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Abstract

As a material second only to liquids in nature, granular materials are widely used in hy-

draulic structures, roads, bridges etc. Dam-building granular materials are complex systems

of pore structures and continuously graded rock particles. An accurate description of their

mechanical properties is essential for the safety analysis of ultra-high rockfill dams. At the

microscopic scale, granular materials are discrete elementary systems aggregated by complex

internal interactions, and their microscopic mechanical structure and statistical characteris-

tics influence the macroscopic mechanical properties; at the macroscopic scale, especially in

engineering-scale computational analysis, granular materials are often regarded as continu-

ous media and their constitutive relationship are described using non-linear or elastic-plastic

theories. Yet, there is no unified theory to characterise all their constitutive properties.

Constitutive modelling stands as a pivotal topic within mechanical calculations. Es-

tablishing an accurate description of the relationship between deformation and constitutive

response serves as the foundation for Boundary Value Problem analysis. With the growing

prominence of machine learning techniques in the data-driven realm, they are expected to

enhance constitutive modelling and potentially surpass classical models based on simplify-

ing assumptions. More and more endeavours have been dedicated to integrating machine

learning into mechanical calculations and assessing its efficacy.

This PhD thesis focuses on the use of machine learning techniques to investigate the fea-

sibility of developing a constitutive model for granular materials and applying it in boundary

value problem calculations. The main areas of research include the following aspects:

1. In Chapter 2, we introduce a deep learning model designed to reproduce the macro-

scopic mechanical response of granular materials across various particle size distribu-

tions (PSDs) and initial states, considering different loading conditions. We start by

extracting stress-strain data from massive DEM simulations and then proceed to cap-

ture the mechanical behaviour of these granular materials through the Long Short-Term

Memory networks. The work contains three central issues: LSTM cell customisation,



granular materials stress-strain sampling, and loading history pasteurisation. The val-

idation results demonstrate that this deep learning model achieves good generalisation

and a high level of prediction accuracy when tested on the true triaxial loading dataset.

2. For the different loading and unloading paths in the conventional triaxial simulation of

the DEM, an Active Learning approach is introduced to guide the sampling (Chapter

3). Based on the positive correlation between the prediction error and the uncertainty

given by activate learning method, the strain paths are evaluated without DEM sim-

ulations, from which the worst predicted paths are selected for sampling. To prevent

data redundancy, points in the vicinity of one selected point will not be selected for

the current resampling round. The model was trained on single-cyclic loading datasets

and performed quite well under multiple-cyclic loading paths.

3. In order to circumvent the reliance on phenomenological assumptions in boundary

value problem analysis, a computational framework coupled with FEM and neural

network (FEM-NN) is proposed (Chapter 4). Building on the work in Chapter 2 and

3, we further introduce FEM-DEM multiscale simulations by employing the Random

Gaussian Process to generate macroscopic random loading paths to be applied to the

macro-scale model. A large amount of stress-strain data on the integration points is

collected. Part of them are subsequently, used to train the neural network. Material

loading histories represented by encoded variables. Active learning is employed here

again to assess the informativeness of the data points, according to which the points are

resampled from the massive database. Two examples are provided to demonstrate the

effectiveness of the implemented framework which provides considerable improvements

in computational efficiency and the ability to reproduce the mechanical response of

granular materials at the macroscopic scale.

4. In Chapter 5 the trained network-based constitutive model is embedded into the ex-

plicit FEM solver. In implicit FEM solvers for non-linear static problems, a global

equilibrium solution is typically obtained via Newton-Raphson iteration. However, the

non-linear iterations may not converge when the predicted tangential matrix is not

accurate enough. Therefore, the explicit FEM solver is employed to circumvent non-

linear iteration. The network is trained and investigated on data generated from two

constitutive models (IME model and CSUH model) separately. The trained network

is able to reproduce almost exactly the ground truth results at the macroscopic level.

However, the error accumulation problem resulting from a large number of steps is an-
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other challenge to the prediction accuracy and robustness of the data-driven model. A

check-and-revision method is proposed to iteratively optimise the model by expanding

the training range and improving the network generalisation.

5. Chapter 6 focuses on evaluating the capacity and performance of a network-based

material cell with physics extension against boundary-value problems. The proposed

material cell aims to reproduce constitutive relationships learned from datasets gener-

ated by random loading paths following random Gaussian Process. The material cell

demonstrates its effectiveness across three progressively complex constitutive models

by incorporating physics-based basis functions as prior/assumptions. An adaptive

linear transformation is introduced to mitigate the error caused by magnitude gaps

between strain increments in training sets and finite element simulations. The mate-

rial cell successfully reproduces constitutive relationships in FEM simulations, and its

performance is comprehensively evaluated by comparing two different material cells:

the sequentially trained gated recurrent unit (GRU)-based material cell and the one-

to-one trained deep network-based material cell. The GRU-based material cell can

be trained without prior knowledge about the internal variables. Consequently, this

enables us to directly derive the constitutive model using stress-strain data obtained

from experiments.

6. A universal constitutive model has been introduced, combining the recurrent machine

learning structure with traditional constitutive models in Chapter 7. A dramatic drop

in prediction accuracy emerges when the input strain exceeds the training space because

of the poor generalisation ability of the purely data-driven method. Therefore, we

introduce the widely accepted elasticity theory, yielding, hardening and plastic flow as

physical constraints to build a machine learning-based universal constitutive model.

These constraints serve as priors/assumptions for the machine learning model. During

the sample preparation stage, they alleviate the stringent demands for the completeness

of data sampling. In the model calculations, they guide the model to make predictions,

even for unseen loading paths. The proposed model has been calibrated and tested

with FEM-DEM datasets.
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Chapter 1

Introduction

Since Hooke’s Law, there have been many attempts to develop constitutive models to

accurately describe the relationship between material deformation and mechanical stress

ϵij → σij. From the last century to the present, the emergence of a wide range of constitu-

tive models has seen remarkable development in this field. As a mathematical approximation

of material behaviour, constitutive relationships are the basis not only for understanding the

mechanical properties but also for performing macroscopic numerical calculations (e.g. by

FEM).

Granular materials, such as sand, powder, and foam, are ubiquitous in nature as well

as in industrial production and geotechnical applications, and they are considered to be the

second most abundant material on earth after liquids [9]. Typical granular materials, such

as rock piles and sand, are collections of different microscopic particles, and the outstanding

feature of granular materials deforming under external loads is the complex evolutionary

process of particle contact. The diversity and dissipation of particle contact have evolved in

loading, giving rise to a rich and complex mechanical behaviour of granular materials, which

makes them very different from continuous solids, liquids, and gases. For researchers and

engineers, the development of accurate ontological models of granular materials that take

into account the various properties that granular materials have in macroscopic mechanics,

including state/history dependence [10], dilatancy [11], non-coaxially, strain localisation,

loading liquefaction characteristics, critical states, strength, and structural anisotropy [12,

13], is a prerequisite for accurate numerical simulations.
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1.1 Constitutive models of granular materials

Unlike continuous media, the strength and stiffness of granular materials are largely influ-

enced by the ground of inter-particle action: the load on the granular material is supported

by the contact network between the particles or rather the distribution of the load to each

particle through the contact network. With each slip of the inter-particle contact, the parti-

cle aggregate undergoes (either large or small) irrecoverable plastic deformation, which leads

to changes in the strength and stiffness characteristics of the particle aggregate [6]. Due to

the complexity of the particle contact network, these simple inter-particle slips will result in

a particle aggregate with a rather complex mechanical behaviour at the macroscopic level.

Within the framework of continuum mechanics, granular materials are usually considered

homogenised continua, without taking into account their discrete nature and micro structure.

For granular materials, the macroscopic mechanical properties should be describable by

particle-scale parameters such as size and shape distribution, contact fabric coefficients and

void ratios [14]. After the advent of DEM [15] simulation methods, researchers were able

to get their hands on the relationships of complex particle contact configurations and the

evolution during loading for the first time, and a series of research works on this were initiated

[15–17]. The hope was to include the contact micro-structure in the constitutive model and to

build a model that could take into account the macroscopic mechanical properties. However,

building a highly accurate predictive constitutive model from the particle-level analysis is

challenging due to the complex properties of the particle assemblies. A large amount of

work has been devoted to the study of the relationship between macroscopic mechanics and

microscopic properties and structure using experimental or DEM simulation type approaches

[4, 18–31]. However, most of the work can only provide a qualitative description of the

mechanical properties of the material. The study of the statistics of particle contact networks

and their evolutionary processes [32–35] has inspired modelling approaches related to the

contact fabric tensor of granular materials [36–38].

1.2 The phenomenological constitutive model

Constitutive modelling is one of the most important and challenging studies in studying

granular materials. As early as the 1780s the French scholar Charles-Augustin de Coulomb

published a paper on the frictional interaction between two particles leading to their static

stability. In 1882, the German civil engineer Christian Otto Mohr introduced Mohr’s Circle
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in his study of stresses, which describes the strength of a material based on shear stress. The

research was later referred to as the famous Mohr-Column criterion, τ = σ tanϕ + c. The

theory has been used to describe the strength of friction materials to this day. Among the

granular materials, rockfills and sands are typical of frictional granular materials.

Common constitutive models for granular materials include the non-linear elastic model

and the phenomenological elastoplastic model. In parallel with the development of the

elastoplastic model, Kondner [39] used the hyperbolic function to describe the stress-strain

nonlinear relationship. Based on this, the Duncan-Chang non-linear elastic model was devel-

oped [40] in the 1970s, which has been widely accepted and used in engineering simulations

until today.

The success of the elastoplastic constitutive model is based on three main hypotheses:

(1) the yield surface, which is used to distinguish between elastic and plastic deformation;

(2) the hardening function (including isotropic, mobilising and mixed hardening), which is

used to describe the shifting in the size and position of the yield surface after the plastic

deformation of the material has occurred; and (3) the plastic potential function (or associated

and non-associated flow rule), which is used to decide the direction of the plastic deformation

after yielding the material into after yielding, in geomechanical materials, is mainly used to

determine the dilation angle. Elastoplastic models have evolved considerably from the last

century to the present.

The Critical state solid mechanics (CSSM) framework was proposed by the Cambridge

soil mechanics research group represented by Roscoe in the 1950s [41–44]. The framework is

able to approximate a frictional, volumetrically deformable material such as clay or sand. The

critical state theory facilitates the model gradually forgetting its historical state and reaching

a critical state after a sufficient shear loading. The normal compression line (NCL/ICL,

Isotropic Compression Line) and critical state line (CSL) in this framework are the basis for

subsequent critical state geomechanics.

To model overconsolidated clays, a series of models have been proposed based on the

modified Cam-Clay model. By introducing a path-independent unified hardening parameter

into the modified Cam-Clay model, Yao et al [45–47] proposed a Unified hardening (UH)

model for overconsolidated clays. The UH model uses the same material parameters as

the modified Cam-Clay model. For normally consolidated clays, the UH model degenerates

to the modified Cam-Clay model. Poorooshasb et al [48] found that the plastic potential

function does not coincide with the yield surface and therefore proposed the non-associated
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flow rule to describe the elastoplastic behaviour of sand.

Been and Jefferies [49,50] proposed a Nor-sand model for sandy soils based on the state

variables related to the critical state concept. The highlight of the model is the state pa-

rameter describing the distance between the current state and the critical state. Li, Dafalias

and Yang [37,38,51,52] introduced the state variables into the dilatation equation by which

the Anisotropic Critical State Theory (ACST) was developed.

Many works are proposed to establish a unified constitutive model for clay and sand via

their similarities [47,53–57]. Among them, the work of Yao et al. 2019 [57] analysed the me-

chanical properties of granular materials towards isotropic compression, shear yielding and

dilatation, approximating them via mathematical formulas, and extended their proposed UH

model for clay to sands with different initial void ratios (loose/dense sand), over-consolidation

ratio to establish the CSUH (Critical state unified hardening) model. Due to the considera-

tion of the transformed stress space [58], the loading in the CSUH model with different Lode

angles has different critical stress ratio (M = q/p), on the π plane at different distances from

the hydrostatic pressure axis (considering the mid principal stress coefficient).

Meanwhile, Pastor, Zienkiewicz and Chan et al. proposed a generalised plasticity model

[59–61], which is distinguished by the fact that the yield surface and hardening conditions do

not need to be explicitly defined, and that the magnitude and direction of plastic deformation

are determined by additional material parameters.

However, in some physical experiments [62–64] or low-scale numerical simulations [65],

the simplifying phenomenological assumptions do not fit well enough with the material prop-

erties. Firstly, our limited knowledge of the material constitutive relationship highlights the

need for the assumptions’ further improvements. Likewise, in order to improve their gener-

alisation ability or accuracy, the constitutive model is constantly adding model parameters.

The more advanced the constitutive model, the more material parameters, the more difficult

the calibration of the parameters becomes, and the more difficult to generalise in engineering.

1.3 Hierarchical Multi-scale modelling, HMM

Almost simultaneously, due to the development of computer hardware, a class of bottom-up

modelling methods has emerged, namely Hierarchical Multi-scale Modelling (HMM), which

uses a coupled FEM-DEM computational approach to directly relate the micro-structure

and macroscopic boundary conditions of granular materials [4, 66–72]. In addition to the
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macroscopic calculations using FEM, other researchers have used the Material point method

(MPM) for macroscopic scale calculations and proposed a coupled MPM-DEM approach

[73–75]. Compared to the FEM-DEM method, macro-scale calculations using MPM can

mitigate the grid distortion by large deformations, such as slopes and snow piles [76–79],

because the Lagrangian-Eulerian method in mesh and material points mapping.

In these FEM/MPM-DEM studies, macroscopic computations derive mechanical re-

sponses at Gaussian points directly from DEM RVE simulations. It is important to note that

the homogenisation assumption is employed to compute stresses via the inter-particle contact

fabric, averaging within the RVE where particle contact networks which may be unevenly

distributed or experience strain localisation. Within the FEM/MPM-DEM framework, it is

generally assumed that each Gaussian point corresponds to a particle-scale RVE, with the

macro-scale strain serving as the boundary condition for its associated RVE. In MPM, due

to the explicit solver (time integration), extensive RVE calculations are required, making it

time-consuming and challenging to perform large-scale engineering simulations.

Liang et al. [75] combined the MPM with low-scale DEM simulation. They employed

the Message message-passing interface for computation distribution across numerous nodes

and CPUs. The DEM computation shows accelerated enhancement with an increase in com-

putational nodes. Nevertheless, as the node count rises, the speedup gradually diminishes,

eventually stabilising beyond 64 nodes. In their paper’s solid object intrusion example, in-

volving 287,496 RVEs, the computation was distributed across 40 nodes (each equipped with

24 CPUs), consuming 39.6 hours. Multi-scale computation is notably time-intensive, and

even with multiple hardware accelerations, the efficiency gains are limited by the overhead

of node communication costs.

1.4 ML in mechanical computation

In addition to continuum mechanics modelling and HMM, with the development of machine

learning methods, especially neural networks, some scholars have started to adopt neural

networks to assist mechanics calculations, which not only include reproducing constitutive

relationships but also other data-driven mechanics calculation methods were inspired. These

studies provided new ideas for reproducing granular materials’ constitutive responses.
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1.4.1 A brief introduction of the machine learning method

ML is a branch of artificial intelligence, a way to achieve artificial intelligence. In the last 30

years, machine learning has developed into a multi-disciplinary subject. ML research focuses

on the design and analysis of algorithms that allow programs to ”learn” automatically. ML

algorithms are a class of algorithms that automatically analyse data to obtain patterns and

use the patterns to make predictions about unknown data. ML can be divided into supervised

learning, common supervised learnings are regression analysis (Regression) and classification

problems; unsupervised learning, including cluster analysis, and semi-supervised learning;

and reinforcement learning (RL), generally consisting of a strategic network and evaluation

network. Combined with the Monte Carlo search, RL can be achieved by adapting the

strategy to the changing environment to constantly improve its strategies, for example in

the applications of Alpha-Go and Alpha-Zero, including Alpha-Fold [80–83].

Supervised regression, i.e. neural network, random forest, support vector method (SVM),

and Gaussian process regression (GPR), are the most popular ML methods in mechanical

analysis.

For neutral networks, the most prevalent open-source library for neural network meth-

ods include TensorFlow [84] and PyTorch [85]. Neural network methods have been widely

used in various regression and classification analyses, and their applications have been in-

volved in a wide range of industries.

The random forest is a kind of supervised ML algorithm. The term ”random decision

forests” was first introduced by Ho in 1995 [86]. Due to its accuracy, simplicity and flexibility,

it has become one of the most commonly used supervised ML algorithms. It can be used for

both classification and regression tasks, which, together with its non-linear nature, makes it

highly adaptable to training on a variety of data. Extreme Gradient Boosting (XGBoost),

is a distributed gradient boosting library designed for efficiency, flexibility and portability.

It is commonly used to train gradient-boosting decision trees and other gradient-boosting

models. Random forests use the same model as gradient-boosting decision trees but use a

different training algorithm. It is possible to use XGBoost to train a standalone random

forest or to use a random forest as the base model for gradient boosting.

The Gaussian Process Regression (GPR) is a regression method based on Bayesian infer-

ence [87]. Compared with other kinds of ML methods, it highlights uncertainty quantification

and continuity. Generally, GPR is described from the perspective of weight space and basis
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function space, respectively. In contrast to regression analysis that determines the number

of basis functions, GPR uses the transformation of the “kernel trick” to obtain the covari-

ance matrix, which can have infinite basis functions, equivalent to a regression method on

a continuous infinite dimensional space. Gaussian process regression Python open source

libraries commonly used are Sci-kit learn and GPyTorch. GPR is becoming an increasingly

popular regression model in mechanical computation because of its excellent generalisation,

continuity and non-parametric features.

However, when encountering the rising pieces of training data, the GPR’s nature of

infinite dimensionality makes it excessively difficult to optimise their hyper-parameters. For

example, in neural network training, there may be tens of thousands or even millions of

training samples, while if GPR handles such a large data set without special tricks, it will

result in an unmanageable amount of computation. As a result, there are several methods

proposed to deal with large training samples:

• Sparse Gaussian process regression is proposed to deal with huge datasets [88], and

there is an integrated method in the Python library GPflow;

• the local approximate Gaussian process regression training [89], which selects a dataset

closer to the input data points to retrain the model each time the Gaussian process is

invoked, and then invokes it;

• and the matrix calculation accelerations that use GPU for Gaussian process training,

as in the previously mentioned GPyTorch Python library.

In this work, the stochastic nature and smooth continuity of the Gaussian process are

harnessed for creating random loading paths. These paths are then utilised for generating

training samples for neural networks.

1.4.2 ML in computational mechanics

In the 1990s, Ghaboussi et al. started using neural networks for stress reproduction in

FEMs to describe the material responses at integration points in BVP calculations [90–96],

demonstrating that multilayer perceptron neural networks can indeed be used to reconstruct

intrinsic structure models from stress-strain data.

Historical dependence, which is the fundamental nature of granular materials [97], is

another challenge for the data-driven constitutive modelling for granular materials. In tra-

ditional elastic-plastic constitutive models, internal variables based on plasticity mechanics
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methods are often used to describe the historical state of the material. In recent years,

recurrent neural networks (RNN) have been introduced into this field. Mozaffar, Ma, Qu,

Zhang and Bonatti et al. attempted to employ recurrent neural networks to reproduce the

mechanical response to historical state-dependent/memory effects of materials [98–103]. Qu

et al. [102] developed a stress-strain constitutive modelling approach based on micromechan-

ical information by integrating the elastic stiffness matrix and invariants. Ma et al. [101]

proposed a modified long short-term memory model considering the initial state of the gran-

ular material. Wang et al. [104] used the temporal convolutional networks to reproduce the

history-dependent macroscopic stresses of the granular material. The minimum state cell

was proposed in [103] to reduce the number of state variables (memory cells) and the linear

minimum state cell was developed to mitigate the dependence of RNN on the incremental

length size, and it was demonstrated to be useful in FEM simulations of aluminium alloys.

Simone et al. [105] and Logarzo [106] embedded RNN into FEM to perform FEM2 multi-

scale calculations, which significantly improved the computational efficiency. The memory

effect of RNN matches well with the material memory effect, however, RNN training is usu-

ally quite time-consuming as this model is not suitable for GPU parallel training due to its

inherent iterative nature.

Xu et al. [107] used a symmetric positive definite neural network based on Cholesky de-

composition of the material matrix to present the stress increment as dσ = LθL
T
θ dϵ, the loss

function is constructed through the explicit equation of motion L = (Ma+ P (u,σ)− f)2,

where P is the internal force, f is the external force, M and a are the mass and acceleration

respectively, and training is done in a similar way to RNN training. The highlight of the

method is that the stress increment is calculated via the Cholescky multiplier as LθL
T
θ , which

ensures that the stress increment is zero when the loading of the material is zero. Without

this operation, it cannot be strictly guaranteed in purely data-driven training, which will

introduce quite an instability encountering tiny strain increments.

In Huang et al.’s work [108] an explicit historical variable (ϕ =
∑

i |∆ϵ(i)|) is introduced
to describe the historical influence, and the proper orthogonal decomposition (POD) is em-

ployed to reduce the six components of the stress/strain vector to three principal directions.

Then they used the MLP map relationship between (ϵ, ϕ) and (σ).

Tang et al. introduced the coaxiality assumption to reduce the six components of the

stress/strain vector in the 3D issues into volume strain-hypostatic stress (ϵv − p) and shear

strain-effective/shear stress (ϵs − σs). Their works [109–111] attempted to reproduce the
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nonlinear hyperelastic model, the J2 plasticity, and the associative Drucker–Prager model

via searching in the datasets, respectively, and the multi-scale calculation of porous materials

using the network as regression tool [112]. The highlight of their works is the coaxiality

assumption and its analogous usage in the case of the plastic constitutive model. By assuming

the relationship (ϵv − p) and (ϵs − σs), the relationship can be converted to 3D via rotation

operator σij =
∑

I γϵ
(I)v

(I)
i v

(I)
j , where γ is calculated from the relationship between ϵs and

σs, I is the number of the pricipal, v is the eigen value of the strain tensor ϵij. Note that, in

Tang’s ”Map123” works, the output is obtained through searching in the dataset, instead of

training an agent regression model.

The searching method for mechanical calculations first appeared in a series of works

by Otiz et al. [73, 113–115]. The most representative of work for multi-scale calculations of

granular materials is [73], where a low-scale LS-DEM (Level-Set DEM) was used to construct

datasets and macroscopic calculations are implemented in MPM. The data-driven algorithms

were invoked to return the constitutive response on the material points. Fairly perfect results

are displayed in this paper. Yang et al. 2019 proposed the Structure-Genome-Driven method

for composite material calculations based on Otiz’s search method.

Fuhg et al. [116] compared the performance of Gaussian process, ANN and Sobolev

training-based ANN for stress prediction on local data points for the multi-scale properties

of isotropic hyperelastic materials and accelerated multiscale calculations using a LaGPR

(local approximation GPR) agent model. They also addressed the convexity of the yield

surface in support vector, Gaussian process regression and neural network respectively, and

proposed a hybrid metallic material yielding surface combining the phenomenological model

(model part) and the data-driven model (data part) [117]. The data-driven model only uses

the uniaxial and biaxial experimental data describing the shape of the initial yield surface.

Sun et al. have done a lot of work in data-driven mechanics calculations. Vlassis [118]

used training a deep learning network in Sobolev space to reproduce a smooth elastoplastic

model with the elastic part controlled by the energy equation, the yield surface and plastic

hardening and flow controlled by a set of Level-sets; Wang [119, 120] introduced the idea of

Reinforce learning by introducing directed graphs for finding the best path (i.e. the micro-

scopic parameters and order of the granular material contained in the model) for modelling

the elastoplastic model, while training and scoring this choice, and automatically selecting

from a decision tree by reinforcement learning search to select the best matching intrinsic

model.
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1.5 Challenges

Since the field is still in its early stages and lacks reliable methods, constructing a constitutive

model for granular materials via machine learning presents several challenges. These include

the limited scope of training data, difficulties in capturing path-dependent behaviour, issues

with generalisation across different scenarios, maintaining high prediction accuracy, and

preventing error accumulation during multi-step load calculations.
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Chapter 2

A predictive framework for the

path-dependent mechanical response

of multi-graded granular assemblies

With the advancements in numerical simulation techniques and measurement instruments,

we now have access to a growing volume of high-quality data. However, the traditional

granular material constitutive model is gradually insufficient to fully utilise this increasingly

rich data set. To address this, we propose a deep learning-based granular material model

that incorporates modified long short-termed method (mLSTM) cells. These cells establish

a relationship between macroscopic mechanical properties and structural characteristics for

granular materials.

By initialising the hidden states of the mLSTM cell based on the initial state of the gran-

ular material, we can effectively combine the historical dependence of the granular material

with the memory properties of the LSTM cell. To validate the predictive capability of our

model, we employ DEM simulation results encompassing various particle size distributions,

initial void ratios, different loading paths, and different initial surrounding pressures.
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2.1 Particle size distribution (PSD) of the granular as-

sembly

At the fine scale, dam-building granular material consists of a combination of continuously

graded rock particles and complex pore structures. Therefore, this deep learning model is

required to consider the PSD. Based on geotechnical testing, the most widely used parameters

describing the PSD are as follows:

• D50 represents the diameter where the cumulative mass fraction of particles with sizes

smaller than D50 is 50%.

• The coefficient of curvature Cc =
D2

30

D10D60
. A curvature coefficient within [1, 3] indi-

cates a soil grading with a complete and continuous PSD. A high curvature coefficient

suggests the presence of abrupt changes between the particle size ranges of D10 and

D30, indicating a lack of smaller particles. Conversely, a low curvature coefficient sug-

gests the presence of abrupt changes between the particle size ranges of D30 and D60,

indicating a lack of larger particles.

• The coefficient of uniformity, Cu = D60

D10
is generally greater than 5 when the material

contains enough fine particles to fill the voids between coarse particles, aiding in easy

compaction.

The curvature coefficient Cc and uniformity coefficient Cu are widely used in engineering

practice due to their simplicity. However, they fall short of capturing the complete picture

of the particle gradation curve. Extracting features solely from two points on the curve,

namely D10 and D60, provides insufficient information. This limitation becomes evident

when examining Fig. 2.1a, which represents hypothetical PSDs of the 5 mixtures. In Figure

2.1a, it can be observed that Mixture 3 exhibits a uniform distribution of particle sizes, while

Mixture 5 shows a step-like pattern in the PSD. Surprisingly, the uniformity coefficient Cu

of them are the same.

The main issue stems from the fact that calculating the material parameter Cu only

considers two points on the curve, overlooking the comprehensive characteristics of the entire

gradation curve. The crucial aspect to describe is the dispersion of the particle size. It is

desirable to encode the particle material gradation dispersion using a minimal set of physical

metrics. Building on the work of Guida et al. [121], the PSD was condensed into a single
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physical metric:

IG = exp

√√√√ N∑
i

wi

wtot

ln2

(
di
d̄

)
(2.1)

where wi represents the weight of particles whose diameter lies between di−1 and di, wtot is the

total weight of all particles, N is the total number of ranges, and d̄ = exp
∑

i (wi/wtot ln (di)).

The effect of IG is shown in Fig. 2.1 where it is easy to see that the greater the dispersion

the greater the IG of the particle mixture, and it is quite sensitive to the absence of particles

with certain size. Mixture 5, which lacks particles of medium size, despite having the largest

dmax/dmin, has a smaller dispersion index IG than Mixture 3 and 4.

The PSD is encoded into IG in this Chapter. Note that the DEM simulations in this paper

do not take into account particle fragmentation. As a result, the PSD remains unchanged,

making IG a constant for a specific particle assembly.

Figure 2.1: (a) Five hypothetical PSDs/GSD (grain size distributions) [1], (b) Different

metrics of the five mixtures.

2.1.1 Loading history dependency

A large sequence of macroscopic data such as stress-strain and void ratios {(σ, ϵ, e)(n) |n =

1, 2, . . . , N}, where e represents the void ratio and N is the total number of loading steps,

can be obtained from the DEM simulations. The hidden state of the LSTM cell can be used

to implicitly represent the loading history. An explicit vector χ is proposed and appended

to the input to enhance the network to reproduce the long-term historical influence. The

parameter can be expressed as the accumulation of absolute strain increment:

χ(t) =
t∑

i=0

|∆ϵ(i)| (2.2)
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Thus, χ has a clear physical meaning and increases monotonically, enabling the current

material state to be uniquely calibrated.

2.1.2 Training data set preparation: DEM simulations

Developing accurate constitutive models that describe the mechanical properties of gran-

ular materials is a complex task, particularly when considering history-dependent material

properties. As the acquisition of high-quality material data becomes easier, data-driven mod-

elling methods can be employed to extract constitutive properties from the data. However,

data generation through laboratory experiments is costly and challenging. Consequently,

simulation-based approaches are commonly used for training sample generation, such as

Discrete Element Method (DEM), Molecular Dynamics (MD), or low-scale Finite Element

Method (FEM) simulations. Once the model demonstrates effective training on simulation

data, it can then be applied to experimental datasets.

In this section, DEM simulations are utilised to conduct triaxial tests on granular ma-

terials, generating a comprehensive database for the following training. The particles in

the simulations are modelled as incompressible spheres, employing the Hertz-Mindlin con-

tact model [122]. Sliding between particles occurs when the tangential force exceeds the

Coulomb frictional resistance, and the contact model accounts for rolling resistance as well.

The following material parameters are used: particle density ρ = 2600kg/m3, Young’s mod-

ulus E = 0.8GPa, Poisson’s ratio ν = 0.12, friction coefficient µ = 0.4, recovery coefficient

e=0.95, and rolling friction coefficient µr = 0.05.

