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Part 1

Introduction

1 Noncommutative Differential Geometry

In classical differential geometry, the objects of study are (infinitely) differentiable man-
ifolds, and the vector fields and differential forms associated with them. On a differ-

entiable manifold M, on each local coordinate patch (also called a chart) there are

o)
ozt

vector fields which span the tangent bundle 7M. Dual to these are 1-forms da’
which span the cotangent bundle T*M. Note that it only makes sense to talk about
these on local coordinate patches. Denoting C*°(M) for the algebra of smooth (i.e. in-
finitely differentiable) real-valued functions M — R, the duality is by the bimodule map

ev : TM @ T*M — C>=(M) given on local coordinate patches by ev(:Z, dz?) = §;;.

8$i Y

Globally we write Q'(M) for the space of 1-forms, which is regarded abstractly as the
image of the linear map d : C*(M) — Q' (M) satisfying df = > %dxi and the Leibniz
rule d(fg) = fd(g) +d(f)g. Higher differential forms 2"(M) caln also be defined via the
wedge product A : Q*(M) @ Q™(M) — Q""™(M). For example, Q?(R?) contains the
2-form da! A dz?. In particular the extension of the differential to higher calculi squares

to zero, giving the following cochain complex, called the de Rham complex.
0 —— C=(M) —5 Q' (M) —4— Q*(M) —4— 3(M) — ...
Associated to this cochain complex are the de Rham cohomology groups, defined as:
H"(M) = ker(d : Q"(M) — Q"™ (M))/im(d : Q""1(M) — Q"(M)).

However, in noncommutative differential geometry, it was observed that all of this theory,
along with other objects such as metrics and connections on vector bundles, can also be
defined when C*°(M) is replaced by any algebra A, usually associative and unital, but
which need not be commutative. The objective of the field is to find as many noncommu-
tative analogues of classical constructions as possible, along with considering differential

phenomena which occur only in a noncommutative setting. In the preliminaries section



below this, we give an overview of the key definitions and results in noncommutative
differential geometry.

The Gelfand-Naimark theorem [28] gives an interpretation of these noncommutative ana-
logues, giving a one-to-one correspondence between compact Hausdorff spaces and com-
mutative unital C*-algebras. Thus we interpret noncommutative unital C*-algebras as
algebras of functions on hypothetical “noncommutative” compact Hausdorff spaces. The
theory of C*-algebras was developed in the early 20th century by Von Neumann [/1], and
many others including Gelfand and Naimark [28].

Also in the early 20th century, it was observed that the algebra of observables in quantum
theory is noncommutative. These were connected in the 1980s by Alain Connes [19],
whose theory of spectral triples gave a noncommutative analogue of the Dirac operator
from physics, and also an idea of a differential on noncommutative algebras as da = [D, a).
However, the notion of calculus that we work with in this paper is the one proposed by
Woronowicz in 1989 [58] for quantum groups such as C,[SUs], which are noncommutative
analogues of Lie groups.

This thesis contains no physics, but noncommutative differential geometry finds various
applications in physics, including to noncommutative space time models by Majid such as

in [32] and Chapter 9 of [10], to gauge theories and the standard model by Chamseddine

and Connes in [18], and to geodesics in quantum mechanics by Beggs and Majid [9].
Within mathematics, there are applications to Hopf algebras as in chapter 2 of [10], and
applications to Hopf algebroids by Majid and Siméao [37], where the study of bimodule

connections from algebroids gives rise to a theory of jet bundles. There are also ap-
plications to C*-algebras by considering differentiation of the KSGNS construction (see
chapter 5 of [30] for details on the KSGNS construction), as was used in [6] to study non-
commutative geodesics, and also as we use extensively in Parts V and VI of this thesis.
There are also applications to noncommutative generalisations of grassmanians and Lie
theory such as in [17] and [10]

In this thesis, we begin with a review of preliminaries from noncommutative differential
geometry, closely following definitions and notation used in the book [10]. The overarching
theme of the thesis is to introduce noncommutative analogues of various concepts from

topology, and calculate a number of examples of each, with an emphasis on quantum
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group examples and discrete examples.

Section II contains the first original content, where we give a diagrammatic differential
calculus on Temperley-Lieb algebras. This calculus is new to the extent of our knowledge,
and the section also serves as an illustration of a number of techniques we use throughout
the thesis.

In Section IIT we introduce a new possible definition for noncommutative submanifolds,
and prove a number of results about the differential geometric properties of algebras
satisfying this definition.

In Section IV we take an existing definition for noncommutative fibre bundles via algebra
maps and generalise it to use bimodules and completely positive maps instead, showing
we can still obtain a Leray-Serre spectral sequence. We also uploaded this to the arXiv
as [7].

In Section V we look at ideas for noncommutative analogues of retracts and neighbour-
hood retracts. Since we only began work on this section quite late in the project, our
investigations are still in the early stages and there is a lot of future work we could do.
Lastly, in Section VI we look at what Quillen’s definition of cofibration might mean in a
noncommutative differential context. We focus on the problem of lifting time-dependent
states, which correspond to paths, since lifting paths is a necessary first step towards lift-
ing homotopies. This section is just a few initial ideas and calculations towards something
whose completed version, if it exists, would be much more complicated.

With the possible exception of the section on Temperley-Lieb algebras, all the subjects
in this thesis — submanifolds, fibre bundles, retracts, and cofibrations — are related
classically. Classical embedded submanifolds give neighbourhood retracts via tubular
neighbourhoods. One definition of topological cofibrations is in terms of neighbourhood
deformation retracts. Fibre bundles are examples of fibrations, and fibrations are dual to

cofibrations.

2 Preliminaries

The key definitions and notation we use closely follow the setup of the book [10], but

so that this thesis can be read as a self-contained document we also present them here.

11



The first thing we do with an algebra is to equip it with a calculus, after which we can

consider structures like connections on modules over the algebra.

Definition 2.1. A vector space A over C is called an algebra if there is a multiplication
operation which is distributive with respect to the vector space addition. Further, we say
that A is associative if a(bc) = (ab)c for all a,b,c € A, and call A unital if there exists an

element 1 € A such that 1.a = a.1 for all a € A.

In this thesis, we will assume all algebras are associative and unital unless otherwise

stated. The one non-unital algebra we consider is the algebra D in the retracts section.

Definition 2.2. ([10] Section 1.1) Given algebras A and B, we call vector space E:

(1) A left A-module if there is a left action a>e € E of A on E which respects algebra
multiplication in the sense that (ajas) >e = a; > (ay>e€). We write £ € 4 M.

(2) A right B-module if there is a right action e<tb € E of B on E which respects algebra
multiplication in the sense that e < (b1by) = (e <by) <by. We write E € M.

(3) An A-B bimodule if E is both a left A-module and a right B-module and the actions
commute in the sense that (a>e)<b = a>(e<b). We write £ € 4Mp. An A-A bimodule

is called an A-bimodule for short.

Actions on modules, especially on calculi, may be also written as a.e or simply ae. In
the example CG for G a finite group, we actually see both the triangle and dot notations
appearing, where the dot is the action on the calculus and the triangle is the action on a
representation.

We can take the tensor product of an A-B bimodule E with a B-C' bimodule F', and obtain
an A-C bimodule E®p F. This has actions a.(e® f) = (a.e)® f and (e® f).c = e®(f.c).
The characteristic property of ®p is that eb® f = e® b.f — i.e. that we can move
elements of B across the tensor product.

Note that since every module over C can be regarded as a C module by multiplication,
we can always take B = C and get a tensor product F ®c¢ F', which it is customary to

write as F ® F.

Definition 2.3. ([10] Definition 1.1) For an associative unital algebra A, we say that an
A-bimodule QY is a (differential) calculus on A if QY = span{a’da | a,a’ € A} for a linear

map d : A — QY satisfying d(ab) = adb + da.b, which we call the exterior derivative.

12



The calculus is called connected if kerd = K.1, where K is the field of scalars of A.

Here we always take K = C. If we drop the condition that 2} is spanned by elements
of the form a’da and allow elements not of this form, then Q) is called a generalised
calculus. We consider generalised calculi in the Temperley-Lieb algebras section.

There are potentially many different calculi that any given algebra can be equipped with,
and so we always need to specify which calculus we are using. If we talk about a calculus
Q! on an algebra A without specifying which calculus it is, then 2} is arbitary.

Note that while in the calculus on a manifold we always have db.a = a.db, this non-
commutative definition makes no such assumption, and this gives rise to a number of
phenomena such as inner calculi which only appear in a noncommutative setting due to

commutators not vanishing.

Definition 2.4. ([10] Definition 1.3) If there exists an element 6 € Q} such that da =
[0, a] for all @ € A, where [0, a] = 0a — af denotes the commutator, then we say that the

calculus QY is inner by 0.

Definition 2.5. ([10] Chapter 6) For an algebra A with calculus QY right vector fields

on A are the set of right module maps
X = Homy (2, A),

i.e. which satisfy X (£.a) = X (§).a for £ € QY a € A.
The left vector fields on A are the set of left module maps

x4 = AHom(QY, A),
i.e. which satisfy X (a.§) = aX(¢) for £ € QY, a € A.
The vector fields are an A-bimodule, with X € X having actions

(@X)(§) = a.X(£), (Xa)(§) = X(af),

and X € X% having actions

(aX)(§) = X(§.a), (Xa)(§) = X(¢).-a.

13



The actions on left vector fields look a little strange, but this comes from the requirement
that the evaluation map ev : Q4 ®4 X% — A be a bimodule map.

In the classical case where 1-forms commute with functions on a manifold, this definition
is equivalent to derivations on C*°(M), but in the noncommutative case these do not
coincide, and we have to choose one definition over another. In Section III we go into
more detail as to why we have chosen to take vector fields as dual to 1-forms instead of
being derivations, but in short the main reason is because we can’t take connections on

it otherwise.

Definition 2.6. ([10] Definition 3.1) A right A-module F' is said to be right finitely gen-
erated projective if there are a finite number of module elements f; € F' and right module

maps ¢’ € Homy(E, A) such that each f € F' can be decomposed as f = >_ fi.e'(f).

It follows that each e € Homa(E, A) can be decomposed as e = Ze(fi).ei, and that
Homy(F, A) is a left A-module and is left finitely generated projectixzfe.

If the calculus QY is right finitely generated projective, the vector fields X% are left finitely
generated projective. Likewise, if QY is left finitely generated projective, then X% is right
finitely generated projective.

So far we have looked at first order calculi 2}, but similarly to the de Rham complex
in classical differential geometry we can define higher order calculi 27;. This is given by

equipping the algebra with a differential graded algebra structure as in Definition 1.30 of

[10], where we extend the differential as
dlwAp)=(dw)Ap+ (=1)"wAdp

for w € 0, p € 0}, and following from the surjectivity condition of first order calculi, an
element of Q7 is the wedge product of n elements of . This formula for the differential
makes d? = 0. So for example an element of Q% is of the form da; A day for some
ai,as € A, and satisfies daj.as A das = da; Aaz.das for ag € A. As for what relations this
wedge product satisfies, there are many possibilities, but one used very commonly and
which has a minimal number of relations is the maximal prolongation calculus, discussed
later in this section.

Next we look at connections on modules and bimodule connections on bimodules.

14



The idea of a bimodule connection was introduced in [24], [23] and [412] and used in [27],

[31]. It was used to construct connections on tensor products in [15].

Definition 2.7. ([10] Definition 3.18) A left connection on a left A-module E is a linear
map Vg : E — Ql ®4 F obeying the left Leibniz rule

Ve(ae)=da®e+a.Vge, ec E,a€ A
Its curvature Rg : E — Q% ®4 E is defined by
REG = (d X id —id A VE)VEe

By Lemma 3.19 of [10], the curvature of a left connection is always a left A-module map.
A connection is said to be flat if its curvature is zero.

This is related to the classical definition of connection by the formulae

Vs =da' ® V;s, Vis = (ev ® id)(% ® Vs),

where s is a section.

There is a similar definition for right connections on right modules.

Definition 2.8. A right connection on a right A-module F is a linear map Vg : E —

E @4 QY obeying the right Leibniz rule

Ve(e.a) = @E(e).a + e ®da,

and its curvature RE E— E®g Qi is defined by

Rp(e) = (id®d+ Vg Aid)Vge.

Similarly, the curvature of a right connection is always a right module map.
On a B-A bimodule, we can ask if a left connection satisfies a version of the right Leibniz

rule as well, i.e. whether the left connection is compatible with the right module structure.

Definition 2.9. ([10] Generalisation of Definition 3.66) We say that a left connection
Ve : E — QL ®p A on a B-A bimodule F is a bimodule connection if the map op :

E®4 QY4 — QL ®p F given by
ople®da) =V(e.a) —Vg(e).a, ec€ F,ae A
is a bimodule map.

15



Since o is defined in terms of Vg, it is not additional data. Rather, after specifying the
right module structure, being a bimodule connection or not is a property of any given
left connection.

The bimodule map og lets us move first-order calculi from one side of the bimodule to

another, but in order to move higher order calculi we require extendability.

Definition 2.10. ([10] Definition 4.10) A left bimodule connection Vg on a B-A bi-
module E is called extendable if op : E ®4 QY — Qb ®p F extends for all n > 1 to
op: E®, V) — Q% ®p E such that for all m > 1

(A®id)(id ® og)(cr ®@id) = op(id @A) : E®4 Q% @4 Q% — Q5" @p E.

For a right bimodule connection extendability means that oy extends as op : Q3 p E —
E®4Q% by the formula og(E An®e) = (o Aid)(E®og(n®e)). This can also be written
as (Id @ A)(og ®id)(id ® o) = op(A ® id).

We use extendability in the fibre bundles section.

Definition 2.11. ([10] Lemma 1.32) Every first order calculus Q! on A has a 'mazimal

prolongation’ Q4. to an exterior algebra, where for every relation ) a;.db; = ) dr;.s;

max*

i J
in Q! for a;,b;,rj,s; € A we impose the relation > da; Adb; = = dr; Ads; € Q2
i J

This is extended to higher forms, but no new relations are added.

Lemma 2.12. (Corollary 5.3 and 5.4 of [1]) If a B-A bimodule E has bimodule connec-

tion Vg, and the following two conditions hold:
o A is equipped with mazximal prolongation calculi for its higher calculi,
e the curvature Rg of the connection is a bimodule map,

then extendability of o is automatic.

In the presence of a metric, we can ask if the metric is compatible with the metric (in
this case we say it preserves the metric or is metric-preserving).
A right connection Vj is said to preserve an inner product (,) : E ®p E — A on E if

d(e1, e2) = (€1, Vie(e2)q)) VEe(e2) @) + VE(el)’(“z)<VE(el)(1),eg> for all e;,e, € E, using a
form of Sweedler notation Vg(e) = > Vg(e)n) ® Vi(e)) for tensor products. (A version

16



for left connections is given in Definition 8.33 of [10].) If there is a right connection Vg

on E, then there is also a left connection Vz on E, given by Vz(€) = V(€)@ VE(e)n)-

We use this notation to write the metric preservation in string diagrams in Figure 1.
E
[ = kg + Ve

() ()

Figure 1: Preliminaries: Illustration of the metric preservation equation

3 List of Algebras

We give an overview of the algebras we use in this thesis and their standard calculi. A
history of these calculi can be found in the notes at the end of Chapters 1-3 of [10], but

we give citations here too.

Example 3.1. C>*(M) For a smooth manifold M, the set of smooth functions M — R

is a commutative algebra with unit the function sending all of M to 1. It has differential

and 1-forms commute with elements of the algebra.

We use this in Sections 13.1 and 13.2. o

Example 3.2. C4[S'] ([10] Example 1.11. Calculus on quantum circle originally by
Majid in [35].) The Algebraic Circle C,[S'] = CJ[t,¢!] is the algebra of polynomials in ¢

and ¢!, and its standard calculus is given by

_ flat) - f)

Q' =C[t, t71.dt, dt.f(t) = f(qt)dt, df = t.

7] (1) = flat) D

It has *-structure given by ¢* = ¢~1.

We use this in Sections 13.3 and 13.4 and 16.3 and 16.1 and 26 and 42.2. o

Example 3.3. C4[D] ([10] Example 3.40. Calculi on the quantum disk are originally
by Vaksman in [55].) The quantum disk C,[D] with 0 < ¢ < 1 is the g-deformation

17



of functions on the unit disk. It is generated by elements z and Z, with relation 2z =
q%zz — ¢* + 1 and x-structure z* = z. The algebra has a grading |2| =1 and |z| = —1.
There is a grade zero element w = 1 — Zz, which satisfies zw = ¢ ?wz and zZw = ¢*wz.

It has calculus generated by dz and dz, which satisfy relations

dzANdZ=—q2dzZAdz, zdz=q3dz.z, 2dzZ=q?dz.2
dzAdz=dzAdz =0, zZdz=¢*dzz, zdz=¢*dzz
A dual basis of the calculus is given by e, = d,, ez = dz, and e*,¢* € f{gq[D] such that

e.(e?) = ez(e”) = 1 and e,(e”) = ez(e*) = 0. These vector fields satisfy commutation

relations

z.e, = QQGZ.Z, z.e, = q_ZGZ.E, 2.z = q2eg.z, Z.ez = q_Qeg.Z.

We use this in Sections 13.3 and 16.3. o

Example 3.4. C4[Ma] ([10] Proposition 2.13 for algebra, [5] page 27 for calculus) The

algebra C,[M,] has generators a, b, ¢,d and relations:
ba = qab, ca = qac, db=qbd, dc=qcd, cb="bc, da—ad= (q—q *)bc.

Note that in C,[M,], unlike in C,[GLsy], C,[SLs] or C,[SU,|, we make no assumption on

the value or invertibility of the determinant det, = ad — ¢ 'bc.

It has a 1-parameter family of 4D calculi. Writing « for the free parameter and A = ¢—¢q*,

the calculus is freely generated by elements e,, e, €., ¢4 and inner by 6 = e, + e4, which

gives the differential. The commutation relations on the generators are:

cal25) = @ (B0 )ear Lo (4 ))greae = g™ 2A(82)e
lec, (& §)lgrrze = @ A(5 8 )eas  lea, (8)]gza = **A(§)es
leas (5)]gze = MGt Rder )
This notation is a shorthand, so for example one of the relations is

ep.d — ¢' 2 dey, = ¢ \ee,.

We use this in Section 13.7. o
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Example 3.5. C,[SU,] ([10] Proposition 2.13 for algebra, Example 2.32 for calculus.
Calculus originally by Woronowicz in [58].) The algebra C,[SU,] is a Hopf algebra,
generated by elements a,b, ¢, d with the same relations as C,[Ms], plus the additional

relation that det, = 1, where det, = ad — ¢~ 'bc. It has *-structure ¢* = g and (¢ 4)" =

(57")
—qgb a :
It has a standard vector space basis {b™c"} U {a*b™c"} U {d*b™c"} for m,n > 0 and

k> 0.

It has a freely generated left-covariant 3D star-calculus with basis
e~ =ddb—gbdd, e" =g ladc—q 2cda, €°=dda— gbde.

Equipping the elements with grading |a| = |¢| = 1, |b| = |d| = —1, the commutation

relations are
et f = qlf\fei7 f = q2|f|f€0.
The exterior derivative is
da = ae’ + gbe™, db=ae” — g 2be?, dc=ce’ + qdeTdd = ce” — g 2de°.
We use this in Sections 13.4 and 16.1 and 42.4. o

Example 3.6. C4[S?] ([10] Lemma 2.34 for algebra, Proposition 2.35 for calculus. Calculi
on quantum spheres originally by Podle$ in [17].) The algebra C,[S?] is the subalgebra
of C,[SU,| of elements of degree zero with respect to the Z-grading |a| = |c| = 1, [b] =

|d| = —1. Tt has generators x = —q¢ 'bc, z = cd, z* = —qab, and relations
vz = q*rz, v =q xzY, 22" =q2(1 - ¢%x), z=az(1-2).

Alternatively, the degree zero elements of C,[SU,| are generated by ac*, ca* and cc*.
It inherits a calculus from C,[SUs| by discarding the generator €, but this calculus is
not left-covariant.

We use this in Section 42.4. o

Example 3.7. C4[C?] ([10] Example 2.66 for algebra, Example 2.79 for calculus) The
quantum plane C,[C?] has generators x,y with relation yz = gzy. It has calculus gener-

ated by dx and dy with relations
drv.x = ¢*xdz, dry=qydr, dy.oz=qedy+ (¢* — Dyde, dy.y= ¢*ydy.
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We use this in Section 13.7. o

Example 3.8. Cy[T?] ([10] Example 1.36. Calculi on the noncommutative torus were first
studied by Connes and Rieffel in [20].) The noncommutative torus Cy[T?] has generators

Land

u, v with the relation vu = e®uv for a real parameter 0. It has star structure u* = u~
v* = v~ Tt has calculus Q' = Cy[T?].{du,dv}, with left action given by multiplication

and right action given by
dvw =udu, dvo=vdv, dvu=e%w.dv, duwv=e?v.du.
We use this in Section 26. o

Example 3.9. C(X) ([10] Proposition 1.24. Differentials on finite sets were first used by
Connes in [19] then extensively studied by Majid in [34].) For a finite set X, the algebra
C(X) of complex-valued functions on X has basis 0, for x € X, which are defined as
0:(y) = gy Calculi Q}J( x) on such algebras are given by finite graphs with vertices the
elements of X, where in any given direction between two vertices there is at most one
arrow, and there are no arrows from a vertex to itself. The basis of the calculus is w,_,, for
each arrow x — y of the graph, and the left and right actions are f.w,,, = f(x)w,_, and
Wo—sy-f = Warsy f(y) respectively. The calculus is connected if and only if the underlying
(undirected) graph is connected. The calculus is inner by 0 = > w,_,,, with exterior

J}-}y
derivative

df =10.f1= Y (F(y) = F(2))wemsy.
T—Y
This implies in particular that

d(Sz = Z (5z,y - 5z,m)wz—>y - sz—m - sz—w-

Ty T2 z—y

We use this in Sections 13.6 and 34.2. o

Example 3.10. C(G) ([10] Proposition 1.52) If G is a finite group, then the complex-
valued functions C'(G) have differential calculi coming from Cayley graphs on G regarded
as a finite set. These are determined by a subset C C G\{e}, and the arrows go from
xr — xa for x € G and a € C. Note that in this thesis, we use the symbol C with the

meaning C, so for sets A and B, the statement A C B includes the possibility A = B.
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Left covariant calculi are given by Q! = C(G).A! as a free module over the vector space

A, which has basis e, = Y w; ,zq- The differential satisfies w, zq = 0,dd,,. We have:
zeG

€o-f = Ra(flea, df =D (Ra(f) = flea
aeC
for f € C(G), where we denote R,(f)(g) = f(ga). The calculus is inner by 0 = > e,,
and is connected if and only if C is a generating set, and is right-covariant if and (L)lxeﬁy if
C is stable under conjugation. If C has inverses, then Q! is a *-calculus by e = —e_ 1.

We use this in Sections 13.5 and 16.2 and 42.3. o

Example 3.11. CG ([10] Theorem 1.47) For a finite group G, the Hopf algebra CG
is the linear extension of the group. It has star structure x* = 2! for all x € G. Its
translation-invariant calculi are given by right CG-modules A}, and maps ¢ : G — Al

satisfying

C(zy) =((x)ay +((y), Vr,yed

which are called cocycles. The calculus is then given as a free module Q' = CG.A},. Each
pair (A}, () of a right CG-module and a cocycle therefore gives a translation-invariant
calculus. The right action on the calculus is v.x = z(v < x), and the differential is
dz = z((z), for all x € G and v € A'. The calculus is connected if and only if {(x) # 0
for all z € G\{e}.

We use this in Sections 24 and 42.1 and 34.1. o

Example 3.12. M,(C) ([10] Example 1.8. Calculi on matrix algebras originally by
Beggs and Majid in [11].) The algebra Ms(C) of 2x2 complex-valued matrices has basis
elements E1q1, F19, Fa1, Fay consisting of matrices with a 1 in the specified entry and all
other entries zero. It has an inner calculus given by ¢ = F198' + Fot’, where s’ and t/
are central.

We use this in Section 25. o

Example 3.13. CHg ([10] Example 4.62. The calculus on CHg was extended in [10]

from [36] and [38].) The Heisenberg group Hg is a multiplicative matrix group



. 0 100 101 ) .
with generators u = ( ?), v = (0 1 1), w = <8 ! (1)> These satisfy relation uv = wou,

11
01
00

and the generator w is central. The group algebra CHg has calculi of the same type as

Example 3.11. We look at a specific calculus given by via the right representation Al

with basis e*, e”, e” and right actions

with all actions on e leaving it invariant and <w = id acting trivially. There is a cocycle
¢ : CHg — A' given by ((z) = ¢” for all x = u,w,v, and this gives a left-covariant
calculus Q' (CHg) = A'.CHg with differential dx = z((z).

We use this in Section 42.2. o
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Part 11

Temperley-Lieb Algebras

Abstract

We give a diagrammatic differential calculus on Temperley-Lieb algebras which we believe
to be new, and use this to give a bimodule connection on bimodules over the algebra.

4 Background

Temperley-Lieb algebras are a family of algebras defined by Neville Temperley and Elliott
Lieb in [51], which are often drawn using diagrams. A vector space basis of T'L, () for
n > 1 and 6 € C\{0} is given by rectangular diagrams with n points on each of its
left and right edges respectively, with each point connected to another on either side by
a curve which does not cross any other curve or leave the rectangle. The product of
diagrams is their horizontal concatenation, subject to the rule that a diagram containing
a closed loop is equal to ¢ times the same diagram with that loop removed. The identity
element is the diagram where each point is connected by a straight line to the point
directly opposite. For example, the algebra T'L3(d) has three generators {id, e, e}, and

basis {id, e1, ez, e1€2, eae1 }, which is drawn in Figure 2.

— 7% ¢ 25 >IS

id €1 €2 €1€2 €2€1

Figure 2: Temperley-Lieb: A basis of T'L3(d)

In the diagrams for T'L,,(J), we number the points at the top of the rectangle as the 1st
and the points at the bottom as the nth. The diagram e, € T'L,(J), where 1 < k <n—1,
has point k on each side connected to point k4 1 on the same side, with all other points
connected by a straight line to the one opposite. These satisfy the four Temperley-Lieb-
Jones relations [20] (1) €? = de; forall 1 <i < n—1, (2) e;ei1e; =¢; forall 1 <7 <n—2
(3) eieji_1e; = e forall 2 <i<n—1, (4) ee; = eje; for all 1 <i,j < n —1 such that

i~ # 1.

23



A general Temperley-Lieb algebra T'L, () is generated by the identity diagram and dia-

grams ¢; for 1 <k <n—1.

5 Calculus

As far as we know, the following calculus on Temperley-Lieb algebras is new.

Definition 5.1. Define = (6) for 0 < r < n to be the vector space of diagrams in 7'L,,(9)

that have r dots placed on their n curves, subject to the following rules and relations.

1. Dots can be placed anywhere on a curve except the endpoints.
2. No dot can be placed directly above another.

3. Dots can be slid along curves, but when sliding one dot past another, the diagram

is multiplied by a factor of —1.

4. A diagram with a dot on a closed loop is equal to zero.

We define a wedge product A : 27 (§) ® Z7 (§) — Z7+"'(8) by concatenating diagrams.

n

It follows that a diagram in =/ (J) with two dots on the same curve must be zero.

Definition 5.2. Define & in Z'"1(§) as the diagram ¢ in = () with a dot added along

a curve ¢ according to the following rules.

1. If 7 is a left-to-left curve or a left-to-right curve, then the dot is added to the left of
all other dots in &.

2. If 7 is a right-to-right curve, then the dot is added to the right of all other dots in
€.

3. If 7 is a closed loop, then adding a dot makes the entire diagram equal to zero.
This allows us to define a differential map looking like Figure 3.

Proposition 5.3. The map d : Z7(§) — Z71(5) given by

d= Y & - Y (-nMg (1)

1€ left-to-left 1€ right-to-right
curves of £ curves of £
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A}

Figure 3: Temperley-Lieb: Illustration of d(ey) for e; € T'Ly

satisfies d> = 0 and the graded Leibniz rule d(¢ An) = dé An+ (—=1)EE Adn and is thus
a differential.

Proof. (1) Firstly we show the Leibniz rule for » = 0. We assign signs to curves as
follows. A left-to-left curve has sign +1, a right-to-right curve has sign —1, and left-to-
right curves and closed loops have sign 0. The Leibniz rule says that the sign of each
curve in the product M N is equal to the sum of the signs of its component curves in M
and N, where each time a curve crosses the joining line of M and N it marks the start
of a new component curve. Next, we consider the signs of each type of curve in M N.

A left-to-left curve is either contained entirely in M or meets the joining line between M
and N an even number of times, and starts and ends with left-to-right curves. Conse-
quently the sum of its component curve signs is +1.

Similarly, a right-to-right curve is either contained entirely in N or meets the joining line
an even number of times, and hence the sum of its component curve signs is —1.

A left-to-right curve in M N meets the joining line an odd number of times, and both
starts and ends with left-to-right curves, so the sum of its component curve signs is zero.
Lastly, every closed loop in M N is obtained by taking a left-to-left loop and replacing the
first and last component curves with a single right-to-right curve in M. This decreases
the degree in M by one, so its overall degree is zero.

(2) In Figure 4 we show the graded Leibniz rule on a product £ A 7. In the diagram we

draw only one curve, which we assume to not have any dots on it already.

g In . . . . .
d( E ): E =t & o=ed -<—1>E +0e % = d¢An+ (-1)llgadn

Figure 4: Temperley-Lieb: Part of the proof of the graded Leibniz rule for Temperley-

Lieb algebras

(3) Next, we show that d*> = 0. In Figure 5, we see that d?(e;) = 0 for ¢; € TL,(9).
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- = 0

>

1

Figure 5: Temperley-Lieb: Illustration of how d?(e;) = 0

Using the graded Leibniz rule, this implies that d? = 0 for any element of T'L,(d), seeing
as the e; generate Temperley Lieb algebras. Using the Leibniz rule on d? of a general
1-form then gives d?(ade;) = d(da A de; + a A d?¢;) = d(da A de;) = d?a A de; = 0. This
shows that d? = 0 on all 1-forms. But all n-forms are wedge products of 1-forms, and so

the graded Leibniz rule applies and shows that d? = 0 in general. O

Proposition 5.4. The calculus QlTLn given by the above differential d is spanned by the

1
n

elements of = except the identity with dots on it.

Proof. The generator e; with a dot on its left-to-left curve can be obtained as %dei.ei,
while the generator e; with a dot put its right-to-right curve can be obtained as —%ei.dei.
Products of these generators with other generators also lie in the calculus, and since every
left-to-left or right-to-right curve necessarily passes through the curved part of an e;, dots
can be put on those too. Likewise for left-to-right curves that start and finish at different
heights, or which change height along the way.
For a straight horizontal line which is adjacent to a left-to-left or right-to-right curve,
we can use the Temperley-Lieb-Jones relations to deform it and introduce a bend. This
process can be recursively applied to all straight horizontal lines in a diagram, provided
that the diagram contains least one e;. Figure 6 illustrates this process.

PC 2T 2C L 2g o

— TS

Figure 6: Temperley-Lieb: Illustration of recursively bending curves

However, the diagram consisting entirely of straight horizontal lines is the one exception,

to which we have no way of adding dots. O]

If we write id; for the identity diagram with a dot on its ith curve, then the calculus

would be inner by 6 = > id;, were it not for the fact that identity diagrams with a dot

(2
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— and hence # — do not lie in the calculus. However, the generalised calculus obtained

by dropping the requirement of being spanned by the image of d is inner by 6.

6 Some calculations of de Rham Cohomology

Next we do some calculations of de Rham cohomology.

Proposition 6.1. The de Rham cohomology of T'L,(0) satisfies the following.
1. H™(TL,) =0 for m > n, since diagrams with two dots on a single line are zero.
2. HY(TL,) = C and H(TL,) =0 for all n.
3. HY(TLy) = C and HY(TLy) = 0.

Proof. (1) The kernel of the differential d : T'L, — Q7 consists of multiples of the
identity diagram and is hence 1-dimensional, so H%(T'L,) = C.

(2) Every diagram in Q7; has n dots and can be obtained (up to a complex factor)
as the derivative of the same diagram but with n — 1 dots (where we omit a dot on a
left-to-left or right-to-right curve). This fact of d : Q%zi — Qk 1, being surjective implies
that H"(TL,) = 0.

(3) For the specific case T'Lq, we see that H' (T Ly) = 0 since both the image of d : T'Ly —

Qp, and the kernel of Q7.; — QF,  are spanned by the derivative of e; € T'Ls. ]

7 Bimodule Connections

Having defined a calculus on Temperley-Lieb algebras, there is a particularly nice class
of bimodule connections that can be represented in diagram form.

We can define a vector space E,,,(9) as the set of noncrossing pairings of m + n points
on two opposite sides of a rectangle, with m points on the left and n points on the right.
This is only well-defined in the case where m — n is even, so a pairing for each point is
possible. It has the structure of a T'L,,(6)-T' L, (0) bimodule by the left and right actions
of composition with diagrams in T'L,,(d) and T'L,,(0) on the left and right respectively.
In the case m = n, the bimodule E, ,,(9) reduces to the algebra 7L, (9).

27



Temperley-Lieb algebras have a star operation of flipping diagrams horizontally, which
extends to bimodules as * : E,,, — E,,,, and gives rise to an inner product (,) :

Emn ® Epp — TL,(0) on the bimodules by (M, N) = M*N.

Proposition 7.1. A zero-curvature metric-preserving extendable right bimodule con-
nection on E,,, is given by the map Vg : Ey, — En, Qrr, Q%Ln shown in Figure
7 for the cases Ei¢ and Esg, but has a clear generalisation to other E,,. The bi-
module map o : Q. Qrr, Emn — Eppn ®rr, Qg for the connection is given by
o(da ® e) = Vg(ae) —aVg(e). The map o is drawn in Figure 8 for the case Eyg, but is

generalised in a similar manner to the diagrams for Vg.

> RS >
®d &*5—2 < od|>

Figure 7: Temperley-Lieb: Illustration of right connections Vi on Ey¢ and Es ¢ respec-

%g

1A

tively

Figure 8: Temperley-Lieb: Illustration of o on Eyg

Proof. (1) The right Leibniz rule for Vg is shown diagrammatically in Figure 9.

>
®d el d
= R
5 (e ®dl a +g:®d elll a

Figure 9: Temperley-Lieb: Proof of the right Leibniz rule for Vg

(0]
Q
| =

V&,

1A

(2) Next we show that the curvature of Vg is zero. Recall that the curvature for a right

connection Vy is given by Rp = (id ® d+ Vi Aid)Vg. In our case, since d*> = 0 and our
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Vg contains an d, the curvature reduces to Rg = (Vg Aid)V . We simplify this further

SRl

Figure 10: Temperley-Lieb: Calculation of curvature for a Temperley-Lieb bimodule.

in Figure 10.

><

REg Ad

1
A =
d 02

<

The curvature calculated in the figure vanishes, because putting a dot on either of the
bends in the middle term will form a dotted closed loop.

(3) Next we calculate the formula for o. Firstly, we calculate Vg(ea) in Figure 11.

ﬂ<®éd()= el s
e

Figure 11: Temperley-Lieb: Calculation of Vg(ea)

S| =

<

®d

Then we calculate aVg(e) in Figure 12.

. C
aVg(e) =] 5 7® d(ﬂ =5l a ®d(ﬂ

Figure 12: Temperley-Lieb: Calculation of aV g(

Subtracting the two gives the formula for ¢ when ¢ = da, and the formula for ¢ on a
general £ follows from the result we showed in part (2).

(4) Next, we show that o is a bimodule map. From the diagram by which o is defined,
we can see it is a right module map. We show in figure 13 that o is also a left module
map, where we use the fact that the tensor product is over T'L,,, allowing us to move an
element of the algebra from one side to the other.

(5) Next we show that the connection Vg preserves the metric. The metric preservation
equation for the connection Vg is given in Figure 14, and can be seen to hold, since if
we add a closed loop to the L.H.S. and multiply by to cancel it out, we can use the
Leibniz rule to obtain the R.H.S.
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bo(da ® e) =

® e = o(bda ® e)

| =
O

da

Figure 13: Temperley-Lieb: Proof that o is a left module map

. <) ° 1 C >
d =gd GT ®E €9 +g eT E@d €2

Figure 14: Temperley-Lieb: Proof of metric preservation by Vg

(6) Lastly we show that o is extendable. We need to show that c({§ An®e) = (o A
id)(¢ ® o(n ® e)). The proof is Figure 15, which uses the formula for o.

) < >
(U/\id)(& ®U(77 ®ﬂ))= (U/\id)(g ®g:® n E)

1<:>C> < >
el n|e T =% n|e|T ¢ |n|®"®

S

Figure 15: Temperley-Lieb: Proof of extendability of o

O

We remark that for n < m — 2, the map V : E,, ,, — Q%Ln ®rr, 1Ly, shown in Figure

16 is a left connection, but here we only use the right connection.

Jof)

Figure 16: Temperley-Lieb: Illustration of the left connection V, on Eg4

We note that there are no nonzero e € E satisfying V(e) = 0.
The connections we gave above are by no means the only connections on modules over

Temperley-Lieb algebras, as seen in the following remark.

Remark 7.2. (See [10] Example 3.22 for this type of connection) If we equip T L, (3) with

inner generalised calculus, then every left T'L,(§)-module has a left connection ¢V (e) =
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0 ® e with curvature
gRe)=(d0—0N0)Re=—-0N0Re.

This connection s different to the one we gave above. The connection doesn’t look to have

any zeroes either, though its curvature may be non-zero.

