
∑
i

ai.dbi =
∑
j

drj.sj

in Ω1 for ai, bi, rj, sj ∈ A we impose the relation
∑
i

dai ∧ dbi = −
∑
j

drj ∧ dsj ∈ Ω2
max.

This is extended to higher forms, but no new relations are added.

Lemma 2.12. (Corollary 5.3 and 5.4 of [1]) If a B-A bimodule E has bimodule connec-

tion ∇E, and the following two conditions hold:

• A is equipped with maximal prolongation calculi for its higher calculi,

• the curvature RE of the connection is a bimodule map,

then extendability of σE is automatic.

In the presence of a metric, we can ask if the metric is compatible with the metric (in

this case we say it preserves the metric or is metric-preserving).

A right connection ∇E is said to preserve an inner product ⟨, ⟩ : E ⊗B E → A on E if

d⟨e1, e2⟩ = ⟨e1,∇E(e2)(1)⟩∇E(e2)(2) + ∇E(e1)
∗
(2)⟨∇E(e1)(1), e2⟩ for all e1, e2 ∈ E, using a

form of Sweedler notation∇E(e) =
∑

∇E(e)(1) ⊗∇E(e)(2) for tensor products. (A version
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for left connections is given in Definition 8.33 of [10].) If there is a right connection ∇E

on E, then there is also a left connection ∇E on E, given by ∇E(e) = ∇E(e)
∗
(2)⊗∇E(e)(1).

We use this notation to write the metric preservation in string diagrams in Figure 1.

d
= +

Figure 1: Preliminaries: Illustration of the metric preservation equation

3 List of Algebras

We give an overview of the algebras we use in this thesis and their standard calculi. A

history of these calculi can be found in the notes at the end of Chapters 1-3 of [10], but

we give citations here too.

Example 3.1. C∞(M) For a smooth manifold M , the set of smooth functions M → R

is a commutative algebra with unit the function sending all of M to 1. It has differential

df =
∑
i

∂f

∂xi
dxi,

and 1-forms commute with elements of the algebra.

We use this in Sections 13.1 and 13.2. ⋄

Example 3.2. Cq[S
1] ([10] Example 1.11. Calculus on quantum circle originally by

Majid in [35].) The Algebraic Circle Cq[S
1] = C[t, t−1] is the algebra of polynomials in t

and t−1, and its standard calculus is given by

Ω1 = C[t, t−1].dt, dt.f(t) = f(qt)dt, df =
f(qt)− f(t)

t(q − 1)
dt.

It has ∗-structure given by t∗ = t−1.

We use this in Sections 13.3 and 13.4 and 16.3 and 16.1 and 26 and 42.2. ⋄

Example 3.3. Cq[D] ([10] Example 3.40. Calculi on the quantum disk are originally

by Vaksman in [55].) The quantum disk Cq[D] with 0 < q < 1 is the q-deformation
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of functions on the unit disk. It is generated by elements z and z, with relation zz =

q−2zz − q2 + 1 and ∗-structure z∗ = z. The algebra has a grading |z| = 1 and |z| = −1.

There is a grade zero element w = 1− zz, which satisfies zw = q−2wz and zw = q2wz.

It has calculus generated by dz and dz, which satisfy relations

dz ∧ dz = −q−2dz ∧ dz, z.dz = q−2dz.z, z.dz = q−2dz.z

dz ∧ dz = dz ∧ dz = 0, z.dz = q2dz.z, z.dz = q2dz.z

A dual basis of the calculus is given by ez = dz, ez = dz, and ez, ez ∈ XR
Cq [D] such that

ez(e
z) = ez(e

z) = 1 and ez(e
z) = ez(e

z) = 0. These vector fields satisfy commutation

relations

z.ez = q2ez.z, z.ez = q−2ez.z, z.ez = q2ez.z, z.ez = q−2ez.z.

We use this in Sections 13.3 and 16.3. ⋄

Example 3.4. Cq[M2] ([10] Proposition 2.13 for algebra, [5] page 27 for calculus) The

algebra Cq[M2] has generators a, b, c, d and relations:

ba = qab, ca = qac, db = qbd, dc = qcd, cb = bc, da− ad = (q − q−1)bc.

Note that in Cq[M2], unlike in Cq[GL2], Cq[SL2] or Cq[SU2], we make no assumption on

the value or invertibility of the determinant detq = ad− q−1bc.

It has a 1-parameter family of 4D calculi. Writing α for the free parameter and λ = q−q−1,

the calculus is freely generated by elements ea, eb, ec, ed and inner by θ = ea + ed, which

gives the differential. The commutation relations on the generators are:

ea( a bc d ) = q2α
(
q2a b
q2c d

)
ea, [eb, ( a bc d )]q1+2α = q1+2αλ( 0 a

0 c )ea

[ec, ( a bc d )]q1+2α = q1+2αλ( b 0
d 0 )ea, [ed, (

a
c )]q2α = q2αλ( bd )eb

[ed, ( bd )]q2α = q2αλ
(
aec+λbea
cec+λdea

)
This notation is a shorthand, so for example one of the relations is

eb.d− q1+2αdeb = q1+2αλcea.

We use this in Section 13.7. ⋄
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Example 3.5. Cq[SU2] ([10] Proposition 2.13 for algebra, Example 2.32 for calculus.

Calculus originally by Woronowicz in [58].) The algebra Cq[SU2] is a Hopf algebra,

generated by elements a, b, c, d with the same relations as Cq[M2], plus the additional

relation that detq = 1, where detq = ad − q−1bc. It has ∗-structure q∗ = q and ( a bc d )
∗
=(

d −q−1c
−qb a

)
.

It has a standard vector space basis {bmcn} ∪ {akbmcn} ∪ {dkbmcn} for m,n ≥ 0 and

k > 0.

It has a freely generated left-covariant 3D star-calculus with basis

e− = ddb− qbdd, e+ = q−1adc− q−2cda, e0 = dda− qbdc.

Equipping the elements with grading |a| = |c| = 1, |b| = |d| = −1, the commutation

relations are

e±f = q|f |fe±, e0f = q2|f |fe0.

The exterior derivative is

da = ae0 + qbe+, db = ae− − q−2be0, dc = ce0 + qde+dd = ce− − q−2de0.

We use this in Sections 13.4 and 16.1 and 42.4. ⋄

Example 3.6. Cq[S
2] ([10] Lemma 2.34 for algebra, Proposition 2.35 for calculus. Calculi

on quantum spheres originally by Podleś in [47].) The algebra Cq[S
2] is the subalgebra

of Cq[SU2] of elements of degree zero with respect to the Z-grading |a| = |c| = 1, |b| =

|d| = −1. It has generators x = −q−1bc, z = cd, z∗ = −qab, and relations

xz = q2xz, z∗x = q−2xz∗, zz∗ = q2x(1− q2x), z∗z = x(1− x).

Alternatively, the degree zero elements of Cq[SU2] are generated by ac∗, ca∗ and cc∗.

It inherits a calculus from Cq[SU2] by discarding the generator e0, but this calculus is

not left-covariant.

We use this in Section 42.4. ⋄

Example 3.7. Cq[C2] ([10] Example 2.66 for algebra, Example 2.79 for calculus) The

quantum plane Cq[C2] has generators x, y with relation yx = qxy. It has calculus gener-

ated by dx and dy with relations

dx.x = q2xdx, dx.y = qydx, dy.x = qxdy + (q2 − 1)ydx, dy.y = q2ydy.
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We use this in Section 13.7. ⋄

Example 3.8. Cθ[T2] ([10] Example 1.36. Calculi on the noncommutative torus were first

studied by Connes and Rieffel in [20].) The noncommutative torus Cθ[T2] has generators

u, v with the relation vu = eiθuv for a real parameter θ. It has star structure u∗ = u−1 and

v∗ = v−1. It has calculus Ω1 = Cθ[T2].{du, dv}, with left action given by multiplication

and right action given by

du.u = u.du, dv.v = v.dv, dv.u = eiθu.dv, du.v = e−iθv.du.

We use this in Section 26. ⋄

Example 3.9. C(X) ([10] Proposition 1.24. Differentials on finite sets were first used by

Connes in [19] then extensively studied by Majid in [34].) For a finite set X, the algebra

C(X) of complex-valued functions on X has basis δx for x ∈ X, which are defined as

δx(y) = δx,y. Calculi Ω1
C(X) on such algebras are given by finite graphs with vertices the

elements of X, where in any given direction between two vertices there is at most one

arrow, and there are no arrows from a vertex to itself. The basis of the calculus is ωx→y for

each arrow x→ y of the graph, and the left and right actions are f.ωx→y = f(x)ωx→y and

ωx→y.f = ωx→yf(y) respectively. The calculus is connected if and only if the underlying

(undirected) graph is connected. The calculus is inner by θ =
∑
x→y

ωx→y, with exterior

derivative

df = [θ, f ] =
∑
x→y

(
f(y)− f(x)

)
ωx→y.

This implies in particular that

dδz =
∑
x→y

(
δz,y − δz,x

)
ωx→y =

∑
x→z

ωx→z −
∑
z→y

ωz→y.

We use this in Sections 13.6 and 34.2. ⋄

Example 3.10. C(G) ([10] Proposition 1.52) If G is a finite group, then the complex-

valued functions C(G) have differential calculi coming from Cayley graphs on G regarded

as a finite set. These are determined by a subset C ⊂ G\{e}, and the arrows go from

x → xa for x ∈ G and a ∈ C. Note that in this thesis, we use the symbol ⊂ with the

meaning ⊆, so for sets A and B, the statement A ⊂ B includes the possibility A = B.
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Left covariant calculi are given by Ω1 = C(G).Λ1 as a free module over the vector space

Λ1, which has basis ea =
∑
x∈G

ωx→xa. The differential satisfies ωx→xa = δxdδxa. We have:

ea.f = Ra(f)ea, df =
∑
a∈C

(Ra(f)− f)ea

for f ∈ C(G), where we denote Ra(f)(g) = f(ga). The calculus is inner by θ =
∑
a∈C

ea,

and is connected if and only if C is a generating set, and is right-covariant if and only if

C is stable under conjugation. If C has inverses, then Ω1 is a ∗-calculus by e∗a = −e−1a .

We use this in Sections 13.5 and 16.2 and 42.3. ⋄

Example 3.11. CG ([10] Theorem 1.47) For a finite group G, the Hopf algebra CG

is the linear extension of the group. It has star structure x∗ = x−1 for all x ∈ G. Its

translation-invariant calculi are given by right CG-modules Λ1
G and maps ζ : G → Λ1

satisfying

ζ(xy) = ζ(x) ◁ y + ζ(y), ∀x, y ∈ G

which are called cocycles. The calculus is then given as a free module Ω1 = CG.Λ1
G. Each

pair (Λ1
G, ζ) of a right CG-module and a cocycle therefore gives a translation-invariant

calculus. The right action on the calculus is v.x = x(v ◁ x), and the differential is

dx = xζ(x), for all x ∈ G and v ∈ Λ1. The calculus is connected if and only if ζ(x) ̸= 0

for all x ∈ G\{e}.

We use this in Sections 24 and 42.1 and 34.1. ⋄

Example 3.12. M2(C) ([10] Example 1.8. Calculi on matrix algebras originally by

Beggs and Majid in [11].) The algebra M2(C) of 2x2 complex-valued matrices has basis

elements E11, E12, E21, E22 consisting of matrices with a 1 in the specified entry and all

other entries zero. It has an inner calculus given by θ′ = E12s
′ + E21t

′, where s′ and t′

are central.

We use this in Section 25. ⋄

Example 3.13. CHg ([10] Example 4.62. The calculus on CHg was extended in [10]

from [36] and [38].) The Heisenberg group Hg is a multiplicative matrix group

Hg = {
(

1 n k
0 1 m
0 0 1

)
: n,m, k ∈ Z}
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with generators u =
(

1 1 0
0 1 0
0 0 1

)
, v =

(
1 0 0
0 1 1
0 0 1

)
, w =

(
1 0 1
0 1 0
0 0 1

)
. These satisfy relation uv = wvu,

and the generator w is central. The group algebra CHg has calculi of the same type as

Example 3.11. We look at a specific calculus given by via the right representation Λ1

with basis eu, ev, ew and right actions

eu ◁ u = eu, ev ◁ u = ev − 1

2
ew, eu ◁ v = eu +

1

2
ew, ev ◁ v = ev,

with all actions on ew leaving it invariant and ◁w = id acting trivially. There is a cocycle

ζ : CHg → Λ1 given by ζ(x) = ex for all x = u,w, v, and this gives a left-covariant

calculus Ω1(CHg) = Λ1.CHg with differential dx = xζ(x).

We use this in Section 42.2. ⋄
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Part II

Temperley-Lieb Algebras
Abstract

We give a diagrammatic differential calculus on Temperley-Lieb algebras which we believe
to be new, and use this to give a bimodule connection on bimodules over the algebra.

4 Background

Temperley-Lieb algebras are a family of algebras defined by Neville Temperley and Elliott

Lieb in [54], which are often drawn using diagrams. A vector space basis of TLn(δ) for

n ≥ 1 and δ ∈ C\{0} is given by rectangular diagrams with n points on each of its

left and right edges respectively, with each point connected to another on either side by

a curve which does not cross any other curve or leave the rectangle. The product of

diagrams is their horizontal concatenation, subject to the rule that a diagram containing

a closed loop is equal to δ times the same diagram with that loop removed. The identity

element is the diagram where each point is connected by a straight line to the point

directly opposite. For example, the algebra TL3(δ) has three generators {id, e1, e2}, and

basis {id, e1, e2, e1e2, e2e1}, which is drawn in Figure 2.

id

Figure 2: Temperley-Lieb: A basis of TL3(δ)

In the diagrams for TLn(δ), we number the points at the top of the rectangle as the 1st

and the points at the bottom as the nth. The diagram ek ∈ TLn(δ), where 1 ≤ k ≤ n−1,

has point k on each side connected to point k+ 1 on the same side, with all other points

connected by a straight line to the one opposite. These satisfy the four Temperley-Lieb-

Jones relations [26] (1) e2i = δei for all 1 ≤ i ≤ n−1, (2) eiei+1ei = ei for all 1 ≤ i ≤ n−2,

(3) eiei−1ei = ei for all 2 ≤ i ≤ n − 1, (4) eiej = ejei for all 1 ≤ i, j ≤ n − 1 such that

|i− j| ≠ 1.
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A general Temperley-Lieb algebra TLn(δ) is generated by the identity diagram and dia-

grams ei for 1 ≤ k ≤ n− 1.

5 Calculus

As far as we know, the following calculus on Temperley-Lieb algebras is new.

Definition 5.1. Define Ξrn(δ) for 0 ≤ r ≤ n to be the vector space of diagrams in TLn(δ)

that have r dots placed on their n curves, subject to the following rules and relations.

1. Dots can be placed anywhere on a curve except the endpoints.

2. No dot can be placed directly above another.

3. Dots can be slid along curves, but when sliding one dot past another, the diagram

is multiplied by a factor of −1.

4. A diagram with a dot on a closed loop is equal to zero.

We define a wedge product ∧ : Ξrn(δ)⊗ Ξr
′
n (δ) → Ξr+r

′
n (δ) by concatenating diagrams.

It follows that a diagram in Ξrn(δ) with two dots on the same curve must be zero.

Definition 5.2. Define ξi in Ξr+1
n (δ) as the diagram ξ in Ξrn(δ) with a dot added along

a curve i according to the following rules.

1. If i is a left-to-left curve or a left-to-right curve, then the dot is added to the left of

all other dots in ξ.

2. If i is a right-to-right curve, then the dot is added to the right of all other dots in

ξ.

3. If i is a closed loop, then adding a dot makes the entire diagram equal to zero.

This allows us to define a differential map looking like Figure 3.

Proposition 5.3. The map d : Ξrn(δ) → Ξr+1
n (δ) given by

dξ =
∑

i∈ left-to-left
curves of ξ

ξi −
∑

i∈ right-to-right
curves of ξ

(−1)|ξ|ξi (1)
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() = -

Figure 3: Temperley-Lieb: Illustration of d(e1) for e1 ∈ TL4

satisfies d2 = 0 and the graded Leibniz rule d(ξ ∧ η) = dξ ∧ η + (−1)|ξ|ξ ∧ dη and is thus

a differential.

Proof. (1) Firstly we show the Leibniz rule for r = 0. We assign signs to curves as

follows. A left-to-left curve has sign +1, a right-to-right curve has sign −1, and left-to-

right curves and closed loops have sign 0. The Leibniz rule says that the sign of each

curve in the product MN is equal to the sum of the signs of its component curves in M

and N , where each time a curve crosses the joining line of M and N it marks the start

of a new component curve. Next, we consider the signs of each type of curve in MN .

A left-to-left curve is either contained entirely in M or meets the joining line between M

and N an even number of times, and starts and ends with left-to-right curves. Conse-

quently the sum of its component curve signs is +1.

Similarly, a right-to-right curve is either contained entirely in N or meets the joining line

an even number of times, and hence the sum of its component curve signs is −1.

A left-to-right curve in MN meets the joining line an odd number of times, and both

starts and ends with left-to-right curves, so the sum of its component curve signs is zero.

Lastly, every closed loop inMN is obtained by taking a left-to-left loop and replacing the

first and last component curves with a single right-to-right curve in M . This decreases

the degree in M by one, so its overall degree is zero.

(2) In Figure 4 we show the graded Leibniz rule on a product ξ ∧ η. In the diagram we

draw only one curve, which we assume to not have any dots on it already.

() = == - + =

Figure 4: Temperley-Lieb: Part of the proof of the graded Leibniz rule for Temperley-

Lieb algebras

(3) Next, we show that d2 = 0. In Figure 5, we see that d2(ei) = 0 for ei ∈ TLn(δ).
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() ()= =- -2 () = 0

Figure 5: Temperley-Lieb: Illustration of how d2(ei) = 0

Using the graded Leibniz rule, this implies that d2 = 0 for any element of TLn(δ), seeing

as the ei generate Temperley Lieb algebras. Using the Leibniz rule on d2 of a general

1-form then gives d2(adei) = d(da ∧ dei + a ∧ d2ei) = d(da ∧ dei) = d2a ∧ dei = 0. This

shows that d2 = 0 on all 1-forms. But all n-forms are wedge products of 1-forms, and so

the graded Leibniz rule applies and shows that d2 = 0 in general.

Proposition 5.4. The calculus Ω1
TLn

given by the above differential d is spanned by the

elements of Ξ1
n except the identity with dots on it.

Proof. The generator ei with a dot on its left-to-left curve can be obtained as 1
δ
dei.ei,

while the generator ei with a dot put its right-to-right curve can be obtained as −1
δ
ei.dei.

Products of these generators with other generators also lie in the calculus, and since every

left-to-left or right-to-right curve necessarily passes through the curved part of an ei, dots

can be put on those too. Likewise for left-to-right curves that start and finish at different

heights, or which change height along the way.

For a straight horizontal line which is adjacent to a left-to-left or right-to-right curve,

we can use the Temperley-Lieb-Jones relations to deform it and introduce a bend. This

process can be recursively applied to all straight horizontal lines in a diagram, provided

that the diagram contains least one ei. Figure 6 illustrates this process.

= =

Figure 6: Temperley-Lieb: Illustration of recursively bending curves

However, the diagram consisting entirely of straight horizontal lines is the one exception,

to which we have no way of adding dots.

If we write idi for the identity diagram with a dot on its ith curve, then the calculus

would be inner by θ =
∑
i

idi, were it not for the fact that identity diagrams with a dot
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— and hence θ — do not lie in the calculus. However, the generalised calculus obtained

by dropping the requirement of being spanned by the image of d is inner by θ.

6 Some calculations of de Rham Cohomology

Next we do some calculations of de Rham cohomology.

Proposition 6.1. The de Rham cohomology of TLn(δ) satisfies the following.

1. Hm(TLn) = 0 for m > n, since diagrams with two dots on a single line are zero.

2. H0(TLn) ∼= C and Hn(TLn) ∼= 0 for all n.

3. H0(TL2) = C and H1(TL2) = 0.

Proof. (1) The kernel of the differential d : TLn → Ω1
TLn

consists of multiples of the

identity diagram and is hence 1-dimensional, so H0(TLn) ∼= C.

(2) Every diagram in Ωn
TLn

has n dots and can be obtained (up to a complex factor)

as the derivative of the same diagram but with n − 1 dots (where we omit a dot on a

left-to-left or right-to-right curve). This fact of d : Ωn−1
TLn

→ Ωk
TLn

being surjective implies

that Hn(TLn) ∼= 0.

(3) For the specific case TL2, we see that H
1(TL2) ∼= 0 since both the image of d : TL2 →

Ω1
TL2

and the kernel of Ω1
TL2

→ Ω2
TL2

are spanned by the derivative of e1 ∈ TL2.

7 Bimodule Connections

Having defined a calculus on Temperley-Lieb algebras, there is a particularly nice class

of bimodule connections that can be represented in diagram form.

We can define a vector space Em,n(δ) as the set of noncrossing pairings of m + n points

on two opposite sides of a rectangle, with m points on the left and n points on the right.

This is only well-defined in the case where m − n is even, so a pairing for each point is

possible. It has the structure of a TLm(δ)-TLn(δ) bimodule by the left and right actions

of composition with diagrams in TLm(δ) and TLn(δ) on the left and right respectively.

In the case m = n, the bimodule En,n(δ) reduces to the algebra TLn(δ).
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Temperley-Lieb algebras have a star operation of flipping diagrams horizontally, which

extends to bimodules as ∗ : Em,n → En,m, and gives rise to an inner product ⟨, ⟩ :

Em,n ⊗ Em,n → TLn(δ) on the bimodules by ⟨M,N⟩ =M∗N .

Proposition 7.1. A zero-curvature metric-preserving extendable right bimodule con-

nection on Em,n is given by the map ∇R : Em,n → Em,n ⊗TLn Ω1
TLn

shown in Figure

7 for the cases E4,6 and E2,6, but has a clear generalisation to other Em,n. The bi-

module map σ : Ω1
TLm

⊗TLm Em,n → Em,n ⊗TLn Ω1
TLn

for the connection is given by

σ(da⊗ e) = ∇R(ae)− a∇R(e). The map σ is drawn in Figure 8 for the case E4,6, but is

generalised in a similar manner to the diagrams for ∇R.

e e () ( )e e

Figure 7: Temperley-Lieb: Illustration of right connections ∇R on E4,6 and E2,6 respec-

tively

e=e

Figure 8: Temperley-Lieb: Illustration of σ on E4,6

Proof. (1) The right Leibniz rule for ∇R is shown diagrammatically in Figure 9.

ae ae ()
= e a () + a() e
=

Figure 9: Temperley-Lieb: Proof of the right Leibniz rule for ∇R

(2) Next we show that the curvature of ∇R is zero. Recall that the curvature for a right

connection ∇R is given by RE = (id⊗ d+∇R ∧ id)∇R. In our case, since d2 = 0 and our
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∇E contains an d, the curvature reduces to RE = (∇R ∧ id)∇R. We simplify this further

in Figure 10.

e () () e () e ()()= =

Figure 10: Temperley-Lieb: Calculation of curvature for a Temperley-Lieb bimodule.

The curvature calculated in the figure vanishes, because putting a dot on either of the

bends in the middle term will form a dotted closed loop.

(3) Next we calculate the formula for σ. Firstly, we calculate ∇R(ea) in Figure 11.

( )eea a ( )ea= ( ) ea+

( )ea= e+

Figure 11: Temperley-Lieb: Calculation of ∇R(ea)

Then we calculate a∇R(e) in Figure 12.

= ( )ea = ( )ea

Figure 12: Temperley-Lieb: Calculation of a∇R(e)

Subtracting the two gives the formula for σ when ξ = da, and the formula for σ on a

general ξ follows from the result we showed in part (2).

(4) Next, we show that σ is a bimodule map. From the diagram by which σ is defined,

we can see it is a right module map. We show in figure 13 that σ is also a left module

map, where we use the fact that the tensor product is over TLn, allowing us to move an

element of the algebra from one side to the other.

(5) Next we show that the connection ∇R preserves the metric. The metric preservation

equation for the connection ∇R is given in Figure 14, and can be seen to hold, since if

we add a closed loop to the L.H.S. and multiply by 1
δ
to cancel it out, we can use the

Leibniz rule to obtain the R.H.S.
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b= = =e e

Figure 13: Temperley-Lieb: Proof that σE is a left module map

( ) = () ( )+

Figure 14: Temperley-Lieb: Proof of metric preservation by ∇R

(6) Lastly we show that σ is extendable. We need to show that σ(ξ ∧ η ⊗ e) = (σ ∧

id)(ξ ⊗ σ(η ⊗ e)). The proof is Figure 15, which uses the formula for σ.

e

e

( ( ))e ( )=

e= = = ( )e

Figure 15: Temperley-Lieb: Proof of extendability of σ

We remark that for n ≤ m− 2, the map ∇L : En,m → Ω1
TLn

⊗TLn TLm shown in Figure

16 is a left connection, but here we only use the right connection.

e e( )
Figure 16: Temperley-Lieb: Illustration of the left connection ∇L on E6,4

We note that there are no nonzero e ∈ E satisfying ∇L(e) = 0.

The connections we gave above are by no means the only connections on modules over

Temperley-Lieb algebras, as seen in the following remark.

Remark 7.2. (See [10] Example 3.22 for this type of connection) If we equip TLn(δ) with

inner generalised calculus, then every left TLn(δ)-module has a left connection θ∇(e) =
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θ ⊗ e with curvature

θR(e) = (dθ − θ ∧ θ)⊗ e = −θ ∧ θ ⊗ e.

This connection is different to the one we gave above. The connection doesn’t look to have

any zeroes either, though its curvature may be non-zero.

8 Vector fields

Having defined calculi on Temperley-Lieb algebras, this allows us to define vector fields.

The right vector fields XR
TLn

are linear maps X : Ω1
TLn

(δ) → TLn(δ) which are right

module maps, i.e. they satisfy X(ξei) = X(ξ)ei for ξ ∈ Ω1
TLn

(δ) and ei the generators of

TLn(δ).

8.1 Example: TL2

First we look at the case n = 2. We note that we also calculated the n = 2 case by hand

in order to verify that the Mathematica code was giving the correct result, so that we

could have a higher level of trust in the Mathematica output for the n = 3 case which is

too long to reasonably calculate by hand.

Definition 8.1. For the 2 basis elements of TL2 write y1 = 1 and y2 = e1. For the 2 basis

elements of Ω1
TL2

write ξ1 and ξ2 for e1 with a dot on the left-to-left and right-to-right

curves respectively.

Proposition 8.2. A general right vector field X ∈ XR
TL2

on TL2 is given by X(ξk) =
2∑
j=1

xk,jyj, where x is a 2× 2 complex-valued matrix given as follows.

x =

 0 a1,2

a2,1 −a2,1
δ


The calculus Ω1

TL2
is not finitely generated projective.

Proof. (1) Since the vector field X is a right module map, X(ξke1) =
2∑
j=1

ak,jyje1.
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The matrix a1 gives the outcome of multiplying the 2 basis elements of TL2 on the right

by e1. The matrix b1 gives the outcome of multiplying the 2 (vector space) basis elements

of Ω1
TL2

on the right by e1.

a1 =

0 1

0 δ

 , b1 =

δ 0

0 0

 , x =

a(1, 1) a(1, 2)

a(2, 1) a(2, 2)


We solve the following equation in Mathematica.

Solve[{Simplify[x.a1− b1.x] == 0},Flatten[x]]

Set the output of the above as relations sub, then do Simplify[x//. sub], giving:

x =

 0 a(1, 2)

a(2, 1) −a(2,1)
δ


(2) The matrix x is a function of two independent variables, so XR

TL2
has 2 basis elements

given by

x1 =

0 1

0 0

 , x2 =

0 0

1 −1
δ


In order for Ω1

TL2
to be finitely generated projective, we want to find τ1, τ2 ∈ Ω1

TL2
such

that any η ∈ Ω1
TL2

can be decomposed as η =
2∑
i=1

Xi(η).τi. This gives the following two

equations:

ξ1 = e1.τ1, ξ2 = τ1 −
1

δ
e1.τ2

But by drawing the equation in diagrams, we see that the first equation has no solutions

for τ1 and τ2, since no choice of τ1 can put a dot on the left-to-left loop of e1.τ1. This

shows that there does not exist a dual basis for Ω1
TL2

, and hence it is not finitely generated

projective.

8.2 Example: TL3

Next we look at the case n = 3.
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Figure 17: Temperley-Lieb: The 12 basis elements of Ω1
TL3

Definition 8.3. For the 5 basis elements of TL3 write y1 = 1, y2 = e1, y3 = e2, y4 =

x1 = e2e1, y5 = x2 = e1e2.

Write ξi for the 12 basis elements of Ω1
TLn

, each given by one of the four diagrams

y2, y3, y4, y5 with a dot on one of their three lines, as drawn in Figure 17.

Proposition 8.4. A general right vector field X ∈ XR
TL3

on TL3 is given by X(ξk) =
5∑
j=1

xk,jyj, where x is a 12× 5 matrix given as follows.

x =



0 a1,2 0 a1,4 0

−δa2,2−a2,5 a2,2 a2,3 −
a2,3
δ

a2,5

0 δa2,5+a2,2 0
(δ2−1)a2,3

δ
−δa2,2−a2,5 0

0 0 δa6,4+a6,3 0
(δ2−1)a6,2

δ
−δa6,3−a6,4

0 0 a5,3 0 a5,5

−δa6,3−a6,4 a6,2 a6,3 a6,4 −
a6,2
δ

0 a5,5 0 a5,3 0

0
(δ2−1)a6,2

δ
−δa6,3−a6,4 0 δa6,4+a6,3 0

( 1
δ2
−1)a6,2+

δ2(−a9,2)+δa6,3+a6,4+a9,2
δ

a9,2
a6,2
δ

+a6,4+a9,2 −
δ(a6,4+a9,2)+a6,2

δ2

(δ2−1)a6,2−δ(δa6,3+a6,4+a9,2)
δ2

0 0 a1,4 0 a1,2

0 0
(δ2−1)a2,3

δ
−δa2,2−a2,5 0 δa2,5+a2,2

δ(a2,5−a12,2)+
a12,2
δ

+a2,2 a12,2 −
a2,3
δ
−a2,5+a12,2 −

a12,2
δ
−a2,2+a2,3 −

a12,2
δ


The calculus Ω1

TL3
is not finitely generated projective.

Proof. (1) Since the vector field X is a right module map, X(ξkei) =
∑
j

ak,jyjei.

The matrices a1 and a2 give the outcome of multiplying the 5 basis elements of TL3 on

the right by e1 or e2 respectively. The matrices b1 and b2 give the outcome of multiplying

the 12 (vector space) basis elements of Ω1
TL3

on the right by e1 and e2 respectively.

a1 =

(
0 1 0 0 0
0 δ 0 0 0
0 0 0 1 0
0 0 0 δ 0
0 1 0 0 0

)
a2 =

(
0 0 1 0 0
0 0 0 0 1
0 0 δ 0 0
0 0 1 0 0
0 0 0 0 δ

)
b1 =


δ 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 δ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 δ 0 0 0 0 0
0 0 0 0 0 0 0 δ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


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b2 =


0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 δ 0 0 0 0 0 0 0 0
0 0 0 0 δ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 δ 0 0
0 0 0 0 0 0 0 0 0 0 δ 0
0 0 0 0 0 0 0 0 0 0 0 0

 x =



a(1,1) a(1,2) a(1,3) a(1,4) a(1,5)
a(2,1) a(2,2) a(2,3) a(2,4) a(2,5)
a(3,1) a(3,2) a(3,3) a(3,4) a(3,5)
a(4,1) a(4,2) a(4,3) a(4,4) a(4,5)
a(5,1) a(5,2) a(5,3) a(5,4) a(5,5)
a(6,1) a(6,2) a(6,3) a(6,4) a(6,5)
a(7,1) a(7,2) a(7,3) a(7,4) a(7,5)
a(8,1) a(8,2) a(8,3) a(8,4) a(8,5)
a(9,1) a(9,2) a(9,3) a(9,4) a(9,5)
a(10,1) a(10,2) a(10,3) a(10,4) a(10,5)
a(11,1) a(11,2) a(11,3) a(11,4) a(11,5)
a(12,1) a(12,2) a(12,3) a(12,4) a(12,5)


Then solve the following equation in Mathematica.

Solve[{Simplify[x.a1− b1.x] == 0, Simplify[x.a2− b2.x] == 0},Flatten[x]]

Set the output of the above as relations sub. Then do Simplify[x//. sub]. Then:

x =



0 a1,2 0 a1,4 0

−δa2,2−a2,5 a2,2 a2,3 −
a2,3
δ

a2,5

0 δa2,5+a2,2 0
(δ2−1)a2,3

δ
−δa2,2−a2,5 0

0 0 δa6,4+a6,3 0
(δ2−1)a6,2

δ
−δa6,3−a6,4

0 0 a5,3 0 a5,5

−δa6,3−a6,4 a6,2 a6,3 a6,4 −
a6,2
δ

0 a5,5 0 a5,3 0

0
(δ2−1)a6,2

δ
−δa6,3−a6,4 0 δa6,4+a6,3 0

( 1
δ2
−1)a6,2+

δ2(−a9,2)+δa6,3+a6,4+a9,2
δ

a9,2
a6,2
δ

+a6,4+a9,2 −
δ(a6,4+a9,2)+a6,2

δ2

(δ2−1)a6,2−δ(δa6,3+a6,4+a9,2)
δ2

0 0 a1,4 0 a1,2

0 0
(δ2−1)a2,3

δ
−δa2,2−a2,5 0 δa2,5+a2,2

δ(a2,5−a12,2)+
a12,2
δ

+a2,2 a12,2 −
a2,3
δ
−a2,5+a12,2 −

a12,2
δ
−a2,2+a2,3 −

a12,2
δ


as required.

(2) The matrix x is a function of 12 independent variables, and so XR
TL3

has 12 basis

elements given as follows.

x1 =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 x2 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 x3 =



0 0 0 0 0
−δ 1 0 0 0
0 1 0 −δ 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −δ 0 1
1 0 0 −1 0



x4 =



0 0 0 0 0
0 0 1 − 1

δ
0

0 0 0 δ− 1
δ

0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 δ− 1

δ
0 0

0 0 − 1
δ

1 0


x5 =



0 0 0 0 0
−1 0 0 0 1
0 δ 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 δ
δ 0 −1 0 0

 x6 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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x7 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 x8 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 δ− 1

δ
0 0 0 0 0
0 1 0 0 − 1

δ
0 0 0 0 0
0 δ− 1

δ
0 0 0

1
δ2
−1 0 1

δ
− 1
δ2

1− 1
δ2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


x9 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 −δ
0 0 0 0 0
−δ 0 1 0 0
0 0 0 0 0
0 −δ 0 1 0
1 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



x10 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 δ 0 −1
0 0 0 0 0
−1 0 0 1 0
0 0 0 0 0
0 −1 0 δ 0
1
δ

0 1 − 1
δ
− 1
δ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 x11 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
δ
−δ 1 1 − 1

δ
− 1
δ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 x12 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
δ
−δ 1 1 − 1

δ
− 1
δ


Can we find a set of 12 τi such that any η ∈ Ω1

TL3
can be decomposed as η =

12∑
i=1

Xi(η).τi?

This gives the following conditions on the τi for a dual basis with the above Xi.

ξ1 = e1.τ1 + x1.τ2

ξ2 = (−δ.1 + e1).τ3 + (e2 −
1

δ
x1).τ4 + (−1 + x2).τ5

ξ3 = (e1 − δx1).τ3 + (δ − 1

δ
)x1.τ4 + (δe1 − x1).τ5

ξ4 = ((δ − 1

δ
)x2).τ8 + (e2 − δx2).τ9 + (δe2 − x2).τ10

ξ5 = e2.τ6 + x2.τ7

ξ6 = (e2 −
1

δ
x2).τ8 + (−δ.1 + e2).τ9 + (−1 + x1).τ10

ξ7 = x1.τ6 + e1.τ7

ξ8 = (δ − 1

δ
)e1.τ8 + (−δe1 + x1).τ9 + (−e1 + δx1).τ10

ξ9 = ((
1

δ2
− 1).1 +

1

δ
e2 −

1

δ2
x1 + (1− 1

δ2
)x2).τ8 + (1− x2).τ9

+ (
1

δ
.1 + e2 −

1

δ
x1 −

1

δ
x2).τ10 + ((

1

δ
− δ).1 + e1 + e2 −

1

δ
x1 −

1

δ
x2).τ11

ξ10 = x2.τ1 + e2.τ2

ξ11 = (−δe2 + x2).τ3 + (δ − 1

δ
)e2.τ4 + (−e2 + δx2).τ5

ξ12 = (1− x1).τ3 + (−1

δ
e2 + x1).τ4 + (δ.1− e2).τ5 + ((

1

δ
− δ).1 + e1 + e2 −

1

δ
x1 −

1

δ
x2).τ12
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The following pair of equations when drawn diagrammaticallyξ5 = e2.τ6 + x2.τ7

ξ7 = x1.τ6 + e1.τ7

can be seen to have no solutions, and hence Ω1
TL3

is not finitely generated projective.

8.3 Example: TL2 with Extended Calculus

When we looked at vector fields for the calculi on TL2 with the standard differential

calculi, they turned out to not be finitely generated projective. But what about when we

add in the identity diagram with dots, to get the extended calculus Ω̂1
TL2

?

Denote as before y1 = id and y2 = e1 for the basis elements of TL2(δ), but now write ξ1

for the identity diagram with a dot on its top line, ξ2 for the identity diagram with a dot

on its bottom line, ξ3 for e1 with a dot on its left-to-left curve, and ξ4 for e1 with a dot on

its right-to-right curve. These four ξi give a vector space basis of the extended calculus.

Denote as before a1 for the 2x2 matrix of outcomes of multiplying the two basis elements

of TL2 on the right by e1, and b1 for the 4x4 matrix of outcomes of multiplying the four

basis elements of Ω̂1
TL2

on the right by e1.

a1 =

0 1

0 δ

 , b1 =


0 0 1 0

0 0 1 0

0 0 δ 0

0 0 0 0

 , x =


a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

a4,1 a4,2


We solve the following equation in Mathematica.

Solve[{Simplify[x.a1− b1.x] == 0},Flatten[x]]

Set the output of the above as relations sub, then do Simplify[x//. sub], giving:

x =


a1,1

−a1,1+a3,2
δ

a2,1
−a2,1+a3,2

δ

0 a3,2

a4,1
−a4,1
δ


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The matrix x is a function of 4 independent variables a1,1, a2,1, a3,2, a4,1. Thus X
R
TL2

has

4 basis elements given as follows.

x1 =


1 −1

δ

0 0

0 0

0 0

 , x2 =


0 0

1 −1
δ

0 0

0 0

 , x3 =


0 1

δ

0 1
δ

0 1

0 0

 , x4 =


0 0

0 0

0 0

1 −1
δ


We want to find τ1, τ2, τ3, τ4 ∈ Ω̂1

TL2
that form a dual basis along with these xi, so that

any η ∈ Ω̂1
TL2

can be decomposed as η =
4∑
i=1

Xi(η).τi. This gives the following equations.

ξ1 = τ1 −
1

δ
e1.τ1 +

1

δ
e1.τ3

ξ2 = τ2 −
1

δ
e1.τ2 +

1

δ
e1.τ3

ξ3 = τ3

ξ4 = τ4 −
1

δ
e1.τ4

The last equation only has solution τ = 0, so the extended calculus is not finitely gener-

ated projective either.

9 Future Ideas and Discussion

Temperley-Lieb algebras are related to projections onto subfactors of Von Neumann al-

gebras, and so it might be interesting to investigate if these diagrammatic calculi also say

anything about calculi on von Neumann algebras.

We might also consider whether our diagrammatic calculi on Temperley-Lieb diagrams

have any generalisation to planar algebras as invented by Vaughan Jones. This would

require a new definition of a calculus as something other than a bimodule.
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Part III

Noncommutative Submanifolds
Abstract

We introduce a new approach to submanifolds in noncommutative differential geometry,
characterised by the use of vector fields. Given an algebra B with differential calculus
Ω1
B, we define when a surjective algebra map π : B → A is a co-embedding, in which case

we construct complementary tangent and normal bundles and a calculus on A making
π differentiable, which are all finitely generated projective if Ω1

B is. Every connection
on Ω1

B can be projected to a connection on the submanifold calculus Ω1
A, satisfying a

version of the Gauss-Codazzi equations for curvature, and which is compatible with a
Hermitian metric if the original connection is. We calculate a number of commutative
and noncommutative examples.

10 Introduction

In classical differential geometry, an inclusion i : M ↪−→ N of an embedded submanifold

induces a surjective algebra map π : C∞(N) → C∞(M) between the smooth real-valued

functions on the manifolds, given by restriction. In noncommutative differential geometry,

the algebra of functions on a manifold is replaced by a general associative algebra, and

while we gain the ability to perform coordinate-free calculations and consider a number

of quantum-only phenomena, it comes at the cost of no longer having an obvious notion

of submanifold. There are three existing approaches at tackling this problem [40, 21, 3],

but all three operate on the definition of vector fields as derivations, and use calculi based

on that. We work with differential calculi on algebras and their dual the vector fields,

as defined in the book [10], and use the idea from [21] of a noncommutative embedding

(co-embedding) as a surjective algebra map π : B → A. We define tangent and normal

bundles associated with a surjective algebra map, and if the two are complementary then

we call the map a co-embedding. Given a co-embedding we construct a calculus Ω1
A on the

submanifold algebra A, which we call the submanifold calculus. The submanifold calculus

Ω1
A has the properties that the co-embedding π used to construct it is differentiable,

i.e. dπ = πd, and that Ω1
A is finitely generated projective if the larger calculus Ω1

B on

B is finitely generated projective. We also show that subject to a certain condition,

the composition of co-embeddings is again a co-embedding. We calculate a number
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of examples of co-embeddings, both classical and non-classical, where the non-classical

examples all use non-derivation calculi and are therefore are unique to our new definition.

Given a co-embedding π : B → A and a covariant derivative on Ω1
B, we construct a

covariant derivative on the submanifold calculus Ω1
A. Following an idea from [3], we

show the curvature of this new connection is related to the curvature of the original

connection by a non-commutative variant of the Gauss-Codazzi equations. We show

that this connection on the submanifold calculus preserves a Hermitian metric if the

original connection preserves a Hermitian metric, and calculate some noncommutative

examples illustrating this. We conclude by considering what might be necessary to further

generalise the idea of a co-embedding to be a positive map instead of an algebra map,

seeing as certain parts of the theory seem to have a nice generalisation.

10.1 Existing Approaches

There are currently three existing approaches to extending the concept of submanifolds

from classical geometry to a noncommutative setting. In the 1996 paper [40], Masson

introduces a definition of when a quotient of an algebra by an ideal is a subalgebra.