A phenomenon similar to an ’avalanche’ takes place within the particle assembly, resulting

in a sharp decline in the stress-strain curve. However, this steep drop introduces challenges

for the network to accurately discern constitutive patterns from the noise caused by curve

oscillations. To obtain a smoother curve, a small Young’s modulus and a low recovery factor

of Cr = 0.5 are employed.

A total of 4590 sets of DEM simulations were conducted. The simulations were executed

using the LIGGGHTS software [123], which leverages the OpenMPI library to implement

Message Passing Interface parallelism. The calculations were executed on the Wuhan Uni-

versity supercomputing server.

To account for the diverse microstructures and initial states of granular materials, we

prepared granular aggregates with varying PSDs and different initial states, including initial
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void ratio e and initial consolidation pressure. The PSDs encompassed Bell-shaped, Mono-

sized, Binary, Linear-distributed, and Fractal-distributed distributions. In Figure 2.2, a

diagram showcasing the particle size distribution and the ensemble is presented. The particle

distribution function based on fractal function distribution [124] is defined as follows:

F (d) =
d3−β − d3−β

min

d3−β
max − d3−β

min

(2.3)

where β is the fractal coefficient deciding the shape of PSD. dmin and dmax represent the

maximum and minimum particle diameters, respectively.

In order to ensure that the particle assemblages with different PSDs have the same

number of particles and that the particle solid volumes vs are the same, dmax and dmin need

to be adjusted. In this calculation, the number of particles is set to N = 10, 000 in order

to control the simulation consumption, while r = dmax/dmin = 10 in order to prevent the

minimum particle size from being too small and leading to too short a critical time step (see

Eq. 2.8), so that, given F (d), the solid volume vs is determined by the smallest particle

size dmin, i.e. the function vs = v̂s(dmin). The minimum particle size dmin is determined by

dichotomous iteration with a fixed particle number N = 10, 000 as is shown in Alg. 1.

Once the minimum particle size is obtained, N = 10, 000 particles can be generated within

a cube without contact with each other according to F (d). The cube is then compressed

isotropically and servo-loaded to achieve the target envelope pressure. Periodic boundaries

are used in the simulations to avoid boundary effects.

Different friction coefficients µ0 = [0.0, 0.005, 0.01, 0.04, 0.1, 0.2, 0.3] were used in

the initial sample preparation to generate granular samples with different initial void ratios

e0. The larger µ0, the larger e0 at the same surrounding pressure. Details of the granular

assemblage, including the types of PSDs, mean particle size, particle number, initial void

ratio range and initial envelope pressure, are summarised in Tab. 2.1.

The macroscopic mechanical behaviour of the granular material under various loading

paths was evaluated using DEM. Four different loading paths were used in this simulation,

including constant-p-constant-b loading, constant-p-constant-b loading, conventional triaxial

cyclic loading, and random strain loading, as shown in Fig. 2.2, with details of the loading

paths in Table 2.2 is shown. Note the medium principal stress coefficient is calculated as

b = σ2−σ3

σ1−σ3
. In the constant-σ3-constant-b loading path, the principal stress coefficients b = 0

and b = 1 represent conventional triaxial compression and tension simulations respectively.

The assembly of granular materials was pre-consolidated to ensure uniform initial conditions
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Algorithm 1 Dichotomous method for minimum particle size dmin

Require: PSD F (d), fix solid volume vs, particle number N

Ensure: vcals = vs

1: N cal = 0, tolerance Tol = 5e− 4

2: Set the initial range [dlmin, d
r
min], error = 1

3: while error > Tol do

4: dmmin =
dlmin+drmin

2
, dmax = 10dmmin

5: Split range [dmmin, dmax] into n + 1 equidistant subintervals

{[dmmin, d1), [d1, d2), . . . , [dn, dmax]}
6: for i in [1, 2, . . . , n+ 1] do

7: Linearly interpolate M + 1 particles with size {d0i , d1i , . . . , dMi }
8: The average particle volume of this interval v̄i =

1
M+1

∑M+1
j

4
3
π(0.5dji )

3

9: Number of particles in this interval Ni = vs (F (di)− F (di−1)) /v̄i

10: end for

11: Calculated total particle number N cal =
∑

Ni

12: if N cal ≤ N then

13: dlmin = dmmin

14: else

15: drmin = dmmin

16: end if

17: error = |N cal −N |/N
18: end while
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Table 2.1: Details of the particle assemblies

Types of PSDs
Range of

diameters

Average

diameters

Particle

number

Initial

void ratio

Confining

pressure (MPa)

Bell-shaped 0.006 ∼ 0.0175 0.0125

10000

0.265 ∼ 0.722

0.1 ∼ 4.0

Mono-sized 0.0118 ∼ 0.0118 0.0118 0.275 ∼ 0.744

Binary 0.009 ∼ 0.018 0.0180 0.245 ∼ 0.673

Linear 0.0022 ∼ 0.018 0.0151 0.237 ∼ 0.623

Fractual

0.0014 ∼ 0.0139 0.0127 0.267 ∼ 0.727

0.0031 ∼ 0.0308 0.0217 0.198 ∼ 0.565

0.0044 ∼ 0.0433 0.0235 0.175 ∼ 0.488

0.0051 ∼ 0.0502 0.0216 0.180 ∼ 0.469

0.0057 ∼ 0.0532 0.0188 0.191 ∼ 0.496

Table 2.2: Summary of the loading paths

Types of loading paths Parameter 1 Parameter 2

Constant-p-constant-b p = 0.1, 0.5, 1.0, 2.0, 4.0 (MPa) b = 0.00, 0.25, 0.50, 0.75, 1.00

Constant-σ3-constant-b σ3 = 0.1, 0.5, 1.0, 2.0, 4.0(MPa) b = 0.00, 0.25, 0.50, 0.75, 1.00

Cyclic loading σ2 = σ3 = 0.1, 0.5, 1.0, 2.0, 4.0 (MPa)

Random loading /

across the samples. The tension observed in Fig. 2.2c refers to tensile strain relative to the

pre-consolidated state, but the stress remains compressive.

2.1.3 Strain and stress of particle assembly

The strain is calculated as:

ϵj = ln

(
1 +

∆Lj

Lj

)
(2.4)

where Lj represents the initial length in j-direction and ∆Lj is the change.

The homogenised stress is calculated as [125]:

σij =
1

V

N∑
α

fα
i d

α
j (2.5)

where N is the number of contacts within the volume V , fi and dj represent the contact

force and branch vector (the line connecting the centres of the 2 spheres), respectively.
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Figure 2.2: Loading paths included in training sample preparation: (a) constant-σ3-

constant-b loading and constant-p-constant-b loading, (b) cyclic loading, and (c) strain-

controlled random loading. Note: σ3 corresponds to the principal stress along the third

axis (or z-direction), while the subscripts 1-2-3 and x-y-z are used interchangeably to de-

note principal axes and coordinate directions, respectively.

2.1.4 Quasi-static loading rate

In geotechnical testing, loading is typically performed under quasi-static conditions. The

inertial number serves as a key criterion for defining these quasi-static conditions:

I = ϵ̇d

√
ρ

p
(2.6)

where ϵ̇ represents the strain rate, d is the characteristic diameter, ρ denotes the density,

and p is the effective mean stress. A small inertial number I indicates quasi-static loading

conditions. As I increases, the simulation transitions to a dense flow regime and eventually

to a collisional dynamic regime [121].

Therefore, it is important to control the inertia I to ensure quasi-static loading. The

literature [2] investigates the effect of inertia I on loading results, in particular on the critical

state stress ratio η = q/p (q is the shear stress), the volume strain and the particle contact

configuration tensor Φ =
(∑Nc

c=1n
c ⊗ nc

)
/Nc, where n

c is the normal direction of contact c.

As shown in Fig. 2.3 below, in (a) and (c), when the inertia I ≤ 5e− 2 then the simulation

results are essentially the same, and examination of (b) reveals that the critical state volume

strain ϵv gradually converges when the inertia I ≤ 2.5e− 3. Therefore, inertial I ≤ 2.5e− 3

should be maintained in the simulations to ensure the quasi-static loading.
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Figure 2.3: Influence of inertial number I on (a) stress ratio η: as I decreases to 2.5e-3, it

converges to around 0.7; (b) volumetric strain: converges to 0.8% after I decreases to 2.5e-

3; and (c) deviatoric fabric. [2]

2.1.5 Critical step size in time integration

In DEM calculations, time-integration-based particle position generally updates like:

x = x0 + v∆t+
1

2
a∆t2 (2.7)

where x is particle’s position, v is the particle’s velocity and a is the acceleration. The

time-integration method needs ∆t < ∆tcrit to ensure computational stability.

Systems with different types of freedom require different methods to evaluate the critical

load step, as is listed in [126]. Here we use the method in the LS-DYNA DEM to calculate

the critical load step:

∆tcrit = 0.2π

√
mmin

E
3(1+2ν)

β
(2.8)

where β is the stiffness penalty, generally ranging from 0.001 to 0.1, andmmin is the minimum

mass of the particles, which explains the significant increase in computational effort for too

small mmin.

The critical step sizes for different particle assemblies are shown in Tab. 2.3, where

β = 0.01 is relatively conservative to ensure correctness. The critical time steps for all

assemblies are greater than 1e− 6s, except for the smallest particle size dmin = 0.0014,

where the critical time step is slightly less than 1e− 6s. Considering that it is better to

adopt a uniform standard for a large number of simulations, ∆t = 1e− 6s can be accepted

as the time step for all assemblies in the simulation.
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Table 2.3: Summary of the critical time steps for different particle assembles

Types of PSDs dmin E (GPa) ν β ∆tcrit

Bell-shaped 0.006

0.8 0.12 2600

7.34e-6

Mono-sized 0.0118 2.02e-5

Binary 0.009 1.34e-5

Linear 0.0022 1.63e-6

Fractual

0.0014 8.28e-7

0.0031 2.72e-6

0.0044 4.61e-6

0.0051 5.75e-6

0.0057 6.80e-6

2.2 Methodology for DL-based mechanical response pre-

diction

In this section, we present deep learning for predicting the macroscopic mechanical response

of granular materials: deep network construction, and data set preparation.

2.2.1 Challenge of the recurrent network unit: gradient explosion

or fading

The gradient of recurrent neural networks (RNN) has the problem of vanishing and exploding,

as shown in Fig. 2.4 for an RNN with the input sequence {x1, x2, . . . , xr} and the output

sequence {h1, h2, . . . , hr}, with the cell state information stored in {c0, c1, c2, . . . , cr−1}. To

illustrate the error explosion or hour problem, here we consider 1D inputs and outputs

without considering the biases.

Figure 2.4: Architecture of the recurrent neural network
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As in the classical RNN unit, the hidden state ht equals the cell state ct. The calculation

can be expressed as:

ht = σ(wrec · ht−1 + win · xt−1) (2.9)

where σ is the Sigmoid activation function, wrec and win are the weights for the recurrent

input ht−1 and the input xt−1, respectively.

Define the overall prediction error as L =
∑T

t=1 Lt, so the gradient of the serial prediction

error against the weight matrix w = [wrec, win] is calculated as:

∂L
∂w

=
T∑
t=1

∂Lt

∂w
=

[
T∑
t−1

∂Lt

∂ht

∂ht

∂wrec

,

T∑
t−1

∂Lt

∂ht

∂ht

∂win

]
(2.10)

where T is the length of the training sequence, and for simplicity, the derivatives ∂L
∂w

indicates

[ ∂L
∂wrec

, ∂L
∂win

].

The derivatives to win is:

∂ht

∂win

= xt−1σ
′(wrec · ht−1 + win · xt−1) (2.11)

The global loss derivative to win can be shown as:

∂L
∂win

=
T∑
t−1

xt−1σ
′(wrec · ht−1 + win · xt−1)

∂Lt

∂ht

(2.12)

Let’s pay attention to the derivatives of ht to wrec:

∂ht

∂wrec

= σ′(wrec · ht−1 + win · xt−1) · (ht−1 + wrec
∂ht−1

∂wrec

) (2.13)

This is an iteration with the final term ∂h0

∂wrec
= 0 and σ′

0 = σ′(wrech0 + winx1). Finally, the

derivatives can be shown as:

∂ht

∂wrec

=
t∑

i=1

(
hiw

t−i
recΠ

t
j=iσ

′(wrec · hj−1 + win · xj−1)
)

(2.14)

Substitute Eq. 2.14 into Eq. 2.10, the derivatives of global loss to wrec is:

∂L
∂wrec

=
T∑
t=1

∂Lt

∂ht

t∑
i=1

(
hiw

t−i
recΠ

t
j=iσ

′(wrec · hj−1 + win · xj−1)
)

(2.15)

The exponential term wt−i
rec in the above equation can either tend towards infinity or

approach zero as the exponential number increases, potentially leading to gradient explosion
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or gradient vanishing. This issue is particularly pronounced during the training of long

sequences.

The LSTM (Long Short-Term Memory) unit [127] was introduced to alleviate these prob-

lems through the specially designed gates. The operations in the LSTM unit are represented

as the following equations: 

ft = σg (xt ·Wf + ht−1 · Uf + bf )

it = σg (xt ·Wi + ht−1 · Ui + bi)

ot = σg (xt ·Wo + ht−1 · Uo + bo)

C̃t = σg (xt ·Wc + ht−1 · Uc + bc)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

ht = ot ⊙ σh(Ct)

(2.16)

where W and U are weights for the input xt and hidden state ht−1, respectively, and C is

the cell state.

Ct depends on the values of xt, ht−1, Ct−1. As ht−1 recurrently depends on of Ct−1, ht−2, xt−1,

the partial differential can be written as:

∂Ct

∂Ct−1

=
∂ft

∂Ct−1

⊙ Ct−1 + ft +
∂it

∂Ct−1

⊙ C̃t−1 + it ⊙
∂C̃t

∂Ct−1

(2.17)

where the derivatives of the forget gate, input gate and cell gate can be expressed as:

∂ft
∂Ct−1

= σ′
g,f,tUf

∂ht−1

∂Ct−1

∂it
∂Ct−1

= σ′
g,i,tUi

∂ht−1

∂Ct−1

∂C̃t

∂Ct−1

= σ′
g,C,tUc

∂ht−1

∂Ct−1

∂ht−1

∂Ct−1

= ot−1 ⊙ σ′
h(Ct−1)

(2.18)

Then Eq. 2.17 can be written as:

∂Ct

∂Ct−1

=
(
σ′
g,f,tUf ⊙ Ct−1 + σ′

g,i,tUi ⊙ C̃t + it ⊙ σ′
g,C,tUc

)
ot−1 ⊙ σ′

h(Ct−1) + ft (2.19)

Compared with the hidden state of classical RNN unit ht

ht−1
= σ′

twrec,
∂Ct

∂Ct−1
is not a term

related only to one of Uf , Ui or Uc, but rather a sum of them. This will result in this term

being almost around 1, which will alleviate the gradient explosion and fading. But note,

even with LSTM units that prevent the gradient problem, too long a training sequence can

still pose a problem.
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2.2.2 Modifed LSTM considering the initial state

LSTM units can learn sequences to predict long-term dependencies in various scenarios, and

are used in natural language processing and also in engineering and mechanical calculations

for predicting historical dependencies [101,105,128]. In addition to the loading history, PSD

represented by IG, initial void ratio e and initial confining pressure significantly influence

the mechanical behaviour of granular materials. Therefore, it is necessary to feed PSD

information, initial void ratio e and initial stress state into the network at the head of the

sequence.

In natural language processing, no special attention is generally paid to the influence

of the initial implicit state on prediction. But the initial state matters a lot in granular

materials’ mechanical responses.

As shown in Fig. 2.5, the classical LSTM cell was modified to enable the implicit state

initialisation. In practice, we add a fully-connected layer (FC) structure before the first

implied state, through which the initial implied state vector ht−1 ∈ Rd is expanded into a

new vector h′
t−1 ∈ Rh before it is input to the cell for computation, as follows:

h′
t = σg (wh · ht−1 + bh) (2.20)

where the weight wh ∈ Rh×d and bias bh ∈ Rh. Then the tensor h′
t participates in Eq. 2.16

as the hidden state.

Figure 2.5: The modified LSTM unit

To demonstrate the effectiveness of the mLSTM cell, a comparison was made between its

predictive ability and that of the classical LSTM cell. In order to eliminate the influence of

chance on the evaluation of network prediction errors, the training process was repeated five

times using different random seeds for each scenario with varying numbers of hidden layer
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cells. Additionally, one-fifth of the data was randomly selected from the database for each

training session.

The validation error, which was obtained after 2000 training generations for the same set

of scenarios, exhibited fluctuations within a certain range due to the chance nature of the

network training effect. Fig. 2.6 displays the validation error for each set of solutions after

five random training sessions.

Based on the distribution of the validation errors, it can be observed that the classical

LSTM cell-built model continues to improve as the width of the hidden state exceeds 100.

The validation error for this model lies in the order of 1e-3. On the other hand, the error of

the mLSTM cell-built network gradually stabilises at around 2.5e-5 after the width of the

hidden state exceeds 50 or so.

The fact that the error of the mLSTM cell is smaller than that of the classical LSTM cell

indicates that the modified network aligns well with the initial state-dependent properties

of the granular material. Leveraging this property can significantly enhance the accuracy of

the network in predicting macroscopic stresses in granular materials.

Figure 2.6: Comparison of prediction errors (a) classical LSTM cell; (b) mLSTM cell

The validation errors were compared for different numbers of LSTM cells with varying

numbers of hidden cells, as depicted in Fig. 2.6b. For the mLSTM cells, it was observed

that once the width of the hidden state exceeds 50, further increasing the width did not

significantly enhance the predictive power of the model. This suggests that the network is

already sufficiently capable of extracting the patterns present in the data set. Additionally,

increasing the number of implied units makes the training process more challenging and time-

consuming. Moreover, overly complex networks are more prone to over-fitting, resulting in
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the network capturing more noise rather than useful constitutive relationships. Therefore,

for the subsequent work in this chapter, a total of 50 hidden nodes are employed in the

mLSTM unit.

2.2.3 Extracting sequences of training sets via sliding window

In the simulations conducted, the macroscopic state of the granular material is characterised

by the principal stresses (σ1, σ2, σ3) and strains (ϵ1, ϵ2, ϵ3) in three directions, and void ratio

e. Each DEM simulation generates a sequence of data comprising strain, stress, and porosity

ratio
{
(σ, ϵ, e)(n)

}N
n=1

, where N represents the number of the total steps. With DEM loading

involving massive load steps, using all this data for training is impractical. It’s also crucial

to set appropriate intervals between training data points, as large gaps can reduce training

accuracy.

To ensure consistency, the DEM simulations conducted in this study employed the same

loading velocity. To extract training data sequences from the dataset, equal load step inter-

vals were utilized. As depicted in Fig. 2.7, a sliding time window was implemented to divide

the entire long series of DEM simulation results into multiple batches of sequences.

Figure 2.7: The sliding window to extract data sequences

The length of the sliding time window determines the length of the training data sequence,

which in turn affects both the training difficulty and accuracy. Empirically, longer sequences

result in more complex computations for derivatives during error backpropagation, making
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optimization more challenging as shown in Sec. 2.2.1. However, longer sequences also retain

more historical information, allowing the mLSTM units to capture the historical dependence

of the granular material effectively.

To investigate the impact of the sliding time window length L, which also represents the

length of the training data sequence, on training accuracy, a comparison was made among

different window lengths. Similar to the sensitivity analysis of the width of hidden states,

five trials were repeated for each case, with one-fifth of the original data used for training in

each trial. The average training error was then calculated for analysis, and the mean error

comparison is presented in Fig. 2.8.

Figure 2.8: Validation error with different sliding window sizes

It was observed that once the training data sequence length exceeds 25, the validation er-

ror significantly increases with longer sequence lengths. Moreover, the variance also increases

with L, indicating the training becomes unstable.

In some respects, shorter training data sequences require fitting fewer data points in a

single training session, making error back-propagation and network parameter optimisation

easier. However, shorter training lengths result in a reduced inclusion of historical infor-

mation in the training data sequence, thereby under-utilising the memory properties of the

network.

Considering these factors, for this particular study, the length of the training data se-

quence was set to 20 as a balance between training complexity and historical information

incorporation.
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2.2.4 Network model training

The Adam optimizer, which stands for Adaptive Moment Estimation, is a highly efficient

stochastic gradient descent method that adjusts the learning rate based on adaptive momen-

tum. It combines the benefits of the AdaGrad method [129] for handling sparse gradients

and the RMSProp method [130] for addressing non-stationary problems.

By doing so, it offers several advantages, such as requiring only the calculation of first-

order derivatives and consuming minimal memory, adjusting the gradient does not impact

the magnitude of the optimised parameter change, and it resembles an annealing process in

which the model progresses towards the state of lowest energy.

As shown in Fig. 2.9, the input features consist of PSD information IG, material history

information χ, and current strain increments ∆ϵ. The outputs are the current stress σ and

void ratio e. The network consists of a single mLSTM layer and a fully-connected layer. The

red dashed line represents where to feed the first two snaps of data. The data at step 0 is fed

to the initial hidden state. The output at step 1 is utilised to evaluate the prediction error.

Figure 2.9: (a) Input and output of the network model. (b) Network structure.

Before commencing the training process, the data were randomly divided into three

subsets: training, validation, and testing, which accounted for 70%, 15%, and 15% of the

data, respectively. This division ensured that the network was trained on a diverse set of

data and that its performance could be evaluated on unseen data.

To prevent over-fitting and enhance the generalisation of the network model, an Early

Stopping strategy [131] was implemented in the training process. This strategy involves peri-

odically assessing the network’s performance on a random subset of data from the validation

set. The network’s error on this subset is evaluated, and if the error does not improve, a

counter is incremented. Conversely, if the error improves, the counter is reset. If the counter
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reaches a predefined threshold after each evaluation, indicating that the network’s perfor-

mance has plateaued, it is considered to be in the best condition possible and the training

process is terminated.

By employing the Early Stopping strategy, the network training is monitored and halted

when the model reaches its optimal performance, preventing it from being excessively trained

and overfitting the data.

When the network converged, the mean squared error on the training and test sets was

measured to be 1.03e-5 and 2.16e-5, respectively, as shown in Fig. 2.10. The training error

steadily decreased as the number of training generations increased. However, the error on

the validation set reached a point of stabilization and did not show further improvement

even after an additional 1000 epochs (patience number). At this stage, it is crucial to stop

the network training to prevent overfitting, where the network starts capturing the errors

specific to the training set, such as the noises.

The Early Stopping strategy involved the validation data set, which accounted for 15%,

to evaluate the model’s performance during training. The test dataset, which also accounted

for 15%, was not involved in the training process at all. Consequently, the test dataset served

as a means to assess the prediction accuracy and generalisation ability of the trained model.

Figure 2.10: Training and validation loss during the training process

Details of the network structure and hyperparameters of the optimiser are shown in Tab.

2.4.
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Table 2.4: Summary of network architecture and optimiser configuration

Layer type
Hidden layer

Node number
Activation Note

modified

LSTM

hidden

state

preprocess

40 ReLU optimizer=Adam (with

learning rate=0.001,beta1=0.9,

beta2=0.999 epsilon=1e-8)

loss function = MSE

maximum number

of attempts=1000

sliding window size=20

batch size=256

initializer = random

uniform

LSTM

Regular

steps

50

Sigmoid

function

&

tanh function

FC

layers
20 ReLU

FC

layers
4 /

2.3 Model validation: stress and void ratio prediction

To validate the effectiveness of the network in capturing the macroscopic mechanical prop-

erties of granular materials, various tests are conducted on granular specimens with different

gradations, initial pore ratios, and loading paths. Additionally, the effectiveness of the model

in predicting historical path-related behaviour is explored which involves the internal vari-

able χ to predict macro responses for cyclic loading paths. It is important to note that all

of these test data were not included in the model training process to ensure validity.

2.3.1 On different PSDs

Granular materials, both in engineering and in nature, consist of particles with varying shapes

and sizes. The PSD plays a significant role in its microstructure, and different gradations

result in variations in natural stacking compactness, average coordination number, and etc.

By considering the PSD characteristics in both DEM simulations and network model

training, the model can effectively capture the influence of gradation on the macroscopic

mechanical responses. Fig. 2.11 presents predictions of the macroscopic responses for two

materials under the same loading path (constant-σ3-constant-b) and the same initial pore
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ratio (e0 = 0.508): one with a fractal coefficient β = −0.5 controlled PSD and the other

with binary PSD.

Figure 2.11: Predicted macroscopic mechanical responses with different PSDs under

constant-σ3-constant-b loading paths: (a) (top) fractal function control graded granular

material aggregate (β = −5.0, IG = 1.016, initial void ratio e0 = 0.508), (bottom) binary

mixed granular aggregate (IG = 1.117, initial void ratio e0 = 0.508). (b) and (c) Compari-

son of depth-learning predictions (solid lines) and DEM simulations (hollow points) for the

stress and pore ratio curves, respectively.

Despite their similar initial pore ratios and initial confining pressures σc = 1.0MPa,

the two materials exhibit significant differences in macro-mechanical responses. The deep

learning model can distinguish between materials with different PSD with IG, and serves as

a reliable predictor of the mechanical response for distinct particle assemblies under identical

initial conditions.

A higher IG value indicates a better continuity, a wider dispersion and thus a greater

optimum density of the granular assembly. As depicted in Fig. 2.11, the assembly with

a fractal coefficient β = −5.0 (IG = 1.016) exhibits higher peak stress compared to the

specimen from the binary mixture (IG = 1.117). Despite their equal initial void ratios e0 =

0.508, the latter material, characterised by a higher index IG, suggests it can be compressed

more easily, resulting in a smaller void ratio. Therefore, even with equal initial void ratios,

the former material (with a smaller IG) exhibits a higher relative density considering the

optimum initial void ratio. This explains the higher peak stress and more pronounced shear

expansion observed in the former material (IG = 1.016).

Deep learning networks trained on datasets featuring various gradations and initial pore
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ratios effectively capture and reproduce the impact of particle gradation on the macro-

mechanical properties of the material.

Figure 2.12: Predicted macroscopic mechanical responses with unseen PSD (β = 1.5 and

IG = 1.290) under constant-p-constant-b loading paths.

To assess the generalization ability of the deep learning network to particle gradations,

an ensemble of particles with fractal parameters β = 1.5 and IG = 1.290 was utilized.

These particles were not included in Tab. 2.1 and were not involved in training the deep

network model. As depicted in Fig. 2.12, when the strain sequences were fed into the trained

deep learning network model, it successfully predicted the macroscopic mechanical response

of the material under constant-p-constantb loading paths. The predicted results exhibited

good agreement with the DEM simulation results. Thus, the deep learning network can

effectively predict not only the trained particle gradations but also untrained ones.

However, it’s essential to note that the neural network fundamentally functions as an

interpolation method, performing well within the interpolation range. When extrapolation

is required, the prediction accuracy of the network drops significantly. The network excels

within the training range of IG ∈ [1.0, 1.479], highlighting the importance of expanding the

dataset to enhance the network’s generalisation ability. However, expanding the dataset

alone is not a definitive solution to all problems. While it can address some practical issues

temporarily, it falls short when encountering new problems that were not represented in

the training set. In such cases, dataset expansion alone is insufficient, and the network’s

generalization ability may be limited.
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2.3.2 On different initial void ratios

The initial void ratio e0 of a granular material plays a crucial role in determining its me-

chanical properties. The network predictions are compared with those obtained from DEM

simulations conducted on particle assemblies with different initial void ratios, as depicted in

Figure 2.13.

During the initial stages of small strains, the material experiences shear contraction.

Dense particle assemblies exhibit a higher modulus of elasticity and peak stress compared

to less dense ones. As the material undergoes further deformation, it experiences shear

expansion, leading to a drop in stress and exhibiting a more ”brittle” behaviour compared

to other less dense specimens.

As the shear progresses (ϵaxial > 0.28), the material enters a critical state after the peak

stress reduction [41]. In this state, specimens with different initial densities exhibit similar

macroscopic mechanical responses. Based on the critical state theory, the behaviour of the

material solely depends on its PSD and the mechanical parameters of the particle material,

independent of the initial state. The influence of initial conditions and loading history

gradually diminishes, displaying a fading property [132, 133]. The deep learning network

model’s predictions align well with the DEM simulations, indicating that the proposed model

effectively captures the behaviour of the granular material concerning the initial pore ratio.

Additionally, it can reproduce the material’s behaviour as it enters the critical state, free

from dependence on the initial state and loading history.

Figure 2.13: Predicted macroscopic mechanical responses with different initial void ratio e0

under conventional triaxial compression

The network successfully predicted the stress σ and void ratio e for both the critical and
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peak states. The data points representing the peak and critical states are displayed on the

p − q and p − e spaces, as depicted in Fig. 2.14. Each data point represents the location

of the predicted results in that particular space. According to the critical state theory, the

critical states of all materials are uniquely distributed in the p − q stress space, which can

be fitted by the linear function q = Mp, and in the p− e space described by the exponential

function e = eΓ − λ (p′c/pa)
ξ. The parameters M ,eΓ, λ and ξ are material parameters that

can be obtained by fitting the data.

Through the fitting process, we observed that predictions of the network model were

not precisely on the curve, but rather very close to it. Additionally, our predictions aligned

well with the DEM results. It is important to note that the curves obtained by fitting the

material parameters are not sufficient to fully describe the critical and peak states. The

macroscopic mechanical properties exhibited are also influenced by other factors. Therefore,

a data-driven network, which relies on the input of a large amount of relevant data and his-

torical information, is necessary to accurately and comprehensively describe the macroscopic

mechanical properties of materials.