8 Vector fields

Having defined calculi on Temperley-Lieb algebras, this allows us to define vector fields.
The right vector fields X%, ~are linear maps X : Qf; (§) — T'L,(6) which are right
module maps, i.e. they satisfy X (£e;) = X (§)e; for & € Qp; (0) and e; the generators of
TL,(6).

8.1 Example: TL,

First we look at the case n = 2. We note that we also calculated the n = 2 case by hand
in order to verify that the Mathematica code was giving the correct result, so that we
could have a higher level of trust in the Mathematica output for the n = 3 case which is

too long to reasonably calculate by hand.

Definition 8.1. For the 2 basis elements of T'Ls write y; = 1 and y = e;. For the 2 basis
elements of Q%LQ write & and & for e; with a dot on the left-to-left and right-to-right

curves respectively.

Proposition 8.2. A general right vector field X € X%, on TLy is given by X (&) =
2

> xyy;, where x is a 2 X 2 complex-valued matriz given as follows.
j=1

The calculus QITL2 s not finitely generated projective.

2
Proof. (1) Since the vector field X is a right module map, X ({xe1) = > axjyjer.
j=1
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The matrix a; gives the outcome of multiplying the 2 basis elements of T'Ls on the right
by e;. The matrix by gives the outcome of multiplying the 2 (vector space) basis elements

of Qp;, on the right by e;.

0 1 b 0 a(1,1) a(1,2)
ap = , b= y L=
09 00 a(2,1) a(2,2)

We solve the following equation in Mathematica.
Solve[{Simplify[z.al — bl.z] == 0}, Flatten|x]]
Set the output of the above as relations sub, then do Simplify[z//. sub], giving:

0 a(1,2)

a(2,1) —4&U

xr=

(2) The matrix « is a function of two independent variables, so X%, has 2 basis elements

given by

T = ) Tg =

01 0 0
0 0 1

_1
5
In order for Q. to be finitely generated projective, we want to find 7,7 € Qf;, such

2
that any n € Qf;, can be decomposed as n = > X;(n).7;. This gives the following two
i=1

equations:

51 = €1.71, 52 =T — 561-72

But by drawing the equation in diagrams, we see that the first equation has no solutions
for 71 and 7, since no choice of 7 can put a dot on the left-to-left loop of e;.7. This
shows that there does not exist a dual basis for Qf;_, and hence it is not finitely generated

projective. 0

8.2 Example: T'L3

Next we look at the case n = 3.
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Figure 17: Temperley-Lieb: The 12 basis elements of Qf;

Definition 8.3. For the 5 basis elements of T'Ls write y; = 1, yo = €1, y3 =

€2, Ys =
Ty = €2€1, Y5 = T2 = €1€2.
Write &; for the 12 basis elements of QlTLn, each given by one of the four diagrams

Y2, Y3, Y1, Y5 With a dot on one of their three lines, as drawn in Figure 17.

Proposition 8.4. A general right vector field X € X%, on TL; is gen by X (&)

5
> Tk ;Y;, where x is a 12 X 5 matriz given as follows.
J=1
0 ai,2 0 ai,4 0
1 2,3
—d6az2—az,;5 az,2 as.3 -223 ass
52— p
0 Saz 5+az 2 0 %_5,12'2_&2'5 0
52—
0 0 dag,a+as,3 0 £4443ﬂ5375a&37a&4
0 0 as,3 0 as. s
1 6,2
—0a6,3—0a6,4 ag,2 a6.3 a6.4 _262
r= 0 s s o aos .
52-1)a,
0 %7‘5“6)37“6,4 0 dae,4+ae,3 0
52(—ag o) +dag 3+ag.4+ ; S(an 4 ta0 o)t 52 1yar »—5(5an < ban 1
(5%—1)@6,2-*— (Ze9.2) a§’3 96,4799,2 ag,2 7a%’2+aa.4+a9.2 G (;)2’2) 262 Jog,2 (5@26'3 %6.4+99,2)
0 0 a4 0 a2
52—
0 0 %—5112.2—112.5 0 Sag s+aza
8az5—a12,2)+ 3% +az a2 —23 45 5+a12 —122 4 atazs —=32

The calculus Q%Ls 1s not finitely generated projective.

Proof. (1) Since the vector field X is a right module map, X (xe;) = > ax jy;e;.
J
The matrices a; and ay give the outcome of multiplying the 5 basis elements of T'L3 on

the right by e; or ey respectively. The matrices by and by give the outcome of multiplying

the 12 (vector space) basis elements of Q.. on the right by e; and e, respectively.

a; =

a9 —

[e]elelejis)]
HO OO
SO OO O
OO O
[en]en}enlen)en)
(e}l enlen)
(e} enlenjenjen}
OO

cococoo
oo~
S
=
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a(1,1) a(1,2) a(1,3) a(1,4) a(1,5)

000000000100 a(2,1) a(2,2) a(2,3) a(2,4) a(2,5)
000000000010 a(3,1) (1(3,2) a(3,3) (l(3,4) CL(375)
000000000010 a(4,1) a(4,2) a(4,3) a(4,4) a(4,5)

8 8 8 g g 8 8 8 8 8 8 8 a(5,1) a(5,2) a(5,3) a(5,4) a(5,5)

by — | 000000000000 z = | @61 a62) a(63) a(64) a(65)
2 000010000000 a(7,1) a(7,2) a(7,3) a(74) a(7,5)
000100000000 a(8,1) a(8,2) a(8,3) a(8,4) a(8,5)
0000000006 g 0 a(9,1) a(9,2) a(9,3) a(9,4) a(9,5)
000000000000 a(10,1) a(10,2) a(10,3) a(10,4) a(10,5)
000000000000 a(11,1) a(11,2) a(11,3) a(11,4) a(11,5)

a(12,1) a(12,2) a(12,3) a(12,4) a(12,5)

Then solve the following equation in Mathematica.
Solve[{Simplify[z.al — bl.z] == 0, Simplify[x.a2 — b2.2] == 0}, Flatten[x]]

Set the output of the above as relations sub. Then do Simplify[z//.sub]. Then:
0 0 0

ai,2 alq
a2,3
—daz2—az ;5 a2 az,3 -5 azs
2
(82—1)ay.;
0 daz 5+az 2 0 %—5&22—&2,5 0
2
(62-1)ag
0 0 Sag,a+as,3 0 502 _5ag 3—a6.4
0 0 as,3 0 as,s
6,2
—dap,3—0a6,4 a2 a6,3 ag,4 i
T = 0 as,s 0 as.3 0
2
(62-1)a,
0 %*5(10,3*%,4 0 dag,4+ae,3 0
2 52
52(—ag 9)+3ag 3+ag.4+ag : ag.: 5(ag.a+ag o)taga  (52—1)ag.o—3(dag 3+ag 4+ag 2)
1 9,2 6,376,419, 6.2 6.4F29,2)+a6,2 6.2 6,326,479,
(5z—1Das2+ 5 a9,2 —5 tas,.atag,2 - 52 )
0 0 aia 0 a2
2
(62 -1)aq
0 0 522 Gazo—azs 0 daz5+az,2

a12,2 P 12,2 @122

+az 2 ai2 2 ——5 —a25ta12,2 ——5 - —a22+az;3 5

d(az,5—a12,2)+
as required.

(2) The matrix x is a function of 12 independent variables, and so X%,  has 12 basis

elements given as follows.

01000 00010 0000 00
00000 00000 -561 0 00
00000 00000 010 —50
00000 00000 000 00O
00000 00000 000 00
T1= 100000 T2 = 100000 T3 = 000 00
00000 00000 000 00O
00000 00000 000 00O
00001 00100 000 00O
00000 00000 0 0-6 01
00000 00000 100 =10
00 0 0 0
00 1 -} 0 OXENE 89008
00 0 6-%0 06860 -10 00000
00 0 0 O 000 00O 00000
00 0 0 0 000 00 00000
Te= 100 0 0 0 T = 000 00 Te = | 00010
00 0 0 O 000 00 00000
00 0 0 O 000 00 00000
0ost oo 00104 00000
006—13 00 00-10¢ go000
00 -% 1 0
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N
0 000 O
09008 0 0 0 0 O 0 0000
00000 0 0 0 O 573 0 000 O0
00000 0O 0 0 0 0 0 010-0
00001 o 1 0 o0 1 0 0000
e 00000 Te = S To = -6 0100
T — 86888 8 — 0 010 0 0 9 — 0 06000
_1 0 —-56010
00000 10 J 5(1) 01 01 1 000 —1
00000 ﬁ_l 0 3_571_57 0 0000
00000 0 0 0 0 0 0O 000 O
00000 0 0 0 0 0 0O 000 O

0 0 0 0 0

0 000 O 0 00 O O 0 00 0 O

SEEE s 888 0 R

0 06 0 —1 0 00 O O 0 00 0 O

0O 00 0 O 0 00 O O 0 00 0O O

-1 0 0 1 O 0 00 0O O 0 00 0 O

T190 = 0O 000 O 11 = 0 00 0 O T2 = 0 00 0 O

0 -10 4§ O 10 00 01 01 8888 8

1 1 1 = —_- —=

5 01-5-5 5011 -5 -3 0 000 O

0 000 O 0 00 0 O 0 000 O

0 000 O 0 000 0 1_s711-1_1

0O 000 O 0O 00 O O E} P

12
Can we find a set of 12 7; such that any 1 € Qf,, can be decomposed as n = > X;(n).7;?
i=1

This gives the following conditions on the 7; for a dual basis with the above 3(1

§1=e1.m + 1.7

1
fg = (—51 + 61).7’3 + (62 — gxl)-7—4 + (—1 + $2).7'5

1
&= (eg — oxy).m3+ (0 — S)xl.m + (dey — x1).75
1
54 - (((5 — g)ZL'Q).Tg + (62 — 51‘2).7'9 + (562 — 1172).7'10

55 = €2.Tg + To.T7

1
66 = (62 — —.CCQ).Tg + (—51 + 62).’7'9 + (—1 + 1'1).7'10

)
§7 = T1.T¢ + €1.77
1
58 = ((5 — 3)61.7'8 + (—561 + 1’1).7’9 + (-61 + 5%1).7’10
1 1 1 1
69 = ((ﬁ - 1)1 + 562 — 5—2961 -+ (1 — ﬁ)lé)'TS + (1 — l’g).Tg
1 1 1 1 1 1
+ (5-1 e = st = 5@)'710 + ((5 —0)l+e+ex— 58— 5%)-711
§10 = T2.T1 + €2.72
1
S = (—(562 + 332)-7'3 + ((5 — 5)62-7'4 + (—62 + (5332).7'5
1 1 1 1
512 = (1 — ZL‘1).T3 + (—562 + ZL’l).T4 + (51 — 62).7'5 + ((S — 5)1 -+ €1 =+ €y — SZEI — 51'2).7'12
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The following pair of equations when drawn diagrammatically

65 :€Q.T6+HZ'2.T7

57 = X1.Tg + €1.77

can be seen to have no solutions, and hence QL 1, 18 not finitely generated projective. [

8.3 Example: T'Ly, with Extended Calculus

When we looked at vector fields for the calculi on T'Ly with the standard differential
calculi, they turned out to not be finitely generated projective. But what about when we
add in the identity diagram with dots, to get the extended calculus QIT Ly!

Denote as before y; = id and ys = e; for the basis elements of T'Ly(d), but now write &
for the identity diagram with a dot on its top line, & for the identity diagram with a dot
on its bottom line, &3 for e; with a dot on its left-to-left curve, and &, for e; with a dot on
its right-to-right curve. These four &; give a vector space basis of the extended calculus.
Denote as before a; for the 2x2 matrix of outcomes of multiplying the two basis elements
of T'Ly on the right by e, and b; for the 4x4 matrix of outcomes of multiplying the four

basis elements of Q% on the right by e;.

0 010 a1 G112
01 0010 g1 G232
a; = 3 1 — ) €r =
0 ¢ 00 d O as1 32
0 00O 41 Q42

We solve the following equation in Mathematica.
Solve[{Simplify[z.al — bl.z] == 0}, Flatten|x]]

Set the output of the above as relations sub, then do Simplify[x//. sub], giving:

—aj,1+a32
1,1 5
—ag,1+a32
a1l — 5
xr =

0 as 2

—a4,1

Q4,1 5
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. . . . . R
The matrix z is a function of 4 independent variables ay 1, as;1, azz2, as1. Thus X7, has

4 basis elements given as follows.

1 —3 0 0
0 O 1 —%
Ty = ) T2 = 3
0 0 0 0
0 O 0 O

T3 =

o o o O

e JR S W T

Xyq

o o O

—_

o

SO

We want to find 7,7, 73,74 € Qr}h that form a dual basis along with these x;, so that

. 4
any 1 € Qp;, can be decomposed as n = >~ X;(n).7;. This gives the following equations.

1=

1

S SR
1=T1 561.7’1 661.7’3
SR SR

2 = T2 561.7’2 561.7’3
§3 = T3

§a =Ty — 561.74

The last equation only has solution 7 = 0, so the extended calculus is not finitely gener-

ated projective either.

9 Future Ideas and Discussion

Temperley-Lieb algebras are related to projections onto subfactors of Von Neumann al-

gebras, and so it might be interesting to investigate if these diagrammatic calculi also say

anything about calculi on von Neumann algebras.

We might also consider whether our diagrammatic calculi on Temperley-Lieb diagrams

have any generalisation to planar algebras as invented by Vaughan Jones. This would

require a new definition of a calculus as something other than a bimodule.
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Part 111

Noncommutative Submanifolds

Abstract

We introduce a new approach to submanifolds in noncommutative differential geometry,
characterised by the use of vector fields. Given an algebra B with differential calculus
Q}B, we define when a surjective algebra map 7 : B — A is a co-embedding, in which case
we construct complementary tangent and normal bundles and a calculus on A making
7 differentiable, which are all finitely generated projective if Qk is. Every connection
on Q}B can be projected to a connection on the submanifold calculus 9}4, satisfying a
version of the Gauss-Codazzi equations for curvature, and which is compatible with a
Hermitian metric if the original connection is. We calculate a number of commutative
and noncommutative examples.

10 Introduction

In classical differential geometry, an inclusion ¢ : M — N of an embedded submanifold
induces a surjective algebra map m : C*°(N) — C*(M) between the smooth real-valued
functions on the manifolds, given by restriction. In noncommutative differential geometry,
the algebra of functions on a manifold is replaced by a general associative algebra, and
while we gain the ability to perform coordinate-free calculations and consider a number
of quantum-only phenomena, it comes at the cost of no longer having an obvious notion
of submanifold. There are three existing approaches at tackling this problem [10, 21, 3],
but all three operate on the definition of vector fields as derivations, and use calculi based
on that. We work with differential calculi on algebras and their dual the vector fields,
as defined in the book [10], and use the idea from [21] of a noncommutative embedding
(co-embedding) as a surjective algebra map 7 : B — A. We define tangent and normal
bundles associated with a surjective algebra map, and if the two are complementary then
we call the map a co-embedding. Given a co-embedding we construct a calculus Q% on the
submanifold algebra A, which we call the submanifold calculus. The submanifold calculus
Q! has the properties that the co-embedding 7 used to construct it is differentiable,
i.e. dr = md, and that QY is finitely generated projective if the larger calculus Q% on
B is finitely generated projective. We also show that subject to a certain condition,

the composition of co-embeddings is again a co-embedding. We calculate a number
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of examples of co-embeddings, both classical and non-classical, where the non-classical
examples all use non-derivation calculi and are therefore are unique to our new definition.
Given a co-embedding 7 : B — A and a covariant derivative on 2L, we construct a
covariant derivative on the submanifold calculus Y. Following an idea from [3], we
show the curvature of this new connection is related to the curvature of the original
connection by a non-commutative variant of the Gauss-Codazzi equations. We show
that this connection on the submanifold calculus preserves a Hermitian metric if the
original connection preserves a Hermitian metric, and calculate some noncommutative
examples illustrating this. We conclude by considering what might be necessary to further
generalise the idea of a co-embedding to be a positive map instead of an algebra map,

seeing as certain parts of the theory seem to have a nice generalisation.

10.1 Existing Approaches

There are currently three existing approaches to extending the concept of submanifolds
from classical geometry to a noncommutative setting. In the 1996 paper [10], Masson
introduces a definition of when a quotient of an algebra by an ideal is a subalgebra.
Masson’s approach was further developed in the 2020 paper [21] by D’Andrea, via the
notion of surjective algebra maps as co-embeddings, which was a major inspiration for
our work here. D’Andrea proves that a surjective algebra map 7 : A — B with kernel J

induces a map of derivations 7* : Der,(A) — Der(B), where
Der,(A) :={D € Der(A) | D(A) € J Vae J}.

and says that if the induced map 7* is surjective then 7 is called a co-embedding, and B
a submanifold algebra of A, in which case there is a surjective homomorphism Qpe,(A) —
Qper(B). These two papers operate on the definition of derivations as noncommutative
vector fields, and defines calculi correspondingly. See section 1.1 of [10] for details on
these calculi, which were originally invented in [22].

We borrow D’Andrea’s notation of a co-embedding as a surjective algebramap 7 : B — A
satisfying certain properties, but instead of defining it as a co-embedding when it is dif-
ferentiable, we ask for the existence of tangent and normal bundles and then construct

a calculus on A with respect to which the co-embedding is differentiable. Our defini-
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tion of horizontal vector fields Hor is an adaptation of D’Andrea’s Der,(A), and so the
foundations of our approach owe a lot to the paper [21].

Another recent approach can also be found in the 2021 paper [3] by Arnlind and Norkvist.
It uses another notion of calculus called pseudo-Riemannian calculi, but also takes vector
fields to be derivations. Section 4 of [3] on minimal embeddings provided the inspiration
for us to investigate whether our notion of submanifold also gives rise to a Gauss equation

for curvature.

10.2 Why Not Take Vector Fields to be Derivations?

In classical geometry, vector fields can be defined either as derivations or as the dual
to 1-forms, since both of these coincide. But in a noncommutative context they do not
coincide, and we need to pick one to use as our definition.

Suppose we regard noncommutative vector fields on an algebra A as the derivations
Der(A) — the maps D : A — A satisfying D(aa’) = aD(a’) + D(a)a’. Then in the
classical case where A is the commutative algebra of smooth functions on a manifold,
a vector field such as % is indeed a derivation. However on a general algebra which
need not be commutative, we are not guaranteed to have a lot of derivations. Moreover,
Der(A) is not a module over A when A is noncommutative, since the maps aD and Da
fail to be derivations, because (aD)(zy) = aD(x)y+zaD(y). It a module over the centre
Z(A), but this is liable to lose a lot of information for algebras with a small or trivial
centre, and it creates a new problem of the vector fields being a module over a different
algebra to the differential forms.

The other approach, which we use, is to regard noncommutative vector fields as the left or
right dual of the 1-forms Y, so there are right vector fields X% = Homy (24, A) and left
vector fields X4 = 4Hom(Q4, A). These are A-bimodules, which means we can take left
and right connections and bimodule connections on them. Moreover, as occurs classically,

connections on the 1-forms give dual connections on the vector fields. We make extensive

use of this duality in the sections later about connections.
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11 Noncommutative Submanifolds

Suppose we have a surjective algebra map 7 : B — A with kernel J := ker(7). Since 7
is an algebra map, we have 7(jb) = 7(j)m(b) = 0 and 7(bj) = w(b)w(j) =0 for all b € B,
7 € J. Therefore jb,bj € J, making J a two-sided ideal in B. By definition of kernel,

the following sequence of algebras and algebra maps is short exact.

0 s J < y B ——— A

e}

(2)

If QL is a differential calculus on B, then the right vector fields are the dual X% :=
Homgp(Q4, B), and by definition satisfy X (nb) = X (n)b. The left and right B-actions on

X% are given for all b € B, X € X& ne QL as

(bX)(n) == bX(n), (Xb)(n) == X (bn).

If QL is right finitely generated projective then X% is a left finitely generated projective
B-bimodule, in which case there would be a finite dual basis > X; ® e’ € XE @ QL of X%
which for all £ € QL satisfies € = >~ X;(€).¢'.

11.1 Restricting Vector Fields

Denote A for the algebra A regarded as a right B-module with action a<b = an(b) for a
surjective algebra map 7 : B — A. We propose that restriction (via 7) of a left B-module

to A is given by the functor R, : pM — 4 M defined by
E— A, ®pFE, T—id®T, VT:FE — F left module maps.

Proposition 11.1. Let E be a left B-module, and suppose w : B — A is a surjective
algebra map. Then the map R, : E — A, ®p E given by R.(e) = 1 ® e is surjective
and satisfies R;(b.e) = m(b)R.(e). Note that composition of two restriction functors is
another restriction functor, i.e. for surjective algebra maps vy : C — B and ¢ : B — A,

we have Ryop = Ry 0 Ry.

Proof. (1) First we show surjectivity of R,. A general element of A, ®p E is of the
form > a; ® e;. But as 7 is surjective, there exist b; € B such that w(b;) = a; for each i.

Therefore Y a; ® e; =1 ® > bi.e; = R (D bi.e;), so R is surjective.
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(2) The second property follows from R, (b.e) =1® b.e = w(b) ® e = w(b).R,(e).
(3) The fact that Ry = Ry 0 Ry is since Ay, @p By = Apoy. O

Next we show that R, preserves the property of being left finitely generated projective.

Proposition 11.2. Suppose that m : B — A is a surjective algebra map, and that FE
1s a left finitely generated projective left B-module — i.e. each & € E decomposes as
£ = Zei(f).ei for some dual basis ¢! € E, e; € gHom(E,B). Then the left A-module
F = }{(E) = A, ®p L is left finitely generated projective, with dual basis f* = 1®e' € F

and
fi € aHom(F, A), fi(a®e)=an(e;(e)),
satisfying a®@e =3 fi(a ® e).ft foralla®e e F.

Proof. (1) Firstly, we show that f; is well-defined as a map over ®p. To do this, we
need to show fi(a ® be) = fi(amw(b) ® e). The left hand side of this equation is

fila®be) = am(e;(be)) = am(be;(e)) = an(b)m(e;(e)).
The right hand side of the equation is
filam(b) @ ) = am(b)m(ei(e))-

These coincide, and so f; is well-defined.
(2) Secondly, we show F' is left finitely generated projective. Using that E is finitely

generated projective, any a ® & € F' decomposes as
a®R=a® Z ei(€).e' = Zaw(ei(é’)) ®e' = Z fila®&).f".
Hence F is left finitely generated projective by dual basis Y f; ® f°. O]

Taking F = X gives an A-B bimodule A, @ X&, which is finitely generated projective

if X% is finitely generated projective. We regard it as the restriction of X% to A.
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11.2 Tangent Bundle

Suppose that 7 : B — A is a surjective algebra map, and that B has calculus Q. We say
that a vector field X € X% is horizontal if it lies in the direction of A, which is defined

as follows.

Proposition 11.3. For a surjective algebra map ©: B — A, the vector space

Hor:= {X € XB | 7X(dj) =0 VjeJ} (3)
is a B-sub-bimodule of X%. Note that this is equivalent to

Hor:= {X € X% | X(dj) e J Vje J}.

Proof. We show the following for all b € B, X € Hor, and j € J.

(1) Firstly, we show bX € Hor. Using the left action on vector fields and the fact that 7
is an algebra map, we have 7(bX)(dj) = 7(b.X(dy)) = 7(b). 7 X (dj) = 0.

(2) Secondly, we show Xb € Hor. Using the right action on vector fields, the Leibniz
rule and the fact that right vector fields are right module maps, we have 7(Xb)(dj) =
7 X (b.dj) = 7 X (d(bj) — db.j) = 7 X (d(bj)) — 7 X (db.j) = 7 X (d(bj)) — 7 X (db)7w(j) = 0,

since both terms are zero. O

A justification of this definition can be seen later in Example 13.1.

Also, we apologise to the reader for the similarity between the notations Hom and Hor.
Hom denotes a set of morphisms, while Hor denotes the horizontal vector fields.

As Hor is in particular a left B-module, applying the restriction construction from earlier
gives an A-B bimodule Ty := A, ® Hor.

We will make extensive use of the following lemma in calculating Hor in examples.

Lemma 11.4. Suppose m : B — A is a surjective algebra map and that B has right
finitely generated projective calculus 0k, so that XE is left finitely generated projective
with dual basis e; € Q% and e € X&. If the ideal J = ker(m) C B has a finite number of
generators j;, then X € Hor if and only if both of the following two statements hold.

(1) X(dj;) € J for all generators j; of J.

(2) Xj; € JXE for all generators j; of J.
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Proof. The definition of Hor is the set of vector fields X € X% such that X (dj) € J for
all j € J. This in particular implies condition 1, that X (dj;) € J for all generators j; of
J. A general element of J is given by > j;3; for §; € B. Evaluating a horizontal right

vector field X € Hor on this, and then using condition 1 we get:

(2

X2 5i80) = 3 (X (@) 6+ X(edB)) = > X(A(7:48) = 3 (X))

%

This is in J precisely when X j; € JXE for all generators j; of J. This is condition 2. [

We note that if the j; form a linear basis of J as a vector space, then we only need to

check condition 1, as all ; are in the field.

11.3 Normal Bundle

In the classical case where A = C(N), B = C(M) for M an embedded submanifold
of a smooth manifold N, (where restriction is in the sense of restricting the domain as
functions) there is a direct sum decomposition %g‘ 4= T4 & N4 into tangent and normal
bundles of M in N. In this section we define a candidate for the normal bundle N4 for

the case with general algebras.

Definition 11.5. If B has calculus Qf and 7 : B — A is a surjective algebra map with
kernel J, we define m(X%) |47 to be the subspace of Homg(dJ.B, A) consisting of all
moX for X € XE.

Proposition 11.6. The vector space ©(XE) |qs5 is an A-B bimodule with left A-action
av (moX) = a(m o X) and right B-action (m o X)<b = 7w(X0b) for alla € A, b € B,
X e xi.

Proof. (1) Firstly we show that the left and right actions are well-defined. Suppose
(mo X)(dj.b) =0for all b€ B and j € J. Then (a>mo X)(dj.b) = a(r o X)(dj.b) = 0,
so the left action is well-defined. Also, since J is a two-sided ideal, for all b, € B and

7 € J we have

(mo X <t)(dj.b) = (7w o X)(b'.dj.b) = (7m0 X)(d(V'7).b) — (w0 X)(db.jb)
= (mo X)(d(V'j)).7(b) — (7o X)(db').7(jb) = 0.
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Hence the right action is well-defined.

(2) Secondly we show that the actions commute. For all b,b" € B and j € J we have
(av (mo X <b))(dj.b) = (a>mo X)(.dj.b) = a(m o X)(b'.dj.b) = ((a>mo X)<b)(dj.b).
O

Definition 11.7. Suppose 7 : B — A is a surjective algebra map with kernel J. Then

we define the linear map
Ty : Ay @p X8 — 7(X8) |asB, T(a®X)=a(noX) |aup - (4)

By the notation a(r0X) |47 we mean the restriction of the vector field a(roX) : QL — A

to the subset of elements of the form dj.b € QL for j € J, b € B.
Proposition 11.8. The map Ty is a surjective A-B bimodule map.

Proof. (1) T is a left module map because T, (a'a® X) = d'a(no X) |qyp= d'Tr(a® X).
It is a right module map because T,(a ® Xb) = anw(Xb) |qyp= amw(XD) |qyp <b =
T(a ® X)<b. Since these actions commute, 7} is a bimodule map.

(2) T is surjective because every mo X in m(X£) |4/ is equal to T, (1 ® X). O

Theorem 11.9. Suppose B has calculus Qk, and that ™ : B — A is a surjective algebra
map with kernel J. Then for the following sequence of A-B modules and A-B module

maps, the following numbered statements hold.

0 —— A, @p Hor 2 A @p XE — 7(XE)|,,, — 0 (5)

(1) If the map id ® inc is injective, the sequence is exact.

(2) There exists a direct sum decomposition A, @p X8 = (A, ®pHor)® N for some A-B
module N if and only if the sequence is split as A-B bimodules.

(3) If the sequence splits as A-B bimodules, the module N is isomorphic to m(X%) ‘dJB,
and we call it the normal bundle.

(4) If the sequence splits and the vector fields X& are left finitely generated projective (or
equivalently if the calculus QY is right finitely generated projective), then the three modules
in the above exact sequence are also left finitely generated projective as A-modules.

(5) If w(%g)\dw is left finitely generated projective, then the exact sequence splits.

45



Proof. (1) The map
TWZAW@)B%g%ﬂ'(%g) |dJ.B, TW(GJ@X):CL(?TOX) |dJ.B

has kernel A, ®@p Hor. By surjectivity of 7, a general element of the domain A, ®p X&
can be put in the form 1 ® X for some X € X&. The set of X with T,(1 ® X) = 0 is
given by

{X € 8| nX(djb) =0, Vje€ Jbe B}

Since 7 is surjective, this set is equal to Hor.

(2) This is a result from page 282 of [10].

(3) Suppose that A, ®p XE = (A, ®p Hor) & N for some A-B module N. We know
from earlier that ker(7,) = A, ® g Hor. Therefore no nonzero element of N is in ker(75),
and thus the restriction of T, to N is injective. Furthermore, as T} is surjective, its
restriction to the non-kernel elements N must also be surjective. Hence N is isomorphic
to m(X}) |dJB

(4) The calculus Q% is right finitely generated projective if and only if the vector fields
X% are left finitely generated projective. Proposition 11.2 says that A, ®p X% is left
finitely generated projective if X£ is, in which case any element can be decomposed as
a®@X = > ar(X;)®e;. As direct summands of a left finitely generated projective module
are also lelft finitely generated projective, it follows that A, ® g Hor and N are left finitely

generated projective. The isomorphism N = 7(X%) implies that 7(X%) } 4 p s also

‘dJB
left finitely generated projective.

(5) This is a result from page 282 of [10]. O

Remark 11.10. The condition of requiring the map id®inc in the sequence to be injective
means that if Z 1® X; € A, ®pHor is nonzero, then its inclusion Z 19 X; € A, @5 XE
15 also nonzerol. In all reasonable examples this would be very surpri;ing if it did not hold,
and perhaps with some module theory it could be shown to hold in general. However we
leave the condition as part of the definition for now, to allow for the possibility that there

might be some infinite dimensional example designed to make it fail.

Definition 11.11. Given a surjective algebra map 7 : B — A, we call 7 a co-embedding

and say that A is a noncommutative submanifold of B if the following splits as a short
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exact sequence of A-B bimodules and A-B bimodule maps.

0 —— A, ®p Hor <2 A, @5 X8 — n(XB)|,,, — 0
If it only splits as a sequence of left A-modules and left A-module maps, we call © a weak

coembedding.

Remark 11.12. We will see later that a weak coembedding is sufficient to obtain a sub-

manifold calculus, but not sufficient to project connections onto that submanifold calculus.

To show that any given example satisfies the definition, we need to show id ® inc is
injective, and then either find a direct sum decomposition A, ®p X% = (A, @ Hor) ® N

or to show that 7(X% is left finitely generated projective.

)|dJ.B

11.4 Submanifold Calculus

Lemma 11.13. JQL c dJ.B

Proof. Suppose j € J and b € B. Then by the Leibniz rule, jdb = d(jb) — dj.b. But as
J is a right ideal, b € J, so both terms are in dJ.B. O]

Proposition 11.14. Suppose we have a surjective algebra map m : B — A, where B has
calculus Q. Then the vector space X5 := A, @ Hor -1 is an A-bimodule with left action

multiplication and right action (1 ® X)<a=1® X7 '(a).

Proof. Recall that Ty = A, ®p Hor is an A-B bimodule. We show that the right A-
action is well-defined by showing that for all X € Hor and 5 € J, we have 1 ® X.j = 0.
But for all £ € QL we have 1® (Xj)(§) = 1® X (j€) = 71X (j€) ® 1. Lemma 11.13 above
says that j¢ € dJ.B, and hence the facts that X is a right vector field and 7 is an algebra
map imply that 7X(j¢) = 0. O

Definition 11.15. Suppose 7 : B — A is a surjective algebra map, and B has calculus

QL. We call the A-bimodule X% the vector fields on A. We call its dual, the A-bimodule
€y := aHom(X}, A), (6)

the extended submanifold calculus on A.
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Proposition 11.16. If QL is right finitely generated projective then QL 1S also right

finitely generated projective.

Proof. We showed earlier that if QL is right finitely generated projective, the vector
fields X% are left finitely generated projective, and the splitting of the sequence implies
that Ty = A, ®p Hor is left finitely generated projective. Just changing the right module
structure of T4 to get X preserves the property of being left finitely generated projective,

and hence its dual Qh is right finitely generated projective. O]

Each element £ € Qi‘ is specified by its evaluation on each a ® X € X% to give an element

of A. We use this to define an exterior derivative on A with values in Q.

Proposition 11.17. The linear map ds : A — Q}L‘ giwen by the following equation for

all a,a’ € A and X € Hor satisfies the Leibniz rule and is thus an exterior derivative.
ev((a® X)®@dyd) = anX(d(r'd)). (7)
Proof. Choose t/,0" € B such that 7t/ = a’ and 70" = a”. Then:

ev(a® X @ dy(d'a")) = axX(d(x(d'd")))
= a7 X(d(VD"))
= a.7X(dv".b" +'.db")
= a.m(X(db').b") + a.m((XV')(dd"))
= a.nX(dV')a" + a.m((X0")(db"))
=ev(a® X ®dad).a" + ev(a ® Xb' @ daa”)
=ev(a® X ®dad'.a") +ev(a® X @ a'dasa”)

=ev(a® X ® (dad'.a" + a’.d4a")),
meaning d4 obeys the Leibniz rule and is thus an exterior derivative. ]

This almost meets the requirements to be a calculus, but we are not guaranteed the
surjectivity axiom. Thus we define the subset QY := {a.dad’ | a,a’ € A}gpan to be the
largest subset of Qh satisfying the surjectivity condition, and call it the submanifold
calculus. Later in examples we calculate whether QY = QL or not, and find that there

are instances of both cases.
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Proposition 11.18. If B has calculus Q% and A is equipped with submanifold calculus
QL coming from a co-embedding © : B — A, then the co-embedding extends to a linear

map 7 : QL — QL given by
ev((a® X) @ 7(§)) = a.w(X(S)), (8)

satisfying 7 (db) = da(mw(b)) and 7*(£b) = 7*(&)w(b) and 7*(b§) = w(b)w* (&) for all
be B,acA.

Proof. By definition of 7*, we have for alla € A, b € B, £ € Qf, X € Hor
7*(db) = a.7(X(db)) = a.x(X(d(7 " 7b))) = da(n (b)),
and

ev((a® X) ® 7(€.0)) = am(X(E)) = am(X(E)7(b) = ev((a ® X) @ 7°()).7(b)
= ev((a® X) @7 (£).x(b)).
Using the Leibniz rule, we calculate:
7 (0.dV) = 7*(d(bb")) — 7*(db.b") = da(7(b)7w (b)) — da(w(b))w (D) = 7(b)da (7 (b))
= 7(b)7*(dV).

Combined with the result that 7*(0.£) = 7 (b).7*(&), this implies 7%(b.§) = 7(b).7* (&) for
allbe B, € € QL. 0

In summary, this means that our construction takes an algebra map 7 : B — A and

constructs a calculus on A with respect to which the map 7 is differentiable.

11.5 Submanifolds of Submanifolds

Suppose that algebra maps ¢ : C' — B and 7 : B — A are co-embeddings. We show in
the following that (subject to an injectivity condition) their composition 1o : C' — A
is also a co-embedding, similarly to how being a submanifold is a transitive property in
classical geometry.

There is a B-bimodule
Hor(m) = {X € X& | 7X(dj) =0, Vj € ker(r)}
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and C-bimodules

Hor(¢y) = {Y € X2 | vY (dk) = 0, Vk € ker(¢)},

Hor(mo) ={Y € X& | (ro)Y(dn) =0, Vn € ker(m o)}

Lemma 11.19. Ifv : C — B and © : B — A are algebra maps, then, denoting ¥~ for

the pre-image set, we have
Y (ker ) = ker(mo) : C — A. (9)

Proof. We prove equality by showing that each is a subset of the other.

(1) If n € ! (ker 7) then ¢(n) € ker 7, so (rov))(n) = 0. Hence ¢! (ker 7) C ker(mwo)).
(2) If n € ker(m o ¢)), then (T ov)(n) =0, i.e. ¥(n) € kerm, i.e. n € ¢~ !(kern). Hence
ker(m o vp) C ¢! (ker ). O

Proposition 11.20. Suppose v : C — B and m : B — A are co-embeddings, and that B

1s equipped with submanifold calculus from 1. Then
Hor(m) = By ®¢ Hor(m 0 1))y-1. (10)
Since Ar @p By = Aroy, it follows that:
Az @p Hor(m) -1 = Aroy ®c Hor(m 0 ) (ropy -1, (11)

meaning that if m o is also a co-embedding then the submanifold calculi on A from w

and from m o) are isomorphic.

Proof. Equipping B with submanifold calculus from v means its vector fields are X% =
By ®¢ Hor(1)y-1. By surjectivity of ¢ a general element can be expressed as 1 ® Y for
some Y € Hor(1). In the following calculations, we first use the definition of Hor(7), then
secondly a combination of the assumption that B is equipped with submanifold calculus
and the definition of the differential on the submanifold calculus as in Equation 7, then

thirdly we invoke Lemma 11.19, and then lastly recognise the definition of Hor(7 o 1)).
Hor(r) 2 {X € X% | 7X(dj) =0 Vj € ker7}
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={1®Y € By, ®c Hor(¢))y—1 | (mo))Y(dr'j) =0 Vj € kery)}
={1®Y € By ®c Hor(¢)y-1 | (moy)Y(dn) =0 Vn € ker(ro))}

= B¢ XKoo HOl"(Tr o 77/))1#71
]

Recall that as in Exercise 2.8 of [50], the Splitting Lemma says that a short exact sequence

of left A-modules and left A-module maps

0 v A pB -0

2\
e}

splits if and only if there exists a left A-module map ¢ : B — A such that qoi =id4.