Masson’s approach was further developed in the 2020 paper [21] by D’Andrea, via the

notion of surjective algebra maps as co-embeddings, which was a major inspiration for

our work here. D’Andrea proves that a surjective algebra map π : A → B with kernel J

induces a map of derivations π∗ : Derπ(A) → Der(B), where

Derπ(A) := {D ∈ Der(A) | D(A) ∈ J ∀a ∈ J}.

and says that if the induced map π∗ is surjective then π is called a co-embedding, and B

a submanifold algebra of A, in which case there is a surjective homomorphism ΩDer(A) →

ΩDer(B). These two papers operate on the definition of derivations as noncommutative

vector fields, and defines calculi correspondingly. See section 1.1 of [40] for details on

these calculi, which were originally invented in [22].

We borrow D’Andrea’s notation of a co-embedding as a surjective algebra map π : B → A

satisfying certain properties, but instead of defining it as a co-embedding when it is dif-

ferentiable, we ask for the existence of tangent and normal bundles and then construct

a calculus on A with respect to which the co-embedding is differentiable. Our defini-
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tion of horizontal vector fields Hor is an adaptation of D’Andrea’s Derπ(A), and so the

foundations of our approach owe a lot to the paper [21].

Another recent approach can also be found in the 2021 paper [3] by Arnlind and Norkvist.

It uses another notion of calculus called pseudo-Riemannian calculi, but also takes vector

fields to be derivations. Section 4 of [3] on minimal embeddings provided the inspiration

for us to investigate whether our notion of submanifold also gives rise to a Gauss equation

for curvature.

10.2 Why Not Take Vector Fields to be Derivations?

In classical geometry, vector fields can be defined either as derivations or as the dual

to 1-forms, since both of these coincide. But in a noncommutative context they do not

coincide, and we need to pick one to use as our definition.

Suppose we regard noncommutative vector fields on an algebra A as the derivations

Der(A) — the maps D : A → A satisfying D(aa′) = aD(a′) + D(a)a′. Then in the

classical case where A is the commutative algebra of smooth functions on a manifold,

a vector field such as ∂
∂x

is indeed a derivation. However on a general algebra which

need not be commutative, we are not guaranteed to have a lot of derivations. Moreover,

Der(A) is not a module over A when A is noncommutative, since the maps aD and Da

fail to be derivations, because (aD)(xy) = aD(x)y+xaD(y). It a module over the centre

Z(A), but this is liable to lose a lot of information for algebras with a small or trivial

centre, and it creates a new problem of the vector fields being a module over a different

algebra to the differential forms.

The other approach, which we use, is to regard noncommutative vector fields as the left or

right dual of the 1-forms Ω1
A, so there are right vector fields XR

A = HomA(Ω
1
A,A) and left

vector fields XL
A = AHom(Ω1

A,A). These are A-bimodules, which means we can take left

and right connections and bimodule connections on them. Moreover, as occurs classically,

connections on the 1-forms give dual connections on the vector fields. We make extensive

use of this duality in the sections later about connections.
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11 Noncommutative Submanifolds

Suppose we have a surjective algebra map π : B → A with kernel J := ker(π). Since π

is an algebra map, we have π(jb) = π(j)π(b) = 0 and π(bj) = π(b)π(j) = 0 for all b ∈ B,

j ∈ J . Therefore jb, bj ∈ J , making J a two-sided ideal in B. By definition of kernel,

the following sequence of algebras and algebra maps is short exact.

0 J B A 0π (2)

If Ω1
B is a differential calculus on B, then the right vector fields are the dual XR

B :=

HomB(Ω
1
B,B), and by definition satisfy X(ηb) = X(η)b. The left and right B-actions on

XR
B are given for all b ∈ B, X ∈ XR

B, η ∈ Ω1
B as

(bX)(η) := bX(η), (Xb)(η) := X(bη).

If Ω1
B is right finitely generated projective then XR

B is a left finitely generated projective

B-bimodule, in which case there would be a finite dual basis
∑
i

Xi⊗ ei ∈ XR
B⊗Ω1

B of XR
B

which for all ξ ∈ Ω1
B satisfies ξ =

∑
i

Xi(ξ).e
i.

11.1 Restricting Vector Fields

Denote Aπ for the algebra A regarded as a right B-module with action a◁ b = aπ(b) for a

surjective algebra map π : B → A. We propose that restriction (via π) of a left B-module

to A is given by the functor Rπ : BM → AM defined by

E 7→ Aπ ⊗B E, T 7→ id⊗ T, ∀T : E → F left module maps.

Proposition 11.1. Let E be a left B-module, and suppose π : B → A is a surjective

algebra map. Then the map Rπ : E → Aπ ⊗B E given by Rπ(e) = 1 ⊗ e is surjective

and satisfies Rπ(b.e) = π(b)Rπ(e). Note that composition of two restriction functors is

another restriction functor, i.e. for surjective algebra maps ψ : C → B and ϕ : B → A,

we have Rϕ◦ψ = Rϕ ◦Rψ.

Proof. (1) First we show surjectivity of Rπ. A general element of Aπ ⊗B E is of the

form
∑
i

ai ⊗ ei. But as π is surjective, there exist bi ∈ B such that π(bi) = ai for each i.

Therefore
∑
i

ai ⊗ ei = 1⊗
∑
i

bi.ei = Rπ(
∑
i

bi.ei), so Rπ is surjective.
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(2) The second property follows from Rπ(b.e) = 1⊗ b.e = π(b)⊗ e = π(b).Rπ(e).

(3) The fact that Rϕ◦ψ = Rϕ ◦Rψ is since Aϕ ⊗B Bψ
∼= Aϕ◦ψ.

Next we show that Rπ preserves the property of being left finitely generated projective.

Proposition 11.2. Suppose that π : B → A is a surjective algebra map, and that E

is a left finitely generated projective left B-module — i.e. each ξ ∈ E decomposes as

ξ =
∑
i

ei(ξ).e
i for some dual basis ei ∈ E, ei ∈ BHom(E,B). Then the left A-module

F := R(E) = Aπ⊗B E is left finitely generated projective, with dual basis f i = 1⊗ ei ∈ F

and

fi ∈ AHom(F,A), fi(a⊗ e) = aπ(ei(e)),

satisfying a⊗ e =
∑
i

fi(a⊗ e).f i for all a⊗ e ∈ F .

Proof. (1) Firstly, we show that fi is well-defined as a map over ⊗B. To do this, we

need to show fi(a⊗ be) = fi(aπ(b)⊗ e). The left hand side of this equation is

fi(a⊗ be) = aπ(ei(be)) = aπ(bei(e)) = aπ(b)π(ei(e)).

The right hand side of the equation is

fi(aπ(b)⊗ e) = aπ(b)π(ei(e)).

These coincide, and so fi is well-defined.

(2) Secondly, we show F is left finitely generated projective. Using that E is finitely

generated projective, any a⊗ ξ ∈ F decomposes as

a⊗ ξ = a⊗
∑
i

ei(ξ).e
i =

∑
i

aπ(ei(ξ))⊗ ei =
∑
i

fi(a⊗ ξ).f i.

Hence F is left finitely generated projective by dual basis
∑
i

fi ⊗ f i.

Taking E = XR
B gives an A-B bimodule Aπ ⊗B XR

B, which is finitely generated projective

if XR
B is finitely generated projective. We regard it as the restriction of XR

B to A.
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11.2 Tangent Bundle

Suppose that π : B → A is a surjective algebra map, and that B has calculus Ω1
B. We say

that a vector field X ∈ XR
B is horizontal if it lies in the direction of A, which is defined

as follows.

Proposition 11.3. For a surjective algebra map π : B → A, the vector space

Hor := {X ∈ XR
B | πX(dj) = 0 ∀j ∈ J} (3)

is a B-sub-bimodule of XR
B. Note that this is equivalent to

Hor := {X ∈ XR
B | X(dj) ∈ J ∀j ∈ J}.

Proof. We show the following for all b ∈ B, X ∈ Hor, and j ∈ J .

(1) Firstly, we show bX ∈ Hor. Using the left action on vector fields and the fact that π

is an algebra map, we have π(bX)(dj) = π(b.X(dj)) = π(b).πX(dj) = 0.

(2) Secondly, we show Xb ∈ Hor. Using the right action on vector fields, the Leibniz

rule and the fact that right vector fields are right module maps, we have π(Xb)(dj) =

πX(b.dj) = πX(d(bj)− db.j) = πX(d(bj))− πX(db.j) = πX(d(bj))− πX(db)π(j) = 0,

since both terms are zero.

A justification of this definition can be seen later in Example 13.1.

Also, we apologise to the reader for the similarity between the notations Hom and Hor.

Hom denotes a set of morphisms, while Hor denotes the horizontal vector fields.

As Hor is in particular a left B-module, applying the restriction construction from earlier

gives an A-B bimodule TA := Aπ ⊗B Hor.

We will make extensive use of the following lemma in calculating Hor in examples.

Lemma 11.4. Suppose π : B → A is a surjective algebra map and that B has right

finitely generated projective calculus Ω1
B, so that XR

B is left finitely generated projective

with dual basis ei ∈ Ω1
B and ei ∈ XR

B. If the ideal J = ker(π) ⊂ B has a finite number of

generators ji, then X ∈ Hor if and only if both of the following two statements hold.

(1) X(dji) ∈ J for all generators ji of J .

(2) Xji ∈ JXR
B for all generators ji of J .
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Proof. The definition of Hor is the set of vector fields X ∈ XR
B such that X(dj) ∈ J for

all j ∈ J . This in particular implies condition 1, that X(dji) ∈ J for all generators ji of

J . A general element of J is given by
∑
i

jiβi for βi ∈ B. Evaluating a horizontal right

vector field X ∈ Hor on this, and then using condition 1 we get:

X(d(
∑
i

jiβi)) =
∑
i

(
X(dji).βi +X(ji.dβi)

)
=
∑
i

X(d(ji.dβi) =
∑
i

(Xji)(dβi).

This is in J precisely when Xji ∈ JXR
B for all generators ji of J . This is condition 2.

We note that if the ji form a linear basis of J as a vector space, then we only need to

check condition 1, as all βi are in the field.

11.3 Normal Bundle

In the classical case where A = C(N), B = C(M) for M an embedded submanifold

of a smooth manifold N , (where restriction is in the sense of restricting the domain as

functions) there is a direct sum decomposition XR
B

∣∣
A
= TA⊕NA into tangent and normal

bundles of M in N . In this section we define a candidate for the normal bundle NA for

the case with general algebras.

Definition 11.5. If B has calculus Ω1
B and π : B → A is a surjective algebra map with

kernel J , we define π(XR
B) |dJ.B to be the subspace of HomB(dJ.B,A) consisting of all

π ◦X for X ∈ XR
B.

Proposition 11.6. The vector space π(XR
B) |dJ.B is an A-B bimodule with left A-action

a ▷ (π ◦ X) = a(π ◦ X) and right B-action (π ◦ X) ◁ b = π(Xb) for all a ∈ A, b ∈ B,

X ∈ XR
B.

Proof. (1) Firstly we show that the left and right actions are well-defined. Suppose

(π ◦X)(dj.b) = 0 for all b ∈ B and j ∈ J . Then (a ▷ π ◦X)(dj.b) = a(π ◦X)(dj.b) = 0,

so the left action is well-defined. Also, since J is a two-sided ideal, for all b, b′ ∈ B and

j ∈ J we have

(π ◦X ◁ b′)(dj.b) = (π ◦X)(b′.dj.b) = (π ◦X)(d(b′j).b)− (π ◦X)(db′.jb)

= (π ◦X)(d(b′j)).π(b)− (π ◦X)(db′).π(jb) = 0.
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Hence the right action is well-defined.

(2) Secondly we show that the actions commute. For all b, b′ ∈ B and j ∈ J we have

(a ▷ (π ◦X ◁ b′))(dj.b) = (a ▷ π ◦X)(b′.dj.b) = a(π ◦X)(b′.dj.b) = ((a ▷ π ◦X) ◁ b)(dj.b).

Definition 11.7. Suppose π : B → A is a surjective algebra map with kernel J . Then

we define the linear map

Tπ : Aπ ⊗B XR
B → π(XR

B) |dJ.B, Tπ(a⊗X) = a(π ◦X) |dJ.B . (4)

By the notation a(π◦X) |dJ.B we mean the restriction of the vector field a(π◦X) : Ω1
B → A

to the subset of elements of the form dj.b ∈ Ω1
B for j ∈ J , b ∈ B.

Proposition 11.8. The map Tπ is a surjective A-B bimodule map.

Proof. (1) Tπ is a left module map because Tπ(a
′a⊗X) = a′a(π◦X) |dJ.B= a′Tπ(a⊗X).

It is a right module map because Tπ(a ⊗ Xb) = aπ(Xb) |dJ.B= aπ(Xb) |dJ.B ◁b =

Tπ(a⊗X) ◁ b. Since these actions commute, Tπ is a bimodule map.

(2) Tπ is surjective because every π ◦X in π(XR
B) |dJ.B is equal to Tπ(1⊗X).

Theorem 11.9. Suppose B has calculus Ω1
B, and that π : B → A is a surjective algebra

map with kernel J . Then for the following sequence of A-B modules and A-B module

maps, the following numbered statements hold.

0 Aπ ⊗B Hor Aπ ⊗B XR
B π(XR

B)
∣∣
dJ.B

0
id⊗inc Tπ (5)

(1) If the map id⊗ inc is injective, the sequence is exact.

(2) There exists a direct sum decomposition Aπ⊗BX
R
B = (Aπ⊗BHor)⊕N for some A-B

module N if and only if the sequence is split as A-B bimodules.

(3) If the sequence splits as A-B bimodules, the module N is isomorphic to π(XR
B)
∣∣
dJ.B

,

and we call it the normal bundle.

(4) If the sequence splits and the vector fields XR
B are left finitely generated projective (or

equivalently if the calculus Ω1
B is right finitely generated projective), then the three modules

in the above exact sequence are also left finitely generated projective as A-modules.

(5) If π(XR
B)
∣∣
dJ.B

is left finitely generated projective, then the exact sequence splits.
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Proof. (1) The map

Tπ : Aπ ⊗B XR
B → π(XR

B) |dJ.B, Tπ(a⊗X) = a(π ◦X) |dJ.B

has kernel Aπ ⊗B Hor. By surjectivity of π, a general element of the domain Aπ ⊗B XR
B

can be put in the form 1 ⊗ X for some X ∈ XR
B. The set of X with Tπ(1 ⊗ X) = 0 is

given by

{X ∈ XR
B | πX(dj.b) = 0, ∀j ∈ J, b ∈ B}.

Since π is surjective, this set is equal to Hor.

(2) This is a result from page 282 of [10].

(3) Suppose that Aπ ⊗B XR
B = (Aπ ⊗B Hor) ⊕ N for some A-B module N . We know

from earlier that ker(Tπ) = Aπ ⊗B Hor. Therefore no nonzero element of N is in ker(Tπ),

and thus the restriction of Tπ to N is injective. Furthermore, as Tπ is surjective, its

restriction to the non-kernel elements N must also be surjective. Hence N is isomorphic

to π(XR
B)
∣∣
dJ.B

.

(4) The calculus Ω1
B is right finitely generated projective if and only if the vector fields

XR
B are left finitely generated projective. Proposition 11.2 says that Aπ ⊗B XR

B is left

finitely generated projective if XR
B is, in which case any element can be decomposed as

a⊗X =
∑
i

aπ(Xi)⊗ei. As direct summands of a left finitely generated projective module

are also left finitely generated projective, it follows that Aπ⊗BHor and N are left finitely

generated projective. The isomorphism N ∼= π(XR
B)
∣∣
dJ.B

implies that π(XR
B)
∣∣
dJ.B

is also

left finitely generated projective.

(5) This is a result from page 282 of [10].

Remark 11.10. The condition of requiring the map id⊗inc in the sequence to be injective

means that if
∑
i

1⊗Xi ∈ Aπ⊗B Hor is nonzero, then its inclusion
∑
i

1⊗Xi ∈ Aπ⊗B XR
B

is also nonzero. In all reasonable examples this would be very surprising if it did not hold,

and perhaps with some module theory it could be shown to hold in general. However we

leave the condition as part of the definition for now, to allow for the possibility that there

might be some infinite dimensional example designed to make it fail.

Definition 11.11. Given a surjective algebra map π : B → A, we call π a co-embedding

and say that A is a noncommutative submanifold of B if the following splits as a short

46



exact sequence of A-B bimodules and A-B bimodule maps.

0 Aπ ⊗B Hor Aπ ⊗B XR
B π(XR

B)
∣∣
dJ.B

0
id⊗inc Tπ

If it only splits as a sequence of left A-modules and left A-module maps, we call π a weak

coembedding.

Remark 11.12. We will see later that a weak coembedding is sufficient to obtain a sub-

manifold calculus, but not sufficient to project connections onto that submanifold calculus.

To show that any given example satisfies the definition, we need to show id ⊗ inc is

injective, and then either find a direct sum decomposition Aπ⊗B XR
B = (Aπ⊗B Hor)⊕N

or to show that π(XR
B)
∣∣
dJ.B

is left finitely generated projective.

11.4 Submanifold Calculus

Lemma 11.13. JΩ1
B ⊂ dJ.B

Proof. Suppose j ∈ J and b ∈ B. Then by the Leibniz rule, jdb = d(jb)− dj.b. But as

J is a right ideal, jb ∈ J , so both terms are in dJ.B.

Proposition 11.14. Suppose we have a surjective algebra map π : B → A, where B has

calculus Ω1
B. Then the vector space XR

A := Aπ⊗BHorπ−1 is an A-bimodule with left action

multiplication and right action (1⊗X) ◁ a = 1⊗Xπ−1(a).

Proof. Recall that TA = Aπ ⊗B Hor is an A-B bimodule. We show that the right A-

action is well-defined by showing that for all X ∈ Hor and j ∈ J , we have 1 ⊗X.j = 0.

But for all ξ ∈ Ω1
B, we have 1⊗ (Xj)(ξ) = 1⊗X(jξ) = πX(jξ)⊗ 1. Lemma 11.13 above

says that jξ ∈ dJ.B, and hence the facts that X is a right vector field and π is an algebra

map imply that πX(jξ) = 0.

Definition 11.15. Suppose π : B → A is a surjective algebra map, and B has calculus

Ω1
B. We call the A-bimodule XR

A the vector fields on A. We call its dual, the A-bimodule

Ω̃1
A := AHom(XR

A,A), (6)

the extended submanifold calculus on A.
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Proposition 11.16. If Ω1
B is right finitely generated projective then Ω̃1

A is also right

finitely generated projective.

Proof. We showed earlier that if Ω1
B is right finitely generated projective, the vector

fields XR
B are left finitely generated projective, and the splitting of the sequence implies

that TA = Aπ⊗BHor is left finitely generated projective. Just changing the right module

structure of TA to get XR
A preserves the property of being left finitely generated projective,

and hence its dual Ω̃1
A is right finitely generated projective.

Each element ξ ∈ Ω̃1
A is specified by its evaluation on each a⊗X ∈ XR

A to give an element

of A. We use this to define an exterior derivative on A with values in Ω̃1
A.

Proposition 11.17. The linear map dA : A → Ω̃1
A given by the following equation for

all a, a′ ∈ A and X ∈ Hor satisfies the Leibniz rule and is thus an exterior derivative.

ev((a⊗X)⊗ dAa
′) = a.πX(d(π−1a′)). (7)

Proof. Choose b′, b′′ ∈ B such that πb′ = a′ and πb′′ = a′′. Then:

ev(a⊗X ⊗ dA(a
′a′′)) = a.πX(d(π−1(a′a′′)))

= a.πX(d(b′b′′))

= a.πX(db′.b′′ + b′.db′′)

= a.π(X(db′).b′′) + a.π((Xb′)(db′′))

= a.πX(db′)a′′ + a.π((Xb′)(db′′))

= ev(a⊗X ⊗ dAa
′).a′′ + ev(a⊗Xb′ ⊗ dAa

′′)

= ev(a⊗X ⊗ dAa
′.a′′) + ev(a⊗X ⊗ a′dAa

′′)

= ev(a⊗X ⊗ (dAa
′.a′′ + a′.dAa

′′)),

meaning dA obeys the Leibniz rule and is thus an exterior derivative.

This almost meets the requirements to be a calculus, but we are not guaranteed the

surjectivity axiom. Thus we define the subset Ω1
A := {a.dAa′ | a, a′ ∈ A}span to be the

largest subset of Ω̃1
A satisfying the surjectivity condition, and call it the submanifold

calculus. Later in examples we calculate whether Ω̃1
A = Ω1

A or not, and find that there

are instances of both cases.
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Proposition 11.18. If B has calculus Ω1
B and A is equipped with submanifold calculus

Ω1
A coming from a co-embedding π : B → A, then the co-embedding extends to a linear

map π∗ : Ω1
B → Ω1

A given by

ev((a⊗X)⊗ π∗(ξ)) = a.π(X(ξ)), (8)

satisfying π∗(db) = dA(π(b)) and π∗(ξb) = π∗(ξ)π(b) and π∗(bξ) = π(b)π∗(ξ) for all

b ∈ B, a ∈ A.

Proof. By definition of π∗, we have for all a ∈ A, b ∈ B, ξ ∈ Ω1
B, X ∈ Hor

π∗(db) = a.π(X(db)) = a.π(X(d(π−1πb))) = dA(π(b)),

and

ev((a⊗X)⊗ π∗(ξ.b)) = a.π(X(ξ.b)) = a.π(X(ξ)).π(b) = ev((a⊗X)⊗ π∗(ξ)).π(b)

= ev((a⊗X)⊗ π∗(ξ).π(b)).

Using the Leibniz rule, we calculate:

π∗(b.db′) = π∗(d(bb′))− π∗(db.b′) = dA(π(b)π(b
′))− dA(π(b))π(b

′) = π(b)dA(π(b
′))

= π(b)π∗(db′).

Combined with the result that π∗(b.ξ) = π(b).π∗(ξ), this implies π∗(b.ξ) = π(b).π∗(ξ) for

all b ∈ B, ξ ∈ Ω1
B.

In summary, this means that our construction takes an algebra map π : B → A and

constructs a calculus on A with respect to which the map π is differentiable.

11.5 Submanifolds of Submanifolds

Suppose that algebra maps ψ : C → B and π : B → A are co-embeddings. We show in

the following that (subject to an injectivity condition) their composition π ◦ ψ : C → A

is also a co-embedding, similarly to how being a submanifold is a transitive property in

classical geometry.

There is a B-bimodule

Hor(π) = {X ∈ XR
B | πX(dj) = 0, ∀j ∈ ker(π)}
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and C-bimodules

Hor(ψ) = {Y ∈ XR
C | ψY (dk) = 0, ∀k ∈ ker(ψ)},

Hor(π ◦ ψ) = {Y ∈ XR
C | (π ◦ ψ)Y (dn) = 0, ∀n ∈ ker(π ◦ ψ)}.

Lemma 11.19. If ψ : C → B and π : B → A are algebra maps, then, denoting ψ−1 for

the pre-image set, we have

ψ−1(kerπ) = ker(π ◦ ψ) : C → A. (9)

Proof. We prove equality by showing that each is a subset of the other.

(1) If n ∈ ψ−1(kerπ) then ψ(n) ∈ kerπ, so (π◦ψ)(n) = 0. Hence ψ−1(kerπ) ⊂ ker(π◦ψ).

(2) If n ∈ ker(π ◦ ψ), then (π ◦ ψ)(n) = 0, i.e. ψ(n) ∈ kerπ, i.e. n ∈ ψ−1(kerπ). Hence

ker(π ◦ ψ) ⊂ ψ−1(kerπ).

Proposition 11.20. Suppose ψ : C → B and π : B → A are co-embeddings, and that B

is equipped with submanifold calculus from ψ. Then

Hor(π) ∼= Bψ ⊗C Hor(π ◦ ψ)ψ−1 . (10)

Since Aπ ⊗B Bψ
∼= Aπ◦ψ, it follows that:

Aπ ⊗B Hor(π)π−1
∼= Aπ◦ψ ⊗C Hor(π ◦ ψ)(π◦ψ)−1 , (11)

meaning that if π ◦ ψ is also a co-embedding then the submanifold calculi on A from π

and from π ◦ ψ are isomorphic.

Proof. Equipping B with submanifold calculus from ψ means its vector fields are XR
B =

Bψ ⊗C Hor(ψ)ψ−1 . By surjectivity of ψ a general element can be expressed as 1⊗ Y for

some Y ∈ Hor(ψ). In the following calculations, we first use the definition of Hor(π), then

secondly a combination of the assumption that B is equipped with submanifold calculus

and the definition of the differential on the submanifold calculus as in Equation 7, then

thirdly we invoke Lemma 11.19, and then lastly recognise the definition of Hor(π ◦ ψ).

Hor(π) ∼= {X ∈ XR
B | πX(dj) = 0 ∀j ∈ kerπ}
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= {1⊗ Y ∈ Bψ ⊗C Hor(ψ)ψ−1 | (π ◦ ψ)Y (dπ−1j) = 0 ∀j ∈ kerψ}

= {1⊗ Y ∈ Bψ ⊗C Hor(ψ)ψ−1 | (π ◦ ψ)Y (dn) = 0 ∀n ∈ ker(π ◦ ψ)}

= Bψ ⊗C Hor(π ◦ ψ)ψ−1 .

Recall that as in Exercise 2.8 of [50], the Splitting Lemma says that a short exact sequence

of left A-modules and left A-module maps

0 A B C 0i p

splits if and only if there exists a left A-module map q : B → A such that q ◦ i = idA.

Proposition 11.21. Suppose ψ : C → B and π : B → A are co-embeddings, where B is

equipped with submanifold calculus, and that the map

id⊗ inc : Aπ◦ψ ⊗C Hor(π ◦ ψ) → Aπ◦ψ ⊗C XR
C

is injective. Then the composition π ◦ ψ : C → A is also a co-embedding.

Proof. For the co-embeddings π and ψ, there are split short exact sequences

0 Aπ ⊗B Hor(π) Aπ ⊗B XR
B π(XR

B)
∣∣
d ker(π).B

0
id⊗inc Tπ

0 Bψ ⊗C Hor(ψ) Bψ ⊗C XR
C ψ(XR

C)
∣∣
d ker(ψ).C

0
id⊗inc Tψ

where Tπ(a⊗X) = a(π ◦X) |d(ker(π)).B and Tψ(b⊗ Y ) = b(ψ ◦ Y ) |d(ker(ψ)).C .

These have splitting maps uπ : Aπ ⊗B XR
B → Aπ ⊗B Hor(π) and uψ : Bψ ⊗C XR

C →

Bψ ⊗C Hor(ψ) whose compositions with their respective id⊗ inc give the identity on the

left hand side of the sequence.

The composition π ◦ ψ is a surjective algebra map, so to prove it is a co-embedding

it remains to show that the following short exact sequence splits (exactness is by the

assumption).

0 Aπ◦ψ ⊗C Hor(π ◦ ψ) Aπ◦ψ ⊗C XR
C (π ◦ ψ)(XR

C)
∣∣
d ker(π◦ψ).C 0

id⊗inc Tπ◦ψ

where Tπ◦ψ(a⊗ Y ) = a((π ◦ ψ) ◦X) |d(ker(π◦ψ)).C .

51



But since B is equipped with the submanifold calculus, XR
B = Bψ ⊗C Hor(ψ), so by the

lemma above, the sequence for π is equivalent to

0 Aπ◦ψ ⊗C Hor(π ◦ ψ) Aπ◦ψ ⊗C Hor(ψ) π(XR
B)
∣∣
d ker(π).B

0
id⊗inc

with splitting map ûπ : Aπ◦ψ ⊗C Hor(ψ) → Aπ◦ψ ⊗C Hor(π ◦ ψ).

The composition ûπ ◦ (id⊗ uψ) gives the desired splitting, since

ûπ ◦ (id⊗ uψ)(1⊗X) = ûπ(1⊗X) = 1⊗X.

Hence π ◦ ψ is also a co-embedding.

The injectivity condition would be automatic if for example Aπ was flat as a right B-

module.

12 Left-sided Theory

Here we provide a version of the theory for XL
B, but omit to write the proofs since they

entirely mirror the right-handed version. For an associative unital algebra B with calculus

Ω1
B, the vector fields XL

B = BHom(Ω1
B, B) satisfy X(bξ) = bX(ξ) and are a B-bimodule,

with left and right actions given for all b ∈ B, ξ ∈ Ω1
B by

(bX)(ξ) = X(bξ), (Xb)(ξ) = X(ξ).b.

If Ω1
B is left finitely generated projective then XL

B is right finitely generated projective.

Given a surjective algebra map π : B → A, the kernel J = ker(π) is a two-sided ideal of

B. Write πA for the B-A bimodule given by the algebra A with right A-action given by

multiplication, and left B-action given by b ▷ a = π(b)a. The restriction via π of a right

B-module E to A is given by E ⊗B πA, and this is right finitely generated projective if

E is. The set

HorL = {X ∈ XL
B | πX(dj) = 0, ∀j ∈ J} (12)

is a B-bimodule. We define a tangent bundle of A in B by TA = HorL ⊗B πA.

The subspace π(XL
B)
∣∣
B.dJ

of BHom(dJ.B,A) consisting of all π ◦X for X ∈ XL
B is a B-A

bimodule with left B-action b▷(π⊗X) = π(bX) and right A-action (π◦X)◁a = (π◦X).a.
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There is a surjective B-A bimodule map given by

Tπ : XL
B ⊗B πA→ π(XL

B)
∣∣
B.dJ

, Tπ(X ⊗ a) =
(
π ◦X

∣∣
B.dJ

)
.a. (13)

The notation π ◦X
∣∣
B.dJ

denotes restriction of the map π ◦X : Ω1
B → A to the subset of

the domain consisting of elements of the form b.dj for some j ∈ J , b ∈ B.

Theorem 12.1. Suppose π : B → A is a surjective algebra map. Then for the following

sequence of A-B modules and A-B module maps, the following numbered statements hold.

0 HorL ⊗B πA XL
B ⊗B πA π(XL

B)
∣∣
B.dJ

0
inc⊗id Tπ (14)

(1) If inc⊗ id is injective, then the sequence is exact.

(2) There exists a direct sum decomposition XL
B ⊗B πA = (HorL ⊗B πA) ⊕ N for some

B-A bimodule N if and only if the sequence is split as B-A bimodules.

(3) If the sequence splits as B-A bimodules, the module N is isomorphic to π(XL
B)
∣∣
B.dJ

,

and we call it the normal bundle.

(4) If the sequence splits and the vector fields XL
B are right finitely generated projective (or

equivalently if the calculus Ω1
B is left finitely generated projective), then the three modules

in the above exact sequence are also right finitely generated projective.

(5) If π(XL
B)
∣∣
B.dJ

is right finitely generated projective, then the exact sequence splits.

If π : B → A is a surjective algebra map for which the above short exact sequence splits,

then we say π is a (left) co-embedding. We define the vector fields on A as the A-bimodule

XL
A := π−1HorL ⊗B πA

which has left action a ▷ X ⊗ 1 = π−1(a).X ⊗ 1, which is well-defined by the properties

of HorL. We define the extended submanifold calculus by

Ω̃1
A = HomA(X

L
A, A).

This is left finitely generated projective if Ω1
B is left finitely generated projective, and we

denote Ω1
A for the maximal subset spanned by the exterior derivative

dA : A→ Ω1
A, ev(dAa

′ ⊗X ⊗ a) = πX(d(π−1a′)).a. (15)

As in the right-handed case we have the following proposition.
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Proposition 12.2. A left co-embedding π : B → A extends to a linear map

π∗ : Ω1
B → Ω̃1

A, db 7→ dA(π(b)) (16)

satisfying π∗(ξb) = π∗(ξ)π(b) and π∗(bξ) = π(b)π∗(ξ) for all b ∈ B, a ∈ A.

The composition of two left co-embeddings is a left co-embedding, subject to the condition

that the following map is injective.

inc⊗ id : Hor(π ◦ ψ)⊗C π◦ψA→ XL
C ⊗C π◦ψA

13 Submanifold Examples

In this section, we look at several examples, both classical and non-classical, which are

tabulated below. The table contains one row per example, and records the algebras, the

algebra map π between them, and the generators of the kernel J of π, and of the tangent

and normal bundles. The last column is whether the submanifold calculus satisfies the

surjectivity axiom of being spanned by the image of the exterior derivative dA.

B A π : B → A J gen. TA gen. NA gen.
Ω̃1

A =

Ω1
A?

C∞(R2) C∞(R2)
∣∣
R Restriction y 1⊗ ∂

∂x
1⊗ ∂

∂y
Y

C∞(R) C∞(R)
∣∣
[0,1]

Restriction
f vanishing

on [0, 1]
1⊗ ∂

∂x
0 Y

Cq[D] Cq2 [S
1] π(z) = t, π(z̄) = t−1 1− z̄z

q2t2 ⊗ ez

+ 1⊗ ez̄
1⊗ ez Y

Cq[SU2] Cq2 [S
1]

π(a) = t, π(d) = t−1,

π(b) = π(c) = 0
b, c 1⊗ e0 1⊗ e+, 1⊗ e− Y

C(G) C(H)
π(δg) = δg if g ∈ H,

π(δg) = 0 else

δg for all

g ∈ G\H

1⊗ ea for

a ∈ C ∩H

1⊗ ea for

all a /∈ C ∩H
Y

C(X) for X

a finite set

C({x0}) for

some x0 ∈ X
Restriction

δx for all

x ∈ X\{x0}

1⊗ fx0←x

for arrows

x→ x0

1⊗ fy←x for arrows

x→ y, x ∈ X,

y ∈ X\{x0}

N

Cq[M2] Cq[C2]
π(a) = x, π(c) = y

π(b) = π(d) = 0
b, d 1⊗ eb, 1⊗ ed 1⊗ ea, 1⊗ ec N

Table 1: Submanifolds Examples
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We note that the last example π : Cq[M2] → Cq[C2] is not a co-embedding but a weak

co-embedding since the normal bundle fails to be a right B-module.

In each of these examples, we start by assuming a calculus Ω1
B on the algebra B, which

is of the type mentioned in square brackets at the start of each example, but we do not

assume at first any calculus on A, since that is what we construct using the calculus on

B using our theory of submanifolds.

13.1 Classical Example: x-axis in R2

[Algebras: See Example 3.1 for C∞(M) and its calculus]

We start with a classical example: the inclusion of the x-axis into R2. The algebra B =

C∞(R2) is generated (up to completion) by functions x and y defined by x(b1, b2) = b1,

y(b1, b2) = b2 respectively, and its calculus Ω1
B is freely generated by dx and dy. We

take A = C∞(R2)
∣∣
R
∼= C∞(R) as the restriction of B to the x-axis. The restriction map

π : B → A is surjective with kernel J generated by y. A right vector field X ∈ XR
B takes

the form X = fx
∂
∂x

+ fy
∂
∂y

for some fx, fy ∈ B, from which we calculate X(dx) = fx

and X(dy) = fy. The restricted vector fields are the B-A bimodule Aπ ⊗B Ω1
B, which

has general element g ⊗ (fx
∂
∂x

+ fy
∂
∂y
) and hence generators 1 ⊗ ∂

∂x
and 1 ⊗ ∂

∂y
. A

horizontal vector field satisfies πX(dj) = 0 for all j ∈ J , i.e. π(fy) = 0, and since Ω1
B

is commutative, condition 2 of Lemma 11.4 holds automatically. Hence Hor is generated

by ∂
∂x
. The tangent bundle TA is then generated by 1⊗ ∂

∂x
and the normal bundle NA by

1⊗ ∂
∂y
. The normal bundle NA is an A-B bimodule, since multiplying ∂

∂y
on the right by

some b ∈ C∞(R2) never produces multiples of ∂
∂x
. The map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B

has trivial kernel, since if a⊗ ∂
∂x

is nonzero in Aπ⊗B Hor then it is nonzero in Aπ⊗B XR
B.

Hence π : B → A is a co-embedding. The A-bimodule XR
A = Aπ ⊗B Horπ−1 has right

dual the left module maps Ω̃1
C∞(R) = AHom(XR

A,A), which is a right finitely generated

projective A-bimodule. The exterior derivative dA : A → Ω̃1
A is given by ev((a ⊗ X) ⊗

dAa
′) = a.πX(d(π−1a′)) and the submanifold calculus Ω̃1

C∞(R) is spanned by dAx.
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13.2 Classical Example: Closed interval in R

[Algebras: See Example 3.1 for C∞(M) and its calculi.]

Our next example is another classical one: The inclusion of the closed interval [0, 1] as the

closure of a submanifold of R. Let B = C∞(R) and A = C∞(R)
∣∣
[0,1]

, with right finitely

generated projective calculus Ω1
B. The restriction π : B → A is a surjective algebra map

with kernel J the smooth functions vanishing on [0, 1]. A vector field XR
B takes the form

x = g ∂
∂x

for some g ∈ B. The restricted vector fields XR
B

∣∣
A
= Aπ ⊗B XR

B have general

element k⊗ ∂
∂x

for some k ∈ A, and hence are generated as a left A-module by 1⊗ ∂
∂x
. Next

we calculate Hor. As in the previous example, since Ω1
B is commutative, condition 2 of

Lemma 11.4 holds automatically. Elements X = g ∂
∂x

of Hor satisfy X(j) = g ∂
∂x
(j) ∈ J for

each smooth function j vanishing on [0, 1]. But for a smooth function j vanishing on [0, 1],

by continuity its derivatives must also vanish on [0, 1], so X(j) ∈ J . Hence Hor = XR
B,

so TA = Aπ ⊗B XR
A and NA = 0, making π a co-embedding. The submanifold calculus

Ω̃1
A = AHom(XR

A,A) is spanned by dAx, the dual of 1⊗ ∂
∂x
. This example illustrates that

under our definition, the closure of a manifold is indistinguishable from a manifold, since

[0, 1] has the same tangent bundle, normal bundle and submanifold calculus as (0, 1).

13.3 Non-Classical Example: Algebraic Circle in Quantum Disk

[Algebras: See Example 3.3 for Cq[D] and its calculus, and Example 3.2 for Cq[S
1] and

its calculus]

Next we look at the non-classical example of embedding the algebraic circle A = C[t, t−1]

into the quantum disk B = Cq[D], for 0 ≤ q ≤ 1.

There is a surjective algebra map π : B → A given by π(z) = t, π(z̄) = t−1 with kernel

J generated by w := 1 − z̄z. This is known to be differentiable if A is equipped with

the 1-dimensional calculus generated by dt with relation dt.t = q2t.dt, in which case the

quantum circle algebra is denoted Cq2 [S
1]. However, here we instead start by making no

assumptions on the calculus of A and show that the submanifold calculus obtained from

π as a co-embedding coincides with this.

As Ω1
B is right finitely generated projective, there exist dual basis elements ez, ez̄ ∈ XR

B

such that any vector field X ∈ XR
B decomposes as X =

∑
a∈{z,z̄}

Xaea for some Xa ∈ B.
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Then ea(db) = δa,b for a, b ∈ {z, z̄}, and X(dz) = Xz and X(dz̄) = Xz̄.

Proposition 13.1. The tangent bundle TA is generated as a left A-module by Y :=

q2t2 ⊗ ez + 1⊗ ez̄.

Proof. Vector fieldsX ∈ Hor are characterised by the property thatX(dj) ∈ J for all j ∈

J , which implies X(dw) ∈ J . Using the fact that dw = −q2zdz̄ − z̄dz = dz̄.z − q2dz.z̄,

we calculate:

X(dw) = X(dz̄.z − q2dz.z̄) = X(dz̄).z − q2X(dz).z̄ = Xz̄.z − q2Xz.z̄

Thus for all X ∈ Hor we have 0 = πX(dw) = π(Xz̄).t− q2π(Xz).t
−1, which is equivalent

to π(Xz) = q2π(Xz̄).t
2. Next we check if there are any conditions on horizontal vector

fields coming from condition 2 of Lemma 11.4. But by the commutation relations of the

calculus, w commutes with the calculus, and so:

Xzezw +Xz̄ez̄w = Xzwez +Xz̄wez̄ ∈ Jez + Jez̄.

Hence this gives no additional conditions.

A general element of the tangent bundle TA = Aπ ⊗B Hor takes the form p(t) ⊗ X, for

p(t) a Laurent polynomial and X ∈ Hor. We can expand:

p(t)⊗X = p(t)⊗ (Xzez +Xz̄ez̄)

= p(t)π(Xz)⊗ ez + p(t)π(Xz̄)⊗ ez̄

= q2p(t)π(Xz̄).t
2 ⊗ ez + p(t)π(Xz̄)⊗ ez̄

= p(t)π(Xz̄).(q
2t2 ⊗ ez + 1⊗ ez̄)

We didn’t have any further restrictions on Xz̄, so π(Xz̄) is a general polynomial in A,

meaning that p(t)π(Xz̄) is a general polynomial too. Thus TA as a left A-module is

spanned by Y := q2t2 ⊗ ez + 1⊗ ez̄.

A normal bundle NA can then be given as the span of 1 ⊗ ez, giving a direct sum

decomposition Aπ⊗B XR
B = TA⊕NA. From the commutation relations listed in Example

3.2, we can see that the normal bundle is closed under the right B-action, and thus a

B-A module. The map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B
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has trivial kernel, since if f(t).
(
q2t2 ⊗ ez + 1 ⊗ ez̄

)
is nonzero in Aπ ⊗B Hor then it is

nonzero in Aπ ⊗B XR
B. Hence π is a co-embedding.

But in [10] there is already a differential structure on Cq2 [S
1] given by Ω1

A = C[t, t−1].dt,

dt.f(t) = f(q2t).dt, df = f(q2t)−f(t)
t(q2−1) dt. Does the submanifold calculus coincide with this?

We start by calculating the commutation relations on XR
A.

Proposition 13.2. If we write Y = q2t2 ⊗ ez + 1 ⊗ ez̄ ∈ XR
A, then the module XR

A has

commutation relation Y.t = q−2tY .

Proof. We calculate (ez.z)(dz) = ez(z.dz) = ez(q
−2dz.z) = q−2ez(dz).z = q−2z =

q−2zez(dz) = q−2(z.ez)(dz). Also ez(dz̄) = 0, so ez.z = q−2z.ez. Next, (ez̄.z)(dz̄) =

ez̄(z.dz̄) = ez̄(q
−2dz̄.z) = q−2z = q−2(z.ez̄)(dz̄). Also ez̄(dz) = 0, so ez̄.z = q−2z.ez̄.

Therefore Y.t = (q2t2⊗ez+1⊗ez̄)z = q2t2⊗q−2zez+1⊗q−2zez̄ = q−2t(q2t2⊗ez+1⊗ez̄) =

q−2tY .

The submanifold calculus is Ω̃1
A := AHom(XR

A,A), and it has basis element q2t2dAz+dAz̄,

which is the dual of Y .

Proposition 13.3. The calculus Ω̃1
A has commutation relation dt.t = q2t.dt.

Proof. The exterior derivative dA : A → Ω̃1
A is a linear map defined by the equation

ev(Y ⊗ dAt) = q2t2πez(d(π
−1(t))) + πez̄(d(π

−1(t))) = q2t2πez(dz) + πez̄(dz) = q2t. Thus,

ev(Y ⊗ t.dt) = ev(Y t⊗ dt) = ev(q−2tY ⊗ dt) = q−2t.ev(Y ⊗ dt) = q−2t.q2t2 = t3. Then,

we have ev(Y ⊗ dt.t) = ev(Y ⊗ dt)t = q2t3. Therefore dt.t = q2t.dt.