Figure 2.14: Predicted macroscopic mechanical responses with different initial void ratio e0

under conventional triaxial compression

During the analysis of network training and prediction, it was observed that the model’s

performance was relatively poor when dealing with specimens having a high initial void ratio

e0. Upon further investigation, it was discovered that loose specimens tended to experience

an ”avalanche” phenomenon during DEM loading, resulting in a sharp decline in the stress-

strain curve, as depicted at the right side of Fig. 2.15. Consequently, the network model

faced challenges in distinguishing between valid constitutive patterns and noises caused by

curve oscillations.

Although the study of sloshing processes in granular materials has been extensively ex-
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plored and linked to crustal activity in some research works, our study primarily focuses on

examining the quasi-static mechanical behaviour. The dynamic process of gradual energy

accumulation and abrupt release of particle contact is considered noise. When the relative

density of the granular material is low, the influence of kinetic energy becomes significant,

leading to an increasing amount of noise in the datasets. Consequently, this resulted in curve

fluctuations and increased difficulty in training the network. Fig. 2.15 illustrates how the

prediction error of the network gradually rises as the initial void ratio increases.

Figure 2.15: (a) Relative prediction error of shear stress q for specimens with different ini-

tial void ratios e0: the relative error increases as the initial pore ratio increases. (b) Poorer

prediction results for the specimen with a large void ratio under constant-σ3-constant-b

loading

2.3.3 On different loading paths

The mechanical characteristics of granular materials exhibit some variation when subjected

to different macroscopic true triaxial loading conditions. Zhou et al. [27] examined the

influence of the medium principal stress coefficient, denoted as b = (σ2 − σ3) / (σ1 − σ3), on

the stress response at the macroscopic level.

Fig. 2.16 and Fig. 2.17 demonstrate the significant impact of b on the macroscopic

stress state during constant-p-constant-b and constant-σ3-constant-b loading. In the case of

b = 1.0 (conventional triaxial tension), the material exhibits greater shear expansion and

reaches the peak state earlier. As b decreases, the peak stress occurs at a later stage, and the

shear expansion effect gradually diminishes. Remarkably, the predictions generated by the

deep learning network align well with the results obtained from DEM simulations conducted

under various loading paths. These results indicate that the network can effectively replicate

the macroscopic mechanical response observed under different loading conditions.
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Figure 2.16: Macromechanical response predictions for true triaxial conditional constant-p-

constant-b loading path (mean stress p = 2.00MPa): (a) particle specimen with the linear

distribution of particle size (IG = 1.064) (b) and (c) comparison of depth learning pre-

dictions (solid line) and DEM simulations (hollow points) for stress and pore ratio curves,

respectively

Figure 2.17: Macromechanical response predictions for the true triaxial conditional

constant-σ3-constant-b loading path (small principal stress σ3 = 2.00MPa): (a) particle

specimen with linear particle size distribution (IG = 1.064) (b) and (c) comparison of

depth-learning predictions (solid lines) and DEM simulations (hollow points) for the stress

and pore ratio curves, respectively
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Fig. 2.18 illustrates that the peak and critical state stress distributions exhibit strong

alignment across various b. These stress distributions are found to be situated on the Spatial

Mobilized Plane, which corresponds to the yielding surface proposed by Matsuoka [58].

Figure 2.18: Network for predicting the distribution of peak and critical state stresses in

the π plane under constant-p-constant-b loading paths.

To further verify the predictive capacity of the network model, random strain-controlled

DEM simulations were conducted, and the results are presented in Fig. 2.19. The network

demonstrated its ability to accurately predict the stress and void ratio values throughout the

random loading path. It is important to acknowledge that the network’s accurate predictions

are limited to the specific random paths generated based on the current assumptions.

Comparing the mechanical response of the granular material under cyclic loading with a

mono-loading, as shown in Fig. 2.20, the network was able to capture that the void ratio

e was slightly less than that of the mono-loaded specimen when the unloaded material was

loaded again. If the LSTM network and the history variable χ were not involved, and only

the mapping relationship between strain ϵ and stress σ and void ratio e were established,

the mechanical response produced would be the same for the same strain and would not

reflect the effect of the loading history. However, on this DEM simulation and prediction,

we were able to clearly identify a small difference in the macroscopic mechanical response of

specimens that had undergone unloading and those that had not, when loaded to the same

axial strain. This difference is influenced by the size of the hysteresis loop and the number

of loading and unloading cycles [102].

When comparing the mechanical response of the granular material under cyclic loading

with that of mono-loading, as depicted in Fig. 2.20, the network successfully captured that
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Figure 2.19: Macroscopic mechanical response prediction of granular material under ran-

dom strain loading: (a) the particle assembly with fractal function controlled grading

(β = 2.9, IG = 1.478, e0 = 0.187); (b) and (c) network prediction (solid line) and DEM

simulation (hollow point) comparison of stress curve and void ratio curve, respectively

the void ratio e was slightly lower when the material was reloaded after unloading compared

to the mono-loaded specimen. This observation highlights the significance of incorporating

the LSTM network and the history variable χ in the prediction process. If only the mapping

relationship between strain ϵ, stress σ, and void ratio e were established without considering

the loading history, the mechanical response would be identical for the same strain, failing

to reflect the influence of the loading history. The size of the distinction is influenced by

factors such as the size of the loading-unloading loop and the number of loading-unloading

cycles.

2.4 Concluding remarks

The presented network model utilises a modified LSTM unit to extract the constitutive

patterns directly from the DEM simulation dataset. The mechanical behaviour of granular

materials is influenced by various factors such as PSD, initial void ratio, confining pres-

sure, loading histories and etc. To generate the required dataset, a large number of DEM

simulations are performed.

The datasets were sampled using a sliding time window method to create training se-

quences for network training. The trained network is capable to capture the complex consti-

tutive relationships, including shear shrinkage, shear expansion, history dependence, strain

hardening/softening, and critical state behaviour.
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Figure 2.20: Comparison of the predicted macroscopic mechanical response of granu-

lar materials under cyclic loading and unloading with an initial enclosing pressure σ3 =

0.50MPa. (a) Fractal function control grading of granular material specimens (β = 1.0,

IG = 1.209, e0 = 0.375) (b) and (c) Comparison of depth-learning predictions (solid lines)

and DEM simulations (hollow points) of stress and porosity ratio curves, respectively

The network model offers a powerful means of predicting macroscopic stresses in granular

materials, leveraging the rich information obtained from DEM simulations and enabling the

potential to be used as a data-driven constitutive model.
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Chapter 3

Deep active learning for constitutive

modelling of granular materials

3.1 Introduction

The description of the deformation and instability of materials under external loads has

been an open scientific challenge for human beings since the origin of modern science. As

a mathematical approximation of material behaviour, the constitutive relation serves as the

cornerstone not only for understanding the mechanical performance of materials but also for

performing macroscale numerical computations (e.g. by FEM).

The most prevalent approach to formulating constitutive relations of granular materials

until now has been the phenomenological constitutive theory of plasticity. Its success is

underpinned by four primary assumptions: (1) an explicit partition of elastic and plastic

zones in a stress-strain sequence; (2) the yield surface distinguishing the boundary between

elasticity and plasticity; (3) the associative or non-associative flow rule describing the di-

rection of plastic deformation; and (4) the hardening rule characterising the evolution of

the yield surface. This classical plasticity theory has received extensive applications, but

it also confronts dilemmas owing to the prior assumptions and increasing model and state

parameters to be calibrated.

Machine learning offers a promising alternative to tackle the challenge of constitutive

modelling. Unlike the phenomenological constitutive theory and multiscale modelling, data-

driven models do not require parameter calibration and phenomenological assumptions, nei-
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ther do they request unaffordable computational resources to infer stress responses from

strain paths. Deep learning-based constitutive modelling includes two indispensable compo-

nents: model and data. In contrast to the reviewed progress from the perspective of model

in previous chapters, rather few efforts have been taken to guarantee that the dataset used

to train neural networks is sufficiently representative. Yet data is crucial to developing a

successful machine learning model and a high-quality dataset should cover all possible sce-

narios that the surrogate model is intended for. Data-driven constitutive modelling tends

to suffer from two challenges pertaining to data: (1) the training process is data-demanding

while it is costly to obtain high-fidelity data, via either laboratory experiments or microscale

numerical simulations; (2) as data-driven models are not underpinned by physical principles,

the reliability of a data-driven model is always a concern.

Active learning can provide a useful perspective to tackle the above challenges. For

conventional supervised learning with a “passive learning” framework, where the training

dataset is generated before the training process is performed, the model has to be prepared

blindly and inefficiently. The idea behind active learning is that not all data is created equally,

because different data may carry a different information intensity for the model. Provided

that the most instructive data is identified, labelled, and employed to fit a model, it can be

expected that such data may enable a trained model to reach the desired generalisability.

However, incorporating active learning in the constitutive modelling of materials remains a

relatively unexplored territory to date.

This chapter aims to fill the above gap by developing a deep learning committee-based

active constitutive learning strategy. Through three different scenarios, the unique advan-

tages of deep active learning are revealed. On the one hand, active learning can prioritise

selecting the most informative data when training a surrogate model. On the other hand,

active learning can serve as an effective tool to detect potential predictive blind points and

improve the model continuously. We demonstrate that active learning works for both MLP

and RNNs, but its application can go beyond any type of data-driven surrogate model. We

also confirm that deep active learning are not only suitable for the data from common con-

ventional or true triaxial tests but also complex strain-stress paths experienced in a BVP

problem. Furthermore, the trained DNNs are embedded into FEM computations to bypass

phenomenological constitutive models or particle-scale DEM simulations.

The remainder of the chapter is structured as follows. Section 3.2 introduces the basic idea

of active learning in general and the committee-based active learning strategy in particular.
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In Section 3.3, a comprehensive examination is conducted to understand different active

learning strategies in data-driven constitutive modelling. An interactive constitutive training

scheme is demonstrated in Section 3.4, where data generation and the training of DNNs are

integrated seamlessly. Such a procedure allows models to identify the most informative

data to make DNNs learn faster in a cost-effective manner. The significance and limitations

of active learning in constitutive modelling are discussed in Section 3.5. Some concluding

remarks are made in Section 3.6.

3.2 A deep active learning strategy for constitutive

modelling

Active learning is originally motivated by many machine learning scenarios where input-

output data pairs are difficult or expensive to collect, whereas most supervised learning

models are data-greedy. An important issue arises: can we use as small datasets as possible

to train a reliable predictive model? By identifying the most instructive data for a surrogate

model, active learning can maximise the performance of models while minimising the amount

of data to be labelled. Note that active learning is a strategy, rather than a specific model.

When combining deep learning models with the active learning strategy, the model is called

deep active learning.

The basic procedure of deep active learning is shown in Fig. 3.1. For a mapping relation

connecting inputs X and outputs Y, we have a labelled data pool Dl = {(xi,yi)}Nl

i=1 and

an unlabelled data pool Du = {xi}Nu

i=1 before training. The first step is to build deep neural

networks F (0) with prescribed X and Y. These models can be either trained or untrained

with labelled datasets Dl. Second, these deep neural networks are utilised to infer outputs

Ŷ based on the unlabelled data pool Du. Third, an active querying strategy is adopted

to identify some unlabelled data which is most likely to be mispredicted in Du. Then

the fourth step is to label/resample these recognised datasets via performing laboratory

experiments or numerical simulations. These data are moved from Du to Dl and new deep

neural networks F (1) are fitted based on the updated labelled data Dl. The workflow is an

iterative procedure including “exploration—labelling—training”. The procedure is repeated

until the trained DNNs reach the desired accuracy over a targeted stress-strain space. Over

these active learning rounds t = {0, 1, 2, · · · , T}, a series of DNNs F (0), F (1), F (2), . . . F (T )

are trained until the mapping relation from X to Y has been well captured by the latest
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DNN.

The core of active learning lies in the querying strategy. Many active query strategies

are reported in the existing literature, such as uncertainty sampling [134], expected error

reduction [135], density-weighted methods [135] and committee-based query (CBQ) strat-

egy [136,137]. However, most active learning strategies are domain-dependent and cannot be

adapted to other fields. Nevertheless, the CBQ approach can be a universal option which also

works for sequence-based regression problems, such as the constitutive modelling of granular

materials. In addition, the CBQ method is conceptually simple and easy to implement, and

therefore this strategy is adopted in this study.

The CBQ strategy requires a committee C =
{
M (1),M (2), ...,M (N)

}
of N surrogate

models (M) which are fitted based on an available labelled dataset Dl. Each committee

member provides forecasts on the data points extracted from the unlabelled data pool Du.

Then the predictive disagreement among different committee members, i.e. surrogate models

can serve as an indicator of the degree of uncertainty. Specifically, the sample with the largest

degree of disagreement among all the committee members is selected as the most informative

one for the current surrogate model.

This approach is established based on the idea that the model should make a better

prediction in the domain that is sufficiently covered by the training dataset, compared to

the region where the training data is sparsely distributed. It is expected that the forecast

in the region with sufficient data coverage will converge to the ground truth and thus the

inferences made by the committee surrogate models are relatively close to each other. By

contrast, the predictions around the region where the training data is insufficient will scatter

with a measurable variance. The discrepancy among predictions can be quantified by the

standard deviation SN for a given specimen:

SN =

√√√√ 1

N

N∑
i=1

(yi − ȳ)2 (3.1)

where yi is the forecast of the ith committee member with i ∈ [1, N ], and ȳ is the mean

value of these forecasts. By ranking the standard deviations of the predictions from the

unlabelled pool in their magnitude, the highest variances in the output forecasts indicate

1The cartoon is accessed from https://kidsread.wordpress.com/2022/06/03/3-steps-for-teaching-kids-

to-read/)
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Figure 3.1: Procedures of deep active learning 1

the most instructive data.

One more question is how to choose committee members. This study adopts a group

of DNN models as committee members with the only difference consisting in the random

initialisation of weights and biases before training. The predictive capability of DNNs is

empowered by weight and bias parameters. As a high-dimensional mapping of the objective

function, different (random) weight initialisations give rise to marginally different DNNs

after training, even though the network architecture and all other hyperparameters are the

same. Thus, one can leverage the active learning strategy regardless of what types of DNNs

are in use.

For the constitutive modelling of path-dependent materials, currently, there are two typi-

cal DNNs available: One is a multilayer perceptron (MLP) and the other one is a time-series

model, such as RNNs and temporal convolutional neural networks (TCN). MLP can capture

the point-to-point mapping efficiently but must introduce some internal variables to encode
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the loading history. In contrast, time-sequence models can capture extremely complex stress-

strain relations with multiple unloading-reloading cycles but must rely on a large number of

parameters and complex network structures to achieve good performance.

In the following sections, we will consider different constitutive training scenarios which

may be encountered in path-dependent materials. Also, both MLPs and time-series-based

DNNs will be investigated in the subsequent sections. The detailed road map is as follows:

The role of active learning. Section 3.3 aims to clarify the applicability of active learning

in the constitutive modelling of granular materials by performing parametric and compara-

tive examinations of three different scenarios of active learning in a stress-strain data pool.

On-the-fly active learning. Section 3.4 demonstrates the on-the-fly active learning where

data generation and model training are performed interactively. During each round, only the

optimal data which can minimise the prediction uncertainty is labelled. This part focuses on

stress-strain predictions of granular materials under conventional triaxial testing scenarios.

Special attention is paid to the advantage of active learning in identifying unreliable fore-

casts of a data-driven surrogate model and adaptively improving the model until it behaves

satisfactorily in the desired stress-strain space.

3.3 A comprehensive examination of active learning-

assisted data-driven constitutive modelling based

on a data pool

Although many simplifications are made in DEM, some research has shown that even the

simplest sphere-based modelling can reproduce the primary behaviour (stress-strain relation,

volumetric behaviour, and critical state) of real granular materials. To examine the role of

active learning in constitutive modelling, the constant-p data generated by DEM is used as

a data pool Three different training cases are considered:

Case 1: DNN models are initially trained with uniformly but relatively sparse sampled

data. A total of 36 groups of specimens, as shown in Fig. 3.2, are used for the preliminary

training. Then active learning is harnessed to detect blind predictions and improve the DNN

models continuously by adding the most important points during each round. The workflow

of Case 1 can be found in Fig. 3.3a.
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Case 2: DNN models start from nothing, i.e. no data is used to train the initial DNNs.

These DNNs are improved incrementally by adding the data points recognised by active

learning. This case is designed to investigate whether active learning can select data judi-

ciously at the very beginning of training. The workflow of Case 2 is exhibited in Fig. 3.3b.

Case 3: DNNs are trained with randomly selected stress-strain samples. This is the

conventional training scenario without the involvement of active learning and thus can be

regarded as a passive learning example.

Figure 3.2: Specimen distribution used for preliminary training

3.3.1 The adopted GRU neural network and accuracy evaluation

In this section, the GRU neural network is adopted as the base DNN model. In the pre-

vious chapter, this type of model has been proved to have an extraordinary fitting ability

for path-dependent granular materials. Also, the GRU model is not very sensitive to net-

work architectures and hyperparameters for relatively small-scale training data. Diverse

architectures and hyperparameters can yield similar predictions owing to the strong fitting

capability. In this work, the adopted architectures and hyperparameters are determined by

the experience drawn from our previous work. The details can be found in Table 3.1. Such

an architecture yields 5523 parameters to be trained. These GRU networks are built based
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on Tensorflow and Keras.

(a) Case 1

(b) Case 2

Figure 3.3: Basic active learning procedures for Case 1 and Case 2
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Table 3.1: The adopted network architecture and some key hyperparameters

Item Value

Network architecture GRU: 40

The length of moving windows 40

Batch size 64

Epoch number 200

Learning rate 0.001

The inference accuracy of a model is evaluated by quantifying the overall difference

between the forecasts and the ground truth. Two evaluation metrics are employed in this

study. One is the MAE and the other is the score metric as indicated in the previous chapter.

The former can offer a relatively rigorous evaluation of the predictive ability while the latter

is more intuitive to understand how good these predictions are as a whole.

Fig. 3.4 shows the loss values of training datasets in Case 1. The results show that the

MAE values converge to a steady state after 200 epochs. In each active learning round,

new data is added to training datasets. With increasing active learning rounds, the values

of the loss function decrease gradually. Note that as the network architectures have been

predetermined, no validation is conducted during training.

(a) Case 1 (b) Case 2

Figure 3.4: Learning curves during training
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3.3.2 Examination and verification of the role of active learning

in constitutive modelling

A series of parametric investigations are performed to understand the potential and limi-

tations of deep active learning for data-driven constitutive modelling of granular materials.

First, for Cases 1 and 2, four different DNNs are prepared and three committees with two,

three, and four DNNs as members are considered. In Case 1, each DNN is pre-trained based

on available datasets, while in Case 2, all the DNNs are simply initialised with different

random seeds and no training is conducted at the beginning.

Active learning is utilised to detect all the forecast performance over the entire labelled

data pool. Each committee member is employed to infer stress responses of all the strain

paths in the data pool. Ten groups of data specimens with the largest standard deviations

in Case 1 are listed in descending order in Table 3.2, where each index number in the

table represents a certain strain path. To verify the capability of active learning, the actual

predictive accuracy for each strain path is quantified by comparing it with the ground truth

stress response. Then the ten worst predicted strain paths by each DNN are also listed.

Table 3.2: The first-round active learning-assisted forecasts and verifications for Case 1

Ranking
Estimated MAE ranking Actual MAE ranking

2 DNNs 3 DNNs 4 DNNs NN1 NN2 NN3 NN4

1 52 52 52 52 52 1 52

2 1 1 1 54 1 52 60

3 53 53 53 60 53 53 1

4 55 54 74 4 4 60 74

5 6 4 4 74 54 74 53

6 74 74 54 1 8 65 65

7 65 55 60 69 66 55 4

8 60 8 55 55 69 54 54

9 4 60 65 53 15 4 69

10 56 6 6 8 57 63 15

The table demonstrates that most estimations made by the active learning algorithm are

consistent with the actual predictions. The ten worst predictions given by each committee

member’s DNN vary slightly from each other, which confirms that different initialisations of

weights and biases yield different DNN models. Among the ten groups of most unreliable
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forecasts estimated by active learning with two, three and four committee DNNs, a total of

eight, nine and nine groups of strain paths, respectively, are exactly within the actual MAE

ranking list.

The results confirm that the active learning strategy is capable of discovering the worst

predictions without knowing the ground truth. Furthermore, the results support that only

two or three committee members are sufficient to serve as an error indicator, as using more

committee member DNNs requires more computational costs. A group of three committee

members are thus adopted throughout the study.

The results in Case 1 verify the effectiveness of active learning. However, in the first

round of Case 2, the predictions given by active learning are irrelevant to the actual worst

predicted strain paths, no matter if two, three or four committee members are employed. A

big discrepancy between Cases 1 and 2 lies in that in Case 1, the initial committee DNNs

have been trained based on uniformly distributed specimens and these models have learned

sufficient knowledge about the constitutive relation (with average MAE: 0.03; average score:

0.944); while the initial committee DNNs in Case 2 are not trained and know nothing about

the stress-strain mapping. The sharp contrast in the performance of active learning in Cases

1 and 2 indicates that only the DNNs which have learned sufficient knowledge are qualified

to serve as committee members.

3.3.3 Batch-mode active learning scheme

For the committee-based active learning scheme, the time required to train DNN models

cannot be ignored. If the most informative data is queried in serial, i.e., one at a time,

the total cost of training DNN models will be practically unaffordable. To strike a balance

between efficiency and labelling accuracy, batch-mode active learning is adopted by selecting

a group of specimens with the largest uncertainty to label each round and thus reducing the

number of training committee DNNs. However, one should consider the possible information

redundancy among the selected “worst predicted” specimens, because labelling the most

hard-to-predict specimen first may eliminate the need to label the “neighbouring” cases in a

batch of selected specimens. To address this concern, a batch sampling scheme is proposed

as shown in Fig. 3.5. When we have selected a certain point, its neighbouring points within

an influence radius of R will be regarded as invalid and are not considered in the current

batch. However, these invalid points in the current round can still be selected in the next

round. In this study, R is empirically selected as 1.5Ls, where Ls is the sampling interval.
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Figure 3.5: Illustration of data resampling in a batch-mode active learning scheme

3.3.4 Prediction performance of three training cases

The prediction performance of the three different training cases is shown in Fig. 3.6. To

reduce the possible influence of randomness, three neural networks with the same architec-

ture, hyperparameters, and training data but different initialisations in weights and biases

are trained. The mean and standard deviation of these three different DNN predictions are

considered. When the number of training specimens is less than 35 groups, the DNNs from

Case 3 outperform those in Case 2, demonstrating that the committee-based active learn-

ing algorithm is not necessarily useful when each committee member DNN has not learnt

sufficient knowledge.

When the training number is larger than 35, the prediction accuracy of Cases 1 and 2

outperforms those in Case 3. Figs. 3.7 and 3.8 demonstrate the worst and second worst

forecasts given by a DNN in Cases 1 and 3 when 60 groups of training datasets are used.

Although it appears that only a small discrepancy in the forecasted score and MAE is

found, as shown in Fig. 3.6, a relatively large difference in the actual stress-strain predictions

can be observed. Particularly, in the random inputted training datasets in Case 3, DNNs’

generalisation error decreases relatively slowly and 30 groups of extra training specimens

(almost 1
4
of the total number) are required to reach a similar predictive level in Cases 1 and

2. These results confirm that active learning can train a good predictive model by using less

amount of data.
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(a) Score (b) MAE

Figure 3.6: Learning curves during training

3.3.5 Active learning-informed data preparation

With the aid of active learning, DNNs can automatically prioritise labelling the most in-

structive data to maximise the inference performance of models. We summarise in Fig. 3.9

the intelligently sampled data recognised by active learning in each round for Cases 1 and 2.

In Case 1, the top five groups of new specimens are selected in each round and a total of six

rounds of active learning querying are included. In Case 2, the top ten groups of datasets

in each round are selected because all the training data is obtained by active querying and

labelling a relatively large number of specimens in each round can reduce the overall time

costs. A total of seven active learning querying rounds are listed in Fig. 3.9b.

Fig. 3.9 may suggest that the specimens with reloading strain lower than 2% are prob-

ably the most informative data for training. These specimens represent a relatively larger

unloading-reloading loop. The prediction is similar to extrapolation if we infer large unloading-

reloading loops with only small-loop data because a large loop may include richer information

than small loops. Furthermore, Fig. 3.9a indicates that the loops at the elastic-plastic tran-

sition phase (a major principal strain ranging from 0.03 to 0.07) may outweigh those at the

critical stage where the stress remains constant with the increasing strain. The reason can

be attributed to the fact that the adopted training data has a relatively long and steady

critical state (see Fig. 3.8), and thus the information density carried by the data points at

the post-peak state is lower than those at the elastic-plastic transition stage.

By observing the first and second rounds of selected data in Fig. 3.9b, it is found that the

selected data always occur in clusters. This phenomenon may explain why the active learning
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(a) The worst forecast (b) The second worst forecast

Figure 3.7: The worst predictions given by a DNN model in Case 1 with 60 groups of

training data

algorithm may underperform conventional passive learning when the surrogate DNNs do not

learn the real relation at all. The reasons can be that the active learning algorithm may

converge to local or short-sighted optimal solutions due to the greedy nature of the algorithm.

A greedy algorithm often fails to make the best decision although it always goes for the local

best choice at each iteration.

3.4 Interactive constitutive training and data labelling

through active learning

In Section 3, all the stress-strain data is created before training models. The computational

costs for preparing data are thus not reduced. In this section, the training of DNNs and the

generation of data via microscale DEM simulations are performed in an interactive manner.

Active learning is used to judiciously select data and only the most informative data is

labelled, aiming to reduce the overall size of training datasets.

3.4.1 Strain path falsification

In continuum-based numerical computation, the constitutive relation of a specific material

receives a strain tensor and yields a corresponding stress tensor. The premise of using active

learning is that inputs X or unlabelled datasets Du are available. Thus, the primary concern

of applying active learning in constitutive modelling is whether the strain sequences can be
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(a) The worst forecast (b) The second worst forecast

Figure 3.8: The worst predictions given by a DNN model in Case 3 with 60 groups of

training data

constructed to generate an unlabelled data pool. Yet, granular material cannot undergo

tensile and large compressive deformation. The admissible deformation scope for granular

materials is restricted to a relatively narrow strain-stress space, compared to those of other

solid materials (e.g., rubber and metal). In addition, the most common strain-stress path

of granular materials experienced in a BVP is shear-type deformation, which is not easy to

be artificially constructed through either proportional or random loading in the context of

full-strain-dominated loading conditions.

Inspired by conventional triaxial experiments of granular soils, the in-situ stress con-

dition of soils existing in the ground is approximated by imposing a constant confining

pressure. Axial strain is applied to represent external disturbances on specimens. Such a

hybrid boundary condition simplifies the complexity of artificially constructing admissible

deformation for a granular specimen because the constant confining pressure ensures that

the granular specimen does not undergo tensile or excessive isotropic compression loads.

Also, only the one-dimensional axial strain needs to be fabricated. In this section, we adopt

the most common experiment in geotechnical engineering as the prototype to perform deep

active learning.
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(a) Case 1 (b) Case 2

Figure 3.9: The added data specimens via active learning in each round

3.4.2 A surrogate error indicator for data-driven constitutive mod-

elling

Although the granular specimen is not perfectly isotropic, especially during the loading pro-

cess, we implicitly incorporate the isotropic assumption by homogenising stress responses in

a triaxial testing condition. For an isotropic material, the strain state at a point in a 3D

space should be depicted through at least three components (principal variables or invari-

ants). When performing data-driven constitutive modelling, it is crucial to keep complete

strain components (e.g. three principal strains) as inputs. For a conventional triaxial testing

condition, the axial strain path can be falsified readily, but the lateral strain relates to the

properties of materials and is thus difficult to construct artificially. Although the stress-

strain prediction model should obey the relation shown in Fig. 3.10a: [Axial strain, lateral

strain]→[axial stress], we introduce a new mapping relation which links the axial strain and

the axial stress directly (see Fig. 3.10b). The mapping requires only axial strain sequences

as inputs thus one can generate extensive strain paths as unlabelled datasets.

The underlying idea is that both DNNs in Figs. 3.10 suffer from the same data scarcity

issue, provided that they share the same training data. The predictions around the region

where the training data is insufficient will have a larger variance than the region where data

is sufficiently covered. Model B in Fig. 3.10b is not the desired candidate to forecast stress-
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strain behaviour, but the active learning strategy introduced in Section 3.3 enables it to be a

surrogate error indicator to identify the most helpful data for improving the current DNNs.

Then these identified strain paths will be imposed on DEM specimens as the deformation of

the boundaries to generate corresponding stress responses as new training data. Model A in

Fig. 3.10a will make use of the resampled data to improve it. These procedures are repeated

until a satisfactory predictive model has been fitted.

(a) Model A: Constitutive model

(b) Model B: The surrogate error

estimation model

Figure 3.10: Inputs and outputs for data-driven stress-strain modelling in a conventional

triaxial testing condition

3.4.3 Examination of the whole domain and adaptive resampling:

an example with varied unloading-reloading cycles

The stress-strain curves with varied unloading-reloading loops are challenging to be predicted

by traditional constitutive models. In this subsection, conventional triaxial loading cases

with unloading-reloading loops are adopted to examine the capability of active learning in

distinguishing complex strain paths. Constitutive modelling of path-dependent materials is

a typical time series problem. To obtain unlabelled strain paths with unloading-reloading

cycles, we artificially construct strain paths passing through selected unloading and reloading

points, and then interpolate data points with equal spacing. These unloading and reloading

strains can be described with horizontal and vertical coordinates in Cartesian coordinates,

as shown in Section 3.3. For a strain-dominated loading condition, such a falsification of the

axial strain path resembles the actual strain sequence in laboratory experiments, provided

that a similar interval is selected. Through a large number of artificial strain paths, we can

55



develop a global domain examination and resampling strategy. The workflow is shown in

Fig. 3.11 and the detailed procedure is described below:

(1) Train a constitutive model (Model A) and three surrogate error models (Model B)

based on the available stress-strain data pool.