Proposition 11.21. Suppose ¢ : C'— B and 7w : B — A are co-embeddings, where B is
equipped with submanifold calculus, and that the map

id ® inc : Aroy ®c Hor(m o)) = Aroy ®@c ?ﬁg
1s injective. Then the composition m o : C'— A is also a co-embedding.

Proof. For the co-embeddings 7 and v, there are split short exact sequences

T

0 —— A, ®p Hor(r) 2 A, @p XE s () — 0

‘dker(w)

1d®1nc

0 —— By ®c¢ Hor(¢v)) —— By ®c %C > U %R ‘dker W).C 0

where T (a ® X) = a(m 0 X) |ager(r)).B and Ty(b®Y) = b(¥ oY) |agker(w)).C-

These have splitting maps u, : A, ®p X& — A, ®p Hor(r) and u, : By ®c X& —
By ®¢ Hor(1)) whose compositions with their respective id ® inc give the identity on the
left hand side of the sequence.

The composition 7 o ¢ is a surjective algebra map, so to prove it is a co-embedding
it remains to show that the following short exact sequence splits (exactness is by the

assumption).

id®inc

0 —— Aqoy ®c Hor(m o)) —— v,

Aﬂ'ow ¢ %g (7T © dJ) xc |dker (movp).C 0
where Tﬂmp(a ®Y)=a((mro)oX) ’d(ker(wow))C'
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But since B is equipped with the submanifold calculus, X% = B,, ®¢ Hor(¢), so by the

lemma above, the sequence for 7 is equivalent to

id®inc
E—

0 —— Anoy ®c Hor(m o t) Aoy @c Hor (1) —— 7(X3 — 0

Mdker(ﬂ').B

with splitting map U, : Aoy @c Hor(¢)) — Azoy @c Hor(m o 4).

The composition @, o (id ® wu,) gives the desired splitting, since
Uro(i[d@uy)1®X)=1u,(10X)=1®X.
Hence 7 o % is also a co-embedding. [

The injectivity condition would be automatic if for example A, was flat as a right B-

module.

12 Left-sided Theory

Here we provide a version of the theory for X%, but omit to write the proofs since they
entirely mirror the right-handed version. For an associative unital algebra B with calculus
QL. the vector fields Xk = gHom (02}, B) satisfy X (b€) = bX (¢) and are a B-bimodule,
with left and right actions given for all b € B, £ € Qk by

(bX)(§) = X(bE),  (XD)(&) = X(£)-b.

If QL is left finitely generated projective then X% is right finitely generated projective.
Given a surjective algebra map 7 : B — A, the kernel J = ker() is a two-sided ideal of
B. Write ;A for the B-A bimodule given by the algebra A with right A-action given by
multiplication, and left B-action given by b>a = 7(b)a. The restriction via 7 of a right
B-module E to A is given by F ®p A, and this is right finitely generated projective if
E is. The set

Hor" = {X € X5 | nX(dj) =0, VjeJ} (12)

is a B-bimodule. We define a tangent bundle of A in B by Ty = Hor* @5 . A.
The subspace W(%é)‘B.dJ of gHom(dJ.B, A) consisting of all 7o X for X € XL is a B-A
bimodule with left B-action b>(7®X) = m(bX) and right A-action (moX)<a = (70X).a.
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There is a surjective B-A bimodule map given by
T, : Xk @p A — 7(X5) ‘BdJ, T,T(X®a):<7roX|B_dJ).a. (13)

The notation 7 o X‘B.dJ denotes restriction of the map mo X : QL — A to the subset of

the domain consisting of elements of the form b.dj for some j € J, b € B.

Theorem 12.1. Suppose 7 : B — A is a surjective algebra map. Then for the following

sequence of A-B modules and A-B module maps, the following numbered statements hold.

INcX1

0 — Hor" ®p A X5 ®p A — 1(XE)|,,, — 0 (14)

(1) If inc ® id is injective, then the sequence is exact.

(2) There exists a direct sum decomposition X5 ®p A = (Hor* @p rA) ® N for some
B-A bimodule N if and only if the sequence is split as B-A bimodules.

(3) If the sequence splits as B-A bimodules, the module N is isomorphic to m(X5) ‘ij,
and we call it the normal bundle.

(4) If the sequence splits and the vector fields X% are right finitely generated projective (or
equivalently if the calculus QY is left finitely generated projective), then the three modules
in the above exact sequence are also right finitely generated projective.

(5) If W(%é)‘B.dJ is right finitely generated projective, then the exact sequence splits.

If m: B — A is a surjective algebra map for which the above short exact sequence splits,

then we say 7 is a (left) co-embedding. We define the vector fields on A as the A-bimodule
xh = —1Horl @5 A

which has left action a> X ® 1 = 771(a).X ® 1, which is well-defined by the properties
of Hor”. We define the extended submanifold calculus by

52114 = HOIIlA(%ﬁ, A)

This is left finitely generated projective if Q% is left finitely generated projective, and we

denote Q! for the maximal subset spanned by the exterior derivative
da: A— QY ev(dad ® X ® a) = X (d(7"'d")).a. (15)
As in the right-handed case we have the following proposition.
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Proposition 12.2. A left co-embedding 7 : B — A extends to a linear map

™08 = QY dbe da(n(d) (16)

satisfying 7 (&£b) = w*(&)7(b) and ©*(b§) = w(b)w*(§) for allb € B, a € A.

The composition of two left co-embeddings is a left co-embedding, subject to the condition

that the following map is injective.

inc ® id : Hor(m 0 %) ®¢ ropA — X& ®¢ ropA

13 Submanifold Examples

In this section, we look at several examples, both classical and non-classical, which are
tabulated below. The table contains one row per example, and records the algebras, the
algebra map 7w between them, and the generators of the kernel .J of 7, and of the tangent

and normal bundles. The last column is whether the submanifold calculus satisfies the

surjectivity axiom of being spanned by the image of the exterior derivative d 4.

a1 —
B A m:B—> A J gen. T4 gen. N4 gen. A
QL?
A
C>=(R?) C>=(R?) }R Restriction Yy 1® % 1® 3% Y
f vanishing
C>*(R) COO(]R)‘[O I Restriction 1® % 0 Y
' on [0,1]
2t2 ® e,
c,[D] Cpl8Y | we)=ta(zm) =t | 1-z 1 l@e. Y
—+ 1 9] €z
) n(a) =t, w(d) =t71,
C,[SUs) Cgp[SY] b, c 1® e 1®ey, 1®e_ Y
m(b) =7(c) =0
w(d,) =6, if g€ H, 0, for all 1® e, for 1® e, for
(@) C(H) (04) g 11 g g v
m(dy) = 0 else g€ G\H acCNH ala¢ CNH
1® fopew | 1® fyey for arrows
C(X) for X | C({xo}) for o 0, for all
Restriction for arrows =y, reX, N
a finite set | some xg € X z € X\{zo}
T — T y € X\{zo}
(a) =z, w(c) =y b 4 :
C,[My)] C,[C?) b,d I1®e, 1®e I1®e’, 1®e° N
w(b) =7(d) =0

Table 1: Submanifolds Examples
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We note that the last example 7 : C,[Ms] — C,[C?] is not a co-embedding but a weak
co-embedding since the normal bundle fails to be a right B-module.

In each of these examples, we start by assuming a calculus Q} on the algebra B, which
is of the type mentioned in square brackets at the start of each example, but we do not
assume at first any calculus on A, since that is what we construct using the calculus on

B using our theory of submanifolds.

13.1 Classical Example: z-axis in R?

[Algebras: See Example 3.1 for C*°(M) and its calculus]

We start with a classical example: the inclusion of the z-axis into R%. The algebra B =
C>(R?) is generated (up to completion) by functions = and y defined by x(by, by) = by,
y(b1,by) = by respectively, and its calculus QL is freely generated by dzr and dy. We
take A = C’O"(]Rz)}]R =~ C>(R) as the restriction of B to the z-axis. The restriction map
7 : B — A is surjective with kernel J generated by y. A right vector field X € X& takes
the form X = fxa% + fya% for some f,, f, € B, from which we calculate X (dz) = f,
and X (dy) = f,. The restricted vector fields are the B-A bimodule A, ®p QF, which
has general element g ® ( fma% + fya%) and hence generators 1 ® 8% and 1 ® a%. A
horizontal vector field satisfies 7X(dj) = 0 for all j € J, i.e. 7(f,) = 0, and since Q}
is commutative, condition 2 of Lemma 11.4 holds automatically. Hence Hor is generated
by a%‘ The tangent bundle T4 is then generated by 1 ® % and the normal bundle N4 by
1® a%. The normal bundle N, is an A-B bimodule, since multiplying 3% on the right by

some b € C°°(R?) never produces multiples of a%' The map
id®inc: A, g Hor — A, ®p 362

has trivial kernel, since if a ® a% is nonzero in A, ®p Hor then it is nonzero in A, @ XE.
Hence m : B — A is a co-embedding. The A-bimodule X% = A, ®p Hor,1 has right
dual the left module maps Qlcoo(R) = 4Hom(XR}, A), which is a right finitely generated
projective A-bimodule. The exterior derivative d : A — QY is given by ev((a ® X) ®

daa’) = a7 X (d(r @) and the submanifold calculus Q};w(R) is spanned by d 4.
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13.2 Classical Example: Closed interval in R

[Algebras: See Example 3.1 for C*°(M) and its calculi.|

Our next example is another classical one: The inclusion of the closed interval [0, 1] as the
closure of a submanifold of R. Let B = C*(R) and A = C’O"(R)‘[O’l], with right finitely
generated projective calculus QL. The restriction 7 : B — A is a surjective algebra map
with kernel J the smooth functions vanishing on [0, 1]. A vector field X£ takes the form
r = g% for some g € B. The restricted vector fields %§| 1= Az ®B X% have general
element k‘@a% for some k € A, and hence are generated as a left A-module by 1®%. Next
we calculate Hor. As in the previous example, since QL is commutative, condition 2 of
Lemma 11.4 holds automatically. Elements X = g2 of Hor satisfy X (j) = g2 (j) € J for
each smooth function j vanishing on [0, 1]. But for a smooth function j vanishing on [0, 1],
by continuity its derivatives must also vanish on [0, 1], so X (j) € J. Hence Hor = X%,
so Ty = A, ®p X and Ny = 0, making 7 a co-embedding. The submanifold calculus
QY = AHom(XR, A) is spanned by dsz, the dual of 1 ® (%. This example illustrates that
under our definition, the closure of a manifold is indistinguishable from a manifold, since

[0, 1] has the same tangent bundle, normal bundle and submanifold calculus as (0, 1).

13.3 Non-Classical Example: Algebraic Circle in Quantum Disk

[Algebras: See Example 3.3 for C,[D] and its calculus, and Example 3.2 for C,[S!] and
its calculus]

Next we look at the non-classical example of embedding the algebraic circle A = C[t, 7]
into the quantum disk B = C,[D], for 0 < ¢ < 1.

There is a surjective algebra map 7 : B — A given by 7(z) = t, n(z) = ¢! with kernel
J generated by w := 1 — Zz. This is known to be differentiable if A is equipped with
the 1-dimensional calculus generated by dt with relation dt.t = ¢*t.d¢, in which case the
quantum circle algebra is denoted C,2[S?]. However, here we instead start by making no
assumptions on the calculus of A and show that the submanifold calculus obtained from
7 as a co-embedding coincides with this.

As QL is right finitely generated projective, there exist dual basis elements e, e; € X%
such that any vector field X € X% decomposes as X = > X,e, for some X, € B.

a€{z,z}
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Then e,(db) = 0,y for a,b € {z,z}, and X(dz) = X, and X (dz) = X;.

Proposition 13.1. The tangent bundle Ty is generated as a left A-module by Y =
FtPRe, +1®es.
Proof. Vector fields X € Hor are characterised by the property that X (dj) € J forall j €

J, which implies X (dw) € J. Using the fact that dw = —¢®2dz — zdz = dz.z — ¢*dz.z,

we calculate:
X(dw) = X(dz.z2 — ¢*dz.2) = X(d2).2 — ¢°X(d2).2 = Xs.2 — ¢°X..Z

Thus for all X € Hor we have 0 = 7X (dw) = m(X;).t — ¢*n(X.).t~*, which is equivalent
to m(X.) = ¢®m(X:).t>. Next we check if there are any conditions on horizontal vector
fields coming from condition 2 of Lemma 11.4. But by the commutation relations of the

calculus, w commutes with the calculus, and so:
X.e,w~+ Xze;w = X,we, + Xzwe; € Je, + Jes.

Hence this gives no additional conditions.
A general element of the tangent bundle Ty = A, ®p Hor takes the form p(t) ® X, for

p(t) a Laurent polynomial and X € Hor. We can expand:

p(t) @ X =p(t) @ (X,e, + Xzez)
=D t)ﬂ—(Xz) ® e, +p(t)7r(X2) X ez
= ¢p(t)m(X:).P @ e. + p(t)m(Xz) ® e:

=p(t)m(X:). (PP ®e. + 1@ es)

We didn’t have any further restrictions on X;, so m(X;) is a general polynomial in A,
meaning that p(t)m(X;) is a general polynomial too. Thus T4 as a left A-module is

spanned by Y = *t? ® e, + 1 ® e;. O

A normal bundle N4 can then be given as the span of 1 ® e,, giving a direct sum
decomposition A, ®@p %g =T B Ny. From the commutation relations listed in Example
3.2, we can see that the normal bundle is closed under the right B-action, and thus a

B-A module. The map
id®inc: A, g Hor - A, ®p %g
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has trivial kernel, since if f(t).(q2t2 Re, +1® 62) is nonzero in A, ®p Hor then it is
nonzero in A, g %g. Hence 7 is a co-embedding.

But in [10] there is already a differential structure on C,2[S'] given by QY = C[¢,t~!].d¢,
dt.f(t) = f(¢*).dt, df = %dt. Does the submanifold calculus coincide with this?

We start by calculating the commutation relations on X%.

Proposition 13.2. If we write Y = ¢*t? ® e, + 1 ® ez € X%, then the module X% has

commutation relation Y.t = q—2tY .

Proof. We calculate (e,.2)(dz) = e,(2.dz) = e, (¢ 3dz.2) = g %e,(dz).z = ¢ %2 =
q %ze,(dz) = q7%(z.e.)(dz). Also e,(dz) = 0, s0 e,.z = ¢ %z.e,. Next, (e;.2)(dz) =
ez(2.dz) = es(q72dz.2) = ¢ %2 = ¢ ?*(z.e5)(dz). Also ez(dz) = 0, s0 ez.2 = ¢ 2z.e5.
Therefore Y.t = (*?®e, +1®ez)z = P12 ®q 226, +1Qq¢ %2e; = ¢ (PP Qe +1Re;) =
q Y.

The submanifold calculus is QY := 4Hom (X%, A), and it has basis element ¢*t?d 4z +d4Z,

which is the dual of Y.
Proposition 13.3. The calculus Qi‘ has commutation relation dt.t = ¢*t.dt.

Proof. The exterior derivative dyq : A — 9}4 is a linear map defined by the equation
ev(Y @ dat) = ¢**re, (d(m1(t))) + mez(d(m7(t))) = ¢*t*me.(dz) + mes(dz) = ¢*t. Thus,
ev(Y @ t.dt) = ev(Yt @ dt) = ev(¢?tY @ dt) = ¢ *t.ev(Y ® dt) = ¢ %t.¢*t* = t*. Then,
we have ev(Y @ dt.t) = ev(Y @ dt)t = ¢*t3. Therefore dt.t = ¢*t.dt. O

This coincides with the usual relation on the calculus for Cp2[S'], so the calculi are
isomorphic.

In retrospect, since the submanifold calculus is designed to always make the co-embedding
differentiable, it should be no surprise that our construction gives the usual calculus on
C,2[S']. However, the generator of the tangent bundle we obtained along the way was
not at all obvious. Our choice of normal bundle was sufficient for the purposes of being
complementary, but was somewhat arbitrary.

We continue with this example in Section 16.3, where we look at Hermitian metrics and

connections.
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13.4 Non-Classical Example: Algebraic Circle in Quantum SUs

[Algebras: See Example 3.5 for C,[SUs] and its 3D calculus, and Example 3.2 for C,[S]
and its calculus]
In this non-classical example we look at A = C[t,t!] as a noncommutative submanifold

of B = C,[SUs).

Proposition 13.4. The surjective algebra map © : B — A given by 7w(a) = t, w(d) =t 1,
m(b) = w(c) = 0 has kernel J generated by b and ¢, so J =bB + ¢B.

Proof. As a vector space, C,[SUs| has a linear basis given by a™b"c® and d"b"c®. Therefore
C,[SUs]/ker(m) consists of elements a™ and d", for n > 0, as 7(a™) = t" and 7(d") = t".
The complement of this, ker(7), then consists of the span of a™b"¢® and d"b"¢® for r, s not

both zero, which is just the span of b and c. O

As QL is right finitely generated projective, there exist ey,e_, ey € X& such that any

vector field X € X% decomposes as X = > Xie; for some X; € B. We also
ie{+,—,0}

have e;(e/) = 6;; for i,j € {+,—,0}, and X(e’) = X;. It can be calculated that the

commutation relations for the vector fields e; are as follows.

exf=q Wfer, eof =q 2 fe,.

Proposition 13.5. The tangent bundle T's 1s generated by Y := 1 ® eq, and the normal
bundle Ny by 1 ® ey and 1 ®e_.

Proof. Each element X of Hor satisfies X satisfies X (db), X(dc) € J. We use the

1

commutation relations ae™ = ¢ te".a, be® = ¢?e.b, ce® = ¢ 2e%.c and det = get.d to

calculate:

X(db) = X(ae™ — ¢ *be’) = X (¢ e .a — ".b) = ¢ ' X_.a — Xo.b,

X(de) = X(ce® + qdet) = X (g%’ .c + ¢’e".d) = ¢ * Xo.c + ¢* X 1.d
Therefore for all X € Hor, we have 0 = 7X(db) = ¢ 'm(X_).t and 0 = 7X(dc) =
¢*m(X,).t7!, which implies that 7(X,) = 7(X_) = 0. We show that condition 2 of

Lemma 11.4 is satisfied and presents no further conditions on elements of Hor, using the

commutation relations on the calculus and then that J is a two-sided ideal:
Xiepj+X_e_j+ Xoeoj = ¢ X jer + ¢ X_je_ + ¢ Xyjeq € Jey + Je_ + Jey.
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Consequently, a general element of Ty = A, ® Hor takes the form
p(t) @ (Xiey + X e + Xoeo) = p(t)m(Xo) @ e,

where p(t) € A is a polynomial. The left hand side of the tensor product is free to take
any value in A, and hence T) is generated as a left A-module by Y := 1 ® ¢y. By linear
independence of the eq, e, , e_, a complementary normal bundle N4 is generated by 1®e,

and 1 ®e_. O

The normal bundle is a right B-module because the right B-action 1 ® ey never produces

a 1l ® ey term, and thus Ny is an A-B bimodule. The map
id®inc: A, g Hor — A, ®p 3€§

has trivial kernel, since if f(t)®eq is nonzero in A, ®pHor then it is nonzero in A, ®p %g.
Hence 7 is a co-embedding.

Next we look at the commutation relations on the vector fields and submanifold calculus.

Proposition 13.6. The vector fields X% have commutation relation Y.t = q2.Y, where

Y =1R® e.
Proof. Using the fact that €®.a = ¢?a.c’, we calculate:
ev(ep.a ® e?) = ev(ey ® a.e”) = ev(ey ® ¢ %e%.a) = ¢ %ev(ep ® €°).a
=q a=q la.ev(eyg®e’) = ¢ *ev(a.eo @ €°).
Thus eg.a = ¢ %a.eq. Therefore:

Yi=1®¢cpa=1®q %ae=qt(1®e) =q *tY

Proposition 13.7. The calculus Q}L‘ has commutation relation dt.t = ¢*t.dt.

Proof. The exterior derivative dq : A — 9}4 is a linear map defined by the equation
ev(Y®dat) = meo(d(n71(t))) = meg(da) = weg(ac®+gbe™) = meo(q2e.a+q?et.b) = ¢ >t.
Then, we calculate the right module structure of QY, by ev(Y @ dat.t) = ev(Y @ dat.t) =
q~2t?, and

ev(Y @ t.dat) = ev(Yt @ dat) = ev(q Y @ dat) = ¢ (¢ ?t) = ¢ 2.
Hence dt.t = ¢*t.dt. O
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This coincides with the usual relation, so the submanifold calculus is the same as the
calculus on Cp2[S1].

Since ev(Y @ dat) = ¢ ?ev(Y @ (e @ 1)).t, it follows that dat = ¢ 2(e® ® 1).1.

We continue looking at this example in Section 16.1, where we look at Hermitian metrics

and connections.

13.5 Non-Classical Example: Functions on a Finite Group

[Algebras: See Example 3.10 for C'(G) and its calculi]
In this example we look at the embedding of a subgroup H of a finite group G. There is
a surjective algebra map 7w : B — A given on the basis elements of C(G) by

0, itge H

m(dg) =

0 ifg¢H
with kernel .J spanned by 0, for ¢ € G\ H. Hence each X € Hor satisfies 7.X(dd,) = 0 for
all g € G\H. As Q) is right finitely generated projective, there exist dual basis elements
{ep}pec in XEB such that each X € X& decomposes as X = > Xpe, for some X, € B.

beC
Then e,(€’) = 6,4, and X (dd,) = X, for a,b,c € C.

Proposition 13.8. Horizontal vector fields X € Hor are characterised by the property
m(X,) =0 for alla € C\H.

Proof. We begin by noting that since we have an actual linear basis of J, condition 2 of

Lemma 11.4 holds automatically, and we need only check condition 1.

We know that for f € C(G) we have df = > e®.(f — R,~1(f)). Thus dd, = > e*.(d, —
acC aeC
d4a)- Applying X € Hor, we get:

X(ddg) =) Xo(8y — Gga).

aeC

If g € G\H then X(dd,) € J,som > X4.(0;—094q) = 0. Seeing as 7 is the map restricting
to H, this means having > Xa.(cszei dg4q) vanish on H. But the fact that ¢ ¢ H means
that d,4(h) always Vanishease,cso the above is equivalent to having — ) X,.0,4, vanish on
H, which in turn is equivalent to having CZ HXa.éga vanish on I-; .Ec

a€C:gac
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Evaluating this at h € H, all terms vanish except the one with ga = h (if such a term
exists), i.e. with a = g~'h, so we get X,-1,(h) =0 for all h € H and g € C\H.

However, given any a € C\H and h € H, there exists some g € G\ H such that a = g~'h,
i.e. that h = ag. Therefore the condition reduces to having X,(h) =0 for all h € H and
a€C\H,ie m(X,)=0foraecC\H. O

Proposition 13.9. The tangent bundle T4 is generated as a left A-module by Y, := 1®e,
for all a € CN H, and the normal bundle by 1 ® e, for all a ¢ C N H. Note that it is

possible for the intersection C N H to be empty, based on our choices of C and H.

Proof. A general element of Ty = A, ®pg Hor can be expanded as

feX = f®ZXaea = Z fr(X,) ® e
acC aceCNH
As there are no restrictions on X, for a € C N H, the left hand side of the tensor product
is a general element of C'(H), and hence T4 is generated by Y, :=1® e, fora € CN H.
By linear independence of the e,, the tangent bundle N, is generated by 1 ® e, for

a¢CNH. O

Since the right B-action on the vector fields e, just multiplies them by functions, the

normal bundle N4 is a B-A bimodule. The map
id®inc: A, ®p Hor — A, ®p %g

has trivial kernel, since if f ® >  X,e, is nonzero in A, ®p Hor then it is nonzero in
aeC

A, @ X& Thus 7 : B — A is a co-embedding.
As usual, we show that the submanifold calculus Y} coincides with the usual calculus on

C(H).
Proposition 13.10. The exterior derivative is given by ev(Y, ® daf) = f — Ro—1(f).

Proof. We calculate forall he H andae CN H
ev(Y, @ daf) = mea(d(r'(f))) = mea(df) = mea(D_ €' .(f — Ry1(f))) = 7(f — Ra-1(f))

beC

= f_Ra—l(f)
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Proposition 13.11. The commutation relations on X% are given by Y,.f = R,-1(f).Y,
forall f € C(H) anda € CN H.

Proof. First we calculate the right module structure of %g( H)-

(6a~f)(ea) = ea(f-ea) = ea(ea'Rafl(f» = ea(ea)'Rafl(f) = Ra*l(f) = Ra*l(f)ea(ea)
= (Ra-1(f)-€q)(€").

Hence e,.f = R4-1(f).€4. Therefore:
Yoop=1®e€4.f =1Q Ry-1(f)ea = Ro-1(f).(1®e,) = Ry—1(f)Ya.
So Yu.f = Re-1(f).Y, forall f e C(H)andaeCNH. O

Proposition 13.12. The commutation relations on QY are given by éf = Rq(f)é*,

where €* := Y 0,dad0z, fora e CNH.

zelG

Proof. Define é* := > 6,dd,, for a € C N H. The right module structure of Q}L‘ is:
zeG

ev(Y, @ fe?) = ev(Yom(f) @ €*) = ev(Yof ® ) = ev(Ry-1(f).Y, ® )

= Ro-1(flev(Y, ®e?) = Ry-1(f) = ev(Yo ® €*)Ry-1(f) = ev(Y, ® e*.Ry-1(f)),
forall f € C(H) and a € CN H. Hence fé* = é*R,-1(f), i.e. é°f = R,(f)ée™. O

This coincides with the usual commutation relations on the calculus. Also, for this
particular example, we do indeed have Q0 = QY = {,dadw | b, A’ € H}gpan, o0 account
of the fact that the graph has no multiple edges or loops, and all calculi on finite sets are
of this form.

We continue looking at this example in Section 16.2, where we look at Hermitian metrics

and connections.

13.6 Non-classical Example: Point in a Finite Graph

[See Example 3.9 for C(X) and its calculi
Take B = C(X) for some finite set X, and suppose we make a choice of a finite graph to

determine its calculus Q). Take A = C'({z}) for zg a fixed element of X, and let 7 be
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the map 7 : C'(X) — C({xo}) given by restriction of functions to xy. This is a surjective

algebra map with kernel:

J={feC(X)]| f(zo) =0} = {f € C(X) | f.6, = O}. (17)

A basis of J is then given by 0, for all x € X\{zo}. Next we calculate the horizontal
vector fields. Since we have an actual linear basis of J, condition 2 of Lemma 11.4 holds

automatically, and we need only check condition 1.
Hor = {X € Xfx) | 7 X(dj) =0 Vje J}={X € X{x) | X(dd.)ds, =0 Vz € X\{zo}}.

Hence for each z # xy, X € Hor, we have:
0= Z Xa:—)z(sx,xo - Z Xz—)yéz,xo - J:o—>z Z X:vg—)y
T—2z 2=y To—Y
But since this holds for all z,y € X, it follows that X,,,, = 0 for all y € X, i.e. for any
arrow out of zy. Since a horizontal vector field has no f.. ., component for any z, the

horizontal vector fields are spanned by f,., for all y € X, z € X\{z¢}.

Hor = {X ¢ %g(){) | X = Z Xoosy [y for some X,_,, € C} (18)

a—y,xw0
The tangent bundle is Ty = C'({z¢}) ®, Hor, and a general element of T4 takes the form
dzy @ X for some X € Hor. Since 7(8z,) = 0, and 0y fyea = Ouyy fyew, We calculate:
5”00 ® Z Xff%yfy%l" =1® Z Xm%yéy,xofy%x =1® Z Xm%xofacoez
T—y,a£T0 z—y,a#T0 a—ao
Hence T4 is spanned by Y, := 1 ® f,,. for each arrow x — xy. The normal bundle is
therefore spanned by 1 ® f,., for each arrow 2 — y for v € X, y € X\{zo}. Since the

normal bundle is closed under the right B-action, it is a B-A bimodule. The map
id ® inc : A, ®p Hor — A, ®p X%

has trivial kernel, since if > \,.Y, is nonzero in A,®pHor then it is nonzero in A, @pXE.
T—T0
Therefore 7 is a co-embedding.

Defining %R Clizop = C{o})r ®c(x) Horg-1, the submanifold calculus is

Qb((any) = o HOm(XE () C({x0})),
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which has exterior derivative ds : C'({zo}) — Qé( (xo}) Satistying for arrows x — xo:

ev(Ym ® dA(Smo) = wao%r(d(ﬂ_l(éxo))) = 7Tf$o<—m(d5xo> = Wfrm—x( Z Ww—zg — Z C‘)flfo—>y)

w—rxQ To—Y

= 7(8,) = Opny0zy = 0.

Hence the exterior derivative d, is the zero map, and QY = 0. But if there exist arrows
r — xg, the tangent bundle has a non-trivial basis, and hence so does its dual Qh. This
case is an example where QY is bigger than Q). and the submanifold calculus does not

satisfy the surjectivity axiom of everything being of the form a.d,a’.

13.7 Non-classical Example: C,[C? in C,[M,]

[Algebras: See Example 3.7 for C,[C?] and its calculus, and Example 3.4 for C,[M,] and
its calculus]

Next, we show that the quantum plane A = C,[C?] is a noncommutative submanifold of
the g-deformed matrices B = C,[Ms]. To the extent of our knowledge, the algebra map
used in this example is new.

Recall that C,[C?] is the algebra with generators z,y and relation yx = gry, while the

algebra C,[M,] has generators a, b, ¢, d and relations:
ba = qab, ca = qac, db=qbd, dc=qcd, cb="bc, da—ad= (q—q *)bc.

Note that in C,[M,], unlike in C,[GLsy], C,[SLs] or C,[SU,], we make no assumption on
the value or invertibility of the determinant det, = ad — ¢ 'bc.

Page 27 of [5] gives a 1-parameter family of 4D calculi on C,[G'Ly|. Writing « for the
free parameter and A = ¢ — ¢!, the calculus is freely generated by elements e,, e, €., eq
and inner by 6 = e, + e4, which gives the differential. The commutation relations on the

generators are:
2
ealth) = ¢ (58 )ew fen (4 Dlgrran = g2 A(§ e
[ecv ( (cl Z)]qlﬂo‘ - q1+2a>\( Z 8)6(17 [eda ( g )]qzo‘ - (‘ZQOCA( ?l )eb
lea ()gze = M 2o A )
This notation is a shorthand, so for example one of the relations is

ep.d — ¢'2dey, = ¢ \ee,.
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Lemma 13.13. The relations on Q5 can be re-written as:

ae, = q 2 e,.a bea = g %ey.b

ce, = q T %,.c de, = ¢ *%,.d

ae, = ¢ 17 %.a bey, = ¢ 172 %.b — A\g 2 %,.a
cep = ¢ 1 %,.c dey = ¢ 1 7%%y.d — A\ 2%, .c
ae. = q %0 — \g 2 %e,.b be, = q 1 *%..b

ce. = q 17%.c — N\ %, .d de, = ¢ 17%%,.d

aeq = q %eg.a — NG %0 + N2 %, beg = ¢ *%g.b — A\¢ 1 %,.a
ceqg = q eg.c — A\g T %y.d + N2 %, deg = ¢ *%eg.d — N\g 17 %e,.c

Proof. For brevity we omit the full calculations, but we calculate in the order of e,

through to e; and re-arrange and substitute until all algebra elements are on the right. [

As the calculus is freely generated, the vector fields are also freely generated, and hence
in particular right finitely generated projective. This means there exist €2, €?, e, e € X%
such that e‘(e;) = 6, for i,j € {a,b,c,d}, and every vector field X € XE decomposes as

X = > X, for some X; € B. This implies X (¢;) = X;.
i€{a,b,c,d}

Lemma 13.14. The vector fields %ngﬂ have commutation relations:

e®.a=q 7 a.e® — \g 2.ef + N\2qg 2 2.t e.a=q 172" — N\g7 1 2%.¢?

ef.a=q e ela=qg .l

e®.b =g 2b.e — \g 2 *q.e’ e’b=q 172

e“.b=q 172%.ef — \g~ 2 q.e? elb =g %b.e?

el.c=q e — \g2d.ef + N2 e elc=qg 1% ceb — N\g71 2.l
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c —1-2« c d —2a d

ef.c=q c.e e‘.c=q “ce
e®.d=q 2d.e® — \g T 2c.e el.d =g t2q.e
e“.d =q %€ el.d = ¢ 2d.e?
Proof. We calculate the commutation relations using the fact that coev(1) = >  e;®¢€

is central, on account of coev being a bimodule map.

(1) Firstly we calculate:
Z ae; @ e’ = <q72’20‘ea.a> ®e* + (q’l’zaeb.a> ® e’ + <q’1’2"‘ec.a — )\q’2aea.b> ® e

+ (q_2aed.a — A 1% b+ /\2q_2_2aea.a> ® el
=e,® (q_2_2°‘a.e“ — A\ %%b.ef + )\Zq_Q_QO‘a.ed) +ep ® (q_1_20‘a.eb — )\q_l_2ab.ed)
+e.® (q_1_2"‘a.€c) +eqs® (q_%“a.ed)
Equating this with Z e; ® e'.a and comparing the RHS of the tensor product gives the

equations above for moving a from right to left.

(2) Next we calculate:
Z be; ® €' = (q_zo‘ea.b) ®Qe* + (q_l_%‘eb.b — )\q_2_2aea.a) ® e + <q_1_20‘ec.b> ® e

+ (q_Qaed.b - )\q_l_Qaec.a> ® e?
=€, ® (q_zab.e“ - )\q_2_2“a.eb) + e, ® (q_l_zab.eb)
+ e, ® (q_1_20“l).eC — )\q_l_zaa.ed) +e4® (q_QO‘b.ed)
Equating this with }_ e; ® e¢'.b and comparing the RHS of the tensor product gives the

equations above for moving b from right to left.

(3) Next we calculate:

Z ce; @ e = (q_2_2aea.c> ® e + (q_l_%‘eb.c> ® e’ + (q_l_%‘ec.c — /\q_2aea.d> ® e

(2

4 (q*med.c— A2, d + )\quzfzaea.c) ® ¢
=e, ® (q7272ac.€a o )\q72ad.€c + )\2q*2*2ac.ed)

+e® (q_l_%‘c.eb — )\q_l_%‘d.ed)
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+e.® (q’l’mc.ec) +eq® (q’zac.ed)

Equating this with }_ e; ® e’.c and comparing the RHS of the tensor product gives the
equations above for moving ¢ from right to left.

(4) Lastly we calculate:
Z de; ® e' = <q_2°‘ea.d> ® e + (q_l_zaeb.d — )\q_z_zo‘ea.c> ® e’ + (q_l_%‘ec.d> ® e

+ <q*2°‘ed.d — Aq’l’mec.c) ® e’
=€, ® (q_zad.e“ — )\q_2_2ac.eb) + e, ® (q_1_2ad.eb)

+e.® (q’I’QO‘d.eC) +eq® (q’md.ed)

Equating this with >_ e; ® €’.d and comparing the RHS of the tensor product gives the

equations above for moving d from right to left. O

Provided that the g-determinant det, = ad — ¢ 'bc is not invertible (i.e. we are not in

the GLy or SLs case), there is a surjective algebra map
7 Cy[My] — C,[C?, w(a) =z, w(c)=vy, =(b)=mn(d)=0. (19)

Since we can use the commutation relations to put b and d on the left of every term, the

kernel J of 7 is bB + dB.

Proposition 13.15. Horizontal vector fields X € Hor are characterised by w(X,) = 0
and (X.) = 0.

Proof. In parts 1 and 2 of this proof we calculate the implications of condition 1 of
Lemma 36, and in part 3 we calculate the implications of its condition 2.

(1) Firstly we calculate 7.X(db). Using that the calculus is inner by 6 = e, + e4, we
calculate X (db) as:

X(db) = X([0,b]) = X(eq.b+ €q.b — be, — bey)
= Xo.b+ Xg.b— X(q *%e0.b+ ¢ *¥eg.b — \g” > ¢..q)
= Xob+ Xgb—q X, b—q X+ Mg X, a

=(1—q¢ )X, b+ (1—q¢*)Xgb+ N7 X a
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The map 7 sends every term containing b to zero, and so X (db) = A\¢~'?*n(X.).z For
X to be horizontal, we therefore need 0 = A\¢g~'~2*1(X.).z. Hence 7(X,) = 0.
(2) Next we calculate 7X (dd) as:

X(dd) = X([0,d]) = X(eq.d + eq.d — de, — dey)
= Xod+ Xg.d — X(q¢ *eq.d+q *eq.d — Mg " e..0)

= (1= ¢ Xad+ (1 - ¢ Xad + A7 X0

The map 7 sends every term containing d to zero, so we get 71X (dd) = A\¢™'~2*7(X.).y,
and for X to be horizontal we need this to vanish, so 7(X,.) = 0.
(3) Lastly, we calculate the implications of condition 2 of Lemma 11.4. Using the com-

mutation relations on the vector fields from Lemma 13.14, we first calculate:
Xb=Y Xe'b=X,(qb.e" = A\g > a.’) + X, (¢7 " *D.")

+ X. (c_]‘l_zo‘b.eC — )\q_l_zaa.ed) + Xy (q_2ab.ed)
— (Xaq—Qab)ea + (_ Xa)\q_Z_2aa+qu_1_2ab)eb
+ (ch_1_2ab) e+ ( — X g %0+ qu_2ab) ed.
Every coefficient containing b or d is automatically in J since J is a two-sided ideal,

and for the coefficients X, A\¢~272%a and X . \q¢~'">%a to be in J, we require X, € J and

X, € J. Next we calculate:
Xd=> Xi'd
=X, (q_2ad.e“ — /\q_2_2ac.eb) + X, (q_l_md.eb) + X, (q_l_%‘d.ec) + Xy (q_%‘d.ed)
= (Xag 2 d)e® + (= XoAg 2 e+ Xpq ' 72 d) " + (Xeg™ 72 d) e + (Xag 2*d)e?