This coincides with the usual relation on the calculus for Cq2 [S
1], so the calculi are

isomorphic.

In retrospect, since the submanifold calculus is designed to always make the co-embedding

differentiable, it should be no surprise that our construction gives the usual calculus on

Cq2 [S
1]. However, the generator of the tangent bundle we obtained along the way was

not at all obvious. Our choice of normal bundle was sufficient for the purposes of being

complementary, but was somewhat arbitrary.

We continue with this example in Section 16.3, where we look at Hermitian metrics and

connections.
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13.4 Non-Classical Example: Algebraic Circle in Quantum SU2

[Algebras: See Example 3.5 for Cq[SU2] and its 3D calculus, and Example 3.2 for Cq[S
1]

and its calculus]

In this non-classical example we look at A = C[t, t−1] as a noncommutative submanifold

of B = Cq[SU2].

Proposition 13.4. The surjective algebra map π : B → A given by π(a) = t, π(d) = t−1,

π(b) = π(c) = 0 has kernel J generated by b and c, so J = bB + cB.

Proof. As a vector space, Cq[SU2] has a linear basis given by anbrcs and dnbrcs. Therefore

Cq[SU2]/ker(π) consists of elements an and dn, for n ≥ 0, as π(an) = tn and π(dn) = t−n.

The complement of this, ker(π), then consists of the span of anbrcs and dnbrcs for r, s not

both zero, which is just the span of b and c.

As Ω1
B is right finitely generated projective, there exist e+, e−, e0 ∈ XR

B such that any

vector field X ∈ XR
B decomposes as X =

∑
i∈{+,−,0}

Xiei for some Xi ∈ B. We also

have ei(e
j) = δi,j for i, j ∈ {+,−, 0}, and X(ei) = Xi. It can be calculated that the

commutation relations for the vector fields ei are as follows.

e±f = q−|f |fe±, e0f = q−2|f |fe0.

Proposition 13.5. The tangent bundle TA is generated by Y := 1⊗ e0, and the normal

bundle NA by 1⊗ e+ and 1⊗ e−.

Proof. Each element X of Hor satisfies X satisfies X(db), X(dc) ∈ J . We use the

commutation relations ae− = q−1e−.a, be0 = q2e0.b, ce0 = q−2e0.c and de+ = qe+.d to

calculate:

X(db) = X(ae− − q−2be0) = X(q−1e−.a− e0.b) = q−1X−.a−X0.b,

X(dc) = X(ce0 + qde+) = X(q−2e0.c+ q2e+.d) = q−2X0.c+ q2X+.d

Therefore for all X ∈ Hor, we have 0 = πX(db) = q−1π(X−).t and 0 = πX(dc) =

q2π(X+).t
−1, which implies that π(X+) = π(X−) = 0. We show that condition 2 of

Lemma 11.4 is satisfied and presents no further conditions on elements of Hor, using the

commutation relations on the calculus and then that J is a two-sided ideal:

X+e+j +X−e−j +X0e0j = q|j|X+je+ + q|j|X−je− + q2|j|X0je0 ∈ Je+ + Je− + Je0.
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Consequently, a general element of TA = Aπ ⊗B Hor takes the form

p(t)⊗ (X+e+ +X−e− +X0e0) = p(t)π(X0)⊗ e0,

where p(t) ∈ A is a polynomial. The left hand side of the tensor product is free to take

any value in A, and hence TA is generated as a left A-module by Y := 1⊗ e0. By linear

independence of the e0, e+, e−, a complementary normal bundle NA is generated by 1⊗e+
and 1⊗ e−.

The normal bundle is a right B-module because the right B-action 1⊗e± never produces

a 1⊗ e0 term, and thus NA is an A-B bimodule. The map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B

has trivial kernel, since if f(t)⊗e0 is nonzero in Aπ⊗BHor then it is nonzero in Aπ⊗BX
R
B.

Hence π is a co-embedding.

Next we look at the commutation relations on the vector fields and submanifold calculus.

Proposition 13.6. The vector fields XR
A have commutation relation Y.t = q−2t.Y , where

Y = 1⊗ e0.

Proof. Using the fact that e0.a = q2a.e0, we calculate:

ev(e0.a⊗ e0) = ev(e0 ⊗ a.e0) = ev(e0 ⊗ q−2e0.a) = q−2ev(e0 ⊗ e0).a

= q−2a = q−2a.ev(e0 ⊗ e0) = q−2ev(a.e0 ⊗ e0).

Thus e0.a = q−2a.e0. Therefore:

Y.t = 1⊗ e0.a = 1⊗ q−2a.e0 = q−2t(1⊗ e0) = q−2t.Y

Proposition 13.7. The calculus Ω̃1
A has commutation relation dt.t = q2t.dt.

Proof. The exterior derivative dA : A → Ω̃1
A is a linear map defined by the equation

ev(Y⊗dAt) = πe0(d(π
−1(t))) = πe0(da) = πe0(ae

0+qbe+) = πe0(q
−2e0.a+q2e+.b) = q−2t.

Then, we calculate the right module structure of Ω̃1
A, by ev(Y ⊗dAt.t) = ev(Y ⊗dAt.t) =

q−2t2, and

ev(Y ⊗ t.dAt) = ev(Y t⊗ dAt) = ev(q−2tY ⊗ dAt) = q−2t(q−2t) = q−4t2.

Hence dt.t = q2t.dt.
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This coincides with the usual relation, so the submanifold calculus is the same as the

calculus on Cq2 [S
1].

Since ev(Y ⊗ dAt) = q−2ev(Y ⊗ (e0 ⊗ 1)).t, it follows that dAt = q−2(e0 ⊗ 1).t.

We continue looking at this example in Section 16.1, where we look at Hermitian metrics

and connections.

13.5 Non-Classical Example: Functions on a Finite Group

[Algebras: See Example 3.10 for C(G) and its calculi]

In this example we look at the embedding of a subgroup H of a finite group G. There is

a surjective algebra map π : B → A given on the basis elements of C(G) by

π(δg) =

δg if g ∈ H

0 if g /∈ H

with kernel J spanned by δg for g ∈ G\H. Hence each X ∈ Hor satisfies πX(dδg) = 0 for

all g ∈ G\H. As Ω1
B is right finitely generated projective, there exist dual basis elements

{eb}b∈C in XR
B such that each X ∈ XR

B decomposes as X =
∑
b∈C

Xbeb for some Xb ∈ B.

Then ea(e
b) = δa,b, and X(dδc) = Xc for a, b, c ∈ C.

Proposition 13.8. Horizontal vector fields X ∈ Hor are characterised by the property

π(Xa) = 0 for all a ∈ C\H.

Proof. We begin by noting that since we have an actual linear basis of J , condition 2 of

Lemma 11.4 holds automatically, and we need only check condition 1.

We know that for f ∈ C(G) we have df =
∑
a∈C

ea.(f − Ra−1(f)). Thus dδg =
∑
a∈C

ea.(δg −

δga). Applying X ∈ Hor, we get:

X(dδg) =
∑
a∈C

Xa.(δg − δga).

If g ∈ G\H then X(dδg) ∈ J , so π
∑
a∈C

Xa.(δg−δga) = 0. Seeing as π is the map restricting

to H, this means having
∑
a∈C

Xa.(δg − δga) vanish on H. But the fact that g /∈ H means

that δg(h) always vanishes, so the above is equivalent to having −
∑
a∈C

Xa.δga vanish on

H, which in turn is equivalent to having
∑

a∈C:ga∈H
Xa.δga vanish on H.
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Evaluating this at h ∈ H, all terms vanish except the one with ga = h (if such a term

exists), i.e. with a = g−1h, so we get Xg−1h(h) = 0 for all h ∈ H and g ∈ C\H.

However, given any a ∈ C\H and h ∈ H, there exists some g ∈ G\H such that a = g−1h,

i.e. that h = ag. Therefore the condition reduces to having Xa(h) = 0 for all h ∈ H and

a ∈ C\H, i.e. π(Xa) = 0 for a ∈ C\H.

Proposition 13.9. The tangent bundle TA is generated as a left A-module by Ya := 1⊗ea
for all a ∈ C ∩ H, and the normal bundle by 1 ⊗ ea for all a /∈ C ∩ H. Note that it is

possible for the intersection C ∩H to be empty, based on our choices of C and H.

Proof. A general element of TA = Aπ ⊗B Hor can be expanded as

f ⊗X = f ⊗
∑
a∈C

Xaea =
∑
a∈C∩H

f.π(Xa)⊗ ea.

As there are no restrictions on Xa for a ∈ C ∩H, the left hand side of the tensor product

is a general element of C(H), and hence TA is generated by Ya := 1⊗ ea for a ∈ C ∩H.

By linear independence of the ea, the tangent bundle Na is generated by 1 ⊗ ea for

a /∈ C ∩H.

Since the right B-action on the vector fields eg just multiplies them by functions, the

normal bundle NA is a B-A bimodule. The map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B

has trivial kernel, since if f ⊗
∑
a∈C

Xaea is nonzero in Aπ ⊗B Hor then it is nonzero in

Aπ ⊗B XR
B. Thus π : B → A is a co-embedding.

As usual, we show that the submanifold calculus Ω̃1
A coincides with the usual calculus on

C(H).

Proposition 13.10. The exterior derivative is given by ev(Ya ⊗ dAf) = f −Ra−1(f).

Proof. We calculate for all h ∈ H and a ∈ C ∩H

ev(Ya ⊗ dAf) = πea(d(π
−1(f))) = πea(df) = πea(

∑
b∈C

eb.(f −Rb−1(f))) = π(f −Ra−1(f))

= f −Ra−1(f)

62



Proposition 13.11. The commutation relations on XR
A are given by Ya.f = Ra−1(f).Ya

for all f ∈ C(H) and a ∈ C ∩H.

Proof. First we calculate the right module structure of XR
C(H).

(ea.f)(ea) = ea(f.e
a) = ea(e

a.Ra−1(f)) = ea(e
a).Ra−1(f) = Ra−1(f) = Ra−1(f)ea(e

a)

= (Ra−1(f).ea)(e
a).

Hence ea.f = Ra−1(f).ea. Therefore:

Ya.δh = 1⊗ ea.f = 1⊗Ra−1(f)ea = Ra−1(f).(1⊗ ea) = Ra−1(f)Ya.

So Ya.f = Ra−1(f).Ya for all f ∈ C(H) and a ∈ C ∩H.

Proposition 13.12. The commutation relations on Ω̃1
A are given by ẽaf = Ra(f)ẽ

a,

where ẽa :=
∑
x∈G

δxdAδxa for a ∈ C ∩H.

Proof. Define ẽa :=
∑
x∈G

δxdAδxa for a ∈ C ∩H. The right module structure of Ω̃1
A is:

ev(Ya ⊗ fea) = ev(Yaπ(f)⊗ ea) = ev(Yaf ⊗ ea) = ev(Ra−1(f).Ya ⊗ ea)

= Ra−1(f)ev(Ya ⊗ ea) = Ra−1(f) = ev(Ya ⊗ ea)Ra−1(f) = ev(Ya ⊗ ea.Ra−1(f)),

for all f ∈ C(H) and a ∈ C ∩H. Hence f ẽa = ẽaRa−1(f), i.e. ẽaf = Ra(f)ẽ
a.

This coincides with the usual commutation relations on the calculus. Also, for this

particular example, we do indeed have Ω̃1
A = Ω1

A = {δhdAδh′ | h, h′ ∈ H}span, on account

of the fact that the graph has no multiple edges or loops, and all calculi on finite sets are

of this form.

We continue looking at this example in Section 16.2, where we look at Hermitian metrics

and connections.

13.6 Non-classical Example: Point in a Finite Graph

[See Example 3.9 for C(X) and its calculi]

Take B = C(X) for some finite set X, and suppose we make a choice of a finite graph to

determine its calculus Ω1
B. Take A = C({x0}) for x0 a fixed element of X, and let π be
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the map π : C(X) → C({x0}) given by restriction of functions to x0. This is a surjective

algebra map with kernel:

J = {f ∈ C(X) | f(x0) = 0} = {f ∈ C(X) | f.δx0 = 0}. (17)

A basis of J is then given by δx for all x ∈ X\{x0}. Next we calculate the horizontal

vector fields. Since we have an actual linear basis of J , condition 2 of Lemma 11.4 holds

automatically, and we need only check condition 1.

Hor = {X ∈ XR
C(X) | πX(dj) = 0 ∀j ∈ J} = {X ∈ XR

C(X) | X(dδz)δx0 = 0 ∀z ∈ X\{x0}}.

Hence for each z ̸= x0, X ∈ Hor, we have:

0 =
∑
x→z

Xx→zδx,x0 −
∑
z→y

Xz→yδz,x0 = Xx0→z −
∑
x0→y

Xx0→y

But since this holds for all z, y ∈ X, it follows that Xx0→y = 0 for all y ∈ X, i.e. for any

arrow out of x0. Since a horizontal vector field has no fz←x0 component for any z, the

horizontal vector fields are spanned by fy←x for all y ∈ X, x ∈ X\{x0}.

Hor = {X ∈ XR
C(X) | X =

∑
x→y,x̸=x0

Xx→yfy←x for some Xx→y ∈ C} (18)

The tangent bundle is TA = C({x0})⊗π Hor, and a general element of TA takes the form

δx0 ⊗X for some X ∈ Hor. Since π(δx0) = δx0 and δx0 .fy←x = δx0,yfy←x, we calculate:

δx0 ⊗
∑

x→y,x̸=x0

Xx→yfy←x = 1⊗
∑

x→y,x̸=x0

Xx→yδy,x0fy←x = 1⊗
∑
x→x0

Xx→x0fx0←x

Hence TA is spanned by Yx := 1 ⊗ fx0←x for each arrow x → x0. The normal bundle is

therefore spanned by 1 ⊗ fy←x for each arrow x → y for x ∈ X, y ∈ X\{x0}. Since the

normal bundle is closed under the right B-action, it is a B-A bimodule. The map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B

has trivial kernel, since if
∑
x→x0

λx.Yx is nonzero in Aπ⊗BHor then it is nonzero in Aπ⊗BX
R
B.

Therefore π is a co-embedding.

Defining XR
C({x0}) := C({x0})π ⊗C(X) Horπ−1 , the submanifold calculus is

Ω̃1
C({x0}) = C({x0})Hom(XR

C({x0}),C({x0})),
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which has exterior derivative dA : C({x0}) → Ω̃1
C({x0}) satisfying for arrows x→ x0:

ev(Yx ⊗ dAδx0) = πfx0←x(d(π
−1(δx0))) = πfx0←x(dδx0) = πfx0←x

( ∑
w→x0

ωw→x0 −
∑
x0→y

ωx0→y
)

= π(δx) = δx,x0δx0 = 0.

Hence the exterior derivative dA is the zero map, and Ω1
A = 0. But if there exist arrows

x → x0, the tangent bundle has a non-trivial basis, and hence so does its dual Ω̃1
A. This

case is an example where Ω̃1
A is bigger than Ω1

A, and the submanifold calculus does not

satisfy the surjectivity axiom of everything being of the form a.dAa
′.

13.7 Non-classical Example: Cq[C2] in Cq[M2]

[Algebras: See Example 3.7 for Cq[C2] and its calculus, and Example 3.4 for Cq[M2] and

its calculus]

Next, we show that the quantum plane A = Cq[C2] is a noncommutative submanifold of

the q-deformed matrices B = Cq[M2]. To the extent of our knowledge, the algebra map

used in this example is new.

Recall that Cq[C2] is the algebra with generators x, y and relation yx = qxy, while the

algebra Cq[M2] has generators a, b, c, d and relations:

ba = qab, ca = qac, db = qbd, dc = qcd, cb = bc, da− ad = (q − q−1)bc.

Note that in Cq[M2], unlike in Cq[GL2], Cq[SL2] or Cq[SU2], we make no assumption on

the value or invertibility of the determinant detq = ad− q−1bc.

Page 27 of [5] gives a 1-parameter family of 4D calculi on Cq[GL2]. Writing α for the

free parameter and λ = q − q−1, the calculus is freely generated by elements ea, eb, ec, ed

and inner by θ = ea + ed, which gives the differential. The commutation relations on the

generators are:

ea( a bc d ) = q2α
(
q2a b
q2c d

)
ea, [eb, ( a bc d )]q1+2α = q1+2αλ( 0 a

0 c )ea

[ec, ( a bc d )]q1+2α = q1+2αλ( b 0
d 0 )ea, [ed, (

a
c )]q2α = q2αλ( bd )eb

[ed, ( bd )]q2α = q2αλ
(
aec+λbea
cec+λdea

)
This notation is a shorthand, so for example one of the relations is

eb.d− q1+2αdeb = q1+2αλcea.
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Lemma 13.13. The relations on Ω1
B can be re-written as:

aea = q−2−2αea.a bea = q−2αea.b

cea = q−2−2αea.c dea = q−2αea.d

aeb = q−1−2αeb.a beb = q−1−2αeb.b− λq−2−2αea.a

ceb = q−1−2αeb.c deb = q−1−2αeb.d− λq−2−2αea.c

aec = q−1−2αec.a− λq−2αea.b bec = q−1−2αec.b

cec = q−1−2αec.c− λq−2αea.d dec = q−1−2αec.d

aed = q−2αed.a− λq−1−2αeb.b+ λ2q−2−2αea.a bed = q−2αed.b− λq−1−2αec.a

ced = q−2αed.c− λq−1−2αeb.d+ λ2q−2−2αea.c ded = q−2αed.d− λq−1−2αec.c

Proof. For brevity we omit the full calculations, but we calculate in the order of ea

through to ed and re-arrange and substitute until all algebra elements are on the right.

As the calculus is freely generated, the vector fields are also freely generated, and hence

in particular right finitely generated projective. This means there exist ea, eb, ec, ed ∈ XR
B

such that ei(ej) = δi,j for i, j ∈ {a, b, c, d}, and every vector field X ∈ XR
B decomposes as

X =
∑

i∈{a,b,c,d}
Xie

i for some Xi ∈ B. This implies X(ei) = Xi.

Lemma 13.14. The vector fields XR
Cq [M2]

have commutation relations:

ea.a = q−2−2αa.ea − λq−2αb.ec + λ2q−2−2αa.ed eb.a = q−1−2αa.eb − λq−1−2αb.ed

ec.a = q−1−2αa.ec ed.a = q−2αa.ed

ea.b = q−2αb.ea − λq−2−2αa.eb eb.b = q−1−2αb.eb

ec.b = q−1−2αb.ec − λq−1−2αa.ed ed.b = q−2αb.ed

ea.c = q−2−2αc.ea − λq−2αd.ec + λ2q−2−2αc.ed eb.c = q−1−2αc.eb − λq−1−2αd.ed
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ec.c = q−1−2αc.ec ed.c = q−2αc.ed

ea.d = q−2αd.ea − λq−2−2αc.eb eb.d = q−1−2αd.eb

ec.d = q−1−2αd.ec ed.d = q−2αd.ed

Proof. We calculate the commutation relations using the fact that coev(1) =
∑

i=a,b,c,d

ei⊗ei

is central, on account of coev being a bimodule map.

(1) Firstly we calculate:∑
i

aei ⊗ ei =
(
q−2−2αea.a

)
⊗ ea +

(
q−1−2αeb.a

)
⊗ eb +

(
q−1−2αec.a− λq−2αea.b

)
⊗ ec

+
(
q−2αed.a− λq−1−2αeb.b+ λ2q−2−2αea.a

)
⊗ ed

= ea ⊗
(
q−2−2αa.ea − λq−2αb.ec + λ2q−2−2αa.ed

)
+ eb ⊗

(
q−1−2αa.eb − λq−1−2αb.ed

)
+ ec ⊗

(
q−1−2αa.ec

)
+ ed ⊗

(
q−2αa.ed

)
Equating this with

∑
i

ei ⊗ ei.a and comparing the RHS of the tensor product gives the

equations above for moving a from right to left.

(2) Next we calculate:∑
i

bei ⊗ ei =
(
q−2αea.b

)
⊗ ea +

(
q−1−2αeb.b− λq−2−2αea.a

)
⊗ eb +

(
q−1−2αec.b

)
⊗ ec

+
(
q−2αed.b− λq−1−2αec.a

)
⊗ ed

= ea ⊗
(
q−2αb.ea − λq−2−2αa.eb

)
+ eb ⊗

(
q−1−2αb.eb

)
+ ec ⊗

(
q−1−2αb.ec − λq−1−2αa.ed

)
+ ed ⊗

(
q−2αb.ed

)
Equating this with

∑
i

ei ⊗ ei.b and comparing the RHS of the tensor product gives the

equations above for moving b from right to left.

(3) Next we calculate:∑
i

cei ⊗ ei =
(
q−2−2αea.c

)
⊗ ea +

(
q−1−2αeb.c

)
⊗ eb +

(
q−1−2αec.c− λq−2αea.d

)
⊗ ec

+
(
q−2αed.c− λq−1−2αeb.d+ λ2q−2−2αea.c

)
⊗ ed

= ea ⊗
(
q−2−2αc.ea − λq−2αd.ec + λ2q−2−2αc.ed

)
+ eb ⊗

(
q−1−2αc.eb − λq−1−2αd.ed

)
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+ ec ⊗
(
q−1−2αc.ec

)
+ ed ⊗

(
q−2αc.ed

)
Equating this with

∑
i

ei ⊗ ei.c and comparing the RHS of the tensor product gives the

equations above for moving c from right to left.

(4) Lastly we calculate:∑
i

dei ⊗ ei =
(
q−2αea.d

)
⊗ ea +

(
q−1−2αeb.d− λq−2−2αea.c

)
⊗ eb +

(
q−1−2αec.d

)
⊗ ec

+
(
q−2αed.d− λq−1−2αec.c

)
⊗ ed

= ea ⊗
(
q−2αd.ea − λq−2−2αc.eb

)
+ eb ⊗

(
q−1−2αd.eb

)
+ ec ⊗

(
q−1−2αd.ec

)
+ ed ⊗

(
q−2αd.ed

)
Equating this with

∑
i

ei ⊗ ei.d and comparing the RHS of the tensor product gives the

equations above for moving d from right to left.

Provided that the q-determinant detq = ad − q−1bc is not invertible (i.e. we are not in

the GL2 or SL2 case), there is a surjective algebra map

π : Cq[M2] → Cq[C2], π(a) = x, π(c) = y, π(b) = π(d) = 0. (19)

Since we can use the commutation relations to put b and d on the left of every term, the

kernel J of π is bB + dB.

Proposition 13.15. Horizontal vector fields X ∈ Hor are characterised by π(Xa) = 0

and π(Xc) = 0.

Proof. In parts 1 and 2 of this proof we calculate the implications of condition 1 of

Lemma 36, and in part 3 we calculate the implications of its condition 2.

(1) Firstly we calculate πX(db). Using that the calculus is inner by θ = ea + ed, we

calculate X(db) as:

X(db) = X([θ, b]) = X(ea.b+ ed.b− bea − bed)

= Xa.b+Xd.b−X(q−2αea.b+ q−2αed.b− λq−1−2αec.a)

= Xa.b+Xd.b− q−2αXa.b− q−2αXd.b+ λq−1−2αXc.a

= (1− q−2α)Xa.b+ (1− q−2α)Xd.b+ λq−1−2αXc.a
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The map π sends every term containing b to zero, and so πX(db) = λq−1−2απ(Xc).x For

X to be horizontal, we therefore need 0 = λq−1−2απ(Xc).x. Hence π(Xc) = 0.

(2) Next we calculate πX(dd) as:

X(dd) = X([θ, d]) = X(ea.d+ ed.d− dea − ded)

= Xa.d+Xd.d−X(q−2αea.d+ q−2αed.d− λq−1−2αec.c)

= (1− q−2α)Xa.d+ (1− q−2α)Xd.d+ λq−1−2αXc.c

The map π sends every term containing d to zero, so we get πX(dd) = λq−1−2απ(Xc).y,

and for X to be horizontal we need this to vanish, so π(Xc) = 0.

(3) Lastly, we calculate the implications of condition 2 of Lemma 11.4. Using the com-

mutation relations on the vector fields from Lemma 13.14, we first calculate:

Xb =
∑
i

Xie
i.b = Xa

(
q−2αb.ea − λq−2−2αa.eb

)
+Xb

(
q−1−2αb.eb

)
+Xc

(
q−1−2αb.ec − λq−1−2αa.ed

)
+Xd

(
q−2αb.ed

)
=
(
Xaq

−2αb
)
ea +

(
−Xaλq

−2−2αa+Xbq
−1−2αb

)
eb

+
(
Xcq

−1−2αb
)
ec +

(
−Xcλq

−1−2αa+Xdq
−2αb

)
ed.

Every coefficient containing b or d is automatically in J since J is a two-sided ideal,

and for the coefficients Xaλq
−2−2αa and Xcλq

−1−2αa to be in J , we require Xa ∈ J and

Xc ∈ J . Next we calculate:

Xd =
∑
i

Xie
i.d

= Xa

(
q−2αd.ea − λq−2−2αc.eb

)
+Xb

(
q−1−2αd.eb

)
+Xc

(
q−1−2αd.ec

)
+Xd

(
q−2αd.ed

)
=
(
Xaq

−2αd
)
ea +

(
−Xaλq

−2−2αc+Xbq
−1−2αd

)
eb +

(
Xcq

−1−2αd
)
ec +

(
Xdq

−2αd
)
ed

For the coefficient Xaλq
−2−2αc to be in J , we require Xa ∈ J . Thus the total set of

conditions on horizontal vector fields is Xa, Xc ∈ J .

It follows that the tangent bundle TA as a left A-module has two generators 1 ⊗ eb and

1 ⊗ ed. Since all right actions on the vector fields eb and ed produce only multiples of

eb and ed (we can read this off the right column of Lemma 13.14), so TA is closed under

the right B-action, making it an A-B bimodule. A complement to this, and therefore a
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normal bundle NA, is spanned by the two generators 1 ⊗ ea and 1 ⊗ ec. This is a left

A-module, but we can read off the left column of Lemma 13.14 that it is not closed under

the right action, and so NA is not a right B-module. However, we don’t encounter any

problems with injectivity of the map

id⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B,

since if f(x, y) ⊗ eb + g(x, y) ⊗ ed is nonzero in Aπ ⊗B Hor then it is also nonzero in

Aπ ⊗B XR
B. Therefore unlike previous examples, the map π : B → A here gives a weak

coembedding. We remind the reader that a weak co-embedding is when the sequence

splits only as a sequence of left A-modules, not as B-A bimodules. This is still sufficient

to get a submanifold calculus, which we calculate in the remainder of this example, but it

does mean that we do not know how to project connections to that submanifold calculus.

The vector fields on A = Cq[C2] are defined as XR
A := Aπ ⊗B Horπ−1 , and we calculate

their commutation relations as follows:

Proposition 13.16. The vector fields XR
A have commutation relations:

(1⊗ ed).x = q−2αx.(1⊗ ed), (1⊗ ed).y = q−2αy.(1⊗ ed)

(1⊗ eb).x = q−1−2αx.(1⊗ eb), (1⊗ eb).y = q−1−2αy.(1⊗ eb)

Proof. Using the relations ed.a = q−2αa.ed and ed.c = q−2αc.ed and eb.a = q−1−2αa.eb −

λq−1−2αb.ed and eb.c = q−1−2αc.eb − λq−1−2αd.ed, we calculate:

(1⊗ ed).x = 1⊗ ed.π−1(x) = 1⊗ ed.a = q−2α1⊗ a.ed = q−2α1.π(a) = q−2αx.(1⊗ ed),

and

(1⊗ ed).y = 1⊗ ed.c = 1⊗ q−2αc.ed = q−2αy.(1⊗ ed),

and

(1⊗ eb).x = 1⊗ eb.a = 1⊗
(
q−1−2αa.eb − λq−1−2αb.ed

)
= q−1−2αx.(1⊗ eb)− 0,

and

(1⊗ eb).y = 1⊗ eb.c = 1⊗
(
q−1−2αc.eb − λq−1−2αd.ed

)
= q−1−2αy.(1⊗ eb)− 0.
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The submanifold calculus is given by Ω̃1
A := AHom(XR

A,A), and we calculate the differen-

tial and commutation relations as follows.

Proposition 13.17. The submanifold calculus has differential dA : A→ Ω1
A given by dAx

and dAy, satisfying ev((1⊗ed)⊗dAx) = (1−q−2α)x and ev((1⊗ed)⊗dAy) = (1−q−2α)y,

and ev((1⊗ eb)⊗ dAx) = ev((1⊗ eb)⊗ dAy) = 0.

Proof. Recall that the differential dA : A→ Ω1
A is given for X ∈ Hor and α, α′ ∈ A by:

ev((α⊗X)⊗ dAα
′) = α.πX(d(π−1α′)).

(1) Using this formula, we calculate:

ev((1⊗ eb)⊗ dAx) = πeb(dπ−1(x)) = πeb(da) = πeb([θ, a]) = πeb
(
(ea + ed)a− a(ea + ed)

)
= −πeb(a.ea + a.ed)

= −πeb(q−2−2αea.a+ q−2αed.a− λq−1−2αeb.b+ λ2q−2−2αea.a)

= λq−1−2αeb(eb).π(b) = 0

(2) Likewise we calculate

ev((1⊗ eb)⊗ dAy) = πeb([θ, c]) = πeb
(
(ea + ed)c− c(ea + ed)

)
= −πeb(c.ea + c.ed)

= −πeb(q−2−2αea.c+ q−2αed.c− λq−1−2αeb.d+ λ2q−2−2αea.c)

= λq−1−2αeb(eb)π(d) = 0

(3) Next we calculate:

ev((1⊗ ed)⊗ dAx) = πed([θ, a]) = πed
(
(ea + ed)a− a(ea + ed)

)
= πed(ed).π(a)− πed(a.ea + a.ed)

= x− πed(q−2−2αea.a+ q−2αed.a− λq−1−2αeb.b+ λ2q−2−2αea.a)

= x− q−2αed(ed).π(a) = (1− q−2α)x

(4) Lastly we calculate:

ev((1⊗ ed)⊗ dAy) = πed([θ, c]) = πed
(
(ea + ed)c− c(ea + ed)

)
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= y − πed(q−2−2αea.c+ q−2αed.c− λq−1−2αeb.d+ λ2q−2−2αea.c)

= (1− q−2α)y

Remark 13.18. The paper [5] giving the calculus on C[M2] states that in the case α = −1
2

the calculus descends to the quotient detq = 1, giving the standard 4D calculus on Cq[SL2].

In our example, this would give ev((1⊗ ed)⊗ dAx) = (1− q)x and ev((1⊗ ed)⊗ dAy) =

(1 − q)y. Thus in the case α = −1
2
and q = 1, the submanifold calculus comes out with

zero differential.

One known example of a covariant calculus, as found in Example 2.79 of [10] on Cq[C2]

is generated by dx and dy subject to the following commutation relations:

dx.x = q2xdx, dx.y = qydx, dy.x = qxdy + (q2 − 1)ydx, dy.y = q2ydy.

Proposition 13.19. The submanifold calculus on A = Cq[C2] has commutation relations:

dAx.x = q2αxdAx, dAx.y = q−1+2αydAx

dAy.x = q1+2αxdAy, dAy.y = q2αydAy

dAy.x = qdAx.y

In the case α = 1, these imply those of the standard calculus.

Proof. (1) We use (1⊗ ed).x = q−2αx.(1⊗ ed) and ev((1⊗ ed)⊗ dAx) = (1− q−2α)x to

calculate:

ev((1⊗ ed)⊗ x.dAx) = ev((1⊗ ed).x⊗ dAx)

= q−2αx.ev((1⊗ ed)⊗ dAx)

= q−2αx.((1− q−2α)x) = ((1− q−2α)x).q−2αx

= ev((1⊗ ed)⊗ dAx).q
−2αx

Hence xdAx = q−2αdAx.x, which re-arranges to dAx.x = q2αxdAx

(2) We use (1⊗ ed).y = q−2αy.(1⊗ ed) and ev((1⊗ ed)⊗ dAx) = (1− q−2α)x to calculate:

ev((1⊗ ed)⊗ y.dAx) = ev((1⊗ ed).y ⊗ dAx)
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= q−2αy.ev((1⊗ ed)⊗ dAx)

= q−2αy
(
(1− q−2α)x

)
=
(
(1− q−2α)x

)
q1−2αy

= ev((1⊗ ed)⊗ dAx)q
1−2αy

Hence ydAx = q1−2αdAx.y, which re-arranges to dAx.y = q−1+2αydAx.

(3) We use (1⊗ ed).x = q−2αx.(1⊗ ed) and ev((1⊗ ed)⊗ dAy) = (1− q−2α)y to calculate:

ev((1⊗ ed)⊗ x.dAy) = ev((1⊗ ed).x⊗ dAy)

= q−2αx.ev((1⊗ ed)⊗ dAy)

= q−2αx.
(
(1− q−2α)y

)
=
(
(1− q−2α)y

)
.q−1−2αy

= ev((1⊗ eb)⊗ dAy).q
−1−2αy

Hence xdAy = q−1−2αdAy.x, which re-arranges to dAy.x = q1+2αxdAy.

(4) We use (1⊗ ed).y = q−2αy.(1⊗ ed) and ev((1⊗ ed)⊗ dAy) = (1− q−2α)y to calculate:

ev((1⊗ ed)⊗ y.dAy) = ev((1⊗ ed)y.⊗ dAy)

= q−2αy.ev((1⊗ ed)⊗ dAy)

= q−2αy.
(
(1− q−2α)y

)
=
(
(1− q−2α)y

)
.q−2αy

= ev((1⊗ eb)⊗ dAy).q
−2αy.

Hence ydAy = q−2αdAy.y, which re-arranges to dAy.y = q2αydAy.

(5) Next we show the relation dAy.x = qdAx.y, which has no corresponding version in

the standard calculus on Cq[C2].

ev((1⊗ ed)⊗ (dAy.x− qdAx.y)) = ev((1⊗ ed)⊗ dAy).x− qev((1⊗ ed)⊗ dAx).y

= (1− q−2α)(yx− qxy) = 0.

(6) Lastly, we show that in the case α = 1, these imply the relations of the standard

calculus on Cq[C2]. For the relations dAx.x = q2αxdAx and dAx.y = q−1+2αydAx and

dAy.y = q2αydAy this is easily seen, but the relation

dAy.x = q1+2αxdAy
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is not so easily seen to imply dAy.x = qxdAy + (q2 − 1)ydAx. But if we calculate the

difference between them as:

qxdAy + (q2 − 1)ydAx− q3xdAy = (q2 − 1)
(
ydAx− qxdAy

)
,

and then evaluate on (1⊗ ed), we get:

ev
(
(1⊗ ed)⊗ (q2 − 1)

(
ydAx− qxdAy

))
= (q2 − 1)(1− q−2)(yx− qxy) = 0.

Thus we obtain a family of calculi with parameter α, where the case α = 1 gives a

quotient of the standard calculus on Cq[C2].

Having done lots of calculations to get here, we now check via the following proposition

that this calculus does indeed preserve the relation yx− qxy = 0 on Cq[C2].

Proposition 13.20. This submanifold calculus satisfies dA(yx− qxy) = 0.

Proof. Using the Leibniz rule and then the commutation relations ydAx = q1−2αdAx.y

and xdAy = q−1−2αdAy.x to move algebra elements to the right, we calculate:

dA(yx− qxy) = dAy.x+ ydAx− qdAx.y − qxdAy

= dAy.x+ q1−2αdAx.y − qdAx.y − q−2αdAy.x

This is determined by its evaluation on ed, so we substitute in ev((1 ⊗ ed) ⊗ dAx) =

(1− q−2α)x and ev((1⊗ ed)⊗ dAy) = (1− q−2α)y to get:

(1− q−2α)
(
yx− q1−2αxy − qxy − q−2αyx

)
= (1− q−2α)

(
(yx− qxy) + q−2α(yx− qxy)

)
= 0

This is an example where Ω̃1
A ̸= Ω1

A, since the evaluation of dAx and dAy on (1 ⊗ eb)

is zero, so the span of dA is smaller than the dual of XR
A. This example is different to

our other examples, in the sense that not only is it a weak co-embedding, but also that

we chose quite a strange algebra map that is only an algebra map when the quantum

determinant is not invertible, and ended up getting a quotient of the usual calculus on A

as a result.
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14 Non-examples

In this section we look at three cases where the definition is not met and what goes wrong.

These are tabulated below. Note that the notation C∞(R2)
∣∣
+
denotes the restriction of

C∞(R2) to the union of the x and y axes (which is not a manifold).

B A What goes wrong

Certain algebras C Not every algebra has a surjective algebra map to C.

C∞(R2) C∞(R2)
∣∣
axes The normal bundle fails to be a left A-module.

Cq[S
1] Cq[S

2] There is no algebra map between these.

Table 2: Submanifolds Non-Examples

14.1 Classical Counterexample: A Point in Some Algebras

If we regard the algebra C as corresponding to a point, one might hope for it to have a co-

embedding into any associative unital algebra. However, this would require a surjective

algebra map π : B → C, which not every algebra has. If B is a Hopf algebra over the

complex numbers then there is a counit ϵ : B → C which is an algebra map, but it may

not be surjective, since there are some Hopf algebras with ϵ sending everything to zero.

If there does exist a surjective algebra map π : B → C, what we can say is that π(1) = 1

and the kernel doesn’t contain any element of B with a multiplicative inverse.

The lack of surjective algebra maps π : B → C in general indicates that it might be worth

looking at more general types of maps than algebra maps, such as completely positive

maps, since states on algebras are much more plentiful.

14.2 Classical Counterexample: Union of Axes in R2

We borrow this example from [21], which didn’t satisfy D’Andrea’s definition of a co-

embedding, and show that things also go wrong under our definition. Take B = R2,

and A = C∞(R2)
∣∣
axes

, denoting the restriction of smooth functions on R2 to the union

of the x and y axes. This set is not a smooth manifold, because of the point (0, 0). The

restriction map π : B → A is a surjective algebra map. Its kernel J consists of functions

vanishing on both axes, and is therefore generated by xy.
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Each vector field X ∈ XR
B satisfies X(d(xy)) = fx

∂(xy)
∂x

+ fy
∂(xy)
∂y

= fxy + fyx. Horizontal

vector fields satisfy X(d(xy)) ∈ J , meaning that fxy + fyx must vanish on both axes,

which in turn means yfx(0, y) = 0 and xfy(x, 0) = 0 for all x, y ∈ R. By continuity of fx

and fy, it follows that fx(0, y) = 0 and fy(x, 0) = 0 for all x, y ∈ R.

A general element of TA = Aπ ⊗B Hor then takes the form

g ⊗X = g ⊗ (fx
∂

∂x
+ fy

∂

∂y
) = gπ(fx)⊗

∂

∂x
+ gπ(fy)⊗

∂

∂y
.

We see that gπ(fx) vanishes on the y-axis, and gπ(fy) vanishes on the x-axis. This means

that gπ(fx) is divisible by x, and that gπ(fy) by y. Thus TA is generated as a left A-

module by x⊗ ∂
∂x

and y ⊗ ∂
∂y
. However, we do not have a co-embedding, or even a weak

co-embedding, because we cannot construct a normal bundle.

Proposition 14.1. In this example, the normal bundle fails to be a left A-module.

Proof. For A to be a noncommutative submanifold of B, we need the existence of an

A-B module NA such that Aπ ⊗B XR
B = TA ⊕ NA. We can see that 1 ⊗ ∂

∂x
is not of the

form (A.x⊗ ∂
∂x

+A.y⊗ ∂
∂y
), and thus it can be expressed as a sum 1⊗ ∂

∂x
= hx+nx, where

hx ∈ Aπ ⊗B Hor, and nx ∈ NA. Multiplying on the left by x gives x ⊗ ∂
∂x

= xhx + xnx,

which lies in Aπ ⊗B Hor, meaning that the component xnx ∈ NA is equal to zero, using

the fact that NA is a left A-module. This implies that nx vanishes on the x-axis minus

zero, and therefore by continuity that it vanishes on the entire x-axis. However, we had

1 ⊗ ∂
∂x

= hx + nx, so if we restrict this to the x-axis then we get hx = 1 ⊗ ∂
∂x
. But this

isn’t of the form (A.x⊗ ∂
∂x

+ A.y ⊗ ∂
∂y
). This gives a contradiction with our assumption

NA was a left A-module.

Although there is no normal bundle, we can still go ahead and calculate a submanifold

calculus, but we find that it differs from the classical calculus on A.

Proposition 14.2. In this example, the submanifold calculus Ω̃1
A contains elements not

found in the classical case.

Proof. For a general element ξ ∈ Ω̃1
A, we have ξ(1 ⊗ ∂

∂x
) = f for some f ∈ A. We then

define dAx dual to 1⊗ ∂
∂x

by ξ = f.dAx. Then we have ξ(x⊗ ∂
∂x
) = xξ(1⊗ ∂

∂x
) = xf . We

likewise have ξ(y ⊗ ∂
∂x
) =: yf .

76



However, observe that η = 1
x
.dx gives a valid element of Ω̃1

A, seeing as η(π(fx) ⊗ ∂
∂x
) =

π(fx)
x

∈ A for instance. This shows that the calculus Ω̃1
A does not take the form A.dx,

and thus is not equal to the restriction of the classical case.

15 Restricting Connections - Gauss Equation for Cur-

vature

Definition 15.1. If B has calculus Ω1
B and a surjective algebra map π : B → A is a

co-embedding — i.e. the map id ⊗ inc : Aπ ⊗B Hor → Aπ ⊗B XR
B is injective and there

is a splitting Aπ ⊗B XR
B = (Aπ ⊗B Hor)⊕N as A-B bimodules for some N ⊂ Aπ ⊗B XR

B

complementary to the tangent bundle — then we denote the projections to the tangent

and normal bundles as P and Q respectively.

Aπ ⊗B XR
B

Aπ ⊗B Hor N
P

Q

By splitting of the exact sequence, these are A-B bimodule maps satisfying P +Q = id.

Proposition 15.2. Given a co-embedding π : B → A and a left connection ∇B : XR
B →

Ω1
B ⊗B XR

B, there is a left connection ∇′B : Aπ ⊗B XR
B → Ω1

A ⊗A (Aπ ⊗B XR
B) defined by

∇′B(a⊗X) = da⊗ 1⊗X + a(π ⊗ 1⊗ id)∇BX (20)

or equivalently

∇′B(1⊗X) = (π ⊗ 1⊗ id)∇BX (21)

for a ∈ A, x ∈ XR
B. The curvature of ∇′B is given by R′B(1⊗X) = (π ⊗ 1⊗ id)RB(X).