(2) Choose unloading-reloading strain points with a desired resolution in the whole do-

main, and then construct the strain sequence (unlabelled data) with even interpolation.

(3) Utilise the three trained surrogate error indicators (Model B) with diverse initial

weights and biases to predict stress values for these falsified strain paths.

(4) Calculate the standard deviation (Eq.3.1) of each stress sequence prediction and rank

the standard deviations of all strain sequences.

(5) Select ten strain paths with the largest standard deviations from the previously ranked

data pool using the batch-mode scheme (Fig. 3.4).

(6) Perform DEM simulations using the ten selected strain paths as boundary conditions

to generate corresponding stress responses. This procedure aims to tag the most instructive

unlabelled data specimens.

(7) Use the trained constitutive model (Model A) to forecast the ten newly generated

DEM specimens and evaluate the prediction accuracy.

In the case that all the predictions have reached a satisfactory level, the current DNN

model can be regarded as a reliable constitutive model. Otherwise, add these newly generated

data to the training datasets, and repeat steps (1)-(7).

In the above workflow, Models A and B share the same network architecture and hyper-

parameters, but Model B only inherits part of the input features from Model A. Note that

the number of network layers and neurons relates to the amount of training data and in prin-

ciple, the DNN architecture and hyperparameters in each training phase for different models

should be modified, because the optimal architecture may change slightly with a variation

in training specimens. Yet the model architecture and hyperparameters are currently kept

constant to reduce expensive tentative training costs when tuning these hyperparameters.

In the future, some available packages, especially new algorithms in autoML, deserve to be

explored to tune the network architecture automatically.
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Figure 3.11: The workflow of global domain examination and resampling strategy

3.4.4 Verification of the interactive learning strategy

We consider training a data-driven model aiming to capture strain-stress mapping in a

conventional testing condition with mutually different unloading-reloading points. The initial

training data is randomly sampled as shown in Fig. 3.12a. Three DNNs fitted with these

initial specimens are employed to examine unreliable predictions in the global domain with

a strain interval of 0.003 shown in Fig. 3.12b.

All the training data is developed via DEM simulations of conventional triaxial testing.

The simulated parameters are the same as the constant-p true triaxial testing in Section 3.3.

The confining pressure is kept to 200 kPa during testing. A GRU network is used as a base

DNN for constitutive training. Based on the initial random specimens shown in Fig. 3.12, the

initial model, obtained by trial-and-error, includes two GRU hidden layers with 60 neurons

and a dropout rate of 0.02 for each layer, resulting in a total of 33,843 weights and biases

parameters. The two GRU layers adopt the tanh activation function while the output layer
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uses a linear activation. The optimiser is the adaptive moment estimation (Adam) and the

learning rate is 0.01. These networks are trained for 2000 epochs with a batch size of 256.

MAE is used as the loss function.

(a) The random sampling distribution for

training an initial DNN model

(b) A sampling space of unlabelled strain

paths

Figure 3.12: Sampling space for training and examination

Following the procedure described in Section 3.4.3, we train Model A for constitutive

predictions while three error indication models (Model B) for seeking ten groups of most

unreliable predictions. The ground-truth stress responses are obtained by performing DEM

simulations of the selected strain paths. The forecasting accuracy of the selected samples is

evaluated by comparing the predictions given by Model A and the ground truth from DEM

simulations. The forecast results are shown in Table 3.3. Note that the first three columns

are discovered by Model B while the last two columns are verified by Model A. The results

demonstrate that almost all the predictions on these specimens are not sufficiently accurate

and the average prediction score reaches only 0.71. In the next round, these new specimens

will be added to the training samples and used for re-training DNNs.

To verify the proposed interactive constitutive training scheme, we also choose ten strain

paths with the smallest standard deviations. The corresponding stress responses of these

strain paths are also obtained via DEM simulations. The batch-mode scheme is used to

create a wider range of representatives. Table 3.4 gives the prediction performances of these

specimens. The results show that all the specimens are satisfactorily forecasted with a full

58



Table 3.3: The prediction performance of the selected ten samples with the greatest stan-

dard deviations but extracting neighbouring points

Unloading strain Reloading strain Standard deviation Score MAE

0.036 0.006 0.316 0.795 0.041

0.027 0.006 0.313 0.759 0.047

0.054 0.003 0.313 0.605 0.055

0.018 0.003 0.310 0.519 0.081

0.060 0.003 0.309 0.780 0.044

0.117 0.006 0.308 0.653 0.053

0.048 0.003 0.305 0.706 0.043

0.042 0.006 0.304 0.783 0.044

0.072 0.003 0.302 0.907 0.028

0.066 0.003 0.302 0.559 0.065

score.

The comparison between Tables 3.3 and 3.4 reveals that the proposed surrogate error

indication model is useful for searching for the weakness of DNN models, even though actual

stress-strain responses are unknown. For the committee-based active learning scheme, the

main computational costs occur in training three DNNs as committee members ( 0.5 hours

per DNN), while the querying process can be finished in a few seconds. In contrast, it takes

a few hours to run a group of DEM specimens. By reducing the number of generating DEM

specimens, the cost of training a reliable DNN model will be greatly saved.

By repeating the global domain examination and resampling scheme, the prediction ac-

curacy of the data-driven constitutive model will be gradually enhanced. This repetition

process terminates when the ten discovered specimens with the largest variances can be sat-

isfactorily forecasted. In our current model, applying six rounds of resampling is found to

be able to develop a sufficiently reliable data-driven constitutive model over the domain of

interest. The worst forecasts after the sixth round of active learning are given as follows:

The newly added training specimens during each active learning round can be found in

Fig. 3.14. The results show that the majority of newly added data are located in the shaded

domain where the reloading strain is lower than 0.02. These points represent relatively large

unloading-reloading loops. In contrast, only one specimen is selected as a reloading strain

larger than 0.04. Again, the results confirm the importance of labelling the stress-strain
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Table 3.4: The prediction performance on the ten specimens with the smallest standard

deviations

Unloading strain Reloading strain Standard deviation Score MAE

0.075 0.066 0.041 1.0 0.011

0.063 0.054 0.044 1.0 0.013

0.069 0.057 0.046 1.0 0.013

0.081 0.069 0.061 1.0 0.009

0.060 0.048 0.062 1.0 0.011

0.069 0.063 0.064 1.0 0.017

0.051 0.042 0.064 1.0 0.010

0.081 0.075 0.067 1.0 0.012

0.057 0.042 0.069 1.0 0.017

0.063 0.060 0.069 1.0 0.016

curves with large unloading-reloading cycles.

3.5 Discussion

3.5.1 Significance of active learning

We know when our model does not know

When performing FEM simulations with data-driven constitutive models, a major concern is

whether such a FEM simulation is sufficiently reliable. Following the idea of committee-based

active learning, we can train multiple surrogate models simultaneously based on available

datasets. If the predicted responses given by different DNNs vary from each other with a

relatively large discrepancy, there might be a high risk of mispredictions. Then a procedure

of labelling these strain paths is taken to enrich training datasets. The DNN model is refitted

based on the new training dataset to improve the generalisation capability. Active learning

enables DNN models to be self-learning with an intelligent sampling scheme.

Developing small-data-driven models with better generalisation capability

The data-hungry nature and the susceptibility to misprediction are two open challenges for

a data-centric surrogate model. This study has confirmed the potential of active learning for
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(a) 0.042/0.012, MAE:0.019 (b) 0.039/0.006, MAE:0.017

(c) 0.024/0.006, MAE: 0.015 (d) 0.030/0.009, MAE: 0.015

(e) 0.030/0.006, MAE: 0.014 (f) 0.006/0.003, MAE: 0.014

Figure 3.13: The worst forecasts discovered in the sixth round of active learning

developing a reliable and cost-effective data-driven constitutive model for granular materials.

At each round of training, DNNs always discover and label the most hard-to-predict strain

paths. This feature bypasses the need to label the less informative data. In addition, active

learning can be a useful tool to combat imbalanced data, where most supervised learning
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Figure 3.14: The newly added data specimens in each active learning round

models ignore and in turn tend to mis-predict the minority class, although the predictions

of these minority datasets often dominate the success of the trained model. Active learning

will automatically select these minority data if the trained DNNs mis-predict them.

3.5.2 Limitation of active learning and future work

Strain paths must be available to reduce labelling costs

A prerequisite of implementing active learning for data-driven constitutive modelling is that

a large number of strain paths should be available. Although a faction of them can be arti-

ficially constructed as demonstrated in Section 3.4, most strain paths experienced by Gauss

points in a BVP are intertwined with stress responses and are thus hard to be falsified. This

limitation no doubt restricts active learning from bringing possible disruptive progress for

data-driven constitutive modelling. To address this issue, a possible remedy is by exploiting

advanced machine learning tools, such as deep generative models, to learn the probability

distribution of real strain-stress paths in typical BVPs. Then the learned generative model

can produce massive strain paths that probably occur in engineering problems but never be
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seen in existing datasets. The data pool can be used to verify the effectiveness of the model

in a wider strain space through active learning.

Active learning tends to be sensitive to outliers in noisy datasets

Active learning can identify the most unreliable forecasts while these recognised datasets

might be outliers. If active learning deals with data with high-level noises or fluctuations, the

algorithm may constantly add outliers to training datasets which will certainly deteriorate the

predictive capability of models. For example, the post-peak stress-strain stage experienced

by a granular RVE may exhibit remarkable “stick-slip” behaviour with locally up-and-down

stress values because of the evolving breakage and reconstruction of strong force chains in

deformed granular materials. The same situations apply equally to laboratory experiment-

based data. In contrast, the datasets from analytical formulations are almost continuous and

are easier to be fitted. However, closed-form expressions can simply provide approximated

stress-strain data for certain materials. Thus one has to consider the value of training a

surrogate model with such imperfect data.

To tackle the noisy data and enable a wider application of active learning, more research

needs to be explored in the future. On the one hand, some advanced feature extraction

measures should be harnessed to denoise or ‘wash’ datasets. On the other hand, some cus-

tomed active learning algorithms should be designed to automatically remove the measurable

fluctuated points.

3.6 Concluding remarks

This study has developed a deep active learning-empowered data-driven constitutive mod-

elling strategy, aiming to partially address two open challenges in the field: (1) use a small

dataset to train a good predictive model, and (2) verify the reliability of a model without

knowing ground truth. Three different application scenarios with RNNs and MLP-based

DNN models are investigated in detail.

1. Committee-based active learning requires only a few committee members provided that

each committee member has learned sufficient knowledge. The greatest advantage of

active learning lies in its ability to detect inaccurate predictions without knowing the

ground truth, rather than guiding the surrogate model to select data at the very

beginning of the training phase.
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2. The key to achieving interactive data-driven constitutive training, where training mod-

els and tagging data are dynamically performed, is that a pool of strain paths should be

available beforehand. By using the proposed surrogate error indicator approach, some

specific strain paths of certain proportional loadings can be artificially constructed.

3. The active learning algorithm is a useful tool to automatically discover the underlying

order of importance for a pool of data. Such insight enables to develope a reliable model

with as small datasets as possible by only preparing the most informative specimen for

the current surrogate model.

64



Chapter 4

An FEM-NN framework for

accelerating the multi-scale

computation

In this chapter, our work introduces a neural network-based intrinsic structure model that

serves as a proxy model for learning multiscale intrinsic structure relationships. The model

is trained using raw data obtained from FEM-DEM multiscale simulations, enabling faster

computations. Active learning is employed to estimate the significance of data points during

network training and to establish an efficient resampling scheme that selects representative

samples from the extensive dataset. To assess the performance of the proposed framework,

biaxial simulations and retaining wall simulations are conducted. The simulations are care-

fully analyzed to identify simulation errors, and potential enhancements are discussed in

detail.

4.1 FEM-DEM

Before introducing the FEM-ML framework, we introduce the FEM-DEM simulation method.

The method was developed based on the open source partial differential equation solver Esys-

escript for the FEM part, and the open source software YADE for the DEM part. For the

related procedures, please refer to FEMxDEM.

The FEM-DEM method for granular material calculation consists of two main parts:

(1) the FEM calculation (macroscopic model) part; (2) the DEM calculation (fine material
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RVE) part, which is carried out at the same time as the macroscopic calculation, and the

procedure flow is shown in Fig. 4.1, with the steps as follows:

1. Macro-modelling and meshing in FEM;

2. Create a list of integration points {G(n)}NG
n=1 according to the element type correspond-

ing and the total number of integration points NG;

3. Initialise a low-scale RVE list {RVE(n)}NG
n=1 that corresponds to the integration point

list {G(n)}NG
n=1;

4. At every sub-step, apply boundary condition to the macro model, calculate the global

force tensor and assemble the global stiffness matrix in FEM solver with the lower-scale

information;

5. Obtain low-scale information such as initial stress σ, material matrix D, void ratio e,

fabric tensor Φ, etc. for each low-scale integration point;

6. Solve the FEM model for displacement increment ∆u and the strain increment ∆ϵ;

7. Apply the strain increment ∆ϵ to the lower-scale DEM {RVE(n)}NG
n=1;

8. Repeat (5)-(7) until the ratio of the displacement incremental paradigm to the total

displacement incremental paradigm of the current load step ∥∆u∥
∥∆utotal∥

is less than the

displacement error threshold, Eu = 0.01;

9. Update the all of the lower-scale {RVE(n)}NG
n=1 and the configuration of the macro model

{x(n)}Nn
n=1 where Nn is the total number of nodes of the macro model;

10. Repeat (4)-(9) until the end of loading.

4.1.1 Marco solver: FEM

Control equation: In the FEM part, the node displacement tensor {u(n)
j }

Nn
n=1 is taken as the

basic unknown quantity and solved according to the equilibrium equations and co-ordination

conditions [138]. Without considering the volume force, the control equation is expressed as:σij,i + bj = 0 in Ω

ni · σij = t̄ on ∂Ωt

(4.1)

where σij,i = ∇Xi
·σij, bj is the body force on in direction of j, ni is the out-normal direction

on the traction boundary ∂Ωt, and t̄ represents the boundary traction.
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Figure 4.1: Flowchart of FEM-DEM multi-scale coupling calculation

The above is the strong form. In the Galerkin method, the weak form represented by the

weight function and integration is shown as:∫
Ω

w (σij,i + bj)dΩ = 0 (4.2)

where w represents the weight function (or the test function). The strong form is equivalent

to having the above equation hold for any weight function w. The shape function Nn (n

denotes the number of nodes in the element) is typically chosen as the weight function w

because the shape function Nn automatically satisfies the displacement condition. Then Eq.

can be written in the shape of: ∫
Ω

Nn (σij,i + bj)dΩ = 0 (4.3)

where Nn is the shape function, subscript n is the number of nodes used in this interpolation

equation. In the case of isoparametric elements, the number of linear equations formed is

equal to n ∗Dof, where Dof is each element’s degree of freedom.

Discretisation: To achieve higher accuracy, the model is further discretised into indi-

vidual elements connected by sharing nodes and the internal displacements of the elements

are interpolated by means of element shape functions. By means of partition integration and

divergence theorem, Eq. 4.3 can be expressed as an integral of the internal stresses and an
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integral of the pressures on the boundaries as follows:

−
∫
Ωe

Nn,iσijdΩ +

∫
∂Ωe

t

NnniσijdΓ +

∫
Ωe

NnbjdΩ = 0 (4.4)

where Nn,i = ∇Xi
Nn. Note, because the model is discretised into a number of elements, the

domain of the above formulas is within a single element Ωe. After substituting the traction

boundary into upon equation we have:

−
∫
Ωe

Nn,iσijdΩ +

∫
∂Ωe

t

NntjdΓ +

∫
Ωe

NnbjdΩ = 0 (4.5)

Assume the nonlinear constitutive relationship as:

σij = σ
(0)
ij +Dijkldϵkl (4.6)

where σ
(0)
ij is the original stress before loading, dϵkl is the strain increment, and Dijkl is the

material tangent matrix.

Strain under the small deformation assumption is further introduced:

ϵkl =
uk,l + ul,k

2
=

Nm,lumk +Nm,kuml

2
(4.7)

where the gradient corresponds to the initial configuration uk,l = ∇Xl
uk and Nm,l = ∇Xl

Nm,

and m indicates the number of node in one element.

Substituting Eq. 4.6 and 4.7 into Eq. 4.5, we have:∫
Ωe

Nn,iσijdΩ =

(
dumk

∫
Ωe

Nn,iDijklNm,ldΩ + duml

∫
Ωe

Nn,iDijklNm,kdΩ

)
/2

+

∫
Ωe

Nn,iσ
(0)
ij dΩ

(4.8)

Because of the symmetries of the tangent matrix Dijkl = Dijlk, we have:

dumkNn,iDijklNm,l = dumkNn,iDijlkNm,l

= dumlNn,iDijklNm,k

(4.9)

So we have:

−dumkK
e
njkm − F e

nj + T e
nj +Be

nj = 0 (4.10)

where the element stiffness Ke
njkm =

∫
Ωe Nn,iDijklNm,ldΩ, inner force F e

nj =
∫
Ωe Nn,iσ

(0)
ij dΩ,

boundary force T e
nj =

∫
∂Ωe

t
NntjdΓ and the body force Be

nj =
∫
Ωe NnbjdΩ.
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The element-specific Eq. 4.10 are assembled into global linear formulas through nodes

shared between elements:

−dumkKnjkm − Fnj + Tnj +Bnj = 0 (4.11)

and can therefore be solved to obtain displacement increments dumk.

4.1.2 Lower-scale solver: DEM

In the FEM-DEM framework, DEM calculations are utilised to determine the material’s

constitutive relationship and lower-scale structures at integration points. The strain of the

macroscopic FEM solver at the integration point is inputted into the RVE model as a bound-

ary condition for the lower-scale DEM computations. The information, such as the stress

tensor σij and the approximated tangent matrix Dijkl, is obtained through parallel compu-

tation at each integration point and then passed back to the FEM solver for the calculation

of nodal displacement increments.

To enhance simulation accuracy, particularly when dealing with a limited number of

particles, periodic boundaries are employed in the RVE simulation to mitigate the impact

of boundary effects. The contact between particles is governed by Hertz’s contact model,

and the calculation of normal and tangential contact forces is performed according to the

following methodology: fn = knu
c
n

f t = ktu
c
t

(4.12)

where uc
n and uc

t represent relative displacements in normal and tangent direction, respec-

tively, and kn and kt are the normal and tangent contact stiffness, which can be presented

as: 
kn =

G

1− ν

√
2r̄ − δcn

kt =
2G

2− ν

√
2r̄ − δcn

(4.13)

where G is the shear modulus, ν is the Poisson’s ratio, δcn is the normal overlap length

between two particles and r̄ = 2(r1r2)/(r1 + r2) represents the equivalent radius.

To facilitate the macroscopic calculations, the stress tensor needs to be transmitted to the

FEM solver. This necessitates the utilisation of a homogenisation method that transforms

the contact behaviour of the RVE into a stress tensor. The homogenisation formula is then
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applied as follows, with reference to the works of Christoffersen et al. [125]:

σij =
1

2V

Nc∑
c=1

f c
i d

c
j + f c

j d
c
i (4.14)

where V is the total volume, Nc is the total number of the inner contacts, fi and fi are the

contact force vector and vector connecting centres of two particles. In this chapter, the FEM

solver utilises the Newton-Ralphson non-linear iteration for the global balanced solution, so

the tangent matrix is necessary for the global stiffness matrix evaluation as is shown in Eq.

4.10. Here, the tangent matrix is approximated via [28]:

Dijkl =
1

V

Nc∑
c=1

(
knn

c
id

c
jn

c
kf

c
l + ktt

c
id

c
jt

c
kf

c
l

)
(4.15)

where ni and tj represent the normal and tangent directions, respectively.

To strike a balance between computational efficiency and the high fidelity of low-scale

DEM simulations, each particle assembly should have a sufficient number of particles to

replicate the mechanical properties of the granular material while minimizing computation

time. Reference work [139] provides insights into the recommended number of particles.

Fig. 4.2 depicted the shear stress response of the particle assembly under simple shear.

As the number of particles increases, the stress response gradually converges to a single value,

resulting in decreased variance. When the number of particles reaches 700, the simulation

achieves a fundamental convergence of stress results.

Figure 4.2: The shear stress with different numbers of particles in the assembly [3]

In the study conducted by Guo et al. [4], assemblies consisting of different numbers of

particles (100, 200, and 400) were generated using the same particle gradation distribution.
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These assemblies were subjected to isotropic loading until reaching an enclosing pressure

of p = 100kPa. Fig. 4.3 illustrates the contact distributions and coordination number

distributions for the three different particle number assemblies at the same pressure level.

Among them, the contact distribution rose diagram for the specimen with 400 particles

closely resembles a circle. As the number of particles increases, the contact distribution

becomes closer to a circular shape. However, due to chance, specimens with 100 and 200

particles exhibit varying contact distributions, with some directions having more contacts

while others have fewer contacts.

The coordination number distribution plot demonstrates that the coordination number

for particle assemblies with 400 particles is more concentrated around a mean value of 4.32.

This indicates that the assembly with 400 particles mitigates the chance-induced contact

anisotropy observed in lower particle number specimens.

In order to strike a balance between computational efficiency and the validity of the DEM

simulation, a total of 500 particles per RVE are utilised in the calculations.

4.2 FEM-NN: neural network-based multi-scale method

Typically, traditional constitutive models based on assumptions can be adequately calibrated

using conventional triaxial simulation experimental data. However, with the advancements

in simulation techniques and measurements, a substantial increase in data availability has

rendered these classical models insufficient to effectively handle the growing volume of high-

quality data. In contrast to traditional constitutive models, data-driven models extract

constitutive patterns directly from vast amounts of data, requiring minimal assumptions.

This allows them to better accommodate and leverage the abundance of data in a more

comprehensive manner.

By leveraging sophisticated network architectures and diverse nonlinear activation func-

tions, the neural network model demonstrates excellent performance in nonlinear regres-

sion tasks involving high-dimensional data. Consequently, it becomes a valuable tool for

reconstructing complex, high-dimensional nonlinear relationships in mechanical computa-

tions. This capability has been demonstrated in previous works such as Mozaffar et al. [98],

Ghavamian et al. [105], Logarzo et al. [106], and Huang et al. [108]. Therefore, in the present

study, the neural network model is employed to reproduce the macroscopic mechanical be-

haviour of granular materials.
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Figure 4.3: RVEs with different numbers of particles [4]
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In FEM-DEM simulation, capturing the history effect of granular material involves stor-

ing the RVE model corresponding to the integration points in FEM model. However, this

approach consumes a significant amount of memory. As the simulation progresses, the pro-

gram’s memory usage continuously increases, eventually exceeding the memory limit and

causing crashes.

To address this issue, the FEM-ML framework avoids the need to save the granular

material RVE altogether, resulting in substantial memory savings. In this framework, a

new variable must be introduced to represent the loading history of the granular material.

Describing the plastic state of granular materials in DEM simulations using a single param-

eter is challenging because the division of strain into elastic and plastic components solely

based on macroscopic quantities (such as stress, strain, void ratio, etc.) is not straightfor-

ward. Consequently, it is not feasible to characterise the historical state of granular materials

solely in terms of plastic strain or cumulative plastic work, as typically done in traditional

elastoplastic models.

4.2.1 Neural network modelling of micro-RVE response

A crucial aspect for the further advancement of FEM-NN lies in effectively utilising a re-

duced number of features to comprehensively capture the influence of the loading history

of granular materials. Neural networks offer a significant advantage in this regard, as their

powerful mapping capabilities allow for the establishment of non-linear relationships be-

tween multiple physical variables, unconstrained by physical magnitudes. Leveraging neural

networks’ capabilities, internal variables that represent the loading history of the granular

material can be employed, even if they lack clear physical interpretations or fail to satisfy

gauge requirements. As long as these variables can uniquely calibrate the historical state of

the material, they can be utilised. In this study, the current state of the granular material

is characterised using the cumulative value of the absolute strain increment during material

loading:

ϕij =
n∑

k=0

|∆ϵ
(k)
ij | (4.16)

This set of variables is straightforward to implement and highly interpretable. Each

element of this internal variable exhibits a monotonically increasing trend as the loading

process advances. Consequently, these variables can be effectively employed to uniquely

identify and characterise the current historical state of the granular material.
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During the nonlinear iterations of FEM-DEM calculations, the approximate cut-line ma-

terial matrix, calculated using Eq. 4.15, is utilised for evaluating the element stiffness matrix,

as defined in Eq. 4.10. The computation of the low-scale RVE using dynamics is compu-

tationally intensive, with each integration point corresponding to a particle assembly. As a

result, a substantial amount of data describing the state and mechanical properties of the

granular material is stored in memory. However, only the macro-stress (σij) and the tangent

matrix (Dijkl) are necessary for the FEM calculation.

In the neural network-based construction of the constitutive model, we compress the

granular material information into a vector that contains only the essential features

{(ϵij, ϕij, σij, Dijkl)
(n)}NG

n=1, where NG is the number of integration points. This compression

reduces the complexity of training the network and enhances the trained network model’s

computational efficiency.

In the Newton-Ralphson method, the tangent matrix Dijkl is necessary for nonlinear

iterations. In network prediction, the tangent matrix can be evaluated via auto-gradient as:

Dijkl =
∂σ̂ij

∂ϵkl
(4.17)

The Jacobian is automatically evaluated after the network predicts the stress. Whilst this

technique of automatic differentiation has been employed in several studies [91,105,140], the

author remains doubtful about its computational accuracy. As is shown in Fig. 4.4, without

training the first order of the differentiation (Sobolev training), the network’s predictions of

the gradients are not obviously distinct from the ground truth.

The Jacobian is evaluated automatically once the network predicts the stress. Although

this approach of automatic differentiation has been utilised in several studies [91, 105, 140],

the author still harbours doubts regarding its computational accuracy. As depicted in Fig.

4.4, it is evident that without training the first order of differentiation (Sobolev training),

the network’s gradient predictions are significantly distinguishable from the actual values.

In the FEM-DEM simulation, the approximated secant matrix is actually computed based

on Eq. 4.15 as an alternative to the tangent matrix. This is because the perturbation method

used to evaluate the tangent matrix performs poor [4]. Fig. 4.5 shows the stress-strain curve

obtained from the low-scale RVE simulation, which exhibits significant fluctuations. During

the training process, the neural network model endeavours to capture all of the information

even the noisy fluctuations. The network is insufficient to differentiate the constitutive

patterns from the noise resulting from dynamic fluctuations. Even a well-trained neural
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Figure 4.4: Comparison of network prediction under normal and Sobolev training [5]

network model yields a tangent matrix that lacks continuity or undergoes drastic changes

at these fluctuating points. This behaviour deviates from the real tangent tensor, thereby

significantly impacting the stability of the program calculations. Meanwhile, the secant

matrix exhibits a relatively stable behaviour. It experiences some fluctuations, but its impact

is relatively minor due to its larger base.

Figure 4.5: Comparison between tangent (green) and secant (red) matrices on the stress-

strain curve

Since the strain tensor ϵij and the historical state quantity ϕij can be uniquely determined,

the neural network is capable of establishing a mapping to this approximate secant matrix.

Therefore, for the sake of computational stability, this work utilises the approximate secant

matrix to perform FEM nonlinear iterations. The neural network is employed to establish
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the mapping from the strain tensor and historical state to the stress tensor and secant matrix:

σ̂
(n)
ij , D̂

(n)
ijkl = NN

(
ϵ
(n)
kl , ϕ

(n)
kl

)
(n = 1, 2, . . . , N) (4.18)

where the superscript (n) indicates the step number.

Most of the data-driven research on stress-strain modelling tends to employ complex

network structures, particularly those utilising deep learning methods [98, 101, 106, 107].

However, traditional elastoplastic models typically require only around 10 parameters to

describe the stress-strain relationship within a specific framework, such as the Cambridge

clay model [42] or the Nor-Sand model [49], where even only three or four key parameters

are involved.

Using relatively simple neural networks can partially reduce the number of introduced

parameters. In the work [141], as the network depth increases and the number of training

iterations grows, the characteristic length of the corresponding Gaussian process diminishes.

This implies that the network’s predictions exhibit steeper variations. Even slight changes in

inputs can result in significant deviations in outputs. On one hand, this allows the network

to capture complex relationships more effectively. On the other hand, when training data is

limited, this can lead to poor generalisation ability.

Considering feasibility, computational stability, and efficiency, we opted for a simple

multilayer fully connected network to integrate with FEM computation. The neural network

used consists of two hidden layers, each fully connected with 40 neural nodes. The ReLU

activation function is applied, except for the output layer. The input layer comprises the

current strain tensor ϵij and the historical variable ϕij. The output layer produces the

corresponding stress tensor σij and material matrix Dijkl as is shown in Fig. 4.6.

Figure 4.6: Network architecture

76



4.2.2 Training samples preparation

In general, machine learning models excel at interpolation but often struggle with extrapo-

lation. To develop a machine learning-based constitutive model that is suitable for a wide

range of strain paths, one approach is to include as many strain-stress data pairs as possi-

ble, effectively converting all ”extrapolation” into ”interpolation”. However, this poses two

challenges.