For the coefficient X,A\¢g 272%c to be in J, we require X, € J. Thus the total set of

conditions on horizontal vector fields is X,, X, € J. O

It follows that the tangent bundle T4 as a left A-module has two generators 1 ® ¢’ and
1 ® e?. Since all right actions on the vector fields e® and e? produce only multiples of
¢’ and e? (we can read this off the right column of Lemma 13.14), so T is closed under

the right B-action, making it an A-B bimodule. A complement to this, and therefore a
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normal bundle Ny, is spanned by the two generators 1 ® e® and 1 ® e°. This is a left
A-module, but we can read off the left column of Lemma 13.14 that it is not closed under
the right action, and so N4 is not a right B-module. However, we don’t encounter any

problems with injectivity of the map
id®inc: A, ®g Hor - A, ®p %g,

since if f(z,y) ® e’ + g(z,y) ® e? is nonzero in A, ®p Hor then it is also nonzero in
A, @p XE. Therefore unlike previous examples, the map m : B — A here gives a weak
coembedding. We remind the reader that a weak co-embedding is when the sequence
splits only as a sequence of left A-modules, not as B-A bimodules. This is still sufficient
to get a submanifold calculus, which we calculate in the remainder of this example, but it
does mean that we do not know how to project connections to that submanifold calculus.
The vector fields on A = C,[C?] are defined as X%§ := A, ®p Hor,-1, and we calculate

their commutation relations as follows:

Proposition 13.16. The vector fields X% have commutation relations:

(1®ehar=qg* r(l®eh), (1®e)y=q2y.(1®e)
(1®e)x=q¢ ' 2.1, (1®e)y=q¢ "y (1)
Proof. Using the relations e?.a = ¢~>**a.e? and e.c = ¢"**c.e? and e’.a = ¢7'">“a.e® —

Mg 72h.e? and €b.c = g7 2 c.e® — A\gm 1 72d.e?, we calculate:

Ieehr=12r(2)=10ca=q¢*1®ace’ = ¢ *1.7(a) = ¢ *z.(1® %),

and
1@ehy=10cc=1®q¢*ce’ =q¢?y.(1®e?),
and
(loe)r=1®ca=1® (¢ ac —Ag"b.e?) = ¢ ' z.(1®e") -0,
and

1@ y=1®ec=1® (q_l_go‘c.eb — )\q_l_go‘d.ed) =q 'y (1®eb) —0.
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The submanifold calculus is given by QY := 4Hom (%%, A), and we calculate the differen-

tial and commutation relations as follows.

Proposition 13.17. The submanifold calculus has differential da : A — QY given by dax
and d 4y, satisfying ev((1®e?)@daz) = (1—¢72)z and ev((1®e?)@day) = (1—q %)y,
and ev((1 ® €®) ® dax) = ev((1 ® ) ® day) = 0.

Proof. Recall that the differential d4 : A — Q1 is given for X € Hor and o,/ € A by:
ev((a® X)®@dad) = arX(d(x ).
(1) Using this formula, we calculate:

ev((1® ") ® daz) = me’(dn"(z)) = me’(da) = me’([0, a]) = me’((eq + ea)a — a(eq + €q))
= —me’(a.e, + a.eq)
= —7mel(q7 a4 ¢ eq.a — A\gT %, b + N2qT % .a)

= A\g 72 (ep).m(b) = 0
(2) Likewise we calculate

ev((1® ") ® day) = me’([0, c]) = me’((eq + ea)c — c(eq + €q))
= —7eb(c.eq + c.eg)
= —me (g .0+ ¢ eg.c — A\ % d 4+ N2 %,.0)

=A% (ep)m(d) = 0
(3) Next we calculate:

ev((1®e?) @ daz) = me?([0, a]) = me? ((ea + €a)a — ale, + €4))
= met(eq).m(a) — me(a.eq + a.eq)
=z — el (g eq.a 4 ¢ eq.a — AgT . b + NqT % .a)

=2 — q e eqg).m(a) = (1 — ¢ )
(4) Lastly we calculate:
ev((1®e?) @ day) = me([0,c]) = me? (e + €a)c — c(eq + €4))
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=y —mel (¢ g+ ¢ eq.c — Ag U %d + N2 e, )
=(1—q*y

]

N =

Remark 13.18. The paper [5] giving the calculus on C[Ms] states that in the case o = —
the calculus descends to the quotient det, = 1, giving the standard 4D calculus on C,[SLs).
In our example, this would give ev((1 ® e?) @ daz) = (1 — q)x and ev((1 ® ) ® day) =

(1 — q)y. Thus in the case o = —% and q = 1, the submanifold calculus comes out with

zero differential.

One known example of a covariant calculus, as found in Example 2.79 of [10] on C,[C?]

is generated by dx and dy subject to the following commutation relations:
dr.w = ¢*xdz, doy=qydr, dyz=qzdy+ (¢* —1)ydr, dy.y= ¢*ydy.

Proposition 13.19. The submanifold calculus on A = C,[C?] has commutation relations:

1+2a

daz.z = ¢*xd sz, dazy =q~ ydax

1+2a

day.x =q xday, day.y = q2aydAy

day.x = qdazx.y
In the case o = 1, these imply those of the standard calculus.

Proof. (1) We use (1®e?).z = ¢ 2.(1® ) and ev((1 ® e?) @ daz) = (1 — ¢ 2%)x to

calculate:

ev(1®e?) @ r.dar) = ev((1 ® e?).2 ® daz)
= ¢ *z.ev((1®e?) ® dyz)
= ¢ 0. ((1 - q*2) = (L — ¢ *)z).q "2

=ev((1 ®e?) @ daz).q >z

Hence zd x = ¢ 2*dx.x, which re-arranges to djz.x = ¢**adx

(2) Weuse (1®e?).y = ¢ 2y.(1®e?) and ev((1®@e?) @ daz) = (1 — ¢~ 2%)z to calculate:

ev((1®eh) @y.daz) = ev((1 ®e)y ® daz)
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=q y.ev((1 ®e?) @ dax)
=g y((1—¢7)2)

= (1 —¢7)z)g' ™y

= ev((1®@e’) @ daz)g' ™y

—1+2«

Hence yd oz = ¢'72*d 42.y, which re-arranges to daz.y = ¢ ydaz.

(3) We use (1®e?).x = ¢ 2z.(1®e?) and ev((1®e?) @ day) = (1 — ¢~ 2%)y to calculate:
ev((1®eh) @ z.day) = ev((1 ®e).x ® day)
=q *z.ev((1®e) @ day)
= q 2. ((1— ¢ *)y)
= ((1=q¢)y).q 'y
=ev((1®e’) ®day).g Y

1+2«

Hence xd y = ¢ 172*d4y.2, which re-arranges to d y.x = g xday.

(4) Weuse (1®e?).y = ¢ *y.(1®e?) and ev((1®e?) @ day) = (1 — ¢ >*)y to calculate:
ev((1®eh) @ y.day) = ev((1 @ e?)y. @ day)
= ¢ y.ev((1®e?) ® day)
= ¢y ((L—q?)y)
= ((1-¢7)y)-a*y
= ev((1®e) @ day).q 2.
Hence ydy = ¢ 2*d 4.y, which re-arranges to d y.y = ¢**“yday.

(5) Next we show the relation dy.x = gdaz.y, which has no corresponding version in

the standard calculus on C,[C?].

ev((1®e?) @ (day.x — qdaz.y)) = ev((1 ® ) @ day).z — qev((1 ® e?) @ d2).y
= (1= ¢ (yz — quy) = 0.

(6) Lastly, we show that in the case o = 1, these imply the relations of the standard

209 d 42 and

calculus on C,[C?]. For the relations daz.z = ¢**zdsz and daz.y = ¢~
day.y = ¢**yd a1y this is easily seen, but the relation

1+2«

day.x =¢q xday
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is not so easily seen to imply day.x = grday + (¢* — 1)ydaz. But if we calculate the

difference between them as:

grday + (¢* — ydaz — ¢*zday = (¢° — 1) (ydaz — qzday),

and then evaluate on (1 ® e?), we get:

ev ((1 ®e!)® (¢* — 1)(ydAx — qdiy)> = (> — 1)1 —q ) (yx — qwy) = 0.
O

Thus we obtain a family of calculi with parameter «, where the case a = 1 gives a
quotient of the standard calculus on C,[C?].
Having done lots of calculations to get here, we now check via the following proposition

that this calculus does indeed preserve the relation yx — gry = 0 on C,[C?].
Proposition 13.20. This submanifold calculus satisfies da(yxr — qzry) = 0.

Proof. Using the Leibniz rule and then the commutation relations yd z = ¢'™2*d 2.y

and zd y = ¢ 172*d4y.2 to move algebra elements to the right, we calculate:

da(yr — qry) = day.x + ydax — gdaz.y — grday

=day.x + ¢ " 2dazy — qdazy — ¢ **day.x

This is determined by its evaluation on e, so we substitute in ev((1 ® e?) @ dax) =

(1—¢ )2 and ev((1 ® e?) @ day) = (1 — ¢~ 2*)y to get:
(1—q2)(yz — ¢" 7wy — quy — ¢ **yz) = (1 — ¢ ) ((yz — qzy) + ¢ **(yz — qzy)) =0
O

This is an example where Q) # QY since the evaluation of dyz and day on (1 ® €?)
is zero, so the span of du is smaller than the dual of X%. This example is different to
our other examples, in the sense that not only is it a weak co-embedding, but also that
we chose quite a strange algebra map that is only an algebra map when the quantum
determinant is not invertible, and ended up getting a quotient of the usual calculus on A

as a result.
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14 Non-examples

In this section we look at three cases where the definition is not met and what goes wrong.
These are tabulated below. Note that the notation C’OO(]RZ)} . denotes the restriction of

C>(R?) to the union of the z and y axes (which is not a manifold).

B A What goes wrong
Certain algebras C Not every algebra has a surjective algebra map to C.
C>=(R?) C OO(RQ)LXGS The normal bundle fails to be a left A-module.
C,[9Y] C,[S?] There is no algebra map between these.

Table 2: Submanifolds Non-Examples

14.1 Classical Counterexample: A Point in Some Algebras

If we regard the algebra C as corresponding to a point, one might hope for it to have a co-
embedding into any associative unital algebra. However, this would require a surjective
algebra map 7 : B — C, which not every algebra has. If B is a Hopf algebra over the
complex numbers then there is a counit € : B — C which is an algebra map, but it may
not be surjective, since there are some Hopf algebras with € sending everything to zero.
If there does exist a surjective algebra map 7 : B — C, what we can say is that m(1) =1
and the kernel doesn’t contain any element of B with a multiplicative inverse.

The lack of surjective algebra maps m : B — C in general indicates that it might be worth
looking at more general types of maps than algebra maps, such as completely positive

maps, since states on algebras are much more plentiful.

14.2 Classical Counterexample: Union of Axes in R?

We borrow this example from [21], which didn’t satisfy D’Andrea’s definition of a co-
embedding, and show that things also go wrong under our definition. Take B = R2
and A = COO(RQ)}aXGS, denoting the restriction of smooth functions on R? to the union
of the x and y axes. This set is not a smooth manifold, because of the point (0,0). The
restriction map 7 : B — A is a surjective algebra map. Its kernel J consists of functions

vanishing on both axes, and is therefore generated by zy.
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Each vector field X € X satisfies X (d(zy)) = f. 8(8?) + fy%yy) = [y + f,x. Horizontal
vector fields satisfy X (d(zy)) € J, meaning that f,y + f,x must vanish on both axes,
which in turn means yf,(0,y) = 0 and z f,(x,0) = 0 for all z,y € R. By continuity of f,
and f,, it follows that f,(0,y) =0 and f,(z,0) =0 for all z,y € R.

A general element of Ty = A, ®p Hor then takes the form

0 0 0 0
g X = g (fm% + fya_y) = gﬂ-(fx) ® % +97T(fy) @ a_y

We see that g (f,) vanishes on the y-axis, and g (f,) vanishes on the z-axis. This means
that gm(f,) is divisible by z, and that gn(f,) by y. Thus T4 is generated as a left A-
module by r ® a% and y ® %. However, we do not have a co-embedding, or even a weak

co-embedding, because we cannot construct a normal bundle.
Proposition 14.1. In this example, the normal bundle fails to be a left A-module.

Proof. For A to be a noncommutative submanifold of B, we need the existence of an
A-B module N, such that A, @5 XE = T4 @ N4. We can see that 1 ® a% is not of the
form (A.z® a% +Ay® a%)> and thus it can be expressed as a sum 1® a% = h,+n,, where
h, € A, ®p Hor, and n, € N,. Multiplying on the left by = gives z ® a% = xh, + xn,,
which lies in A, ® g Hor, meaning that the component zn, € N, is equal to zero, using
the fact that N, is a left A-module. This implies that n, vanishes on the z-axis minus
zero, and therefore by continuity that it vanishes on the entire x-axis. However, we had
1® a% = hy; + n,, so if we restrict this to the z-axis then we get h, = 1 ® a%. But this
isn’t of the form (A.x ® a% +Ay® a%>' This gives a contradiction with our assumption

N4 was a left A-module. O

Although there is no normal bundle, we can still go ahead and calculate a submanifold

calculus, but we find that it differs from the classical calculus on A.

Proposition 14.2. In this ezample, the submanifold calculus Q}L‘ contains elements not

found in the classical case.

Proof. For a general element £ € 9}4, we have £(1 ® a%) = f for some f € A. We then
define dyz dual to 1 ® = by £ = f.daz. Then we have {(z® &) = 2{(1® L) =z f. We
likewise have £(y ® 8%) =:yf.
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However, observe that n = %.dm gives a valid element of QY seeing as n(7(f,) ® %) =

/el ¢ A for instance. This shows that the calculus QY does not take the form A.dz,

T

and thus is not equal to the restriction of the classical case. O

15 Restricting Connections - Gauss Equation for Cur-
vature

Definition 15.1. If B has calculus 25 and a surjective algebra map 7 : B — A is a
co-embedding — i.e. the map id ® inc : A, ®p Hor — A, ®p %g is injective and there
is a splitting A, ®p X% = (A, ®@p Hor) ® N as A-B bimodules for some N C A, ®p X&
complementary to the tangent bundle — then we denote the projections to the tangent

and normal bundles as P and () respectively.

A, ®p XE

—7

A, ®p Hor N

By splitting of the exact sequence, these are A-B bimodule maps satisfying P + ) = id.

Proposition 15.2. Given a co-embedding 7 : B — A and a left connection Vg : X& —

OL @p XE&, there is a left connection V' : Ay @5 XE — QY @4 (A; @5 XE) defined by
Ve X)=da®1® X +a(r®1®id)VpX (20)

or equivalently

V(1®X)=(r®1®id)VpX (21)
forae A, x € XE. The curvature of V' is given by Ri5(1® X) = (71 ® 1 ® id)Rp(X).

Proof. (1) Firstly, we show V', is well-defined over ®p. Since 7 is surjective, there

exists b € B such that w(b) = a. We calculate

V(1 @bX)=(r®1®id)Vg(hX)=(r®1®id)(db® X 4+ b.V(X))
=da®1®X +a(r®1®id)VX = Vi(a® X)

as required. This also shows the left Leibniz rule for connections.
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(2) Next we show the formula for R;. Denoting Vge = ¢ ®Y and Vpf =n® Z, then:

Rp(1®X)=(d®id—idAVE) V10 X)=(d®id—-idAVE)(r({)®1®Y)
=dr()@1QY — 7)) AVE(1RY)=dr() @ 1Y —n( ) Ar(n) @12 Z

=(7®1®id)(dé®Y —idAVE)Ve(X) = (r®1®id)Rp(X).

To clarify this notation, if VpX = ® f, then V3(1® X) =7(§) ® 1 ® f.
Similarly to classical geometry, the restriction of a connection to the tangent bundle
of a submanifold splits into a sum of a connection on the submanifold plus the second

fundamental form.

Proposition 15.3. If we restrict the domain of V'y to the tangent bundle, then for each
e € A, ®p Hor there is a splitting

Vis(e) = Va(e) + ale) (22)
for the left connection
Va=(1d® P)Vy: A, ®p Hor — Q) ®4 (A, ®p Hor) (23)
and the left A-module map
a=(id®Q)Vy: A, @ Hor — QY ®4 N. (24)

Proof. The splitting is obvious from P + ) = id and expressing the connection as
Ve(1®X)=(m"®(P+Q)(1®-))Vs(X),

but we need to show that V4 is a left connection and « a left A-module map. Using that

V's is a connection, we show these as
Valae) = (id ® P)(da ® e + a.V’z(e)) = da ® e + a.V s(e)
and
a(ae) = (id ® Q)(da ® e + a.Viz(e)) = a.ale),
as required. O
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In classical differential geometry the second fundamental form is a tensor, and in a non-
commutative context this corresponds to a being a module map.
The following theorem is the equivalent of the Gauss equation for curvature in classical

differential geometry.

Theorem 15.4. (Gauss Equation) The left connection V4 : A, @ Hor — QY ®4
(A, ®p Hor) given by V4 = (id ® P)V's has curvature Ry : A, @ Hor — Q4 ®4 (A, ®p
Hor) given by

Ra(f) = (id ® P)Ry(f) + (id A B)a(f) (25)
where B: N — QY ®4 (A, ®p Hor) is a left module map given by

3 = (id ® P)V,. (26)

Proof. If Vi3(e) =@ h € QY @4 (A, @5 XE), then V4(e) = £ ® Ph and a(e) = £ ® Qh.

On one hand we calculate
Ra(e) = d¢ @ Ph— & AV 4(Ph).
On the other hand we calculate
(id® P)Rz(e) =d§ @ Ph— ¢ A (id @ P)V'gh.
The difference between the two is

Ra(e) — (id ® P)Rz(e) = N (iId @ P)V'gh — E ANV 4(Ph)
=E¢N(iId® P)V'3(Ph) + EN (Id @ P)V'5(Qh) — & AV A(Ph)
= ¢ (id® P)V(Qh)
= (id® (id ® P)V'g)a(e)
= (id A B)afe),

which shows the Gauss equation. Lastly, we see that § is a left module map because for

alle € N and a € A,
B(ae) = (id ® P)V'g(ae) = (id ® P)(da ® e + a.V'z(e)) = a.f(e),

as required. N
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The above theory is for left connections on the right vector fields X%, but a similar
version exists for right connections on the left vector fields X%. If instead 7: B — A is a
left-handed co-embedding, i.e. Xk ®p A = (Hor"” ®p rA) ® N for some B-A bimodule
N C X4 ®p A complementary to the tangent bundle, then there are projections P and

(2 which sum to the identity given as follows:

%}L% QB ﬂ'A

—

Hor® @5 . A N

Theorem 15.5. Given a left-handed co-embedding © : B — A and a right connection
Vi : X5 = XL 0p050% with curvature Rp = X5 — X5® 0%, there is a right connection

Vi Xb @p oA = (X5 @5 A) @4 QY given by
V(X ®1) = (id®1®71)Ve(X) (27)

with curvature Rp(1 ® X) = (id ® 1 @ m)Rp(X). There is a right connection V4
Hor’ ®@p A — (Hor* ®p A) @4 QY given by

Va=(P®id)Vy (28)
and a right A-module map & : Hor" @p A — N @4 QY given by

a=(Q®id)VYy, (29)
and a right module map B : N — (Hor™ @5 rA) @4 QY given by

B=(P®id)VYy. (30)
The curvature R4 : Hor" @5 . A — (Hor" @p rA) @4 Q% of V4 is given by

Ra(f) = (P @ id)R(f) — (5 Aid)a(f). (31)

Proof. The only part of this not clear by symmetry is the flipped Gauss equation 31. If
Vile) =h@€& € (X5 @p -A) @4 QY, then Va(e) = Ph® €, and a(e) = Qh @ €. On one

hand we calculate
Ra(e) = Ph@d& + Va(Ph) AE.
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On the other hand we calculate
(P®id)R(e) = Ph @ dé + (P ®id)Vgh A €.
The difference between the two is

R(e) — (P ®id)Ry(e) = VA(Ph) A& — (P R1id)Vigh A€

VA(Ph) AE— (P ®id)Vs(PR) A€ — (P ®id)V5(Qh) A&

= —(P@id)V3(Qh) A E
= —((P®id)V} @ id)a(e)
= —(B Aid)a(e),

as required. N

16 Hermitian Metrics

(See chapter 8.4 of [10] for the notation we use in this section on Hermitian metrics —
especially the G notation.)

If B is a *-algebra and E a left B-module, then a Hermitian metric on F is a B-bimodule
map (,)g : E® E — B satisfying (e, f)* = (f,e) for all e, f € E. Each nondegenerate
Hermitian metric is specified by an invertible map G : E — E° = gHom(E, B), as in the

following diagram.

E®E 2% B

sz
E®E°
If E is left finitely generated projective with dual basis €' € E, e¢; € E°, then the inner
product is described by matrices g = (e’,e/)g. The condition of being Hermitian is
equivalent to (¢”/)* = ¢g’*. There is a corresponding notion of Hermitian metric on a right
module. The key thing about Hermitian metrics is that unlike Riemannian metrics they
only require a one-sided module, and are defined over the tensor product ®c.
Recall that there is a standard isomorphism bb : £ — E adding a double bar, with inverse

bb—! removing a double bar.
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Given a Hermitian metric (,)z : E® E — B on a left B-module E, there is a Hermitian

metric with the bar on the other side on the left vector fields E° = X% given by

(Vg =evo (b 'G1®id) : E° ® E° — B. (32)

We can see this works by breaking it down into the following sequence of maps:

Fol "N Eeopr "N pgE —<, B .

In the definition of a co-embedding it suffices for the normal bundle to be complementary
to the tangent bundle, but in examples where a Hermitian metric is known on QL. we
can use this to find a normal bundle which is really orthogonal to the tangent bundle.
We calculate several examples of this at the end of the section.

Next, we look at metric preservation. Recall that given a left B-module F and a left
connection Vg : E — QL ®@p E, denoting Vg (e) = £ ® f for some e € E, there is a right
connection Vg : E — E ®@p Q) given by Vz(€) = f ® £*.

The following lemma will be useful in showing that various connections in this section

are metric preserving.

Lemma 16.1. If E is a left B-module equipped with a Hermitian metric (,)g : F ®
E — B, then a left connection Vg : E — QL ®p E preserves the metric if and only if
W (G) = (G®id)V5 — Vige 0 G : E — E° ®5 QL vanishes.

Proof. Using the assumption W (G) = 0 and the definition (,) = ev(id®G), we calculate
d(,) = d(ev(id ® G))
= (id®ev)(VE® G) + (ev ®id)(id ® Vo G)

= (d®ev)(VE®G) + (ev ®1d)(G ® id)(id ® V)
(ide ())(Ve®id) + ({,) ®id)(id @ V&)

as required. 0

Note that by symmetry the above Lemma also works for a right connection.
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Proposition 16.2. (Proposition 3.32 of [10], and Equation (3.17) on page 229 of [10])
If QL is left finitely generated projective with left connection Vg, there exists a unique
right connection on (Q%)° = X% given by
Vi : B° — E°®4QY, Ve () = e; @d(ev(e! ®7)) — ; @ (id ® ev)(Vge' ® )
satisfying
(id ® ev) (Ve ®id) + (ev ® id)(id ® Vo) : E® E° — Q!
Conversely, if Q% is right finitely generated and has a right connection Vg : QL —

OL ®@p 0L, then on the right vector fields E* = X% we have a left connection Vi : X& —

OL @p XE given by
Vis(f) =d(ev(f ®@€')) ® e — (ev @id)(f ® Vi(e)) @ €. (33)

In the case where we have a dual basis, the following corollary is useful for calculating

curvatures of flipped connections.

Corollary 16.2.1. It follows that

and

Rpe(ej) = — Z e; ® (id ® ev)(Rg(e) @ e;)
Proof. Expanding Rg and Rp. using the dual bases of E and E° respectively and
substituting into each the equation (id ® ev)(Vg ®id) 4 (ev ® id)(id ® V), we get:

Resle) = Y@ (0 @id)(¢ @ Rie(cy)
S Z e; ® (id ® ev)(Rg(e) @ ¢;),
and

Rgo = Z(id ® ev)(Re(e") @ e;) ® €
= — Z e; ® (id ® ev)(Rp(e') @ ¢5),

as required. N
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Next we prove a central result of this section, that a connection on QL preserves a
Hermitian metric if and only if its dual connection on X% preserves the dual Hermitian

metric.

Theorem 16.3. Denoting E = QL and E° = XE, a left connection Vi : E — QL @ E
preserves the Hermitian metric (,\)g = evo (id® G) : E® E — B if and only if the right

connection Vg : E° — E° ®p QL given by
Vie(7) = e @ d(ev(e’ ®7)) — e; ® (id ® ev)(Vpe' ® ) (34)
preserves the Hermitian metric
(Yp=evo (b 'GT®id): E°® E° — B. (35)

Proof. In the first part of the proof we assume Vg is metric preserving and show that

Vge is metric preserving, then in the second part we show the implication the other

!/

way around. (1) For Vg to be metric preserving means W(G) = 0. The metric (,) :

E° ® E° — B uses map bb"'G-1: E° — E, so we need to show W(bb~'G-1) =0, i.c.

Vebb 'G1T= (id @ bb " G~ 1) Vs (36)

Since G is an isomorphism, every o € E° is equal to G(€) for some e € E. Thus we

calculate the left hand side of (36) as
Vebb 'G-1(@) = Vbb (G100 G)(€) = Vi(e)

Using the assumption that Vg is metric preserving, then writing Vge(e) = k ® f we

calculate
Ve 0 GE) = (GRid)Vx(E) = (Geid)(Fe k') = G(f) ® k",

which implies Vs 0G(2) = k® G(f). Using this, we calculate the right hand side of (36)
as:
(id @ bb*G—1) V(@) = (id ® bb ' G-1) V4G (e)
= ([d® b 'G )k G(Ff))

— k@b 'GG(f)
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k@b ']
= k@f: VE(B),

and this shows the result.

(2) Writing Vgo = v ® 1, the assumption that Vgo is metric preserving means
Vebb 'G-H(@) = (id ® bb'G-1) V(@)
=" @bGTI(9)
This implies
VEG T (a) =G (y) @ (37)
We want to show for all e € E that

Vg 0 G(e) = (G ®id)Vg(e). (38)

Since G is an isomorphism, for each e € E we can write € = G~ !(«) for some a € E°.
Also, denote Vgeo(a) = v ® n. Making this substitution, we can re-write the left hand
side of (38) as

Ve 0G(€) = Vpe(a) =7 @1
Using the substitution and equation (37), we calculate the right hand side of (38) as

(G ®id)Vg(@) = (G ®id) VG~ ()
= (G®@id) (G (y) ®@n)

=7 ®n= Vg (a),
as required. O
Denote F' = Q}L‘, so XL = F°. These are paired by the evaluation
ev(dad ® (X ®a)) = 7X(d(7 1 d)).a.

The restriction of the right connection Vgo to a right connection Vo on the tangent
bundle is given by:
VFO(X®1) = (P(—®1)®7T*)VE0X (39)
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A Hermitian metric on X4 = ;X5 ® , A is given by
(Vo :XE@xh A Y4 XQd),=daY,X).d (40)
We want to show that Vg preserves this Hermitian metric. We show the following

intermediate step.

Lemma 16.4. Denote the right module C = X5 @p A, and Vg X =Y @ £. Then the
right connection Ve : C' — C®4QY given by Vo(X ®a) = Y @7*(€).a+ X @da preserves
the Hermitian metric {,)c : C®@C — A given by (X' ®@ ', X ®a)¢ = a”* . 7((X', X) ge).a.

Proof. Differentiating the inner product (,)c and using the assumption that (,)pge is

metric preserving, and denoting Vg X' =Y’ ® &', we calculate:

dX' ®@d, X ®a)e =d(d)7(X, X)ge.a +a*1(X', X)go.da + a*dn (X', X) go.a
=d(a)*n(X", X)go.a + a*m(X', X ) po.da + 7T<<Y, Y)ge.& + &Y, X>Eo> a

((edd) (X' @d @ Ve(X ®@a)) + (id.(,)c)(Ve(X' ©d) © X ®a)
But this is precisely the metric preservation equation for V. O

The only difference between (, ) and (, ) o is restricting the domain of the vector fields,
and similarly the only difference between V¢ and Vpo is restricting the domain and
composing with a projection. In the case where the tangent and normal bundles are
orthogonal with respect to the inner product, we have (¢, c)¢ = (¢, Pc)¢ for all ¢, € C.
Hence the metric preservation equation also holds for V pe.

Then lastly we want to flip one more time using Theorem 16.3 to end up in the sub-
manifold calculus. If the connection on the tangent bundle is metric-preserving then the
one on the submanifold calculus is automatically metric preserving too, by the theorem
earlier.

Equation 3.17 on page 229 of [10] says that if F' is a right finitely generated projective
module with dual basis f; ® f' € F'® F* with right connection Vg, then there is a unique
left connection Vs : F* — Q! ® 4 F* given by

Vi(B) = d(ew(B® f) © f' = (v ®id)(B® Vi fi) ® [ (41)
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Hence we flip V4 to get a left connection on the submanifold calculus, which is metric
preserving. So the overall result of the process is that we started with a Hermitian metric-
preserving connection on 2L, and obtained a Hermitian metric preserving connection on

the submanifold calculus Q.

16.1 Example: Algebraic Circle in Quantum SU,

We look again at the co-embedding of A = C,[S'] into B = C,[SUs] via the surjective
algebra map m : B — A, w(a) = t, n(d) = t7', m(b) = 7(c) = 0, as we calculated in
Section 13.4.

As detailed in section 7 of [12], the algebra C,[SUs,] doesn’t have a Riemannian metric
on its 3D calculus, but there is a Hermitian metric given by g diagonal, with nonzero real
entries g7, g7, g°°. The normal bundle we calculated earlier is orthogonal with respect
to this. The paper [12] gives a family of left connections Vg : QL — QL @5 QL on the 3D
calculus on C,[SUs] invariant under the right CZ-coaction and preserving the Hermitian

metric, for parameters no,r € R, v,m, € C by the following values on invariant elements.
Vi) =re® @’ +vet ®@e” +q g9 imie ®et
Vi) =nie ®@et +myet @e°
Vi) =n_e"®e +q 'goog- e @ ¢

In the following proposition we calculate out in full the curvature of this connection.

Dualising to the (left) vector fields, there is a right connection for i € {+, —,0} given

with summation implicit as
Vs : %5 - %L 0z 0L, Ve(X) =e @d(ev(e' @ X)) — e; @ (id @ ev)(Vge' @ X),
which preserves the Hermitian metric on the vector fields. We calculate:

Vileg) = —r(eo @ €®) —v(ey ®et) — ¢ lgoog v (e~ @ ™)

Vi(er) = —ni(eo @) —my(er @ e’)

Vele)=-n_(eg®e) —q 'goog v (e_ @Y.
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Using the fact that 7(e?) = t~'dt and n(e*) = 0, we calculate Vi : X5 @5 A —
(X5 ®p -A) @4 QY given by V(1 © X) = (Id® 1@ 7)Va(X) as
Vis(eo) = —reg ® 1@ t~1dt

@39(@)
Vi(e) = —q tgoogtvie_ @ 1 @ t~1dt.

—me, ® 1@t dt

Recall that there is a projection map P : X5 ®p A — Hor" ®p A, and along with
the algebra map 7 this defines a projection of the right connection on X% to a right

connection on the tangent bundle.
Va:Hott @p A = (Hot @p,A) @4 Q4, VaX®@1)=(Pe1)Vs(1eX),
On the generator ey ® 1 of the tangent bundle this is:
Valeo®1) = —rPep® 1) @t 'dt = —rep @ 1 @ ¢t 'dt

This preserves the Hermitian metric (Y ® a, X ® ') = a*(7(Y, X)")a’.
Lastly we flip the connection one more time using the formula from Proposition 16.2 to

get a left connection V4 : QY — QY @4 QY on the submanifold calculus given by

Vale®®@1) = —(ev ®@id)(e” @ Ve0) @ (1 ® €°)

=rt'dt@dt
Recall that dat = ¢ %(e® ® 1).t, so

Va(dat) = ¢ VA @) = ¢ Va(la®1) =Vt @ 1) =dt @ (* ®1) + t.V(* @ 1)

= ¢*dt @ dt.t + rdt @ dt = (¢°t + r)dt ® dt.
Next we look at curvature and the Gauss equation.

Proposition 16.5. When the algebra B = C,[SUs| is equipped with mazimal prolongation

calculi, the connection Vg has curvature Rg : QL — Q% ®@p QL given by
Rp(e”) = <rq3 — Vg goog=" + q]m+|29++g:£>e+ Ne @
+ ( —v@* 22 + ¢ v — l/n_)e+ Ne e
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+ (q’19++g:1_miq*2[2]q—z + q37’9++9:1m*+)e’ ANed @ et

Rp(e™) = <n+q3 - q_lg++g:1_\m+\2)e+ Ne  ®@e"

- ( —myq*2]y-2 + ¢*'nymy — m+7’> et ne’ @ e’

Rp(e”) = (nfq?’ + QIVch)ogJi)e+ Ne  ®e”
- (q*‘q’googiV* 2,2 + ¢ °n_goog—Lv* — Tq”googib*)e’ Ne’ @ e’

Proof. Recall from Example 2.32 of [10] that when C,[SU,]| is equipped with maximal
prolongation calculus, then denoting [n], = (1 —¢")/(1 — ¢) for a g-integer:

de® = ¢3et Ne, det = —¢*[2],2e" A €°, de™ = ¢ ?[2],2¢ A€,
e Net = —q26+ Ne O Net = —quJr A 60, e Ne” = —q_4e_ A 60,
efnet=ePne =0
Hence we calculate
RE(GO) == (d & id —id VAN VE)VE(€O)
=rde’ ® e’ + vde™ ® e” + q_lg++g:£mid6_ ® et
—re® AVE(e®) —vet AVEp(e™) —q 'girg-tmie” AVg(eh)
=rg’e" Nem @€’ —v?[2];2e A @eT +q g gt imig 2] 20 At @et
— e’ A (T’GO e’ +rvet e + q_lg++g:1_mie_ & e+>
—vet A (n_eo Qe 4+ q gy e ® eo>
—q 'grrg-tmie” A (n+eo et +miet ® eo)
= (rrf’ — v’ goog=L + Q\m+|29++gi)e+ Nem@e
+ ( —v@* 22 +q v — Vn_) et NP ®e”
+ <q_19++gimiq_2[2]q72 + q?’rg++gimi>e‘ Ne @ et
and
RE(€+) = (d ®id —1d A VE)VE(€+)
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=n,de’ ®et +mydet ®e’ —nie® AVEg(et) —miet AVEg(e)
=n.g’e" Nem ®et —mig?[2], et A’ @e’ —nyel A <n+60 ®et +myet ® eo>
—myet A (reo @’ +rvet @e  +q lgiigTimie ® e*)
— (n+q3 - q’19++gi\m+\2)€+ Ne  ®e"
+ ( —myq*[2],-2 + ¢*'nymy — m+r) et N ® el
and
Rp(e”)=(d®id —id A Vg)Vg(eT)
=n_de®®@e +q¢ 'goog tvide ®@e’ —n_e? AVE(eT) — ¢ goog e A V()
=n_g’e" Ne” ®e +q 'goog g P[22 N ®e°
—n_e’ A (n_eo ®e +q gy e ® 60>
—q goog I/ e N (re e’ +ret ®e” +q g++g__m+e X e )
= (n-q3 + QIV!ngogi>e+ Ne  ®@e”
+ (qugoogil_z/* 2],-2 + ¢ n_goog— v* — rq’lgoogjlz/*)e’ Ael ® el
O

Since 2% = 0, we know on dimensional grounds that the curvature R4 of V4 vanishes.
But even though we already know the result, in order to illustrate the (left-sided) Gauss
equation 31, we calculate the terms on the other side of the equation anyway and show
they vanish. Recall that 7(e’) = ¢t~1dt and 7(e*) = 0.

Firstly we show that (P ® id)R); vanishes. For brevity, denote Rp(e’) = Y w;p @ eb.
Then *

Zel ® (id ® ev)(Rg(e") ®e;) = Ze, ® (id ® ev) (wlk®e ® e;)

= — E ei®wi,j.
i

Hence

Rip(e) = =Y e ® 1@ 7(wiy).
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We calculate
(P®id)Ri(eg) = — > Ple;® 1) @ m(wip) = —€0 ® 1 @ 7(wp,)

=—®1l® (Tq3 — [’ g0y~ + Q\m+\29++gi)7r(e+ AeT).
Again, since Q4 = 0, this vanishes. Next, we calculate & = (Q ® id)V’y : A, ®p Hor —
QL ®4 N. Using that Q(eo ® 1) = 0 and Qe+ ® 1) = e1g1, we calculate:

dleo®@1) = —rQeo®@ 1) @ 7(e") —vQer ® 1) @ 7(e™) — ¢ ' grg M Qe- ® 1) @ m(e”)
= 0.

Hence the term —(B A id)& vanishes, so the Gauss equation 31 says Ry =0.

16.2 Example: Functions on Finite Groups

As we calculated in Section 13.5, if H is a subset of a finite group G, then there is a
co-embedding 7 : C(G) — C(H).