Proof. (1) Firstly, we show ∇′B is well-defined over ⊗B. Since π is surjective, there

exists b ∈ B such that π(b) = a. We calculate

∇′B(1⊗ bX) = (π ⊗ 1⊗ id)∇B(bX) = (π ⊗ 1⊗ id)(db⊗X + b.∇B(X))

= da⊗ 1⊗X + a(π ⊗ 1⊗ id)∇BX = ∇′B(a⊗X)

as required. This also shows the left Leibniz rule for connections.
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(2) Next we show the formula for R′B. Denoting ∇Be = ξ ⊗ Y and ∇Bf = η ⊗ Z, then:

R′B(1⊗X) = (d⊗ id− id ∧∇′B)∇′B(1⊗X) = (d⊗ id− id ∧∇′B)(π(ξ)⊗ 1⊗ Y )

= dπ(ξ)⊗ 1⊗ Y − π(ξ) ∧∇′B(1⊗ Y ) = dπ(ξ)⊗ 1⊗ Y − π(ξ) ∧ π(η)⊗ 1⊗ Z

= (π ⊗ 1⊗ id)(dξ ⊗ Y − id ∧∇B)∇B(X) = (π ⊗ 1⊗ id)RB(X).

To clarify this notation, if ∇BX = ξ ⊗ f , then ∇′B(1⊗X) = π(ξ)⊗ 1⊗ f .

Similarly to classical geometry, the restriction of a connection to the tangent bundle

of a submanifold splits into a sum of a connection on the submanifold plus the second

fundamental form.

Proposition 15.3. If we restrict the domain of ∇′B to the tangent bundle, then for each

e ∈ Aπ ⊗B Hor there is a splitting

∇′B(e) = ∇A(e) + α(e) (22)

for the left connection

∇A = (id⊗ P )∇′B : Aπ ⊗B Hor → Ω1
A ⊗A (Aπ ⊗B Hor) (23)

and the left A-module map

α = (id⊗Q)∇′B : Aπ ⊗B Hor → Ω1
A ⊗A N. (24)

Proof. The splitting is obvious from P +Q = id and expressing the connection as

∇′B(1⊗X) = (π∗ ⊗ (P +Q)(1⊗−))∇B(X),

but we need to show that ∇A is a left connection and α a left A-module map. Using that

∇′B is a connection, we show these as

∇A(ae) = (id⊗ P )(da⊗ e+ a.∇′B(e)) = da⊗ e+ a.∇A(e)

and

α(ae) = (id⊗Q)(da⊗ e+ a.∇′B(e)) = a.α(e),

as required.
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In classical differential geometry the second fundamental form is a tensor, and in a non-

commutative context this corresponds to α being a module map.

The following theorem is the equivalent of the Gauss equation for curvature in classical

differential geometry.

Theorem 15.4. (Gauss Equation) The left connection ∇A : Aπ ⊗B Hor → Ω1
A ⊗A

(Aπ ⊗B Hor) given by ∇A = (id⊗P )∇′B has curvature RA : Aπ ⊗B Hor → Ω2
A⊗A (Aπ ⊗B

Hor) given by

RA(f) = (id⊗ P )R′B(f) + (id ∧ β)α(f) (25)

where β : N → Ω1
A ⊗A (Aπ ⊗B Hor) is a left module map given by

β = (id⊗ P )∇′B. (26)

Proof. If ∇′B(e) = ξ⊗h ∈ Ω1
A⊗A (Aπ⊗B XR

B), then ∇A(e) = ξ⊗Ph and α(e) = ξ⊗Qh.

On one hand we calculate

RA(e) = dξ ⊗ Ph− ξ ∧∇A(Ph).

On the other hand we calculate

(id⊗ P )R′B(e) = dξ ⊗ Ph− ξ ∧ (id⊗ P )∇′Bh.

The difference between the two is

RA(e)− (id⊗ P )R′B(e) = ξ ∧ (id⊗ P )∇′Bh− ξ ∧∇A(Ph)

= ξ ∧ (id⊗ P )∇′B(Ph) + ξ ∧ (id⊗ P )∇′B(Qh)− ξ ∧∇A(Ph)

= ξ ∧ (id⊗ P )∇′B(Qh)

= (id⊗ (id⊗ P )∇′B)α(e)

= (id ∧ β)α(e),

which shows the Gauss equation. Lastly, we see that β is a left module map because for

all e ∈ N and a ∈ A,

β(ae) = (id⊗ P )∇′B(ae) = (id⊗ P )(da⊗ e+ a.∇′B(e)) = a.β(e),

as required.
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The above theory is for left connections on the right vector fields XR
B, but a similar

version exists for right connections on the left vector fields XL
B. If instead π : B → A is a

left-handed co-embedding, i.e. XL
B ⊗B πA = (HorL ⊗B πA) ⊕ N for some B-A bimodule

N ⊂ XL
B ⊗B πA complementary to the tangent bundle, then there are projections P and

Q which sum to the identity given as follows:

XR
L ⊗B πA

HorL ⊗B πA N

P
Q

Theorem 15.5. Given a left-handed co-embedding π : B → A and a right connection

∇̃B : XL
B → XL

B⊗B⊗BΩ
1
B with curvature R̃B : XL

B → XL
B⊗Ω2

B, there is a right connection

∇̃′B : XL
B ⊗B πA→ (XL

B ⊗B πA)⊗A Ω1
A given by

∇̃′B(X ⊗ 1) = (id⊗ 1⊗ π)∇̃B(X) (27)

with curvature R̃′B(1 ⊗ X) = (id ⊗ 1 ⊗ π)R̃B(X). There is a right connection ∇̃A :

HorL ⊗B πA→ (HorL ⊗B πA)⊗A Ω1
A given by

∇̃A = (P ⊗ id)∇̃′B (28)

and a right A-module map α̃ : HorL ⊗B πA→ N ⊗A Ω1
A given by

α̃ = (Q⊗ id)∇̃′B, (29)

and a right module map β̃ : N → (HorL ⊗B πA)⊗A Ω1
A given by

β̃ = (P ⊗ id)∇̃′B. (30)

The curvature R̃A : HorL ⊗B πA→ (HorL ⊗B πA)⊗A Ω2
A of ∇̃A is given by

R̃A(f) = (P ⊗ id)R̃′B(f)− (β̃ ∧ id)α̃(f). (31)

Proof. The only part of this not clear by symmetry is the flipped Gauss equation 31. If

∇̃′B(e) = h⊗ ξ ∈ (XL
B ⊗B πA)⊗A Ω1

A, then ∇̃A(e) = Ph⊗ ξ, and α̃(e) = Qh⊗ ξ. On one

hand we calculate

R̃A(e) = Ph⊗ dξ + ∇̃A(Ph) ∧ ξ.
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On the other hand we calculate

(P ⊗ id)R̃′B(e) = Ph⊗ dξ + (P ⊗ id)∇̃′Bh ∧ ξ.

The difference between the two is

R̃(e)− (P ⊗ id)R̃′B(e) = ∇̃A(Ph) ∧ ξ − (P ⊗ id)∇̃′Bh ∧ ξ

= ∇̃A(Ph) ∧ ξ − (P ⊗ id)∇̃′B(Ph) ∧ ξ − (P ⊗ id)∇̃′B(Qh) ∧ ξ

= −(P ⊗ id)∇̃′B(Qh) ∧ ξ

= −((P ⊗ id)∇̃′B ⊗ id)α̃(e)

= −(β̃ ∧ id)α̃(e),

as required.

16 Hermitian Metrics

(See chapter 8.4 of [10] for the notation we use in this section on Hermitian metrics —

especially the G notation.)

If B is a ∗-algebra and E a left B-module, then a Hermitian metric on E is a B-bimodule

map ⟨, ⟩E : E ⊗ E → B satisfying ⟨e, f⟩∗ = ⟨f, e⟩ for all e, f ∈ E. Each nondegenerate

Hermitian metric is specified by an invertible map G : E → E◦ = BHom(E,B), as in the

following diagram.

E ⊗ E B

E ⊗ E◦

⟨,⟩E

id⊗G
ev

If E is left finitely generated projective with dual basis ei ∈ E, ei ∈ E◦, then the inner

product is described by matrices gij = ⟨ei, ej⟩E. The condition of being Hermitian is

equivalent to (gij)∗ = gji. There is a corresponding notion of Hermitian metric on a right

module. The key thing about Hermitian metrics is that unlike Riemannian metrics they

only require a one-sided module, and are defined over the tensor product ⊗C.

Recall that there is a standard isomorphism bb : E → E adding a double bar, with inverse

bb−1 removing a double bar.
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Given a Hermitian metric ⟨, ⟩E : E ⊗E → B on a left B-module E, there is a Hermitian

metric with the bar on the other side on the left vector fields E◦ = XL
B given by

⟨, ⟩E◦ = ev ◦ (bb−1G−1 ⊗ id) : E◦ ⊗ E◦ → B. (32)

We can see this works by breaking it down into the following sequence of maps:

E◦ ⊗ E◦ E ⊗ E◦ E ⊗ E◦ B
G−1⊗id bb−1⊗id ev .

In the definition of a co-embedding it suffices for the normal bundle to be complementary

to the tangent bundle, but in examples where a Hermitian metric is known on Ω1
B, we

can use this to find a normal bundle which is really orthogonal to the tangent bundle.

We calculate several examples of this at the end of the section.

Next, we look at metric preservation. Recall that given a left B-module E and a left

connection ∇E : E → Ω1
B ⊗B E, denoting ∇E(e) = ξ ⊗ f for some e ∈ E, there is a right

connection ∇E : E → E ⊗B Ω1
B given by ∇E(e) = f ⊗ ξ∗.

The following lemma will be useful in showing that various connections in this section

are metric preserving.

Lemma 16.1. If E is a left B-module equipped with a Hermitian metric ⟨, ⟩E : E ⊗

E → B, then a left connection ∇E : E → Ω1
B ⊗B E preserves the metric if and only if

∇∇(G) = (G⊗ id)∇E −∇E◦ ◦G : E → E◦ ⊗B Ω1
B vanishes.

Proof. Using the assumption ∇∇(G) = 0 and the definition ⟨, ⟩ = ev(id⊗G), we calculate

d⟨, ⟩ = d(ev(id⊗G))

= (id⊗ ev)(∇E ⊗G) + (ev ⊗ id)(id⊗∇E◦G)

= (id⊗ ev)(∇E ⊗G) + (ev ⊗ id)(G⊗ id)(id⊗∇E)

= (id⊗ ⟨, ⟩)(∇E ⊗ id) + (⟨, ⟩ ⊗ id)(id⊗∇E)

as required.

Note that by symmetry the above Lemma also works for a right connection.
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Proposition 16.2. (Proposition 3.32 of [10], and Equation (3.17) on page 229 of [10])

If Ω1
B is left finitely generated projective with left connection ∇E, there exists a unique

right connection on (Ω1
B)
◦ = XL

B given by

∇E◦ : E◦ → E◦ ⊗A Ω1
A, ∇E◦(γ) = ei ⊗ d(ev(ei ⊗ γ))− ei ⊗ (id⊗ ev)(∇Ee

i ⊗ γ)

satisfying

(id⊗ ev)(∇E ⊗ id) + (ev ⊗ id)(id⊗ ∇̃E◦) : E ⊗ E◦ → Ω1

Conversely, if Ω1
B is right finitely generated and has a right connection ∇E : Ω1

B →

Ω1
B⊗B Ω1

B, then on the right vector fields E♯ = XR
B we have a left connection ∇E♯ : X

R
B →

Ω1
B ⊗B XR

B given by

∇E♯(f) = d(ev(f ⊗ ei))⊗ ei − (ev ⊗ id)(f ⊗∇E(e
i))⊗ ei. (33)

In the case where we have a dual basis, the following corollary is useful for calculating

curvatures of flipped connections.

Corollary 16.2.1. It follows that

RE(e
i) = −

∑
j

(ev ⊗ id)(ei ⊗ R̃e◦(ej))⊗ ej

and

R̃E◦(ej) = −
∑
i

ei ⊗ (id⊗ ev)(RE(e
i)⊗ ej)

Proof. Expanding RE and R̃E◦ using the dual bases of E and E◦ respectively and

substituting into each the equation (id⊗ ev)(∇E ⊗ id) + (ev ⊗ id)(id⊗ ∇̃E◦), we get:

R̃E◦(ej) =
∑
i

ei ⊗ (ev ⊗ id)(ei ⊗ R̃E◦(ej))

= −
∑
i

ei ⊗ (id⊗ ev)(RE(e
i)⊗ ej),

and

R̃E◦ =
∑
j

(id⊗ ev)(Re(e
i)⊗ ej)⊗ ej

= −
∑
i

ei ⊗ (id⊗ ev)(RE(e
i)⊗ ej),

as required.
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Next we prove a central result of this section, that a connection on Ω1
B preserves a

Hermitian metric if and only if its dual connection on XL
B preserves the dual Hermitian

metric.

Theorem 16.3. Denoting E = Ω1
B and E◦ = XR

B, a left connection ∇E : E → Ω1
B ⊗B E

preserves the Hermitian metric ⟨, ⟩E = ev ◦ (id⊗G) : E ⊗E → B if and only if the right

connection ∇E◦ : E◦ → E◦ ⊗B Ω1
B given by

∇E◦(γ) = ei ⊗ d(ev(ei ⊗ γ))− ei ⊗ (id⊗ ev)(∇Ee
i ⊗ γ) (34)

preserves the Hermitian metric

⟨, ⟩′E = ev ◦ (bb−1G−1 ⊗ id) : E◦ ⊗ E◦ → B. (35)

Proof. In the first part of the proof we assume ∇E is metric preserving and show that

∇E◦ is metric preserving, then in the second part we show the implication the other

way around. (1) For ∇E to be metric preserving means ∇∇(G) = 0. The metric ⟨, ⟩′ :

E◦ ⊗ E◦ → B uses map bb−1G−1 : E◦ → E, so we need to show ∇∇(bb−1G−1) = 0, i.e.

∇Ebb
−1G−1 = (id⊗ bb−1G−1)∇E◦ . (36)

Since G is an isomorphism, every α ∈ E◦ is equal to G(e) for some e ∈ E. Thus we

calculate the left hand side of (36) as:

∇Ebb
−1G−1(α) = ∇Ebb

−1(G−1 ◦G)(e) = ∇E(e)

Using the assumption that ∇B is metric preserving, then writing ∇E(e) = k ⊗ f we

calculate

∇E◦ ◦G(e) = (G⊗ id)∇E(e) = (G⊗ id)(f ⊗ k∗) = G(f)⊗ k∗,

which implies ∇E◦ ◦G(e) = k⊗G(f). Using this, we calculate the right hand side of (36)

as:

(id⊗ bb−1G−1)∇E◦(α) = (id⊗ bb−1G−1)∇E◦G(e)

= (id⊗ bb−1G−1)(k ⊗G(f))

= k ⊗ bb−1G−1G(f)
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= k ⊗ bb−1f

= k ⊗ f = ∇E(e),

and this shows the result.

(2) Writing ∇E◦ = γ ⊗ η, the assumption that ∇E◦ is metric preserving means

∇Ebb
−1G−1(α) = (id⊗ bb−1G−1)∇E◦(α)

= η∗ ⊗ bb−1G−1(γ)

This implies

∇EG
−1(α) = G−1(γ)⊗ η. (37)

We want to show for all e ∈ E that

∇E◦ ◦G(e) = (G⊗ id)∇E(e). (38)

Since G is an isomorphism, for each e ∈ E we can write e = G−1(α) for some α ∈ E◦.

Also, denote ∇E◦(α) = γ ⊗ η. Making this substitution, we can re-write the left hand

side of (38) as

∇E◦ ◦G(e) = ∇E◦(α) = γ ⊗ η.

Using the substitution and equation (37), we calculate the right hand side of (38) as

(G⊗ id)∇E(e) = (G⊗ id)∇EG
−1(α)

= (G⊗ id)(G−1(γ)⊗ η)

= γ ⊗ η = ∇E◦(α),

as required.

Denote F = Ω̃1
A, so XL

A = F ◦. These are paired by the evaluation

ev(dAa
′ ⊗ (X ⊗ a)) = πX(d(π−1a′)).a.

The restriction of the right connection ∇E◦ to a right connection ∇F ◦ on the tangent

bundle is given by:

∇F ◦(X ⊗ 1) = (P (−⊗ 1)⊗ π∗)∇E◦X. (39)
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A Hermitian metric on XL
A = πX

L
B ⊗ πA is given by

⟨, ⟩′F : XL
A ⊗ XL

A → A, ⟨Y ⊗ a,X ⊗ a′⟩′F = a∗.π⟨Y ,X⟩′.a′ (40)

We want to show that ∇F ◦ preserves this Hermitian metric. We show the following

intermediate step.

Lemma 16.4. Denote the right module C = XL
B ⊗B πA, and ∇E◦X = Y ⊗ ξ. Then the

right connection ∇C : C → C⊗AΩ
1
A given by ∇C(X⊗a) = Y ⊗π∗(ξ).a+X⊗da preserves

the Hermitian metric ⟨, ⟩C : C ⊗C → A given by ⟨X ′ ⊗ a′, X ⊗ a⟩C = a′∗.π(⟨X ′, X⟩E◦).a.

Proof. Differentiating the inner product ⟨, ⟩C and using the assumption that ⟨, ⟩E◦ is

metric preserving, and denoting ∇E◦X ′ = Y ′ ⊗ ξ′, we calculate:

d⟨X ′ ⊗ a′, X ⊗ a⟩C = d(a′)∗π⟨X ′, X⟩E◦ .a+ a′∗π⟨X ′, X⟩E◦ .da+ a′∗dπ⟨X ′, X⟩E◦ .a

= d(a′)∗π⟨X ′, X⟩E◦ .a+ a′∗π⟨X ′, X⟩E◦ .da+ π
(
⟨X ′, Y ⟩E◦ .ξ + ξ′⟨Y ′, X⟩E◦

)
.a

(⟨, ⟩C .id)(X ′ ⊗ a′ ⊗∇C(X ⊗ a)) + (id.⟨, ⟩C)(∇C(X
′ ⊗ a′)⊗X ⊗ a)

But this is precisely the metric preservation equation for ∇C .

The only difference between ⟨, ⟩C and ⟨, ⟩F ◦ is restricting the domain of the vector fields,

and similarly the only difference between ∇C and ∇F ◦ is restricting the domain and

composing with a projection. In the case where the tangent and normal bundles are

orthogonal with respect to the inner product, we have ⟨c′, c⟩C = ⟨c′, P c⟩C for all c, c′ ∈ C.

Hence the metric preservation equation also holds for ∇F ◦ .

Then lastly we want to flip one more time using Theorem 16.3 to end up in the sub-

manifold calculus. If the connection on the tangent bundle is metric-preserving then the

one on the submanifold calculus is automatically metric preserving too, by the theorem

earlier.

Equation 3.17 on page 229 of [10] says that if F is a right finitely generated projective

module with dual basis fi⊗f i ∈ F ⊗F ♯ with right connection ∇̃F , then there is a unique

left connection ∇F ♯ : F
♯ → Ω1 ⊗A F

♯ given by

∇F ♯(β) = d(ev(β ⊗ fi))⊗ f i − (ev ⊗ id)(β ⊗ ∇̃Ffi)⊗ f i (41)
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Hence we flip ∇A to get a left connection on the submanifold calculus, which is metric

preserving. So the overall result of the process is that we started with a Hermitian metric-

preserving connection on Ω1
B, and obtained a Hermitian metric preserving connection on

the submanifold calculus Ω1
A.

16.1 Example: Algebraic Circle in Quantum SU2

We look again at the co-embedding of A = Cq[S
1] into B = Cq[SU2] via the surjective

algebra map π : B → A, π(a) = t, π(d) = t−1, π(b) = π(c) = 0, as we calculated in

Section 13.4.

As detailed in section 7 of [12], the algebra Cq[SU2] doesn’t have a Riemannian metric

on its 3D calculus, but there is a Hermitian metric given by g diagonal, with nonzero real

entries g++, g−−, g00. The normal bundle we calculated earlier is orthogonal with respect

to this. The paper [12] gives a family of left connections ∇B : Ω1
B → Ω1

B⊗BΩ
1
B on the 3D

calculus on Cq[SU2] invariant under the right CZ-coaction and preserving the Hermitian

metric, for parameters n±, r ∈ R, ν,m+ ∈ C by the following values on invariant elements.

∇L
B(e

0) = re0 ⊗ e0 + νe+ ⊗ e− + q−1g++g
−1
−−m

∗
+e
− ⊗ e+

∇L
B(e

+) = n+e
0 ⊗ e+ +m+e

+ ⊗ e0

∇L
B(e

−) = n−e
0 ⊗ e− + q−1g00g

−1
−−ν

∗e− ⊗ e0

In the following proposition we calculate out in full the curvature of this connection.

Dualising to the (left) vector fields, there is a right connection for i ∈ {+,−, 0} given

with summation implicit as

∇̃B : XL
B → XL

B ⊗B Ω1
B, ∇̃B(X) = ei ⊗ d(ev(ei ⊗X))− ei ⊗ (id⊗ ev)(∇Be

i ⊗X),

which preserves the Hermitian metric on the vector fields. We calculate:

∇̃B(e0) = −r(e0 ⊗ e0)− ν(e+ ⊗ e+)− q−1g00g
−1
−−ν

∗(e− ⊗ e+)

∇̃B(e+) = −n+(e0 ⊗ e+)−m+(e+ ⊗ e0)

∇̃B(e−) = −n−(e0 ⊗ e−)− q−1g00g
−1
−−ν

∗(e− ⊗ e0).
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Using the fact that π(e0) = t−1dt and π(e±) = 0, we calculate ∇̃′B : XL
B ⊗B πA →

(XL
B ⊗B πA)⊗A Ω1

A given by ∇̃′B(1⊗X) = (id⊗ 1⊗ π)∇̃B(X) as

∇̃′B(e0) = −re0 ⊗ 1⊗ t−1dt

∇̃′B(e+) = −me+ ⊗ 1⊗ t−1dt

∇̃′B(e−) = −q−1g00g−1−−ν∗e− ⊗ 1⊗ t−1dt.

Recall that there is a projection map P : XL
B ⊗B πA → HorL ⊗B πA, and along with

the algebra map π this defines a projection of the right connection on XL
B to a right

connection on the tangent bundle.

∇A : HorL ⊗B πA→ (HorL ⊗B πA)⊗A Ω1
A, ∇A(X ⊗ 1) = (P ⊗ π)∇̃′B(1⊗X),

On the generator e0 ⊗ 1 of the tangent bundle this is:

∇A(e0 ⊗ 1) = −rP (e0 ⊗ 1)⊗ t−1dt = −re0 ⊗ 1⊗ t−1dt

This preserves the Hermitian metric ⟨Y ⊗ a,X ⊗ a′⟩ = a∗(π⟨Y ,X⟩′)a′.

Lastly we flip the connection one more time using the formula from Proposition 16.2 to

get a left connection ∇̃A : Ω1
A → Ω1

A ⊗A Ω1
A on the submanifold calculus given by

∇̃A(e
0 ⊗ 1) = −(ev ⊗ id)(e0 ⊗∇Ae0)⊗ (1⊗ e0)

= rt−1dt⊗ dt

Recall that dAt = q−2(e0 ⊗ 1).t, so

∇̃A(dAt) = q−2∇̃A(e
0 ⊗ t) = q−2∇̃A(e

0.a⊗ 1) = ∇̃A(t.e
0 ⊗ 1) = dt⊗ (e0 ⊗ 1) + t.∇̃(e0 ⊗ 1)

= q2dt⊗ dt.t+ rdt⊗ dt = (q6t+ r)dt⊗ dt.

Next we look at curvature and the Gauss equation.

Proposition 16.5. When the algebra B = Cq[SU2] is equipped with maximal prolongation

calculi, the connection ∇E has curvature RE : Ω1
B → Ω2

B ⊗B Ω1
B given by

RE(e
0) =

(
rq3 − |ν|2q−1g00g−1−− + q|m+|2g++g

−1
−−

)
e+ ∧ e− ⊗ e0

+
(
− νq2[2]q−2 + q−4rν − νn−

)
e+ ∧ e0 ⊗ e−
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+
(
q−1g++g

−1
−−m

∗
+q
−2[2]q−2 + q3rg++g

−1
−−m

∗
+

)
e− ∧ e0 ⊗ e+

RE(e
+) =

(
n+q

3 − q−1g++g
−1
−−|m+|2

)
e+ ∧ e− ⊗ e+

+
(
−m+q

2[2]q−2 + q4n+m+ −m+r
)
e+ ∧ e0 ⊗ e0

RE(e
−) =

(
n−q

3 + q|ν|2g00g−1−−
)
e+ ∧ e− ⊗ e−

+
(
q−3g00g

−1
−−ν

∗[2]q−2 + q−5n−g00g
−1
−−ν

∗ − rq−1g00g
−1
−−ν

∗
)
e− ∧ e0 ⊗ e0

Proof. Recall from Example 2.32 of [10] that when Cq[SU2] is equipped with maximal

prolongation calculus, then denoting [n]q = (1− qn)/(1− q) for a q-integer:

de0 = q3e+ ∧ e−, de+ = −q2[2]q−2e+ ∧ e0, de− = q−2[2]q−2e− ∧ e0,

e− ∧ e+ = −q2e+ ∧ e−, e0 ∧ e+ = −q+4e+ ∧ e0, e0 ∧ e− = −q−4e− ∧ e0,

e± ∧ e± = e0 ∧ e0 = 0

Hence we calculate

RE(e
0) = (d⊗ id− id ∧∇E)∇E(e

0)

= rde0 ⊗ e0 + νde+ ⊗ e− + q−1g++g
−1
−−m

∗
+de

− ⊗ e+

− re0 ∧∇E(e
0)− νe+ ∧∇E(e

−)− q−1g++g
−1
−−m

∗
+e
− ∧∇E(e

+)

= rq3e+ ∧ e− ⊗ e0 − νq2[2]q−2e+ ∧ e0 ⊗ e− + q−1g++g
−1
−−m

∗
+q
−2[2]q−2e− ∧ e0 ⊗ e+

− re0 ∧
(
re0 ⊗ e0 + νe+ ⊗ e− + q−1g++g

−1
−−m

∗
+e
− ⊗ e+

)
− νe+ ∧

(
n−e

0 ⊗ e− + q−1g00g
−1
−−ν

∗e− ⊗ e0
)

− q−1g++g
−1
−−m

∗
+e
− ∧

(
n+e

0 ⊗ e+ +m+e
+ ⊗ e0

)
=
(
rq3 − |ν|2q−1g00g−1−− + q|m+|2g++g

−1
−−

)
e+ ∧ e− ⊗ e0

+
(
− νq2[2]q−2 + q−4rν − νn−

)
e+ ∧ e0 ⊗ e−

+
(
q−1g++g

−1
−−m

∗
+q
−2[2]q−2 + q3rg++g

−1
−−m

∗
+

)
e− ∧ e0 ⊗ e+

and

RE(e
+) = (d⊗ id− id ∧∇E)∇E(e

+)
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= n+de
0 ⊗ e+ +m+de

+ ⊗ e0 − n+e
0 ∧∇E(e

+)−m+e
+ ∧∇E(e

0)

= n+q
3e+ ∧ e− ⊗ e+ −m+q

2[2]q−2e+ ∧ e0 ⊗ e0 − n+e
0 ∧
(
n+e

0 ⊗ e+ +m+e
+ ⊗ e0

)
−m+e

+ ∧
(
re0 ⊗ e0 + νe+ ⊗ e− + q−1g++g

−1
−−m

∗
+e
− ⊗ e+

)
=
(
n+q

3 − q−1g++g
−1
−−|m+|2

)
e+ ∧ e− ⊗ e+

+
(
−m+q

2[2]q−2 + q4n+m+ −m+r
)
e+ ∧ e0 ⊗ e0

and

RE(e
−) = (d⊗ id− id ∧∇E)∇E(e

−)

= n−de
0 ⊗ e− + q−1g00g

−1
−−ν

∗de− ⊗ e0 − n−e
0 ∧∇E(e

−)− q−1g00g
−1
−−ν

∗e− ∧∇E(e
0)

= n−q
3e+ ∧ e− ⊗ e− + q−1g00g

−1
−−ν

∗q−2[2]q−2e− ∧ e0 ⊗ e0

− n−e
0 ∧
(
n−e

0 ⊗ e− + q−1g00g
−1
−−ν

∗e− ⊗ e0
)

− q−1g00g
−1
−−ν

∗e− ∧
(
re0 ⊗ e0 + νe+ ⊗ e− + q−1g++g

−1
−−m

∗
+e
− ⊗ e+

)
=
(
n−q

3 + q|ν|2g00g−1−−
)
e+ ∧ e− ⊗ e−

+
(
q−3g00g

−1
−−ν

∗[2]q−2 + q−5n−g00g
−1
−−ν

∗ − rq−1g00g
−1
−−ν

∗
)
e− ∧ e0 ⊗ e0

Since Ω2
A = 0, we know on dimensional grounds that the curvature R̃A of ∇̃A vanishes.

But even though we already know the result, in order to illustrate the (left-sided) Gauss

equation 31, we calculate the terms on the other side of the equation anyway and show

they vanish. Recall that π(e0) = t−1dt and π(e±) = 0.

Firstly we show that (P ⊗ id)R̃′B vanishes. For brevity, denote RE(e
i) =

∑
k

ωi,k ⊗ ek.

Then

R̃E(ej) = −
∑
i

ei ⊗ (id⊗ ev)(RE(e
i)⊗ ej) = −

∑
i,k

ei ⊗ (id⊗ ev)(ωi,k ⊗ ek ⊗ ej)

= −
∑
i

ei ⊗ ωi,j.

Hence

R̃′B(ej) = −
∑
i

ei ⊗ 1⊗ π(ωi,j).
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We calculate

(P ⊗ id)R̃′B(e0) = −
∑
i

P (ei ⊗ 1)⊗ π(ωi,0) = −e0 ⊗ 1⊗ π(ω0,0)

= −e0 ⊗ 1⊗
(
rq3 − |ν|2q−1g00g−1−− + q|m+|2g++g

−1
−−

)
π(e+ ∧ e−).

Again, since Ω2
A = 0, this vanishes. Next, we calculate α̃ = (Q ⊗ id)∇′B : Aπ ⊗B Hor →

Ω1
A ⊗A N . Using that Q(e0 ⊗ 1) = 0 and Q(e± ⊗ 1) = e±⊗1, we calculate:

α̃(e0 ⊗ 1) = −rQ(e0 ⊗ 1)⊗ π(e0)− νQ(e+ ⊗ 1)⊗ π(e−)− q−1g++g
−1
−−m

∗
+Q(e− ⊗ 1)⊗ π(e+)

= 0.

Hence the term −(β̃ ∧ id)α̃ vanishes, so the Gauss equation 31 says R̃A = 0.

16.2 Example: Functions on Finite Groups

As we calculated in Section 13.5, if H is a subset of a finite group G, then there is a

co-embedding π : C(G) → C(H).

As in section 6 of [12], the algebra B = C(G) for G a finite group has left covariant

calculus Ω1
C(G) specified by a subset C ⊂ G\{e}. A left invariant Hermitian structure

which is a right module map can be written as

G : Λ1C(G) → (Λ1C(G))◦, G(ea) = ea.g
a,a,

where ga,a is real. It is a right comodule map if for all a ∈ C and x ∈ G it satisfies

gxax
−1,xax−1

= ga,a. Since the metric is diagonal, the normal bundle corresponding to

a subgroup as we calculated earlier is orthogonal. In the following we assume that all

entries of g are equal. The paper [12] gives a left invariant connection on the calculus of

C(G) by

∇L
B(e

a) = −Γ̂ab,ce
b ⊗ ec,

which preserves the metric if Γ̂ad,c = (Γ̂cd−1,a)
∗.

Example 16.6. For the specific example G = S3 with calculus specified by

C = {(12), (23), (31)},
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a left invariant connection on the calculus is specified for a, c, d ∈ R and b ∈ C by

Γ̂xx,x = a− 1, Γ̂xy,z = c, Γ̂xy,x = d− 1, Γ̂xx,y = b∗, Γ̂yx,x = b.

for arbitrary but distinct x, y, z ∈ C. So for example Γ̂xx,x denotes when all three indices

of the Christoffel symbols are the same, while Γ̂xy,z denotes when they are all different.

Next we calculate the dual of this connection to the left vector fields. Recall there is a

right connection for i ∈ C given as (summation implicit)

∇̃B : XL
B → XL

B ⊗B Ω1
B, ∇̃B(X) = ei ⊗ d(ev(ei ⊗X))− ei ⊗ (id⊗ ev)(∇Be

i ⊗X),

We calculate this for X = ej for some fixed j ∈ C.

∇̃B(ej) = e(12) ⊗
(
e(12)Γ̂

(12)
(12),j + e(23)Γ̂

(12)
(23),j + e(31)Γ̂

(12)
(31),j

)
+e(23) ⊗

(
e(12)Γ̂

(23)
(12),j + e(23)Γ̂

(23)
(23),j + e(31)Γ̂

(23)
(31),j

)
+e(31) ⊗

(
e(12)Γ̂

(31)
(12),j + e(23)Γ̂

(31)
(23),j + e(31)Γ̂

(31)
(31),j

)
For the specific case j = (12), using the formulae above for the Christoffel symbols, this

becomes:

∇̃B(e(12)) = e(12) ⊗
(
e(12)(a− 1) + e(23)(d− 1) + e(31)(d− 1)

)
+e(23) ⊗

(
e(12)b+ e(23)b∗ + e(31)c

)
+e(31) ⊗

(
e(12)b+ e(23)c+ e(31)b∗

)
For every subgroup H of S3, the algebra C(H) is a submanifold algebra of C(S3), with

submanifold calculus given in the standard way by the set C ∩ H. For example, the

subgroup of S3 generated by the 3-cycles would have the zero calculus, as none of the

2-cycles in C lie in that subgroup. So instead, we look at the more interesting subgroup

H = {e, (12)}, which has submanifold calculus generated by e(12).

Using a projection P as in the previous example, along with the algebra map π, the

connection ∇̃B restricts to the tangent bundle HorL ⊗B πA as a right connection:

∇A : HorL ⊗B πA→ (HorL ⊗B πA)⊗A Ω1
A, ∇A(X ⊗ 1) = (P (−⊗ 1)⊗ π∗)∇̃BX,

which we calculate on the generator as

∇A(e(12) ⊗ 1) = e(12) ⊗ 1⊗ e(12)(a− 1).
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Lastly we flip the connection one more time using the formula from Proposition 16.2 to

get a left connection ∇̃A : Ω1
A → Ω1

A ⊗A Ω1
A on the submanifold calculus given by

∇̃A(e
(12) ⊗ 1) = −(ev ⊗ id)(e(12) ⊗∇A(e(12)))⊗ e(12) = −(a− 1)e(12) ⊗ e(12).

⋄

Next, we look at curvature and the (left-handed) Gauss equation 31, but for B = C(G)

and A = C(H) for G an arbitrary finite group with subgroup H. If Ω1
B is freely generated

by ea for a ∈ C ⊂ G\{e}, then Ω1
A is freely generated by ea for a ∈ CH := C ∩ H. As

before, a general left covariant connection on Ω1
B is given by

∇L
B(e

a) = −Γ̂ab,ce
b ⊗ ec, a ∈ C.

The corresponding right connection on XL
B is

∇̃B(ej) =
∑
i,k∈C

ei ⊗ ekΓ̂ikj, j ∈ C

and so

∇̃′B(1⊗ ej) =
∑

i∈C,k∈CH

ei ⊗ 1⊗ ekΓ̂ikj, j ∈ C

We also calculate

α̃(ej ⊗ 1) =
∑

i∈C\CH ,k∈CH

ei ⊗ 1⊗ ekΓ̂ikj, j ∈ CH

and

β̃(ej ⊗ 1) =
∑
i,k∈CH

ei ⊗ 1⊗ ekΓ̂ikj, j ∈ C\CH .

We check the left-handed Gauss equation 31. For j ∈ CH , we have

(β̃ ∧ id)α̃(ej ⊗ 1) =
∑

k∈CH ,i∈C\CH

β̃(ei ⊗ 1) ∧ ekΓ̂ikj

=
∑

k∈CH ,i∈C\CH

∑
k′,i′∈CH

ei′Γ̂
i′

k′i ⊗ 1⊗ ek
′ ∧ ekΓ̂ikj.

We want this to be equal to (P ⊗ id)R̃′B(ej)− R̃A(ej). Firstly,

R̃′B(ej ⊗ 1) =
∑

i∈C,k∈CH

(
ei ⊗ 1⊗ dekΓ̂ikj + ∇̃′B(ei ⊗ 1) ∧ ekΓ̂ikj

)
, j ∈ CH .
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Also

∇̃A(ej ⊗ 1) =
∑
i,k∈CH

ei ⊗ 1⊗ ekΓ̂ikj, j ∈ CH ,

from which we calculate

R̃A(ej ⊗ 1) =
∑
i,k∈CH

Γ̂ikj
(
ei ⊗ 1⊗ dek − ∇̃A(ei ⊗ 1) ∧ ek

)
, j ∈ CH .

Hence

(P ⊗ id)R̃′B(ej)− R̃A(ej) =
∑
k,i∈CH

(
ei ⊗ 1⊗ dekΓ̂ikj + ∇̃′B(ei ⊗ 1) ∧ ekΓ̂ikj

)
−
∑
i,k∈CH

Γ̂ikj
(
ei ⊗ 1⊗ dek − ∇̃A(ei ⊗ 1) ∧ ek

)
=

∑
i∈C\CH ,k∈CH

∇̃′B(ei ⊗ 1) ∧ ekΓ̂ikj

=
∑

i∈C\CH ,k∈CH

∑
i′,k∈CH

ei′ ⊗ ek
′
Γ̂i

′

k′j ∧ ekΓ̂ikj.

This is precisely what we calculated (β̃ ∧ id)α̃(ej ⊗ 1) to be, and thus we can see that

the Gauss equation is satisfied. Note that there was never any uncertainty as to whether

it would be true - we just calculated out all the terms to illustrate that it holds in an

example.

16.3 Example: Quantum Circle in Quantum Disk

As we calculated in Section 13.3 (with right vector fields), the algebra B = Cq[D] has

noncommutative submanifold A = Cq2 [S
1] via the algebra map π : B → A, π(z) = t,

π(z) = t−1, which has kernel generated by w = 1−zz. In Exercise 8.7 of [10], after adding

an additional element w−1 to the quantum disk, a Hermitian metric on its calculus Ω1
Cq [D]

is given (specifically, derived from a Riemannian metric). However, the addition of the

inverse element w−1 would cause π to fail to be an algebra map, since if it was an algebra

map then 1 = π(ww−1) = π(w)π(w−1) = 0 which is a contradiction. This makes sense

geometrically, since if z was a complex number, then w would be 1 − |z|2, and to make

that invertible would mean excluding the unit circle, which is precisely the submanifold

we want to look at. Thus we have to find a different Hermitian metric on Ω1
Cq [D] which

doesn’t require w to be invertible.
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A Hermitian metric ⟨, ⟩ : Ω1
Cq [D]⊗Ω1

Cq [D] → Cq[D] is given for α, β ∈ R\{0} by g =
(
α 0
0 β

)
,

i.e.

⟨dz, dz⟩ = α, ⟨dz, dz⟩ = β, ⟨dz, dz⟩ = ⟨dz, dz⟩ = 0.

We note that while the metric in Exercise 8.7 of [10] which comes from a quantum metric

and requires w to be invertible is over ⊗Cq [D], this metric is over ⊗C.

Remark 16.7. This metric is rotation invariant, in the sense of being invariant under

the differentiable action S1 ⊗ Cq[D] → Cq[D] given by

eiθ ▷ z = eiθz, eiθ ▷ z = e−iθz, eiθ ▷ dz = eiθdz, eiθ ▷ dz = e−iθdz,

since

⟨eiθ ▷ dz, eiθ ▷ dz⟩ = ⟨eiθ.dz, eiθ.dz⟩ = eiθe−iθ⟨dz, dz⟩ = ⟨dz, dz⟩

et cetera for all four combinations.

When we calculated the tangent bundle earlier with generator Y = q2t2 ⊗ ez +1⊗ ez, we

took a normal bundle as being generated by 1⊗ ez. It was complementary to the tangent

bundle, which was sufficient for the purposes of calculating a submanifold, but in order

to get a connection which preserves the corresponding Hermitian metric when we project

to the tangent bundle, we need the tangent and normal bundles to be orthogonal with

respect to the metric.

Proposition 16.8. When Ω1
Cq [D] is equipped with a Hermitian metric of the form g =(

α 0
0 β

)
for α, β ∈ C\{0}, an orthogonal normal bundle is generated by

t2 ⊗ ez − (q2)∗
α

β
⊗ ez. (42)

Proof. To work out out which elements of Aπ ⊗B XR
B are orthogonal to Y = q2t2 ⊗ ez +

1⊗ ez, we calculate

⟨µt2 ⊗ ez + λ⊗ ez, q
2t2 ⊗ ez + 1⊗ ez⟩ = µ∗q2α + βλ∗ = 0.

Setting this equal to zero gives λ∗ = −µ∗q∗ α
β
, and starring this gives λ = −µ(q∗)2 α

β
. Since

we just need a generator, we are free to set µ = 1, which gives the result.
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Proposition 16.9. With tangent bundle generated by Y = q2t2⊗ ez +1⊗ ez and normal

bundle generated by t2⊗ ez− (q2)∗ α
β
⊗ ez, the projection map P : Aπ⊗B XR

B → Aπ⊗B Hor

is given by

P (1⊗ ez) =
1

1 + (qq∗)2 α
β

(
(qq∗)2

α

β
⊗ ez + q2t2 ⊗ ez

)
P (1⊗ ez) =

1

1 + (qq∗)2 α
β

(
(q∗)2

α

β
t−2 ⊗ ez + 1⊗ ez

)
.

Proof. The projection map is rank 1, and is thus of the form

P ( vw ) =
(
q2t2

1

)
.( a b ).( vw ) =

(
q2t2.a q2t2.b
a b

)
.( vw ),

where the elements a, b are determined by equations

( a b ).
(
q2t2

1

)
= 1, ( a b ).

(
t2

−(q∗)2 α
β

)
= 0.

Thus

q2t2a+ b = 1, t2a− (q∗)2
α

β
b = 0.

Hence a = (q∗)2 α
β
t−2b, which implies (qq∗)2 α

β
b+ b = 1, so

a =
(q∗)2 α

β
t−2

1 + (qq∗)2 α
β

, b =
1

1 + (qq∗)2 α
β

Hence

P ( vw ) =
1

1 + (qq∗)2 α
β

(
(qq∗)2 α

β
q2t2

(q∗)2 α
β
t−2 1

)
.( vw ).

Setting (v, w) as (1, 0) and (0, 1) respectively gives

P (1⊗ ez) =
1

1 + (qq∗)2 α
β

(
(qq∗)2

α

β
⊗ ez + q2t2 ⊗ ez

)
P (1⊗ ez) =

1

1 + (qq∗)2 α
β

(
(q∗)2

α

β
t−2 ⊗ ez + 1⊗ ez

)
.