Firstly, generating a sufficient amount of training data to cover all possible strain-stress

paths for a particular type of granular material is highly challenging. When considering

all possible loading-unloading combinations, this task becomes practically impossible. This

stands in stark contrast to traditional constitutive models, where model parameters can be

calibrated using a relatively small number of conventional triaxial tests. Data-driven models

do not rely on a predefined mechanics model but heavily depend on data.

Secondly, the existence of a large number of datasets also presents a challenge for training

neural networks, as a large dataset requires expensive computational resources for training.

It is crucial to utilise any useful conditions that can enhance the effectiveness of the training

dataset, thereby reducing the need for extensive sampling and training costs.

For homogeneous materials, symmetry can be utilised to minimise the required material

sampling in data-driven modelling [142–144]. By appropriately rotating the stress and strain

tensors σij−ϵij to their principal directions (σ1, σ2, σ3)−(ε1, ε2, ε3), the strain/stress sampling

space can be reduced from six dimensions to three. This can also be presented as spectral

decomposition:

tij =
n∑
A

t(A)
pr n

(A)
i n

(A)
j (4.19)

where, tij is a second-ordered tensor (t ∈ Rm×m) with m dimensions, and t
(A)
pr and n

(A)
i

are the Ath eigenvalue and eigenvector, respectively. Then we have the rotation matrix

Q = [n(1), . . . , n(m)], where tij = QTdiag([t
(1)
pr , . . . , t

(m)
pr ])Q.

In the work of Tang et al. [109–111], this three-dimensional sampling space was further

reduced to one dimension using the mapping method.

Note, that for non-coaxial granular materials, the strain and stress vectors cannot be

simply mapped to the principal space. This is because the principal directions of the strains

and stresses start to deviate since the granular material appears plastic (or non-affine defor-
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mation). Due to the consideration of this non-coaxial nature, it is not proper to reduce the

dimensions by spectral decomposition. In order to cover a sampling space as large as pos-

sible, this work introduces a Random Gaussian process to generate smooth random loading

paths.

In some machine learning frameworks ( [98, 106]), the random Gaussian process was

used to generate microscale random loading paths. However, DEM simulations may return

unreasonable results when the granular material assemblage is over-compressed or stretched

under strain-controlled loading paths. Therefore, in our work, the random path is applied to

a macroscopic model instead of a low-scale RVE to prevent the aforementioned overstretching

or compression. Using this path for the macroscopic model will return a large number of

integration point stress-strain data pairs (σij, εij) at different locations in a single coupled

FEM-DEM simulation, facilitating the generation of a large number of data sets.

Gaussian Process: A Gaussian process forms a sequence of associated random variables

by linking these normally distributed random variables in space (or time), and this sequence

is called a Gaussian process. Each point in this series of observations obeys a Gaussian

normal distribution N (0, σ). The Gaussian process is determined by its mean vector m (x)

and the covariance kernel function κ(x, x′).

The effect of the kernel function of the Gaussian process is shown in Fig. 4.7. Fig.

4.7a shows a diagonal matrix, indicating that the observations at each sample point are

independent of each other, and in Fig. 4.7b, in addition to the values on the diagonal being

non-zero, the values close to the diagonal are also non-zero, with the values of the elements

decreasing as they move away from the diagonal. The values on this matrix represent the

connection between the two points, and the more the two values are connected to 1, the higher

the correlation. In the case where the diagonal matrix serves as the covariance matrix, a

sequence of 20 independent variables is illustrated in Fig. 4.7c, while the associated random

Gaussian process is illustrated in Fig. 4.7d.

The Gaussian process actually constructs multiple normal distributions into a sequence

by means of a covariance matrix, which can be specified by the mean function m (x) and the

covariance kernel function κ(x, x′), and can therefore be expressed as:

f(x) ∼ GP (m(x), κ(x, x′)) (4.20)

The mean value is kept as the initial confining pressure 100kPa, so m (x) is forming a vector

with a constant value 1e5. Based on the description in Fig. 4.7, the curvature of the
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Figure 4.7: Gaussian processes corresponding to different covariance matrices are shown.

Figures (a) and (b) display the covariance matrices. Figures (c) and (d) illustrate a series

of random values sampled from Gaussian processes based on the covariance matrices in (a)

and (b), respectively. In (c) and (d), the x-axis represents the points index (normalized to

0-1), while the y-axis represents their values.
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generated random sequence can be controlled by specifying the parameters of the kernel

function generation process. The covariance kernel function uses an exponential square

function:

κ(x, x′) = exp
(
−vcθk(x)∥x− x′∥2

)
(4.21)

where x can be considered as the pseudo time can be expressed as x = [0.01, 0.02, . . . , 1]

corresponding to 100 loading steps, and vc is used to control the random path curvature.

As shown in Fig. 4.8, when vc increases, the band on the diagonal of the covariance matrix

becomes narrower and the curvature becomes larger. θk (x) is a function of x. θk (0) = 0 to

ensure that the confining pressures start from an initial consolidation pressure of 100kPa,

and then θk is gradually increased to a certain value, the bigger the θk the larger is the

variance of the random path.

For this part of the dataset preparation, we used five different curvature coefficients

vc = [1.0, 2.0, 3.0, 4.0, 5.0], and each curvature coefficient generates two sets of random paths

as the macroscopic model confining pressures for the FEM-DEM biaxial simulations. The

generated stress-strain sequences and tangent matrices will be saved and used as a network

training dataset.

The total number of samples is summarised in Tab. 4.1, with the sum of generated data

points approaching 17 million. Due to the nonlinear macro mechanical properties of granular

materials, nonlinear iterations are required for each loading step. On average, each loading

step requires about 20 iterations. Therefore, more than 2000 files of results are generated in

100 loading steps. Stress-strain and material matrix data for all integration points on each

loading step are saved for building the network training database.

4.2.3 Active learning-based resampling

In the simulation we generated millions of sets of data, if we put that data into network

training all at once, the training process will take up a lot of memory and it will be difficult

for the optimiser to handle such a huge amount of data. Therefore we need to resample the

data.

Random sampling, also known as passive learning is generally used to draw samples from

large data sets. However, there are a large number of redundant data points in our data,

such as neighbouring data points, which in fact contain basically the same information. It is

expected to use a method that can screen the connections between data points, or continue

to sample based on the information already learned by the network.
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Figure 4.8: Random paths generated by the Gaussian process for vc. The left column is

the kernel and the right column is the generated random paths.
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Table 4.1: Summary of datasets from FEM-DEM simulations

Random paths Coarse grid Medium grid Fine grid

1 76,064 308,608 1,295,360

2 75,456 316,544 1,243,136

3 75,264 308,736 1,314,304

4 81,696 309,248 1,303,040

5 77,984 304,768 1,312,768

6 77,472 317,440 1,304,576

7 75,296 310,016 1,285,632

8 76,128 303,744 1,288,704

9 75,040 313,472 1,296,896

10 75,456 331,904 1,330,176

In total 16,864,928

This approach to sampling is also known as the active learning resampling method [135].

Active learning models are introduced to effectively resample from massive data points. The

key idea behind active learning resampling is to sample data points based on what has been

learnt, using as few training samples as possible to achieve higher accuracy. In addition to

resampling, active learning can also guide sample generation, especially if generating samples

is costly. Since active learning methods are able to assess the predictive ability of the network

on input without knowing the corresponding output, it is possible to determine the value of

the data at that point for network training.

A large number of macroscopic stress-strain data pairs at integration points are stored in

the dataset through the above coupled FEM-DEM multiscale simulations. Active learning

is used to select samples efficiently, helping the optimiser to find the key dataset for network

training, and mitigating the impact of redundant data points. The steps can be summarised

as:

1. Randomly initialise the weights and biases of multiple networks with the same archi-

tecture and hyperparameters;

2. Training the network after initialisation using a partial dataset (i.e. the coarse FE grid

here);

3. Evaluate the level of uncertainty on a new dataset (i.e., a fine FEM grid) based on
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multiple networks that have been trained to obtain.

The active learning-based uncertainty is defined as:
ȳ =

1

M

M∑
i=1

NNi (x)

ξ =

√√√√ 1

M

M∑
i=1

∥NNi (x)− ȳ∥2
(4.22)

where the uncertainty ξ is defined as the standard deviation of the outputs from the parallel

and randomly trained networks. The more confident the model predictions are, the closer

the individual predictions here are to each other, and conversely, where the model is unsure,

the predictions will vary widely. After evaluation using the above equation, points with high

uncertainty are appended to the original training sets to retrain the network. The active

learning method acts as a detector for finding locations where the randomly trained model

performs poorly, and where the training dataset is insufficient.

The neural network part of the model is built, trained and called in the PyTorch frame-

work. After training, the network model was examined for prediction effectiveness and error,

as shown in Fig. 4.9. In most cases, the trained neural network model is able to predict

with satisfactory accuracy, especially in predicting the four components of the tangent ma-

trix (D1111, D2222, D1212, D1212, D1122) and the two stress components (σ11, σ22). However, the

model performs poorly in the prediction of σ12, D1112, D1222. In isotropic hyperelastic models

or quasi-elastic phases of particle assemblages, the components of D1112 and D1222 should be

0 [145]. However, in the DEM simulations, the values in these two directions always remain

as a smaller value of no regular noise due to the heterogeneity of the granular system and

the effect of noise caused by larger components in other directions. In the FEM calculations,

the prediction errors on these three components have less impact.

4.2.4 FEM-NN coupling

The computational flow of the FEM-NN framework is shown in Alg. 2. There is no need to

initialise or update the particle ensemble RVE during the computation process because the

neural network will directly compute the stress tensor σij and the approximate secant matrix

Dijkl based on the strain tensor ϵij, and the loading history ϕij. The proposed network-based

constitutive model functions similarly to the conventional constitutive model in the FEM

solver.
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Figure 4.9: Comparison of neural network prediction results with DEM simulation
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Typically, the nonlinear iteration step starts on the previous iteration step. Notice here

that each iteration step starts with the solution of the previous load step instead of the

previous iteration step. This is because starting at the previous iteration step requires the

model to give an accurate tangent matrix. But the estimated tangent matrix given by the

network is not sufficient to fulfil this condition. So in the FEM-NN framework, it will be

more difficult for the nonlinear iteration to converge if the iteration step starts with the

previous iteration step.

Algorithm 2 The FEM-NN soler

Require: Discretized FEM model, well-trained network NN

1: Initialisation, σ
(0)
ij , D

(0)
ijkl = NN

(
ϵ
(0)
ij , ϕ

(0)
ij

)
2: for n = 1, 2, . . . , N do ▷ Load step

3: Apply boundary conditions of step n to the FEM model

4: du
(n,m)
j ← solving Eq. 4.10 with σ

(n−1)
ij and D

(n−1)
ijkl

5: m = 0, eu = 1.0 ▷ initialise the substep number and displacement error

6: while eu > etol do ▷ Iteration step

7: dϵ
(n,m)
ij = 0.5

(
du

(n,m)
i,j + du

(n,m)
j,i

)
▷ Under the small deformation assumption

8: ϵ
(n,m)
ij = ϵ

(n−1)
ij + dϵ

(n,m)
ij

9: ϕ
(n,m)
ij = ϕ

(n−1)
ij + |dϵ(n,m)

ij |
10: σ

(n,m)
ij , D

(n,m)
ijkl = NN

(
ϵ
(n,m)
ij , ϕ

(n,m)
ij

)
▷ Network prediction

11: du
(n,m+1)
j ← solving Eq. 4.10 with σ

(n,m)
ij and D

(n,m)
ijkl

12: eu =
∥du(n,m+1)

j −du
(n,m)
j ∥

∥du(n,m)
j ∥

▷ Update the displacement error

13: m = m+ 1

14: end while

15: u
(n)
j = u

(n−1)
j + du

(n,m)
j ▷ Update the variables

16: σ
(n)
ij = σ

(n,m)
ij

17: D
(n)
ijkl = D

(n,m)
ijkl

18: ϵ
(n)
ij = ϵ

(n,m)
ij

19: end for

4.3 Numerical examples

This study employs two examples to showcase the accuracy, stability, and applicability of

the FEM-NN method. The first example involves a biaxial compression test with a smooth
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top surface. We vary the mesh densities and incorporate active learning for resampling.

We compare the macroscopic computational results, such as top force and total volumetric

strain, and analyse the stress-strain relationship at integration points. The second example

involves simulating a retaining wall pushing the fill backwards. The objective of this case is

to evaluate the generalisability and explore potential opportunities for further enhancement.

4.3.1 Bixial compression

To verify the effectiveness of the FEM-NN, biaxial simulations with different levels of meth

densities were conducted. Fig. 4.10 illustrates the division of the model into three meshes:

coarse (2x4), medium (4x8), and fine (8x16). Each element within the meshes contains four

integration points.

Figure 4.10: Biaxial compression simulation with different mesh densities

Linear vertical downward displacement-controlled loading was applied at the top bound-

ary of the biaxial model until a macroscopic axial strain achieved 0.1. The random confining

pressures for model loading were generated using the random Gaussian process described in

Sec. 4.2.2. For each of the meshes, 10 simulations with random confining pressures were

prepared. The parameters of the DEM-simulated granular materials are presented in Tab.

4.2.

Table 4.2: Parameters of the lower-scale DEM simulations

Density

(kg/m3)

Young’s modulus

(MPa)

Poisson’s

ratio

Frictional

coefficient
Damping

2650 600 0.8 0.5 0.1
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Before training the networks with the complete FEM-DEM simulation datasets, several

models were trained individually using biaxial simulation datasets from different grid resolu-

tions and then evaluated using FEM-NN simulations. Although the networks were initialized

with the same hyperparameters and weights, the training data came from coarse-grid sim-

ulations, fine-grid simulations, or a combination of both. Table 4.3 outlines six training

and FEM-NN simulation scenarios, each involving different grid divisions for preparing the

training data and conducting the simulations. The process for combining mixed data is

illustrated in Fig. 4.11.

Figure 4.11: Mixed data set generation programme

Table 4.3: Summary for the different training and testing cases

Cases Training dataset collected from Level of mesh for FEM-NN simulation

A Coarse Coarse

B Fine Coarse

C Mixed Coarse

D Fine Fine

E Coarse Fine

F Mixed Fine

Fig. 4.12 indicates that all the results exhibit good agreement with the FEM-DEM

simulations, except for Case E. The displacement comparison depicted in Fig. 4.13 reveals

that the shear band in the FEM-DEM simulation is narrower when using a finer mesh.

However, the displacement results for Case E resemble those of Case A. In both Cases A

and E, only datasets collected from coarse grid simulations are utilised to train the network.

Integration points in the coarse mesh are considerably sparse, resulting in insufficient patterns

of the constitutive relationship for fine-meshed simulations, especially on the shearing band.
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Conversely, due to the network’s excellent interpolation capabilities, the stress tensor

and tangent matrices within the shear zone in the fine-grid simulation can be approximated

using the network trained on the coarse dataset. Although Case E utilises a fine mesh for

macroscopic simulation, the constitutive relationships are derived from the coarse dataset

which was used to train the model for both Case A and Case E. As a result, the shear bands

observed in Case E appear to be an interpolation of the results from Case A on a finer grid.

(a) Coarse mesh (b) Fine mesh

Figure 4.12: Curves of top forces and global volumetric strain corresponding to different

Cases.

Since the strain distributions in the upper and lower triangular regions of the biaxial

model were very similar for both coarse and fine meshes, we focused on integration points

specifically within the shear zone. In Case F, the network model was trained using a hybrid

sampling approach, as shown in Fig. 4.11. The dataset for the shear zone was extracted

from the fine mesh simulation, while data for the upper and lower triangular regions of the

domain was obtained from the coarse mesh simulation, due to the smooth and relatively low

shear strains in these regions.

Fig.4.13 demonstrates a good agreement between the displacements obtained in Cases

C and F and the FEM-DEM simulations. It emphasises the importance of utilising an ap-

propriate training dataset with a well-designed sampling method to ensure effective network

training.

The data points within the shear band region play a crucial role in addressing the current

problem. Conversely, the constitutive relationships represented by data points in the upper

and lower triangles of the fine-meshed model can be adequately captured by the data points

88



Figure 4.13: Comparison of displacement results corresponding to different Cases

from the coarse-meshed model. To better prove these characteristics, the uncertainty-based

active learning scheme, as discussed in Sec. 4.2.3, is employed for automatic resampling.

The detailed procedure is presented in Fig. 4.14 and explained below:

1. Choose five separate networks with the same architecture and hyperparameters as

described in Sec. 4.2.3 but pre-trained based on the coarse datasets with different

randomly initialised weights and biases;

2. Use the five pre-trained models to predict the mechanical responses of the data points

of the fine mesh;

3. Evaluate the prediction uncertainty level at each data point based on the five predic-

tions by Eq. 4.22.

4. Add the first 30% data points with the highest uncertainty levels to the training

datasets used in the pre-training phase.

5. Re-train one pre-trained model on the enriched dataset and evaluate its performance

in FEM-NN simulation.

Fig. 4.14 clearly illustrates prediction uncertainty, which is particularly pronounced

within the shear band region. This suggests that data points in the shear band have a
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greater impact on network predictions. The areas with high uncertainty align closely with

the red data points in Fig. 4.11, which accounts for the improvement observed in Case

F. Thus, active learning automatically identifies regions where the trained network model

underperforms, indicating that additional training points should be added in these high-

uncertainty locations.

Figure 4.14: Flowchart depicting the process of network training and FEM-NN simulation

using active learning for resampling.

In the active learning resampling process described above, newly added data points are

primarily located within the shear band. This observation suggests that shear strain magni-

tude could serve as an alternative indicator for resampling. To assess the viability of using

equivalent shear strain for active learning resampling, we calculate the equivalent shear

strains at all integration points for each load step. The first 30% of the data points with the

highest uncertainty levels are selected, as illustrated in the top row of Fig. 4.15.

The figure illustrates that the shear band or strain localisation begins to emerge around

load step 29 and fully develops from load step 59 onwards. The integration points with the

30% highest shear strains for these load steps are concentrated around the shear band, which

aligns with the points with higher uncertainty predicted by the active learning.

A specific indicator can be a straightforward and effective alternative for resampling,
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provided the datasets are well-understood. However, identifying an appropriate indicator

can be challenging, particularly when dealing with high-dimensional input data or diverse

datasets. It’s crucial to recognize that the shear strain indicator is problem-specific. For other

types of problems, it may be necessary to explore problem-specific indicators for resampling

within an indicator-based sampling scheme.

In contrast, the uncertainty-based active learning approach is a more versatile method

that relies only on evaluating uncertainty levels in prediction results. It does not require

prior knowledge of the specific datasets and can be applied across various scenarios.

Figure 4.15: The shear strain-based active learning resampling at seven load steps: Top

row – 30% of the data points with highest uncertainty levels (the number in red is the av-

erage uncertainty); Bottom row – equivalent shear strain distribution.

To further evaluate the effectiveness of the FEM-NN method, we examine the strain-

stress responses obtained by various models at the integration point level. The strain and

stress curves of two specific integration points labelled 100 and 300 (marked in Fig. 4.10),

are shown in Fig. 4.16. The blue line represents the stress from the FEM-DEM simulation.

The green line corresponds to the predicted stress after feeding the strain from FEM-DEM

simulations directly to the trained network. The orange line represents the stress values

obtained from the FEM-ML simulation.
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The FEM-ML framework effectively predicts the overall trends of the macroscopic stress

response in granular materials. However, it is important to note that the trained network

model inherently produces a smoother output compared to the more oscillating output ob-

served in the FEM-DEM results, which can be attributed to the transient nature of DEM

simulations.

It is worth highlighting that the fluctuations and noises poses a significant challenge in

network training. Such patterns can make it more difficult to distinguish valuable informa-

tion from the noise. Additionally, large and sharp fluctuations in the predicted curve can

render it non-differentiable, making it challenging to use automatic differentiation methods

for obtaining tangent operators in granular material simulation.

(a) Integration point 100

(b) Integration point 300

Figure 4.16: Comparison of the local strain and stress responses from different solution

schemes

Evaluating the efficiency of the FEM-NN framework is crucial. The performance of both
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FEM-DEM and FEM-NN simulations for Case D was compared on a laptop computer with

an i5-8500 6 Cores@3.00GHz processor. In the FEM-DEM simulation, all six cores were

utilized, while only a single core was used in the FEM-NN simulation.

Tab. 4.4 demonstrates that the FEM-NN framework achieves an efficiency improvement

of nearly 82 times per iteration compared to FEM-DEM. This significant enhancement in

efficiency is accompanied by a substantial reduction in computer memory requirements. It

greatly alleviates the memory demands of FEM-DEM multiscale computations.

The number of iterations required at each load step is also recorded in Fig. 4.17 for further

comparison. It should be noted that the medium mesh with 4x8 elements, as depicted in

Fig. 4.10, was used for simulation. Both the FEM-DEM and FEM-NN methods exhibit

convergence at every loading step, particularly during the elastic stage. Subsequently. The

number of iterations per loading step increases significantly until reaching a peak at step 20.

Afterwards, the iteration number decreases, settling around 20.

In comparison to the FEM-DEM simulation, the FEM-NN simulation with all three

meshes requires a slightly larger number of iterations. This results from the error between the

network prediction and the lower-scale DEM simulation. The FEM-NN framework generally

does not converge as rapidly as FEM-DEM but can still reach the final equilibrium state

through iterative processes. This further supports that networks can serve as surrogate

models for lower-scale DEM simulations.

Table 4.4: Efficiency improvement

FEM-DEM FEM-ML
Efficiency

improvements

Time (h) 8.02 0.11 72.9

Total number

of iteration
2510 2820 0.89

Single

iteration (s)
11.50 0.14 82.1

4.3.2 Retaining wall

To evaluate the generality of the proposed neural network model, the well-trained neural

network model in the previous biaxial compression case is employed in a retaining wall
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Figure 4.17: The number of iterations required for the FEM-DEM and FEM-NN simula-

tions with the three levels of mesh

problem. The details of the problem are shown in Fig. 4.18, where the normal constraint

is applied to the left boundary; the bottom is constrained in the and directions; and a

prescribed displacement is applied to the right boundary, acting as the retaining wall, to

compress the soil in the normal direction.

Figure 4.18: Schematic of the retaining wall simulation

To assess the generalisability, the well-trained network from the previous biaxial com-

pression case is utilised in a retaining wall problem. Details of the simulation are illustrated

in Fig. 4.18, where a normal constraint is applied to the left boundary, the bottom is con-

strained in the x and y directions, and a prescribed displacement is imposed on the right

boundary to compress the soil, serving as the retaining wall.

Fig. 4.19a displays a prominent cambered shearing band observed in the FEM-DEM

simulation. The relationship between the total force applied by the retaining wall and the
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transverse strain is depicted in Fig. 4.20.

The FEM-NN with two different networks has been investigated separately. The first one,

labelled FEM-ML 1, is trained solely on datasets collected from the biaxial simulations.

The solution process encounters difficulties around the 80th load step. This issue arises due

to accumulated errors in strain and internal variables when their values extend beyond the

range covered by the network training data. The shearing band observed in the FEM-

ML 1 simulation approximately follows a straight line, primarily influenced by the training

dataset obtained from the multiscale biaxial simulations, where the shearing band is also a

straight line. The network model trained solely on the data from the biaxial compression

test is unable to reproduce constitutive responses in the retaining wall simulation due to the

insufficient training range.

The FEM-ML 2 employs an enhanced network, wherein the network used in FEM-ML

1 is retrained after incorporating datasets from the FEM-DEM retaining wall simulations.

Fig. 4.19c and Fig. 4.20 demonstrate that the enhanced network exhibits significantly

improved performance in both displacement and force calculations. This highlights the

adaptability of the proposed methodology to upgrade the network model when new datasets

are available.

4.4 Dicussion

4.4.1 Limitations of Active Learning

Active learning resampling is quite sensitive to noise in the data. In the literature [146],

the effect of noise in the data on active learning resampling is explained in detail. The

expectation of error on prediction samples:

Ee =

∫
x∈X

E
(
(ŷ − y)2|x,D

)
f(x)dx (4.23)

where ŷ is the prediction, f(x) is the possibility distribution function.

4.5 Concluding remarks

This chapter focuses on developing a FEM-NN framework and training a network-based

constitutive model to replace the lower-scale DEM simulations, thereby accelerating classi-

cal multiscale FEM-DEM simulations. A multi-layer fully connected neural network, cou-
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Figure 4.19: Displacement distributions of the soil at some load steps when compressed by

the retaining wall and obtained by (a) FEM-DEM, (b) FEM-NN 1, and (c) FEM-NN 2

Figure 4.20: Comparisons of integrated wall forces

96



pled with the use of accumulated absolute strain increments as an explicit parametrization

of loading histories, is chosen as the surrogate model. This simple network demonstrates

a reasonable ability to reproduce the history-dependent constitutive responses of granular

materials. Training samples are generated by applying random loading paths to biaxial

compression simulations. An uncertainty-based active learning scheme is employed to select

points with high uncertainty levels to enrich the training dataset. This resampling strategy

is generic and proves to be highly effective.

The drained biaxial compression tests conducted demonstrate that the FEM-NN frame-

work can accurately reproduce the micro-scale response of granular materials at significantly

reduced CPU costs compared to the FEM-DEM approach. The generalizability is also in-

vestigated in the retaining wall example, where it exhibits flexibility to improve performance

as long as the training datasets are enriched.

The numerical examples presented highlight the substantial improvement in computa-

tional efficiency achieved through trained surrogate networks. This improvement has the

potential to extend multiscale computations to practical engineering problems.
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Chapter 5

An explicit FEM-NN framework and

analysis of error caused by

NN-predicted stress

5.1 Methodology of the explicit FEM

5.1.1 Governing equation and solving process

In implicit solver, we need to transform the governing equation σij, i = 0 in domain Ω, to

a weak form and discretise the domain to achieve Ke
mjnl =

∫
Ωe Nm,iDijklNn,kdΩ, where the

global stiffness Kg
mjnl is given by the assembly of the element stiffness, where the tangential

matrix Dijkl is required. It is mentioned in the Introduction that avoiding predicting Dijkl

via neural networks can simplify the network architecture and avoid incompatibility.

FEM solver offers an alternative to bypass the use of the material matrix Dijkl. In explicit

FEM, the node’s motion at time t is governed by Newton’s 2nd law:ρüj = σij,i in Ω

niσij = tj on ∂Ω
(5.1)

where ρ is the material density and tj is the traction on the boundary ∂Ω. In an element,

the weak form of the equation can be represented as
∫
Ωe ωρüjdΩ =

∫
Ωe ωσij,idΩ, where ω

is the arbitrary test function. After plugging the shape function into the test function and
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integrating by parts, the weak form can be transformed into:∫
Ωe

NnρüjdΩ = P e
nj − Ienj (5.2)

where P e
nj =

∫
∂Ωe NntjdΓ and Ienj =

∫
∂Ωe Nn,iσijdΩ are the external and inner node forces

in the jth direction of the nth node of a single element, respectively. After substituting

üj =
∑

m ümj into the RHS of the above equation, we can get Mmn =
∫
Ωe NmNnρdΩ is the

elemental mass of the nth node of the element. With assembling, the global function can be

written as:

Mü|t = (P− I) |t (5.3)

where M is the global mass matrix, P is the global external force, and I is the global inner

node force.

Upon giving the nodal acceleration at time t, the central difference method is utilised to

update the nodal displacements:u̇|t+0.5∆t = u̇|t−0.5∆t +∆tü|t
u|t+∆t = u|t +∆tu̇|t+∆t

(5.4)

where the constant time step ∆t is engaged. Then ∆u|t∼t+∆t = ∆tu̇|t+0.5∆t is calculated as

the displacement increment from time t to time t + ∆t. With the finite strain assumption,

the strain increment is calculated as:

∆ϵij|t∼t+∆t = 0.5 (∆ui,j +∆uj,i) |t∼t+∆t (5.5)

Cast the strain increment from time t to time t+∆t into the constitutive model M to renew

the stress tensor:

σij|t+∆t, Im|t+∆t =M (σij|t, Im|t,∆ϵij|t∼t+∆t) (5.6)

where Im|t is the vector of internal variables at time t. Thus, the explicit FEM solver,

without the tangential material matrix, can move forward as shown in Algorithm 3.

5.1.2 Stable time increment

To ensure the accuracy of the explicit calculation, the time increment is carefully calculated

according to the wave propagation velocity as the high-field solution can be obtained only

when the time increment ∆t is less than the stable time increment ∆tmin. If the time step

∆t > ∆tmin or close to ∆tmin, the solution will diverge and results can be distorted.
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Algorithm 3 The explicit FEM solver (assuming the constant time step ∆t)

Require: Discretised FEM model, and the constitutive modelM
σ
(0)
ij , I(0)m =M

(
σ
(0)
ij , I(0)m

)
▷ Initialise the stress

for n = 1, 2, . . . , N do ▷ Loading step

Apply the loading condition ∆uj at the beginning of step n to the model

Calculated the strain increment ∆ϵij = 1
2

(
∆uload

i,j +∆uload
j,i +∆ui,j +∆uj,i

)
, due to

the displacement load ∆uload
j and the displacement ∆uj

Renew the stress and internal variables σ
(n)
ij , I(n)m =M

(
σ
(n−1)
ij , I(n−1)

m ,∆ϵij

)
at step n

Solve Eq. 5.4 for the acceleration ü
(n)
j at step n

Update the displacement to u
(n)
j = u

(n−1)
j +∆uj|n−1∼n

end for

The dilatational wave speed cd can be expressed for a linear elastic material as:

cd =

√
E

ρ
(5.7)

where E is the Young’s modulus and ρ is the material density.