As in section 6 of [12], the algebra B = C(G) for G a finite group has left covariant
calculus Qé(G) specified by a subset C C G\{e}. A left invariant Hermitian structure

which is a right module map can be written as
G :AC(GQ) — (MC(@))°, G(e?) = eq.9"°,

where ¢»® is real. It is a right comodule map if for all « € C and x € G it satisfies

raxr—! ,:pam_l

g = ¢g®®. Since the metric is diagonal, the normal bundle corresponding to

a subgroup as we calculated earlier is orthogonal. In the following we assume that all

entries of g are equal. The paper [12] gives a left invariant connection on the calculus of

C(G) by
Vi(e") = —f‘g’ceb ® €,
which preserves the metric if fg,c = (ffl—l,a)*'

Example 16.6. For the specific example G = S5 with calculus specified by

¢ ={(12),(23), 1)},
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a left invariant connection on the calculus is specified for a,c,d € R and b € C by

rnr P nT 7 e __ 1% Yy
Pro=a—1, [0, =¢ T2, ,=d—1, [% =b, v, =b

’

for arbitrary but distinct z,y, 2 € C. So for example fgm denotes when all three indices
of the Christoffel symbols are the same, while f‘;z denotes when they are all different.
Next we calculate the dual of this connection to the left vector fields. Recall there is a

right connection for i € C given as (summation implicit)
Ve : X5 - x5 05 0L, Vi(X) =e; ®@d(ev(e’ @ X)) —e; @ (Id ® ev) (Ve @ X),
We calculate this for X = e; for some fixed j € C.

Vi(e;) = ez ® (6(12)f 12 TG,

31) (23)F(31

( )
( )i T
12)1(23) 23)12(23) 31)F
+eps) ® (e( )F(H)j + el )F(QS)J +eBUD
( )
(12); 7€ (23),5 T

+e(31) ® ( a2

For the specific case j = (12), using the formulae above for the Christoffel symbols, this

becomes:

Valeay) = ez ® (e< D(a—1)+e®(d 1)+ eBV(d - 1))
+e(23)®( (12) 4 o(23)p% 4 (31) >
+e@En ® ( 12 4 e 4 BDp* >

For every subgroup H of S, the algebra C'(H) is a submanifold algebra of C(S3), with
submanifold calculus given in the standard way by the set C N H. For example, the
subgroup of S5 generated by the 3-cycles would have the zero calculus, as none of the
2-cycles in C lie in that subgroup. So instead, we look at the more interesting subgroup
H = {e, (12)}, which has submanifold calculus generated by ().

Using a projection P as in the previous example, along with the algebra map m, the

connection Vg restricts to the tangent bundle Hor® ®p A as a right connection:
Va:Hot ®p A = (Hol @5 ,A) @4 QY4, VaX®1)=(P(-®1)Q7")VsX,
which we calculate on the generator as
Valeaz ® 1) = eazy ® 1@ e (a — 1).
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Lastly we flip the connection one more time using the formula from Proposition 16.2 to

get a left connection V4 : Q4 — QY ®4 QY on the submanifold calculus given by
Vae'? @1) = —(ev ®id)(e"? @ Valeuy)) @ e1? = —(a —1)e"? @ 12,
o

Next, we look at curvature and the (left-handed) Gauss equation 31, but for B = C(G)
and A = C(H) for G an arbitrary finite group with subgroup H. If Q is freely generated
by e® for a € C C G\{e}, then Ql is freely generated by e for a € Cy := CN H. As

before, a general left covariant connection on 2} is given by
Vi(e") = —f‘gvceb ®e’, aecC.
The corresponding right connection on X% is
Vi(e,) = Z e ® ekfﬁcj, jec
ikeC
and so
Vi(1®e;) = Z ei®1®ekf‘};j, jec
i€C,keCy
We also calculate
ale; @)= > @1l jecly
iGC\CH,kECH
and
Ble;el)= > eeledly, jeC\Cu
i,keCy
We check the left-handed Gauss equation 31. For j € Cy, we have

Brida(e; @)= Y Ble®@1) ATy,
kGCH,iGC\CH

= ). D all,eled Adhy,

]CGCH,iGC\CH k' i'eCy

We want this to be equal to (P ®id)Rl3(e;) — Ral(e;). Firstly,

Rﬁg(ej®1): Z (ei®1®dekf};j+@%(ei®1)Aekfzj), Jj€Cpq.

i€C,keCy
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Also
Vale;@1) = Y e®@1®e Ty, jelny,
i,keCy

from which we calculate

Ra(e;@1) = Z f};j(ei@)l@dek—@A(ei@)l)/\ek), Jj €Cq.

i,keCy

Hence

(P®@id)Ry(e;) = Rale;) = D (e ® 1@ de Ty, + Vig(e, ® 1) A€ T)

kieCy

— Z A};j(ei ®1®de — @A(ei ® 1) /\ek)

i,k€Cy

— Z Vis(e; @ 1) A ekf‘zj
i€C\Cryr kECH

= Z Z eir ® ek/fi/,j A ekf‘zj.

1€C\Cp,k€Cy ¥ ,kECH
This is precisely what we calculated (3 A id)a(e; ® 1) to be, and thus we can see that
the Gauss equation is satisfied. Note that there was never any uncertainty as to whether
it would be true - we just calculated out all the terms to illustrate that it holds in an

example.

16.3 Example: Quantum Circle in Quantum Disk

As we calculated in Section 13.3 (with right vector fields), the algebra B = C,[D] has
noncommutative submanifold A = Cp[S'] via the algebra map 7 : B — A, 7(z) = t,
7(Z) = t~!, which has kernel generated by w = 1—Z%2. In Exercise 8.7 of [10], after adding
an additional element w™! to the quantum disk, a Hermitian metric on its calculus Q<1cq D]
is given (specifically, derived from a Riemannian metric). However, the addition of the
inverse element w~! would cause 7 to fail to be an algebra map, since if it was an algebra
map then 1 = w(ww™!) = 7(w)m(w™") = 0 which is a contradiction. This makes sense
geometrically, since if z was a complex number, then w would be 1 — |z|?, and to make
that invertible would mean excluding the unit circle, which is precisely the submanifold
we want to look at. Thus we have to find a different Hermitian metric on Q}qu] which

doesn’t require w to be invertible.
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A Hermitian metric (, ) : Q(lcq[D] ®Q}qu] — C,y[D] is given for a,, 3 € R\{0} by g = (§ ),

le.
(dz,dz) = a, (dz,dz) =p3, (dz,dz)= (dz,dz)=0.

We note that while the metric in Exercise 8.7 of [10] which comes from a quantum metric

and requires w to be invertible is over ®c,pj, this metric is over ®c.

Remark 16.7. This metric is rotation invariant, in the sense of being invariant under

the differentiable action S* ® C,[D] — C,[D] given by

> z=¢"2 pz=¢"z (Y>dz=¢"%z, ’>dz=eYdz,

since
(e >dz, e > dz) = (e?.dz, e .d2) = e (dz,dz) = (dz,dz)
et cetera for all four combinations.

When we calculated the tangent bundle earlier with generator Y = ¢?>® e, + 1 ® ez, we
took a normal bundle as being generated by 1®e.. It was complementary to the tangent
bundle, which was sufficient for the purposes of calculating a submanifold, but in order
to get a connection which preserves the corresponding Hermitian metric when we project
to the tangent bundle, we need the tangent and normal bundles to be orthogonal with

respect to the metric.

Proposition 16.8. When Qqu[D] 15 equipped with a Hermitian metric of the form g =
(8‘ 2) for a, p € C\{0}, an orthogonal normal bundle is generated by

2ee, — (q2)*% ® es. (42)

Proof. To work out out which elements of A, Q5 %g are orthogonal to Y = ¢*#* ® e, +

1 ® ez, we calculate

(2 ®e, +A®@es *t?P @e, +1®e.) = p*Pa+ A = 0.

Setting this equal to zero gives \* = —,u*q*%, and starring this gives A = —pu(q*)

we just need a generator, we are free to set p = 1, which gives the result. O]
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Proposition 16.9. With tangent bundle generated by Y = ¢*t>* ® e, + 1 ® ez and normal
bundle generated by t* @ e, — (q2)*% ® ez, the projection map P : A, @ XE — A, ®p Hor

15 given by
e
Pl®e) = ————((¢¢")= ®e. + 1> @ es
( ) 1+(qq*)23(< )B )
1 Qo
Pl®ez) = —F——== 7F)P=t?Re, +1Res).
( ) 1+(qq*)2g(< )/3 )

Proof. The projection map is rank 1, and is thus of the form
P(Z[’}) — (qzltz)'(a b)(g]) — (q21;2.a qu'b).(:j]),
where the elements a, b are determined by equations
2
(a0).(77) =1, (ab)-(—(cf*)?%) =0
Thus

Ftla+b=1, t’a-— (q*)z%b =0.

Hence a = (q*)Q%t_Qb, which implies (qq*)Q%b +b=1,s0

~(@)°F - 1
TGy T T ()
E E
Hence
1 (90§ @**
P(5) = 7 ra (e 1 )8
(w) 1+ (gq*)?g N5t 1 (w)

Setting (v,w) as (1,0) and (0, 1) respectively gives

1 o'

P(l®e,) = ————=((q¢" ‘—®Re, + Pt Rez
( ) 1+(QQ*)23(( )5 )
1 «
Pl®e:)=———=((¢")V 5t ®e. +1®ez).
( ) 1+(QQ*)25(< )B )

]

Next we look at connections. Denote e! = dz and e? = dz, and e, e; their respective
duals in X&. The extension of 7 to the calculi is 7(e!) = n(dz) = d(w(z)) = d¢t, and

m(e?) =d(t™) = -t~ Lde.t L
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Proposition 16.10. The right connection Vi : Qf — Qf ®p Qf given by Vg(e') =

—el @ T* preserves an inner product {,)p Q_}B ®p QO — B if fori,j € {1,2}

0=T" + 0", 0=T2+ 0>

0:F21+%F12*, O:F12+%F21*.

It is torsion free if 0 = e/ AT}

Proof. (1) Firstly we show the condition for metric preservation. Substituting e# ® ¢’

into the metric preservation equation, we get
g <6 ®€>E® j (p)<e7e>E gl (p)g
This can be written as —gI' — I'*g = dg, where

r_ Fll F12 | —_ Fll* FQI*
F21 F22 F12* F22*
Substituting in the specific values of our metric g whose coefficients are constants, the

equation becomes:

a 0 1"11 F12 1’\11* FQI* a 0
0=gl'+T"g = +
0 ﬁ le F22 F12* F22* 0 B
Oé(Fll +F11*) CYF12 +ﬁr21*
ﬁrzl +aF12* 6(F22 —|—F22*).
Re-arranging gives the equations.

(2) Secondly, we show the condition for torsion free. The torsion of a right connection is

given by Ty = AV +d : Q! — Q2 and for this example Vg is torsion free if
de’ = AVg(e') = —¢ AT}
But since de’ = 0, this implies 0 = e/ AT". [

This condition for metric preservation is quite a mild one, since it only affects the star-
structure.

We use Proposition 16.2 to calculate the left connection Vg : X% — QL @5 XE given by
Va(f) =d(ev(f ®e')) ® e; — (ev @id)(f ® V() @ €.
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On the generators, this is
VB(el) :F§®ez~, VB(GQ) :FZQ(X)GZ

Hence the left connection V5 : A, @p X% — QL @4 (A, @ XE) defined as Viz(1® X) =
(T ®1®id)Vp(X) is given on the generators of A, ®p X% by

Using this, the left Leibniz rule, and the fact that d(t?) = tdt + dt.t = (1 + ¢)t.dt, we
calculate V'3 on the generator Y = ¢*t* ® e, + 1 ® ez of the tangent bundle A, ®p Hor®

as
Vis(Y) = @Vis(t2P1®e) + V(1 ®ey)
=P V(1l®e)+@df?) ®@1®er + V(1 ®e)

=) 0106 +F(1+tdt®@1®e +7(1%) @1 ®e;.

The projection P : A, ®p XE — A, ®p Hor is the identity on multiples of Y = ¢*t* ®
e. + 1 ® ez, and sends elements orthogonal to Y to zero.

Using the projection P to the tangent bundle, along with dt.t = ¢*t.dt we calculate the
left connection V4 : A, ®p Hor — QY ®4 (A, ®p Hor) given by V4 = (id ® P)V'y as

Vi) =@M @ P(1®e) + (1 + ¢)t.dt @ P(1®ey) + 7(T%) @ P(1 ® ¢;)

Seeing as this is quite messy, we omit to fully expand the evaluations of the projection P
in general. Certain choices of Christoffel symbols could simplify this a lot. For example,
in the case where the Christoffel symbols of Vg are zero (which is metric preserving and

torsion free), we get

5 ((qq*)2g ®e. + ¢*t° @ ez)

VA(Y) = ¢ Vdt @ ——
a¥)=q(L+a)t t®1+(qq*)% 3

Denote this as
VaY)=Mtdt @1 ®e, + ot?dt @ 1 ® ez

for the appropriate constants A, Ay € C.
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We can dualise the connection one last time to get a right connection on the submanifold

calculus Vg, : Q4 — QY @4 QY given by
Van(§) =Y @ d(ev(Y ®€)) — V' @ (id ® ev)(VaY ®€),

where we write Y’ for the dual of Y. Since the calculus is 1-dimensional, we have
Y’ = dt.f(t) for some polynomial f(t) € Cp(t). For each ¢(t), we want a dual ba-
sis decomposition dt.g(t) = Y'.Y(dt.g(t)). But since Y is a vector field, this implies
Y’ = dt.Y(dt). We calculate

Y (dt) = ¢*t*re.(dntx) + mez(dn'2) = ¢*tPme.(e®) + mexz(e®) = ¢°t.

Hence Y/ = ¢*dt.t.
For the case where we take the Christoffel symbols of Vg as zero, the dual connection on

the submanifold calculus is given by

Ve (dt) = ¢*dt.t @ d(ev(Y @ dt)) — ¢*dt.t @ (id ® ev)(V4Y @ dt)
=¢'dtt®@dt — Pdtt ® (Id ® ev)(VaY @ dt)
= ¢ldt.t @ dt — ¢*dt.t @ \it.dt.¢*t?
= (¢*t — Mgt dt @ dt
(gq%)?

6 2 % 18,4
= (¢t — (1 + @) ———S=¢"*t")dt @ dt.
( ( )1+(qq*>25 )

The coefficient here is not nice at all, even though the Christoffel symbols of the original
connection on QL were zero but it makes sense that a connection on QY maps to a multiple

of dt ® dt.

17 Can We Define Submanifolds via Positive Maps?

Since algebra maps and two sided ideals are not always readily available for any given
algebra, it might be of interest to consider how much of the theory still works in the
context of positive maps and left ideals. For example, while the algebraic circle is a
noncommutative submanifold of C,[SUs|, the restriction of that co-embedding to the

quantum sphere does not give a co-embedding of the algebraic circle. This is because the

99



restriction of 7 to the quantum sphere (degree 0 elements of quantum SU;) is no longer
surjective. However, from a geometrical perspective we would hope to somehow be able
to embed the quantum circle into the quantum sphere, in the same way a classical sphere
has an equator.

Later in Section V we look at a positive maps approach to retracts (which are related
but not equivalent to submanifolds), but here let’s look at how much of the theory of
submanifolds can be done when we replace algebra maps by positive maps.

In the case where A and B are C*-algebras, and ¢ : B — A a completely positive
surjective map, it is possible to make generalisations of J and Hor which reduce to the

original definitions when ¢ is an algebra map.

Proposition 17.1. If A and B are C*-algebras, and ¢ : B — A a completely positive

surjective map, the subset
J={jeB|¢(jj) =0} (43)

is a left ideal of B, and a subset of ker(¢). An equivalent definition is
J={je€B|je =0}
for the ey € E giving ¢ as ¢(b) = (€q, beg) via the KSGNS construction.

Proof. (1) Firstly we show that J is a left ideal of B, i.e. that for all b € B, j € J we
have bj € J. Every j € J satisfies 0 = ¢(j*5) = (jeo, jeo), which implies by definition of
inner product that jey = 0. Hence ¢((bj)*(bj)) = (bjeo, bjeg) = (0,0) =0, so bj € J.

(2) Next we show the equivalence of the two definitions. Seeing as jey = 0, this means
o(j) = (€0, jeo) = 0, so J C ker(¢).

An equivalent definition of J is therefore J = {j € B | jey = 0}. O

In the case where ¢ is a *-algebra map, we get ¢(5*j) = &(j)*¢(j) > 0, with equality
precisely when ¢(j) = 0. Therefore in the *-algebra map case, J = ker(¢) as before.
Using this, we also generalise the concept of horizontal vector fields to completely positive

maps as follows.

Proposition 17.2. For a completely positive map ¢ : B — A, the following subset

Hor(¢p) C X& given as follows is a B-bimodule.
Hor(¢) := {X € X% | X(dj) € J, Vje J} (44)
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Proof. Let X € Hor(¢) and b € B.

(1) Firstly, if X(dj) € J then (bX)(dj) = b.X(dj). But J is a left ideal, so b.X(dj) € J.

Thus Hor(¢) is a left B-module.

(2) Next, (XB)(df) = X(b.dj) = X(d(bj) — db.j) = X(d(b)) — X(db.f) = X(d(b)) —

X(db).j. But bj € J, as J is a left ideal, so X(d(bj)) € J. Also we can see that

X(db) € B, so X(db).j € J. Hence Hor(¢) is a right B-module.

Since ((bX)V')(€) = (b(XV))(€), the actions commute, making Hor(¢) is a B-bimodule.
[

However, without ¢ being an algebra map, it isn’t clear how to obtain a tangent bundle
from this, since the right action on Ay is not well-defined otherwise. To proceed any

further would require a new definition of restriction of vector fields.

18 Future Ideas and Discussion

Question: Kernel of 7*

For a co-embedding m : B — A, if we denote by K the kernel of its extension 7* to
the calculi where A is equipped with submanifold calculus, then there is a short exact

sequence of algebras and algebra maps:

0 y K " QL T 5 QL — 0 (45)

But what is K7

Question: Star Structure

If B and A are star algebras and 7 a star-algebra map, and if B is equipped with a star-
calculus, is the submanifold calculus on A then a star-calculus, and do we have xd = dx?
This is a question to which the author is very much interested in knowing the answer.
In the examples we calculated, the submanifold calculus often came out as the standard
calculus on A which has a known *-structure, but whether it holds in general is currently

unknown.
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Question: Left-right Symmetry

Are the submanifold calculi obtained from left and right vector fields isomorphic? It
seems likely that they would be, as long as X% = Xk Also, this is likely the key to
getting the star structure to work, since the star of a left vector field is a right vector

field and vice versa.

Question: Restricting Bimodule Connections

Does our procedure for restricting connections to the submanifold calculi send a bimod-
ule connection on X£ to a bimodule connection on X%? We know the formula for the

connection, so we just have to check that the associated o is a bimodule map.

Interpreting Projection of Connections

Given a co-embedding 7 : B — A, we have a procedure which takes a connection on
QL which preserves a Hermitian metric, and produces a connection on the submanifold
calculus QY which preserves a corresponding Hermitian metric. But the coefficients we
get in examples are often complicated. It would be interesting to know why, since this
might give some insight into exactly what kind of embedding of submanifolds is occurring.
One example we could begin by looking at is the co-embedding 7 : C*°(M) — C*°(N)
for N an embedded smooth submanifold of a smooth manifold M, and then projecting

connections.
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Part IV
Differential Fibre Bundles via

Bimodules

Abstract

We construct a Leray-Serre spectral sequence for fibre bundles for de Rham cohomology
on noncommutative algebras, generalising an existing definition which uses algebra maps
as morphisms to now use bimodules as morphisms. The fibre bundles are bimodules with
zero-curvature extendable bimodule connections satisfying an additional condition. By
the KSGNS construction, completely positive maps between C*-algebras correspond to
Hilbert C*-bimodules. We give three examples of fibre bundles, involving group algebras,
matrix algebras, and the quantum torus

19 Introduction

Fibre bundles are an object in classical topology, finding applications in fields such as
gauge bundles in physics. A fibre bundle is defined as a map 7 : £ — B from the total
space to the base space, satisfying the property that there exists a third space F' called the
fibre which can be associated in a continuous manner with the pre-image 7= *{b} for each
b € B. Associated to each fibre bundle is a Leray-Serre spectral sequence, which allows
calculation via homological algebra of the cohomology of the total space with coefficients
in a group. The reader may wish to refer to chapters 2 and 9 of the topology textbook
[52] for a detailed reference on fibre bundles and spectral sequences respectively.

Our objective is to generalise and calculate examples of fibre bundles and their associated
Leray-Serre spectral sequences in the context of noncommutative geometry, where spaces
are replaced by algebras. To extend the concept of fibre bundles to a noncommutative
setting, where spaces are replaced by algebras with differential calculi, we take B to be an
algebra of functions on a hypothetical base space of a fibre bundle, and A as the algebra
corresponding to the total space. Since switching from spaces to algebras reverses the
direction of functions, a noncommutative fibre bundle now goes from B to A.

A previous work in this direction is the 2008 paper [25], which proposes a definition of

noncommutative fibre bundles giving rise to a Leray-Serre spectral sequence, but has the
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drawback of being limited to the case where the base space algebra is the algebra of
functions on a locally compact Hausdorff space.

In another approach, the 2005 paper [3] and its extension in [14] defines a noncommutative
fibre bundle as an algebra map between general algebras, and constructs a Leray-Serre
spectral sequence converging to the de Rham sheaf cohomology of the total space with
coefficients in a bimodule. This has a number of examples such as the noncommutative
Hopf fibre bundle, which can be found in chapter 4 of the book [10)].

In this paper, we reformulate this second definition [14] of noncommutative fibre bundles
so as to no longer require an algebra map but a bimodule. This allows for the calculation
of sheaf cohomology via spectral sequences for new examples which were not possible
under existing approaches. Specifically, for noncommutative fibre bundles not coming
from algebra maps, such as the noncommutative fibre bundle of the quantum circle in
the quantum torus, which we calculate at the end.

With the additional data of an inner product on the bimodule, our examples can be
regarded as equivalent to fibre bundles being completely positive maps (which generalise
algebra maps), via the KSGNS construction giving a correspondence between C* Hilbert-
bimodules and positive maps, which we review in more detail later.

We begin with a review of spectral sequences and the necessary background from noncom-
mutative differential geometry, before presenting our new definition, in which a bimodule
differential fibre bundle is a bimodule equipped with a zero-curvature extendable bimod-
ule connection, to which we show there is an associated Leray-Serre spectral sequence.
We conclude by calculating two finite-dimensional examples of bimodule differential fibre
bundles, followed by one infinite-dimensional example.

Our first example of a bimodule differential fibre bundle is between group algebras, with
base algebra CG and total algebra CX, for a subgroup G C X. This happens to come
from a differentiable algebra map, and so could also have been calculated using existing
theory, but since it can be nicely calculated in full it serves to illustrate our theory.

Our second example is between complex-valued matrix algebras, with base space algebra
M,(C) and total space algebra M3(C). The bimodule from this example gives a differen-
tiable map which is completely positive but not an algebra map, and so requires our new

definition.

104



Our third example has base space algebra the quantum circle C,[S'| and total space
algebra the quantum torus Cy[T?]. This is infinite dimensional, and also does not come

from an algebra map.

20 Background

20.1 Spectral Sequences

A spectral sequence (E,,d,) is a series of two-dimensional lattices called pages, denoted
E,., with each page r having entry EP? in position (p, ¢) € Z? and differentials d, : EP*? —
EPTratl=r gatisfying d? = 0. By convention, the p-axis is horizontal and the g-axis is
vertical. In the case we consider, only the top-right quadrant (p,q > 0) of page 0 has
nonzero entries. The differentials d, on the rth page move right by r entries and down
by r — 1. Seeing as the differentials square to zero, we can take their cohomology. The
(r + 1)th page is defined as the cohomology of the rth page. Figure 18 illustrates what

a spectral sequence looks like on pages r =0, 1,2, 3.

P

o—Heo—»¢—He—)e
o —po—h9—Fo—)o
o —Fo—p9—)eo—)o
o—Ho—ps—peo—)e

Figure 18: Fibre Bundles: Illustration of successive pages of a spectral sequence [15]

A spectral sequence converges if there is a fixed page after which all subsequent pages
are the same. Once taking cohomology no longer changes a spectral sequence, it is said
to have stabilised, and position (p, q) on the stable pages is denoted as EZ1.

The spectral sequence we use is a variant of the Leray-Serre spectral sequence, which

arises from a filtration.

Definition 20.1. Given a cochain complex C™ of vector spaces with linear differential
d: O™ — C"! satisfying d? = 0, we say that a sequence of subspaces F™C C C for

m > 0 is a decreasing filtration of C' if the following three conditions are satisfied.
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1. dF™C c F™C for all m > 0.
2. FtlC ¢ F™C for all m > 0.

3. F'C = C and F™C" := F™"C' N C™ = {0} for all m > n.

Given such a filtration, the spectral sequence with first page E} = HP™(2:%5) con-
verges to H*(C,d) in the sense that H*(C,d) = @ EP? This can be read off the

p+q=Fk
stabilised sequence as the direct sum along the north-west to south-east diagonals.

20.2 Bimodules and Connections

We looked at bimodule connections in the preliminaries, but now we need to look in more

depth at extendability results.

Proposition 20.2. (See Corollary 5.4 of [1]) If the algebra A has mazimal prolongation
calculi for its higher calculi, and if the curvature Rg is also a left module map, then

extendability of og is automatic.

Next, there are a few results which are proven in [10] for left connections but which we
need to prove for right connections, since the right handed versions are not necessarily

just mirror images of the left handed versions, as we see in Lemma 20.5.

Lemma 20.3. Let E be a B-A bimodule with extendable right bimodule connection

(Vg,0g). The connection Vg extends to higher calculi as
Vil —id@d+ Ve Aid: E@4 QY — E®4 Q3 (46)

Proof. We need to show that V%] is well-defined over the tensor-product ® 4, and so we
check that V[g](ea ®n) = V[]g}(e ® an). The two sides of this equation can be expanded

as
(d®d)(ea®@n) + (Vg Aid)(ea ®@n) = ea @dn+ Vg(e)JaAn+e®daAn
and
(ided)(e®an)+ (Ve Aid)(e®an) =e®daAn+e®@aAdn+ Vg(e) Aan.

Since ea ® dn = e® a Adn and Vg(e) Aan = Vg(e)a An, the above equations imply the
desired result that Vzﬁ(ea ®n) = Vg](e ® an). O
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Lemma 20.4. Let E be a B-A bimodule with extendable right bimodule connection
(Vp,op). Then Vi oWl = Ry nid © E @4 QY — E @4 Q2, where Ry =
(id®d+ Vg Aid)VEg: E — E®4 Q% is the curvature of V.

Proof. Writing out V%H] e Vgg} in string diagrams and then expanding dA and using

associativity of A gives Figure 19, which gives the desired result. O]

EQn

Figure 19: Fibre Bundles: Diagrammatic proof that V%LH] o V[g] = Rp ANid

The following lemma almost mirrors the one on page 304 of [10], although we see that by

switching sides a power of —1 is introduced, so the construction is not symmetric.

Lemma 20.5. Let E be a B-A bimodule with extendable right bimodule connection
(VE,0p) whose curvature Rg is a left module map. Then for all n > 1 we have the

following equation:
Vil o op = op(d®id) + (=1)"(cp Ad)(Id @ V) : QL @5 E —» E@, QYL (47)

Proof. Recall that the curvature Ry = V[Eg oVg = (id®d+ Vg Aid)Vg is always a
right module map.
(1) First we show the n =1 case. Let b € B, e € E, and write Vg(e) = f @ £&. Then we

calculate:

Rp(be) = (id®@d+ Vi Aid)Vg(be) = (i[d@d+ Vi Aid)(bf @ € + op(db® e))
=Ve(bf) NE+bf @dé+ Vilop(db®e)

=bVe(f)ANE+0op(db@ fYAE+Dbf @ dé + Vog(db® e)

= b.Rp(e) + op(db® f) A&+ Vop(db ® e)

However, since R is a left module map, it satisfies Rg(be) = b.Rg(e), and so we have:
0=0p(db® f) A&+ Vlop(db®e)
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Using this result, for a general 1-form 1 = cdb (summation omitted) we calculate:

op(cdb® fYNE+Vlog(cdb@e) AéE = cop(db® f) + VI (cop(db® e))
= c(op(db® f) A€+ Viop(db®e)) + (0p Ald)(de © op(db @ €))

=0+ (cg Nid)(de®@ op(db®e)) = op(dc Adb® e) = og(d(cdb) ® €)

where we have used that 0 = og(db® f) + Vlog(db ® e) and then the extendability of

op. Re-arranging this, we get:

Vliop(n@e) =op(dn®e) —op(n® f) A&

=op(d®id)(n®e) + (1) (o Aid)(id ® VE)(n @ e€)

This shows the V%]UE case.

(2) Next we suppose the formula holds for V[g]a and use induction to show it for n + 1.
Suppose 1,6 € QL and e € E. Expressing V" lop(n A € ® e) in string diagrams in
Figure 20, we use extendability of og, then the formula for V%H], then the Leibniz rule
on A, then recognise the formula for Vgg], then use the induction assumption, then use
associativity of A, then recognise the formula for v[g], then use the induction assumption
again, then finally we re-arrange using the Leibniz rule for A and associativity of A and

extendability of 0. Hence VI o op = op(d ®id) + (—1)"(0p Aid)(id ® V). O

In particular, if R = 0 then the composition V[EH] o V[]Z] = Rpg A id vanishes, making

the flat connection Vg a cochain differential. We use this later to give a filtration.

21 Theory: Fibre Bundles (Right-handed Version)

The paper [11] gives a definition of differential fibre bundles, in which given an algebra
map 7 : B — A which extends to a map 7* of differential graded algebras, where

differential forms of degree p in the base and ¢ in the fibre are given by the quotient
T QEAQY
QR AQYT

In this paper we take a similar approach, but instead represent these forms by a quotient
that doesn’t require an algebra map. This comes at the cost of now needing a bimodule
instead of just a module, and a bimodule connection instead of just a one-sided connec-

tion. But since Hilbert C*-bimodules with inner products correspond via the KSGNS
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Figure 20: Fibre Bundles: Induction step in proof that VE;H] oop = op(d ®id) +

(=1)"(og Nid)(id ® V)
construction to completely positive maps, and every *-algebra map is also a completely
positive map, this constitutes a generalisation. We start by defining the filtration.

Proposition 21.1. Let E be a B-A bimodule with extendable zero-curvature right bimod-
ule connection (Vg,op). Form <n, the cochain complex C" = E® 4 Q% with differential

de = Vgﬂ . O™ — O™ gives the following filtration.
From = im(aE ANd: QR @ E0, Q™ — E@y Qg) (48)
Proof. (1) The first property we need for a filtration is do F™C C F™C for all m > 0.
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This means showing V%L]Fm(E AN C @ F™(E®4Q7%).

n’>0
In the calculations in Figure 21 we start with Vgg](aE A id), then use the fact that

Vzﬂ =id ® d + Vg Aid, then use associativity of A and expand dA, then recognise the
formula for v[,;”], then use the formula VEQ”] oog=o0g(d®id)+ (=1)"(cp Aid)(id® V)
we showed earlier, then use associativity of A, then recognise the formula for V%ﬁm].
This is in F™TICH + POt However, as we will show in the next step, the filtration
is decreasing, so as required, it is contained in F™C.

(2) The second property we need for a filtration is F™*C' C F™C for all m > 0.

In a differential calculus (as opposed to a more general differential graded algebra), el-
ements of the higher calculi can all be decomposed into wedge products of elements of
QY and so QF = QB AQL. Let £ € QB n € QL e € E, k € Q™. Then
EAn®e®k € VT @p E® Q7™ ! so the map op A id takes it to E ®4 Q7%, and
the image of all such things is F™"C". We have the string diagram Figure 22 for
(id®A)(c®id)(A®id®id)({ ®n®e® k), where we use that o is extendable and that A
is associative. This shows that F™ ™ C™ lies in im(opAid) : QFRpER4Q% ™ — E@aQ%,
i.e. in FC™, and hence that the filtration is decreasing in m.

(3) The third property we need is F°C = C.
FC" =im(og Aid) : BRp E @4 QU4 — E®4 Q%

Recalling that op(1 ® €) = e ® 1 when m = 0, the set F°C™ consists of elements b.e ® &,
which gives all of C™.

(4) The final property we need is FC" := FC' N C™ = {0} for all m > n. This holds
because for m > n, we have Q" = 0, giving F™C" = im(og Aid) : 0 — C™, which has

zero intersection with C™. O]

Definition 21.2. Given a filtration as above, we define differential forms with coefficients
in E of degree p in the fibre and ¢ in the base as the quotient

M L FpCp-H] . UE(Q%®BE)AQ?4
P4 o+l COpte UE(Q%H ®5 E) A lefl’

(49)

and from these we denote forms with coefficients in F of degree ¢ in the fibre only as:

N, = Moy = o~ B @4 2 (50)
UM RO QL @p B) AQET
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QOpE Q7™

Figure 21: Fibre Bundles: Proof that d¢(F™C) C F™C

En e K

Figure 22: Fibre Bundles: Proof the filtration is decreasing

Proposition 21.3. Let FE be a B-A bimodule with extendable zero-curvature right bimod-

ule connection (Vg,or). Then there is a well-defined surjective linear map:
9: QU ®p Ny = My, 9§ @[e®n]) =[(or Nid)(§ @ e @n)]. (51)

Proof. Surjectivity follows from the definition of the map, so we only need to show
that g is well-defined on equivalence classes, i.e. that if [e ® ] = 0 then we also have
(o Nid)(§ ® e ® )] = 0. By definition, we have [e ® 5] = 0 € N, if and only if
e@n=(op Nid)(¢' ® f ®1) for some & € Qk, f € E, 7 € Q%" (summation implicit).
Thus, using associativity of A and then extendability of o, we can re-write g({ ® [e®n)]) as
in Figure 23, which we can see is in the image of o Aid : Q%H RpE®4 Qqul — E®, 05,

and hence has equivalence class zero in M, . O

In a classical fibre bundle, the differential forms on the total space would split into a

direct sum of forms in the direction of the base space and forms in the direction of the
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Figure 23: Fibre Bundles: Re-writing ¢(§ ® [e ® n])

fibre, but in a noncommutative context there is no obvious algebra that can be called
the fibre. Consequently, in the following definition of a bimodule noncommutative fibre
bundle (note that the algebra maps approach employs a similar idea), we take the quotient
of forms on the total space by forms on the base space as a stand-in for forms on the
fibre. In the classical case where there is a direct sum, this quotient reduces to the usual

differential forms on the fibre.

Definition 21.4. For algebras A and B, we call a B-A bimodule E a (bimodule) differ-
ential fibre bundle if it satisfies the following three properties:

(1) There is an extendable zero-curvature right bimodule connection (Vg, o) on E.
(2) For all p > 1 the calculi Q% are flat as right modules

(3) For all p,q > 0 the map g is an isomorphism.

Remark 21.5. Recall that flatness of QO as a right B-module means that if

1s a short exact sequence of left B-modules and left B-module maps then the following

sequence of left B-modules and left B-module maps is also short exact.
0 Qp E id®gp1 Qp id®¢2 Qp
—— O ®p By —— Qp®p by —— Qp®p B3 —— 0.
If QO is finitely generated projective, then flatness is automatic.

In the remainder of this section, we show that for each bimodule differential fibre bundle,
we can construct a Leray-Serre spectral sequence. The following Lemma corresponds to
Lemma 4.64 of [10], but with a number of differences to adapt it from algebra maps fibre

bundles to bimodule fibre bundles. One difference is that here we no longer need to make
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any assumption about the flatness of £ as a module, since E is now built into ¢g. This

allows us to calculate sheaf cohomology with coefficients in a wider range of bimodules.

Lemma 21.6. For a bimodule differential fibre bundle (E,V ), there is a cochain complex
d d d d
e My —— My —— Mpgp1 —— -+,

whose differential on M, , is [V%Jrq}], and whose cohomology we denote as H1(M,,). Then
by equation (50), HY(N) := H9(My,). The isomorphism g is a (graded) cochain map,

and extends to the following isomorphism of cohomology:
§: Oy op HI(Myg) = HI(My,),  €@[e@n] e [on(E@e)Aq]l.  (52)

Proof. (1) The differential is well-defined by Proposition 21.1, and satisfies d* = 0 by
flatness of V.

(2) Recall that (E,Vg) being a bimodule differential fibre bundle implies that for all
p,q > 0 there is an isomorphism g : Q% ®5 N, — M,,. We need to show that the

differential [V[Ep+q]] commutes with g, i.e. that the following diagram commutes:

—1)Pide[vi
Q% Rp Nq M Q% ®p Nq+1

Js 5
[V[éH_q]]

Mp,q ’ p,q+1

In the proof that (F™C, v[g]) is a filtration, we calculated (diagrammatically) that
VPl (5p A id) = op(d @id) Aid + (—1)P(op Aid)(id @ V).

However, we know that the term og(d ® id) A id has equivalence class zero in M, ;1.

Taking equivalence classes therefore gives
(VE 09l = (~1P[(op Aid)(id © V).
Going the other way around the diagram, we get
g((~1pid @ [V])) = (~1P[(o Aid)(id © V).
These coincide, so the diagram commutes.
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(3) Secondly, we need to show that g extends to cohomology, i.e. that the map

A

O @p HI(N,) = H'(M,,), (@ [e@n]]— [[on(€®e) An]
is an isomorphism. Make the following two definitions.

Z.

D,

g =1m(d) : My -1 — My, Kpq :=ker(d) : Mp g = My g1

- p+q _ Kqu
Therefore HP*4(M,,,) = Zpg "

Next we show that the differential d : My, — My 411 is a left B-module map. We take
[V[]g] (b.e®n)] and apply the definition of V!9, then use the Leibniz rule, then use the fact
that [og(db ® e) A n] = 0 to calculate:

V9 (b.e @ )] = [b.e @ dn] + [V(b.e) A
=[be®dn]+ [op(db®e) An] + [bVE(e) An)
=[b(id®d+ Vg Aid)(e ® n)]
= PV (e @n)].