Next we look at connections. Denote e1 = dz and e2 = dz, and e1, e2 their respective

duals in XR
B. The extension of π to the calculi is π(e1) = π(dz) = d(π(z)) = dt, and

π(e2) = d(t−1) = −t−1.dt.t−1.
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Proposition 16.10. The right connection ∇E : Ω1
B → Ω1

B ⊗B Ω1
B given by ∇E(e

i) =

−ej ⊗ Γj
i preserves an inner product ⟨, ⟩E : Ω1

B ⊗B Ω1
B → B if for i, j ∈ {1, 2}

0 = Γ1
1 + Γ1

1∗, 0 = Γ2
2 + Γ2

2∗

0 = Γ2
1 +

α

β
Γ1

2∗, 0 = Γ1
2 +

α

β
Γ2

1∗.

It is torsion free if 0 = ej ∧ Γj
i

Proof. (1) Firstly we show the condition for metric preservation. Substituting ek ⊗ ei

into the metric preservation equation, we get

dgki = −⟨ek ⊗ ej⟩E ⊗ Γij − (Γkp)
∗⟨ep, ei⟩E = −gkjΓij − (Γkp)

∗gpi.

This can be written as −gΓ− Γ∗g = dg, where

Γ =

Γ1
1 Γ1

2

Γ2
1 Γ2

2

 , Γ∗ =

Γ1
1∗ Γ2

1∗

Γ1
2∗ Γ2

2∗

 .

Substituting in the specific values of our metric g whose coefficients are constants, the

equation becomes:

0 = gΓ + Γ∗g =

α 0

0 β

Γ1
1 Γ1

2

Γ2
1 Γ2

2

+

Γ1
1∗ Γ2

1∗

Γ1
2∗ Γ2

2∗

α 0

0 β


=

α(Γ1
1 + Γ1

1∗) αΓ1
2 + βΓ2

1∗

βΓ2
1 + αΓ1

2∗ β(Γ2
2 + Γ2

2
∗).


Re-arranging gives the equations.

(2) Secondly, we show the condition for torsion free. The torsion of a right connection is

given by T∇ = ∧∇+ d : Ω1 → Ω2, and for this example ∇B is torsion free if

dei = ∧∇B(e
i) = −ej ∧ Γj

i.

But since dei = 0, this implies 0 = ej ∧ Γj
i.

This condition for metric preservation is quite a mild one, since it only affects the star-

structure.

We use Proposition 16.2 to calculate the left connection ∇B : XR
B → Ω1

B ⊗B XR
B given by

∇B(f) = d(ev(f ⊗ ei))⊗ ei − (ev ⊗ id)(f ⊗∇E(e
i))⊗ ei.
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On the generators, this is

∇B(e1) = Γi1 ⊗ ei, ∇B(e2) = Γi2 ⊗ ei.

Hence the left connection ∇′B : Aπ ⊗B XR
B → Ω1

A⊗A (Aπ ⊗B XR
B) defined as ∇′B(1⊗X) =

(π ⊗ 1⊗ id)∇B(X) is given on the generators of Aπ ⊗B XR
B by

∇′B(1⊗ e1) = π(Γi1)⊗ 1⊗ ei, ∇′B(1⊗ e2) = π(Γi2)⊗ 1⊗ ei.

Using this, the left Leibniz rule, and the fact that d(t2) = tdt + dt.t = (1 + q)t.dt, we

calculate ∇′B on the generator Y = q2t2 ⊗ ez + 1⊗ ez of the tangent bundle Aπ ⊗B HorR

as

∇′B(Y ) = q2∇′B(t2.1⊗ e1) +∇′B(1⊗ e2)

= q2t2.∇′B(1⊗ e1) + q2d(t2)⊗ 1⊗ e1 +∇′B(1⊗ e2)

= q2t2π(Γi1)⊗ 1⊗ ei + q2(1 + q)t.dt⊗ 1⊗ e1 + π(Γi2)⊗ 1⊗ ei.

The projection P : Aπ ⊗B XR
B → Aπ ⊗B Hor is the identity on multiples of Y = q2t2 ⊗

ez + 1⊗ ez, and sends elements orthogonal to Y to zero.

Using the projection P to the tangent bundle, along with dt.t = q2t.dt we calculate the

left connection ∇A : Aπ ⊗B Hor → Ω1
A ⊗A (Aπ ⊗B Hor) given by ∇A = (id⊗ P )∇′B as

∇A(Y ) = q2t2π(Γi1)⊗ P (1⊗ ei) + q2(1 + q2)t.dt⊗ P (1⊗ e1) + π(Γi2)⊗ P (1⊗ ei)

Seeing as this is quite messy, we omit to fully expand the evaluations of the projection P

in general. Certain choices of Christoffel symbols could simplify this a lot. For example,

in the case where the Christoffel symbols of ∇B are zero (which is metric preserving and

torsion free), we get

∇A(Y ) = q2(1 + q2)t.dt⊗ 1

1 + (qq∗)2 α
β

(
(qq∗)2

α

β
⊗ ez + q2t2 ⊗ ez

)
Denote this as

∇A(Y ) = λ1t.dt⊗ 1⊗ ez + λ2t
3dt⊗ 1⊗ ez

for the appropriate constants λ1, λ2 ∈ C.
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We can dualise the connection one last time to get a right connection on the submanifold

calculus ∇sub : Ω1
A → Ω1

A ⊗A Ω1
A given by

∇sub(ξ) = Y ′ ⊗ d(ev(Y ⊗ ξ))− Y ′ ⊗ (id⊗ ev)(∇AY ⊗ ξ),

where we write Y ′ for the dual of Y . Since the calculus is 1-dimensional, we have

Y ′ = dt.f(t) for some polynomial f(t) ∈ Cq2(t). For each g(t), we want a dual ba-

sis decomposition dt.g(t) = Y ′.Y (dt.g(t)). But since Y is a vector field, this implies

Y ′ = dt.Y (dt). We calculate

Y (dt) = q2t2πez(dπ
−1x) + πez(dπ

−1x) = q2t2πez(e
z) + πez(e

z) = q2t.

Hence Y ′ = q2dt.t.

For the case where we take the Christoffel symbols of ∇B as zero, the dual connection on

the submanifold calculus is given by

∇sub(dt) = q2dt.t⊗ d(ev(Y ⊗ dt))− q2dt.t⊗ (id⊗ ev)(∇AY ⊗ dt)

= q4dt.t⊗ dt− q2dt.t⊗ (id⊗ ev)(∇AY ⊗ dt)

= q4dt.t⊗ dt− q2dt.t⊗ λ1t.dt.q
2t2

=
(
q6t− λ1q

16t4
)
dt⊗ dt

=
(
q6t− (1 + q2).

(qq∗)2 α
β

1 + (qq∗)2 α
β

q18t4
)
dt⊗ dt.

The coefficient here is not nice at all, even though the Christoffel symbols of the original

connection on Ω1
B were zero but it makes sense that a connection on Ω1

A maps to a multiple

of dt⊗ dt.

17 Can We Define Submanifolds via Positive Maps?

Since algebra maps and two sided ideals are not always readily available for any given

algebra, it might be of interest to consider how much of the theory still works in the

context of positive maps and left ideals. For example, while the algebraic circle is a

noncommutative submanifold of Cq[SU2], the restriction of that co-embedding to the

quantum sphere does not give a co-embedding of the algebraic circle. This is because the

99



restriction of π to the quantum sphere (degree 0 elements of quantum SU2) is no longer

surjective. However, from a geometrical perspective we would hope to somehow be able

to embed the quantum circle into the quantum sphere, in the same way a classical sphere

has an equator.

Later in Section V we look at a positive maps approach to retracts (which are related

but not equivalent to submanifolds), but here let’s look at how much of the theory of

submanifolds can be done when we replace algebra maps by positive maps.

In the case where A and B are C*-algebras, and ϕ : B → A a completely positive

surjective map, it is possible to make generalisations of J and Hor which reduce to the

original definitions when ϕ is an algebra map.

Proposition 17.1. If A and B are C*-algebras, and ϕ : B → A a completely positive

surjective map, the subset

J = {j ∈ B | ϕ(j∗j) = 0} (43)

is a left ideal of B, and a subset of ker(ϕ). An equivalent definition is

J = {j ∈ B | je0 = 0}

for the e0 ∈ E giving ϕ as ϕ(b) = ⟨e0, be0⟩ via the KSGNS construction.

Proof. (1) Firstly we show that J is a left ideal of B, i.e. that for all b ∈ B, j ∈ J we

have bj ∈ J . Every j ∈ J satisfies 0 = ϕ(j∗j) = ⟨je0, je0⟩, which implies by definition of

inner product that je0 = 0. Hence ϕ((bj)∗(bj)) = ⟨bje0, bje0⟩ = ⟨0, 0⟩ = 0, so bj ∈ J .

(2) Next we show the equivalence of the two definitions. Seeing as je0 = 0, this means

ϕ(j) = ⟨e0, je0⟩ = 0, so J ⊂ ker(ϕ).

An equivalent definition of J is therefore J = {j ∈ B | je0 = 0}.

In the case where ϕ is a *-algebra map, we get ϕ(j∗j) = ϕ(j)∗ϕ(j) ≥ 0, with equality

precisely when ϕ(j) = 0. Therefore in the *-algebra map case, J = ker(ϕ) as before.

Using this, we also generalise the concept of horizontal vector fields to completely positive

maps as follows.

Proposition 17.2. For a completely positive map ϕ : B → A, the following subset

Hor(ϕ) ⊂ XR
B given as follows is a B-bimodule.

Hor(ϕ) := {X ∈ XR
B | X(dj) ∈ J, ∀j ∈ J} (44)
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Proof. Let X ∈ Hor(ϕ) and b ∈ B.

(1) Firstly, if X(dj) ∈ J then (bX)(dj) = b.X(dj). But J is a left ideal, so b.X(dj) ∈ J .

Thus Hor(ϕ) is a left B-module.

(2) Next, (Xb)(dj) = X(b.dj) = X(d(bj) − db.j) = X(d(bj)) − X(db.j) = X(d(bj)) −

X(db).j. But bj ∈ J , as J is a left ideal, so X(d(bj)) ∈ J . Also we can see that

X(db) ∈ B, so X(db).j ∈ J . Hence Hor(ϕ) is a right B-module.

Since ((bX)b′)(ξ) = (b(Xb′))(ξ), the actions commute, making Hor(ϕ) is a B-bimodule.

However, without ϕ being an algebra map, it isn’t clear how to obtain a tangent bundle

from this, since the right action on Aϕ is not well-defined otherwise. To proceed any

further would require a new definition of restriction of vector fields.

18 Future Ideas and Discussion

Question: Kernel of π∗

For a co-embedding π : B → A, if we denote by K the kernel of its extension π∗ to

the calculi where A is equipped with submanifold calculus, then there is a short exact

sequence of algebras and algebra maps:

0 K Ω1
B Ω1

A 0inc π∗
(45)

But what is K?

Question: Star Structure

If B and A are star algebras and π a star-algebra map, and if B is equipped with a star-

calculus, is the submanifold calculus on A then a star-calculus, and do we have ∗d = d∗?

This is a question to which the author is very much interested in knowing the answer.

In the examples we calculated, the submanifold calculus often came out as the standard

calculus on A which has a known ∗-structure, but whether it holds in general is currently

unknown.
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Question: Left-right Symmetry

Are the submanifold calculi obtained from left and right vector fields isomorphic? It

seems likely that they would be, as long as XR
B

∼= XL
B. Also, this is likely the key to

getting the star structure to work, since the star of a left vector field is a right vector

field and vice versa.

Question: Restricting Bimodule Connections

Does our procedure for restricting connections to the submanifold calculi send a bimod-

ule connection on XR
B to a bimodule connection on XR

A? We know the formula for the

connection, so we just have to check that the associated σ is a bimodule map.

Interpreting Projection of Connections

Given a co-embedding π : B → A, we have a procedure which takes a connection on

Ω1
B which preserves a Hermitian metric, and produces a connection on the submanifold

calculus Ω1
A which preserves a corresponding Hermitian metric. But the coefficients we

get in examples are often complicated. It would be interesting to know why, since this

might give some insight into exactly what kind of embedding of submanifolds is occurring.

One example we could begin by looking at is the co-embedding π : C∞(M) → C∞(N)

for N an embedded smooth submanifold of a smooth manifold M , and then projecting

connections.
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Part IV

Differential Fibre Bundles via

Bimodules
Abstract

We construct a Leray-Serre spectral sequence for fibre bundles for de Rham cohomology
on noncommutative algebras, generalising an existing definition which uses algebra maps
as morphisms to now use bimodules as morphisms. The fibre bundles are bimodules with
zero-curvature extendable bimodule connections satisfying an additional condition. By
the KSGNS construction, completely positive maps between C*-algebras correspond to
Hilbert C*-bimodules. We give three examples of fibre bundles, involving group algebras,
matrix algebras, and the quantum torus

19 Introduction

Fibre bundles are an object in classical topology, finding applications in fields such as

gauge bundles in physics. A fibre bundle is defined as a map π : E → B from the total

space to the base space, satisfying the property that there exists a third space F called the

fibre which can be associated in a continuous manner with the pre-image π−1{b} for each

b ∈ B. Associated to each fibre bundle is a Leray-Serre spectral sequence, which allows

calculation via homological algebra of the cohomology of the total space with coefficients

in a group. The reader may wish to refer to chapters 2 and 9 of the topology textbook

[52] for a detailed reference on fibre bundles and spectral sequences respectively.

Our objective is to generalise and calculate examples of fibre bundles and their associated

Leray-Serre spectral sequences in the context of noncommutative geometry, where spaces

are replaced by algebras. To extend the concept of fibre bundles to a noncommutative

setting, where spaces are replaced by algebras with differential calculi, we take B to be an

algebra of functions on a hypothetical base space of a fibre bundle, and A as the algebra

corresponding to the total space. Since switching from spaces to algebras reverses the

direction of functions, a noncommutative fibre bundle now goes from B to A.

A previous work in this direction is the 2008 paper [25], which proposes a definition of

noncommutative fibre bundles giving rise to a Leray-Serre spectral sequence, but has the
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drawback of being limited to the case where the base space algebra is the algebra of

functions on a locally compact Hausdorff space.

In another approach, the 2005 paper [8] and its extension in [14] defines a noncommutative

fibre bundle as an algebra map between general algebras, and constructs a Leray-Serre

spectral sequence converging to the de Rham sheaf cohomology of the total space with

coefficients in a bimodule. This has a number of examples such as the noncommutative

Hopf fibre bundle, which can be found in chapter 4 of the book [10].

In this paper, we reformulate this second definition [14] of noncommutative fibre bundles

so as to no longer require an algebra map but a bimodule. This allows for the calculation

of sheaf cohomology via spectral sequences for new examples which were not possible

under existing approaches. Specifically, for noncommutative fibre bundles not coming

from algebra maps, such as the noncommutative fibre bundle of the quantum circle in

the quantum torus, which we calculate at the end.

With the additional data of an inner product on the bimodule, our examples can be

regarded as equivalent to fibre bundles being completely positive maps (which generalise

algebra maps), via the KSGNS construction giving a correspondence between C∗ Hilbert-

bimodules and positive maps, which we review in more detail later.

We begin with a review of spectral sequences and the necessary background from noncom-

mutative differential geometry, before presenting our new definition, in which a bimodule

differential fibre bundle is a bimodule equipped with a zero-curvature extendable bimod-

ule connection, to which we show there is an associated Leray-Serre spectral sequence.

We conclude by calculating two finite-dimensional examples of bimodule differential fibre

bundles, followed by one infinite-dimensional example.

Our first example of a bimodule differential fibre bundle is between group algebras, with

base algebra CG and total algebra CX, for a subgroup G ⊂ X. This happens to come

from a differentiable algebra map, and so could also have been calculated using existing

theory, but since it can be nicely calculated in full it serves to illustrate our theory.

Our second example is between complex-valued matrix algebras, with base space algebra

M2(C) and total space algebra M3(C). The bimodule from this example gives a differen-

tiable map which is completely positive but not an algebra map, and so requires our new

definition.
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Our third example has base space algebra the quantum circle Cq[S
1] and total space

algebra the quantum torus Cθ[T2]. This is infinite dimensional, and also does not come

from an algebra map.

20 Background

20.1 Spectral Sequences

A spectral sequence (Er, dr) is a series of two-dimensional lattices called pages, denoted

Er, with each page r having entry Ep,q
r in position (p, q) ∈ Z2 and differentials dr : E

p,q
r →

Ep+r,q+1−r
r satisfying d2

r = 0. By convention, the p-axis is horizontal and the q-axis is

vertical. In the case we consider, only the top-right quadrant (p, q ≥ 0) of page 0 has

nonzero entries. The differentials dr on the rth page move right by r entries and down

by r − 1. Seeing as the differentials square to zero, we can take their cohomology. The

(r + 1)th page is defined as the cohomology of the rth page. Figure 18 illustrates what

a spectral sequence looks like on pages r = 0, 1, 2, 3.

Figure 18: Fibre Bundles: Illustration of successive pages of a spectral sequence [45]

A spectral sequence converges if there is a fixed page after which all subsequent pages

are the same. Once taking cohomology no longer changes a spectral sequence, it is said

to have stabilised, and position (p, q) on the stable pages is denoted as Ep,q
∞ .

The spectral sequence we use is a variant of the Leray-Serre spectral sequence, which

arises from a filtration.

Definition 20.1. Given a cochain complex Cn of vector spaces with linear differential

d : Cn → Cn+1 satisfying d2 = 0, we say that a sequence of subspaces FmC ⊂ C for

m ≥ 0 is a decreasing filtration of C if the following three conditions are satisfied.
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1. dFmC ⊂ FmC for all m ≥ 0.

2. Fm+1C ⊂ FmC for all m ≥ 0.

3. F 0C = C and FmCn := FmC ∩ Cn = {0} for all m > n.

Given such a filtration, the spectral sequence with first page Ep,q
1 = Hp+q( F pC

F p+1C
) con-

verges to H∗(C, d) in the sense that Hk(C, d) =
⊕

p+q=k

Ep,q
∞ . This can be read off the

stabilised sequence as the direct sum along the north-west to south-east diagonals.

20.2 Bimodules and Connections

We looked at bimodule connections in the preliminaries, but now we need to look in more

depth at extendability results.

Proposition 20.2. (See Corollary 5.4 of [1]) If the algebra A has maximal prolongation

calculi for its higher calculi, and if the curvature RE is also a left module map, then

extendability of σE is automatic.

Next, there are a few results which are proven in [10] for left connections but which we

need to prove for right connections, since the right handed versions are not necessarily

just mirror images of the left handed versions, as we see in Lemma 20.5.

Lemma 20.3. Let E be a B-A bimodule with extendable right bimodule connection

(∇E, σE). The connection ∇E extends to higher calculi as

∇[n]
E = id⊗ d +∇E ∧ id : E ⊗A Ωn

A → E ⊗A Ωn+1
A (46)

Proof. We need to show that ∇[n]
E is well-defined over the tensor-product ⊗A, and so we

check that ∇[n]
E (ea⊗ η) = ∇[n]

E (e⊗ aη). The two sides of this equation can be expanded

as

(id⊗ d)(ea⊗ η) + (∇E ∧ id)(ea⊗ η) = ea⊗ dη +∇E(e)a ∧ η + e⊗ da ∧ η

and

(id⊗ d)(e⊗ aη) + (∇E ∧ id)(e⊗ aη) = e⊗ da ∧ η + e⊗ a ∧ dη +∇E(e) ∧ aη.

Since ea⊗ dη = e⊗ a∧ dη and ∇E(e)∧ aη = ∇E(e)a∧ η, the above equations imply the

desired result that ∇[n]
E (ea⊗ η) = ∇[n]

E (e⊗ aη).
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Lemma 20.4. Let E be a B-A bimodule with extendable right bimodule connection

(∇E, σE). Then ∇[n+1]
E ◦ ∇[n]

E = RE ∧ id : E ⊗A Ωn
A → E ⊗A Ωn+2

A , where RE =

(id⊗ d +∇E ∧ id)∇E : E → E ⊗A Ω2
A is the curvature of ∇E.

Proof. Writing out ∇[n+1]
E ◦ ∇[n]

E in string diagrams and then expanding d∧ and using

associativity of ∧ gives Figure 19, which gives the desired result.

=
d

d + + = +
d

=

Figure 19: Fibre Bundles: Diagrammatic proof that ∇[n+1]
E ◦ ∇[n]

E = RE ∧ id

The following lemma almost mirrors the one on page 304 of [10], although we see that by

switching sides a power of −1 is introduced, so the construction is not symmetric.

Lemma 20.5. Let E be a B-A bimodule with extendable right bimodule connection

(∇E, σE) whose curvature RE is a left module map. Then for all n ≥ 1 we have the

following equation:

∇[n]
E ◦ σE = σE(d⊗ id) + (−1)n(σE ∧ id)(id⊗∇E) : Ω

n
B ⊗B E → E ⊗A Ωn+1

A . (47)

Proof. Recall that the curvature RE = ∇[1]
E ◦ ∇E = (id ⊗ d + ∇E ∧ id)∇E is always a

right module map.

(1) First we show the n = 1 case. Let b ∈ B, e ∈ E, and write ∇E(e) = f ⊗ ξ. Then we

calculate:

RE(be) = (id⊗ d +∇E ∧ id)∇E(be) = (id⊗ d +∇E ∧ id)(bf ⊗ ξ + σE(db⊗ e))

= ∇E(bf) ∧ ξ + bf ⊗ dξ +∇[1]σE(db⊗ e)

= b.∇E(f) ∧ ξ + σE(db⊗ f) ∧ ξ + bf ⊗ dξ +∇[1]σE(db⊗ e)

= b.RE(e) + σE(db⊗ f) ∧ ξ +∇[1]σE(db⊗ e)

However, since RE is a left module map, it satisfies RE(be) = b.RE(e), and so we have:

0 = σE(db⊗ f) ∧ ξ +∇[1]σE(db⊗ e)
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Using this result, for a general 1-form η = cdb (summation omitted) we calculate:

σE(cdb⊗ f) ∧ ξ +∇[1]σE(cdb⊗ e) ∧ ξ = cσE(db⊗ f) +∇[1](cσE(db⊗ e))

= c
(
σE(db⊗ f) ∧ ξ +∇[1]

E σE(db⊗ e)
)
+ (σE ∧ id)(dc⊗ σE(db⊗ e))

= 0 + (σE ∧ id)(dc⊗ σE(db⊗ e)) = σE(dc ∧ db⊗ e) = σE(d(cdb)⊗ e)

where we have used that 0 = σE(db⊗ f) +∇[1]σE(db⊗ e) and then the extendability of

σE. Re-arranging this, we get:

∇[1]σE(η ⊗ e) = σE(dη ⊗ e)− σE(η ⊗ f) ∧ ξ

= σE(d⊗ id)(η ⊗ e) + (−1)1(σE ∧ id)(id⊗∇E)(η ⊗ e)

This shows the ∇[1]
E σE case.

(2) Next we suppose the formula holds for ∇[n]
E σ and use induction to show it for n+ 1.

Suppose η, ξ ∈ Ω1
B and e ∈ E. Expressing ∇[n+1]σE(η ∧ ξ ⊗ e) in string diagrams in

Figure 20, we use extendability of σE, then the formula for ∇[n+1]
E , then the Leibniz rule

on ∧, then recognise the formula for ∇[n]
E , then use the induction assumption, then use

associativity of ∧, then recognise the formula for ∇[n]
E , then use the induction assumption

again, then finally we re-arrange using the Leibniz rule for ∧ and associativity of ∧ and

extendability of σ. Hence ∇[n+1]
E ◦ σE = σE(d⊗ id) + (−1)n(σE ∧ id)(id⊗∇E).

In particular, if RE = 0 then the composition ∇[n+1]
E ◦ ∇[n]

E = RE ∧ id vanishes, making

the flat connection ∇E a cochain differential. We use this later to give a filtration.

21 Theory: Fibre Bundles (Right-handed Version)

The paper [14] gives a definition of differential fibre bundles, in which given an algebra

map π : B → A which extends to a map π∗ of differential graded algebras, where

differential forms of degree p in the base and q in the fibre are given by the quotient

π∗ΩpB∧Ω
q
A

π∗Ωp+1
B ∧Ωq−1

A

.

In this paper we take a similar approach, but instead represent these forms by a quotient

that doesn’t require an algebra map. This comes at the cost of now needing a bimodule

instead of just a module, and a bimodule connection instead of just a one-sided connec-

tion. But since Hilbert C*-bimodules with inner products correspond via the KSGNS
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Figure 20: Fibre Bundles: Induction step in proof that ∇[n+1]
E ◦ σE = σE(d ⊗ id) +

(−1)n(σE ∧ id)(id⊗∇E)

construction to completely positive maps, and every *-algebra map is also a completely

positive map, this constitutes a generalisation. We start by defining the filtration.

Proposition 21.1. Let E be a B-A bimodule with extendable zero-curvature right bimod-

ule connection (∇E, σE). For m ≤ n, the cochain complex Cn = E⊗AΩ
n
A with differential

dC := ∇[n]
E : Cn → Cn+1 gives the following filtration.

FmCn = im
(
σE ∧ id : Ωm

B ⊗B E ⊗A Ωn−m
A → E ⊗A Ωn

A

)
(48)

Proof. (1) The first property we need for a filtration is dCF
mC ⊂ FmC for all m ≥ 0.
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This means showing ∇[n]
E F

m(E ⊗A Ωn
A) ⊂

⊕
n′≥0

Fm(E ⊗A Ωn′
A ).

In the calculations in Figure 21 we start with ∇[n]
E (σE ∧ id), then use the fact that

∇[n]
E = id ⊗ d +∇E ∧ id, then use associativity of ∧ and expand d∧, then recognise the

formula for ∇[m]
E , then use the formula ∇[m]

E ◦σE = σE(d⊗ id)+ (−1)m(σE ∧ id)(id⊗∇E)

we showed earlier, then use associativity of ∧, then recognise the formula for ∇[n−m]
E .

This is in Fm+1Cn+1+FmCn+1. However, as we will show in the next step, the filtration

is decreasing, so as required, it is contained in FmC.

(2) The second property we need for a filtration is Fm+1C ⊂ FmC for all m ≥ 0.

In a differential calculus (as opposed to a more general differential graded algebra), el-

ements of the higher calculi can all be decomposed into wedge products of elements of

Ω1, and so Ωm+1
B = Ωm

B ∧ Ω1
B. Let ξ ∈ Ωm

B , η ∈ Ω1
B, e ∈ E, κ ∈ Ωn−m−1

A . Then

ξ ∧ η ⊗ e ⊗ κ ∈ Ωm+1
B ⊗B E ⊗ Ωn−m−1

A , so the map σE ∧ id takes it to E ⊗A Ωn
A, and

the image of all such things is Fm+1Cn. We have the string diagram Figure 22 for

(id⊗∧)(σ⊗ id)(∧⊗ id⊗ id)(ξ⊗η⊗e⊗κ), where we use that σE is extendable and that ∧

is associative. This shows that Fm+1Cn lies in im(σE∧id) : Ωm
B⊗BE⊗AΩ

n−m
A → E⊗AΩ

n
A,

i.e. in FmCn, and hence that the filtration is decreasing in m.

(3) The third property we need is F 0C = C.

F 0Cn = im(σE ∧ id) : B ⊗B E ⊗A Ωn
A → E ⊗A Ωn

A

Recalling that σE(1⊗ e) = e⊗ 1 when m = 0, the set F 0Cn consists of elements b.e⊗ ξ,

which gives all of Cn.

(4) The final property we need is FmCn := FmC ∩ Cn = {0} for all m > n. This holds

because for m > n, we have Ωn−m = 0, giving FmCn = im(σE ∧ id) : 0 → Cn, which has

zero intersection with Cn.

Definition 21.2. Given a filtration as above, we define differential forms with coefficients

in E of degree p in the fibre and q in the base as the quotient

Mp,q :=
F pCp+q

F p+1Cp+q
=

σE(Ω
p
B ⊗B E) ∧ Ωq

A

σE(Ω
p+1
B ⊗B E) ∧ Ωq−1

A

, (49)

and from these we denote forms with coefficients in E of degree q in the fibre only as:

Nq :=M0,q =
Cq

F 1Cq
=

E ⊗A Ωq
A

σE(Ω1
B ⊗B E) ∧ Ωq−1

A

. (50)
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Figure 21: Fibre Bundles: Proof that dC(F
mC) ⊂ FmC

= =

Figure 22: Fibre Bundles: Proof the filtration is decreasing

Proposition 21.3. Let E be a B-A bimodule with extendable zero-curvature right bimod-

ule connection (∇E, σE). Then there is a well-defined surjective linear map:

g : Ωp
B ⊗B Nq →Mp,q, g(ξ ⊗ [e⊗ η]) = [(σE ∧ id)(ξ ⊗ e⊗ η)]. (51)

Proof. Surjectivity follows from the definition of the map, so we only need to show

that g is well-defined on equivalence classes, i.e. that if [e ⊗ η] = 0 then we also have

[(σE ∧ id)(ξ ⊗ e ⊗ η)] = 0. By definition, we have [e ⊗ η] = 0 ∈ Nq if and only if

e⊗ η = (σE ∧ id)(ξ′ ⊗ f ⊗ η′) for some ξ′ ∈ Ω1
B, f ∈ E, η′ ∈ Ωq−1

A (summation implicit).

Thus, using associativity of ∧ and then extendability of σ, we can re-write g(ξ⊗ [e⊗η]) as

in Figure 23, which we can see is in the image of σE∧id : Ωp+1
B ⊗BE⊗AΩ

q−1
A → E⊗AΩ

p+q
A ,

and hence has equivalence class zero in Mp,q.

In a classical fibre bundle, the differential forms on the total space would split into a

direct sum of forms in the direction of the base space and forms in the direction of the
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Figure 23: Fibre Bundles: Re-writing g(ξ ⊗ [e⊗ η])

fibre, but in a noncommutative context there is no obvious algebra that can be called

the fibre. Consequently, in the following definition of a bimodule noncommutative fibre

bundle (note that the algebra maps approach employs a similar idea), we take the quotient

of forms on the total space by forms on the base space as a stand-in for forms on the

fibre. In the classical case where there is a direct sum, this quotient reduces to the usual

differential forms on the fibre.

Definition 21.4. For algebras A and B, we call a B-A bimodule E a (bimodule) differ-

ential fibre bundle if it satisfies the following three properties:

(1) There is an extendable zero-curvature right bimodule connection (∇E, σE) on E.

(2) For all p ≥ 1 the calculi Ωp
B are flat as right modules

(3) For all p, q ≥ 0 the map g is an isomorphism.

Remark 21.5. Recall that flatness of Ωp
B as a right B-module means that if

0 E1 E1 E1 0
ϕ1 ϕ2

is a short exact sequence of left B-modules and left B-module maps then the following

sequence of left B-modules and left B-module maps is also short exact.

0 Ωp
B ⊗B E1 Ωp

B ⊗B E2 Ωp
B ⊗B E3 0.

id⊗ϕ1 id⊗ϕ2

If Ωp
B is finitely generated projective, then flatness is automatic.

In the remainder of this section, we show that for each bimodule differential fibre bundle,

we can construct a Leray-Serre spectral sequence. The following Lemma corresponds to

Lemma 4.64 of [10], but with a number of differences to adapt it from algebra maps fibre

bundles to bimodule fibre bundles. One difference is that here we no longer need to make
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any assumption about the flatness of E as a module, since E is now built into g. This

allows us to calculate sheaf cohomology with coefficients in a wider range of bimodules.

Lemma 21.6. For a bimodule differential fibre bundle (E,∇E), there is a cochain complex

· · · Mp,q−1 Mp,q Mp,q+1 · · ·d d d d ,

whose differential onMp,q is [∇[p+q]
E ], and whose cohomology we denote as Ĥq(Mp,q). Then

by equation (50), Ĥq(N) := Ĥq(M0,q). The isomorphism g is a (graded) cochain map,

and extends to the following isomorphism of cohomology:

ĝ : Ωp
B ⊗B Ĥ

q(M0,q) → Ĥq(Mp,q), ξ ⊗ [[e⊗ η]] 7→ [[σE(ξ ⊗ e) ∧ η]]. (52)

Proof. (1) The differential is well-defined by Proposition 21.1, and satisfies d2 = 0 by

flatness of ∇E.

(2) Recall that (E,∇E) being a bimodule differential fibre bundle implies that for all

p, q ≥ 0 there is an isomorphism g : Ωp
B ⊗B Nq → Mp,q. We need to show that the

differential [∇[p+q]
E ] commutes with g, i.e. that the following diagram commutes:

Ωp
B ⊗B Nq Ωp

B ⊗B Nq+1

Mp,q Mp,q+1

(−1)pid⊗[∇[q]
E ]

g g

[∇[p+q]
E ]

In the proof that (FmC,∇[n]
E ) is a filtration, we calculated (diagrammatically) that

∇[p+q]
E (σE ∧ id) = σE(d⊗ id) ∧ id + (−1)p(σE ∧ id)(id⊗∇[q]

E ).

However, we know that the term σE(d ⊗ id) ∧ id has equivalence class zero in Mp,q+1.

Taking equivalence classes therefore gives

[∇[p+q]
E ◦ g] = (−1)p[(σE ∧ id)(id⊗∇[q]

E )].

Going the other way around the diagram, we get

g((−1)pid⊗ [∇[q]
E ]) = (−1)p[(σE ∧ id)(id⊗∇[q]

E )].

These coincide, so the diagram commutes.
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(3) Secondly, we need to show that g extends to cohomology, i.e. that the map

Ωp
B ⊗B Ĥ

q(Nq) → Ĥq(Mp,q), ξ ⊗ [[e⊗ η]] 7→ [[σE(ξ ⊗ e) ∧ η]]

is an isomorphism. Make the following two definitions.

Zp,q := im(d) : Mp,q−1 → Mp,q, Kp,q := ker(d) : Mp,q → Mp,q+1

Therefore Ĥp+q(Mp,q) =
Kp,q
Zp,q

.

Next we show that the differential d : M0,q → M0,q+1 is a left B-module map. We take

[∇[q]
E (b.e⊗η)] and apply the definition of ∇[q], then use the Leibniz rule, then use the fact

that [σE(db⊗ e) ∧ η] = 0 to calculate:

[∇[q]
E (b.e⊗ η)] = [b.e⊗ dη] + [∇E(b.e) ∧ η]

= [b.e⊗ dη] + [σE(db⊗ e) ∧ η] + [b∇E(e) ∧ η]

= [b(id⊗ d +∇E ∧ id)(e⊗ η)]

= [b∇[q]
E (e⊗ η)].

Hence there is an exact sequence of left B-modules and left B-module maps:

0 K0,q M0,q Z0,q+1 0inc d

Taking the tensor product with the flat right module Ωp
B gives another exact sequence:

0 Ωp
B ⊗B K0,q Ωp

B ⊗B M0,q Ωp
B ⊗B Z0,q+1 0

id⊗inc id⊗d

Applying g to the elements of this sequence, the first part of the proof tells us that the

following diagram commutes.

0 Ωp
B ⊗B K0,q Ωp

B ⊗B M0,q Ωp
B ⊗B Z0,q+1 0

Mp,q Mp,q Mp,q+1

id⊗inc

g

id⊗d

g g

id (−1)pd

Note that the middle instance of g is an isomorphism, while the first and third are merely

injective. This diagram gives the following two isomorphisms.

Zp,q+1
∼= Ωp

B ⊗B Z0,q+1, Kp,q+1
∼= Ωp

B ⊗B K0,q+1,
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and consequently

Zp,q ∼= Ωp
B ⊗B Z0,q, Kp,q

∼= Ωp
B ⊗B K0,q.

By definition of Ĥq(N) = K0,q

Z0,q
, we have another short exact sequence:

0 Z0,q K0,q Ĥq(N) 0inc

Taking the tensor product with the flat right module Ωp
B gives the exact sequence:

0 Ωp
B ⊗B Z0,q Ωp

B ⊗B K0,q Ωp
B ⊗B Ĥ

q(N) 0
id⊗inc

Therefore

Ωp
B ⊗B Ĥ

q(N) ∼=
Ωp
B ⊗B K0,q

Ωp
B ⊗B Z0,q

∼=
Kp,q

Zp,q
= Ĥp+q(Mp,q).

This is the isomorphism we wanted to show.

Proposition 21.7. If for e ∈ E, ξ ∈ Ωq
A we denote (with summation implicit)

∇[q]
E (e⊗ ξ) = σE(η ⊗ f) ∧ κ ∈ σE(Ω

1
B ⊗ E) ∧ Ωq

A,

then the map

∇q : Ĥ
q(N) → Ω1

B ⊗B Ĥ
q(N), ∇q([[e⊗ ξ]]) = η ⊗ [[f ⊗ κ]] (53)

defines a zero-curvature left connection on the cohomology of the fibre.

Proof. (1) Firstly, we show that the map ∇q is well-defined. Since Ĥq(N) =
ker[∇[q]

E ]

im[∇[q−1]
E ]

,

it follows that for all e ∈ E, ξ ∈ Ωq
A such that [[e ⊗ ξ]] ∈ Ĥq(N), the equivalence

class [∇[n]
E (e ⊗ ξ)] vanishes in Nq+1. But for ∇[n]

E (e ⊗ ξ) to lie in the denominator of

Nq+1 =
E⊗AΩq+1

A

σE(Ω
1
B⊗BE)∧ΩqA

means that there exist η ∈ Ω1
B, f ∈ E, κ ∈ Ωq

A such that

∇[n]
E (e⊗ ξ) = σE(η ⊗ f) ∧ κ ∈ σE(Ω

1
B ⊗ E) ∧ Ωq

A.

Applying the isomorphism ĝ−1 to [[∇[n]
E (e⊗ ξ)]] then gives η ⊗ [[f ⊗ κ]].

(2) Next, we show for all b ∈ B that ∇q satisfies the left Leibniz rule. We take ∇[q]
E (be⊗ξ)

and use the definition of ∇[q]
E then the braided Leibniz rule for ∇E and then once again

the definition of ∇[q]
E to calculate:

∇[q]
E (be⊗ ξ) = (id⊗ d +∇E ∧ id)(be⊗ ξ)
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= be⊗ dξ +∇E(be) ∧ ξ

= be⊗ dξ + σE(db⊗ e) ∧ ξ + b∇E(e) ∧ ξ

= σE(db⊗ e) ∧ ξ + b∇[q]
E (e⊗ ξ)

Taking equivalence classes and using the isomorphism ĝ gives the desired result that

∇q(b.[[e⊗ ξ]]) = db⊗ [[e⊗ ξ]] + b∇q([[e⊗ ξ]]).

(3) Lastly, we show that the curvature, Rq = (d⊗ id− id ∧∇q)∇q vanishes.

Denoting ∇[q]
E (f ⊗ κ) = σE(η

′ ⊗ f ′) ∧ κ′, we have:

Rq([[e⊗ ξ]]) = dη ⊗ [[f ⊗ κ]] + η ∧∇q([[f ⊗ κ]])

= dη ⊗ [[f ⊗ κ]] + η ∧ η′ ⊗ [[f ′ ⊗ κ′]]

To show this vanishes, we want to show dη ⊗ [f ⊗ κ] + η ∧ η′ ⊗ [f ′ ⊗ κ′] = 0.

As the curvature RE of ∇E vanishes, we have:

0 = ∇[q+1]
E ◦ ∇[q]

E (e⊗ ξ) = ∇[q+1]
E (σE(η ⊗ f) ∧ κ)

= (d⊗ id + id ∧∇E)(σE(η ⊗ f) ∧ κ)

Taking equivalence classes and using the isomorphism g, we get

0 = (d⊗ id + id ∧∇E)(η ⊗ [f ⊗ κ])

= dη ⊗ [f ⊗ κ] + η ∧∇E([f ⊗ κ])

= dη ⊗ [f ⊗ κ] + η ∧ η′ ⊗ [f ′ ⊗ κ′]

as required. Hence Rq = 0.

Recall that the sheaf cohomology group Hp(B, Ĥq(N),∇q) is defined as the cohomology

at Ωp
CG ⊗CG Ĥ

q(N) in the following sequence (which is not necessarily exact).

0 Ĥq(N) Ω1
CG ⊗CG Ĥ

q(N) Ω2
CG ⊗CG Ĥ

q(N) · · ·∇q ∇[1]
q ∇[2]

q

In the sense of [8], equipping Ĥq(N) with a zero-curvature connection makes it a sheaf,

i.e. we can do sheaf cohomology with coefficients in Ĥq(N).

There is a spectral sequence for the filtration, which has first page

Ep,q
1 = Hp+q(Mp,q) ∼= Hp+q(Ωp

B ⊗B Nq) = Ωp
B ⊗B Ĥ

q(N),

and second page position (p, q) given by Hp(B, Ĥq(N),∇q), and which converges to

H(A,E,∇E) in the sense described in the background section.
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22 Theory: Fibre Bundles (Left-handed Version)

By symmetry of modules, this construction can be mirrored to use an A-B bimodule

E with an extendable zero-curvature left bimodule connection (∇E, σE), where ∇E :

E → Ω1
A ⊗A E and σE : E ⊗B Ω1

B → Ω1
A ⊗A E. In this case, zero curvature means

RE = (d⊗ id− id ∧∇E)∇E = 0. The bimodule connection satisfies

∇[n]
E σE = (id ∧ σE)(∇E ⊗ id) + σE(id⊗ id) : E ⊗B Ωn

B → Ωn+1
A ⊗A E.

The cochain complex Cn = Ωn
A ⊗A E with differential Cn → Cn+1 given by

dC = ∇[n]
E = id⊗ d + (−1)n∇E ∧ id

has a filtration

FmCn = im(id ∧ σE) : Ωn−m
A ⊗A E⊗B Ωm

B → Ωn
A ⊗A E.

The quotients for the fibre are given as follows.

Mp,q :=
F pCp+q

F p+1Cp+q
=

Ωq
A ∧ σE(E⊗B,Ω

p
B)

Ωq−1
A ∧ σE(E ⊗B Ωp+1

B )

Nq :=M0,q =
Cq

F 1Cq
=

Ωq
A ⊗A E

Ωq−1
A ∧ σE(E ⊗B Ω1

B)
,

There is then a well-defined map

g : Nq ⊗B Ωp
B →Mp,q, [η ⊗ e]⊗ ξ 7→ [(id ∧ σ)(η ⊗ e⊗ ξ)]

which extends to cohomology.

We say that E is a differential fibre bundle if g is an isomorphism for all p, q ≥ 0 and if

the calculi Ωp
B are flat as left modules for all p ≥ 0

On the cohomology we have the following a zero-curvature right connection.

∇q : Ĥ
q(N) → Ĥq(N)⊗B Ω1

B, ∇q([[ξ ⊗ e]]) = [[κ⊗ f ]]⊗ η,

where ∇[q]
E (ξ⊗e) = κ∧σE(f ⊗η) ∈ Ωq

A∧σE(E⊗BΩ1
B) ⊂ Ωq+1

A ⊗AE with summation im-

plicit. Assuming that we have a differential fibre bundle, there is then a spectral sequence

converging to H(A,E,∇E) with first page position (p, q) given by Ep,q
1 = Ĥq(N)⊗B Ωp

B

and second page position (p, q) given by Hp(B, Ĥq(N),∇q).
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23 Positive Maps and the KSGNS Construction

In this section we discuss the KSGNS construction and its relation to our definition of

bimodule fibre bundles.