Based on the current geometry, each element has a characteristic length Le. Thus, the

stable time increment can be expressed as:

∆t =
Le

cd
(5.8)

In our simulation, the stable time increment is carefully evaluated before every time

increment and a safety coefficient of 0.2 is utilised to ensure the calculation stability, i.e.

∆t = 0.2∆tmin.

5.1.3 Damping

Damping is also an important topic in time-integral-based simulations. We added damping

to the simulations to ensure that the calculations do not fluctuate and that the simulations

are quasi-static. The selection of a suitable damping factor requires a combination of density

and material stiffness. This is not an easy task for a multi-degree-of-freedom system. In the

simulation, we used a damping ratio-like variable γ to relate the damping coefficient c to the

density ρ and Young’s modulus E, via:

c = 2γ
√
ρE (5.9)
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Figure 5.1: Contrasting various γ values to optimise damping coefficient selection

A sensitivity analysis was done for different γ as shown in Fig. 5.1. In this work, we use

γ = 1.0.

5.2 Constitutive model and the network-constitutive

model

Granular materials are the object of our study in this paper. The FEM-DEM multi-scale

framework can accurately reproduce their constitutive responses. While, as the lower-scale

DEM needs to be invoked thousands of times in the explicit FEM solver, using a lower-scale

DEM for material stress calculations will result in a huge computational effort. Alternatively,

stress integration along a prescribed strain path can be completed in a fraction of a second

with a classical constitutive model. We, therefore, prefer to use mathematical formula-based

classical models as the baseline for training dataset generation.

In this work, two classical constitutive models are selected as baseline models for training

data generation. One of them is simple to formulate and the other is more complex. Neural

networks are separately trained on the dataset generated by each of them and then embedded

in the FEM solver for computation. It is found that the capability of the neural network

varies in reproducing the constitutive relationships with different complexity.
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5.2.1 Classical constitutive model

IME model (isotropic elasticity and von Mises plasticity with exponential hardening func-

tion): A simple elastoplastic model, comprised of isotropic elasticity with Young’s modulus

E of 20 MPa and Poisson’s ratio ν of 0.2, and the von Mises yielding with exponential hard-

ening law, is introduced to show the feasibility of the ex-FEM-NN framework. The model is

denoted as IME for convenience in subsequent reference. The IME model is used to initially

verify that the neural network model can effectively reproduce the constitutive responses.

The yield function of the model is shown as:

f = σv −H − σ0 (5.10)

where σv is the von-Mises stress, σ0 = 1e3 Pa, H = A(ϵ0 + ϵ̄p)n represents the isotropic

exponential hardening function using A = 0.3 MPa, n = 0.2 and ϵ0 = 0.02. The associated

flow rule is utilised in the plastic return mapping process.

CSUH model (Critical State Unified Hardening): The CSUH model is able to reproduce

critical state theory and has a unified hardening rule for clays and sands based on relative

void ratio variables. The material parameters of the CSUH model used in this work are

listed in Table 5.1, detailed explanation of this model and the related parameters can be

found in this paper [6].

Table 5.1: Parameters of the CSUH model

Material constants Value

ϕ◦ 8.0

λ 0.214

κ 0.191

ν 0.2

N 1.931

Z 0.2743

χ 0

m 1.8

OCR 377
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5.2.2 Neural network-based constitutive model

As mentioned at the beginning of the methodology, for implicit FEM-NN computation, the

material matrix is necessary for the local elemental stiffness integration via:

Ke
mjnl =

∫
Ωe

Nm,iDijklNn,kdΩ (5.11)

where Nm,i is the shape function, with subscripts m and i representing the number of nodes

in an element and direction of the solution space, Dijkl is the material matrix or called the

tangent matrix (ideally with Dijkl = ∂σij/∂ϵkl) in the implicit solver.

In the exFEM-NN framework, the tangential matrix is no longer needed. In the NN part,

with a tiny modification. Thus, for the NN part, the prediction of tangent matrix is no long

needed. The constitutive part of Eq. 5.6 can be changed to:

σij|t+∆t = NN(ϵij|t +∆ϵij|t∼t+∆t, φij|t) (5.12)

where the vector of internal variable Im is represented by the accumulation of the absolute

strain value, with φij =
∑
|∆ϵij|. A similar internal variable for coding the loading history

can be found in [147].

5.2.3 A novel MLP network enhanced by Fourier feature mask

and the multiplied residual block

Basic network architectures

The multi-layer neural network is used to predict stress via the strain and the state-related

internal variable. During the computation, the strain calculated based on the previously

predicted stress is fed to the network again to infer the stress at the next step as shown in

Fig. 5.6, resembling the recurrent networks. The recurrent structure enables them to perform

well in history-dependent issues, such as material constitutive response prediction [98,105].

The multi-layer forward neural network is employed to represent the constitutive part.

The input features are the strain tensor and the historical variables, and the outputs are

stress tensors. The network’s input and output are highlighted in Fig. 5.2.

Fourier feature mask and multiplied residual blocks

The explicit FEM solver calls the constitutive model thousands of times throughout the

process, unlike the implicit calculation, which only requires a few dozen load steps to finish
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Figure 5.2: Architecture of the neural network used to reproduce the stress tensor

Figure 5.3: Fourier feature mask

the entire computation. Similar to the recurrent neural network results, the values predicted

in the previous load step are used to predict the values in the next load step. Therefore,

reducing the prediction error and slowing down error accumulation is a big challenge in

exFEM-NN computation. Fourier features and the multiplied residual blocks are introduced

for higher accuracy.

In terms of the Fourier features, before casting the inputs into the neural network, they

are first processed by a Fourier feature mask, as shown in Fig. 5.3:

Tensors processed by the Fourier feature mask then flow into the multi-layer network.

In addition to the general calculation related to weights and biases, the residual block is

introduced to improve the network’s performance.

Although the network is a black box, increasing the diversity of basis functions, for

example by extending the basis functions from ϕ1(x) = {1, x} to ϕ3(x) = {1, x, x2, x3} would
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Figure 5.4: Multiplied residual block in the network architecture

enhance the regression model’s ability to perform non-linear regression. The multiplied

operation F(x) = relu(w1 ·x+ b1)⊙ relu(w2 ·x+ b2), which enables the second-order term

to participate in the network tensor calculation, is involved in the residual block (Fig. 5.4).

By adding Fourier features and employing a multiplied residual block, we add sinusoidal

functions and high-ordered basis functions to the network input.

Upon proposed methods can improve the network’s performance, as shown in Fig. 5.5a

and b. In legends of the curves, ‘d’ means a dense layer in the network, ‘m’ means a multi-

plied residual layer and the number represents the number of neurons per layer. After the

introduction of the multiplied residual block, the validation losses are remarkably decreased.

In Fig. 5.5b, the Fourier features can also improve the network accuracy. However, the

growth in the number of neurons and network layers increases the trainable parameters, and

these can affect the computational efficiency of the network. Therefore, to strike a balance

between efficiency and accuracy, we chose the network structure as dmmd20, which includes

two fully connected layers and two multiplied residual blocks. Figure 5.5c shows satisfactory

prediction results with the selected network architecture.

5.2.4 Check-and-revision method

Theoretically, the network model can behave as stable and universal as the classical con-

stitutive model supposed the data is abundant and the training range is infinite. However,

in most high-dimensional cases, the sampling range is far from covering all of the possible

spaces. The network model performs poorer as the input features approaching the edge of

the training range.
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Figure 5.5: (a) Hyperparameters (layer type, layer number and the node number) sensitiv-

ity analysis. The dot-dashed curves represent the results with multiplied residual blocks;

(b) Comparison of results with and without the Fourier mask (c) The normalised distribu-

tion of the network prediction on the 1:1 line

Due to the inevitable prediction errors, the error accumulation caused by the recurrent

structure will shift the network from interpolation to extrapolation. This can lead to a rapid

increase in prediction error and ultimately to computational distortion.

To address this problem, we propose a check-and-revision method, as shown in Fig. 5.6.

The network prediction is compared with the classic constitutive model calculated result. If

the discrepancy between them is unreasonably large, the latter will be employed and saved

to enrich the training sets. In this way, we effectively expanded the training range. After

iteration, points with remarkable errors are expected to be gradually reduced.

In the explicit FEM solver, as the equilibrium is governed by Newton’s second law, the

acceleration caused by the unbalanced force can be an indicator to demonstrate whether

the NN-based constitutive model provides reliable stress predictions and the computation

converges satisfactorily. After check-and-revision iteration, the maximum acceleration is

also expected to gradually shrink. A decrease in the maximum acceleration indicates the

can expand training range with informative training sets.

It is worth noting that, in Fig. 5.6, the processes in blue boxes will be performed at

every load step. The operations in green boxes will only be done after the whole loading is

finished. Points saved from the nth calculation are added to the (n`1)th dataset to retrain
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Figure 5.6: Schematic of the on-the-fly check-and-revision method

the network. After training, the updated network is used in the next check-and-revision

iteration.

5.3 Numerical simulations

5.3.1 Biaxial compression

Biaxial compression tests (as shown in Fig. 5.7) with rough top and bottom constraints

are first carried out to show the performance of the ex-FEM with an NN-based constitutive

model. Two classical constitutive models with different complexity are employed to generate

training datasets. As introduced in Sec. 5.2.1, one is the IME model, and the other is the

CSUH model.

IME model datasets and the exFEM-NN simulations

The validating numerical test begins with the IME model. After FEM calculation with the

IME as a constitutive model, strain–stress pairs on Gauss points are cast into the network

training. Then, the trained model provides the constitutive responses for the exFEM-NN

coupling simulations.
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Figure 5.7: Biaxial compression simulation: (a) The model discretisation and bound-

ary conditions; (b) Comparison of the shear-strain field; (c) Comparison of the top force,

global volume strain and maximum nodal acceleration

Curves of the macro results, such as the top force, global volume strain, and maximum

acceleration, are shown in Fig. 5.7c. The curves all agree very well except for curves of the

maximum accelerations.

At the transformation from elasticity to the plastic stage, the accelerations increase be-

cause of the sudden change of stress rate. The maximum acceleration with the IME model

is relatively low, especially when it comes to the end of the loading because the stiffness

decreases. In contrast, in the NN-involved simulation, the maximum acceleration is slightly

higher and keeps fluctuating. Different from the other macro results, the acceleration of each

node can abruptly increase because of the sharp change in stress rate or error of the stress

predictions. The difference in curves of the maximum acceleration in some extent represents

the worst stress predictions.

To further check the computational performance of the exFEM-NN method, stress–strain

predictions at four representative Gauss points are illustrated in Fig. 5.8. The strain se-

quences from the IME simulations are directly fed into the network to check the network’s

prediction accuracy without considering the recurrent structure. The stress predictions (in-

verted triangular point) are in perfect agreement with the simulated stresses, indicating the

network is effectively trained and able to reproduce the constitutive relationship. There is

some deviation in the stress extracted from the exFEM-NN simulations on Gauss point #0.

The error is relatively small and can be accepted.
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Figure 5.8: Curves of stresses belonging to Gauss points with datasets collected from the

IME model simulations

CSUH model-based datasets

After the validation based on the IME model, the biaxial compression is subsequently per-

formed based on the CSUH model. Data pairs of the Gauss points in the exFEM-CSUH

simulation are saved and subsequently fed to train the network. Then the network is em-

ployed to substitute the CSUH model in the exFEM solver.

Fig. 5.9 shows a comparison of the top force, global volume strain and maximum accel-

eration simulations based on the CSUH model and the NN constitutive model. The curves

of the top force and the volume strain are smooth and stable. There are quite sharp rises

and drops in the maximum acceleration, which is caused by the sudden changes in stress

rate due to tensile or shear damage.

In the beginning, all the macro results agree well, however, some deviations occur close

to the end of the loading. In the early stage, the NN-predicted stress is acceptably different

from the CSUH model. Then the difference/error is passed to the acceleration, as shown

in Fig. 5.6, and consequently, influences the displacements and strain field, followed by

the increasing errors in the subsequent stress predictions. With the growth of error in the

network predictions, the maximum node acceleration increases constantly.

Some stress–strain responses extracted from four Gauss points are displayed in Fig. 5.10.
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Figure 5.9: Comparison between the CSUH-based and NN-based exFEM simulations: (a)

The top force, global volume strain and the maximum acceleration; (b) Shear strain field

Different from the IME model where the stress–strain curves consist roughly of two straight

lines, representing the elastic phase and the elastoplastic phase respectively, the CSUH-based

simulation yields far more complex stress–strain behaviour. In the elastic phase, non-linear

elasticity is controlled by the normal consolidation line of the CSUH model, while isotropic

linear elasticity is used to simply depict the strain–stress relationship in the IME model. In

the plastic phase, the void ratio-related plastic flow rule of the CSUH model is utilised to

better represent the plastic response, instead of the exponential isotropic hardening equation

and associated flow rule in the IME model.

The higher complexity of the CSUH model compared to the IME model results in a more

complicated CSUH dataset. The directly predicted results by the NN agree well with the

offline dataset which is indicated by the almost exact overlap of the triangular and circular

points in Fig. 5.12. However, once cooperating with the exFEM solver, the NN-based and

CSUH-based computations experience two quite deviated strain–stress paths. This largely

results from the error accumulation as the simulation goes on. The results also explain why

the amplitudes of the acceleration in Fig. 5.9 grow increasingly larger.

In Fig. 5.10, since the x-axis in the graph is the axial strain, the strain obtained from the

exFEM-NN calculation may be either greater or less than that in CSUH-based computation.

This interprets why the curves in Fig. 5.10 are shorter or longer than the range covered by

the data points.

In the purely data-driven framework, the errors between the training datasets and pre-

dictions are impossible to be completely removed, instead relatively decreased via improving

the training accuracy. Once the initial error exists, it will influence the following computa-
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Figure 5.10: Stress–strain responses at representative Gauss points with datasets collected

from the CSUH-based simulations

tions. Only if the predictions are sufficiently accurate or the NN-based model is capable of

giving a sensible prediction when the loading path deviates from the original one, the error

accumulation can be solved. Otherwise, the stress–strain path will gradually deviate from

the ground truth.

In an explicit FEM solver, the constitutive part is invoked much more frequently than

the implicit solver. So, it is more demanding to train a sufficiently accurate to relieve the

error accumulation in thousands of steps. The Fourier features and the multiplied residual

block is introduced to achieve higher accuracy. In terms of expanding the input range of the

training samples, there is no proper method to evaluate how many samples are supposed

to be generated and whether the training datasets are sufficient to cover all of the possible

scenarios which will encounter in a boundary volume problem. A full sampling is quite

challenging, even impossible.

Model optimisation via the check-and-revision method

To get better results on the Gauss points, we use the on-the-fly check-and-revision method

described in Sec. 5.2.3 to check, correct and save the data points. As shown in Fig. 5.6,

after one check-and-revision calculation, the newly saved error data points are added to the

original training data set and the network is retrained. The check-and-revision is invoked
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Figure 5.11: The exFEM-NN computation results with the check-and-revision iterations:

(a) Strain field and (b) top force, total volume strain and maximum acceleration curves

after three and six iterations of check-and-revision; (c) evolution of the number of Gauss

points whose error of stress prediction greater than 50% with loading step

iteratively on the newly trained network to perform the calculation, and the number of error

points evolves as shown in Fig. 5.11b. After the first expansion of the dataset via the

check-and-revision iteration, the number of error points is significantly reduced. However,

as we repeated this procedure, it turns out that the number of error points predicted by the

network gradually stabilised at around 50.

This calculation suggests that the check-and-revision effectively enlarges the training

range and enhances the network’s predictive capability on biased sample inputs, but this

method does not completely eliminate the presence of error points. This may partly attribute

to the nature of the data-driven model, as a surrogate simply approximates the ground truth

and some loss of accuracy is unavoidable.

Fig. 5.11a and b show the results after three and six check-and-revision iterations, re-

spectively. As the number of iterations increases, the top force and volumetric strain are

closer to those from the CSUH-based simulation, and the acceleration has been reduced.

This indicates that after iterations, the range of input strains to the network is broadened

and the network performs better with unfamiliar input strains and therefore does not suffer

from excessive acceleration and computational instability.
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Figure 5.12: Stress curves on the Gauss points after six iterations of check-and-revision

Fig. 5.12 shows the stress–strain results at the gauss point in the exFEM-NN calculation

after six check-and-revision iterations. Compared to the results in Fig. 5.10, the stresses at

Gaussian points are closer to the CSUH-based dataset, but they do not match the dataset

perfectly. Even though the macroscopic results of the exFEM-NN simulations in Fig. 5.11

agree well with the CSUH-based simulation, the results at the Gauss point still deviate

considerably. This supports the view that errors and error accumulation processes cannot

be completely removed.

5.3.2 Retaining wall

In parallel with the biaxial tests, we also carry out a retaining wall simulation, using the

model schematic shown in Fig. 5.13a. The biaxial simulation and the retaining wall simula-

tions are macroscopically loaded in the y-axis and x-axis directions, respectively. Therefore,

the training data from the two are to some extent complementary and are proper to be

merged together for network training.

As shown in Fig. 5.13b and c, the trained network used for the retaining wall simulation

results in similar conclusions to the former biaxial case. As the number of check-and-revision

iterative optimisation increases, the reaction force acting on the retaining wall and overall

volumetric strain get closer to the ground truth, and the maximum acceleration in the second

half of the loading process is gradually reduced. However, in the retaining wall simulations,
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Figure 5.13: Retaining wall simulations with CSUH and NN-based model: (a) Discreti-

sation and boundary condition; (b) Curves of the reaction force, macroscopic volumetric

strain and the maximum acceleration; (c) Displacement field
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Figure 5.14: Rigid strip footing simulation results with CSUH and NN-based model (a)

Discretisation and boundary condition; (b) Curves of the footing reaction force, global

volumetric strain and maximum acceleration; (c) Evolution of the number of error points

with loading steps

even after six iterations of check-and-revision, the reaction forces acting on the retaining

wall still start to fluctuate and deviate after the loading exceeds 0.03, unlike the biaxial

simulations where the results are in good agreement within the whole loading process.

5.3.3 Rigid strip footing

After performing the above calculations, we took the network after six check-and-revision

iterations and put it directly into the computations for the strip footing case, with the model

shown in Fig. 5.14a. Note that the network numbered 0 was trained without datasets from

strip footing simulations. And therefore the case amounts to a wholly new problem for the

network numbered 0.

Fig. 5.14b shows that before the iterations are performed, the calculation fails due to the

network’s misprediction, and the maximum acceleration increases gradually in the second

half of the calculation, resulting in progressively more distorted stresses and strains. After

three iterations, the network accuracy improved significantly to the point where it is able to

give a relatively reasonable result. However, the simulations after the axial strain exceeded

0.05 still deviated from the ground truth. Repeating the check-and-revision iteration, from
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Figure 5.15: Error points selected at the last load step in each check-and-revision iteration

the third to the eleventh iteration, yields further improvements. However, some deviations

in the macroscopic footing force and the whole volume strain remained.

The evolution of the number of error points with loading is shown in Fig. 5.14c. Since the

training set for “NN 0” does not include any pairs of data from the strip footing simulation,

the model is unable to eliminate the error after encountering it, and thus the number of

error points increases rapidly. After performing a check-and-revision iteration, the number

of error points in iteration 2 dropped significantly. After repeatedly widening the training

range via iteration, we found that the number of error points stabilised at around 50 after

11 iterations.

Fig. 5.15 shows the positions of the Gauss points where the relative error is greater

than 50% at each iteration step. The error points are mainly concentrated at the base

compression area. As the check-and-revision iteration progress, the number of error points

gradually decreases and eventually converges at around 50, with the distribution of error

points remaining constant.

The strain results from exFEM-NN calculations on the network obtained during the
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Figure 5.16: Shear strain field with different number of check-and-revision iterations

check-and-revision process are shown in Fig. 5.16. As the number of optimisations increases,

the network becomes more stable at the location of maximum shear strain (top of the base).

After three iterations, the network is able to reproduce the crash damage in the strip footing

simulation, forming a lateral arc through the damage zone. After six iterations, the network

simulation shows an oblique shear zone due to compression in the vertical direction, forming

a triangular shear zone. After twelve iterations, the strain calculation does not improve

further.

The above three simulations demonstrate that the check-and-revision method shown in

Fig. 5.6 can be used to expand the training range. For both the biaxial and retaining wall

simulations, the network is significantly improved by the check-and-revision procedure.

In the rigid step footing simulation, the network was first trained without inputting the

stress–strain data from the strip footing simulation, and instead, the network is evaluated

directly using check-and-revision on a completely new case. The network ”NN 0” has a large
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Figure 5.17: The strain-stress curves of four Gauss points of the rigid strip footing simula-

tion

118



error in predicting stresses, especially in the compression and shear zones. After several iter-

ations, the network is able to reproduce the results of the CSUH-based simulation, including

the swelling and the shearing band.

However, after several iterations, there are still some error points which cannot be elim-

inated, indicating that the neural network, as a regressor, is always approximating the data

set but cannot be completely free from mispredictions. The internal variable φij =
∑
|∆ϵij|

was used to calibrate the historical influence in the training and predicting. When an im-

plicit FEM solver is used, the simulation can be completed within 100 steps. So the error

due to this internal variable will not be so pronounced. However, in this paper, when there

is some error and instability in the NN predictions, the fluctuations of the strain increments

can be accumulated in φij due to its mono-increasing nature. In Fig. 5.14c, the number

of error points gradually increases with loading steps, which is a vivid description of the

accumulating errors.

The stress–strain curves comparison of the strip footing simulation at the four integration

points is shown in Fig. 5.17. At integration points 100 and 110, the NN constitutive model

is able to reproduce the failure of the material due to shear. At integration points 35 and

250, where unloading occurs, the NN model predictions deviate slightly from those of the

CSUH model. In contrast, the results for point 35 are visually better than point 250 because

the strain at this point is smaller and closer to the elastic state.

5.4 Stability of the netowrk-based exFEM computa-

tion

In our work, the exFEM invokes the neural network to predict stresses at every Gauss

point in each load step of the calculation. Any Gauss point with mispredicted stress will

cause the neighbouring Gauss points to experience loading paths which is deviated from the

training data. The error accumulation can lead to the overall computation collapse. Our

work, therefore, requires a network with a high degree of prediction accuracy and robustness.

When the predicted macroscopic results are close to the training data, we can assume that

the method, to some extent, overcomes the problems of error accumulation and insufficient

generalisability.

This section will primarily focus on analysing the stability of the network, with the

training dataset from exFEM-IME simulations.
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Figure 5.18: Evolutaion of the stress error during loading

5.4.1 The emergence and propagation process of errors in the

FEM calculation

In order to visualise the accumulation of errors in the computation of neural networks, we

randomly train three neural networks and embedded all of them in one FEM computational

model. The difference between their predicted stresses represents the prediction uncertainty.

This idea is inspired by the active learning ”query-by-committee” [135], where the difference

between the predictions of the three networks is used to assess the accuracy of the prediction,

with a smaller difference indicating that all three networks agree with the prediction and the

prediction accuracy is higher, and vice versa (Fig. 5.18).

Fig. 5.18 illustrates the evolution of the prediction uncertainty in explicit loading. The

errors in biaxial loading show that at the very beginning of loading (25% in the total loading

steps), the network predictions already diverge at the four corners, but in subsequent loading

(50%, 75%), the prediction errors at the four corners do not increase rapidly and spread, but

gradually decrease or fluctuate within a certain range without spreading. This indicates that

120



Figure 5.19: Network prediction results after introducing different levels of ξ (0, 0.2, 0.5,

1.0)

the network is able to adjust for fluctuations caused by its errors. For instance, if the next

stress can be properly predicted in consideration of the previously biased strain increments,

then the deviation can be gradually reduced.

The simulations of retaining wall and strip footing show that after the initial error occurs,

the errors gradually accumulate and propagate. It is suggested that the error in stress

deviates the strain from the trained loading path, which in turn causes the network to mis-

predict stresses increasingly. This vicious circle leads to a gradual increase in the number of

Gauss points with large errors. The evolution of these regions illustrates the full process of

computational instability appearing and propagating.

5.4.2 Stability analysis of NN-based predictions after adding noise

The decreasing or growing spread of errors indicates that networks vary in their ability to

resist different levels of interference. We extracted the results of two representatives Gauss

points in the strip footing simulation and observed the results of the neural network model

prediction after applying different levels of noise (Fig. 5.19). The noisy strain increment is:

∆ϵnoised = (1 + ξR)∆ϵ (5.13)

where ξ is the amplitude, and R is a random variable subject to a normal distribution N(0, 1).

In the absence of noise, the network is able to reproduce the stress–strain relationship at

these Gauss points with high accuracy. After introducing noise of ξ = 0.2, for Gauss point
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#125, in the first half of the loading, although there are some wiggles, the predictions agree

well with the model’s calculation. The network predictions start to deviate significantly

from the ground-truth data at the 250th loading step onwards. This proves again that the

network prediction results get unstable due to the accumulation of this random error. As the

amplitude of the noise gradually increases (ξ from 0.2 to 1.0), the network prediction results

gradually shake heavier and the point of divergence between the predicted and calculated

results gradually advances.

The predicted stress–strain curves at the selected Gauss points depicts that errors at some

points in Fig. 5.18 (e.g. Gauss point #0) fade away or continue to fluctuate, while errors

at some points increase and subsequently affect their neighbouring Gauss points (e.g. Gauss

point #125). Similar to the butterfly effect, tiny errors at the beginning of the process can

give rise to accumulated errors after several calls to the neural network, eventually leading

to unacceptable deviations.

5.5 Discussion

For NN-based FEM computation, it is not the best-predicted data points that guarantee

the computation’s success but the worst data points that may result in failure. Although

deep neural networks have made many successful applications, one issue we must face is

that we may have overestimated their capability in reconstructing multivariate non-linear

relationships for geomechanical materials, especially in terms of accuracy and generalisation

because they cannot guarantee sufficiently good predictions at every point.

5.5.1 Challenges in network-based constitutive model development

Through the study, the limitations or challenges of rebuilding the constitutive model via

data-driven method are summarised as following:

1. Unavoidable prediction errors and the lack of generalisability. We used

classical constitutive models (CSUH and IME) as the ground-truth model to generate

huge amount of training data, and introduced the Fourier series and multiplied residual

blocks to improve the training accuracy. However, it is still impossible to eliminate the

errors between the predicted values and the actual samples. The strain paths obtained

from the NN-based FEM solution may significantly deviate from those in the training

samples. The the lack of generalisability causes the poor stress predictions.
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2. The finite nature of the sampling space. The NN’s performance is dominated by

the training data, so preparing training samples that are less noisy and cover as wide

as possible is the primary task of the data-driven approach. However, we have to face

the reality that the sampling space cannot cover the input space completely and there

is no suitable method to assess the completeness of the sampling space. The CSUH

and IME models require a small computational effort to prepare samples, and it will

be more difficult to cover as large a strain–stress space as possible if the samples come

from low-scale DEM simulations [147]. Furthermore, the loading history dependence

of elastoplastic materials poses an even greater challenge for sample preparation, which

requires not only strain states, but also previous loading history. The idea of covering

the entire space by making a large number of samples is therefore difficult to realise.

Even if we use the check-and-revision method, we are only able to train a model simply

suitable for a certain BVP. If a brand new application scenario is computed using a

trained neural network model, unexpected data points in the training space will still

be encountered, see Sec. 5.3.3 for a strip footing simulation.

3. Error accumulation in multi-step calculations. FEM calculations, especially

explicit solution methods, require invoking constitutive models intensively. The pre-

diction errors at the previous loading steps influence the next strain increments, leading

to input strain and state-related internal variables going beyond the original training

space. If only a neural network is required for a single prediction, there is no need to

consider the error accumulation. Figures 5.6 and 5.19 show the causes and effects of

error accumulation during the computation, respectively.

5.5.2 Possible development

Machine learning, and in particular neural network methods for data regression, is a very

easy thing to get started with, thanks to the development of various libraries for neural

networks. But how to train a neural network model that can be used for BVP analysis is

not actually a simple problem. At current stage, machine learning models for mechanical

calculations exist only in academic research and do not appear in any commercial software

or other distributions of wide-used open source software. The research is still very much

in its infancy. After all, it is unacceptable to use an entirely black box for safety analysis

of engineering. If one wants a machine learning constitutive model that can be used for

generalisation, there are two routes:
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1. A fully data-driven approach like the one in Otiz’s work [73,143], without the use of a

surrogate agent model, then the constitutive response extracted from the dataset can

be perfectly acceptable. But the finite range of the datasets and the computational

efficiency are other problems;

2. Introduce physics to interpret the machine learning model and help it to generalise.

5.5.3 Improvement in calculation efficiency

In numerical calculations especially when the number of integration points is sufficiently

large, the speed of the constitutive model significantly affects the overall efficiency. In our

previous work, we investigated the effect of ANN for accelerated FEM-DEM multiscale sim-

ulations. The computation of a mathematical equation-based constitutive model is signifi-

cantly faster than that of a low-scale DEM simulation. The CSUH model requires plasticity

correction after the material enters yield, and the loading step size needs to be reduced

to a certain level in order to accurately reproduce the material non-linearity. In addition,

the plasticity correction calculation, where the elasticity, yielding and hardening, is quite

complex and time-consuming. Especially at locations on the verge of failure, the step size

needs to be further reduced, otherwise, the average stress p < 0 leads to a breakdown of

the calculation. As shown in Tab. 5.2, we compare the computational speed of the different

constitutive models in the FEM. The IME model is the fastest because it’s relatively simpler,

and the NN-based model is faster than the CSUH model. The boost in the biaxial simulation

is lower because, in the biaxial simulation, not as many material points are nearly damaged

as in the other two simulations.