Hence there is an exact sequence of left B-modules and left B-module maps:

inc d
0 —— K07q > MO,q > ZO,q—i—l — 0

Taking the tensor product with the flat right module Q% gives another exact sequence:

id®inc id®d
0 —— Q% XB Ko,q —_— Q% Xp Mo7q — Q% Xp ZO,q+1 — 0

Applying g to the elements of this sequence, the first part of the proof tells us that the

following diagram commutes.

id®inc id®d
0 — QY ®p Koy —— QU ®p My, —— QU ®p Zpge1 —— 0

s s s
id (=1)Pd
M, ’ Mp,q ’ p,q+1

p.q

Note that the middle instance of g is an isomorphism, while the first and third are merely

injective. This diagram gives the following two isomorphisms.
Zp,q+1 = QZJ; ®p ZO,qula Kp,qul = Q% ®p KO,qula
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and consequently
vaq = Q% OB ZO,qa Kp,q = Q% (29):) KO,q-

By definition of HY(N) = [Z(S’q, we have another short exact sequence:
»q

0 —— Zog 2 Ko, > HI(N) —— 0
Taking the tensor product with the flat right module Q% gives the exact sequence:

0—— Q% Xp ZO,q M Q% Xp KO,q e Q% Xp ]:Iq(N) — 0

Therefore
A P, @5 Ky K A
QP ®p HI(N) = -2 o TP [rra(M ).
i Q% ®p ZO,q Zp,q i
This is the isomorphism we wanted to show. O

Proposition 21.7. If fore € E, £ € Q% we denote (with summation implicit)
Vie®&) =op(n® f) Ak € 0u(Q) @ B) A O,
then the map
Vo HY(N) = Qpop H'(N),  Vy(le®g) =ne[[f ] (53)

defines a zero-curvature left connection on the cohomology of the fibre.

ker[V[Eq]]
im[via~ 1}

it follows that for all e € E, ¢ € Q% such that [[e ® &]] € HY(N), the equivalence

Proof. (1) Firstly, we show that the map V, is well-defined. Since H I(N) =

class [Vg](e ® &)] vanishes in N,.;. But for V[g](e ® £) to lie in the denominator of

N — E@ Q%!
= Gp(QLesE)AQY

means that there exist n € Qp, f € E, k € QY such that
Ville &) = on(n® f) Ak € 0p(0h @ E) A,

Applying the isomorphism ¢! to [[V[g](e ® &)]] then gives n ® [[f ® &]].
(2) Next, we show for all b € B that V, satisfies the left Leibniz rule. We take V[;](be@)f)
and use the definition of V%} then the braided Leibniz rule for Vg and then once again

the definition of V[g] to calculate:
Vil (be 2 ¢) = ([d®@ d + Vg Aid)(be ® )
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=be®d{ 4+ V(be) N
=be®@dé +op(db®e) NE+DVE(e) NE
= op(db®e) AL+ bV (e ® ©)
Taking equivalence classes and using the isomorphism ¢ gives the desired result that
Vy(b.[le@E]]) = db@ [le @ E]] + bV, ([le @ £]])-
(3) Lastly, we show that the curvature, R, = (d ® id — id A V)V, vanishes.
Denoting V[g](f ® k) =or(n ® f') A K, we have:
Ry([e®¢]]) = dn @ [[f @ k]l +n AV, ([[f © &]])
=dne[[for]+nrn@[[f @r
To show this vanishes, we want to show dn® [f @ k] + n A7 @ [f' @ k'] = 0.
As the curvature Rg of Vg vanishes, we have:
0=VioVilcws) = Vi onme f) Ar)
= (d®id+id A Vg)(os(n® f) A k)
Taking equivalence classes and using the isomorphism g, we get
0=(d®id+idAVEg)(n® [f ® k])
=dn® [f ® k] +n A Vg([f ®k])
=dn@[fek]+nAn @ [f @]
as required. Hence R, = 0. O

Recall that the sheaf cohomology group H?(B, H 9(N),V,) is defined as the cohomology

at QP @cg HY(N) in the following sequence (which is not necessarily exact).

vl vl

0 —— HI(N) — QL. ®ce HI(N) — Q2. @cg HUN) —s -

In the sense of [8], equipping H 9(N) with a zero-curvature connection makes it a sheaf,
i.e. we can do sheaf cohomology with coefficients in H9(N).

There is a spectral sequence for the filtration, which has first page
EP? = HPY9(M,,) = HP*(Q @p Ny) = O @ HI(N),

and second page position (p,q) given by HP(B,ﬁq(N ), V,), and which converges to
H(A, E,Vg) in the sense described in the background section.
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22 Theory: Fibre Bundles (Left-handed Version)

By symmetry of modules, this construction can be mirrored to use an A-B bimodule
E with an extendable zero-curvature left bimodule connection (Vg,og), where Vg :
E — QY ®4 F and op : E®p QL — QY ®4 E. In this case, zero curvature means

Rrp=(d®id —id A Vg)VE = 0. The bimodule connection satisfies
Vilop = (id A o) (Ve ®id) + opid®id) : E®p QO — QU @4 F.
The cochain complex C" = Q% ® 4 FE with differential C" — C™*! given by
de =V —id@d+ (-1)"Vg Aid
has a filtration
FC" =im(id Aog) : Q™ @4 E®p QO — Q) @4 E.

The quotients for the fibre are given as follows.

PO 08 A op(Bp )
p,q T Fr+1(Cr+a o Qi—l A UE'<E Qg Q%-i-l)
C1 Q4 E
Nq = MO,q = = A ®A

F1C1 QU ANop(E®p QL)

There is then a well-defined map
g9: Ny ®@p Qp — My, e~ [(idAo)(n®e®l)]

which extends to cohomology.
We say that FE is a differential fibre bundle if g is an isomorphism for all p,q > 0 and if
the calculi QF are flat as left modules for all p > 0

On the cohomology we have the following a zero-curvature right connection.

~

Vy: HI(N) = H(N) @5 Qp, Vi(l§®el)) =llro fllon,

where V[,;’] (E@e) =kAop(fon) € W Aop(E®pQy) C Q4™ ®4 E with summation im-
plicit. Assuming that we have a differential fibre bundle, there is then a spectral sequence
converging to H(A, E, V) with first page position (p, q) given by EP? = HY(N) ®p 97
and second page position (p, q) given by H?(B, ﬁq(N), V,).
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23 Positive Maps and the KSGNS Construction

In this section we discuss the KSGNS construction and its relation to our definition of
bimodule fibre bundles.

In a C*-algebra A, a positive element is one that can be written in the form a*a for some
a € A. A linear map ¢ : B — A between C*-algebras is called positive if it maps positive

elements to positive elements, and completely positive if for all n > 2 the map

‘ b1 b @(b1) ¢(b2)
¢: My(B) = Mu(A),  (52) = <¢<b3> ¢<bi>>

is also positive.

Every *-algebra map is completely positive, and so are all positive linear functions B — C.
The KSGNS theorem (see [30] for reference) gives a correspondence between bimodules
and completely positive maps. Suppose A and B are C*-algebras, and E a Hilbert B-A
bimodule with an inner product (,) : E ®p E — A. We use E to denote the conjugate
module of E as defined as in [13], which has elements € is an element of E for each
e € E, and satisfies \eé = A*e for scalars A € C, and has A-B bimodule structure given
by ae = ea* and €b = b*e fora € A, b€ B, e € E.

According to the KSGNS theorem, if a map ¢ : B — A can be written in the form
¢(b) = (€,be) for some e € E, then ¢ is completely positive. Conversely, if we have a
completely positive map ¢ : B — A between unital C*-algebras, then we can construct
a Hilbert B-A bimodule E and find an element ey, € E such that ¢(b) = (€g, bep). The
process to construct this bimodule is to first take the B-A bimodule B ® A with actions
given by multiplication, equipped with inner product {,) : B® A®z B® A — A given by
(b®a, b ®@a') = a*¢(b*b')a’. Next we quotient the bimodule by all zero-length elements
with respect to this inner product. Lastly we take the completion with respect to the

inner product, and obtain the bimodule E.

Proposition 23.1. (Proposition 4.86 of [10]) Suppose that A is a unital dense *-subalgebra
of a C*-algebra, (E,Vg,0p) a right B-A bimodule connection which is extendable with
curvature Rg a bimodule map and (,) : E ®g E — A a semi-inner product A-module
structure preserved by Vg. If e € E obeys Vg(e) = 0 then ¢ : Qp — Qa, ¢(&) =
((,) ®id)(E ®@ op(£ ®¢)) is a cochain map, i.e. dod = ¢od.
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24 Example: Group Algebras

[Algebras: See Example 3.11 for CG and its calculi]

In this first example, we look at a fibre bundle which could also be handled by existing
theory, but which is nicely calculable and thus verifies that the bimodules approach to
fibre bundles gives the right kind of results. In the two examples after this, we look at
one finite and one infinite-dimensional example for which we do not have algebra maps
and so the algebra maps approach would not work, but where by the bimodule approach
we are able to get Leray-Serre spectral sequences.

Associated to each finite group X is its group algebra CX, whose basis is given by the
elements of X. A general element of CX takes the form Y A,z, where A, are complex
numbers. Note that in general, CX is not commutative uﬁgss X is commutative.

For a right representation V' of X, a surjective map w : CX — V satisfying w(zy) =
w(z) <y +w(y) for x,y € X is called a cocycle. This property allows the calculation of w

I and

on any element of X as a product of generators. It follows that w(z™!) = —w(z)<z™
that w(1) = 0. By results in [33], left covariant calculi on CX are classified by cocycles.
These calculi are given by Qfy = ALy ® CX with exterior derivative dz = zw(x), right
action (v ® x).y = v ® zy and left action z.(v ® y) = v<z~! ® ry. We abbreviate the
calculus as Q¢ y = Aly.CX. The calculus is connected if and only if for all z € X\{0}

we have w(z) # 0. For a connected calculus, we have Hyr(CX) = Acx.

Lemma 24.1. Let X be a finite group with calculus given by a right representation V
and a cocycle w : CX — V', and which has a subgroup G. Then subspace W of V' spanned
by w(g) for all g € G is a right representation of G, and has complement W= which is

also right representation of G.

Proof. The cocycle condition w(z) <y = w(zy) —w(y) defines a right action on W, which
gives a calculus on CG. Since G is a finite group, the representation V' has an invariant
inner product V®V — C (invariant meaning (v<g,v<g) = (v,v)), from which it follows
that V = W @ W+, where W+ is the perpendicular complement of W. The vector space

W+ is then also a representation of G. O

The restriction of w to a cocycle CG — W gives a calculus on the subgroup G.
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Proposition 24.2. If for the higher calculi on CX we assume that d(V') = 0, then the

wedge product A is antisymmetric on invariant elements Acx.

Proof. Since v <x = 7 'vz, it follows that z(v<xz) = vz. Applying d to this and using
the assumption that d(V') = 0, we obtain dz A (v<x) = —v A dz.

Using this, we calculate the following.
vAw(E)=vA(x7ldzr) = (v Ade =2 vz ) Ade = —a ' dr Av = —w(z) Aw.
Since the images w(x) span V| this proves that A is antisymmetric on Acy. ]

Now we look at fibre bundles. Suppose G is a finite subgroup of a group X, and take
A =CX, B=CQG as in the discussion of fibre bundles earlier. Equip CX with calculus
as above for A{y = V and some cocycle w : CX — V for some right representation V
of CX. For the higher calculi on CX take maximal prolongation plus the assumption
d(V) = 0. For the calculus on CG take Af, = W = w(CG) with cocycle the restriction

of w to CG, and maximal prolongation for the higher calculi.

Proposition 24.3. A CG-CX bimodule is given by E = CX with left and right actions
giwen by multiplication. When the algebras are equipped with the calculi above there is a

zero-curvature extendable Tight bimodule connection on E given by (Vg, o), where

VE:(CX—MCX@@XQ}CX, r+— 1®dr,

op Qb ©ca CX = CX @cx Vy,  dg®@z— 1®dg.r.

Proof. The connection satisfies the condition Vg(gz) = og(dg®z)+ gV g(x) required to
be a bimodule connection, since og(dg®z) = 1®(d(gx) —gdr) = 1®dg.x. The curvature
is zero because d has zero curvature. The connection is extendable as og({® ) = 1®&.x

for all £ € Q. O

Proposition 24.4. Fquip A = CX, B = CG with calculi as above, the B-A bimodule
E = CX with actions given by multiplication. The right bimodule connection (Vg,0g) as
above, given by Vg(x) =1®dzx and op(dg®@ x) = 1 ®dg.z, is a differential fibre bundle.
The fibres are N, = (W+)M.CX, on which a differential d : N, — N1 is given by
d(€.z) = (=1)Flg At (w(z) <z™).z (54)
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for £ € (W)™ and x € X, and where we write © for the projection V. — W+ which

has kernel W. The differential V, : HI(N) = Qbg ®cq HU(N) is given by

Vi([§.2]) = m(w(@) ™) ® [§.2]. (55)

Y

The fibre bundle E gives rise to a spectral sequence converging to H(CX,E,Vg) =
Har(CX) with second page position (p,q) given by H?(CG, HY(N),V,)

Proof. (1) Firstly we show that E is a differential fibre bundle. The calculi Q0 = Qf,
are finitely generated projective for all p > 0 and therefore flat as modules, and the
bimodule connection has zero curvature and is extendable. Lastly we need to show that
the map ¢ : Q. ®@ca Moy — M, 4 given by g(E®[e®n]) = [(crAid)(ERe®n)] = [eREAT)
is an isomorphism. Using the fact that 2 = x€x ™' = (£ <2z~ !)z to move all elements of

the group to the right, and then the fact that V = W & W+, we calculate:
op(QWx @cx B) NQ, WP AV
o wox B) A WAV

The above isomorphism sends [w;, A+« - Aw;, Avj, A== Avj | = wi A= - Aw;, Avj, A= Avj,

M,, = CX2W” g (WHM.CX.

where the w;, are basis elements of W' and the v;, are basis elements of V. The map g
sending WP @ (W) € QF . ®cx Mo, to WP @ (W) € M, , then is an isomorphism.
(2) The fibres are N, = % ~ (W4)M.CX. The differential d : N, — Ny is
given by d(£.2) = (—=1)?[¢ Adz] for £ € (WH) and z € X, but we can use the fact that
dz = (w(z)<r™1).z to write the differential on N, as d(£.7) = (—=1)ElE¢ Ant(w(x)<x™t).a.
The cohomology of the fibre is then H9(N) = %, using this differential. The

differential V, : HY(N) = Qg ®ce HI(N) on the cohomology groups is given by

Vil§ @) =g ([rw(@) az™) Aga]) = m(w(z) az™) @ [€.a].
O

Group algebras of finite groups are C*-algebras, with a *-map given by (A\,z)* = Az}
and extended linearly. The bimodule E has an inner product (,) : £ ®cg E — CX given
by (Z,y) = x*y = 7'y, and the Leibniz rule shows that Vz preserves this inner product.
On a C*-algebra with an inner product we can use the KSGNS construction to obtain
positive maps. The kernel of Vg consists of C.e, and so the positive map we get via the
KSGNS construction is (€, ge) = g. This is just the inclusion map, which is an algebra

map.
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24.1 Example: S5

Next, we do a full calculation of the spectral sequence for the example of S3 and its

subgroup generated by the cycle u = (1,2).

Example 24.5. Let X = Sj, denote transpositions as u = (12) and v = (23), and
then define a subgroup G = {e,u} C S3. An example of a right representation of X
is given by V = C? with right action (vi,ve) <z = (v1,v2)p(z) for the homomorphism
p:Ss — End(V) given by p(u) = (§ % )and p(v) = %(\_/% ‘?) To define a calculus on
X = CS;5 (and therefore by restriction a calculus on G) we need a cocycle w : S3 — C?
satisfying w(zy) = w(x)p(y) + w(y). For the cocycle to be a well-defined linear map, we
need to be able to apply w to the three relations of S5, which are u? = e, v = e, and

wou = vuv. If we write w(v) = (a,b) and w(u) = (¢, d), we have the following.

(1) Recalling that w(e) = 0, the relation u? = e gives:
0= w(u?) = wu)p(u) +wu) = (c,d)(§ %) + (¢,d) = (¢, =d) + (¢,d) = (2¢,0).

Hence ¢ = 0. We can normalise to get d = 1 so that w(u) = (0,1).
(2) The relation v? = e gives:
1
0= w(?) = w(©)ple) +wlv) = w(0) (o) + 1) = (a,D)5( 5 %)
1
=5a+ V/3b,V/3a + 3b)
Both equations arising from this give that a = —v/3b. We already normalised when

defining w(u), so we simply have b as a free parameter, giving w(v) = (—v/3b,b).

(3) Finally we have the relation uvu = vuv. We calculate:

S~—
+
£
=
=
=
+
&
S
s
S
=
£

w(uou) = w(u) + w(uww)p(u) = wu
= 0.1+ (VB b)(4 %) + (0.5 (57) (5 4)

1 1 1
= (07 1) + (_\/§b7 _b) + <_\/§a _5) = (5\/5 - \/gbv
Flipping v and v in the above, we calculate:

w(vuw) = w(v) +w(vu)p(v) = wv) +w(u)p(v) + w(v)p(u)p(v)

= (=V0) 4 (0.7 (5F) + (VB b (32 (4 7)

31
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= (~VEBD) + (VB D)+ (0.-2) = (SVE - vab L )

This shows that the equality w(uvu) = w(vuwv) follows automatically once we assume
that 0 = w(u?) = w(v?), and hence we get no new restrictions on b as a result of this
relation. This gives a l-parameter family of 2D calculi on CX, with A! generated by
ew = w(u) = (0,1) and e, = w(v) = b(—/3,1), where b € C is a free parameter. Take
the calculus on CG to be the vector space W generated by e,, so Q%, = C{1,u} and
Qb = w(u).C{1,u}.

We now calculate the de Rham cohomology. As long as b # %, this w doesn’t send any
elements of X other than e to zero, the calculus on CX is connected, and hence has de
Rham cohomology Hyr(CX) = Acx. This gives H)(CX) = C and Hj,(CX) = Ca C,
while H2,(CX) is a quotient of C*AC?2. Since the wedge product is antisymmetric under
the assumption dV = 0, a basis of this is given by w(u) A w(v), and H3,(CX) = C.

We now calculate the Leray-Serre spectral sequence explicitly for this example, where
E=A=CX, B=CG for X = 55 and G the subgroup generated by the cycle u = (12).
As w(u) = (0,1) is a basis of W, it follows that (1,0) is a basis of W+, and hence
(5, y) = (2,0).

From the formula above that N, & (W+)".CX, we have Ny & CX and N; = (1,0).CX.
All the other N, are zero, since W/? and (W+)"? are zero, seeing as W and W+ are
1-dimensional and the wedge product is antisymmetric on V.

The one non-trivial differential is therefore d : Ny — Ny, given by dz = 7+ (w(z)<z™!).2.
The kernel of d : Ny — N is two-dimensional with basis elements e and u. The reason
that the identity element e lies in the kernel is because w(e) = 0, while « is in the kernel
because w(u) au = w(uw)p~(u) = (0,1)(5 %)~ = (0, —1), which is sent by 7 to zero.
The image of d : Ny — N; is four-dimensional with basis elements (1,0).v, (1,0).uv,
(1,0).vu, (1,0).uvu.

Hence H°(N) is two-dimensional with basis elements [e] and [u], while H'(N) is two-
dimensional with basis [(1,0).e] and [(1,0).u].

The differential Vo : HO(N) — QL @5 HO(N) is given on basis elements by V(e) =
m(w(e)<e ™)@ [e] =0 and Vo(u) = (w(u) <u™) @ [u] = (0, —1) & [u].

The differential Vg : H'(N) — QL®pH'(N) is given on basis elements by V;([(1,0).¢]) =

123



m(w(e)<ae™) @ [(0,1).€] = 0 and V([(0,1).u]) = m(w(u) <u™) @ [(0,1).u] = (0,-1) ®
[(0,1).u.

Hence Vj has kernel spanned by [e] and image spanned by (0, 1).[u], while V; has kernel
spanned by [(0,1).e] and image spanned by (0,1) ® [(0, 1).u].

Seeing as QF. = 0 for p > 2 and H 9(N) =0 for ¢ > 2, the sequences for the cohomology

are the following two.
0 — HO(N) —5 QL ®ce HY(N) — 0

0 — HY(N) — QL. ®@cq H(N) —— 0

HO(B, HY(N), V) is the cohomology at H°(N), which is ker((Y)Sj) >~ ([e])span = C.
)

H'(B, H°(N), V,) is the cohomology at Qb ®cq H°(N), which is % = ((0,1)®
Dpan = C.

H(B, H'(N), V) is the cohomology at H'(N), which is ker((z)l >~ ([(0,1).€])span = C.
H'(B,H'(N), V) is the cohomology at Qb ®cq H'(N), which is Qiﬁ—?fa = ((1,0) ®

[(1,0)-6])upan = C.
Page 2 of the Leray-Serre spectral sequence has entries E2? = H?(CG, H1(N), V,), with
EY° EY' Ey°, EY' as its nonvanishing entries. This is stable already, and hence the

nontrivial cohomology groups are the following direct sums along diagonals.

I

H°(CSs, B, V) = H(B, H(N),V,) = C

HY(CSs,E, V) = HY(B,H(N),Vy) ® H'(B,H'(N),V;) = C® C

12

H*(CSs, B, V) = H'(B,H'(N),V,) = C
This is the same as the de Rham cohomology Hyr(CX) that we calculated earlier. o

Note that in [39], a different calculus on Sj is obtained by using the same right action p

but on the representation V = My(C) instead of V = C.

25 Example: Matrices

[Algebras: See Example 3.12 for M,(C) and its calculus]
In [10] an inner calculus on the matrix algebra M,(C) is given by db = [¢/,b] = 6'b — bo'

for b € My(C) and inner element 0’ = Ej3s’ + Eat’, where s' and ¢’ are central (i.e. they
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commute with any algebra element). The maximal prolongation calculus has the relation
SNt =t NS

We extend this idea to M3(C), giving it an inner calculus by 0 = Ej3s + Eoit + Eszu
for central elements s,¢,u. The differential d : M3(C) — Q}\43(C) is then given by da =
0, a] = [E\2, a]s+[Ea, a|t+[Fss, aJu, which on a general matrix in M3(C) is the following.

c de—a — 00 —c
d( %f)z(O—d £)s+<a—be2(c]>t+<00—f>u (56)

0 —g O —h 00 gh O
From this we can see that dFE33 = 0, which means the calculus is not connected, since a

Q@ Qe

connected calculus needs kerd = C. /3.
For a higher order inner calculus, the differential is given by dé = A & — (—=1)El¢ A6 for
the inner element 6. For example, since |u| = 1, we have du = § Au+u A6, and similarly

for s and ¢.

Proposition 25.1. Equipping M3(C) with higher order inner calculus for the inner ele-

ment 0 = E198 + Eoit + Eszu necessitates that s N\t =t A\ s=uAu.

Proof. As the calculus is inner, the differential is given by da = fa — afl. If we apply the
differential twice to an element a € M3(C), we get d*a = 0 A (fa — af) — (fa — ah) N =
ONOa—ONal+0Nab —ab N0 =0N0a—ab NG =[0A0,a]. For d to be well-defined as a
differential we need d?a to vanish, so # A8 needs to be central so that its commutator with
anything vanishes. We calculate 0 A 0 = (E125 + Eoit + Essu) A (B8 + Eort + Eszu) =
FE118 At + Egt A s + Essu A u. The only central elements of M3(C) are multiples of I3,

and hence for 6 A 6 to be central we require sAt=tAs=uAu. O]

Although the additional assumptions that u At = t Au and u A s = s A u are not
mandatory, we make these as well so that all the generators of the calculi commute.
Based on a private communication [29], these extra assumptions bring the growth of the
calculi down from exponential to polynomial. With these additional assumptions, the
derivatives of the calculi’s basis elements are ds = 2s A 6, dt =2t A0 and du = 2u A 6.

For A = M3(C) and B = M(C), an example of a B-A bimodule is given by E = M, 3(C).

Proposition 25.2. Suppose we equip A with inner calculus as above given by inner

element 0 = FEios + Foit + Essu. Then a right zero-curvature connection Vg : E —
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E @4 QY satisfying Vg(eo) = 0 for eg = (299) is well-defined and takes the form
Ve(eopa) = eg ® da.  This connection becomes an extendable bimodule connection by
the bimodule map o : QO ®p E — E ®4 QY given by op(d(28) ® eg) = o @ d(g%%),
which satisfies op(s' @ eg) = eg @ s and op(t’ ®ey) = eg R t.

Proof. (1) First we show well-definedness of Vg. Observing that eo.<§ § §> =(509) €
E, the image of this under the linear map Vz must be zero, meaning that the differential
must satisfy ey ® d<§ § §> =0 E®y Qi,. Note that this wouldn’t be true in the
universal calculus. We calculate using the differential above that eg ® dFEs5; = ey ® (O +
0+ [E33, Eai]u) = (550) @ (B3 — diglzz)u = (§90)(Esi — dizk33) ®u = 0, seeing as
nonzero entries of (Es; —d; 3F3 3) can only lie in the third row, and thus Vg is well-defined.
(2) Secondly, we calculate V. We can see that every element of E is of the form eg.a,
since eg.M3(C) = M, 3(C) = E. Therefore, using the Leibniz rule and the assumption
Vi(eg) = 0, we calculate the connection as Vg(epa) = Vg(ep).a + o @ da = ey ® da.
(3) Thirdly, the map og satisfies o (db ® eg) = Vg(bey) — bV E(ep). But Vg(ep) =0, so
oe(d(28) @ eo) = V(2 1)e) = vE(eo(§§§)> . ®d(§§§) as required.

(4) Next, we show og(s’ ® eg) = ey ® s and op(t’ ® eg) = ep ® t. In the calculus on B,
we have dEy = [Eg, Eo1|s’ + [Fa1, Eoi]t’ = (§ %)s’, and likewise on the calculus on A.

Therefore, using the fact that og is a bimodule map and that s’ is central and also the

formula above for o,

However, as (§ % ) is invertible, this implies o5(s’' ®eg) = g ®s. The result op(t’ ®eg) =

ey ® t follows Simﬂarly by Considering dE12 = [E127 Elg]sl -+ [E217 Elg]t, = (_01 ?)t/
(5) Lastly, we show extendability. Since B = M;(C) is equipped with maximal prolon-
gation calculus, Corollary 5.3 of [1] says that every zero-curvature bimodule connection

is extendable. ]
Next we show that with this bimodule and connection we do indeed get a fibre bundle.

Proposition 25.3. Suppose B = M5(C) and A = M3(C) are equipped with the above
calculi. Then the B-A bimodule E = My 3(C) with the bimodule connection (Vg,og)
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from earlier gives a differential fibre bundle, and thus a spectral sequence converging to

H<A7 Ea VE) = H(MIB(C)a M2,3(C)a VE)

Proof. For all p > 0 the calculi Qf = Qf (c) are finitely generated projective and hence
flat as modules. The bimodule connection (Vg, og) satisfies the requirements of having
zero curvature and being extendable. The last property we need to show is therefore that
the map g : O ®p Moy, — M,, given by g(§ @ [e @ n]) = [(op AN id)(§ ® e @ n)] is an
isomorphism.

Since E = ey.M3(C), the forms on Mj3(C) of degree p in the fibre and ¢ in the base are
given by the quotient

op(Q2 05 E)AQY  o8(Q,c) @) €o) ALy ¢

P = UE(Q%H ®@p E) A Q?q_l N UE(QIJ)VE(‘C) Da(c) €0) Q?\/;Sl((c)'

Everything in the numerator is of the form (s or ¢)"*+4=%) Ay * M3(C) for some 0 < k <
q, while everything in the denominator is of the form (s or t)"P+a=F+1) Ay E=1) Vf,(C)
for 0 < k < q. Since u A u = s At, it follows that if an element of the numerator has
k > 2 then it lies in the denominator. But if an element of the numerator has k£ < ¢ then
it has to lie in the denominator. Therefore M, , = 0 for ¢ > 2, and (omitting to write
the equivalence classes) a basis of M, is given by ey ® s"" A t"P~) for some 0 < r < p,
while a basis of M, ; is given by ey ® s’ A NP~ A,

In the case ¢ = 0, the map ¢ is given on basis elements as
(S/)/\r A (t/)/\(P*T) ® €g — €p ® S/\T A t/\(P*T)_

The map g here is an isomorphism, since it just re-arranges the order of the tensor product
and and re-labels s’ and ', which introduces no new relations.

Similarly in the case ¢ = 1, the map g is given on basis elements as

(YA VNPT @ eq @ u— eg @ 5" AP A,
which is an isomorphism. O
Next we calculate this limit of the spectral sequence.

Proposition 25.4. The nonzero cohomology groups of A with coefficients in E can be
calculated via the Leray-Serre spectral sequence as H*(A,E,Vg) = C, H' (A, E,Vg) &
C®, H*(A,E,Vg) = C>.
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Proof. (1) The space N is isomorphic to eg.A, which has six-dimensional vector space
basis eg.E;; for 1 < i <2 and 1 < j < 3 (i.e. excluding the bottom row). The space
N; is isomorphic to ey.A ® u, which has six-dimensional vector space basis eg.F;; ® u for
1 <i<2and 1 <j < 3. Since we showed earlier that M, , = 0 for ¢ > 2, this means
that all the N; = My; = 0 for ¢ > 2.

(2) The differential d : Ny — N; and is given by d([eo.Ei;]) = [VEe(eo-Eij)] = leo ®
dE;;] = [eo.[Ess, Eij]@u]. The kernel has four-dimensional basis [eg. E11], [€o. Er2], [€0-Ea],
[eg. Eaa]. The image has two-dimensional basis [eg. E13 ® u] and [eg. Eaz ® ul.

(3) Consequently H°(N) is four-dimensional with basis elements [[eo.E11]], [[eo.Era]],
[eo-Ea1]], [[eo-Fx]]. Also H'(N) is four-dimensional with basis elements [[eq. By & ],
[leo-Er2 @ ull, [[eo-Ea1 @ ul], [[eo-Far @ ul].

(4) Next we calculate Vo : HO(N) — QL ®p H(N) on the basis elements of H°(N). For
1 <1i,j <2 we have Vo([[eo-Eij]]) = g ([[eo ® dE;;]]). We calculate

Vo(eo-Era) = g ([[e0 ® (Eay — Ent]]) = ' @ [[eo-(Eas — En)]],
Vo(eo.Ea1) = 8" @ [[eo.(Er1 — E2)]],
V()(GO.EH) = —S/ ® [[eo.Elg]] + t/ ® [[Go.Egl]] = —V()(@O.EQQ).
Hence Vj has one-dimensional kernel with basis [[eg.(E11 + Ea2)]], and three-dimensional
image with basis elements t' ® [[eg.(Ea2 — Ev1)]], 8 @ [[e0-(E11 — E2)]], ' ® [[eo-Ea1]] —
S/ ® [[GQ.Elg]].
(5) Next we calculate Vy : H'(N) — QL ®p H'(N) on the basis elements of H*(N). For
1 <14,5 <2, we have
V%](eg.Eij X U) = VE(G().EZ']') Au+ Go.Eij & du = €y (024 [0, E,]] ANu+ 260.E¢j & 9 VANKT
=€) ((E12Eij + EijEIQ)S + (E21Eij + EijEQI)t> ANu
= O'E(S, & 60.(E12EZ‘]‘ + EijElg)) AU + O'E(t/ ® 60.(E21E7;j + EijE21)) A u.
Consequently,
Vi([leo-Eij @ u]]) = s’ @ [[eo-(Er2Eij + EjjEra) @ u]] + 1 @ [[eo.(Eor By + EijEa) @ u]].
Using this, we calculate Vi([[eg.E12 ® u]]) = t' ® [[ep ® u]] and Vi([[eg.Fa1 ® u]]) =
§'®[[eo®@u]] and Vi ([[eg. E11®u]]) = §'®][eo. E12@u]]+t' @[[eo. Ear@u]] = Vi([[eo. B2 @ul]]).
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Hence the kernel of V; has one-dimensional basis [[e.(E11 — Ea2) ® u]], while the image
has three-dimensional basis ' @ [[eg @ u]], s'®@[[eg®@u]], s’ @ [[eg. 1o @u]] +1' @ [[eg. Fa1 @ul].
(6) Next we work out the quotients for cohomology.

(i) Firstly, H'(B, H'(N), V) = kie;%;> ~ C.

(ii) Secondly, HY(B, H'(N), V) = %. Seeing as Q} is a free module with two

basis elements and H(N) is four-dimensional, the vector space QL ®p HO(N) is eight-
dimensional. The quotient is therefore five dimensional, and an example of a basis of
%AVZ()N) is given by [s" ® [[eo.E11]]], [s" ® [[eo.Er2]]], [s" ® [[eo.Eail]], [t ® [[eo-Eun]l],
[t ® [[eo.E1s]]]. Hence HY(B, HY(N), V) = CP.

(ifi) Thirdly, H(B, H'(N), V) = %50 =~ C.

(iv) Lastly, H' (B, H'(N),V;) = %EB(—VH;)(M. Seeing as QF is a free module with two
basis elements and H'(N) is four-dimensional, the vector space Q% @5 H'(N) is eight-
dimensional. Taking the quotient by the three-dimensional im(V) gives a five-dimensional
vector space. Hence H'(B, H'(N), V;) = C°.

(7) Page 2 of the Leray-Serre spectral sequence has entries EYY = H?(B, HY(N), V,),

with ES’O, Eg’l, E21’0, E21’1 as its nonvanishing entries. This is stable already, and hence

the nontrivial cohomology groups are the following direct sums along diagonals.

HO(AJ E7 VE) = HO(‘B?}AIO(N)?vO) =C
HY(A,E,Vg) =~ HYB,H(N),V,) & H(B,H'(N),V,) = C°® C = C°
H*(A,E,Vg) = H'(B,H'(N),V;) = C°.

[]

The bimodule E has inner product (,) : EQpE — A given by (Z,y) = 2*y, where * is the
conjugate transpose map. As matrix algebras are C*-algebras, the KSGNS construction
says that the map ¢ : B — A given by ¢(b) = (€, bey) is completely positive. For
eo = (299) then ¢ is not an algebra map, seeing as ¢(I) = 413 # I3, and algebra maps
have to send the identity to the identity.

Moreover, Vg(eg) = 0, so for ¢ to be a cochain map we just need metric preservation,
which holds because of the following. Recall that for the right connection Vg on E, we

have Vz(epa) = ey ® da, which gives a corresponding left connection V# on E given by
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Vz(eoa) = da* ® e, and that the inner product on F is given by (Z,y) = z~'y. Then:

da,* (g, epas) + (€oar, eg)das = da;™.ejepas + ajeseodas = 4day™.ay + 4ajdasg

= 4dajas = dajejepas = d(epar, epas).

Thus by Proposition 23.1, ¢ is a completely positive cochain map, but not an algebra

map.

26 Example: Quantum Circle in the Quantum Torus

[Algebras: See Example 3.8 for Cy[T?] and its calculus, and Example 3.2 for C,[S'] and
its calculus]

Next, we look at an infinite dimensional example, with total space algebra the quantum
torus A = Cy[T?] and base space algebra the quantum circle B = C,[S']. Note that
the quantum torus Cy[T?] is sometimes also denoted T2. As in Example 1.36 of [10],
the noncommutative torus is generated as a complex algebra by two invertible generators
u,v with the relation vu = e®uv for a real parameter 6. It has calculus Q<1c9[1r2] =

Cy[T?].{du,dv}, with right module structure is given by the following relations.
dvw =udu, dvo=vdv, dvu=e%wdv, duwv=e%v.du

We take maximal prolongation calculi for the higher calculi on A, giving relations du A
du =0 =dvAdv and dv Adu = —e?du A dv. These relations imply Q% = du Adv.A and
Q% = 0 for ¢ > 3, with every nonzero element of Q% a multiple of du A dv. The calculus
on the quantum circle satisfies Q2% = 0 for n > 2.

There is a B-A bimodule E given by E = Cy[T?] & Cy[T?], with left B-action and right

A-action given respectively by

to(f@g)=uf®uvg, (f®g)<gd =fgd Dygyg.

Proposition 26.1. If B = C,[S'] is equipped with classical calculus (q = 1), then there
is a zero curvature right bimodule connection (Vg,op) on E, for the right connection

VEe: E— E®4QY given by
Ve(f®0)=(1d0)df, Ve(0odg)=(0d1)®dg
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and the bimodule map op : Q% @ E — E @4 QY given by
op(dt® (f@0)=100)du.f, oe(dte(0&g))=(0&1)®dv.g.
Since higher calculi are zero, this connection is automatically extendable.

Proof. In this proof, we start by using the g-deformed calculus on C,[S*] and then show
that for og to be a left module map we need ¢ = 1.

(1) Firstly, we calculate the formula for or on the generators.

op(dt® (f ®0)) = Ve(t.(f$0)) —t.Ve(f&0)
=Veuf®0)—t.(190)xdf
=120 ®@duf) — (ud0)®df
=(1e0)@du.f+(100)@udf —(ud0)@df

= (150)®du.f

Here we used the standard formula for a bimodule connection that o(da®e) = V(a.e) —

a.V(e).

op(dt® (08 ¢)) =Ve(t.(00g) —t.Ve(0&g)
=Ve(0®vg) — (0®v)®dg
=0®1)®dvg) — (0®v)®@dg
=0®1)®@vdg+ (0@ 1)dv.g — (0@ v)®dg
=0®1)®duyg
(2) Next we show this is a bimodule map. The calculations in part (1) show that o is a

right module map, so we just need to show it is a left module map. Using t.dt = ¢~ 'dt.t

and du.u = u.du, we calculate:
op(tdt® (1®0)) =q¢ 'op(dt®t.(1®0))

=q lop(dt® (u®0))

¢ (1®0)®duu

¢ (1®0)®u.du

¢ '(u®0)®du
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=q¢ 't>(1®0)®du

Hence o is a left module map precisely when ¢ = 1, i.e. when C,[S'] is equipped with

its classical calculus. O

Having a zero curvature extendable bimodule connection, we show the last ingredient

required for a bimodule fibre bundle.