In a C*-algebra A, a positive element is one that can be written in the form a∗a for some

a ∈ A. A linear map ϕ : B → A between C*-algebras is called positive if it maps positive

elements to positive elements, and completely positive if for all n ≥ 2 the map

ϕ :Mn(B) →Mn(A),
(
b1 b2
b3 b4

)
→
(
ϕ(b1) ϕ(b2)
ϕ(b3) ϕ(b4)

)
is also positive.

Every *-algebra map is completely positive, and so are all positive linear functions B → C.

The KSGNS theorem (see [30] for reference) gives a correspondence between bimodules

and completely positive maps. Suppose A and B are C*-algebras, and E a Hilbert B-A

bimodule with an inner product ⟨, ⟩ : E ⊗B E → A. We use E to denote the conjugate

module of E as defined as in [13], which has elements e is an element of E for each

e ∈ E, and satisfies λe = λ∗e for scalars λ ∈ C, and has A-B bimodule structure given

by ae = ea∗ and eb = b∗e for a ∈ A, b ∈ B, e ∈ E.

According to the KSGNS theorem, if a map ϕ : B → A can be written in the form

ϕ(b) = ⟨e, be⟩ for some e ∈ E, then ϕ is completely positive. Conversely, if we have a

completely positive map ϕ : B → A between unital C*-algebras, then we can construct

a Hilbert B-A bimodule E and find an element e0 ∈ E such that ϕ(b) = ⟨e0, be0⟩. The

process to construct this bimodule is to first take the B-A bimodule B ⊗A with actions

given by multiplication, equipped with inner product ⟨, ⟩ : B ⊗ A⊗BB⊗A→ A given by

⟨b⊗ a, b′ ⊗ a′⟩ = a∗ϕ(b∗b′)a′. Next we quotient the bimodule by all zero-length elements

with respect to this inner product. Lastly we take the completion with respect to the

inner product, and obtain the bimodule E.

Proposition 23.1. (Proposition 4.86 of [10]) Suppose that A is a unital dense *-subalgebra

of a C*-algebra, (E,∇E, σE) a right B-A bimodule connection which is extendable with

curvature RE a bimodule map and ⟨, ⟩ : E ⊗B E → A a semi-inner product A-module

structure preserved by ∇E. If e ∈ E obeys ∇E(e) = 0 then ϕ : ΩB → ΩA, ϕ(ξ) =

(⟨, ⟩ ⊗ id)(E ⊗ σE(ξ ⊗ e)) is a cochain map, i.e. d ◦ ϕ = ϕ ◦ d.
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24 Example: Group Algebras

[Algebras: See Example 3.11 for CG and its calculi]

In this first example, we look at a fibre bundle which could also be handled by existing

theory, but which is nicely calculable and thus verifies that the bimodules approach to

fibre bundles gives the right kind of results. In the two examples after this, we look at

one finite and one infinite-dimensional example for which we do not have algebra maps

and so the algebra maps approach would not work, but where by the bimodule approach

we are able to get Leray-Serre spectral sequences.

Associated to each finite group X is its group algebra CX, whose basis is given by the

elements of X. A general element of CX takes the form
∑
x∈X

λxx, where λx are complex

numbers. Note that in general, CX is not commutative unless X is commutative.

For a right representation V of X, a surjective map ω : CX → V satisfying ω(xy) =

ω(x) ◁ y+ω(y) for x, y ∈ X is called a cocycle. This property allows the calculation of ω

on any element of X as a product of generators. It follows that ω(x−1) = −ω(x)◁x−1 and

that ω(1) = 0. By results in [33], left covariant calculi on CX are classified by cocycles.

These calculi are given by Ω1
CX = Λ1

CX ⊗ CX with exterior derivative dx = xω(x), right

action (v ⊗ x).y = v ⊗ xy and left action x.(v ⊗ y) = v ◁ x−1 ⊗ xy. We abbreviate the

calculus as Ω1
CX = Λ1

CX .CX. The calculus is connected if and only if for all x ∈ X\{0}

we have ω(x) ̸= 0. For a connected calculus, we have HdR(CX) = ΛCX .

Lemma 24.1. Let X be a finite group with calculus given by a right representation V

and a cocycle ω : CX → V , and which has a subgroup G. Then subspace W of V spanned

by ω(g) for all g ∈ G is a right representation of G, and has complement W⊥ which is

also right representation of G.

Proof. The cocycle condition ω(x)◁y = ω(xy)−ω(y) defines a right action on W , which

gives a calculus on CG. Since G is a finite group, the representation V has an invariant

inner product V ⊗V → C (invariant meaning ⟨v ◁ g, v ◁g⟩ = ⟨v, v⟩), from which it follows

that V = W ⊕W⊥, where W⊥ is the perpendicular complement of W . The vector space

W⊥ is then also a representation of G.

The restriction of ω to a cocycle CG→ W gives a calculus on the subgroup G.
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Proposition 24.2. If for the higher calculi on CX we assume that d(V ) = 0, then the

wedge product ∧ is antisymmetric on invariant elements ΛCX .

Proof. Since v ◁ x = x−1vx, it follows that x(v ◁ x) = vx. Applying d to this and using

the assumption that d(V ) = 0, we obtain dx ∧ (v ◁ x) = −v ∧ dx.

Using this, we calculate the following.

v ∧ ω(x) = v ∧ (x−1dx) = (vx−1) ∧ dx = x−1(v ◁ x−1) ∧ dx = −x−1dx ∧ v = −ω(x) ∧ v.

Since the images ω(x) span V , this proves that ∧ is antisymmetric on ΛCX .

Now we look at fibre bundles. Suppose G is a finite subgroup of a group X, and take

A = CX, B = CG as in the discussion of fibre bundles earlier. Equip CX with calculus

as above for Λ1
CX = V and some cocycle ω : CX → V for some right representation V

of CX. For the higher calculi on CX take maximal prolongation plus the assumption

d(V ) = 0. For the calculus on CG take Λ1
CG = W = ω(CG) with cocycle the restriction

of ω to CG, and maximal prolongation for the higher calculi.

Proposition 24.3. A CG-CX bimodule is given by E = CX with left and right actions

given by multiplication. When the algebras are equipped with the calculi above there is a

zero-curvature extendable right bimodule connection on E given by (∇E, σE), where

∇E : CX → CX ⊗CX Ω1
CX , x 7→ 1⊗ dx,

σE : Ω1
CG ⊗CG CX → CX ⊗CX Ω1

CX , dg ⊗ x 7→ 1⊗ dg.x.

Proof. The connection satisfies the condition ∇E(gx) = σE(dg⊗x)+g∇E(x) required to

be a bimodule connection, since σE(dg⊗x) = 1⊗(d(gx)−gdx) = 1⊗dg.x. The curvature

is zero because d has zero curvature. The connection is extendable as σE(ξ⊗x) = 1⊗ ξ.x

for all ξ ∈ Ωn
CG.

Proposition 24.4. Equip A = CX, B = CG with calculi as above, the B-A bimodule

E = CX with actions given by multiplication. The right bimodule connection (∇E, σE) as

above, given by ∇E(x) = 1⊗ dx and σE(dg⊗ x) = 1⊗ dg.x, is a differential fibre bundle.

The fibres are Nq
∼= (W⊥)∧q.CX, on which a differential d : Nq → Nq+1 is given by

d(ξ.x) = (−1)|ξ|ξ ∧ π⊥(ω(x) ◁ x−1).x (54)
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for ξ ∈ (W⊥)∧q and x ∈ X, and where we write π⊥ for the projection V → W⊥ which

has kernel W . The differential ∇q : Ĥ
q(N) → Ω1

CG ⊗CG Ĥ
q(N) is given by

∇q([ξ.x]) = π(ω(x) ◁ x−1)⊗ [ξ.x]. (55)

The fibre bundle E gives rise to a spectral sequence converging to H(CX,E,∇E) ∼=

HdR(CX) with second page position (p, q) given by Hp(CG, Ĥq(N),∇q)

Proof. (1) Firstly we show that E is a differential fibre bundle. The calculi Ωp
B = Ωp

CG

are finitely generated projective for all p ≥ 0 and therefore flat as modules, and the

bimodule connection has zero curvature and is extendable. Lastly we need to show that

the map g : Ωp
CG⊗CGM0,q →Mp,q given by g(ξ⊗[e⊗η]) = [(σE∧id)(ξ⊗e⊗η)] = [e⊗ξ∧η]

is an isomorphism. Using the fact that xξ = xξx−1x = (ξ ◁ x−1)x to move all elements of

the group to the right, and then the fact that V = W ⊕W⊥, we calculate:

Mp,q =
σE(Ω

p
CX ⊗CX E) ∧ Ωq

CG

σE(Ω
p+1
CX ⊗CX E) ∧ Ωq−1

CG
=

W∧p ∧ V ∧q

W∧p+1 ∧ V ∧q−1
.CX ∼= W∧p ⊗ (W⊥)∧q.CX.

The above isomorphism sends [wi1∧· · ·∧wip∧vj1∧· · ·∧vjq ] → wi1∧· · ·∧wip∧vj1∧· · ·∧vjq
where the wik are basis elements of W and the vik are basis elements of V . The map g

sendingW∧p⊗(W⊥)∧q ∈ Ωp
CG⊗CXM0,q toW

∧p⊗(W⊥)∧q ∈Mp,q then is an isomorphism.

(2) The fibres are Nq
∼= ΩqCX

Ω1
CG∧Ω

q−1
CX

∼= (W⊥)∧q.CX. The differential d : Nq → Nq+1 is

given by d(ξ.x) = (−1)q[ξ ∧ dx] for ξ ∈ (W⊥)∧q and x ∈ X, but we can use the fact that

dx = (ω(x)◁x−1).x to write the differential on Nq as d(ξ.x) = (−1)|ξ|ξ∧π⊥(ω(x)◁x−1).x.

The cohomology of the fibre is then Ĥq(N) = ker d:Nq−1→Nq

imd:Nq→Nq+1 , using this differential. The

differential ∇q : Ĥ
q(N) → Ω1

CG ⊗CG Ĥ
q(N) on the cohomology groups is given by

∇q([ξ ⊗ x]) = g−1([π(ω(x) ◁ x−1) ∧ ξ.x]) = π(ω(x) ◁ x−1)⊗ [ξ.x].

Group algebras of finite groups are C*-algebras, with a ∗-map given by (λxx)
∗ = λ∗xx

−1

and extended linearly. The bimodule E has an inner product ⟨, ⟩ : E⊗CGE → CX given

by ⟨x, y⟩ = x∗y = x−1y, and the Leibniz rule shows that ∇E preserves this inner product.

On a C*-algebra with an inner product we can use the KSGNS construction to obtain

positive maps. The kernel of ∇E consists of C.e, and so the positive map we get via the

KSGNS construction is ⟨e, ge⟩ = g. This is just the inclusion map, which is an algebra

map.
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24.1 Example: S3

Next, we do a full calculation of the spectral sequence for the example of S3 and its

subgroup generated by the cycle u = (1, 2).

Example 24.5. Let X = S3, denote transpositions as u = (12) and v = (23), and

then define a subgroup G = {e, u} ⊂ S3. An example of a right representation of X

is given by V = C2 with right action (v1, v2) ◁ x = (v1, v2)ρ(x) for the homomorphism

ρ : S3 → End(V ) given by ρ(u) = ( 1 0
0 −1 )and ρ(v) =

1
2

(
−1
√
3√

3 1

)
. To define a calculus on

X = CS3 (and therefore by restriction a calculus on G) we need a cocycle ω : S3 → C2

satisfying ω(xy) = ω(x)ρ(y) + ω(y). For the cocycle to be a well-defined linear map, we

need to be able to apply ω to the three relations of S3, which are u2 = e, v2 = e, and

uvu = vuv. If we write ω(v) = (a, b) and ω(u) = (c, d), we have the following.

(1) Recalling that ω(e) = 0, the relation u2 = e gives:

0 = ω(u2) = ω(u)ρ(u) + ω(u) = (c, d)( 1 0
0 −1 ) + (c, d) = (c,−d) + (c, d) = (2c, 0).

Hence c = 0. We can normalise to get d = 1 so that ω(u) = (0, 1).

(2) The relation v2 = e gives:

0 = ω(v2) = ω(v)ρ(v) + ω(v) = ω(v)(ρ(v) + I2) = (a, b)
1

2

(
1
√
3√

3 3

)
=

1

2
(a+

√
3b,

√
3a+ 3b)

Both equations arising from this give that a = −
√
3b. We already normalised when

defining ω(u), so we simply have b as a free parameter, giving ω(v) = (−
√
3b, b).

(3) Finally we have the relation uvu = vuv. We calculate:

ω(uvu) = ω(u) + ω(uv)ρ(u) = ω(u) + ω(v)ρ(u) + ω(u)ρ(v)ρ(u)

= (0, 1) + (−
√
3b, b)( 1 0

0 −1 ) + (0, 1)
1

2

(
−1
√
3√

3 1

)
( 1 0
0 −1 )

= (0, 1) + (−
√
3b,−b) + (

1

2

√
3,−1

2
) = (

1

2

√
3−

√
3b,

1

2
− b).

Flipping u and v in the above, we calculate:

ω(vuv) = ω(v) + ω(vu)ρ(v) = ω(v) + ω(u)ρ(v) + ω(v)ρ(u)ρ(v)

= (−
√
3b, b) + (0, 1)

1

2

(
−1
√
3√

3 1

)
+ (−

√
3b, b)

1

2
( 1 0
0 −1 )

(
−1
√
3√

3 1

)
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= (−
√
3b, b) + (

1

2

√
3,

1

2
) + (0,−2b) = (

1

2

√
3−

√
3b,

1

2
− b).

This shows that the equality ω(uvu) = ω(vuv) follows automatically once we assume

that 0 = ω(u2) = ω(v2), and hence we get no new restrictions on b as a result of this

relation. This gives a 1-parameter family of 2D calculi on CX, with Λ1 generated by

eu = ω(u) = (0, 1) and ev = ω(v) = b(−
√
3, 1), where b ∈ C is a free parameter. Take

the calculus on CG to be the vector space W generated by eu, so Ω0
CG = C{1, u} and

Ω1
CG = ω(u).C{1, u}.

We now calculate the de Rham cohomology. As long as b ̸= 1
2
, this ω doesn’t send any

elements of X other than e to zero, the calculus on CX is connected, and hence has de

Rham cohomology HdR(CX) = ΛCX . This gives H
0
dR(CX) ∼= C and H1

dR(CX) ∼= C⊕ C,

while H2
dR(CX) is a quotient of C2∧C2. Since the wedge product is antisymmetric under

the assumption dV = 0, a basis of this is given by ω(u) ∧ ω(v), and H2
dR(CX) ∼= C.

We now calculate the Leray-Serre spectral sequence explicitly for this example, where

E = A = CX, B = CG for X = S3 and G the subgroup generated by the cycle u = (12).

As ω(u) = (0, 1) is a basis of W , it follows that (1, 0) is a basis of W⊥, and hence

π⊥(x, y) = (x, 0).

From the formula above that Nq
∼= (W⊥)∧q.CX, we have N0

∼= CX and N1
∼= (1, 0).CX.

All the other Nq are zero, since W∧2 and (W⊥)∧2 are zero, seeing as W and W⊥ are

1-dimensional and the wedge product is antisymmetric on V .

The one non-trivial differential is therefore d : N0 → N1, given by dx = π⊥(ω(x)◁x−1).x.

The kernel of d : N0 → N1 is two-dimensional with basis elements e and u. The reason

that the identity element e lies in the kernel is because ω(e) = 0, while u is in the kernel

because ω(u) ◁ u−1 = ω(u)ρ−1(u) = (0, 1)( 1 0
0 −1 )

−1
= (0,−1), which is sent by π⊥ to zero.

The image of d : N0 → N1 is four-dimensional with basis elements (1, 0).v, (1, 0).uv,

(1, 0).vu, (1, 0).uvu.

Hence H0(N) is two-dimensional with basis elements [e] and [u], while H1(N) is two-

dimensional with basis [(1, 0).e] and [(1, 0).u].

The differential ∇0 : Ĥ0(N) → Ω1
B ⊗B Ĥ

0(N) is given on basis elements by ∇0(e) =

π(ω(e) ◁ e−1)⊗ [e] = 0 and ∇0(u) = π(ω(u) ◁ u−1)⊗ [u] = (0,−1)⊗ [u].

The differential∇0 : Ĥ
1(N) → Ω1

B⊗BĤ
1(N) is given on basis elements by∇1([(1, 0).e]) =
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π(ω(e) ◁ e−1) ⊗ [(0, 1).e] = 0 and ∇1([(0, 1).u]) = π(ω(u) ◁ u−1) ⊗ [(0, 1).u] = (0,−1) ⊗

[(0, 1).u].

Hence ∇0 has kernel spanned by [e] and image spanned by (0, 1).[u], while ∇1 has kernel

spanned by [(0, 1).e] and image spanned by (0, 1)⊗ [(0, 1).u].

Seeing as Ωp
CX = 0 for p ≥ 2 and Ĥq(N) = 0 for q ≥ 2, the sequences for the cohomology

are the following two.

0 Ĥ0(N) Ω1
CG ⊗CG Ĥ

0(N) 0
∇0

0 Ĥ1(N) Ω1
CG ⊗CG Ĥ

1(N) 0
∇1

H0(B, Ĥ0(N),∇0) is the cohomology at Ĥ0(N), which is ker(∇0)
im(0)

∼= ⟨[e]⟩span ∼= C.

H1(B, Ĥ0(N),∇0) is the cohomology at Ω1
CG⊗CG Ĥ

0(N), which is
Ω1

CG⊗Ĥ
1(N)

im(∇0)
∼= ⟨(0, 1)⊗

[e]⟩span ∼= C.

H0(B, Ĥ1(N),∇1) is the cohomology at Ĥ1(N), which is ker(∇1)
im(0)

∼= ⟨[(0, 1).e]⟩span ∼= C.

H1(B, Ĥ1(N),∇1) is the cohomology at Ω1
CG ⊗CG Ĥ

1(N), which is
Ω1

CG⊗CG
im∇1

∼= ⟨(1, 0) ⊗

[(1, 0).e]⟩span ∼= C.

Page 2 of the Leray-Serre spectral sequence has entries Ep,q
2 = Hp(CG, Ĥq(N),∇q), with

E0,0
2 , E0,1

2 , E1,0
2 , E1,1

2 as its nonvanishing entries. This is stable already, and hence the

nontrivial cohomology groups are the following direct sums along diagonals.

H0(CS3, E,∇E) ∼= H0(B, Ĥ0(N),∇0) ∼= C

H1(CS3, E,∇E) ∼= H1(B, Ĥ0(N),∇0)⊕H0(B, Ĥ1(N),∇1) ∼= C⊕ C

H2(CS3, E,∇E) ∼= H1(B, Ĥ1(N),∇1) ∼= C

This is the same as the de Rham cohomology HdR(CX) that we calculated earlier. ⋄

Note that in [39], a different calculus on S3 is obtained by using the same right action ρ

but on the representation V =M2(C) instead of V = C2.

25 Example: Matrices

[Algebras: See Example 3.12 for M2(C) and its calculus]

In [10] an inner calculus on the matrix algebra M2(C) is given by db = [θ′, b] = θ′b− bθ′

for b ∈M2(C) and inner element θ′ = E12s
′ +E21t

′, where s′ and t′ are central (i.e. they
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commute with any algebra element). The maximal prolongation calculus has the relation

s′ ∧ t′ = t′ ∧ s′.

We extend this idea to M3(C), giving it an inner calculus by θ = E12s + E21t + E33u

for central elements s, t, u. The differential d : M3(C) → Ω1
M3(C) is then given by da =

[θ, a] = [E12, a]s+[E21, a]t+[E33, a]u, which on a general matrix inM3(C) is the following.

d
(
a b c
d e f
g h i

)
=
(
d e−a f
0 −d 0
0 −g 0

)
s+

( −b 0 0
a−e b c
−h 0 0

)
t+
( 0 0 −c

0 0 −f
g h 0

)
u (56)

From this we can see that dE33 = 0, which means the calculus is not connected, since a

connected calculus needs ker d = C.I3.

For a higher order inner calculus, the differential is given by dξ = θ ∧ ξ − (−1)|ξ|ξ ∧ θ for

the inner element θ. For example, since |u| = 1, we have du = θ∧u+u∧ θ, and similarly

for s and t.

Proposition 25.1. Equipping M3(C) with higher order inner calculus for the inner ele-

ment θ = E12s+ E21t+ E33u necessitates that s ∧ t = t ∧ s = u ∧ u.

Proof. As the calculus is inner, the differential is given by da = θa− aθ. If we apply the

differential twice to an element a ∈M3(C), we get d2a = θ ∧ (θa− aθ)− (θa− aθ) ∧ θ =

θ∧ θa− θ∧aθ+ θ∧aθ−aθ∧ θ = θ∧ θa−aθ∧ θ = [θ∧ θ, a]. For d to be well-defined as a

differential we need d2a to vanish, so θ∧θ needs to be central so that its commutator with

anything vanishes. We calculate θ ∧ θ = (E12s + E21t + E33u) ∧ (E12s + E21t + E33u) =

E11s ∧ t + E22t ∧ s + E33u ∧ u. The only central elements of M3(C) are multiples of I3,

and hence for θ ∧ θ to be central we require s ∧ t = t ∧ s = u ∧ u.

Although the additional assumptions that u ∧ t = t ∧ u and u ∧ s = s ∧ u are not

mandatory, we make these as well so that all the generators of the calculi commute.

Based on a private communication [29], these extra assumptions bring the growth of the

calculi down from exponential to polynomial. With these additional assumptions, the

derivatives of the calculi’s basis elements are ds = 2s ∧ θ, dt = 2t ∧ θ and du = 2u ∧ θ.

For A =M3(C) and B =M2(C), an example of a B-A bimodule is given by E =M2,3(C).

Proposition 25.2. Suppose we equip A with inner calculus as above given by inner

element θ = E12s + E21t + E33u. Then a right zero-curvature connection ∇E : E →
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E ⊗A Ω1
A satisfying ∇E(e0) = 0 for e0 = ( 2 0 0

0 2 0 ) is well-defined and takes the form

∇E(e0a) = e0 ⊗ da. This connection becomes an extendable bimodule connection by

the bimodule map σE : Ω1
B ⊗B E → E ⊗A Ω1

A given by σE(d( a bc d )⊗ e0) = e0 ⊗ d
(
a b 0
c d 0
0 0 0

)
,

which satisfies σE(s
′ ⊗ e0) = e0 ⊗ s and σE(t

′ ⊗ e0) = e0 ⊗ t.

Proof. (1) First we show well-definedness of ∇E. Observing that e0.
(

0 0 0
0 0 0
g h i

)
= ( 0 0 0

0 0 0 ) ∈

E, the image of this under the linear map ∇E must be zero, meaning that the differential

must satisfy e0 ⊗ d
(

0 0 0
0 0 0
g h i

)
= 0 ∈ E ⊗A Ω1

A. Note that this wouldn’t be true in the

universal calculus. We calculate using the differential above that e0 ⊗ dE3i = e0 ⊗
(
0 +

0 + [E33, E3i]u
)
= ( 2 0 0

0 2 0 ) ⊗ (E3i − δi,3E3,3)u = ( 2 0 0
0 2 0 )(E3i − δi,3E3,3) ⊗ u = 0, seeing as

nonzero entries of (E3i−δi,3E3,3) can only lie in the third row, and thus∇E is well-defined.

(2) Secondly, we calculate ∇E. We can see that every element of E is of the form e0.a,

since e0.M3(C) = M2,3(C) = E. Therefore, using the Leibniz rule and the assumption

∇E(e0) = 0, we calculate the connection as ∇E(e0a) = ∇E(e0).a+ e0 ⊗ da = e0 ⊗ da.

(3) Thirdly, the map σE satisfies σE(db⊗ e0) = ∇E(be0)− b∇E(e0). But ∇E(e0) = 0, so

σE(d( a bc d )⊗ e0) = ∇E(( a bc d )e0) = ∇E(e0

(
a b 0
c d 0
0 0 0

)
) = e0 ⊗ d

(
a b 0
c d 0
0 0 0

)
as required.

(4) Next, we show σE(s
′ ⊗ e0) = e0 ⊗ s and σE(t

′ ⊗ e0) = e0 ⊗ t. In the calculus on B,

we have dE21 = [E12, E21]s
′ + [E21, E21]t

′ = ( 1 0
0 −1 )s

′, and likewise on the calculus on A.

Therefore, using the fact that σE is a bimodule map and that s′ is central and also the

formula above for σE,

( 1 0
0 −1 )σE(s

′ ⊗ e0) = σE(s
′( 1 0

0 −1 )⊗ e0) = σE(dE21 ⊗ e0)

= e0 ⊗ d
(

0 0 0
1 0 0
0 0 0

)
= e0 ⊗

(
1 0 0
0 −1 0
0 0 0

)
s = ( 1 0

0 −1 )e0 ⊗ s.

However, as ( 1 0
0 −1 ) is invertible, this implies σE(s

′⊗e0) = e0⊗s. The result σE(t′⊗e0) =

e0 ⊗ t follows similarly by considering dE12 = [E12, E12]s
′ + [E21, E12]t

′ = ( −1 0
0 1 )t

′.

(5) Lastly, we show extendability. Since B = M2(C) is equipped with maximal prolon-

gation calculus, Corollary 5.3 of [1] says that every zero-curvature bimodule connection

is extendable.

Next we show that with this bimodule and connection we do indeed get a fibre bundle.

Proposition 25.3. Suppose B = M2(C) and A = M3(C) are equipped with the above

calculi. Then the B-A bimodule E = M2,3(C) with the bimodule connection (∇E, σE)
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from earlier gives a differential fibre bundle, and thus a spectral sequence converging to

H(A,E,∇E) = H(M3(C),M2,3(C),∇E).

Proof. For all p ≥ 0 the calculi Ωp
B = Ωp

M2(C) are finitely generated projective and hence

flat as modules. The bimodule connection (∇E, σE) satisfies the requirements of having

zero curvature and being extendable. The last property we need to show is therefore that

the map g : Ωp
B ⊗B M0,q → Mp,q given by g(ξ ⊗ [e ⊗ η]) = [(σE ∧ id)(ξ ⊗ e ⊗ η)] is an

isomorphism.

Since E = e0.M3(C), the forms on M3(C) of degree p in the fibre and q in the base are

given by the quotient

Mp,q =
σE(Ω

p
B ⊗B E) ∧ Ωq

A

σE(Ω
p+1
B ⊗B E) ∧ Ωq−1

A

∼=
σE(Ω

p
M2(C) ⊗M2(C) e0) ∧ Ωq

M3(C)

σE(Ω
p+1
M2(C) ⊗M2(C) e0) ∧ Ωq−1

M3(C)
.

Everything in the numerator is of the form (s or t)∧(p+q−k)∧u∧k.M3(C) for some 0 ≤ k ≤

q, while everything in the denominator is of the form (s or t)∧(p+q−k+1) ∧ u∧(k−1).M3(C)

for 0 ≤ k ≤ q. Since u ∧ u = s ∧ t, it follows that if an element of the numerator has

k ≥ 2 then it lies in the denominator. But if an element of the numerator has k < q then

it has to lie in the denominator. Therefore Mp,q = 0 for q ≥ 2, and (omitting to write

the equivalence classes) a basis of Mp,0 is given by e0 ⊗ s∧r ∧ t∧(p−r) for some 0 ≤ r ≤ p,

while a basis of Mp,1 is given by e0 ⊗ s∧r ∧ t∧(p−r) ∧ u.

In the case q = 0, the map g is given on basis elements as

(s′)∧r ∧ (t′)∧(p−r) ⊗ e0 7−→ e0 ⊗ s∧r ∧ t∧(p−r).

The map g here is an isomorphism, since it just re-arranges the order of the tensor product

and and re-labels s′ and t′, which introduces no new relations.

Similarly in the case q = 1, the map g is given on basis elements as

(s′)∧r ∧ (t′)∧(p−r) ⊗ e0 ⊗ u 7−→ e0 ⊗ s∧r ∧ t∧(p−r) ∧ u,

which is an isomorphism.

Next we calculate this limit of the spectral sequence.

Proposition 25.4. The nonzero cohomology groups of A with coefficients in E can be

calculated via the Leray-Serre spectral sequence as H0(A,E,∇E) ∼= C, H1(A,E,∇E) ∼=

C6, H2(A,E,∇E) ∼= C5.
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Proof. (1) The space N0 is isomorphic to e0.A, which has six-dimensional vector space

basis e0.Eij for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 (i.e. excluding the bottom row). The space

N1 is isomorphic to e0.A⊗ u, which has six-dimensional vector space basis e0.Eij ⊗ u for

1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Since we showed earlier that Mp,q = 0 for q ≥ 2, this means

that all the Ni =M0,i = 0 for i ≥ 2.

(2) The differential d : N0 → N1 and is given by d([e0.Eij]) = [∇E(e0.Eij)] = [e0 ⊗

dEij] = [e0.[E33, Eij]⊗u]. The kernel has four-dimensional basis [e0.E11], [e0.E12], [e0.E21],

[e0.E22]. The image has two-dimensional basis [e0.E13 ⊗ u] and [e0.E23 ⊗ u].

(3) Consequently Ĥ0(N) is four-dimensional with basis elements [[e0.E11]], [[e0.E12]],

[[e0.E21]], [[e0.E22]]. Also Ĥ1(N) is four-dimensional with basis elements [[e0.E11 ⊗ u]],

[[e0.E12 ⊗ u]], [[e0.E21 ⊗ u]], [[e0.E22 ⊗ u]].

(4) Next we calculate ∇0 : Ĥ
0(N) → Ω1

B⊗B Ĥ
0(N) on the basis elements of Ĥ0(N). For

1 ≤ i, j ≤ 2 we have ∇0([[e0.Eij]]) = g−1([[e0 ⊗ dEij]]). We calculate

∇0(e0.E12) = g−1([[e0 ⊗ (E22 − E11)t]]) = t′ ⊗ [[e0.(E22 − E11)]],

∇0(e0.E21) = s′ ⊗ [[e0.(E11 − E22)]],

∇0(e0.E11) = −s′ ⊗ [[e0.E12]] + t′ ⊗ [[e0.E21]] = −∇0(e0.E22).

Hence ∇0 has one-dimensional kernel with basis [[e0.(E11+E22)]], and three-dimensional

image with basis elements t′ ⊗ [[e0.(E22 − E11)]], s
′ ⊗ [[e0.(E11 − E22)]], t

′ ⊗ [[e0.E21]] −

s′ ⊗ [[e0.E12]].

(5) Next we calculate ∇1 : Ĥ
1(N) → Ω1

B⊗B Ĥ
1(N) on the basis elements of Ĥ1(N). For

1 ≤ i, j ≤ 2, we have

∇[1]
E (e0.Eij ⊗ u) = ∇E(e0.Eij) ∧ u+ e0.Eij ⊗ du = e0 ⊗ [θ, Eij] ∧ u+ 2e0.Eij ⊗ θ ∧ u

= e0 ⊗
(
(E12Eij + EijE12)s+ (E21Eij + EijE21)t

)
∧ u

= σE(s
′ ⊗ e0.(E12Eij + EijE12)) ∧ u+ σE(t

′ ⊗ e0.(E21Eij + EijE21)) ∧ u.

Consequently,

∇1([[e0.Eij ⊗ u]]) = s′ ⊗ [[e0.(E12Eij + EijE12)⊗ u]] + t′ ⊗ [[e0.(E21Eij + EijE21)⊗ u]].

Using this, we calculate ∇1([[e0.E12 ⊗ u]]) = t′ ⊗ [[e0 ⊗ u]] and ∇1([[e0.E21 ⊗ u]]) =

s′⊗[[e0⊗u]] and∇1([[e0.E11⊗u]]) = s′⊗[[e0.E12⊗u]]+t′⊗[[e0.E21⊗u]] = ∇1([[e0.E22⊗u]]).

128



Hence the kernel of ∇1 has one-dimensional basis [[e0.(E11 − E22)⊗ u]], while the image

has three-dimensional basis t′⊗ [[e0⊗u]], s′⊗ [[e0⊗u]], s′⊗ [[e0.E12⊗u]]+t′⊗ [[e0.E21⊗u]].

(6) Next we work out the quotients for cohomology.

(i) Firstly, H0(B, Ĥ0(N),∇0) ∼= ker(∇0)
im(0)

∼= C.

(ii) Secondly, H1(B, Ĥ0(N),∇0) ∼= Ω1
B⊗Ĥ

0(N)

im(∇0)
. Seeing as Ω1

B is a free module with two

basis elements and Ĥ0(N) is four-dimensional, the vector space Ω1
B ⊗B Ĥ

0(N) is eight-

dimensional. The quotient is therefore five dimensional, and an example of a basis of

Ω1
B⊗Ĥ

0(N)

im(∇0)
is given by [s′ ⊗ [[e0.E11]]], [s′ ⊗ [[e0.E12]]], [s′ ⊗ [[e0.E21]]], [t′ ⊗ [[e0.E11]]],

[t′ ⊗ [[e0.E12]]]. Hence H
1(B, Ĥ0(N),∇0) ∼= C5.

(iii) Thirdly, H0(B, Ĥ1(N),∇1) ∼= ker(∇1)
im(0)

∼= C.

(iv) Lastly, H1(B, Ĥ1(N),∇1) ∼= Ω1
B⊗BĤ

1(N)

im(∇1)
. Seeing as Ω1

B is a free module with two

basis elements and Ĥ1(N) is four-dimensional, the vector space Ω1
B ⊗B Ĥ

1(N) is eight-

dimensional. Taking the quotient by the three-dimensional im(∇1) gives a five-dimensional

vector space. Hence H1(B, Ĥ1(N),∇1) ∼= C5.

(7) Page 2 of the Leray-Serre spectral sequence has entries Ep,q
2 = Hp(B, Ĥq(N),∇q),

with E0,0
2 , E0,1

2 , E1,0
2 , E1,1

2 as its nonvanishing entries. This is stable already, and hence

the nontrivial cohomology groups are the following direct sums along diagonals.

H0(A,E,∇E) ∼= H0(B, Ĥ0(N),∇0) ∼= C

H1(A,E,∇E) ∼= H1(B, Ĥ0(N),∇0)⊕H0(B, Ĥ1(N),∇1) ∼= C5 ⊕ C ∼= C6

H2(A,E,∇E) ∼= H1(B, Ĥ1(N),∇1) ∼= C5.

The bimodule E has inner product ⟨, ⟩ : E⊗BE → A given by ⟨x, y⟩ = x∗y, where ∗ is the

conjugate transpose map. As matrix algebras are C*-algebras, the KSGNS construction

says that the map ϕ : B → A given by ϕ(b) = ⟨e0, be0⟩ is completely positive. For

e0 = ( 2 0 0
0 2 0 ) then ϕ is not an algebra map, seeing as ϕ(I2) = 4I3 ̸= I3, and algebra maps

have to send the identity to the identity.

Moreover, ∇E(e0) = 0, so for ϕ to be a cochain map we just need metric preservation,

which holds because of the following. Recall that for the right connection ∇E on E, we

have ∇E(e0a) = e0 ⊗ da, which gives a corresponding left connection ∇E on E given by
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∇E(e0a) = da∗ ⊗ e0, and that the inner product on E is given by ⟨x, y⟩ = x−1y. Then:

da1
∗⟨e0, e0a2⟩+ ⟨e0a1, e0⟩da2 = da1

∗.e∗0e0a2 + a∗1e
∗
0e0da2 = 4da1

∗.a2 + 4a∗1da2

= 4da∗1a2 = da∗1e
∗
0e0a2 = d⟨e0a1, e0a2⟩.

Thus by Proposition 23.1, ϕ is a completely positive cochain map, but not an algebra

map.

26 Example: Quantum Circle in the Quantum Torus

[Algebras: See Example 3.8 for Cθ[T2] and its calculus, and Example 3.2 for Cq[S
1] and

its calculus]

Next, we look at an infinite dimensional example, with total space algebra the quantum

torus A = Cθ[T2] and base space algebra the quantum circle B = Cq[S
1]. Note that

the quantum torus Cθ[T2] is sometimes also denoted T2
θ. As in Example 1.36 of [10],

the noncommutative torus is generated as a complex algebra by two invertible generators

u, v with the relation vu = eiθuv for a real parameter θ. It has calculus Ω1
Cθ[T2] =

Cθ[T2].{du, dv}, with right module structure is given by the following relations.

du.u = u.du, dv.v = v.dv, dv.u = eiθu.dv, du.v = e−iθv.du

We take maximal prolongation calculi for the higher calculi on A, giving relations du ∧

du = 0 = dv∧dv and dv∧du = −eiθdu∧dv. These relations imply Ω2
A = du∧dv.A and

Ωq
A = 0 for q ≥ 3, with every nonzero element of Ω2

A a multiple of du ∧ dv. The calculus

on the quantum circle satisfies Ωn
B = 0 for n ≥ 2.

There is a B-A bimodule E given by E = Cθ[T2] ⊕ Cθ[T2], with left B-action and right

A-action given respectively by

t ▷ (f ⊕ g) = uf ⊕ vg, (f ⊕ g) ◁ g′ = fg′ ⊕ gg′.

Proposition 26.1. If B = Cq[S
1] is equipped with classical calculus (q = 1), then there

is a zero curvature right bimodule connection (∇E, σE) on E, for the right connection

∇E : E → E ⊗A Ω1
A given by

∇E(f ⊕ 0) = (1⊕ 0)⊗ df, ∇E(0⊕ g) = (0⊕ 1)⊗ dg

130



and the bimodule map σE : Ω1
B ⊗B E → E ⊗A Ω1

A given by

σE(dt⊗ (f ⊕ 0)) = (1⊕ 0)⊗ du.f, σE(dt⊗ (0⊕ g)) = (0⊕ 1)⊗ dv.g.

Since higher calculi are zero, this connection is automatically extendable.

Proof. In this proof, we start by using the q-deformed calculus on Cq[S
1] and then show

that for σE to be a left module map we need q = 1.

(1) Firstly, we calculate the formula for σE on the generators.

σE(dt⊗ (f ⊕ 0)) = ∇E(t.(f ⊕ 0))− t.∇E(f ⊕ 0)

= ∇E(uf ⊕ 0)− t.(1⊕ 0)⊗ df

= (1⊕ 0)⊗ d(uf)− (u⊕ 0)⊗ df

= (1⊕ 0)⊗ du.f + (1⊕ 0)⊗ u.df − (u⊕ 0)⊗ df

= (1⊕ 0)⊗ du.f

Here we used the standard formula for a bimodule connection that σ(da⊗ e) = ∇(a.e)−

a.∇(e).

σE(dt⊗ (0⊕ g)) = ∇E(t.(0⊕ g))− t.∇E(0⊕ g)

= ∇E(0⊕ vg)− (0⊕ v)⊗ dg

= (0⊕ 1)⊗ d(vg)− (0⊕ v)⊗ dg

= (0⊕ 1)⊗ v.dg + (0⊕ 1)dv.g − (0⊕ v)⊗ dg

= (0⊕ 1)⊗ dv.g

(2) Next we show this is a bimodule map. The calculations in part (1) show that σE is a

right module map, so we just need to show it is a left module map. Using t.dt = q−1dt.t

and du.u = u.du, we calculate:

σE(t.dt⊗ (1⊕ 0)) = q−1σE(dt⊗ t.(1⊕ 0))

= q−1σE(dt⊗ (u⊕ 0))

= q−1(1⊕ 0)⊗ du.u

= q−1(1⊕ 0)⊗ u.du

= q−1(u⊕ 0)⊗ du
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= q−1t ▷ (1⊕ 0)⊗ du

Hence σE is a left module map precisely when q = 1, i.e. when Cq[S
1] is equipped with

its classical calculus.

Having a zero curvature extendable bimodule connection, we show the last ingredient

required for a bimodule fibre bundle.

Proposition 26.2. The map g : Ωp
B ⊗B M0,q →Mp,q given by

g(ξ ⊗ [e⊗ η]) = [(σE ∧ id)(ξ ⊗ e⊗ η)] (57)

is an isomorphism, where forms of degree p in the fibre and q in the base are given by the

formula:

Mp,q =
σE(Ω

p
B ⊗B E) ∧ Ωq

A

σE(Ω
p+1
B ⊗B E) ∧ Ωq−1

A

(58)

Proof. (1) Putting algebra elements on the right, we calculate M1,0, the 1-forms in just

the fibre as:

M1,0 = σE(Ω
1
B ⊗B E) ∼= σE

(
dt⊗

(
(1⊕ 0).A+ (0⊕ 1).A

))
∼= (1⊕ 0)⊗ du.A+ (0⊕ 1)⊗ dv.A.

Noting that M0,0 = E, the map g : Ω1
B ⊗B M0,0 →M1,0 sending

g(dt⊗ (1⊕ 0)) = (1⊕ 0)⊗ du, g(dt⊗ (0⊕ 1)) = (0⊕ 1)⊗ dv

is an isomorphism.

(2) We calculate M0,1, the 1-forms in just the base as:

M0,1 =
E ⊗ Ω1

A

σE(Ω1
B ⊗B E)

∼=
(1⊕ 0)⊗ (du.A+ dv.A) + (0⊕ 1)⊗ (du.A+ dv.A)

(0⊕ 1)⊗ dv.A+ (1⊕ 0)⊗ du.A

∼= (1⊕ 0)⊗ dv.A+ (0⊕ 1)⊗ du.A,

but this is already trivially isomorphic to Ω0
B ⊗B M0,1.

(3) Using that Ω2
B = 0, we calculate M1,1, the 2-forms of degree 1 in the fibre and 1 in

the base as:

M1,1 = σE(Ω
1
B ⊗B E) ∧ Ω1

A
∼= (1⊕ 0)⊗ du ∧ dv.A+ (0⊕ 1)⊗ dv ∧ du.A
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∼= (1⊕ 0)⊗ du ∧ dv.A+ (0⊕ 1)⊗ du ∧ dv.A

Using the formula for M0,1 above, we see that the map g : Ω1
B ⊗B M0,1 →M1,1 sending

g(dt⊗ (1⊕ 0)⊗ dv.A) = (1⊕ 0)⊗ du ∧ dv.A

and

g(dt⊗ (0⊕ 1)⊗ du.A) = (0⊕ 1)⊗ dv ∧ du.A ∼= (0⊕ 1)⊗ du ∧ dv.A

is an isomorphism.

Having shown that g is an isomorphism, we have a bimodule differential fibre bundle, so

there exists a Leray-Serre spectral sequence converging to the sheaf cohomology of the

quantum torus with coefficients in the bimodule E.