Table 5.2: Summary of time consumed in different simulations with different constitutive

models

Simulations
Consumed time (min) Number of

Gauss points

Number of

steps

Improvements

(ANN vs CSUH)IME CSUH NN

Biaxial

compression
5.78 10.86 7.86 484 5000 27.62%

Retaining wall - 7.48 5.23 271 6000 30.08%

Footing - 16.30 10.70 546 6000 34.36%
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5.6 Concluding remarks

This work proposes an explicit FEM computational framework coupled with a neural net-

work, which circumvents the dependence on the tangential matrix during the non-linear

iteration. The conditional stability in explicit FEM computation requires a sufficiently small

time step size and thus a large number of load steps are needed, which gives rise to an in-

tractable error accumulation problem. To improve the learning capability of neural networks,

Fourier features and multiplied residual blocks are used to improve the network. The check-

and-revision calculation method is proposed to check, correct and save the stress–strain data

at the error points for expanding the network training range. After several iterations of the

check-and-revision, the number of error points is significantly reduced.

In the three numerical tests presented in this paper, the neural network effectively repro-

duces the two constitutive models (IME and CSUH). Theoretically, the neural network can

reproduce all the constitutive relationships contained in the data, provided that the state

variables are suitably selected and the training data is adequate.

However, it is impossible to completely cover the infinite input space, especially for

history-dependent and high-dimensional problems. By examining the emergence and accu-

mulation process of error, it is found that noise perturbations can cause the inputs to the

network to gradually exceed the original training range. The error accumulation and the

lack of generalisability can lead to the failure of the exFEM-NN computation.
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Chapter 6

Recurrent network-based constitutive

model

6.1 Introduction

Since Hooke’s Law, the development of models to describe material constitutive relation-

ships has become an essential subject in fields such as materials science and geoengineer-

ing. Numerous models based on the assumption of a continuous medium have been pro-

posed [41,49,112,148], yielding remarkable successes. However, as these constitutive models

have been enhanced with an increasing number of parameters, they have become intricate

and challenging to apply universally in engineering practice, despite their growing accuracy.

Consequently, the question arises: How can we develop accurate models in a straightforward

manner that are easy to apply broadly?

Machine learning appears to provide a potential solution to this issue. From an ML

perspective, models can be derived once sufficient data is available. The utilization of ML

in constitutive modelling was initiated by Ghaboussi et al. [90], where a computational and

knowledge representation framework called neural networks were employed to train an ML-

based model for concrete using experimental data. The encouraging results of accurately

predicting stress responses using neural networks motivated researchers to further develop

neural network-based constitutive models.

In light of the rapid advancement of ML, intensive efforts are currently being devoted

to incorporating ML into the implementation of constitutive models. Unlike traditional
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mathematical models that rely on pre-defined constitutive formulations, ML-based consti-

tutive models leverage data sets to exploit stress-strain relationships with minimal or no

prior assumptions about the material’s behaviour. Notably, recent studies have demon-

strated the competence of neural networks (NN) in reproducing complex constitutive re-

sponses [98, 101, 104, 149, 150]. Particularly noteworthy is the introduction of a Minimal

State Cell in the recurrent structure by Bonatti et al. [103], aiming to train an ML-based

model capable of capturing path-dependent material behaviour. With such a cell, the deep

NN model exhibits satisfactory performance in terms of history dependency, even when

trained with a limited number of loading paths.

Efforts have also been made to integrate ML-based constitutive models into finite element

(FE) analysis of boundary value problems [94, 151]. In the study by Lefik et al., [151], the

introduction of stress and strain tensor rotation, along with a scalar parameter, aimed to

mitigate the influence of incremental step size during the training stage. Guan et al. [147]

utilised a NN as a constitutive agent to replace computationally expensive sub-scale DEM

simulations within a coupled FEM-DEM multiscale computational framework [4], thereby

enhancing computational efficiency. Regarding the training of ML-based surrogate models,

Recurrent Neural Networks (RNN) and its derivatives such as Long Short-Term Memory

(LSTM) [127] and Gated Recurrent Unit (GRU) [152] have gained prominence. For example,

Ghavamian et al. [105], Logarzo et al. [106], and Guan et al. [153] incorporated RNNs for

sequence prediction, which were subsequently embedded within FEM simulations.

Alternatively, Gaussian Process Regression (GPR) can be utilised to implement the

strain-stress mapping (ϵij − σij). Rocha et al. [154] employed GPR to correct the trial

stress, initially assessed based on linear elasticity assumptions, to accurately reproduce FE2

calculations. However, the classic GPR has limitations in handling large datasets, as the

covariance matrix becomes too large, making it challenging to find the inverse. Fuhg et

al. [155] introduced Local approximation GPR (LaGPR), which predicts stress and tangent

matrices by interpolating within neighbouring data points. Remarkably, a distinct data-

driven searching method was proposed by Kirchdoerfer et al. [143]. Without constructing

any regression or mapping agent, this method directly searches for the most suitable out-

put within datasets prepared via offline simulations. The approach relies on two mapping

operators: (i) PE, which maps the trial state of (ϵ(n), ϵ(n)) to a state that matches the geom-

etry and equilibrium condition, i.e., (ϵ(n), ϵ(n)) = PE(ϵ
(n), ϵ(n)), and (ii) PD, which searches

for the closest data pairs in the offline prepared datasets to define the new trial state, i.e.,

(ϵ(n+1), ϵ(n+1)) = PD(ϵ
(n), ϵ(n)).
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It is important to emphasise that networks exhibit excellent performance in interpolation

but are not as effective in extrapolation [147]. To address this limitation of network-based

models, researchers have attempted to incorporate prior knowledge, such as principles of

physics, to aid in the training of these models. One popular approach in this regard is

known as Physics-Informed Neural Network (PINN) [156]. By incorporating physics-based

constraints, the performance of NN-based models can be largely improved, even when dealing

with inputs that are beyond the range of the training data. In the context of elastoplasticity,

Vlassis et al. [118] aimed to train a network capable of reproducing hyperelastic behavior

while implementing a level-set yield surface to govern plastic deformation and hardening. On

a similar note, Fuhg et al. ( [157]) proposed a convexity-constrained method that utilized

various tools such as NN, GPR, and support vector machines (SVM) to ensure the convexity

of data-driven yield surfaces. Jang et al. [158] provided the model with precise information

regarding linear elasticity and the hardening function. They then utilised the network model

for plastic return mapping, where the predicted stress σ is a function of the trial stress σTR

and the hardening function ρ(ϵ̄p), represented as σ = NN (σTR, ρ(ϵ̄p)), where ϵ̄p represents

the accumulated plastic strain. However, it should be noted that introducing physics-based

knowledge can make the training process more challenging and less efficient [159].

In addition to incorporating prior physics knowledge into the loss function, there is an

approach that leverages the architecture or activation of neural networks to automatically

satisfy certain physics-based constraints. This approach is known as Physics-Consistent

Neural Network (PCNN) [160]. One commonly imposed constraint in training NN-based

constitutive models is coaxiality. For example, Huang et al. ( [142]) employed orthogonal

decomposition to reduce the number of stress and strain tensor components from six to three

using spectral decomposition. Then, only the components corresponding to the principal di-

rections were involved in the training process. To further enforce the constraint of coordinate

independence, Yang et al. ( [112]) coerced the model to ensure that the predictions remain

consistent regardless of the order of the input axes.

Despite the advancements in data-driven constitutive model development, several chal-

lenges still remain and require further attention.

• The coaxiality assumption can be used to simplify the dimension reduction process for

elasticity models. Its introduction into plastic works, however, must be carried out

with caution. For example, in the ”MAP123” works from Tang’s group ( [109–111]),

they detailed where and how the datasets with six components can be degraded to

128



volumetric and shear/effective directions i.e. ϵv − σv and ϵs − σs.

• Additionally, FE calculations typically involve multiple analysis steps as shown in Fig.

6.1. This implies, its output of a NN-based constitutive model will be used to compute

the input for the next analysis step. Therefore, FE simulation usually possesses a

recurrent structure regardless of the use of a recurrent NN. Notably, the results of

a recurrent structure are significantly influenced by the step size. For instance, the

outcomes can vary significantly depending on whether a load step is divided into ten

or one hundred substeps. The recurrent structure can also lead to prediction error

accumulation, which is a common limitation associated with such recurrent structures.

• Apart from these, the choice between the sequence-training and one-to-one training

is plaguing. Sequence training can provide a better solution to the path dependency

problem; it is hindered by the gradient explosion or vanishing. On the other hand, one-

to-one training can achieve higher accuracy. However, it requires the explicit feeding

of internal variables into the network, which can complicate the dataset preparation.

Addressing these challenges will contribute to the development of data-driven consti-

tutive models that can effectively capture path dependency while maintaining high

accuracy in predictions.

The main focus of this work is to utilise networks for reproducing an elastoplastic model.

In this chapter, we focus on general elastoplastic models, rather than models specifically

designed for granular materials. To ensure accuracy, we did not rely on the dimension

reduction method based on the coaxiality assumption. Instead, the physics-extended ba-

sis function and the isotropic swapping are introduced to apply constrained physics to the

network-based material cell, thereby enhancing the model’s generalization ability. The ran-

dom Gaussian Process is employed for random loading path generation. Furthermore, an

adaptive step size adjustment method was introduced to reduce the error resulting from

mismatches between the step size in the FE simulation and the training dataset. The study

also includes the reproduction of the classical model using both recurrent network-based

and deep network-based material cells, with a thorough comparison between them. Overall,

this work emphasizes the utilization of networks to accurately reproduce an elastoplastic

model, incorporating physics-based constraints, random loading paths, adaptive step size

adjustment, and a comparison between different network architectures.
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6.2 Methodology

6.2.1 Governing equations and explicit FEM solver

Based on Newton’s second law, the governing equation can be written as (for clarity, formulas

in this section are expressed in Einstein summation form):

ρüj = σij,i + ρbj in Ω

uj = ūj on ∂Ωu

σijni = t̄j on ∂Ωt

(6.1)

where üj is the acceleration, and ∂Ωu and ∂Ωt are the Dirichlet boundary and the Neumann

boundary, respectively. After introducing the Galerkin method we obtain the weak form of

Eq. 6.1 as follows: ∫
Ω

ρüjϕmdv =

∫
Ω

(σij,i + ρbj)ϕmdv (6.2)

where ϕm is the basis function and the acceleration within an element is interpolated by

üj(x) =
∑N

n ü
(n)
j ϕk(n), where N is the total number of basis functions. Note that in the

description here i and j denote the numbering of the dimensions of the solution space R2,

and m and n represent the numbering of the basis functions. Utilising part integration and

the divergence theorem, one can convert Eq. 6.2 into:

ü
(n)
j

∫
Ω

ρϕnϕmdv =

∫
∂Ω

tjϕmdS −
∫
Ω

σijϕm,idv +

∫
Ω

bjϕmdv (6.3)

The above formula can be expressed in a simplified form:

Mmnü
(n)
j = Tmj − Fmj +Bmj (6.4)

where Mmn =
∫
Ω
ρϕnϕmdv is the mass matrix and Tmj,Fmj and Bmj correspond to the

boundary force, the internal force and the body force tensor, respectively, of the right-hand

sides of Eq. 6.3.

The finite element method discretises the entire model into a set of elements and applies

the aforementioned Galerkin method to each element. Matrices like M e
mn, T

e
mj, F

e
mj, and Be

mj

are first evaluated within each element, and then global matrices are assembled by combining

these element matrices. The acceleration of all the nodes can then be obtained by solving a

system of linear equations.
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The central difference method is then employed to update the displacement according to

the time integral: u̇j|t+0.5∆t = u̇j|t−0.5∆t +∆tüj|t
uj|t+∆t = uj|t +∆tu̇j|t+0.5∆t

(6.5)

where the subscript indicates the moment. The first equation can be interpreted as the

velocity at the moment (t + 0.5∆t) is equal to the velocity at the moment (t− 0.5∆t) plus

∆t multiplied by the acceleration at the moment t.

The displacement and strain increment are evaluated assuming infinitesimal deformation

as follows:

duj|t+∆t = ∆t u̇j|t+0.5∆t

dϵij|t+∆t =
1

2
(∆uj,i|t+∆t +∆ui,j|t+∆t)

(6.6)

The coupling of the material cell to the FEM solver was accomplished through a Python

interface. Alg. 4 is added to describe the coupling process. The finite element model uses

eight-node planar elements, each containing four integration points.

6.2.2 Material cell

In this section, we introduce the concept of a material cellM which is depicted in Fig. 6.1a.

In the analysis of a BVP, the constitutive relationship can be generally expressed as

I =M(dϵij, I0) (6.7)

where I0 and I represent the internal variables before and after the loading of dϵij, respec-

tively. The internal variables encompass a range of quantities such as stress, strain, plastic

deformation, plastic work, etc. The constitutive model is applied iteratively at Gauss points

at each loading sub-step. The output I serves as an input for the subsequent sub-step.

Similarly, in the recurrent neural network (RNN) cell shown in Fig. 6.1b, the hidden

state h is updated by

h = RNNCell(x, h0) (6.8)

where x is the input, and h0 is the original hidden state. As a special type of RNN, GRU

can alleviate the gradient vanishing and explosion problems that often occur during long-
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sequence training. The tensor operations within the GRU cell can be expressed as

r = σg (Lxr (x) + Lhr (h0))

z = σg (Lxz (x) + Lhz (h0))

n = tanh (Lxn (x) + r ⊙ Lhn (h0))

h = (1− z)⊙ n+ z ⊙ h0

(6.9)

where L(x) = wx+ b is a fully-connected layer, the subscript denotes the where is the input

from and where is the output going, r denotes the reset gate vector, z denotes the update gate

vector, and n denotes the candidate activation vector, σg()̇ represents the Sigmoid activation

function. Within each RNN cell, there involve six fully-connected layers. The computational

procedure for GRU units has been extensively described in various literature and will not be

detailed in this paper. The formula for the GRU unit can be viewed in the PyTorch Docs.

Due to the connection between the two we propose a network-based material cellMNN .

By inputting the strain increment and internal state variables, the material cell can update

the internal variables via the trained network, which can be expressed as:

I =MNN(dϵij, I0) (6.10)

Figure 6.1: (a) Schematic of the material cellM. (b) Tensor flow in the recurrent neural

network cell.

After introducing the material cell, we would like to introduce one-to-one training and

sequential training. Note that the one in one-to-one does not refer to a single input feature,

but rather to a snap, which represents the input and output information obtained at a single

load step. One-to-one training will only use the information from a single snap to calculate

the error. Sequential training, on the other hand, iteratively uses the information from all

the snaps in a single computation. It is also known as recurrent network training method.

As shown in Fig. 6.2, we use material cell to predict the stress responses. The required

inputs are the current state, the internal variables and the strain increments.The loss function
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for sequential training is:

Lseq. =
∑
i

(
σ̂(i) − σ(i)

)2
(6.11)

The loss function for one-to-one training is:

Lone. =
∑
i

(
σ̂(i) − σ(i)

)2
+
∑
i

(
ĥ(i) − h(i)

)2
(6.12)

If sequential training is used, there is no need to explicitly obtain the internal variable h.

With the output of one-to-one training as the input for the next prediction, the one-to-

one training can also be turned into sequential training. It should be emphasised that in

sequential training, there is the problem of gradient vanishing and gradient explosion. The

special gate structures of GRU [152] or LSTM [127] are needed to alleviate this problem. In

the subsequent works in Sec. 6.3 and 6.4, sequential training is used, except for DNN-based

material cell in Sec. 6.4.6 where one-to-one training is used. The advantages of the two

training methods are discussed in Sec. 6.5.

Figure 6.2: The sequential and one-to-one mapping method

The material cell is trained and then tested on the test set which has never been in-

volved in training. Note that the loading path of the test set is generated using the same

method as the training set (Sec. 6.2.3), but different from the training set. The test set and

the training be described as independently-identically-distributed in mathematical statistics.

After satisfactory results are obtained on the test set, the material cell is embedded into the

explicit FE solver for further validation. Alg. 4 shows the FE solver calling material cell

computation on a computational step.
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Algorithm 4 FE solver with the material cell at time t

Require: Velocity of last half step u̇|t−0.5∆t (for central difference), internal/hidden state

at last step h0

1: Compute the acceleration ü|t via Eq. 6.4.

2: Update u̇|t−0.5∆t to u̇|t+0.5∆t

3: Compute the displacement increment du and strain increment dϵ via Eq. 6.6. Note,

the displacement loading of this step is added to du.

4: Get the constitutive prediction (σ,h) =MNN(dϵ,h0)

5: Update the internal node force with the updated stress σ via Eq. 6.3

The neural networks are constructed using the Torch library for Python, version 1.13.1+cu117.

The default parameters of the Adam optimiser used are ”lr=0.001, betas=(0.9, 0.999),

eps=1e-08, weight decay=0”.

6.2.3 Loading path generating via random Gaussian Process

The strength of data-driven approaches lies in their powerful mapping ability, as they leverage

the available data to its fullest extent. Theoretically, with a sufficient quantity of high-quality

data, it becomes possible to train a model that is both precise and general ( [147]). However,

it is important to note that the potential solution space is infinite, while the datasets at hand

typically have limited coverage as is shown in Fig. 6.3. To date, there has been no consensus

on how to assess the completeness of training data coverage, although numerous methods

have been developed to expand the sampling space. In this study, we employed a random

GP to generate the smooth random loading paths ( [106]).

Figure 6.3: Finite training paths and infinite possible loading paths

The function value of a Gaussian process at some input points x are distributed as a

Gaussian distribution with mean u and variance v2. These points are linked by covariance.

If the covariance matrix Σ is diagonal, these points are distributed independently. The
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Gaussian process can be expressed as:

f ∼ GP (u,Σ) (6.13)

where u is the mean vector and Σ is the covariance matrix to define the curvature and

amplitude. Details regarding the evaluation of u and Σ are provided in Appendix 6.6.1.

The random GP uses the Gaussian kernel, given by:

Σ(x|v, l) = k(x, x′|v, l) = v2 exp

(
−(x− x′)2

2l2

)
(6.14)

where v is used to restrict the distribution range, and l represents the characteristic length of

the correlation corresponding to the approximate distance between two points on the curve.

Assuming a normal distribution, approximately two-thirds of the points fall within the range

of u± v.

To ensure the diversity of loading paths, we assume that the components in different

directions follow the same kernel but with different hyperparameters. Because strain com-

ponents, such as ϵ11 and ϵ12, may have different amplitudes, it is inappropriate to use the

same values of v and l for all three components of the strain, namely [ϵ11, ϵ12, ϵ22].

Instead of generating the strain components directly in space ϵ ∈ R3, the two principle

components and rotational angle are first generated and then transformed back to the orig-

inal coordinate. If the components of the strain tensor are directly generated, the strain

components in the 12 direction can be incompatible with those in the 11 and 22 directions,

and it is difficult to imagine how the samples are distributed on the π plane.

We use distinct hyperparameters in the random GP to generate the principal components{
ϵPR
1 ϵPR

2

}
and the rotation angle θϵ. Once obtaining the sequences of ϵ

(PR)
1 , ϵ

(PR)
2 , θ, tensor

rotation, as described in Section 6.6.3, is is performed to transform them back to the original

space of ϵ11, ϵ12, ϵ22. This approach enables the generation of loading paths with diverse strain

components while preserving the appropriate transformations between different coordinate

systems.

In the random loading path generation, we adopt the following settings for the hyperpa-

rameters:

• For the strain components in principal directions: vϵ is uniformly distributed between

0.1 and 0.18, and lϵ is uniformly distributed between 0.1 and 0.5.

• For the rotation angle θ + θ0: vθ is uniformly distributed between 0 and π/4.
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• The characteristic length lθ is the same as lϵ, and the initial rotation angle θ0 follows

a uniform distribution between −π and π.

Random paths can be easily generated based on the covariance matrix. Three paths

generated under these settings are displayed in Fig. 6.4. The Gaussian process in this

section generates a set of random strain paths, which is then applied to various elastoplastic

constitutive models to obtain strain-stress datasets. Training for different constitutive models

in Sec. 6.4 is based on these datasets.

Figure 6.4: Three examples of the random loading paths. The curves represent each of the

three components of the strain tensor in the two-dimensional case.

6.3 Material cell without physics: training and testing

We begin by constructing a material cell using the GRU architecture and stress sequences

generated under the J2 model (Sec. 6.6.2). Before training, the values of strain and stress

data are all normalised via:

x̄ =
x− µx

σx

(6.15)

where µx is the mean value and σx represent the standard deviation.

The structure of the material cell is illustrated in Fig. 6.5a. This architecture enables the

material cell to capture the temporal dependencies and patterns in the data, allowing it to

learn the constitutive relationship between input and output sequences. The parameters in

the material cell will be optimised during the training process to minimise the discrepancy

between predicted and target stress values. Following training, we can evaluate its perfor-

mance in reproducing the behaviour of the elastoplastic models on test sets, based solely on

the data-driven approach provided by the GRU architecture.
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Figure 6.5: MNN consists of two layers of GRU and a fully connected (FC) layer and (b)

the loss evaluation with different numbers of training sets, where the solid line indicates

the training loss and the dots represent the validation loss.

The calculations in Fig. 6.5a can be described as follows:
h
(n)
1 = GRU1(x

(n−1), h
(n−1)
1 )

h
(n)
2 = GRU2(h

(n)
1 , h

(n−1)
2 )

y(n) = FC(h
(n)
2 )

(6.16)

where the input x to the material cell represents the strain increment. x is fed into the

first GRU layer denoted as GRU1, which processes the input and updates its hidden state

h1. The hidden state from the first GRU layer is then passed to the second layer GRU2,

which further processes the input and updates its hidden state h2. The final hidden state

from the second GRU layer is fed into a fully-connected layer, which performs a linear

transformation of the hidden state to obtain the predicted stress. These calculations are

performed iteratively for input sequences to predict the corresponding output sequences.

During the training process of the material cell, the hidden states in the GRU layers do not

have explicit physical meanings and are initialized as null at the beginning.

According to Eq. 6.9, for one GRU, the number of trainable parameters is 3×(nin×wh+

wh) + 3× (wh ×wh +wh), where nin is the number of input features and wh is the width of

the hidden state. The trainable parameters of the linear layer with biases is wh×nout+nout,

where nout is the number of the output features. The network in this section consists of two

GRU layers and a fully-connected layer, resulting in a total of 8, 823 trainable parameters.

To prevent overfitting and improve the model’s generalisation, the early-stopping scheme,

as introduced in previous works such as [101, 147], is adopted. In this scheme, a portion of
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the dataset, typically around 20%, is randomly selected and reserved for validation purposes.

This portion is not used during the training process but is used to evaluate the model’s error

after a certain number of epochs. The training process continues until the so-called validation

error reaches a point where it no longer significantly decreases.

The material cell is trained on the complete sequences of (ϵ, σ) data. To investigate the

sensitivity of the material cell to the amount of training data, different numbers of datasets

are used in the network training. Fig. 6.5b demonstrates that when only 20 sets of data

are used for training, the network achieves good prediction performance on the training set

but performs poorly on the validation set. This indicates that with a small amount of data,

the model essentially memorises or ”imitates” the training set without truly capturing the

underlying physics. As the training data gradually increases, the errors on the training set

and validation set gradually converge. This suggests that with a larger and more diverse

training dataset, the network is able to learn the underlying physics and generalise better to

unseen data.

Fig. 6.6 presents the results of the purely data-driven material cell using a total of 1000

sets of loadings. The error distribution exhibits a mean value of 2.4× 10−3 and a maximum

error of 2.4 × 10−1. Fig. 6.6b illustrates the best prediction under a random loading path,

demonstrating its capability to accurately capture the underlying physics. On the other

hand, Fig. 6.6c displays the worst prediction, highlighting the limitations and potential

challenges of purely data-driven approaches. Despite this, it is important to note that even

in this case, the model’s performance remains relatively good. With a sufficient amount of

data, the purely data-driven model demonstrates a high level of accuracy in its predictions

after training.

Even though the purely data-driven material cell achieves high accuracy, the discrepancy

between the strain increments in training data and the FE analysis limits its effectiveness as

a true constitutive model. The gap can be mitigated via linear transformation as mentioned

by [103].

6.4 Material cell with physics extensions: training, test

and FE analysis

In this section we introduce symmetry constraints and physical extensions for generalisability,

and adaptive step size adjustment for step size dependence.
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Figure 6.6: Results of the two-layer GRU model trained on data generated based on J2

model (a) Prediction error distribution. The vertical axis indicates the sample distribu-

tion’s density, with the curve representing an area integral equal to 1.

(b) Best prediction (c) Worst prediction. The curves corresponds to three components of

the stress tensor. The dots indicate the training data and the lines are the predictions.

Material cells are trained using data from three different elastoplastic models, ranging

from simple to complex. The objective is to assess the performance of the material cells in

capturing the behaviour of these models.

By incorporating additional physics through the use of physical extensions, the material

cells have the potential to enhance their accuracy and generalization capabilities.

Subsequently, we conducted a comparison between recurrent training and one-to-one

training approaches. Recurrent training involves training the material cells using sequential

data, where the output of one step is fed back as input to the next step. This approach takes

into account the temporal dependencies and can capture path dependency. On the other

hand, one-to-one training treats each step independently and does not consider the sequential

nature of the data. By comparing the pros and cons of recurrent training and one-to-one

training, we can gain insights into the strengths and limitations of each approach. Our goal

is to understand the trade-offs between these two training approaches and determine which

one is more suitable for capturing elastoplastic responses.

6.4.1 Adaptive step size adjustment

Developing a robust and universal network-based constitutive model for use in a BVP sim-

ulation is not a straightforward task compared to training a neural network alone. One

significant challenge is the discrepancy in scales of strain increments. The strain increments

used during training are typically much larger, sometimes even several orders of magnitude
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larger, than those encountered in the incremental analysis of a BVP. As shown in 6.7, the me-

dian Frobenius norm for the strain increment is 1.3e-3 in the training; in the FE simulation,

this value has a median of 4.2e-06. There is a significant difference in magnitude.

(a) The training datasets (b) The biaxial simulation

Figure 6.7: Distribution of the norm of the strain increment

A straightforward adaptive linear transformation, inspired by [103], is utilised to mitigate

this problem, which can be presented as follows:
s =

τ

∥dϵ∥
τ = Median(∥dϵ(1)∥, . . . , ∥dϵ(N)∥), dϵ(n) ∈ D(train)

I =
1

s
(MNN(s dϵ, I0)− I0) + I0

(6.17)

where τ represents the median of the Frobenius norms of training strain increments of the

training dataset. The scalar s is the linear adaptive scalar used for scaling the input and

output variables. We set the threshold to the median of the Frobenius norm of the training

strain increment. As a result, the input can be adaptively adjust to the size of the training

median, which is the size with the highest prediction accuracy. For numerical stability, the

above method directly returns the current state I0 when the strain increment ∥dϵ∥ is very
small and s is infinity. Similar with the self-consistent approach ( [161]), the above method

is integrated in the material cell architecture and involved in the offline training phase which

is intended to mitigate the step size dependence.

It is important to note that in the tests presented in Fig. 6.6, 6.8, and 6.11, the test

strain paths are generated using the same random GP approach employed for generating the

loading paths of the training samples. As a result, the magnitude of the strain increments
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(dϵ) in the test sets is similar to that in the training set. Hence, there is no need to adjust

the size of the input strain increment. However, adaptive adjustment becomes necessary

when the trained model is used in FE simulations, where the strain increments may differ

in magnitude.

6.4.2 Utilisation of the symmetry

To address the curse of high dimensions without relying on co-axiality assumptions, we

leverage the symmetry of the model instead of the co-axiality assumption. The co-axiality

assumption states that the principal axis of the strain tensor aligns parallel to the principal

axis of the stress tensor which is not strictly satisfied for the plasticity. However, by employ-

ing the symmetry based on the isotropic, we can enhance the model’s generalisation while

still satisfying the essential physics. The isotropy-based symmetry can be presented as:

(σ
(t)
11 , σ

(t)
12 , σ

(t)
22 ) = 0.5

MNN

(
dϵ11, dϵ12, dϵ22, σ

(t−1)
11 , σ

(t−1)
12 , σ

(t−1)
22

)
+

MNN

(
dϵ22, dϵ12, dϵ11, σ

(t−1)
22 , σ

(t−1)
12 , σ

(t−1)
11

)
[2, 1, 0]

 (6.18)

In the expression (x, y, z)[2, 1, 0] = (z, y, x), the index [2, 1, 0] is used to reorder the vector

(x, y, z), resulting in the new order (z, y, x). This notation indicates a rearrangement of

the vector elements based on the specified index values. It is worth noting that while the

inclusion of prior knowledge has potential benefits, it is important to carefully design and

validate its application in the specific context of the problem at hand.

In this work, the material cell is constructed under the isotropic assumption. Anisotropy

is a very interesting topic. Data-driven methods generally normalise the training data and do

not need to consider the gauge and size of the data when establishing relationships between

them. Without employing the symmetry, the material cell would be able to be used directly

on anisotropic materials.

6.4.3 Techniques for physical extensions

To enhance the interpretability and generalisability of network models, researchers have in-

creasingly introduced physics terms as penalties [156] or coerced them to satisfy physics

constraints [162,163]. In training data-based constitutive models, physics has been incorpo-

rated for dimension reduction [109,112,142,149,158], yield surface reconstruction [118,157],

and plastic return mapping [158], or predicting the elastoplastic tangent matrix [164] etc.
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For the J2 model with ideal plasticity (Appendix 6.6.2), the constitutive computation

can be encapsulated as:

σij =MJ2Ideal(dϵij, σ
(0)
ij ) (6.19)

where the current stress σ
(0)
ij and the strain dϵij increment are enough for stress updating.