Proposition 26.2. The map g : QO ®@p My, — M, , given by

9§ @le®n]) = [(op Nid)(§ ® e @ n)] (57)

1s an isomorphism, where forms of degree p in the fibre and q in the base are given by the

formula:

ou( T @y B) A QYT

Mp,q = (58)

Proof. (1) Putting algebra elements on the right, we calculate M o, the 1-forms in just

the fibre as:

=
I

o5(QL ©p E) = oy (dt @ ((1@0).A+ (0 1).A)>

(100)@duAd+ (00 1)®dv.A.
Noting that M,y = E, the map g : Q}B ®p Moo — Mo sending
gdt@(1390)=100)®du, ¢gdx(0e1)=(061)®dv

is an isomorphism.

(2) We calculate M 1, the 1-forms in just the base as:

EQ, (100 (duAdt+dvA)+(061)® (du.d+dv.A)
op(NL®p E) 081)®@dv.A+(160)®du.A

2(100)®dvA+(091)®du.A,

Moy, =

but this is already trivially isomorphic to Q% ®p M ;.
(3) Using that Q% = 0, we calculate M, the 2-forms of degree 1 in the fibre and 1 in

the base as:

M1=0p(Qp E)AQ, 2 (100)®@duAdv.A+ (0@ 1) ®@dvAduA
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=2(1e0)@dundv.A+ (04 1)®@duAdv.A
Using the formula for M, above, we see that the map ¢ : 0L @p My, — M 1 sending
gdt®(1e0)®@dv.A)=(140)®duAdv.A
and
gdt®(0el)@dud) =041 @dvAdu A= (08 1)@dundvA
is an isomorphism. O

Having shown that ¢ is an isomorphism, we have a bimodule differential fibre bundle, so
there exists a Leray-Serre spectral sequence converging to the sheaf cohomology of the
quantum torus with coefficients in the bimodule F.

Equip E with inner product (,) : E ®p E — A given by

(1Dg1, fo®g2) = fifa+ 9102

take eg = fo @ go. Define ¢ : B — A by
o(t") = (o, beo) = fou" fo + gov" 9o

This is not an algebra map, even when ey = 1@ 1. In the case ¢g = 1 & 1, we have
VE(ep) = 0. Hence this example requires our new definition in terms of completely
positive maps.

We could calculate the Leray-Serre spectral sequence, but for brevity we omit to do so.

27 Future Ideas and Discussion

One thing which is missing, both from the bimodules approach and the algebra maps
approach to fibre bundles, is the idea of a trivial fibre bundle. In the case of a trivial
principal bundle in Chapter 5 of [10] there are strong and weak definitions, but both are
specific to that case with no clear generalisation.

Also, we might ask how much of the theory of principal bundles can also be done using
bimodule-based fibre bundles. Algebra maps seem quite hard to remove from the theory

of principal bundles.
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Part V

Noncommutative Retracts and

Neighbourhood Retracts

28 Noncommutative Retracts

Abstract

We consider some ideas of what a noncommutative retract between unital C*-algebras
might be, in terms of completely positive maps and using the KSGNS construction. This
generalises an existing definition by Lance. Associated to a completely positive map, there
is an intermediate *-algebra, and we investigate how this is related to noncommutative
neighbourhood retracts.

[51] In topology, given a space N with embedded subspace M, a retract is a map r :
N — M such that the inclusion ¢« : M — N satisfies r ot = idy;. This implies r is
surjective. If the spaces are smooth manifolds, the retract » induces an injective algebra
map 7, : C®°(M) — C*(N) by composition on the right with r.

Example 28.1. Denoting S* for the unit circle, the map r : R*\{(0,0)} — S* given by

r(x,y) = \/x;Ty?(m’ y) is a retract by the inclusion inc : S — R*\{(0,0)}. It also gives

a deformation retract by r; = (1 —t)(z,y) + ———(z,¥). o

Vet r?

Example 28.2. Writing D for the unit disk, there is no retract associated to the inclusion

inc : S' — D, since there is no continuous map from the disk to the circle which fixes the
boundary. However, there is a neighbourhood retract, as long as we exclude (0,0) from

the neighbourhood around S* in D. o
In topology, deformation retracts are related to cofibrations as follows.

Proposition 28.3. ([/5] Satz 1. See also [57] for English) The inclusion of a closed
subspace A in a space X is a cofibration if and only if A is a neighborhood deformation

retract of X.

Correspondingly, a good notion of noncommutative deformation retracts might poten-

tially give some insight into noncommutative cofibrations. Here we don’t answer the

134



question of what is a noncommutative deformation retract, but we consider ideas for
versions of retracts and neighbourhood retracts. In our definitions, we make the choice of
using completely positive maps instead of algebra maps, since there are not a lot of alge-
bra maps, and the KSGNS construction gives a nice way of obtaining completely positive
maps. For a reminder on completely positive maps and the KSGNS construction, refer
to Section 23.

We mention that on page 55 of [30], there is a definition of when a completely positive
map is called a retraction. Lance’s definition of a retraction generalises conditional ex-
pectations, and in the case where the big algebra is unital, they reduce to conditional
expectations. Our definition here is separate to this, although we do find later that con-

ditional expectations of group algebras give an example under our definition of a retract.

Definition 28.4. For unital C*-algebras A and B and unital completely positive maps
¥:A— Band ¢: B— A, wesay that v is a retract by ¢ if ¢ o) = idy4.

Note that since (¢ o ¢0)(a) = a, a retract ¥ must always be injective, and ¢ always
surjective.

By complete positivity, the KSGNS construction gives bimodules £ € zpM, and F' €
AMp with inner products (,)p : E®g E — Aand (,)r : F ®4 F — B such that for all
a € A, b e B, the maps ¢ and ¢ are specified as ¢(b) = (€5, beg)z and 1(a) = (fo, afo)r
for some fixed ¢y € E, fy € F. In particular, as ¢ and ¢ are unital maps, we have
(€o,e0)p = 1 and (fo, fo)r = 1.

Denote the bimodule C' = F®g F € 4 M 4 and the element ¢ = fo® ey € C. There is an

inner product:

(Je:CoaC = A, (fed foeo=/((F,fre)s
Hence a = (¢ o ¢)(a) = (¢,ac)c. We show the following proposition in generality before
specialising to G = C' and g = c.
Proposition 28.5. Suppose an A-bimodule G has a (possibly degenerate) inner product
(Vo :G®4G — A and g € G, satisfying (g, ag)q = a for all a € A. Then:

1. The element ag — ga s length zero for all a € A, i.e. that its inner product with
everything is zero. Hence if the inner product {, )¢ is nondegenerate, the element g

1s central.
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2. The map Q : G — A given by Q(x) = (g, x)g is a surjective bimodule map.

3. G splits as a right module as G = ker QQ @& Ag, or as a left module by a — ag as
G =kerQ @ gA. If g is central then G splits as a bimodule.

Further, if the inner product (,)q is nondegenerate, then g is central, and G splits as a

bimodule by the bimodule map P : G — G given by P(z) = Q(x).g.

Proof. (1) We start with the assumption have a = (g, ag)s. But since inner products
are right module maps, we also have 1.a = (g, g)g.a = (7, ga)c. Subtracting equations
gives:

0= (g, a9 — gajc. (59)
Using Equation 59, and then by adding (g, a*g — ga*)g.a which is the right hand side of
Equation 59 with a replaced by a* and multiplied on the right by a, and is hence still

Zero.

(ag — ga,ag — ga)g = (g,a"ag — a*ga)c — a*(g,ag — ga)e = (g,a"ag — a*ga)c
= (g,a"ag — a"ga + a*ga — ga’a)c = (g, (a"a)g — g(a*a))a

But this is just Equation 59 with a replaced by a*a and is hence zero, so ag — ga has
length zero.
(2) Tt is clear that @ is a right module map because inner products are bimodule maps.

Using that (g,ag)¢ = a for all @ € A (which implies surjectivity), we calculate:

Q(CL&E) = <§7 ax)G = <W> w)G = <a*g — ga~, x>G + <W7 $>G =0+ QQ(-I')
Hence (@ is also a left module map.
(3) We show that P is a bimodule map. It is clear that P, being defined by P(z) = Q(x)g
is a left module map if Q) is. But P(xa)—P(x)a = Q(z).(ag—ga), which is length zero and

vanishes precisely when g is central, i.e. when the inner product is nondegenerate. O]

Corollary 28.5.1. Given a retract (¢, F') by (¢, E) as in Definition 28.4, and denoting
c=fo®e € C = F®gkFE, there is a surjective bimodule map @ : C — A given by
Q(z) = (¢, x)c, and ac — ca is length zero for alla € A. Also C splits as G = ker Q ® cA
or G =ker Q@& Ac. If (,)c is nondegenerate, then c is central and there exists a bimodule

map P : C — C given by P(x) = Q(x).c, and C splits as a bimodule.
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Proof. Since ¢ o1 = id4, we have a = (¢, ac)¢ for all a € A. The rest follows by the

proposition above. O

We remark that it is not obvious exactly when (, )¢ is nondegenerate, even if both (,)g

and (, ) are.

Proposition 28.6. Given a retract (1, F') by (¢, E) as in Definition 28.4, there is a right
module map w : F — E given by w(f) = @.(fo, f)r, which makes the following diagram

commute.
F®pgFE —)Q A

i
E®pE
If the inner product (,)g is nondegenerate, then:
(1) w is a bimodule map.
(2) BeyA = Bey.
(3) eva = Y(a)ey for all a € A.

Proof. (1) We can see that w is a right module map because inner products are bimodule
maps, but we need to show that it is a left module map. We show that w(af) — aw(f)
has length zero, i.e. that its inner product with everything is zero. Using that () and

(,)r are bimodule maps, we calculate for all e € E:

(aw(f), e)m = alw(f), e)p = aQ(f ® €) = Qaf ® €) = (w(af), €) .

Hence by nondegeneracy of (,)g, we have w(af) — aw(f) = 0, making w a left module
map.

(2) By definition, Bey C BegA. But we can re-write w as w(f) = m, so w has
image in Beg. But because w(fy) = & and w is a bimodule map, its image contains
BeoA, and hence BegA C Bey. Thus BeyA = Bey.

(3) Since w is a bimodule map, we have

w(afy) = aw(fo) = aeg = ega*.

Because 1) is a completely positive map coming from a Hermitian inner product, it satisfies

(a)* =1 (a*). Using this, along with the definition of w, we calculate:

w(afo) = e (fo,af)r = e(a) = Y(a)*eo = P(a*)eo.
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This gives that ega* = ¥ (a*)ey for all a € A. Swapping a* for a gives the result. O]

29 A Subalgebra Making J a Two-Sided Ideal

Next, we look at certain quotient associated with a retract. However, it isn’t clear yet
exactly how to interpret it.

Recall from the end of the submanifolds section that there is a bimodule J = {b € B |
bep = 0} which is a left ideal in B. We have Bey = B/J by the isomorphism beg +— [b] of
left B-modules.

Proposition 29.1. Given a retract (¢, F) by (¢, E) as in Definition 28.4, plus the as-

sumption that {,) g is nondegenerate, it follows that the image of ¥ lies in the algebra
S={beB|jbCJ Vje} (60)

which is a two sided ideal in S, and that the quotiented map ¥ /J : A — S§/J is an algebra

map.

Proof. For all j € J and a € A, we have 0 = jepa = ji)(a)eg, which means Ji(A) C J.
But also ¢(a)jey = 1(a).0 =0, so ¢(A)J C J. Hence 9 restricts to ¢ : A — S.

Since J is a two-sided ideal of S, there is an algebra map 7 : § — §/J sending each
element to its equivalence class, and composing ¢ with this we get mot : A — §/J. Note
that S/J is isomorphic as a B-A bimodule to Sey (in fact this defines the right A-action
on S/J). We calculate:

(aa’)eg = eo.aa” = ((a)eg)a’ = 1h(a)ib(a’)eo,
and thus since 7 is an algebra map, we have
m(¥(ad)) = w((a)i(a’)) = (7 o ¢)(a).(m 0 P)(a’).
0

Corollary 29.1.1. Since J C ker(¢), it follows that if ¢ is a bijection and thereby that

J =0, then ¥ would be an algebra map.
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The map ¢ : B — A restricts to a map ¢/J : S/J — A, since ¢(j) = 0 for all j € J.
Also, this restriction is surjective, since (¢ o ¢)(a) = a.

We note that the algebra S is likely not a x-algebra, since there is no particular reason
why having jbey = 0 for all j € J should imply jb*ey = 0 for all j € J.

Since 1 is a completely positive map, ¥ (a*) = ¥(a)* € S*, meaning im(¢)) C S N S*.
Since J is a two-sided ideal of S, it follows that J* is a two-sided ideal of §*, so J U J*
is a two-sided ideal of S N S&*.

30 An Intermediate Algebra

Given a Hilbert C*-bimodule E € M4, there is a B-bimodule D = E ®4 E. In
this section we show that D can be endowed with the structure of an algebra, which is
associative and can be made unital under certain assumptions on E, and that there are
various interesting maps associated to it. In a certain sense it behaves like an intermediate

algebra between A and B.

Proposition 30.1. If E is a B-A Hilbert C*-bimodule with inner product {,) : EQpE —

A, then D = E @4 E is an associative x-algebra when equipped with multiplication
(e1 ®@e2)(es ®@ex) = ex(ez, e3) @ ey (61)

and star operation (61 ® 6_2)* =e9 R e7.
Proof. On one hand we have

((e1 ®@e3)(es ®e7))(es @) = (€1 @ (€3, e3)pea) ) (€5 ® ) = €1 ® (€2, e3) 5 (€1, €5) £Cs,
and on the other hand we have

(e1 ® 6_2)((63 ®eg)(es ® %)) = (e ®€_2)((€3 ® (e, 65>E%)) = e1 ® (ez, e3) (€1, €5) BC6-
Hence D is an associative algebra. O]
Note that that with the above set of assumptions D is not unital yet, but later with some

extra conditions we add an identity.
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Lemma 30.2. If E € g M is a Hilbert C*-bimodule with inner product {,)p : EQpE —
A, then E is also a D-A bimodule with left D-action

(61 ® 6_2) > €3 = €1 <e_27 63>E7 (62)
and the inner product descends from ®p to @p as (, )’ - E®p E — A.

Proof. Positivity of (,) follows automatically, since it uses the same formula as (,)g. (1)

Firstly, we show that the left D-action on E is well-defined. On one hand:
(e1 ®ez) > ((63 ® eg) > 65) =(e1®ez)p> (63<6’_47 €5>E)
= ei(ez,e3)p(€1,€5)m,
while on the other hand:
((61 ®ez).(e3 ® a)) >es = (e1(€z,e3)p ® e4) > €3
= e1(ez,e3)p(€1, 65) k-

These coincide, so the left D-action is well-defined.

(2) Next, we show that the inner product descends to ®p. On one hand
(1, (2 @ T3> €4) = (61 @ €2(€3, €4) )y
= (€1, €2) 5 (€3, €4) 1,
while on the other hand

(e1, (2 @ ez ey) = ((es ®eEz) > ey, eq)p

€3 <62761>E7€4>E

<€1, €2>E €3, €4>E

{
=
= ((€2, 1), )
=
= (&1

er,e2)p-(e3, 64> .
These coincide, so the the inner product descends to ®p. O

Note that in the following we are not assuming that we have a retract or the existence
of maps A — B, merely a unital completely positive map ¢ : B — A, which need not

necessarily be surjective.
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Proposition 30.3. Suppose we have a unital completely positive map ¢ : B — A, given
by ¢(b) = (€g, beo) g for some element ey € E of a Hilbert C*-bimodule E € gM 4 with
inner product {,)p : E®@p E — A. Then there is a map x : D — A, given by

x(e1 ® &) = (€0, e1)6(€2, €0k, (63)

satisfying x(d*) = x(d)*, and which is “positive” in the sense that x(dd*) > 0 in A.
Further, if (€5, e0)g = 1 for some ey € E, then x(ep ® &) = 1.

There is also a x-algebra map 6 : A — D, given by
0(a) = epa ® ey, (64)
satisfying x o @ = id4. This implies that x is surjective, and that 6 is injective.
Proof. (1) Firstly we calculate the properties of y as
X(eo ® €0) = (€0, €0) £ (€0, €0) &, = 1,

and

*

x(e1 ®e2)* = ((€0, e1)p(ea,e0) ) = (€0, e2) p(Er, €o)p = x(e2 ® &) = x((e1 @ €3)"),

as required.

(2) The map 6 is an algebra map because:
0(a)f(a’) = (eoa ® €p).(e0a’ @ €y) = epa(ey, eo)pa’ ® & = 0(aa’),
and a x-algebra map because:
0(a)" = (ega ®€)" = eg ®€pa = epa”™ ® g = O(a™).
(3) We have the composition x o § = id4 because:
(x 0 0)(a) = x(eoa ® &) = (€0, eoa)c (@, €o) & = a.
O

The reason “positive” is in quotation marks is because although D is a x-algebra and y
obeys the equation for positivity, we have not yet shown D to be a C*-algebra.
In the following theorem, we add a couple more assumptions on F in order to give D an

identity element, in which case we get a certain *-algebra map.
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Theorem 30.4. Suppose that ¢ : B — A is a unital completely positive map given by
o(b) = (€9, beg) g for a Hilbert C*-bimodule E € pM s with nondegenerate inner product
(Vg:E®p E — A, plus the following assumptions:

(i) The bimodule E is right finitely generated projective.

(ii) The bimodule map G : E — E' = Homa(E, A) given by G(€)(¢') = (¢,€')g is an
isomorphism of bimodules. Note that this implies (,)g is nondegenerate.

Then denoting €' and e; for the dual basis of E, the algebra D has unit element given by

1p = Z e’ ® G (e). (65)

(2

There exists a x-algebra map v : B — D given by

such that for the map x : D — A given by x(e; ® &) = (€g, €1) (€3, €0) g, we have

¢=xo07. (67)
This implies x 1is unital, in the sense of x(1p) = 1.

Proof. (1) First we show that G is a bimodule map. First we calculate

G(e.a)(f) = (€a, f) = (€.af) = G(e)(af) = (G(€.a))(f).

Hence G is a right module map. Next we calculate

G(ae) = (ae, f) = a(e, [) = (aG(e))(f)-

Hence G is a left module map.
(2) We show that 1p really is the unit of D, i.e. for all (f ® g) € D that (f ® g).1p =
1p.(f®79) = (f ®79). Recall that (,)p = evo (G ®id) as in the following diagram:

E@BE%A

ev
lG@ /

E' ®p FE
Then since G is invertible it follows that (,)po (G ®id) = ev, i.e. (G (&), fYr = ei(f).

Using this, we calculate:

(X doe)Fen =Y c.¢"w.HoF=) daHei=/aF

i % i
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Hence 1p.(f ®7) = (f ® 7). Next we calculate:

)

(Fen(Xeec @) =3 o0 =) ¢ ().

We show as follows that g — Y G7'((g, e')e;) has zero length. For all k € E we have

Y (GTH(Geher) k) = (g,¢)eilk) = (g, ¢ ei(k)) = (. k).

Hence by nondegeneracy of (,)g, it follows that g = ZG’I(@, e'Ve;), from which it
follows that (f ® g).1p = (f ® 7). Z

(3) We show that 17, = 1p. Using that 1p is a two-sided identity, 13, = 1%,.1p. Starring
this equation gives (13,)* = 15,.(1},)*, i.e. 1p = 15,.1p = 17, as required.

(4) We show that v is a *-algebra map. Using that 1p is the identity of D we calculate
y(O)y(V) = (b1p)(V . 1p) = (b1p.t).1p = (b.V).1p.1p = (b.b).1p = ~(bV),
which shows that v is an algebra map. Moreover, it is a *-algebra map because
v(b*) =b"1p = (b.1p)* = ~(b)".
(5) We show that ¢ = x o~.

(x 0 7)(b) = x(be; ® G~ (")) = (€0, be;) (G (€), e0) p = (€0, bes) (&, €0) Bip
= ¢(b).(e0, e0) g = P(b).

]

The maps (6, x) very nearly satisfy the definition of a retract, apart from the fact that
0 isn’t necessarily unital and we haven’t shown D to be a C*-algebra. One way of
interpreting the fact that 6 is not unital, is that rather than D being a retract of A, the
retract is given by the corner algebra (see [16]) D' = pDp for the idempotent element
p=ey®ey. If D' is a C*-algebra, then ¢ : B — A would decompose into the composition
of a x-algebra map v : B — D and a map x : D — A which restricts to a retract. In
future work it would be interesting to consider more widely when we can make D and D’

C*-algebras.
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31 Interpretation of D and Neighbourhood Retracts

In classical geometry, the sphere S? has equator S*. Around the equator, there is an open
neighbourhood which we call T'— the tropics, like the tropics of Capricorn and Cancer
on the globe. We have an inclusion S' — S2, but no retract S? — S! due to a lack of
continuous maps. However, there is a retract 7' — S' of the tropics onto the sphere by
the inclusion S' — T, and the tropics themselves have inclusion 7" — S? into the sphere.
Thus S! is not a retract, but a neighbourhood retract of S

Dualising these maps to smooth functions on the manifolds, we get

e A surjective map C*°(S?) — C*°(S') coming from the inclusion of the equator,
which is like ¢ : B — A, apart from the fact that we didn’t have to assume ¢ was

surjective.

e No maps C®(S') — C*>(S?), and therefore no noncommutative retract of A in B

unless we have extra information.

e An injective map C*°(S') — C°°(T') coming from the retract T — S*, which is like

6:A— D.

e A surjective map C(T) — C*(S') coming from the inclusion of S* in 7', which

is like x : D — A.

e A map C*(S?) — C>(T), coming from inclusion of T in S?, which is like 7 :
B — D. It need not be surjective since 7" is an open set, so C*°(T") can contain

unbounded functions.

The algebra D and its associated maps match up with the classical setup of a neighbour-
hood retract. This is thanks to the conditions of finitely generated projectiveness of E
and the invertibility of G, which in less nice examples are not guaranteed to hold. As
a first idea of a definition of noncommutative deformation retract (but which very well

may need refining), we could take the conditions of Theorem 30.4.
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32 Classifying Bimodule Connections on E for a Re-
tract

Next we classify bimodule connections on the bimodule E associated with a retract. In
the content so far we have only looked at algebras, but to define connections we require
calculi, and so suppose that A and B are equipped with calculi QY and QL respectively.
Note that we make no assumptions on what these calculi are.

Suppose a unital completely positive map ¢ : B — A given by ¢(b) = (€g,beo)p is a
retract by a unital completely positive map ¢ : A — B given by (a) = (fo,afo)r,
for Hilbert C*-bimodules £ € gpM 4 and F € 4 Mp with nondegenerate inner products
(Ve E®pE — Aand (,)p: F ®4 F — B. Then, recalling that epa = t(a)e, a right
bimodule connection Vg : E — FE ®4 QY on E with bimodule map og : Qk ®p £ —

E @4 QY satisfies:
ep @ da = Vg(epa) — Vg(ep).a
= Vi(¥(a)eo) — VE(eo).a

= UE(diﬂ(G) & 60) + w(a)VE(eo) — VE(eo).CL

If VEg(eg) = 0, which is one of the conditions needed for ¢ to be a cochain map, then we
get:
op(dy(a) ® ey) = ey ® da. (68)

We also calculate the bimodule map associated to a right connection on £ regarded as a

D-A bimodule instead of a B-A bimodule.

Proposition 32.1. If we take the same right connection Vg, but now regard E as a D-A
bimodule by the left action (e; ® €3) > e3 = e1(€3, €3) g, then the condition for Vg to be a
bimodule connection is the existence of a D-A bimodule map 6 : Q) @p E — E ®4 QY

satisfying:
6’E(dD(€1 ® 6_2) ® 63) = VE(61>-<67 €3> + €1 ® d<6_2, 63> — (61 ® 6_2) > VE(eg). (69)
If the connection Vg preserves the metric {,)g, then this becomes

dr(dpler ® &) ®es) = (Id @ (,)p)(dp(er @ &) @ e3). (70)
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Proof. On one hand we have:
Ve(le1 ®e)>es) = Vi(er).(e2,e3) + e1 @ d(es, es).
But if g exists, then we also have:
Ve(le1 ®e)>es) = (1 ®e2) > Vi(es) + op(dp(er ® e2) @ e3).
Therefore o satisfies:
op(dp(e1 ®ez) ®es) = Vi(er).(ez,e3) + 1 @ d(ez, e3) — (e1 ® €3) > V(es).

Using the additional assumption of metric preservation and then the definition of the

differential on D as dp(e; ® €3) = Vg(e1) ® &5 + €1 ® Vi(ez), we get

dr(dp(er ® &) ®e3) = Vi(er).(€,e3) + 1 ® ((,) ®1d) (€2 @ VE(es))
+e1 @ (Id® () (Vg(ez) ®e3) — (e1 @ €2) > Vi(es)
== VE(el).<€_2, €3> +e® (1d (059 <, >>(VE<€2) ® 63)

= (id® (,)r)(dp(e1 @ &) @ e3),

as required. O

33 A Differential Graded Algebra and a Cochain Map

Next we look at a differential graded algebra D,,, satisfying Dy = D, and whose differ-
ential is defined in terms of a right connection on E. In the case when it is a bimodule
connection, we show that there is an extension of the x-algebra map v : B — D as a
cochain map v, : 2% — D,,. Throughout this section, we always assume the conditions of
Theorem 30.4, which we are regarding as the setup for a noncommutative neighbourhood
retract. Since we are only assuming a neighbourhood retract, we are not assuming that

we have a retract.

Proposition 33.1. Given the conditions of Theorem 30.4, plus a right connection Vg :
E — E ®4 QY with curvature Ry, then the graded B-bimodules D,, = E ®4 Q% ®4 E

have deriwation d : D,, — D, 1 given by
de@é@f)=Vele)Aé@f+evdia f+ (-1 le@envy(f), (71
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satisfying d* = Rp Nid ® id +id ® id A Rg. In the case Rg =0, (D,,,d) forms a cochain
complex, and if Vg is also metric-preserving then (D,,d) becomes a differential graded

algebra with wedge product N\ : Dy, @ Dy, — Dy given by
(e@e@)N(ERER)=ert(fe) AR . (72)

Proof. This differential was defined to satisfy the Leibniz rule, since it differentiates each
of the components in the tensor product with the appropriate sign, but we still need to
check it is well-defined over ®4, and to calculate d?, and calculate its interaction with
the wedge A.

(1) Firstly, we show this preserves the ® 4. On one hand

dlea®@E@ f) =Vglea) NéE@ f+ea®dE @ f+ (—1)lea @ € A VE(f)
=Ve(e)ané@f+rexdaNéE@ f+e®adé® [+ (—1)Ele® ag A VE(S)
= Vi) A(a§) @ f+e@d(ad) ® f+ (~1)le ® (a) A V(f)

=de®al® f).

But on the other hand

dle®t®af) =de®E® fa*) = Vi(e) NE® far + e®dE® far + (—1)Fle @ ¢ A Vg (far)
—Ve(e)Aéa®@ f+edéa® f+(—D)fle@é®aVy(f) + (—1)fle@enda® f

= Vi(e) A(€a) © f+e®d(€a) ® f + (=1)Fle ® (¢a) © V(f)

=d(e®&a® f).

These coincide, so the operation d is well-defined over the tensor product ® 4.

(2) Secondly, we calculate d*. Recall that we have Rr = (id ® d + Vg A id)Vg and
Ry = (d®id — id A V) V.

Hence by Figure 24 we have d> = Rp Aid ® id +id ® id A Rz. If Rg = 0, then Rz = 0
and d? = 0.

(3) Thirdly, we show that d(aAB) = daAB+(—1)YaAdB, where (eRERf)A(e/RERf) =
e®@&E(f, €)Y NE ® f'. Firstly we calculate d(a A 8) in Figure 25.

Then, we use metric preservation to calculate da A 8 + (—1)l*la A dB in Figure 26. We

can see that the two diagrams are equal. O
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Figure 24: Retracts: Calculation of d?

EQ”EE?

Figure 25: Retracts: Calculation of d(«a A )
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\:

QVE
)-HWL

Figure 26: Retracts: Calculation of da A 8+ (—=1)l*la A dB

Remark 33.2. We note that although D,, is a B-bimodule, it can also be regarded as a

D-bimodule. In future work, we would be interested in figuring out how to do this.

Next we look at a map of differential graded algebras, defined in terms of a bimodule
connection. Since we are only assuming a neighbourhood retract and not necessarily a

retract, the formulae from the previous section do not necessarily apply to this og.

Proposition 33.3. Under the conditions of Proposition 33.1 for D,, to be a differential
graded algebra, but now with Vg a zero curvature metric preserving extendable B-A
bimodule connection on E, we can extend the x-algebra map v : B — D, vy(b) = b.1p to

a map of differential graded algebras 7y, : U} — E @, Q% @4 E as

T(§) = (0 ®id)(w ® 1p). (73)
By a map of differential graded algebras, we mean it commutes with d and A.
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Proof. By the assumptions that E' is finitely generated projective and has G invertible,

there exists an element (,)™' € F ®,4 E, which satisfies

(ide ()(() " ®id) =idp = ((,) @id)(id® (,)7").

By these identities, we can see that (,)~' = 1p. In the following diagrams, we use the
notation (,)~! instead of 1p, and apologise to the reader for the confusing notation.
(1) Firstly in Figure 27 we show d% = Yni1d, using the fact that metric preservation

implies (Vg ® id +id ® V) = 0.

()t
+ OE

Il
I
@

N9B Yn+1

Figure 27: Retracts: Proof v is a cochain map.

(2) Secondly in Figure 28 we show 7, (w) A Vm (&) = Ynim(w A &), using the definition of

() ()"
oF — Aﬂ= A
A

Figure 28: Retracts: Proof v commutes with A

(,)~! and then extendability of op.
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When 7, is a map of differential graded algebras, then ker(~,) is a differential graded
algebra (and in fact when n = 0 a two-sided ideal), since if ,(§) = 0, then 7,,41(d§) =

dv,, (&) = d0 = 0, so d§ € ker(Yn41), and Ynym(E A D) = (&) A Ym(n) = 0 A ym(n) = 0.

Hence the following is a short exact sequence of cochain complexes and cochain maps.
0 — ker(y,) — Qf —“5 E@u Q@4 E —— 0

We could then look at the relative cohomology of this sequence, as defined in Chapter

4.6 of [10].

34 Retracts Examples

34.1 Conditional Expectations on CX

[Algebras: See Example 3.11 for CX and its calculi, for X a finite group]

Recall the following definition of a noncommutative conditional expectation.

Definition 34.1. [50] Let A and B be unital C*-algebras, with A C B. Then a linear

map E : B — A is called a conditional expectation if:
1. E(1p) = 14
2. E is an A-bimodule map
3. E is positive, meaning that if b > 0 then E(b) > 0.

Proposition 34.2. Suppose X is a finite group with a subgroup G, so CG C CX, a
conditional expectation is given by the linear extension E : CX — CG of the map defined

on X as

r ,x e
E(z) =

0 ,2¢d

Proof. (1) Firstly, as subgroups contain the identity element of the bigger group, we

have that E(e) = e.
(2) Secondly, for g € G, then x € G if and only if gx € G, so E(gz) = gE(z) and
E(zg) = E(x)g, making E a CG-bimodule map.
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(3) Finally, we show that E is positive. Write z; for the coset representatives of F' = X/G.
Because cosets are disjoint, we have x; ¢ Gz, so xiwj_l ¢ G, which means E(xza:j_l) =0.
Consequently we have an inner product (,)r : F ® F — G given by (z;,T;) = 6; je. We
also have an inner product (,)¢ : G ® G — G given by (g, h) = gh™".

Any element of CX can be written as a linear combination of terms gz;. Thus (gx;, h_arj> =

E(gxix;'h™') = gE(x;x; )bt = (2:,7;)r{g, h)c. But then (gz;,g7;) = gg* > 0. O

We can regard the algebra £ = CX as a CX-CG bimodule, with actions given by
multiplication. This is well-defined because G is a subgroup of X. The module F has
inner product (,)g : E ®cx E — CG given by (F,y) = E(x*y). Set ey = 1. This inner
product gives rise to the positive map ¢ : CX — CG as ¢(b) = (€g, beg) g = E(b).
Alternatively we can regard F' = CX as a CG-CX bimodule, with actions also given by
multiplication, and with inner product (,)r : F ®ce F — CX given by (Z,y)r = z*y.
Set fo = 1 € F. This inner product gives rise to a map ¢ : CG — CX via ¢(g) =
(fo,gfo)r = g € CX. We have ¢ o 1) = id, and hence a retract.

Proposition 34.3. The CX-CG bimodule E = CX 1is right finitely generated projective,
with dual basis 3~ €' ® e; and decomposition é = 3 e'.e;(€) for all é € E, where the e’ are
left coset represgntatz'ves of G in X, so UeiG = 3( The e; € E' = Homcg(CX, CG) are
defined by z

0, else

Proof. We can see the decomposition holds for all x € E because:

Z e'.ei(r) = e'(e") tr = .

i

]

Proposition 34.4. The bimodule map G : E — Homeg(CX,CG) given by G(e)(f) =

(€, f)g is an isomorphism, and in fact is G(e) = e;.

Proof. (1) Firstly we show that G is an isomorphism. An element f € Homcg(CX, CG)
is determined by f(e?) for all i, since f(e'g) = f(e')g. This corresponds to | X|/|G| x |G| =
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| X| elements, so both domain and codomain of G are dimension |X|. Thus to show G is
an isomorphism, we need only show it is injective. On a general element, we have
G(Z AT (y) = Z Ap ™1y,
ze€X iz~ lyeG
But each term of this is linearly independent, since if 27 'y = x5 'y then the invertibility

of group elements implies 1 = z3. Thus G( > A\,Z)(y) vanishes only when A, = 0 for
rzeX

all z € E, meaning that G is injective. (2) Next, we show that G(ef) = ¢;. We want to
find coefficients A, for which G(>_ \,T) = e;. Evaluating this on some y € X, and then
using the definition of e’ as coset representatives, we get
(e ly = Z Aoty = Z Aot My = Z Aoy
iz~ lyeG ey~ 1@ ree'G
Multiplying on the right by y~! and then applying the *-operation, we get for all y € X:
(e') = Z AT
z€etG

For this to be true, we require A\, = d, ., i.e. G(e') = e;. O

We therefore have an associative x-algebra D = CX ®c¢ CX with multiplication

(71 @ 7)) (22 @2) = 11E(1173) @ T2

and unit 1p = > €' ® ei. Since F is a tensor product of finite dimensional C*-algebras,

D should actually be a C*-algebra. There is a *-algebra map v : B — D given by
y(x) =z.1p = x. Zei ® €.
There is a unital positive map y : D — A given by

(e ® ) = (T, e1)p(E5, 1) = E(e). (E(es)) ™

which satisfies ¢ = y o~. Since D is a C*-algebra, 6 : A — D is a retract by y : D — A.
Thus not only is A a retract of B, but it is also a neighbourhood retract.

Next we look at calculi. Recall that Q}(CX) = CX.V for V a right representation of
CX with dz = x.((z) for a cocycle ¢ : X — V, ie. satisfying ((zy) = ((z) <y + ((y).
Further, Q'(CG) = CG.W for W C V the smallest right representation of G' containing
the image ((G).
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Proposition 34.5. In this example, a right connection Vg : E — FE Q@cg Q¢ given by

Vi(e) = > el @I% preserves the metric (,)p : E@cx E — CG given by (z,y) = E(z~'y)

J
when

0=T%+ (TY)". (74)

Proof. The metric preservation equation is

d{ei, ') g = (g, ekﬂ;ﬁC + (Ff;)*<e_’€, eV .

But (ed,e)y = E((e/)'e?) = d;4.¢, its differential is zero, and the metric preservation

equation becomes
0=T%+ (T%)
as required. N

A linear basis of D is given by e’g ® e/, so a general element of Ql, is given by
S dp(dg@eNAigy =Y (g’“ @ligoe+e@dg®e e @g(l) @ @)
1,95J 1,9,]
Taking the Christoffel symbols as zero and g = 1 gives d(>_ e’ ® ¢/) = 0, so Q}, is not

i?j
always connected.

34.2 Functions on Graphs

[Algebras: See Example 3.9 for C'(X) and its calculi

Take B = C* and A = C?, regarded as the functions on graphs of four and three disjoint
points respectively, so that A is a noncommutative submanifold of B. The multiplication
and star operations are elementwise on the vectors, and the units are the vectors with 1
in all entries.

There is a B-A bimodule £ = C* with actions and inner product (,)g : E®p E — A

given as follows.
D\ Ly (e AN 5 (b
T\ __ z _ T2 Y2 _ by
c [><y>_ cy | c <](y>_ cg 5 < z3 | Y3 >E_ *%yz* .
d z dz d z dz T4 m w
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Taking ey = <

b

> , the inner product gives rise to a completely positive map ¢ : C* — C?

given by ¢(b) = (eg, beg)g, which on a specific element is gb((lc’)) = (C_ﬁd > This is
d =

unital.

There is also an A-B bimodule F' = C* with mirrored actions from F and inner product
(Vp: F®4 F — B given as follows.