Equip E with inner product ⟨, ⟩ : E ⊗B E → A given by

⟨f1 ⊕ g1, f2 ⊕ g2⟩ = f ∗1 f2 + g∗1g2

take e0 = f0 ⊕ g0. Define ϕ : B → A by

ϕ(tn) = ⟨e0, be0⟩ = f ∗0u
nf0 + g∗0v

ng0

This is not an algebra map, even when e0 = 1 ⊕ 1. In the case e0 = 1 ⊕ 1, we have

∇E(e0) = 0. Hence this example requires our new definition in terms of completely

positive maps.

We could calculate the Leray-Serre spectral sequence, but for brevity we omit to do so.

27 Future Ideas and Discussion

One thing which is missing, both from the bimodules approach and the algebra maps

approach to fibre bundles, is the idea of a trivial fibre bundle. In the case of a trivial

principal bundle in Chapter 5 of [10] there are strong and weak definitions, but both are

specific to that case with no clear generalisation.

Also, we might ask how much of the theory of principal bundles can also be done using

bimodule-based fibre bundles. Algebra maps seem quite hard to remove from the theory

of principal bundles.
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Part V

Noncommutative Retracts and

Neighbourhood Retracts

28 Noncommutative Retracts

Abstract

We consider some ideas of what a noncommutative retract between unital C*-algebras
might be, in terms of completely positive maps and using the KSGNS construction. This
generalises an existing definition by Lance. Associated to a completely positive map, there
is an intermediate ∗-algebra, and we investigate how this is related to noncommutative
neighbourhood retracts.

[51] In topology, given a space N with embedded subspace M , a retract is a map r :

N → M such that the inclusion ι : M → N satisfies r ◦ ι = idM . This implies r is

surjective. If the spaces are smooth manifolds, the retract r induces an injective algebra

map r∗ : C
∞(M) → C∞(N) by composition on the right with r.

Example 28.1. Denoting S1 for the unit circle, the map r : R2\{(0, 0)} → S1 given by

r(x, y) = 1√
x2+y2

(x, y) is a retract by the inclusion inc : S1 → R2\{(0, 0)}. It also gives

a deformation retract by rt = (1− t)(x, y) + t√
x2+y2

(x, y). ⋄

Example 28.2. WritingD for the unit disk, there is no retract associated to the inclusion

inc : S1 → D, since there is no continuous map from the disk to the circle which fixes the

boundary. However, there is a neighbourhood retract, as long as we exclude (0, 0) from

the neighbourhood around S1 in D. ⋄

In topology, deformation retracts are related to cofibrations as follows.

Proposition 28.3. ([48] Satz 1. See also [57] for English) The inclusion of a closed

subspace A in a space X is a cofibration if and only if A is a neighborhood deformation

retract of X.

Correspondingly, a good notion of noncommutative deformation retracts might poten-

tially give some insight into noncommutative cofibrations. Here we don’t answer the
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question of what is a noncommutative deformation retract, but we consider ideas for

versions of retracts and neighbourhood retracts. In our definitions, we make the choice of

using completely positive maps instead of algebra maps, since there are not a lot of alge-

bra maps, and the KSGNS construction gives a nice way of obtaining completely positive

maps. For a reminder on completely positive maps and the KSGNS construction, refer

to Section 23.

We mention that on page 55 of [30], there is a definition of when a completely positive

map is called a retraction. Lance’s definition of a retraction generalises conditional ex-

pectations, and in the case where the big algebra is unital, they reduce to conditional

expectations. Our definition here is separate to this, although we do find later that con-

ditional expectations of group algebras give an example under our definition of a retract.

Definition 28.4. For unital C*-algebras A and B and unital completely positive maps

ψ : A→ B and ϕ : B → A, we say that ψ is a retract by ϕ if ϕ ◦ ψ = idA.

Note that since (ϕ ◦ ψ)(a) = a, a retract ψ must always be injective, and ϕ always

surjective.

By complete positivity, the KSGNS construction gives bimodules E ∈ BMA and F ∈

AMB with inner products ⟨, ⟩E : E ⊗B E → A and ⟨, ⟩F : F ⊗A F → B such that for all

a ∈ A, b ∈ B, the maps ϕ and ψ are specified as ϕ(b) = ⟨e0, be0⟩E and ψ(a) = ⟨f0, af0⟩F
for some fixed e0 ∈ E, f0 ∈ F . In particular, as ϕ and ψ are unital maps, we have

⟨e0, e0⟩E = 1 and ⟨f0, f0⟩F = 1.

Denote the bimodule C = F ⊗B E ∈ AMA and the element c = f0 ⊗ e0 ∈ C. There is an

inner product:

⟨, ⟩C : C ⊗A C → A, ⟨f ′ ⊗ e′, f ⊗ e⟩C = ⟨e′, ⟨f ′, f⟩F e⟩E.

Hence a = (ϕ ◦ ψ)(a) = ⟨c, ac⟩C . We show the following proposition in generality before

specialising to G = C and g = c.

Proposition 28.5. Suppose an A-bimodule G has a (possibly degenerate) inner product

⟨, ⟩G : G⊗A G→ A and g ∈ G, satisfying ⟨g, ag⟩G = a for all a ∈ A. Then:

1. The element ag − ga is length zero for all a ∈ A, i.e. that its inner product with

everything is zero. Hence if the inner product ⟨, ⟩G is nondegenerate, the element g

is central.
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2. The map Q : G→ A given by Q(x) = ⟨g, x⟩G is a surjective bimodule map.

3. G splits as a right module as G = kerQ ⊕ Ag, or as a left module by a 7→ ag as

G = kerQ⊕ gA. If g is central then G splits as a bimodule.

Further, if the inner product ⟨, ⟩G is nondegenerate, then g is central, and G splits as a

bimodule by the bimodule map P : G→ G given by P (x) = Q(x).g.

Proof. (1) We start with the assumption have a = ⟨g, ag⟩G. But since inner products

are right module maps, we also have 1.a = ⟨g, g⟩G.a = ⟨g, ga⟩G. Subtracting equations

gives:

0 = ⟨g, ag − ga⟩G. (59)

Using Equation 59, and then by adding ⟨g, a∗g − ga∗⟩G.a which is the right hand side of

Equation 59 with a replaced by a∗ and multiplied on the right by a, and is hence still

zero.

⟨ag − ga, ag − ga⟩G = ⟨g, a∗ag − a∗ga⟩G − a∗⟨g, ag − ga⟩G = ⟨g, a∗ag − a∗ga⟩G

= ⟨g, a∗ag − a∗ga+ a∗ga− ga∗a⟩G = ⟨g, (a∗a)g − g(a∗a)⟩G

But this is just Equation 59 with a replaced by a∗a and is hence zero, so ag − ga has

length zero.

(2) It is clear that Q is a right module map because inner products are bimodule maps.

Using that ⟨g, ag⟩G = a for all a ∈ A (which implies surjectivity), we calculate:

Q(ax) = ⟨g, ax⟩G = ⟨a∗g, x⟩G = ⟨a∗g − ga∗, x⟩G + ⟨ga∗, x⟩G = 0 + aQ(x).

Hence Q is also a left module map.

(3) We show that P is a bimodule map. It is clear that P , being defined by P (x) = Q(x)g

is a left module map if Q is. But P (xa)−P (x)a = Q(x).(ag−ga), which is length zero and

vanishes precisely when g is central, i.e. when the inner product is nondegenerate.

Corollary 28.5.1. Given a retract (ψ, F ) by (ϕ,E) as in Definition 28.4, and denoting

c = f0 ⊗ e0 ∈ C = F ⊗B E, there is a surjective bimodule map Q : C → A given by

Q(x) = ⟨c, x⟩C, and ac− ca is length zero for all a ∈ A. Also C splits as G = kerQ⊕ cA

or G = kerQ⊕Ac. If ⟨, ⟩C is nondegenerate, then c is central and there exists a bimodule

map P : C → C given by P (x) = Q(x).c, and C splits as a bimodule.
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Proof. Since ϕ ◦ ψ = idA, we have a = ⟨c, ac⟩C for all a ∈ A. The rest follows by the

proposition above.

We remark that it is not obvious exactly when ⟨, ⟩C is nondegenerate, even if both ⟨, ⟩E
and ⟨, ⟩F are.

Proposition 28.6. Given a retract (ψ, F ) by (ϕ,E) as in Definition 28.4, there is a right

module map ω : F → E given by ω(f) = e0.⟨f0, f⟩F , which makes the following diagram

commute.

F ⊗B E A

E ⊗B E

Q

ω⊗id
⟨,⟩E

If the inner product ⟨, ⟩E is nondegenerate, then:

(1) ω is a bimodule map.

(2) Be0A = Be0.

(3) e0a = ψ(a)e0 for all a ∈ A.

Proof. (1) We can see that ω is a right module map because inner products are bimodule

maps, but we need to show that it is a left module map. We show that ω(af) − aω(f)

has length zero, i.e. that its inner product with everything is zero. Using that Q and

⟨, ⟩E are bimodule maps, we calculate for all e ∈ E:

⟨aω(f), e⟩E = a⟨ω(f), e⟩E = aQ(f ⊗ e) = Q(af ⊗ e) = ⟨ω(af), e⟩E.

Hence by nondegeneracy of ⟨, ⟩E, we have ω(af) − aω(f) = 0, making ω a left module

map.

(2) By definition, Be0 ⊂ Be0A. But we can re-write ω as ω(f) = ⟨f, f0⟩F e0, so ω has

image in Be0. But because ω(f0) = e0 and ω is a bimodule map, its image contains

Be0A, and hence Be0A ⊂ Be0. Thus Be0A = Be0.

(3) Since ω is a bimodule map, we have

ω(af0) = aω(f0) = ae0 = e0a∗.

Because ψ is a completely positive map coming from a Hermitian inner product, it satisfies

ψ(a)∗ = ψ(a∗). Using this, along with the definition of ω, we calculate:

ω(af0) = e0⟨f0, af⟩F = e0ψ(a) = ψ(a)∗e0 = ψ(a∗)e0.
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This gives that e0a
∗ = ψ(a∗)e0 for all a ∈ A. Swapping a∗ for a gives the result.

29 A Subalgebra Making J a Two-Sided Ideal

Next, we look at certain quotient associated with a retract. However, it isn’t clear yet

exactly how to interpret it.

Recall from the end of the submanifolds section that there is a bimodule J = {b ∈ B |

be0 = 0} which is a left ideal in B. We have Be0 ∼= B/J by the isomorphism be0 7→ [b] of

left B-modules.

Proposition 29.1. Given a retract (ψ, F ) by (ϕ,E) as in Definition 28.4, plus the as-

sumption that ⟨, ⟩E is nondegenerate, it follows that the image of ψ lies in the algebra

S = {b ∈ B | jb ⊂ J, ∀j ∈ J}, (60)

which is a two sided ideal in S, and that the quotiented map ψ/J : A→ S/J is an algebra

map.

Proof. For all j ∈ J and a ∈ A, we have 0 = je0a = jψ(a)e0, which means Jψ(A) ⊂ J .

But also ψ(a)je0 = ψ(a).0 = 0, so ψ(A)J ⊂ J . Hence ψ restricts to ψ : A→ S.

Since J is a two-sided ideal of S, there is an algebra map π : S → S/J sending each

element to its equivalence class, and composing ψ with this we get π◦ψ : A→ S/J . Note

that S/J is isomorphic as a B-A bimodule to Se0 (in fact this defines the right A-action

on S/J). We calculate:

ψ(aa′)e0 = e0.aa
′ = (ψ(a)e0)a

′ = ψ(a)ψ(a′)e0,

and thus since π is an algebra map, we have

π(ψ(aa′)) = π(ψ(a)ψ(a′)) = (π ◦ ψ)(a).(π ◦ ψ)(a′).

Corollary 29.1.1. Since J ⊂ ker(ϕ), it follows that if ϕ is a bijection and thereby that

J = 0, then ψ would be an algebra map.
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The map ϕ : B → A restricts to a map ϕ/J : S/J → A, since ϕ(j) = 0 for all j ∈ J .

Also, this restriction is surjective, since (ϕ ◦ ψ)(a) = a.

We note that the algebra S is likely not a ∗-algebra, since there is no particular reason

why having jbe0 = 0 for all j ∈ J should imply jb∗e0 = 0 for all j ∈ J .

Since ψ is a completely positive map, ψ(a∗) = ψ(a)∗ ∈ S∗, meaning im(ψ) ⊂ S ∩ S∗.

Since J is a two-sided ideal of S, it follows that J∗ is a two-sided ideal of S∗, so J ∪ J∗

is a two-sided ideal of S ∩ S∗.

30 An Intermediate Algebra

Given a Hilbert C*-bimodule E ∈ BMA, there is a B-bimodule D = E ⊗A E. In

this section we show that D can be endowed with the structure of an algebra, which is

associative and can be made unital under certain assumptions on E, and that there are

various interesting maps associated to it. In a certain sense it behaves like an intermediate

algebra between A and B.

Proposition 30.1. If E is a B-A Hilbert C*-bimodule with inner product ⟨, ⟩ : E⊗BE →

A, then D = E ⊗A E is an associative ∗-algebra when equipped with multiplication

(e1 ⊗ e2)(e3 ⊗ e4) = e1⟨e2, e3⟩ ⊗ e4 (61)

and star operation (e1 ⊗ e2)
∗ = e2 ⊗ e1.

Proof. On one hand we have

(
(e1 ⊗ e2)(e3 ⊗ e4)

)
(e5 ⊗ e6) =

(
e1 ⊗ ⟨e2, e3⟩Ee4)

)
(e5 ⊗ e6) = e1 ⊗ ⟨e2, e3⟩E⟨e4, e5⟩Ee6,

and on the other hand we have

(e1 ⊗ e2)
(
(e3 ⊗ e4)(e5 ⊗ e6)

)
= (e1 ⊗ e2)

(
(e3 ⊗ ⟨e4, e5⟩Ee6)

)
= e1 ⊗ ⟨e2, e3⟩E⟨e4, e5⟩Ee6.

Hence D is an associative algebra.

Note that that with the above set of assumptions D is not unital yet, but later with some

extra conditions we add an identity.
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Lemma 30.2. If E ∈ BMA is a Hilbert C*-bimodule with inner product ⟨, ⟩E : E⊗BE →

A, then E is also a D-A bimodule with left D-action

(e1 ⊗ e2) ▷ e3 = e1⟨e2, e3⟩E, (62)

and the inner product descends from ⊗B to ⊗D as ⟨, ⟩′E : E ⊗D E → A.

Proof. Positivity of ⟨, ⟩ follows automatically, since it uses the same formula as ⟨, ⟩E. (1)

Firstly, we show that the left D-action on E is well-defined. On one hand:

(e1 ⊗ e2) ▷
(
(e3 ⊗ e4) ▷ e5

)
= (e1 ⊗ e2) ▷

(
e3⟨e4, e5⟩E

)
= e1⟨e2, e3⟩E⟨e4, e5⟩E,

while on the other hand:(
(e1 ⊗ e2).(e3 ⊗ e4)

)
▷ e5 = (e1⟨e2, e3⟩E ⊗ e4) ▷ e5

= e1⟨e2, e3⟩E⟨e4, e5⟩E.

These coincide, so the left D-action is well-defined.

(2) Next, we show that the inner product descends to ⊗D. On one hand

⟨e1, (e2 ⊗ e3 ▷ e4) = ⟨e1 ⊗ e2⟨e3, e4⟩E⟩′E

= ⟨e1, e2⟩′E⟨e3, e4⟩E,

while on the other hand

⟨e1, (e2 ⊗ e3 ▷ e4) = ⟨(e3 ⊗ e2) ▷ e1, e4⟩′E

= ⟨e3⟨e2, e1⟩E, e4⟩′E

= ⟨⟨e2, e1⟩∗E.e3, e4⟩′E

= ⟨⟨e1, e2⟩E.e3, e4⟩′E

= ⟨e1, e2⟩E.⟨e3, e4⟩′E.

These coincide, so the the inner product descends to ⊗D.

Note that in the following we are not assuming that we have a retract or the existence

of maps A → B, merely a unital completely positive map ϕ : B → A, which need not

necessarily be surjective.
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Proposition 30.3. Suppose we have a unital completely positive map ϕ : B → A, given

by ϕ(b) = ⟨e0, be0⟩E for some element e0 ∈ E of a Hilbert C*-bimodule E ∈ BMA with

inner product ⟨, ⟩E : E ⊗B E → A. Then there is a map χ : D → A, given by

χ(e1 ⊗ e2) = ⟨e0, e1⟩E⟨e2, e0⟩E, (63)

satisfying χ(d∗) = χ(d)∗, and which is “positive” in the sense that χ(dd∗) ≥ 0 in A.

Further, if ⟨e0, e0⟩E = 1 for some e0 ∈ E, then χ(e0 ⊗ e0) = 1.

There is also a ∗-algebra map θ : A→ D, given by

θ(a) = e0a⊗ e0, (64)

satisfying χ ◦ θ = idA. This implies that χ is surjective, and that θ is injective.

Proof. (1) Firstly we calculate the properties of χ as

χ(e0 ⊗ e0) = ⟨e0, e0⟩E⟨e0, e0⟩E,= 1,

and

χ(e1 ⊗ e2)
∗ =

(
⟨e0, e1⟩E⟨e2, e0⟩E

)∗
= ⟨e0, e2⟩E⟨e1, e0⟩E = χ(e2 ⊗ e1) = χ((e1 ⊗ e2)

∗),

as required.

(2) The map θ is an algebra map because:

θ(a)θ(a′) = (e0a⊗ e0).(e0a
′ ⊗ e0) = e0a⟨e0, e0⟩Ea′ ⊗ e0 = θ(aa′),

and a ∗-algebra map because:

θ(a)∗ = (e0a⊗ e0)
∗ = e0 ⊗ e0a = e0a

∗ ⊗ e0 = θ(a∗).

(3) We have the composition χ ◦ θ = idA because:

(χ ◦ θ)(a) = χ(e0a⊗ e0) = ⟨e0, e0a⟩C⟨e0, e0⟩E = a.

The reason “positive” is in quotation marks is because although D is a ∗-algebra and χ

obeys the equation for positivity, we have not yet shown D to be a C*-algebra.

In the following theorem, we add a couple more assumptions on E in order to give D an

identity element, in which case we get a certain ∗-algebra map.
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Theorem 30.4. Suppose that ϕ : B → A is a unital completely positive map given by

ϕ(b) = ⟨e0, be0⟩E for a Hilbert C*-bimodule E ∈ BMA with nondegenerate inner product

⟨, ⟩E : E ⊗B E → A, plus the following assumptions:

(i) The bimodule E is right finitely generated projective.

(ii) The bimodule map G : E → E ′ = HomA(E,A) given by G(e)(e′) = ⟨e, e′⟩E is an

isomorphism of bimodules. Note that this implies ⟨, ⟩E is nondegenerate.

Then denoting ei and ei for the dual basis of E, the algebra D has unit element given by

1D :=
∑
i

ei ⊗G−1(ei). (65)

There exists a ∗-algebra map γ : B → D given by

γ(b) = b.1D, (66)

such that for the map χ : D → A given by χ(e1 ⊗ e2) = ⟨e0, e1⟩E⟨e2, e0⟩E, we have

ϕ = χ ◦ γ. (67)

This implies χ is unital, in the sense of χ(1D) = 1.

Proof. (1) First we show that G is a bimodule map. First we calculate

G(e.a)(f) = ⟨e.a, f⟩ = ⟨e, af⟩ = G(e)(af) = (G(e.a))(f).

Hence G is a right module map. Next we calculate

G(ae) = ⟨ae, f⟩ = a⟨e, f⟩ = (aG(e))(f).

Hence G is a left module map.

(2) We show that 1D really is the unit of D, i.e. for all (f ⊗ g) ∈ D that (f ⊗ g).1D =

1D.(f ⊗ g) = (f ⊗ g). Recall that ⟨, ⟩E = ev ◦ (G⊗ id) as in the following diagram:

E ⊗B E A

E ′ ⊗B E

⟨,⟩E

G⊗id
ev

Then since G is invertible it follows that ⟨, ⟩E ◦(G−1⊗ id) = ev, i.e. ⟨G−1(ei), f⟩E = ei(f).

Using this, we calculate:(∑
i

ei ⊗G−1(ei)
)
(f ⊗ g) =

∑
i

ei.⟨G−1(ei), f⟩ ⊗ g =
∑
i

ei.ei(f)⊗ g = f ⊗ g.
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Hence 1D.(f ⊗ g) = (f ⊗ g). Next we calculate:

(f ⊗ g)
(∑

i

ei ⊗G−1(ei)
)
=
∑
i

f ⊗ ⟨g, ei⟩.G−1(ei) = f ⊗
∑
i

G−1(⟨g, ei⟩ei).

We show as follows that g −
∑
i

G−1(⟨g, ei⟩ei) has zero length. For all k ∈ E we have

∑
i

⟨G−1(⟨g, ei⟩ei), k⟩ = ⟨g, ei⟩.ei(k) = ⟨g, ei.ei(k)⟩ = ⟨g, k⟩.

Hence by nondegeneracy of ⟨, ⟩E, it follows that g =
∑
i

G−1(⟨g, ei⟩ei), from which it

follows that (f ⊗ g).1D = (f ⊗ g).

(3) We show that 1∗D = 1D. Using that 1D is a two-sided identity, 1∗D = 1∗D.1D. Starring

this equation gives (1∗D)
∗ = 1∗D.(1

∗
D)
∗, i.e. 1D = 1∗D.1D = 1∗D, as required.

(4) We show that γ is a ∗-algebra map. Using that 1D is the identity of D we calculate

γ(b)γ(b′) = (b.1D)(b
′.1D) = (b.1D.b

′).1D = (b.b′).1D.1D = (b.b′).1D = γ(bb′),

which shows that γ is an algebra map. Moreover, it is a ∗-algebra map because

γ(b∗) = b∗.1D = (b.1D)
∗ = γ(b)∗.

(5) We show that ϕ = χ ◦ γ.

(χ ◦ γ)(b) = χ(bei ⊗G−1(ei)) = ⟨e0, bei⟩E⟨G−1(ei), e0⟩E = ⟨e0, bei⟩E⟨ei, e0⟩Eδi,0

= ϕ(b).⟨e0, e0⟩E = ϕ(b).

The maps (θ, χ) very nearly satisfy the definition of a retract, apart from the fact that

θ isn’t necessarily unital and we haven’t shown D to be a C*-algebra. One way of

interpreting the fact that θ is not unital, is that rather than D being a retract of A, the

retract is given by the corner algebra (see [46]) D′ = pDp for the idempotent element

p = e0⊗e0. If D′ is a C*-algebra, then ϕ : B → A would decompose into the composition

of a ∗-algebra map γ : B → D and a map χ : D → A which restricts to a retract. In

future work it would be interesting to consider more widely when we can make D and D′

C*-algebras.
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31 Interpretation of D and Neighbourhood Retracts

In classical geometry, the sphere S2 has equator S1. Around the equator, there is an open

neighbourhood which we call T — the tropics, like the tropics of Capricorn and Cancer

on the globe. We have an inclusion S1 → S2, but no retract S2 → S1 due to a lack of

continuous maps. However, there is a retract T → S1 of the tropics onto the sphere by

the inclusion S1 → T , and the tropics themselves have inclusion T → S2 into the sphere.

Thus S1 is not a retract, but a neighbourhood retract of S2.

Dualising these maps to smooth functions on the manifolds, we get

• A surjective map C∞(S2) → C∞(S1) coming from the inclusion of the equator,

which is like ϕ : B → A, apart from the fact that we didn’t have to assume ϕ was

surjective.

• No maps C∞(S1) → C∞(S2), and therefore no noncommutative retract of A in B

unless we have extra information.

• An injective map C∞(S1) → C∞(T ) coming from the retract T → S1, which is like

θ : A→ D.

• A surjective map C∞(T ) → C∞(S1) coming from the inclusion of S1 in T , which

is like χ : D → A.

• A map C∞(S2) → C∞(T ), coming from inclusion of T in S2, which is like γ :

B → D. It need not be surjective since T is an open set, so C∞(T ) can contain

unbounded functions.

The algebra D and its associated maps match up with the classical setup of a neighbour-

hood retract. This is thanks to the conditions of finitely generated projectiveness of E

and the invertibility of G, which in less nice examples are not guaranteed to hold. As

a first idea of a definition of noncommutative deformation retract (but which very well

may need refining), we could take the conditions of Theorem 30.4.
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32 Classifying Bimodule Connections on E for a Re-

tract

Next we classify bimodule connections on the bimodule E associated with a retract. In

the content so far we have only looked at algebras, but to define connections we require

calculi, and so suppose that A and B are equipped with calculi Ω1
A and Ω1

B respectively.

Note that we make no assumptions on what these calculi are.

Suppose a unital completely positive map ϕ : B → A given by ϕ(b) = ⟨e0, be0⟩E is a

retract by a unital completely positive map ψ : A → B given by ψ(a) = ⟨f0, af0⟩F ,

for Hilbert C*-bimodules E ∈ BMA and F ∈ AMB with nondegenerate inner products

⟨, ⟩E : E ⊗B E → A and ⟨, ⟩F : F ⊗A F → B. Then, recalling that e0a = ψ(a)e0, a right

bimodule connection ∇E : E → E ⊗A Ω1
A on E with bimodule map σE : Ω1

B ⊗B E →

E ⊗A Ω1
A satisfies:

e0 ⊗ da = ∇E(e0a)−∇E(e0).a

= ∇E(ψ(a)e0)−∇E(e0).a

= σE(dψ(a)⊗ e0) + ψ(a)∇E(e0)−∇E(e0).a

If ∇E(e0) = 0, which is one of the conditions needed for ϕ to be a cochain map, then we

get:

σE(dψ(a)⊗ e0) = e0 ⊗ da. (68)

We also calculate the bimodule map associated to a right connection on E regarded as a

D-A bimodule instead of a B-A bimodule.

Proposition 32.1. If we take the same right connection ∇E, but now regard E as a D-A

bimodule by the left action (e1 ⊗ e2) ▷ e3 = e1⟨e2, e3⟩E, then the condition for ∇E to be a

bimodule connection is the existence of a D-A bimodule map σ̃E : Ω1
D ⊗D E → E ⊗A Ω1

A,

satisfying:

σ̃E(dD(e1 ⊗ e2)⊗ e3) = ∇E(e1).⟨e2, e3⟩+ e1 ⊗ d⟨e2, e3⟩ − (e1 ⊗ e2) ▷∇E(e3). (69)

If the connection ∇E preserves the metric ⟨, ⟩E, then this becomes

σ̃E(dD(e1 ⊗ e2)⊗ e3) = (id⊗ ⟨, ⟩E)
(
dD(e1 ⊗ e2)⊗ e3

)
. (70)
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Proof. On one hand we have:

∇E((e1 ⊗ e2) ▷ e3) = ∇E(e1).⟨e2, e3⟩+ e1 ⊗ d⟨e2, e3⟩.

But if σ̃E exists, then we also have:

∇E((e1 ⊗ e2) ▷ e3) = (e1 ⊗ e2) ▷∇E(e3) + σ̃E(dD(e1 ⊗ e2)⊗ e3).

Therefore σ̃E satisfies:

σ̃E(dD(e1 ⊗ e2)⊗ e3) = ∇E(e1).⟨e2, e3⟩+ e1 ⊗ d⟨e2, e3⟩ − (e1 ⊗ e2) ▷∇E(e3).

Using the additional assumption of metric preservation and then the definition of the

differential on D as dD(e1 ⊗ e2) = ∇E(e1)⊗ e2 + e1 ⊗∇E(e2), we get

σ̃E(dD(e1 ⊗ e2)⊗ e3) = ∇E(e1).⟨e2, e3⟩+ e1 ⊗ (⟨, ⟩ ⊗ id)(e2 ⊗∇E(e3))

+ e1 ⊗ (id⊗ ⟨, ⟩)(∇E(e2)⊗ e3)− (e1 ⊗ e2) ▷∇E(e3)

= ∇E(e1).⟨e2, e3⟩+ e1 ⊗ (id⊗ ⟨, ⟩)(∇E(e2)⊗ e3)

= (id⊗ ⟨, ⟩E)
(
dD(e1 ⊗ e2)⊗ e3

)
,

as required.

33 A Differential Graded Algebra and a Cochain Map

Next we look at a differential graded algebra Dn, satisfying D0 = D, and whose differ-

ential is defined in terms of a right connection on E. In the case when it is a bimodule

connection, we show that there is an extension of the ∗-algebra map γ : B → D as a

cochain map γn : Ωn
B → Dn. Throughout this section, we always assume the conditions of

Theorem 30.4, which we are regarding as the setup for a noncommutative neighbourhood

retract. Since we are only assuming a neighbourhood retract, we are not assuming that

we have a retract.

Proposition 33.1. Given the conditions of Theorem 30.4, plus a right connection ∇E :

E → E ⊗A Ω1
A with curvature RE, then the graded B-bimodules Dn = E ⊗A Ωn

A ⊗A E

have derivation d : Dn → Dn+1 given by

d(e⊗ ξ ⊗ f) = ∇E(e) ∧ ξ ⊗ f + e⊗ dξ ⊗ f + (−1)|ξ|e⊗ ξ ∧∇E(f), (71)
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satisfying d2 = RE ∧ id⊗ id + id⊗ id∧RE. In the case RE = 0, (Dn, d) forms a cochain

complex, and if ∇E is also metric-preserving then (Dn, d) becomes a differential graded

algebra with wedge product ∧ : Dn ⊗Dm → Dn+m given by

(e⊗ ξ ⊗ f) ∧ (e′ ⊗ ξ′ ⊗ f ′) = e⊗ ξ⟨f, e′⟩ ∧ ξ′ ⊗ f ′. (72)

Proof. This differential was defined to satisfy the Leibniz rule, since it differentiates each

of the components in the tensor product with the appropriate sign, but we still need to

check it is well-defined over ⊗A, and to calculate d2, and calculate its interaction with

the wedge ∧.

(1) Firstly, we show this preserves the ⊗A. On one hand

d(ea⊗ ξ ⊗ f) = ∇E(ea) ∧ ξ ⊗ f + ea⊗ dξ ⊗ f + (−1)|ξ|ea⊗ ξ ∧∇E(f)

= ∇E(e)a ∧ ξ ⊗ f + e⊗ da ∧ ξ ⊗ f + e⊗ adξ ⊗ f + (−1)|ξ|e⊗ aξ ∧∇E(f)

= ∇E(e) ∧ (aξ)⊗ f + e⊗ d(aξ)⊗ f + (−1)|ξ|e⊗ (aξ) ∧∇E(f)

= d(e⊗ aξ ⊗ f).

But on the other hand

d(e⊗ ξ ⊗ af) = d(e⊗ ξ ⊗ fa∗) = ∇E(e) ∧ ξ ⊗ fa∗ + e⊗ dξ ⊗ fa∗ + (−1)|ξ|e⊗ ξ ∧∇E(fa
∗)

= ∇E(e) ∧ ξa⊗ f + e⊗ dξ.a⊗ f + (−1)|ξ|e⊗ ξ ⊗ a∇E(f) + (−1)|ξ|e⊗ ξ ∧ da⊗ f

= ∇E(e) ∧ (ξa)⊗ f + e⊗ d(ξa)⊗ f + (−1)|ξ|e⊗ (ξa)⊗∇E(f)

= d(e⊗ ξa⊗ f).

These coincide, so the operation d is well-defined over the tensor product ⊗A.

(2) Secondly, we calculate d2. Recall that we have RE = (id ⊗ d + ∇E ∧ id)∇E and

RE = (d⊗ id− id ∧∇E)∇E.

Hence by Figure 24 we have d2 = RE ∧ id ⊗ id + id ⊗ id ∧ RE. If RE = 0, then RE = 0

and d2 = 0.

(3) Thirdly, we show that d(α∧β) = dα∧β+(−1)|α|α∧dβ, where (e⊗ξ⊗f)∧(e′⊗ξ′⊗f ′) =

e⊗ ξ⟨f, e′⟩ ∧ ξ′ ⊗ f ′. Firstly we calculate d(α ∧ β) in Figure 25.

Then, we use metric preservation to calculate dα ∧ β + (−1)|α|α ∧ dβ in Figure 26. We

can see that the two diagrams are equal.
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Figure 24: Retracts: Calculation of d2
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Figure 25: Retracts: Calculation of d(α ∧ β)
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Figure 26: Retracts: Calculation of dα ∧ β + (−1)|α|α ∧ dβ

Remark 33.2. We note that although Dn is a B-bimodule, it can also be regarded as a

D-bimodule. In future work, we would be interested in figuring out how to do this.

Next we look at a map of differential graded algebras, defined in terms of a bimodule

connection. Since we are only assuming a neighbourhood retract and not necessarily a

retract, the formulae from the previous section do not necessarily apply to this σE.

Proposition 33.3. Under the conditions of Proposition 33.1 for Dn to be a differential

graded algebra, but now with ∇E a zero curvature metric preserving extendable B-A

bimodule connection on E, we can extend the ∗-algebra map γ : B → D, γ(b) = b.1D to

a map of differential graded algebras γn : Ωn
B → E ⊗A Ωn

A ⊗A E as

γn(ξ) = (σE ⊗ id)(ω ⊗ 1D). (73)

By a map of differential graded algebras, we mean it commutes with d and ∧.
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Proof. By the assumptions that E is finitely generated projective and has G invertible,

there exists an element ⟨, ⟩−1 ∈ E ⊗A E, which satisfies

(id⊗ ⟨, ⟩)(⟨, ⟩−1 ⊗ id) = idE = (⟨, ⟩ ⊗ id)(id⊗ ⟨, ⟩−1).

By these identities, we can see that ⟨, ⟩−1 = 1D. In the following diagrams, we use the

notation ⟨, ⟩−1 instead of 1D, and apologise to the reader for the confusing notation.

(1) Firstly in Figure 27 we show dγn = γn+1d, using the fact that metric preservation

implies (∇E ⊗ id + id⊗∇E)⟨, ⟩−1 = 0.

+

d
=

= =

+ +

+ +

d

d

= =d d

Figure 27: Retracts: Proof γ is a cochain map.

(2) Secondly in Figure 28 we show γn(ω) ∧ γm(ξ) = γn+m(ω ∧ ξ), using the definition of

⟨, ⟩−1 and then extendability of σE.

== = =

Figure 28: Retracts: Proof γ commutes with ∧
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When γn is a map of differential graded algebras, then ker(γn) is a differential graded

algebra (and in fact when n = 0 a two-sided ideal), since if γn(ξ) = 0, then γn+1(dξ) =

dγn(ξ) = d0 = 0, so dξ ∈ ker(γn+1), and γn+m(ξ ∧ η) = γn(ξ) ∧ γm(η) = 0 ∧ γm(η) = 0.

Hence the following is a short exact sequence of cochain complexes and cochain maps.

0 ker(γn) Ωn
B E ⊗A Ωn

A ⊗A E 0
γn

We could then look at the relative cohomology of this sequence, as defined in Chapter

4.6 of [10].

34 Retracts Examples

34.1 Conditional Expectations on CX

[Algebras: See Example 3.11 for CX and its calculi, for X a finite group]

Recall the following definition of a noncommutative conditional expectation.

Definition 34.1. [56] Let A and B be unital C∗-algebras, with A ⊂ B. Then a linear

map E : B → A is called a conditional expectation if:

1. E(1B) = 1A

2. E is an A-bimodule map

3. E is positive, meaning that if b ≥ 0 then E(b) ≥ 0.

Proposition 34.2. Suppose X is a finite group with a subgroup G, so CG ⊂ CX, a

conditional expectation is given by the linear extension E : CX → CG of the map defined

on X as

E(x) =

x , x ∈ G

0 , x /∈ G

.

Proof. (1) Firstly, as subgroups contain the identity element of the bigger group, we

have that E(e) = e.

(2) Secondly, for g ∈ G, then x ∈ G if and only if gx ∈ G, so E(gx) = gE(x) and

E(xg) = E(x)g, making E a CG-bimodule map.
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(3) Finally, we show that E is positive. Write xi for the coset representatives of F = X/G.

Because cosets are disjoint, we have xi /∈ Gxj, so xix
−1
j /∈ G, which means E(xix−1j ) = 0.

Consequently we have an inner product ⟨, ⟩F : F ⊗ F → G given by ⟨xi, xj⟩ = δi,je. We

also have an inner product ⟨, ⟩G : G⊗G→ G given by ⟨g, h⟩ = gh−1.

Any element of CX can be written as a linear combination of terms gxi. Thus ⟨gxi, hxj⟩ =

E(gxix
−1
j h−1) = gE(xix−1j )h−1 = ⟨xi, xj⟩F ⟨g, h⟩G. But then ⟨gxi, gxi⟩ = gg∗ ≥ 0.

We can regard the algebra E = CX as a CX-CG bimodule, with actions given by

multiplication. This is well-defined because G is a subgroup of X. The module E has

inner product ⟨, ⟩E : E ⊗CX E → CG given by ⟨x, y⟩ = E(x∗y). Set e0 = 1. This inner

product gives rise to the positive map ϕ : CX → CG as ϕ(b) = ⟨e0, be0⟩E = E(b).

Alternatively we can regard F = CX as a CG-CX bimodule, with actions also given by

multiplication, and with inner product ⟨, ⟩F : F ⊗CG F → CX given by ⟨x, y⟩F = x∗y.

Set f0 = 1 ∈ F . This inner product gives rise to a map ψ : CG → CX via ψ(g) =

⟨f0, gf0⟩F = g ∈ CX. We have ϕ ◦ ψ = id, and hence a retract.

Proposition 34.3. The CX-CG bimodule E = CX is right finitely generated projective,

with dual basis
∑
i

ei⊗ ei and decomposition ẽ =
∑
i

ei.ei(ẽ) for all ẽ ∈ E, where the ei are

left coset representatives of G in X, so
⋃
i

eiG = X. The ei ∈ E ′ = HomCG(CX,CG) are

defined by

ei(x) =

(ei)−1x, if x ∈ eiG

0, else

.

Proof. We can see the decomposition holds for all x ∈ E because:∑
i

ei.ei(x) = ei(ei)−1x = x.

Proposition 34.4. The bimodule map G : E → HomCG(CX,CG) given by G(e)(f) =

⟨e, f⟩E is an isomorphism, and in fact is G(ei) = ei.

Proof. (1) Firstly we show that G is an isomorphism. An element f ∈ HomCG(CX,CG)

is determined by f(ei) for all i, since f(eig) = f(ei)g. This corresponds to |X|/|G|×|G| =
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|X| elements, so both domain and codomain of G are dimension |X|. Thus to show G is

an isomorphism, we need only show it is injective. On a general element, we have

G(
∑
x∈X

λxx)(y) =
∑

x:x−1y∈G

λxx
−1y.

But each term of this is linearly independent, since if x−11 y = x−12 y then the invertibility

of group elements implies x1 = x2. Thus G(
∑
x∈X

λxx)(y) vanishes only when λx = 0 for

all x ∈ E, meaning that G is injective. (2) Next, we show that G(ei) = ei. We want to

find coefficients λx for which G(
∑
x

λxx) = ei. Evaluating this on some y ∈ X, and then

using the definition of ei as coset representatives, we get

(ei)−1y =
∑

x:x−1y∈G

λxx
−1y =

∑
x∈y−1G

λxx
−1y =

∑
x∈eiG

λxx
−1y

Multiplying on the right by y−1 and then applying the ∗-operation, we get for all y ∈ X:

(ei) =
∑
x∈eiG

λxx

For this to be true, we require λx = δx,ei , i.e. G(ei) = ei.

We therefore have an associative ∗-algebra D = CX ⊗CG CX with multiplication

(x1 ⊗ y1)(x2 ⊗ y2) = x1E(y1x∗2)⊗ y2

and unit 1D =
∑
i

ei ⊗ ei. Since E is a tensor product of finite dimensional C*-algebras,

D should actually be a C*-algebra. There is a ∗-algebra map γ : B → D given by

γ(x) = x.1D = x.
∑
i

ei ⊗ ei.

There is a unital positive map χ : D → A given by

χ(e1 ⊗ e2) = ⟨1, e1⟩E⟨e2, 1⟩E = E(e1).
(
E(e2)

)−1
which satisfies ϕ = χ ◦ γ. Since D is a C*-algebra, θ : A→ D is a retract by χ : D → A.

Thus not only is A a retract of B, but it is also a neighbourhood retract.

Next we look at calculi. Recall that Ω1(CX) = CX.V for V a right representation of

CX with dx = x.ζ(x) for a cocycle ζ : X → V , i.e. satisfying ζ(xy) = ζ(x) ◁ y + ζ(y).

Further, Ω1(CG) = CG.W for W ⊂ V the smallest right representation of G containing

the image ζ(G).
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Proposition 34.5. In this example, a right connection ∇E : E → E ⊗CG Ω1
CG given by

∇E(e
i) =

∑
j

ej⊗Γij preserves the metric ⟨, ⟩E : E⊗CXE → CG given by ⟨x, y⟩ = E(x−1y)

when

0 = Γij + (Γji )
∗. (74)

Proof. The metric preservation equation is

d⟨ej, ei⟩E = ⟨ej, ek⟩EΓik + (Γjk)
∗⟨ek, ei⟩E.

But ⟨ej, ei⟩E = E((ej)−1ei) = δj,i.e, its differential is zero, and the metric preservation

equation becomes

0 = Γij + (Γji )
∗

as required.

A linear basis of D is given by eig ⊗ ej, so a general element of Ω1
D is given by∑

i,g,j

dD(e
ig ⊗ ej)λi,g,j =

∑
i,g,j

(
ek ⊗ Γik.g ⊗ ej + ei ⊗ dg ⊗ ej + ei ⊗ g(Γjk)

∗ ⊗ ek
)
.

Taking the Christoffel symbols as zero and g = 1 gives d(
∑
i,j

ei ⊗ ej) = 0, so Ω1
D is not

always connected.

34.2 Functions on Graphs

[Algebras: See Example 3.9 for C(X) and its calculi]

Take B = C4 and A = C3, regarded as the functions on graphs of four and three disjoint

points respectively, so that A is a noncommutative submanifold of B. The multiplication

and star operations are elementwise on the vectors, and the units are the vectors with 1

in all entries.

There is a B-A bimodule E = C4 with actions and inner product ⟨, ⟩E : E ⊗B E → A

given as follows.(
a
b
c
d

)
▷
( w
x
y
z

)
=

(
aw
bx
cy
dz

)
,

(
a
b
c
d

)
◁
(
x
y
z

)
=

(
ax
by
cz
dz

)
, ⟨

(
x1
x2
x3
x4

)
,

(
y1
y2
y3
y4

)
⟩E =

(
x∗1y1
x∗2y2

x∗3y3+x
∗
4y4

2

)
.
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Taking e0 =

(
1
1
1
1

)
, the inner product gives rise to a completely positive map ϕ : C4 → C3

given by ϕ(b) = ⟨e0, be0⟩E, which on a specific element is ϕ(

(
a
b
c
d

)
) =

( a
b
c+d
2

)
. This is

unital.

There is also an A-B bimodule F = C4 with mirrored actions from E and inner product

⟨, ⟩F : F ⊗A F → B given as follows.

(
x
y
z

)
▷

(
a
b
c
d

)
=

(
xa
yb
zc
zd

)
,

(
a
b
c
d

)
◁
( w
x
y
z

)
=

(
aw
bx
cy
dz

)
, ⟨

(
x1
x2
x3
x4

)
,

(
y1
y2
y3
y4

)
⟩F =

(
x∗1y1
x∗2y2
x∗3y3
x∗4y4

)
.

Taking f0 =

(
1
1
1
1

)
, this inner product gives rise to a completely positive map ψ : A→ B

given by ψ(a) = ⟨f0, af0⟩F , which on a specific element is ψ(
(
a
b
c

)
) =

(
a
b
c
c

)
. This is unital.

Because ϕ◦ψ = idA, we have a retract. In this example we also have that ψ is an algebra

map. We note that while the metric ⟨, ⟩E is nondegenerate, E here is likely not finitely

generated projective due to the dimensions of the algebras.

35 Future Ideas and Discussion

Possible Example: Equator of Quantum Sphere

A neighbourhood retract is a weaker condition than a retract and means having a subspace

which gives a retract, and we had an idea for what a noncommutative version of this might

be. One example we would very much hope to be able to find a neighbourhood retract

for is the quantum circle Cq[S
1] in the quantum sphere Cq[S

2], as a q-deformed version of

the equator being a neighbourhood retract of the sphere. This is a question the author

is particularly interested in, since in Section III the algebra Cq[S
1] turned out to not be

a submanifold of Cq[S
2] via our definition due to a lack of algebra maps.

Missing Definition: Deformation Retract

Deformation retract is a stronger notion than retract, and is defined as a homotopy

between the identity map and a retract. A literal interpretation of this in a noncommu-

tative setting would be a time-dependent map ψt : A → B which at t = 0 is a retract
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ψ0 : A → B by some ϕ : B → A, and at time t = 1 is the identity ψ1 = idB : B → B.

This is of course nonsensical unless A was a subalgbera of B, which is more restrictive of

a condition than we would like, and so we currently have no satisfactory idea.

If we were able to define a deformation retract, we could investigate if it gives rise to a

notion of neighbourhood deformation retract, in the same way as retracts gave an idea

of neighbourhood retracts.

Is the Intermediate Algebra a Submanifold?

Another question we might ask is whether the surjective ∗-algebra map γ : B → D,

γ(b) = b.1D ever gives a co-embedding in the sense of Chapter III, and if so, what

submanifold calculus does D inherit from Ω1
B? The first step would be to understand the

kernel of γ, which is determined by the kernel of the left action on E. It seems like a

reasonable thing to hope that D might be a noncommutative submanifold of B under a

nice enough set of conditions, in the same way that the tropics are a submanifold of the

sphere.

156



Part VI

First Ideas Towards

Noncommutative Differential

Cofibrations
Abstract

We look at how Quillen’s definition of cofibration might be interpreted in a noncommu-
tative differential context. We use methods of noncommutative geodesics to solve a state
path lifting problem and show for a number of examples that the natural idea of trivial
cofibration satisfies this definition. We also speculate how this might relate to existing
theory of noncommutative fibre bundles.

36 Introduction

An open question in noncommutative differential geometry, as posed at the end of [10]

Chapter 4.6, is whether there is a good notion of differential cofibration. In combina-

tion with appropriate definitions of noncommutative fibrations and weak equivalences,

the hope is that this would form a model category, allowing us to do noncommutative

homotopy theory. To answer this question in full would go far beyond the scope of this

PhD project, but we investigate a first few ideas in this direction, with a focus on trivial

cofibrations. We note that there has also been recent work via other noncommutative

differential approaches to construct analogues of homotopy groups, such as via recon-

struction results in [53].

There is already a notion of a noncommutative fibre bundle as in [14], which we generalised

from algebra maps to completely positive maps in Section IV of this thesis, although here

in this very early stage of investigation into cofibrations we only consider the algebra

maps version. However, this definition of a fibre bundle was defined to give rise to a

Leray-Serre spectral sequence for cohomology, and so it would not be surprising if we

needed additional assumptions to make it satisfy more fibration-like properties.

A cofibration is defined as a map satisfying a homotopy extension property. Daniel
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Quillen [49] generalised this to more general categories, saying that a diagonal map h

exists to make the following diagram commute when δ is a cofibration and ι is a fibration

making the outside of the diagram commute, plus the condition that one of δ or ι is a

weak equivalence.

X E

Y B

δ ιh

However, this diagram gives an equivalent definition of cofibrations in terms of fibrations

and vice versa, so for example δ is a cofibration if and only if for every fibration ι making

the outside of the diagram commute and is also a weak equivalence there is a diagonal

map h which commutes with the diagram. Likewise, ι is a fibration if and only if for

every trivial cofibration δ making the outside of the diagram commute and is also a weak

equivalence there is an h making the diagram commute.

Re-phrasing Quillen’s definition in terms of algebras, where the arrows go the other way

around, gives the following.

Definition 36.1. In a category of algebras with morphisms maps between them (which

are at the very least linear), and with certain maps designated as fibrations and cofibra-

tions and weak equivalences, then for algebras A,B,X, Y , we call a morphism δ : Y → X

a cofibration if whenever ι : B → A is a fibration which is a weak equivalence there always

exists a morphism h that makes all diagrams of the following form commute.

X A

Y B

h0

h
δ

α

ι

Unlike in topology where we can easily find continuous maps between spaces, their non-

commutative equivalent of algebra maps between algebras are not so readily available.

Consequently, in our noncommutative differentiable context we look at differentiable com-

pletely positive maps. For the time being we restrict to looking at the case where the

fibration ι is a differentiable injective algebra map. Under this set of assumptions, we

see that given an ι satisfying these conditions and making the diagram commute (in the

case of a trivial cofibration), it is actually possible to recover certain properties of the

differential fibre bundles defined in [14], which were designed to give Leray-Serre spectral

sequences.
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In future work we could consider more generally Quillen’s definition with ι a differentiable

injective completely positive map, in which case we might hope for links to our bimodule

definition of fibre bundles in Section IV.

37 Trivial Cofibrations

A particularly tractable class of examples is given by maps corresponding to classical

cofibrations.

Definition 37.1. ([43] Definition 1.2) A continuous function X → Y between topological

spaces is a classical Serre fibration if for every commuting square of the following form

there exists for each n an h : Dn × I → X to make the diagram commute.

Dn X

Dn × I Y

(id,0) f
h

Note that Dn denotes the closed n-disk.

The map (id, 0) in the above diagram gives the simplest example of a cofibration. In our

noncommutative case, we take this differential cofibration to be δ0, the evaluation map

at t = 0 in the following diagram.

D A

C∞(R)⊗D B

h0

h
δ0

α

ι

Under a certain assumption on α the problem has the following particularly nice solution.

Proposition 37.2. Suppose that ι is a differential fibration and that α and h0 are com-

pletely positive maps such that the outside of the following diagram commutes.

D A

C∞(R)⊗D B

h0

h
δ0

α

ι

If we make the extra assumption that there are bt ∈ B for t ∈ R such that αt(b) =

α0(btbb
∗
t ), then the dotted line ht(a) = h0(ι(bt)aι(bt)

∗) makes the diagram commute.
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Proof. The fact that δ0◦h = h0 holds trivially, while we see that h◦ι = α by substituting

a = ι(b) into the formula for ht(a).

However, this is too restrictive of a case, since in general we cannot assume α to be of

this form. For example when D = C, the KSGNS construction says that for C*-algebras

A and B, completely positive maps α : B → C∞(R) ⊗ C are each given by a C∞(R)-B

Hilbert C*-bimodule E and an element e ∈ E by α(b) = ⟨eb, e⟩E.

From here onwards, we consider only the toy example of D = C, which corresponds

to the D0 diagram in the classical definition of Serre fibrations. We call this the state

path lifting problem for a fibration, since we are lifting time-dependent states. States

correspond to points (or convex combinations thereof) in classical geometry, and so time-

dependent states correspond to paths. Although the problem we solve is relatively small,

lifting paths is a necessary first step towards lifting homotopies, and we hope that this

can give some insight into the more general problem.

38 Classical Interpretation

In the classical lifting problem for a fibre bundle π :M → N , we start with a path p(t) in

the base space N and a starting point q(0) in the total space M with πq(0) = p(0), and

we want to extend p(t) to a path q(t) in the total space satisfying πq(t) = p(t). In our

differentiable context, we assume that ṗ(t) = Xt for a time-dependent vector field Xt on

the base space. We ask for this condition because we want the path to be differentiable,

with its velocity vector described by a vector field. Similarly, we would like to define q(t)

as a time-dependent vector field Yt on the total space, satisfying a condition corresponding

to π(q(t)) = p(t). We look now at this vector field lifting problem.

The idea of a connection of functions on the total space as a module over functions on the

base space gives a way to lift vector fields, as we show in the noncommutative context,

but it is possible to see classically too why this makes sense. A vector field X gives

a directional derivative of a function as Dxf(x) = X i ∂f
∂Xi . Suppose the locally-defined

vector fields ∂
∂Xi on the base space extend to Yi on the total space. Then we define

∇Xi ∂

∂Xi
f = XiDYif
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for functions f on the base space. Further, if f = g ◦ π for some function g on the base

space, then:

∇Xi ∂

∂Xi
(g ◦ π) = (Dxg) ◦ π,

as the Yi extend
∂
∂Xi . In particular ∇X1 = 0. Recall that ∇Xe = (ev ⊗ id)(X ⊗∇e).

We next look at the noncommutative version.

39 Geodesics Preliminaries

The following definitions and propositions are from [6], and are key to constructing h in

the case D = C. Note that the calculus on A is arbitrary.

Definition 39.1. ([6] Example 4.3) Define the following inner product onM = C∞(R)⊗

A:

⟨f(t)⊗ a, g(t)⊗ b⟩M = f(t)g(t)∗⟨a, b⟩F ∈ C∞(R)

where ⟨, ⟩F is a fixed (time independent) inner product on A.

Proposition 39.2. ([6] Proposition 5.1) For a unital algebra A with calculus ΩA and

C∞(R) with its usual calculus Ω(R) we set M = C∞(R) ⊗ A regarded as a C∞(R)-A

bimodule. Then a general left bimodule connection onM is of the form, for c ∈ C∞(R)⊗A

and ξ ∈ Ω1
A,

∇M(c) = dt⊗ (bc+
∂c

∂t
+K(dc)), σM(1⊗ ξ) = dt⊗K(ξ) (75)

for some b ∈ C∞(R)⊗ A and K ∈ C∞(R)⊗ XR
A.

In our case we take the vector field as time-independent.

Proposition 39.3. ([6] Proposition 6.4) This connection on M = C∞(R)⊗A preserves

the inner product on M if for all a ∈ A and ξ ∈ Ω1
A the following equation holds:

⟨(ba+K(da) + ab∗), 1⟩ = 0 = ⟨K(ξ∗)−K(ξ)∗, 1⟩

The first condition is called the divergence condition, and the second the reality condition.
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Proposition 39.4. ([6] Proposition 6.5) If ∇M preserves the inner product as defined

above, and if ∇M(m) = 0 then the positive map ϕ(a) = ⟨ma,m⟩ satisfies

dt.
d

dt
ϕ(a) = (id⊗ ⟨, ⟩)(σM ⊗ id)(m⊗ da⊗m).

In particular d
dt
ϕ(1) = 0, so if we begin at t = 0 with a state on A (normalised to be 1 at

1 ∈ A) then we have a state for all time.

In summary, the paper [6] says that metric preserving left connections onM = C∞(R)⊗A

can be described in terms of vector fields, and for each zero m of such an equation we

get a differential equation for time-dependent states on A.

The paper goes further and characterises in terms of time-dependent vector fields when

these time-dependent states satisfy an equation of geodesic motion ∇∇(σM) = 0, but in

our context we consider the more general case where their time evolution doesn’t have to

be geodesic.

40 State Path Lifting Problem for a Fibration

In order to construct the diagonal map h required for compatibility with cofibrations, we

propose that the definition of a differential fibration should include the additional data

of a certain extendable bimodule connection on the total space as a module over the base

space. In the following, we construct a projection on the calculi, and a lifting of vector

fields from the base space to the total space. The following proposition gives a lifting of

a vector field from the base space to the total space.

Proposition 40.1. Suppose we have a differentiable injective algebra map i : B → A

and a left bimodule connection ∇A : iA → Ω1
B ⊗B iA satisfying the property ∇A(1) = 0.

If X ∈ XR
B is a right vector field on B, then there is a right vector field on A which we

denote Y : Ω1
A → A, specified by

ev(Y ⊗ ξ) = (ev ⊗ id)(X ⊗ σA(1⊗ ξ)) (76)

for any ξ ∈ Ω1
A. The vector field Y is a lifting of X, in the sense that it makes the

162



following diagram commute.

Ω1
A A

Ω1
B B

Y

ι

ι

ι

Proof. (1) Firstly we show that Y is a right module map. But since σA is a bimodule

map,

ev(Y ⊗ ξ.a) = (ev ⊗ id)(X ⊗ σA(1⊗ ξ.a)) = (ev ⊗ id)(X ⊗ σA(1⊗ ξ)).a = ev(Y ⊗ ξ).a

for all a ∈ A and ξ ∈ Ω1
A.

(2) Next we show that the diagram commutes. We calculate

ev(Y ⊗ ι(η)) = (ev ⊗ id)(X ⊗ σA(1⊗ ι(η))) = (ev ⊗ id)(X ⊗ η ⊗ 1) = ev(X ⊗ η) ▷ 1

= ι(ev(X ⊗ η))

But since evaluation is a bimodule map, having ev(Y ⊗ ι(η)) = ι(ev(X ⊗ η)) implies the

diagram commutes.

Supposing we have a connection on C∞(R)⊗B, then the above result on geodesics gives

a right vector field X on B. Because we have a fibration i, this lifts to a right vector field

Y on A, and thus a connection on C∞(R)⊗ A given by

∇N(c) = dt⊗ (i(b)c+
∂c

∂t
+ Y (dC)), σM(1⊗ ξ) = dt⊗ Y (ξ) (77)

For h to be a differentiable positive map, we want it to come from the zeroes of this

connection.

Also, these connections are classified by the following.

Theorem 40.2. Suppose i : B → A is a differentiable injective algebra map. This gives

a B-A bimodule iA with left action b.a = i(b)a and right action a.a′ = aa′. Then:

(1) The following two statements are equivalent.

(i) There is a left bimodule connection ∇A : iA→ Ω1
B ⊗B iA with ∇A(1) = 0.

(ii) There is a B-A bimodule map σA(1⊗−) : iΩ
1
A → Ω1

B⊗BiA with σA(1⊗i(ξ).a) = ξ⊗a

for all ξ ∈ Ω1
B and a ∈ A.
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(2) If the statements from part (1) are true, the B-A bimodule map P = (i.id)σA(1⊗−) :

iΩ
1
A → iΩ

1
A is a projection with image i(Ω1

B).A.

Proof. (1.(i) =⇒ (ii)) Firstly, we show that (i) implies (ii). Suppose we have a left

bimodule connection ∇A : iA → Ω1
B ⊗B iA with the property ∇A(1) = 0. For any a ∈ A

and b ∈ B, we have ∇A(b.a) = b.∇A(a) + db ⊗ a. If we choose a = 1 then we can use

the fact that b.a = i(b)a to get ∇A(i(b)) = db ⊗ 1. It is clear from the definition that

σA(1⊗−) is a B-A bimodule map, so we just need show the last property. For all b, b′ ∈ B

and ξ ∈ Ω1
B we have σA(1 ⊗ i(b′db)) = σA(1 ⊗ i(b′)i(db)) = b′σA(1 ⊗ i(db)) = b′db ⊗ 1.

This shows for all a ∈ A and ξ ∈ Ω1
B the desired property that σA(1⊗ i(ξ).a) = ξ ⊗ a.

(1.(i) ⇐= (ii)) Secondly, we show that (ii) implies (i). Suppose we have a B-A bimodule

map σA(1⊗−) : iΩ
1
A → Ω1

B ⊗B iA with σA(1⊗ i(ξ).a) = ξ ⊗ a for all ξ ∈ Ω1
B and a ∈ A.

Define a map ∇A : iA→ Ω1
B ⊗B iA by ∇A(a) = σA(1⊗ da). Because d1 = 0 this satisfies

∇A(1) = 0. We need to show that ∇A is a left connection, meaning we need to prove that

∇A(b.a) = db⊗ a + b.∇A(a). This follows as ∇A(b.a) = ∇A(i(b)a) = σA(1⊗ d(i(b)a)) =

σA(1 ⊗ d(i(b)).a) + σA(1 ⊗ i(b).da) = σA(1 ⊗ i(b)).a + b.σ(1 ⊗ da) = db ⊗ a + b.∇A(a).

Note that here we have used injectivity of i to get σA(1⊗ i(b).da) = b.σ(1⊗ da).

(2) Firstly, observe that the left hand side of the B-A bimodule map σA : iA ⊗A Ω1
A →

Ω1
B⊗B iA is isomorphic to iΩ

1
A. Since ∇A(1) = 0, we have σA(1⊗da) = ∇A(a). Therefore,

for all b ∈ B,

P (i(db)) = P (d(i(b))) = (i.id)∇A(i(b)) = (i.id)∇A(b ◁ 1) = (i.id)(db⊗ 1) = i(db).

But since P is a right A-module map, it follows that P (i(db).a) = i(db).a for all b ∈ B,

a ∈ A. Hence P = P 2 so P is a projection.

Given these results, it might make sense to include the existence of such a connection (or

perhaps some other condition implying its existence) as part of the data of a noncommu-

tative fibration.

41 How Does This Relate to Fibre Bundles?

The algebra maps definition of a fibre bundle, designed to give a Leray-Serre spectral

sequence for cohomology, is the following.
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Definition 41.1. ([14] Definition 4.1) For a differential graded algebra map ι : B → A,

the forms of degree p on the base and degree q on the fibre are denoted

Np,q =
ιΩp

B ∧ Ωq
A

ιΩp+1
B ∧ Ωq−1

A

, Np,0 = ιΩp
B ⊗A A,

and ι is called a differential fibre bundle if the maps g : Ωp
B ⊗B N0,q → Np,q, i.e.

g : Ωp
B ⊗B

ιΩ
q
A

ιΩ1
B ∧ Ωq−1

A

→ ιΩp
B ∧ Ωq

A

ιΩp+1
B ∧ Ωq−1

A

given by ξ ⊗ [η] 7→ [ι(ξ) ∧ η] are isomorphisms for all p, q ≥ 0.

In the previous section, we only assumed that ι is a differentiable injective algebra map,

and not necessarily a fibre bundle. But the projection P had image i(Ω1
B).A, and therefore

its kernel can be identified with the quotient Ω1
A/i(Ω

1
B).A, which we observe appears in

the theory of noncommutative fibre bundles as the 1-forms in the fibre only.

A question we can therefore pose: Given an ι and∇A making Quillen’s diagram commute,

can we equip A with higher calculi such that g becomes an isomorphism? This would

make ι a noncommutative fibre bundle.

Answering this question would likely use the following definition:

Definition 41.2. If ι : B → A is a differentiable injective algebra map, then define:

K0 = ιA, K1 = ι kerP, Kn =
ιΩ

n
A

ι(Ω1
B) ∧ Ωn−1

A

, ∀n ≥ 2.

We end this section with a guess as to what might be a possible definition of ι being a

weak equivalence in the case where it gives a noncommutative fibre bundle.

We could call a differential fibre bundle ι : B → A a weak equivalence if the fibre has

cohomology Hq(N) = δq,0C, where the cochain complex N has qth entry N0,q and the

differential is a quotient of the ordinary differential. In this case, the second page of the

Leray-Serre Spectral sequence has only one non-vanishing row, with entry (p, 0) given by

Hp(B,C). This sequence is already stabilised, and so Hp(B,C) ∼= Hp(A,E,∇E).

42 Examples

In this section we give examples of fibrations where the lifting problem implies the exis-

tence of a diagonal map h, and for some of them we solve the differential equation for h

explicitly.
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42.1 Example: Group Algebras

[Algebras: See Example 3.11 for CG and its calculi]

Take A = CX and B = CG for a subgroup G ⊂ X. Equip CX with left covariant calculus

Ω1
CX = Λ1

CX .CX for a right representation Λ1
CX spanned by a linear map ω : CX → Λ1

CX

satisfying ω(xy) = ω(x) ◁ y + ω(y) for x, y ∈ X called a cocycle. The differential is

dx = xω(x). Similarly equip CG with Ω1
CG = Λ1

CG.CG for Λ1
CG the vector space spanned

by the restriction ω|CG.

Take i : CG→ CX to be the inclusion map. We want to explicitly find a bimodule map

σA(1⊗−) : iΩ
1
A → Ω1

B ⊗B iA satisfying σA(1⊗ i∗(ξ).a) = ξ⊗ a for all ξ ∈ Λ1
B and a ∈ A.

For x, y ∈ X, define

σA(1⊗ dx.y) =

dx⊗ y, if x ∈ G

0, else

.

Then σA(1 ⊗ i∗(ξ).x) = ξ ⊗ x for all ξ ∈ Ω1
CG and x ∈ X as required. This gives a left

bimodule connection ∇CX : iCX → Ω1
CG ⊗CG iCX with ∇CX(1) = 0.

Seeing as Ω1
CG ⊂ Ω1

CX , it follows that X
R
CG ⊂ XR

CX , and so the lifting of a vector field is

simply its inclusion.

Example 42.1. We give an example of a choice of h1, α and h to fill in the commutative

diagram, in order to illustrate what kind of maps go there. We note that this of course

does not constitute a proof, and is just an illustration.

C CX

C([0, 1];C) CG

h1

h
δ1

α

ι

This could have maps

h1(x) =

0, if x ̸= e

1, if x = e

, αt(g) =

0, if g ̸= e

t, if g = e

, ht(x) =

0, if x ̸= e

t, if x = e

and where δ1 means evaluation at 1. ⋄

Remark 42.2. One interesting thing about this example is that there is a conditional

expectation E : CX → CG — the one from Section 34.1. If we had h1 = α1 ◦E (which it
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isn’t obvious we do), then we could construct the diagonal map as ht = αt ◦ E. This is a

different method to our more general connection-based one, but it relies on a non-trivial

assumption so it isn’t clear how general it is.

42.2 Example: Heisenberg Group and Quantum Circle

[Algebras: See Example 3.13 for CHg and its calculus, and Example 3.2 for Cq[S
1] and

its calculus]

The following is another example of group algebras, except here the fibration isn’t just

the inclusion map.

Take A = CHg and B = C1[S
1] = C[t, t−1], i.e. we equip the quantum circle with its

classical calculus so 1-forms commute with algebra elements, then there is a differential

graded algebra map

ι : C[t, t−1] → CHg, ι(t) = w, ι∗(dt) = wew

which is a differential fibre bundle. (See [10] Example 4.67)

Proposition 42.3. There is a left bimodule connection on ιΩ
1(CHg) specified by the

C[t, t−1]-CHg bimodule map σA(1 ⊗ −) : ιΩ
1(CHg) → Ω1(C[t, t−1]) ⊗C[t,t−1] ιCHg given

by

σA(1⊗ ex) =

t
−1dt⊗ 1, if x = w

0, if x ∈ {u, v}

which satisfies σA(1⊗ ι∗(ξ).a) = ξ ⊗ a for all ξ ∈ Ω1(C[t, t−1]), a ∈ CHg.

Proof. (1) Firstly we show that σA is well-defined. The first thing to check is:

σA(1⊗ eu).v = σA(1⊗ v(eu +
1

2
ew))

But since v is not in the image of ι so it cannot move across the tensor product, so it

doesn’t introduce any problems. The second thing to check is:

σA(1⊗ ev).u = σA(1⊗ u(ev − 1

2
ew))

But again, u is not in the image of ι so it cannot move across the tensor product.
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(2) Secondly, we show the connection σA satisfies the required property. A general

element of the calculus Ω1(C[t, t−1]) takes the form dt.f(t) for f some polynomial in

t. Then using that ι is a differential graded algebra map and σA a bimodule map, we

calculate:

σA(1⊗ ι∗(dt.f(t))) = σA(1⊗ wew)f(w) = dt⊗ f(w) = dt.f(t)⊗ 1

as required.

Proposition 42.4. A general right vector field X on C[t, t−1] takes the form X =

f(t)(it ∂
∂t
) and is real if f is real. It lifts to a right vector field Y on CHg given by

Y = f(w)
(
iew
)
: Ω1(CHg) → CHg. (78)

If X is real then Y is real, with respect to the Haar measure∫
= ϕ : CHg → C, ϕ(g) = δg,e.

Proof. (1) Taking t = eiθ, we have ∂
∂θ

= ∂t
∂θ

∂
∂t

= it ∂
∂t
. A general vector field is of the

form f(t) ∂
∂θ
, and hence of the form f(t)(it ∂

∂t
) and is real if f is real.

(2) We show the formula for the lifted vector field. The general formula is ev(Y ⊗ ξ) =

(ev⊗ id)(X ⊗ σA(1⊗ ξ)). Since a general vector field on C[t, t−1] is of the form f(t)(i ∂
∂t
),

we have

ev(X ⊗ dt) = itf(t),

and so, looking at the one invariant 1-form ew that σA does not send to zero, we calculate:

ev(Y ⊗ ex) = (ev ⊗ id)(X ⊗ σA(1⊗ ex)) = δx,w(ev ⊗ id)(t−1dt) = δx,wιev(X ⊗ t−1dt)

= if(w)δx,w =

if(w), if x = w

0, if x ∈ {u, v}
.

This is equivalent to Y = f(w)
(
iew
)
.

(3) Next we show that if the vector field X on C[t, t−1] is real then its lift Y to CHg is

real. A general X is of the form f(t)
(
− it ∂

∂t

)
, and is real if and only if f is a real function

on the circle, i.e. if f(t) = f(t)∗. Expanding f(t) =
∑
k

fkt
k, we calculate

f(t)∗ =
∑
k

f ∗k (t
k)∗ =

∑
k

f ∗k t
−k.
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Hence f(t) = f(t)∗ if and only if fk = f ∗−k.

We calculate the differential on an element of Hg as:

d(wnumvp) = (new +meu + pev ◁ u−m)wnumvp = (new +meu + p(ev +
m

2
ew))wnumvp.

The evaluation of the lifted vector field Y on this is then:

Y (d(wnumvp)) = if(w)(n+ p
m

2
)wnumvp = if(w)(n+

1

2
mp)wnumvp

The Haar measure ϕ : CHg → C is given by ϕ(g) = δg,e.

Using the expansion f(w) =
∑
k

fkw
k for some fk ∈ C, we calculate:

ϕY (d(wnumvp)) = inf−nδm,0δp,0

Since (wnumvp)∗ = v−pu−mw−n, we get∫
Y (ξ∗) = ϕY (d(v−pu−mw−n)) = −inf−nδ−m,0δ−p,0,

while on the other hand we have(∫
Y (ξ)

)∗
=
(
inf−nδm,0δp,0

)∗
= −inf ∗−nδm,0δp,0.

For reality of Y we need these to coincide, i.e. that fn = f ∗−n, which is precisely the

condition for X to be real.

Proposition 42.5. The zeroes of the connection ∇(e) = ė+K(de)+ be on the bimodule

corresponding to the diagonal map satisfy

ė = −1

2
divY.e− ev(Y ⊗ de).

where

divY = iw
∂f

∂w
. (79)

By the KSGNS construction this gives the following positive map across the diagonal:

h : A→ C⊗ C∞(R), h(a)(t) = ⟨e(t), ae(t)⟩. (80)

We can further describe this as e =
∑
n,m,p

s(w, t)umvp, where

ṡ = −1

2
iw
∂f

∂w
s− if(w)(

∂s

∂w
+

1

2
mps).

169



Proof. (1) First we calculate the divergence of Y . This is defined by the equation∫
(divY.a) +

∫
Y (da) = 0

which is equivalent to the following equation holding for all n,m, p:

ϕ
(
divY.wnumvp

)
= iϕ

(
f(w)(n+

1

2
mp)wnumvp)

)
If m and p are not both equal to zero then the right hand side vanishes, in which case

for all p, q, the divergence divY must be the product of a function of w with u−mv−p,

which is a contradiction. Hence the divergence must be purely a function of w, and so

divY =
∑
gjw

j for coefficients gj ∈ C. Next, we set m = p = 0 to get the equation∫ (
divY.wn

)
= −in

∫
(f(w)wn)

which implies g−n = −inf−n, or equivalently gn = infn. But this is equivalent to

divY = iw
∂f

∂w
.

(2) Next we look at the differential equation. First we expand:

e =
∑
n,m,p

enmp(t)w
numvp

If we fix m and p, we get e = s(w, t)umvp. We can solve the equation for each of these and

then add them together to get the general solution. Hence we get a differential equation

for s:

ṡumvp = −1

2
divY sumvp − Y (d(sumvp)).

Using the Leibniz rule and the fact that ueu = eu.u and vev = ev.v, and also that

ev ◁ u−m = ev + m
2
ew, we calculate

d(sumvp) = ds.umvp +mseuumvp + psumevvp

= ds.umvp +meusumvp + p(ev ◁ u−m)sumvp

=
(
ds.umvp +meusumvp + p(ev +

m

2
ew)s

)
umvp

Also, expanding s =
∑
j

sj(t)w
j, we have ds =

∑
j

jewsj(t)w
j, so ev( ∂

∂w
⊗ ds) = w ∂s

∂w
.

170



Hence the differential equation becomes

ṡumvp = −1

2
(−iw ∂f

∂w
)sumvp − iw−1f(w).ev

( ∂
∂w

⊗ (ds+
1

2
mpews)

)
umvp

Simplifying and applying the calculations above, we get:

ṡ = −1

2
iw
∂f

∂w
s− if(w)(

∂s

∂w
+

1

2
mps)

If we expand this into powers of w, we can compare the coefficients to get a first order

linear differential equation involving sj(t) and sj+1(t). The solutions of the general case

don’t look to be nice, but perhaps there might be an existence result.

42.3 Example: Functions on S3

[Algebras: See Example 3.10 for C(G) and its calculi]

Let G be a normal subgroup of a finite group X, so the quotient X/G is a group. The

algebra CX has left covariant calculus Ω1(X) = C(X).Λ1
X , where the vector space Λ

1
X of

left-invariant 1-forms has basis elements ea for a ∈ C ⊂ X\{e} satisfying

ea.f = Ra(f)ea, df =
∑
a∈C

(Ra(f)− f)ea,

whereRa(f)(x) = f(xa). This implies ea.δx = δxa−1 .ea. The calculus is inner by θ =
∑
a

ea,

and is a star-calculus by e∗a = −ea−1 if C has inverses.

The projection p : X → X/G is a homomorphism and induces an algebra map

i : C(X/G) → C(X), δy 7→
∑

x∈X:p(x)=y

δx.

This is our candidate for a fibration. Now we look at a specific example. The only non-

trivial normal subgroup of X = S3 is the alternating group G = A3 = {e, (123), (132)}.

The quotient S3

A3
is isomorphic to C2, the algebra with a single generator x.

Equip A = C(S3) with calculus given by C = {(12), (123), (132)}. The set C is closed

under inverses, so Ω1(S3) is a *-calculus with:

e∗(12) = −e(12), e∗(123) = −e(132), e∗(132) = −e(123).
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For the higher calculi on C(S3), we quotient by the relations e(12)∧e(12) = 0 and θ∧θ = 0.

The latter of these relations is equivalent to having for all y ∈ S3,∑
a,b∈C:ab=y

ea ∧ eb = 0.

Written out in full, the six relations are:

0 = e(12) ∧ e(12), 0 = e(132) ∧ e(132), 0 = e(123) ∧ e(123)

0 = e(12) ∧ e(123) + e(132) ∧ e(12), 0 = e(123) ∧ e(12) + e(12) ∧ e(132)

0 = e(123) ∧ e(132) + e(132) ∧ e(123)

In a general monomial element, without loss of generality we can slide all e(12) terms to

the right of all other terms. Since e(123) and e(132) anticommute, we can put all e(132)

terms to the right of all e(123) terms. But since every type of term squares to zero, we are

left with the conclusion that every nonzero element of Ω3(S3) is equal to a scalar multiple

of e(123) ∧ e(132) ∧ e(12), and that all higher calculi are zero. The calculus Ω2(S3) is then

spanned by the three elements e(123) ∧ e(132) and e(123) ∧ e(12) and e(132) ∧ e(12).

For the algebra B = C(C2), we equip it with calculus determined by the set D = {x},

which is closed under inverses, making Ω(C2) a *-calculus with e∗x = −ex. For the higher

calculi, we impose the relation θ ∧ θ = 0, which means ex ∧ ex = 0, and so for all n ≥ 2

we have Ωn(C2) = 0.

Proposition 42.6. The algebra map

i : C(C2) → C(S3),

δe 7→ δe + δ(123) + δ(132)

δx 7→ δ(12) + δ(23) + δ(31)

(81)

which extends to the above calculi as a differential graded algebra map

i∗ : Ω1(C2) → Ω1(S3), ex 7→ e(12) (82)

is a differential fibration.

Proof. We look at the following quotient

Np,q =
iΩp(C2) ∧ Ωq(S3)

iΩp+1(C2) ∧ Ωq−1(S3)
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In the case p = 0 we see that g is an isomorphism:

C(C2)⊗C(C2)
Ωq(S3)

e(12) ∧ Ωq−1(S3)
→ Ωq(S3)

e(12) ∧ Ωq−1(S3)
.

Next, in the case p = 1, we can see that g is an isomorphism.

ex ⊗C(C2)
Ωq(S3)

e(12) ∧ Ωq−1(S3)
→ e(12) ∧ Ωq(S3)

The Haar measure on C(S3) is given by:

ϕ : C(S3) → C, δg 7→
1

6

Proposition 42.7. With the above calculi, there is precisely one left bimodule connection

on iC(S3) satisfying ∇A(1) = 0 and σA(1⊗ i∗(ξ)) = ξ ⊗ 1, and it is given by:

σA(1⊗ ea.f) =

ex ⊗ f, if a = (12)

0, if a ∈ {(123), (132)}
(83)

for f ∈ C(S3).

Proof. We show uniqueness of the bimodule connection. The fact that σA(1⊗e(12)) = ex

is automatic from the condition, but the values of σA(1 ⊗ e(123)) and σA(1 ⊗ e(132)) are

non-trivial to calculate. Denote:

σA(1⊗ e(123)) = exf(123) ⊗ 1

σA(1⊗ e(132)) = exf(132) ⊗ 1

Then the fact that σ is a bimodule map implies that for θ ∈ {e, x} and a ∈ {(12), (123), (132)}

that

δθσA(1⊗ ea) = σA(1⊗ ea)Ra−1(i(δθ))

which gives the following equations:

δeexf(123) ⊗ 1 = exf(123) ⊗R(123)−1(i(δe))

δxexf(123) ⊗ 1 = exf(123) ⊗R(123)−1(i(δx))
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δeexf(132) ⊗ 1 = exf(132) ⊗R(132)−1(i(δe))

δxexf(132) ⊗ 1 = exf(132) ⊗R(132)−1(i(δx))

The first of these equations gives, using the fact that δθ.ea = ea.δθa,

exδxf(123) ⊗ 1 = exf(123) ⊗R(123)−1(δe + δ(123) + δ(132)) = exf(123) ⊗ (δe + δ(123) + δ(132))

= exf(123) ⊗ i(δe) = exf(123)δe ⊗ 1.

This implies

δxf(123) = f(123)δe

Since these are functions, the equality has to hold when evaluated at the points e and x.

Consequently f(123)(e) = 0 and f(123)(x) = 0, so f(123) = 0.

Similarly, the third equation gives:

exδxf(132) ⊗ 1 = exf(132)δe ⊗ 1.

This gives

δxf(132) = f(132)δe,

which for the same reasons as above implies f(132) = 0, as required. The other two

equations simply reduce to 0 = 0.

Proposition 42.8. A general right vector field X = X iex = (µeδe + µxδx)e
x on C(S2)

lifts to a right vector field

Y : Ω1(S3) → C(S3), ev(Y ⊗ ea) =

iX(ex), if a = (12)

0, if a ∈ {(123), (132)}
(84)

If X satisfies the reality condition∫
B

X(ξ∗) =

∫
B

X(ξ)∗.

where
∫
B
=
∫
A
◦i, then Y satisfies the reality condition:∫

A

Y (ξ∗) =

∫
A

Y (ξ)∗.
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If integration
∫

is taken to be the Haar measure

ϕ : C(S3) → C, ϕ(δy) =
1

6
,

the divergence divY of the vector field Y , defined by∫ (
divY.a

)
+

∫
Y (da) = 0,

is given by divY = 0.

Proof. (1) Firstly we show the reality condition. If we take the reality condition on X,

then use the definition of
∫
B

=
∫
A
◦i and the formula for Y , then the fact that i is a

star-algebra map implies the reality condition for Y .

(2) Next, we calculate the divergence. For general f ∈ C(S3) we have

df =
∑
a∈C

ea(f −Ra−1(f)),

which expanding f =
∑
y∈S3

λyδy gives

df =
∑
y∈S3

λy
∑
a∈C

ea(δy − δya)

A general right vector field on C(C2) is given by X = Xxex for some Xx ∈ C(C2), where

ex is the dual of ex. Using that Y is a right module map and that ev(Y ⊗ea) = δa,(12)i(X
x)

we have:

ev(Y ⊗ df) = i(Xx).(f −R(12)(f)) = i(Xx).
∑
y∈S3

λy(δy − δy.(12))

Hence for the Haar measure ϕ : C(S3) → C given by ϕ(δy) =
1
6
for all y, we have

ϕ(Y (df)) =
∑
y∈S3

λy(
1

6
− 1

6
) = 0.

Consequently, for all a ∈ C(S3), the definition of divergence gives:

ϕ(divY.a) = 0.

It follows from this that divY = 0.
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Proposition 42.9. For b = 1
2
divY, the zeroes of the connection ∇(e) = ėK(de) + be on

the bimodule corresponding to the diagonal map satisfy

ė = −1

2
divY.e− Y (de), (85)

which has solution

e(t) =
∑
y∈S3

(
Ay +Bye

−2(µe+µx)t
)
δy (86)

for y ∈ S3, and constants Ay, By, µe, µx ∈ C satisfying Ay = Ay.(12) and By = −By.(12).

Via the KSGNS construction, this gives positive maps across the diagonal h(a) = ⟨e, ae⟩.

Proof. We solve the differential equation for zeroes of ∇.

−ė = Y (de).

Expanding −e(t) =
∑
y∈S3

λy(t)δy, the differential equation becomes:

∑
y∈S3

λ̇y(t)δy = i(Xx).
∑
y∈S3

λy(t)(δy − δy.(12))

We can expand Xx = µeδe + µxδx for some constants µe, µx ∈ C, giving

i(Xx) = µe(δe + δ(123) + δ(132)) + µx(δ(12) + δ(23) + δ(31)).

Hence the differential the equation becomes:∑
y∈S3

λ̇y(t)δy =
∑

y∈{e,(123),(132)}

λy(t)
(
µeδy − µxδy.(12)

)
+

∑
y∈{(12),(23),(31)}

λy(t)
(
µxδy − µeδy.(12)

)
=

∑
x∈C(S3)

(
λy(t)(µeδy − µxδy.(12)) + λy.(12)(t)(µxδy.(12) − µeδy)

)
=

∑
y∈C(S3)

(
(λy(t)− λy.(12)(t))(µeδy − µxδy.(12))

)
=

∑
y∈C(S3)

(µe + µx)(λy(t)− λy.(12)(t))δy

Since the functions δy are linearly independent, comparing their coefficients gives the

following differential equation in t:

λ̇y(t) = (µe + µx)(λy(t)− λy.(12)(t)).

176



Replacing y with y.(12) in this gives

λ̇y.(12)(t) = (µe + µx)(λy.(12)(t)− λy(t)),

and hence

λ̇y(t) + λ̇y.(12)(t) = 0.

Thus λy(t) + λy.(12)(t) = Cy, for some constant Cy and for all t. Substituting into the

original equation and re-arranging, we get

λ̇y(t)− 2(µe + µx)λy(t) = −(µe + µx)Cy.

Multiplying both sides by e−2(µe+µx)t and using the Leibniz rule, the equation becomes

∂

∂t

(
e−2(µe+µx)t.λy(t)

)
= −(µe + µx)e

−2(µe+µx)tCy.

Integrating and re-arranging gives the solution

λy(t) =
1

2
Cy +Bye

−2(µe+µx)t,

so

−e(t) =
∑
y∈S3

(
Ay +Bye

−2(µe+µx)t
)
δy

for constants Ay, By ∈ C satisfying Ay = Ay.(12) and By = −By.(12). We note that due

to these relations, although it appears there are 12 constants, there are actually only 6,

which is the same number as the number of elements of S3. Lastly we absorb the minus

sign into the constants to get the result in the proposition.

42.4 Example: Cq[SU2] and Cq[S
2] (Using Hopf Fibration)

[Algebras: See Example 3.5 for Cq[SU2] and its 3D calculus, and Example 3.6 for Cq[S
2]

and its calculus]

There is a Haar measure on
∫
: Cq[SU2] → C given on elements of the form (bc)n as∫

(bc)n =
(−1)nqn

[n+ 1]q2
,
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and zero on all basis elements not of this form. Here the square brackets denote q-integers,

defined as

[n]q =
1− qn

1− q

The Haar measure on Cq[SU2] restricts to Cq[S
2] as∫

xn =
1

[n+ 1]q2
.

The inclusion map i : Cq[S
2] → Cq[SU2] is a differential fibration called the Hopf fibration,

and it extends to the calculi. (See [10] Example 4.68)

Proposition 42.10. The Cq[S
2]-Cq[SU2] bimodule map σA(1⊗−) : iΩ

1
Cq [SU2]

→ Ω1
Cq [S2]⊗Cq [S2]

iCq[SU2] for all η ∈ Λ1
Cq [S2] defined by

σA(1⊗ η) =

η ⊗ 1, if |η| = 0

0, else

.

satisfies σA(1⊗ i∗(ξ).a) = ξ ⊗ a for all ξ ∈ Ω1
Cq [S2] and a ∈ Cq[SU2].

Proof. We see that the bimodule map σA satisfies the condition, because |i∗(ξ)| = 0 and

σA(1⊗−) is a bimodule map.

43 Future Ideas and Discussion

These are just the first few ideas in the direction of differential cofibrations. Our focus here

has been primarily on the vector fields specifying the αt rather than the maps themselves.

In order to replace C in the diagram, we would need to generalise the geodesics methods

that describe connections in terms of vector fields.

Moreover, it is not even clear at this stage what the right category in which to look at

the problem is. We might also look at how much can still be done if ι is no longer an

injective algebra map but an injective completely positive map, and whether this relates

to our notion of fibre bundle in Part IV. We could even consider a category of algebras

whose morphisms are Hilbert C* bimodules with connections.

Also, the state path lifting problem we solved may have applications aside from the study

of cofibrations. For example, we found a formula for lifting paths, but we might investigate
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the question of under what conditions noncommutative geodesics lift to noncommutative

geodesics, i.e. whether if the initial connection satisfying ∇∇(σE) = 0 implies that the

lifted connection also satisfies this.
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Part VII
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