; i B), ((B) (B ) (A
_ _ 2 2 _
(g) > — ?zJ*c ) < ( > - cy | < 3 |y | Y3 >F - xgys .
zd dz T4 Y4 !
LpYa

Taking fy = < ), this inner product gives rise to a completely positive map ¢ : A — B

QLO TR
QLO TR
ne 8 e

=

a

given by ¥(a) = (fo, afo)r, which on a specific element is 1)( < Clé )) = ( b

c

) . This is unital.
Because ¢ o1 = id 4, we have a retract. In this example we also have that ¢ is an algebra
map. We note that while the metric (,)g is nondegenerate, F here is likely not finitely

generated projective due to the dimensions of the algebras.

35 Future Ideas and Discussion

Possible Example: Equator of Quantum Sphere

A neighbourhood retract is a weaker condition than a retract and means having a subspace
which gives a retract, and we had an idea for what a noncommutative version of this might
be. One example we would very much hope to be able to find a neighbourhood retract
for is the quantum circle C,[S?] in the quantum sphere C,[S?], as a ¢g-deformed version of
the equator being a neighbourhood retract of the sphere. This is a question the author
is particularly interested in, since in Section III the algebra C,[S'] turned out to not be

a submanifold of C,[S?] via our definition due to a lack of algebra maps.

Missing Definition: Deformation Retract

Deformation retract is a stronger notion than retract, and is defined as a homotopy
between the identity map and a retract. A literal interpretation of this in a noncommu-

tative setting would be a time-dependent map 1y : A — B which at t = 0 is a retract

155



Yo : A — B by some ¢ : B— A, and at time ¢ = 1 is the identity ¢; = idg : B — B.
This is of course nonsensical unless A was a subalgbera of B, which is more restrictive of
a condition than we would like, and so we currently have no satisfactory idea.

If we were able to define a deformation retract, we could investigate if it gives rise to a
notion of neighbourhood deformation retract, in the same way as retracts gave an idea

of neighbourhood retracts.

Is the Intermediate Algebra a Submanifold?

Another question we might ask is whether the surjective x-algebra map v : B — D,
v(b) = b.1p ever gives a co-embedding in the sense of Chapter III, and if so, what
submanifold calculus does D inherit from Q%7 The first step would be to understand the
kernel of ~, which is determined by the kernel of the left action on E. It seems like a
reasonable thing to hope that D might be a noncommutative submanifold of B under a
nice enough set of conditions, in the same way that the tropics are a submanifold of the

sphere.
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Part VI
First Ideas Towards

Noncommutative Differential

Cofibrations

Abstract

We look at how Quillen’s definition of cofibration might be interpreted in a noncommu-
tative differential context. We use methods of noncommutative geodesics to solve a state
path lifting problem and show for a number of examples that the natural idea of trivial
cofibration satisfies this definition. We also speculate how this might relate to existing
theory of noncommutative fibre bundles.

36 Introduction

An open question in noncommutative differential geometry, as posed at the end of [10)]
Chapter 4.6, is whether there is a good notion of differential cofibration. In combina-
tion with appropriate definitions of noncommutative fibrations and weak equivalences,
the hope is that this would form a model category, allowing us to do noncommutative
homotopy theory. To answer this question in full would go far beyond the scope of this
PhD project, but we investigate a first few ideas in this direction, with a focus on trivial
cofibrations. We note that there has also been recent work via other noncommutative
differential approaches to construct analogues of homotopy groups, such as via recon-
struction results in [53].

There is already a notion of a noncommutative fibre bundle as in [11], which we generalised
from algebra maps to completely positive maps in Section IV of this thesis, although here
in this very early stage of investigation into cofibrations we only consider the algebra
maps version. However, this definition of a fibre bundle was defined to give rise to a
Leray-Serre spectral sequence for cohomology, and so it would not be surprising if we
needed additional assumptions to make it satisfy more fibration-like properties.

A cofibration is defined as a map satisfying a homotopy extension property. Daniel
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Quillen [19] generalised this to more general categories, saying that a diagonal map h
exists to make the following diagram commute when ¢ is a cofibration and ¢ is a fibration
making the outside of the diagram commute, plus the condition that one of § or ¢ is a

weak equivalence.
X —

E

5 hj lL

Y —> B
However, this diagram gives an equivalent definition of cofibrations in terms of fibrations
and vice versa, so for example d is a cofibration if and only if for every fibration ¢ making
the outside of the diagram commute and is also a weak equivalence there is a diagonal
map h which commutes with the diagram. Likewise, ¢ is a fibration if and only if for
every trivial cofibration J making the outside of the diagram commute and is also a weak

equivalence there is an h making the diagram commute.

Re-phrasing Quillen’s definition in terms of algebras, where the arrows go the other way

around, gives the following.

Definition 36.1. In a category of algebras with morphisms maps between them (which
are at the very least linear), and with certain maps designated as fibrations and cofibra-
tions and weak equivalences, then for algebras A, B, X, Y, we call a morphism § : ¥ — X
a cofibration if whenever ¢ : B — A is a fibration which is a weak equivalence there always
exists a morphism A that makes all diagrams of the following form commute.

X +— A
ho .

-

Y «—— B
Unlike in topology where we can easily find continuous maps between spaces, their non-
commutative equivalent of algebra maps between algebras are not so readily available.
Consequently, in our noncommutative differentiable context we look at differentiable com-
pletely positive maps. For the time being we restrict to looking at the case where the
fibration ¢ is a differentiable injective algebra map. Under this set of assumptions, we
see that given an ¢ satisfying these conditions and making the diagram commute (in the
case of a trivial cofibration), it is actually possible to recover certain properties of the
differential fibre bundles defined in [11], which were designed to give Leray-Serre spectral

sequences.
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In future work we could consider more generally Quillen’s definition with ¢ a differentiable
injective completely positive map, in which case we might hope for links to our bimodule

definition of fibre bundles in Section IV.

37 Trivial Cofibrations

A particularly tractable class of examples is given by maps corresponding to classical

cofibrations.

Definition 37.1. ([13] Definition 1.2) A continuous function X — Y between topological
spaces is a classical Serre fibration if for every commuting square of the following form

there exists for each n an h : D™ x I — X to make the diagram commute.

D" — X

w1

DtPx] —— Y

Note that D™ denotes the closed n-disk.

The map (id, 0) in the above diagram gives the simplest example of a cofibration. In our
noncommutative case, we take this differential cofibration to be dy, the evaluation map

at t = 0 in the following diagram.

“—
ho A

D
(50T )\ h L
C> (R) & D S B
Under a certain assumption on « the problem has the following particularly nice solution.

Proposition 37.2. Suppose that ¢ is a differential fibration and that o and hg are com-

pletely positive maps such that the outside of the following diagram commutes.

D AEve— A

COO(R)®D <T B

If we make the extra assumption that there are by € B for t € R such that o (b) =
ap(bbby), then the dotted line hy(a) = ho(c(by)ac(by)*) makes the diagram commute.
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Proof. The fact that §dooh = hg holds trivially, while we see that hot = « by substituting
a = 1(b) into the formula for h;(a). O

However, this is too restrictive of a case, since in general we cannot assume « to be of
this form. For example when D = C, the KSGNS construction says that for C*-algebras
A and B, completely positive maps « : B — C°(R) ® C are each given by a C*(R)-B
Hilbert C*-bimodule E and an element e € E by «a(b) = (eb,€)g.

From here onwards, we consider only the toy example of D = C, which corresponds
to the DY diagram in the classical definition of Serre fibrations. We call this the state
path lifting problem for a fibration, since we are lifting time-dependent states. States
correspond to points (or convex combinations thereof) in classical geometry, and so time-
dependent states correspond to paths. Although the problem we solve is relatively small,
lifting paths is a necessary first step towards lifting homotopies, and we hope that this

can give some insight into the more general problem.

38 Classical Interpretation

In the classical lifting problem for a fibre bundle 7 : M — N, we start with a path p(¢) in
the base space N and a starting point ¢(0) in the total space M with wq(0) = p(0), and
we want to extend p(t) to a path ¢(¢) in the total space satisfying mq(t) = p(t). In our
differentiable context, we assume that p(t) = X; for a time-dependent vector field X; on
the base space. We ask for this condition because we want the path to be differentiable,
with its velocity vector described by a vector field. Similarly, we would like to define ¢(t)
as a time-dependent vector field Y; on the total space, satisfying a condition corresponding
to m(q(t)) = p(t). We look now at this vector field lifting problem.

The idea of a connection of functions on the total space as a module over functions on the
base space gives a way to lift vector fields, as we show in the noncommutative context,

but it is possible to see classically too why this makes sense. A vector field X gives

af
X1

a directional derivative of a function as D, f(z) = X* Suppose the locally-defined

vector fields s2- on the base space extend to Y; on the total space. Then we define

oxt
axt
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for functions f on the base space. Further, if f = g o 7w for some function g on the base

space, then:

Vxia (gom) = (Dag)om,

ax?
as the Y; extend 32;. In particular Vx1 = 0. Recall that Vye = (ev ® id)(X ® Ve).

We next look at the noncommutative version.

39 Geodesics Preliminaries

The following definitions and propositions are from [(], and are key to constructing h in

the case D = C. Note that the calculus on A is arbitrary.

Definition 39.1. ([0] Example 4.3) Define the following inner product on M = C*°(R)®
A:

(f(t) ®a,g(t) @b = f(t)g(t)"(a,b)r € C*(R)
where (,)r is a fixed (time independent) inner product on A.

Proposition 39.2. (/0] Proposition 5.1) For a unital algebra A with calculus Q4 and
C*®(R) with its usual calculus Q(R) we set M = C°(R) ® A regarded as a C*(R)-A

bimodule. Then a general left bimodule connection on M is of the form, forc € C*(R)®A
and & € QY

dc

Vu(e) =dt ® (be+ 5

+ K(dc)), ou(l®E) =dt ® K(§) (75)
for some b e C*(R)® A and K € C*(R) @ X%.

In our case we take the vector field as time-independent.

Proposition 39.3. (/0] Proposition 6.4) This connection on M = C*(R) ® A preserves
the inner product on M if for all a € A and & € QY the following equation holds:

((ba + K(da) +ab"),1) = 0 = (K(£") — K(§)". 1)
The first condition is called the divergence condition, and the second the reality condition.
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Proposition 39.4. (/6] Proposition 6.5) If ¥V preserves the inner product as defined
above, and if Vyr(m) = 0 then the positive map ¢(a) = (ma,m) satisfies

dt.%¢(a) =([1d® (,))(opn ®id)(m ® da @ ™).

In particular $¢(1) =0, so if we begin at t = 0 with a state on A (normalised to be 1 at

1 € A) then we have a state for all time.

In summary, the paper [0] says that metric preserving left connections on M = C*(R)® A
can be described in terms of vector fields, and for each zero m of such an equation we
get a differential equation for time-dependent states on A.

The paper goes further and characterises in terms of time-dependent vector fields when
these time-dependent states satisfy an equation of geodesic motion W (o)) = 0, but in
our context we consider the more general case where their time evolution doesn’t have to

be geodesic.

40 State Path Lifting Problem for a Fibration

In order to construct the diagonal map h required for compatibility with cofibrations, we
propose that the definition of a differential fibration should include the additional data
of a certain extendable bimodule connection on the total space as a module over the base
space. In the following, we construct a projection on the calculi, and a lifting of vector
fields from the base space to the total space. The following proposition gives a lifting of

a vector field from the base space to the total space.

Proposition 40.1. Suppose we have a differentiable injective algebra map i : B — A
and a left bimodule connection Va : ;A — QL @p ;A satisfying the property V(1) = 0.
If X € X is a right vector field on B, then there is a right vector field on A which we
denote Y : QY — A, specified by

ev(Y ®€) = (ev®id)(X ® 04(1 ® §)) (76)

for any & € QY. The vector field Y is a lifting of X, in the sense that it makes the
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following diagram commute.

QL Y A

1T

0L ——~ B
Proof. (1) Firstly we show that Y is a right module map. But since o4 is a bimodule

map,
ev(Y ®€.a)=(ev®id)(X ®oa(l®&.a)) = (v ®1d)(X @ oa(l®E)).a=ev(Y ®&).a

for alla € A and £ € Q.

(2) Next we show that the diagram commutes. We calculate

ev(Y @u(n) =(ev @id)(X @ o4(1®@(n))) = (v @id) (X @n®1l)=ev(X @n)>1
= 1(ev(X ®@n))

But since evaluation is a bimodule map, having ev(Y ® (1)) = t(ev(X ® 1)) implies the

diagram commutes. O]

Supposing we have a connection on C*°(R) ® B, then the above result on geodesics gives
a right vector field X on B. Because we have a fibration ¢, this lifts to a right vector field
Y on A, and thus a connection on C*(R) ® A given by

Vle) = dt ® (i(b)e + % LYAC),  on(1®€) =dteY(€) (77)

For h to be a differentiable positive map, we want it to come from the zeroes of this
connection.

Also, these connections are classified by the following.

Theorem 40.2. Suppose i : B — A is a differentiable injective algebra map. This gives
a B-A bimodule ;A with left action b.a = i(b)a and right action a.a’ = aa’. Then:

(1) The following two statements are equivalent.
i) There is a left bimodule connection V 4 : ;A — QL @5 ;A with V4(1) = 0.
B

(ii) There is a B-A bimodule map o4(10—) : ;QY — QL ®p; A with 04(1Qi(£).a) = £Ra
for all £ € Q% and a € A.
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(2) If the statements from part (1) are true, the B-A bimodule map P = (i.id)oa(1®—) :

QL — QL is a projection with image i(Q%).A.

Proof. (1.(i) = (ii)) Firstly, we show that (i) implies (ii). Suppose we have a left
bimodule connection V4 : ;A — Q}B ®p ;A with the property V(1) = 0. For any a € A
and b € B, we have V4(b.a) = b.V4(a) + db ® a. If we choose @ = 1 then we can use
the fact that b.a = i(b)a to get V4(i(b)) = db® 1. It is clear from the definition that
04(1®—) is a B-A bimodule map, so we just need show the last property. For all b,0’ € B
and £ € Qf we have o4(1 ®i('db)) = o4(1 @ i(b)i(db)) = boa(l ®i(db)) = bdb® 1.
This shows for all @ € A and £ € Q}; the desired property that o4(1 ®i(£).a) = £ ® a.
(1.(i) <= (ii)) Secondly, we show that (ii) implies (i). Suppose we have a B-A bimodule
map o4(1® —) : Q4 — QL ®p ;A with o4(1®i(£).a) =& ®a for all £ € QL and a € A.
Define a map V4 : ;A — Q5 ®p ;A by Va(a) = 04(1 ®da). Because d1 = 0 this satisfies
V(1) = 0. We need to show that V4 is a left connection, meaning we need to prove that
Va(b.a) =db® a+ b.V4(a). This follows as V4(b.a) = Va(i(b)a) = c4(1 ® d(i(b)a)) =
ga(l®d(i(b)).a) + ca(l ®i(b).da) = oa(l ® i(b)).a + b.o(l ®@da) = db® a + b.Va(a).
Note that here we have used injectivity of i to get o4(1 ® i(b).da) = b.o(1 ® da).

(2) Firstly, observe that the left hand side of the B-A bimodule map o4 : ;A ®4 QY4 —
QL ®p;A is isomorphic to ;Y. Since V(1) = 0, we have o4(1®da) = V 4(a). Therefore,
for all b € B,

P(i(db)) = P(d(i(b))) = (i4d)V 4(i(b)) = (1.id)V4(b<1) = (i.id)(db ® 1) = i(db).

But since P is a right A-module map, it follows that P(i(db).a) = i(db).a for all b € B,
a € A. Hence P = P? so P is a projection. O

Given these results, it might make sense to include the existence of such a connection (or
perhaps some other condition implying its existence) as part of the data of a noncommu-

tative fibration.

41 How Does This Relate to Fibre Bundles?

The algebra maps definition of a fibre bundle, designed to give a Leray-Serre spectral

sequence for cohomology, is the following.
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Definition 41.1. ([14] Definition 4.1) For a differential graded algebra map ¢ : B — A,

the forms of degree p on the base and degree ¢ on the fibre are denoted
QL A Qf
Npq = %7
U5 N QY
and ¢ is called a differential fibre bundle if the maps g : Q5 @ No g — Ny, 1.€.
9 L8 A QY
B o1 -1 7 T optt q—1
g Ny S5 AN QY

given by £ ® [n] — [¢(§) A n] are isomorphisms for all p, g > 0.

Np70 = LQ% ®A A,

g: M ®

In the previous section, we only assumed that ¢ is a differentiable injective algebra map,
and not necessarily a fibre bundle. But the projection P had image i(Q%).A, and therefore
its kernel can be identified with the quotient QY /i(€2%).A, which we observe appears in
the theory of noncommutative fibre bundles as the 1-forms in the fibre only.

A question we can therefore pose: Given an ¢ and V 4 making Quillen’s diagram commute,
can we equip A with higher calculi such that g becomes an isomorphism? This would
make ¢ a noncommutative fibre bundle.

Answering this question would likely use the following definition:

Definition 41.2. If . : B — A is a differentiable injective algebra map, then define:
S0
QL) AQY

We end this section with a guess as to what might be a possible definition of ¢ being a

K°=,A, K'= kerP, K'= Vn > 2.

weak equivalence in the case where it gives a noncommutative fibre bundle.

We could call a differential fibre bundle + : B — A a weak equivalence if the fibre has
cohomology HY(N) = 0,0C, where the cochain complex N has ¢th entry Ny, and the
differential is a quotient of the ordinary differential. In this case, the second page of the
Leray-Serre Spectral sequence has only one non-vanishing row, with entry (p,0) given by

HP(B,C). This sequence is already stabilised, and so H?(B,C) = HP(A, E,VEg).

42 Examples

In this section we give examples of fibrations where the lifting problem implies the exis-
tence of a diagonal map h, and for some of them we solve the differential equation for h

explicitly.
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42.1 Example: Group Algebras

[Algebras: See Example 3.11 for CG and its calculi]

Take A = CX and B = CG for a subgroup G C X. Equip CX with left covariant calculus
Oty = Afy.CX for a right representation Agy spanned by a linear map w: CX — Aly
satisfying w(zy) = w(z) <y + w(y) for z,y € X called a cocycle. The differential is
dz = zw(z). Similarly equip CG with QL. = A{,.CG for Al the vector space spanned
by the restriction w|¢-

Take i : CG — CX to be the inclusion map. We want to explicitly find a bimodule map
oa(1®—): 04 = QL ®p ;A satisfying 04(1®i*(£).a) = E®a for all £ € AL and a € A.
For x,y € X, define

drey, ifred
oa(l®@dzy) = :

0, else
Then c4(1 ® i*(§).x) = E @z for all £ € QL and € X as required. This gives a left
bimodule connection Vex : ;CX — Qb ®cg iCX with Vex (1) = 0.
Seeing as Qg C Oy, it follows that XE, € Xy, and so the lifting of a vector field is

simply its inclusion.

Example 42.1. We give an example of a choice of hy, @ and h to fill in the commutative
diagram, in order to illustrate what kind of maps go there. We note that this of course

does not constitute a proof, and is just an illustration.

This could have maps

0, ifz#e 0, ifg#e 0, ifzx#e
hl(x) = ) at<g) = ) ht(x) =
1, ifz=e t, ifg=e t, ifx=e
and where §; means evaluation at 1. o

Remark 42.2. One interesting thing about this example is that there is a conditional

expectation E : CX — CG — the one from Section 34.1. If we had hy = oy o E (which it
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isn’t obvious we do), then we could construct the diagonal map as hy = oy o E. This is a
different method to our more general connection-based one, but it relies on a non-trivial

assumption so it isn’t clear how general it 1s.

42.2 Example: Heisenberg Group and Quantum Circle

[Algebras: See Example 3.13 for CHg and its calculus, and Example 3.2 for C,[S'] and
its calculus]

The following is another example of group algebras, except here the fibration isn’t just
the inclusion map.

Take A = CHg and B = C,[S'] = C[t,t7'], i.e. we equip the quantum circle with its
classical calculus so 1-forms commute with algebra elements, then there is a differential

graded algebra map
v: C[t,t™'] — CHy, (t) = w, L (dt) = we”
which is a differential fibre bundle. (See [10] Example 4.67)

Proposition 42.3. There is a left bimodule connection on QY (CHg) specified by the
Clt,t7']-CHg bimodule map oa(1 ® —) : Q' (CHg) — Q'(C[t,t7']) ®cps-1) CHg given

by

tldt®l, ifr=w
O'A(l X ex) =
0, if v € {u,v}

which satisfies c4(1 ® 1*(€).a) =@ a for all € € QY(C[t,t71]), a € CHg.
Proof. (1) Firstly we show that o4 is well-defined. The first thing to check is:
u u 1 w
oa(l®e")v =041 ®@v(e" + 3¢ )

But since v is not in the image of + so it cannot move across the tensor product, so it

doesn’t introduce any problems. The second thing to check is:
v v 1 w
ca(l®e)u =041 ® u(e’ — ¢ )
But again, u is not in the image of ¢ so it cannot move across the tensor product.
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(2) Secondly, we show the connection o4 satisfies the required property. A general
element of the calculus Q'(C[t,t7!]) takes the form dt.f(¢) for f some polynomial in
t. Then using that ¢ is a differential graded algebra map and o4 a bimodule map, we

calculate:
oA(l®@ . (dt.f(t)) = oa(l @we”) f(w) =dt ® f(w) =dt.f(t) ®1
as required. O]

Proposition 42.4. A general right vector field X on C[t,t7'] takes the form X =
f(t)(it%) and is real if f is real. It lifts to a right vector field Y on CHg given by

Y = f(w)(iey) : Q' (CHg) — CHg. (78)
If X s real then Y s real, with respect to the Haar measure

/qu:(CHg—)(C, d(g) = dg.e.

Proof. (1) Taking t = €, we have 2 = 2L2 = jt2 A general vector field is of the
form f(t).%, and hence of the form f(t)(itZ) and is real if f is real.

(2) We show the formula for the lifted vector field. The general formula is ev(Y ® §) =
(ev®@id)(X ®oa(1®E)). Since a general vector field on C[t,¢~'] is of the form f(t)(iZ2),

we have
ev(X ®@dt) =itf(t),
and so, looking at the one invariant 1-form e that o4 does not send to zero, we calculate:
ev(Y ®e") = (ev ®id)(X ® 04(1 ® €")) = Spulev @id) (¢ dt) = 6 ptev(X @ t1d2)
) = if(w), ifx=w |
0, if x € {u,v}

This is equivalent to Y = f(w)(iey).
(3) Next we show that if the vector field X on C[t,¢7!] is real then its lift Y to CHg is
real. A general X is of the form f(t)(— it%), and is real if and only if f is a real function

on the circle, i.e. if f(t) = f(t)*. Expanding f(t) = Y fit*, we calculate
k
FO =2 f@) =3 fir ™
k k
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Hence f(t) = f(t)* if and only if fr = f*,.
We calculate the differential on an element of Hg as:

d(w"u™vP) = (ne® + me" + pe’ <u”")w"umv? = (ne” + me" + p(e” + %e“’))w”umv”.
The evaluation of the lifted vector field Y on this is then:

Y(d(w"u™vP)) = if(w)(n + p%)w"umv” =if(w)(n+ %mp)w”umvp

The Haar measure ¢ : CHg — C is given by ¢(g) = dy.e.

Using the expansion f(w) = > frw” for some f;, € C, we calculate:
k

oY (d(w"u™vP)) = inf_p,0m 00p0

Since (w"u™vP)* = v PuT"w ™", we get

/Y(f*) = oY (d(vPu™"w ™)) = —inf_p,6_m0d_po,

while on the other hand we have

( / Y(g))* _ (m f_ncsmpap,())* = —inft Smodo-

For reality of Y we need these to coincide, i.e. that f, = f* , which is precisely the

n’

condition for X to be real. O

Proposition 42.5. The zeroes of the connection V(e) = é + K(de) + be on the bimodule

corresponding to the diagonal map satisfy
i L.
é= —Edle.e —ev(Y ®de).

where

divy = iw%. (79)

By the KSGNS construction this gives the following positive map across the diagonal:
h:A— C®C>®R), h(a)(t) = (e(t), ae(t)). (80)

We can further describe this as e = ) s(w,t)u™v?, where

n,m,p
: 1. of . ds 1
§=—glwe s —1 (w)(% + §mps).
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Proof. (1) First we calculate the divergence of Y. This is defined by the equation

/ (divY.a) + / Y(da) =0

which is equivalent to the following equation holding for all n, m, p:

¢(divY.w"u™v) = ig(f(w)(n + %mp)w"umvp))

If m and p are not both equal to zero then the right hand side vanishes, in which case

for all p,q, the divergence divY must be the product of a function of w with u="v7?,
which is a contradiction. Hence the divergence must be purely a function of w, and so

divY = >~ g;w’ for coefficients g; € C. Next, we set m = p = 0 to get the equation

/(divY.w") = —m/(f(w)w")
which implies g_,, = —inf_,, or equivalently ¢, = inf,. But this is equivalent to

divy = iwﬁ.

ow

(2) Next we look at the differential equation. First we expand:
e= Z Enmp(t)w"u" VP
n,m,p
If we fix m and p, we get e = s(w, t)u™vP. We can solve the equation for each of these and

then add them together to get the general solution. Hence we get a differential equation

for s:
. 1.
su™oP = —§d1VYsumvp — Y (d(su™")).

Using the Leibniz rule and the fact that ue* = e“.u and ve’ = e".v, and also that

e’ <u™ = e’ + Fev, we calculate

d(su™v?) = ds.u™v? + mse"u"vP + psu™e’v?
= ds.u™v? + me“su™vP + p(e’ <u™™)su™vP

= (ds.u™v” 4+ me"su™vP + p(e” + %ew)s)umv”

Also, expanding s = Y s;(t)w, we have ds = Y je“s;(t)w, so ev(2 ® ds) = wge.

J J
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Hence the differential equation becomes

1 1
su™oP = —5(—iwﬁ)sumv” - iw_lf(w).ev(i ® (ds + §mpews))umvp

ow ow
Simplifying and applying the calculations above, we get:

: 1. of . ds 1
§=—giwzs —1i (w)(%—l—§mps)

If we expand this into powers of w, we can compare the coefficients to get a first order
linear differential equation involving s;(¢) and s;41(¢). The solutions of the general case

don’t look to be nice, but perhaps there might be an existence result. O

42.3 Example: Functions on S3

[Algebras: See Example 3.10 for C'(G) and its calculi]
Let G be a normal subgroup of a finite group X, so the quotient X/G is a group. The
algebra CX has left covariant calculus Q!(X) = C(X).AY, where the vector space A}, of

left-invariant 1-forms has basis elements e, for a € C C X\{e} satisfying

€o-f = Ra(flea,  df = (Ra(f) = fea,

aeC

where R,(f)(z) = f(za). This implies €,.0, = 044-1.€,. The calculus is inner by 0 = )" e,,
and is a star-calculus by e} = —e,—1 if C has inverses. '
The projection p : X — X/G is a homomorphism and induces an algebra map

i:C(X/G) = C(X), b, Y b

z€Xp(r)=y

This is our candidate for a fibration. Now we look at a specific example. The only non-
trivial normal subgroup of X = Sj is the alternating group G = Az = {e, (123), (132)}.
The quotient i—i is isomorphic to Cs, the algebra with a single generator x.
Equip A = C(S;) with calculus given by C = {(12),(123),(132)}. The set C is closed

under inverses, so Q(S3) is a *-calculus with:

6?12) = —€12), e>(k123) = —€(132), 6632) = —€(123)-
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For the higher calculi on C(S3), we quotient by the relations e12) Ae2) = 0 and 0A 0 = 0.
The latter of these relations is equivalent to having for all y € S5,
Z eq N\ ep = 0.
a,beC:ab=y

Written out in full, the six relations are:

0= equz N ez, 0 = equs2) N ease), 0 = eq23) N e@23)
0 =equa) A eq23) + €as2) A €2, 0 = e(123) N e12) + €12) N €132)

0 = eq23) A €(132) + €(132) N €(123)

In a general monomial element, without loss of generality we can slide all e(15) terms to
the right of all other terms. Since e(123) and e(132) anticommute, we can put all e(32)
terms to the right of all e(123) terms. But since every type of term squares to zero, we are
left with the conclusion that every nonzero element of 3(S3) is equal to a scalar multiple
of e(123) A e132) A e(12), and that all higher calculi are zero. The calculus 02(Ss3) is then
spanned by the three elements e(123) A €(132) and e(123) A €(12) and e(132) A €(12).

For the algebra B = C(Cy), we equip it with calculus determined by the set D = {z},
which is closed under inverses, making ©(C5) a *-calculus with e} = —e,. For the higher
calculi, we impose the relation # A 6 = 0, which means e, A e, = 0, and so for all n > 2

we have Q"(Cy) = 0.
Proposition 42.6. The algebra map

O +> 0+ 0 +9
i C(Cy) = C(S), () i (81)
0 =+ O(12) + O(23) + 931

which extends to the above calculi as a differential graded algebra map
i QM) — QN(Ss), €z > €(12) (82)
1s a differential fibration.

Proof. We look at the following quotient

N i(Ca) AQ1(Sy)
P4 G001(Cy) A 291 S)
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In the case p = 0 we see that ¢ is an isomorphism:

Q9(S3) Q9(S3)
— .
6(12) A\ qul(S;),) 6(12) A qul(Sg)

C(Cy) Qc(Cy)

Next, in the case p = 1, we can see that ¢ is an isomorphism.

€r @ 21(S)
z C(C3) e12) /\qu1(53)

— 6(12) A Qq(S'g,)

The Haar measure on C'(S3) is given by:

¢:C(S3) — C, dg —

[N

Proposition 42.7. With the above calculi, there is precisely one left bimodule connection

on ;C(Ss) satisfying Va(l) =0 and o04(1 ®i*(€)) =& ® 1, and it is given by:

@ f, ifa=(12
oca(l®e,.f) = e ®f Ha={12) (83)

0, if a € {(123), (132)}
for f € C(Ss).

Proof. We show uniqueness of the bimodule connection. The fact that o4(1® 6(12)) = e,
is automatic from the condition, but the values of o4(1 ® e(123)) and o4(1 ® e(132)) are

non-trivial to calculate. Denote:

oA(1 ® e23)) = €xfr23) ® 1

oa(l® 6(132)) = ez f132) ® 1

Then the fact that o is a bimodule map implies that for 6 € {e,z} and a € {(12), (123), (132)}
that

590A(1 X €a) = JA(l X ea)Ra—1(i((59))
which gives the following equations:

ez fr123) @ 1 = ey f123) ® R123)-1(i(0e))

0zeaf123) ® 1 = €5 fr123) @ Raaz)-—1(i(0z))
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de€zf132) ® 1 = eg f132) ® R132)-1(i(6e))

dpeefze) ® 1 = e, f132) @ R(132)*1(i(5x))

The first of these equations gives, using the fact that dg.e, = €,.0¢q,

ex0zf(123) ® 1 = e, f123) ® Riaaz)-1(0e + d123) + 6(132)) = €xf123) ® (de + d(123) + d(132))
= ez f123) ®1(6e) = €xf123)0e ® 1.

This implies

0z f123) = fr123)0c

Since these are functions, the equality has to hold when evaluated at the points e and .

Consequently f23)(e) =0 and fros)(z) =0, so f123) = 0.
Similarly, the third equation gives:

€20z f(132) ® 1 = €4 f132)0e @ 1.
This gives

0z f(132) = f132)0e,

which for the same reasons as above implies f(132) = 0, as required. The other two

equations simply reduce to 0 = 0. O

Proposition 42.8. A general right vector field X = X'e® = (el + p120z)e” on C(Ss)
lifts to a right vector field

X iX(ey), ifa=(12)
Y QUSs) = OSy),  en(Y @ey) = (84)
0, if a € {(123), (132)}

If X satisfies the reality condition

| xe)= [ xer

where [, = [, o1, then'Y satisfies the reality condition:

JRGEYRGE
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If integration [ is taken to be the Haar measure

6:0(S) = C,  6(3,) = é

the divergence divY of the vector field Y, defined by

/ (divY.a) + / Y (da) =0,
18 given by divY = 0.

Proof. (1) Firstly we show the reality condition. If we take the reality condition on X,
then use the definition of [, = [, oi and the formula for Y, then the fact that i is a
star-algebra map implies the reality condition for Y.

(2) Next, we calculate the divergence. For general f € C'(S3) we have
df = ealf = Roi(f)),
aeC

which expanding f = > A0, gives

ye€S3

df =N D ealdy — dya)

y€eS3 acC

A general right vector field on C'(Cs) is given by X = X%e” for some X* € C'(Cy), where
e” is the dual of e,. Using that Y is a right module map and that ev(Y ®e,) = 0q,(12)i(X™)

we have:

ev(Y @ df) = i(X").(f = Ras(f) = i(X"). Y A0y = b,.0)

yES3

Hence for the Haar measure ¢ : C(S3) — C given by ¢(6,) = ¢ for all y, we have

SN = Y A~ ) =0

YES3

Consequently, for all a € C(S;3), the definition of divergence gives:
¢(divY.a) = 0.

It follows from this that divY = 0. OJ
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Proposition 42.9. For b = 1divY, the zeroes of the connection V(e) = éK (de) + be on

the bimodule corresponding to the diagonal map satisfy
. 1.
é= —§d1VY.e — Y (de), (85)

which has solution

e(t) = > (A, + Bye2tetrltys, (86)

yES3

fory € Ss, and constants Ay, By, e, ptz € C satisfying Ay, = Ay 12y and By = —B,, (19).

Via the KSGNS construction, this gives positive maps across the diagonal h(a) = (€, ae).

Proof. We solve the differential equation for zeroes of V.
—é =Y (de).

Expanding —e(t) = > A,(t)d,, the differential equation becomes:

y€ESs
Z }‘y<t>5y = i(X7). Z Ay(£)(0y — dy.12))
yES3 y€ESs

We can expand X* = p.d, + .0, for some constants p., p, € C, giving

i(X") = pe(de + 0123) + 0(132)) + 1 (012) + O23) + I31))-

Hence the differential the equation becomes:

Z }‘y<t)(5y = Z Ay(t) (Uedy - ,U:r:(sy.(12)) + Z Ay(t) (Hwéy - M€5y~(12))

YyES3 y€{e,(123),(132)} y€{(12),(23),(31)}

= 3 (MO8, — 12y 1) + A1) () 1128y 1) — 1) )
IGC(S;;)

= > (B = Az (D) (1eby — 1120,.12)))

y€C(S3)

_ Z (e + ) (A () = Ay.(12)(2))dy

y€C(Ss)

Since the functions ¢, are linearly independent, comparing their coefficients gives the

following differential equation in ¢:

}‘y(t) = (,ue + Mr)()‘y(t) - )‘y.(12) (t))
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Replacing y with 3.(12) in this gives

Ay.12)(t) = (e + p12) (Ay.i2) (B) — Ay (1)),

and hence

Thus \y(t) + Ay.12)(t) = Cy, for some constant C, and for all ¢. Substituting into the

original equation and re-arranging, we get

}‘y<t) - 2(:“6 + ﬂz))‘y<t) = _<,ue + Mm)Cy'

Multiplying both sides by e~2(tet#2)t and using the Leibniz rule, the equation becomes

0

S (72N () = = (e + pa)e A,

Integrating and re-arranging gives the solution
1 —2(petpa)t
)\y(t) = §Cy + Bye s
SO

—e(t) = Z (A, + Bye 2etmltys,
yES3
for constants A,, B, € C satisfying A, = A, 12) and B, = —B, 12). We note that due
to these relations, although it appears there are 12 constants, there are actually only 6,

which is the same number as the number of elements of S3. Lastly we absorb the minus

sign into the constants to get the result in the proposition. O]

42.4 Example: C,[SU,] and C,[S? (Using Hopf Fibration)

[Algebras: See Example 3.5 for C,[SUs] and its 3D calculus, and Example 3.6 for C,[S?
and its calculus]

There is a Haar measure on [ : C,[SU,] — C given on elements of the form (bc)" as

n (=17
/ o = 1=
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and zero on all basis elements not of this form. Here the square brackets denote ¢-integers,

defined as

The Haar measure on C,[SU,] restricts to C,[S?] as

The inclusion map i : C,[S?] — C,[SUs] is a differential fibration called the Hopf fibration,
and it extends to the calculi. (See [10] Example 4.68)

Proposition 42.10. The C,[S?]-C,[SUs] bimodule map o4(18—) : Q¢ (51, = D, 52, (57
:C,[SU,) for alln € A}Cq[sg] defined by

n®l, ifln=0
ca(l®n) = :

0, else
satisfies o4(1 ®i*(£).a) =& ®a for all & € Q%:q[sﬂ and a € C,[SU,).

Proof. We see that the bimodule map o4 satisfies the condition, because |i*(£)| = 0 and

04(1 ® —) is a bimodule map. O

43 Future Ideas and Discussion

These are just the first few ideas in the direction of differential cofibrations. Our focus here
has been primarily on the vector fields specifying the a; rather than the maps themselves.
In order to replace C in the diagram, we would need to generalise the geodesics methods
that describe connections in terms of vector fields.

Moreover, it is not even clear at this stage what the right category in which to look at
the problem is. We might also look at how much can still be done if ¢ is no longer an
injective algebra map but an injective completely positive map, and whether this relates
to our notion of fibre bundle in Part IV. We could even consider a category of algebras
whose morphisms are Hilbert C* bimodules with connections.

Also, the state path lifting problem we solved may have applications aside from the study

of cofibrations. For example, we found a formula for lifting paths, but we might investigate
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the question of under what conditions noncommutative geodesics lift to noncommutative
geodesics, i.e. whether if the initial connection satisfying W (og) = 0 implies that the

lifted connection also satisfies this.
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