Similar to Eq. (6.8), the network-based material cell can then be specified as：

σij =MNN(dϵij, σ
(0)
ij ) (6.20)

where the hidden state h in this case is tailored to the stress tensor σij and the MNN is

simplified to a single GRU layer. The calculations of the three gates in GRU can be written

as: 

r = σg (Lϵr (dϵ) + LIr (I0))

z = σg (Lϵz (dϵ) + LIz (I0))

n = tanh (Lϵn (dϵ) + r ⊙ LIn (I0))

I = (1− z)⊙ n+ z ⊙ I0

(6.21)

where L indicates the FC layer L(x) = wx+ b and the subscript denotes the input and the

output. There are six FC layers in this material cell. Because the length of the hidden state

equals the length of σ in the Voigt notion, the total number of trainable parameters for this

material cell is 3× 3 + 3 = 12.

The weights and biases are then optimised on the datasets generated via the J2 model.

Afterwards, the trained model is evaluated on the test sets. As shown in Fig. 6.8, the average

and worst prediction errors are 4.9e− 2 and 6.2e− 1, respectively, which are much poorer

than the predictions in Fig. 6.6. Despite using more datasets, the current model fails to

produce satisfactory predictions. This is partly attributed to the complexity of calculating

the shear stress q, as outlined in Appendix 6.6.2, which involves squaring and square rooting.

Based on our testing results, it appears that the combination of the linear operator y = wx+b

with the Sigmoid and Tanh activation functions is insufficient in capturing the nonlinearity

inherent in the J2 model.

One possible approach to enhance the capacity of the network while maintaining the

advantages of the GRU structure is to introduce additional basis functions

Φ(x) = ϕ1(x), ϕ2(x), . . . , ϕn(x) to both the input and hidden state of the GRU cell. These

basis functions can be designed to capture specific nonlinear relationships. For example, one

basis function ϕi could be defined as ϕ = q̂(σij), where q̂ represents shear stress. By incor-

porating these additional basis functions, the GRU cell can capture more complex nonlinear
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Figure 6.8: Results of the material cell without physical extensions trained on datasets

generated with J2 model: only σ as the internal I (a) Prediction error distribution (b)

Best prediction (c) Worst prediction. The dots indicate the training data and the lines are

the predictions.

patterns while keeping advantages in long-sequence training. It is important to carefully de-

sign and select these basis functions based on the specific problem and desired relationships

to be captured. In essence, the physics extension is a kind of ”feature engineering” based on

our prior knowledge of the datasets.

The approach of incorporating additional basis functions to capture physical relationships

is referred to as the physical extensions, as illustrated in Fig. 6.9. Based on the research of

constitutive modelling, the material yielding is typically related to the shear stress, average

stress, etc., and the plastic deformation is related to the direction of the current stress tensor

and the direction of the strain increment. Therefore, these variables are fed into the model

together and the model is expected to combine the appropriate physical quantities by itself.

In this case, the hidden state is expanded from σij to include
{
σij, q, θσ, σ

PR
1 , σPR

2

}
,

where σij represent the components of the stress tensor, q represents the shear stress, θσ

represents the rotation angle, and σPR
1 and σPR

2 represent the first and second principal

stresses, respectively . Additionally, the input is expanded to include
{
dϵij, θdϵ, dϵ

PR
1 , dϵPR

2

}
,

where θdϵ represents the Lode angle of the strain increment, and dϵPR
1 and dϵPR

2 represent

the increments of the first and second principal strains, respectively.

It is worth noting that in Fig. 6.10, the model is trained on two different datasets,

one consisting of 200 data series and the other consisting of 1000 data series. Interestingly,

both training sets yield almost identical validation errors, with values of 2.09e-3 and 2.04e-3,

respectively. Compared to Fig. 6.5b, this observation suggests that incorporating physics
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extensions into the material cell enables the model’s performance to become less dependent

on the quantity of the training data, which is a favourable characteristic for practical appli-

cations. And the physical extensions help mitigate the oscillations in the loss curve during

training. In Fig. 6.5b, the training involves a considerable number of parameters, making

the model highly capable but prone to getting stuck in local optima, resulting in significant

fluctuations in the error curve. Conversely, Fig. 6.10 corresponds to a material cell with

fewer parameters, and the physical extensions help to discern the optimal direction, resulting

in reduced oscillations.

We have to admit the network is powerful enough to excavate knowledge in various

scenarios. But, at the context of constitutive modelling, humans understanding based on

the accumulated studies of the solid mechanics are worth to be fed to the network or even to

coerce the network. Optimisation along the clues will be more effective and more likely to

get the optimum than a blind one. Here the physical extensions are working as hints for the

material cell training and the symmetry (in Sec. 6.4.2) is the rigorous condition that must

be satisfy.

Fig. 6.11 shows the test results of the material cell with physics extensions. It can

be observed that the prediction accuracy is improved compared to Fig. 6.8. The worst

prediction accuracy achieved by the extended material cell decrease to 1.9e-1 from 6.2e-1. In

FEM simulations, the stress response of a large number of integration points at each loading

step is predicted by the material cell model. The worst prediction contributes the most

to the error accumulation. When embedded in the FEM, the one with physical extensions

will result in much higher accuracy. Another advantage of the material cell with physics

extensions is that the extended hidden state now has clear physical interpretations, allowing

for better understanding and interpretation. With the physical interpretations, it is more

comfortable to involve the hidden state and output in the adaptive step size adjustment

mentioned in Sec. 6.4.1.

6.4.4 Pressure independent material behaviour: J2 model

After achieving satisfactory accuracy on the training data sets generated using the J2 yielding

criterion with ideal plasticity, the trained material cell with physics extensions is employed

in a biaxial compression FE analysis for further validation.

The mesh and boundary conditions of the simulation are illustrated in Fig. 6.12. The

simulation results of the biaxial compression problem are depicted in Figure 6.13. Overall,

144



Figure 6.9: The material cell with physics extensions.

Figure 6.10: Training loss evaluation: material cell with physics extension trained on

datasets generated via J2 model.

Figure 6.11: Predictions of material cell with physical extensions under J2 model. (a) Pre-

diction error distribution (b) Best prediction (c) Worst prediction. The dots indicate the

training data and the lines are the predictions.
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Figure 6.12: The meshes and boundary conditions of the biaxial compression simulation

the material cell, with its physics extensions, effectively captures the characteristics of the

J2 model in biaxial simulations, encompassing both the elastic and plastic phases. In this

simulation, various scaling factors (s = 1, 50, 60) according to Eq. 6.17 were employed.

Initially, without the introduction of the linear scalar (with s = 1), the material cell failed to

accurately reproduce the stress in explicit FE simulations, despite being well-trained (as seen

in Fig. 6.11). As the scaling factor increased, the top pressure and overall volume approached

the ground truth values. Furthermore, the maximum nodal acceleration gradually decreased,

indicating improved stability of the predicted stresses. However, when the scaling factor is

increased to s = 60, the simulation became unstable after reaching an axial strain loading

of 0.07. The adaptive scalar outperformed the constant scalar, particularly in terms of the

global strain curves.

6.4.5 Pressure dependent material behaviour: Drucker-Prager model

In this section, we assess the effectiveness of the proposed material cell in capturing pressure-

dependent material behaviour. To this end, we generate datasets using the ideal plasticity

model that incorporates the Drucker-Prager yield criterion (refer to Appendix 6.6.2).

Upon completing the training phase, we plot the corresponding training loss evolution

in Fig. 6.14 and test results in Fig. 6.15, respectively, to compare the performance of the

network with and without including the mean pressure term p in the internal state I. The

inclusion of mean stress reduces the overall mean-square error (MSE) from 1.8e-1 to 1.2e-

1. More noteworthy is the reduction of the worst prediction error from 3.1 to 1.2. Since

in explicit FEM simulations, each step of the prediction error accumulates along with the

time integration steps. Therefore, the inclusion of p will significantly improves the FEM
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Figure 6.13: Biaxial monotonic compression: J2 model. (a) and (b) are the equivalent von-

Mises stress of J2 model and material cell (with adaptive step size adjustment) simula-

tions, respectively. (c) The curves of top force and the global volumetric strain for differ-

ent cases, involving the ground truth J2 model, the material cell (Fig. 6.9) with s = 1,

s = 60, and adaptive step size adjustment. MC in the legend denotes material cell. The

top force compresses the specimen in a downward direction. A volumetric strain less than

zero indicates that the volume is undergoing compression.

simulation accuracy. While p can be easily calculated, providing this information to the

material cell further enhances its performance. This finding emphasises the significance of

incorporating physical insights to expand the input and hidden state via physics extensions.

Figure 6.14: Training loss of material cell without/with p under Drucker-Prager model

Furthermore, We conducted a comprehensive evaluation of the trained material cell in

FE analyses. The biaxial compression is focused and simulation results are compared with

those using the classical Drucker-Prager model. The resulting curves for the top force,

global volume strain, and maximum node acceleration are presented in Fig. 6.16, illustrating

favourable agreement between the predictions of the two models.
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Figure 6.15: Predictions of material cell after training with p included. (a) Prediction error

distribution (b) Best prediction (c) Worst prediction. The dots indicate the training data

and the lines are the predictions.

Figure 6.16: Biaxial simulation: Drucker-Prager model and the material cell shown in Fig.

6.9. (a) and (b) are the mean stress results of Druker-Prager model and material cell (with

adaptive step size adjustment) simulations, respectively. (c) The curves of top force and

the global volumetric strain for different cases. MC in the legend denotes material cell.
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6.4.6 Plastic hardening behaviour: J2-harden model

In this section, our focus is on evaluating the ability of the material cell to reproduce elasto-

plastic behaviour with plastic hardening. Specifically, we consider a model that incorporates

the J2 yield criterion and hardening plasticity, as described in Section 6.6.2.

Compared to the previous two constitutive models, the model in this section introduces

a hardening function H(|ϵpij|) into the yield function. Here, ϵpij represents the plastic strain

tensor. This means that the stress update depends not only on the stress tensor but also on

the plastic strain tensor.

On the basis of the material cell in Fig. 6.9, the plastic strain ϵpij is further included

in the hidden state I, and the norm of the plastic strain tensor is also included as physics

extensions. However, the material cell, with only one GRU layer, encounters difficulties

in capturing the non-linearity of the J2-harden model. The material cell with physical

extensions is demonstrated able to reproduce the stress in ideal plasticity. However, it

performs poorly with the addition of plastic hardening. A possible reason is that the plastic

strain increment should be zero in the unyielding case, but the material cell cannot give

a prediction that is strictly zero. Without accurate prediction of the plastic strain at the

beginning with unyielding stress, the model cannot effectively perform the iterative stress

update process described in the plastic return mapping algorithm (Appendix 6.6.2), resulting

in poor predictions shown in Fig. 6.17.

Figure 6.17: The material cell with a single layer of GRU: J2-harden model (a) Prediction

error distribution (b) Best prediction (c) Worst prediction. The dots indicate the training

data and the lines are the predictions.
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Implicit internal variable-based material cell: sequential training

In an attempt to incorporate the influence of loading history on mechanical states, the mate-

rial cell initially received physical parameters such as the plastic strain tensor ϵpij. However,

this approach did not yield satisfactory results in accurately updating the internal variables,

which in turn affected the prediction of stress. One possible reason is that the plastic strain

increment should be zero in the unyielding case, but the material cell cannot give a prediction

that is strictly zero.

In this section, a data-driven internal variable h is introduced as a replacement for ϵpij.

With this treatment, material cell training no longer requires explicit calibration of the

plastic deformation which is also harder to obtain in experiments. The network structure

employed for this approach is depicted in Fig. 6.18.

Compared with the purely data-driven material cell in Sec. 6.3, physical properties are

artificially assigned to the internal variables for the utilisation of symmetry and the stress

tensor is fed to the physics extensions before participating in the tensor computation within

the material cell. According to Sec. 6.4.3, this is effective in improving generalisation and

accuracy. The h has a length of 30 and is divided into three data-driven internal variables,

each of length 10, corresponding to three components of the 2D tensor. The data-driven

internal variables can be denoted as h =
(
h(11),h(12),h(22)

)
. Subsequently, referring to the

symmetry in Sec. 6.4.2, the internal variables can be swapped and averaged as follows:

h =
(
h(11),h(12),h(22)

)
=

1

2

 MNN

(
dϵ11, dϵ12, dϵ22, σ11, σ12, σ22,h

(11)
0 ,h

(12)
0 ,h

(22)
0

)
+

MNN

(
dϵ22, dϵ12, dϵ11, σ22, σ12, σ11,h

(22)
0 ,h

(12)
0 ,h

(11)
0

)
[2, 1, 0]


(6.22)

where the index manipulation of [2, 1, 0] is same with Eq. 6.18.

Under the assumption that h
(11)
0 , h

(12)
0 , and h

(22)
0 represent stress and plastic strain-

related internal variables in each of the three directions, the data-driven internal variable

h0 can be approximated linearly using the adaptive step method (Eq. 6.17). Except for

predictions when calling the material cell, this adaptive scaling is also introduced into the

training process. The forward process is shown in Alg. 5. In this way, the effect of the step

size on the prediction is eliminated during the training.

After training, the model’s predictions on the test set are shown in Fig. 6.19. Unlike the

explicit plastic internal variable ϵpij, the implicit internal variables enable the prediction of
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Algorithm 5 Forward process of the material cell shown in Fig. 6.18

Require: Strain increment dϵij, data-driven hidden state at last step h0, current stress

tensor σij

1: Compute the scalar s according to Eq. 6.17

2: Normalise the strain increment dϵ′ij = s dϵij

3: Update the normalised hidden state h′ according to Eq. 6.22, but the strain increment

is replaced by dϵ′ij

4: Rescale the hidden state via h = h′−h0

s
+ h0

5: Predict the stress tensor σij based on the updated hidden state h.

6: return σij

Figure 6.18: Material cell with implicit internal variables.
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stress response without relying on precise plastic internal variable values. The optimiser au-

tomatically adjusts the output based on the difference between the predicted stress sequence

{σ̂(t)
ij }Nt and the training dataset {σ(t)

ij }Nt . During this process, the implicit internal variable

is also optimised to represent the physical internal state.

The hidden state h contains information on plastic deformation, but plastic deformation

is not explicitly included within the material cell. So we no longer have access to the plastic

strain tensor and therefore cannot check the yield and consistency conditions. This is a

problem with the data-driven approach. Moving away from the elastic-plastic framework al-

together and using data-coded loaded histories can reproduce the physics since the beginning

of history, but the interpretability decreases.

On the flip side, because of circumventing the requirement of explicitly inputting inter-

nal variables during the training process, the material cell with an implicit hidden state

can be trained on experimental datasets, such as conventional compression tests, where the

plastic internal variables are not straightforwardly accessible. Data-driven models are ex-

pected to leverage this capability to learn plasticity-harden constitutive relationships from

experimental data.

Figure 6.19: The material cell with implicit internal variables: J2-harden (a) Prediction

error distribution (b) Best prediction (c) Worst prediction. The dots indicate the training

data and the lines are the predictions.

Figure 6.20 presents the results of the biaxial simulation after embedding the material cell

in the FEM. The simulation exhibits good agreement with the true results during monotonic

loading. However, when subjected to multiple cyclic loading, the results are somewhat less

satisfactory, although they can capture fundamental properties such as distinguishing be-

tween elasticity and plasticity, and plastic harden. As the loading progresses, errors in stress

and volume strain accumulate, which poses a significant challenge for the cyclic prediction
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of structures.

Figure 6.20: Results of biaxial calculations in FEM with the material cell based on the

implicit internal variable (Fig. 6.18). MC in the legend denotes material cell.

Fig. 6.21 and 6.22 illustrate the outcomes of the two stretching simulations conducted

using the trained material cell. Favourable computational results are obtained in both simu-

lations, highlighting the versatility and accuracy of the material cell as well as demonstrating

its capability in various loading simulations.

Expectations are held for the improved computational efficiency achieved by the neural

network-based constitutive model. This material cell, as illustrated in Figure 6.19, has also

been applied to the J2 model and Drucker-Prager model with ideal plasticity. To illustrate

the improvements in computational efficiency, Fig. 6.23 presents a comparison in biaxial

simulations. Notably, as the complexity of the constitutive model increases, the computa-

tional time rises for the three models. However, with the recurrent network-based material

cell, a significant reduction in computational time is observed. Importantly, the computa-

tional time remains consistent across all different constitutive relationships due to the same

network structure.

Deep network-based material cell: one-to-one training

An alternative method, in addition to sequence training, employs a deep network in one-to-

one training to build a material cell to reproduce the nonlinear properties of the J2-harden

model. The deep network is highly effective at nonlinear mapping due to its deep structure

and nonlinear activation function. A similar methodology is employed in [164], where a deep

network is used to model the plastic return mapping by taking plastic work and stress tensor

as input and producing a hardening vector as output.
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Figure 6.21: Dog bone stretching simulation: J2-harden model with the material cell

shown in Fig. 6.18. MC in the legend denotes material cell. The top force pulls the dog

bone upward. In the second subplot, the global volumetric strain ϵv is summarised over

the simulated domain. In the subplot of the third row, a denotes the acceleration of nodes

in the FEM simulation.

In this section, the deep network-based material cell is employed to predict stress by

providing the strain increment and internal variables as inputs. As shown in Fig. 6.24,

the structure remains similar to the one used for the GRU cell. However, the GRU cell is

replaced by the deep neural network (DNN). Note the internal variable h0 should be the

plastic strain tensor and explicitly fed to the material cell for predicting the stress response

σ1 and update the hidden state to h1. This change prevents us from training the model

using stress-strain sequences iteratively because the gradient vanishing or explosion can no

longer be mitigated by DNN. The DNN consists of 10 hidden layers, each with 20 hidden

neurons, yielding a total of 9,908 trainable parameters for the weights and biases.

After training, performances of the material cell on the test sets are depicted in Fig. 6.25.

The prediction accuracy is significantly improved compared to the single GRU-based model.

The overall MSE is 7e-3, with the poorest prediction having an MSE of 1.1e-1. The error

distribution shown in Fig. 6.25a reveals that the majority of errors fall within the interval

of less than 2e-2.

By recognizing the advantages of one-to-one training, we utilised this approach to training

a material cell using data from both the J2 and Drucker-Prager models for biaxial simula-
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Figure 6.22: Stretching simulation with the quarter perforated plate: J2-harden model

with the material cell shown in Fig. 6.18. MC in the legend denotes material cell. Ten-

sion is considered positive, while compression is considered negative.

Figure 6.23: Comparison of the computational time required for biaxial simulations using

the material cell and three conventional constitutive models
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Figure 6.24: The DNN-based material cell

Figure 6.25: DNN-based material cell: J2-harden model (a) Prediction error distribution

(b) Best prediction (c) Worst prediction. The dots indicate the training data and the lines

are the predictions.
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tions. The DNN-based material cell performed well, enabling us to conduct multiple cyclic

simulations, as depicted in Figure 6.26. Our findings indicate that the DNN-based material

cell effectively reproduces the behaviour of the J2 and Drucker-Prager models, particularly

under monotonic loading conditions where the predictions closely match the ground truth.

Under cyclic loading paths, the model still struggles to fully capture the non-linearity at the

inflexion points of the stress-strain curves, which may be attributed to the linear transfor-

mation used.

In the context of the J2-harden model, while our predictions for unloading in the elastic

zone are excellent (refer to Figure 6.26c), we were unable to fully match the ground truth for

unloading in the plastic stage. These results highlight the challenge of accurately predicting

the internal variables of a material, especially when a large number of recurrent calculations

are involved. Due to the inherent recurrent properties, predictions from one step are used

as inputs for the next step, leading to error accumulation over time.

Figure 6.26: Results (top force and global volumetric strain) of biaxial simulations with

the DNN-based material cell (Fig. 6.24) in multiple cyclic loading. (a): J2 yield surface

with ideal plasticity; (b) Drucker-Prager yield surface with ideal plasticity and (c) J2 yield

surface with hardening plasticity. MC in the legend denotes material cell.

6.5 Concluding remarks

In this study, we investigate the effectiveness of material cells with physical extensions and

symmetry conditions in modelling three constitutive models of varying complexity. The main

conclusions can be summarised as follows:

• Incorporating knowledge based on accumulated constitutive studies via physical ex-

tensions and symmetry constraint enables performance of the material cell to become

less dependent on the quantity of the training data.
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• In FE analysis, the size of strain increments can vary significantly, spanning several

orders of magnitude (Fig. 6.7). However, RNNs in material cells are highly sensitive to

step sizes. To address this issue, we employ an adaptive linear transformation approach

(Eq. 6.17), which is effective to alleviate the error resulting from the magnitudes gaps

between the strain increments in training sets and FEM simulations.

• Sequential training enables data-driven models to bypass the calibration of internal

variables during reproducing path-dependency compared to one-to-one training. This

opens up the possibility of directly optimising the data-driven elastoplastic model with

experimental data, particularly considering that internal variables related to plasticity

are often inaccessible in experimental settings.

• For the ideal elastic-plastic model, the single GRU-based material cell performs well.

When plastic hardening is introduced and plastic strain becomes an additional internal

variable, the single GRU-based material cell faces challenges in accurately updating the

plastic strain. The material cell shown in Fig. 6.18 integrates multi-layer GRUs, phys-

ical extensions and adaptive step size adjustment, taking into account both sequential

training and DNN advantages.

Meanwhile, the discussion mainly consists of:

• Traditional constitutive models, such as elastoplastic models, tend to be hard to be

understand and implement by engineers. As a result, the more advanced the model,

the more difficult to be widely used. Data-driven methods, which require only data

and training, are potential to fully reproduce the constitutive response contained in

the data. This simple, convenient, and accurate method will revolutionise engineering

computation.

• The data-driven constitutive models have two emphases: (1) physics (2) data. The

former is conducive to improving generalisation and resisting the influence of noises

and outliers. The latter is conducive to improving the accuracy and truly reproducing

the constitutive responses contained in the data. Traditional constitutive models are

constructed entirely on the basis of physics and phenomenological assumptions. The

best models need to find a balance between physical priors and data-driven.

• During training, sequences of 200 in length were used. However, in FE simulations,

we computed load steps for more than 4,000, where the material cell performed well

for such extensive loading. Yet, cyclic loading revealed noticeable error accumulation,
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which calls for further exploration and resolution.

• In this work, as shown in Fig. 6.7, the strain increment in the explicit FE case is much

smaller, whereas using the implicit FE solver, the strain increment is larger. In this

case, the strain may be split into multiple small increments and the material cell is

called multiple times to integrate the constitutive response. But feasibility needs to be

tested in future work.

• Uncertainty quantification should be crucial for the black-box to be used in practical

engineering computations. The level of confidence can be quantified only when the

results of uncertainty analyses are provided alongside the mechanical analysis results.

6.6 Appendix

6.6.1 Regression via Gaussian Process

From the perspective of the weight, GP starts with the linear regression:

f(x) = xTw (6.23)

. where the weight w is assumed to follow a normal distribution with w ∼ N (0,Σp). To

extend the regression to high dimensions, basis function ϕ(x) needs to be introduced. The

kernel calculation is simplified using a technique known as the kernel trick:

k(x, x′) = ϕ(x)TΣpϕ(x
′) (6.24)

where k is the kernel function of the basis ϕ. Given a dataset of D = {(x, y)(i)}Ni=1 where N

is the total number of data points, x represents the input and y represents the output. The

Gaussian processes regression is extensively described in [165]. The mean and covariance

can be evaluated at the test input points x∗ as:u∗ = k(x∗, X
T )
(
k(X,XT ) + σ2

nI
)−1

y,

Σ∗ = k(x∗, x
′
∗)− k(x∗, X

T )
(
k(X,XT ) + σ2

nI
)−1

k(X, x′
∗).

(6.25)

where σ2
n is the magnitude of the noise which is null in our random loading path generation,

and I is the Kronecker operator. In this way, the generated random loading path strictly

satisfies D, where the data points at the beginning are involved to ensure the loading starts

from 0. Apart from this, for the subsequent points, the loading follows a joint random

Gaussian distribution.
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6.6.2 Classic constitutive model

Ideal plasticity with J2 yield criterion

The linear elastic perfectly plastic model with J2 yield criterion used in this study is described

in this section. The linear elastic relationship is σij = Kϵvδij+2Geij where eij = ϵij−δijϵv/2

is the deviatoric strain, the elastic volume modulus is K = 1.25e6Pa and the elastic shear

modulus is G = 8.33e5Pa. The J2 yield surface can be expressed as

f = q − σy (6.26)

where we have q =
√
sijsij with sij = σij–pδij being the deviatoric stress tensor. The yield

stress is σy = 1e5 Pa.

If the trial value of q, denoted by qTR, is greater than the yield stress σy, the stress is

then updated as: 
p = pTR

sij = sTR
ij ·

σy

qTR

σij = δijp+ sij

(6.27)

Afterwards, the elastic volume strain and elastic deviatoric strain are calculated as ϵev =

p/K and eeij =
sij
2G

, respectively.

Ideal plasticity with Drucker-Prager yield criterion

Here we introduce an elastoplastic model with a Drucker-Prager (DP) yield surface and ideal

plasticity. In contrast to the J2 yield surface, which is commonly employed to represent

purely cohesive material behaviour, the DP yield surface is typically used to characterize

pressure-dependent material behaviour, such as the frictional behaviour of dry sands. The

yield surface is

f = q −Mp (6.28)

where M is related to the friction angle θf = 15◦. The stress ratio can be calculated as

M = 2 sin θf . Non-associated flow rule is employed here to implement the plastic return

calculation. The derivative of the yield function is presented as:

∂f

∂σij

=
∂q

∂σij

−M
∂p

∂σij

=
2(σij − pδij)

q
− 1

2
Mδij

(6.29)
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The derivative of the plastic function as ∂g
∂σij

=
2(σij−pδij)

q
− 1

2
Mdδij where Md = 2 sin θd, and

θd = 8◦

In the plastic return mapping process, the consistent condition can be displayed as:

f0 + df =
∂f

∂σij

dσij +
∂f

∂H

dH

dϵpij
dϵpij ≡ 0 (6.30)

where f0 is used to correct the plastic return mapping calculation of the former step, df

is the full differentiation with regard to the increment of stress tensor and plastic strain

with current derives, H is the hardening variable used to describe the evolution of the yield

surface. In perfect plasticity, the hardening variable H ≡ 0 and ∂H
∂ϵpij

= 0. After substituting

dσij = Dijkl

(
dϵkl − dϵpij

)
and dϵpij = dλ ∂g

∂σkl
into Eq. 6.30, the plastic multiplier can be

explicitly calculated as:

dλ =

∂f
σij

Dijkldϵkl + f0
∂f
σij

Dijkl
∂g
σkl
− ∂f

∂H
dH
dϵpij

∂g
∂σij

(6.31)

Then, the model plastic deformation and the stress can be updated after the calculation of

dλ.

J2 plasticity with linear hardening plasticity

Here we introduce the model of the J2 yield surface and isotropic exponential hardening

function. The elasticity is the same as the model in Section (6.6.2). But the hardening

function:

H = A(∥ϵpij∥2 + ϵ0)
B (6.32)

Where material parameters A = 4e5, B = 0.5 and AϵB0 = σy. In the plastic return mapping,
∂f
∂H

∂H
∂ϵpij

needs to be considered. After differentiation, we have:

∂H

∂ϵpij
= AB(∥ϵpij∥2 + ϵ0)

B−1 ·
ϵpij
∥ϵpij∥

(6.33)

Substituting Eq. (6.33) into Eq. (6.31), plastic multiplier dλ can be solved.

161



6.6.3 Tensor transformation

Rotation of a tensor

In the two-dimensional case, the tensor can be rotated via the following transformation：
t′ = QT tQ

Q =

 cos θ sin θ

− sin θ cos θ

 (6.34)

where Q is the rotation matrix satisfying QTQ = 1. Then the rotated tensor can be presented

as:

t′ =

 cos2 θt00 + 2 sin θ cos θt01 + sin2 θt11 (cos2 θ − sin2 θ)t01 + sin θ cos θ(t11 − t00)

(cos2 θ − sin2 θ)t01 + sin θ cos θ(t11 − t00) sin2 θt00 − 2 sin θ cos θt01 + cos2 θt11


(6.35)

Thus, given the rotation angle θ, the rotated tensor t′ can be calculated as above; Meanwhile,

its angle to the principal direction can be calculated by assigning the shear component of

the rotated tensor t′ = 0:

θ =
1

2
tan−1 2t01

t00 − t11
(6.36)

After rotating the tensor with a proper angle of θ, the tensor t can be converted to the

principal direction with the shear components equal to 0. Under the isotropic assumption,

the strain and stress tensors are coordinate independent, i.e. the strain and stress tensor

retains its original constitutive relationship after rotation in the reference coordinate system.

Spectral decomposition of a tensor

The diagonal components can also be calculated via the spectral decomposition as follows:

tij =
n∑
A

t(A)
pr n

(A)
i n

(A)
j (6.37)

where, tij is a second-ordered tensor (t ∈ Rm×m) with m dimensions, and t
(A)
pr and n

(A)
i

are the Ath eigenvalue and eigenvector, respectively. Then we have the rotation matrix as

Q = [n(1), . . . , n(m)].
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Chapter 7

A universal machine learning-based

material cell

7.1 Introduction

After being trained on the FEM-DEM dataset, the network-based agent model can accurately

replicate the macroscopic responses of granular materials and significantly accelerate the

classical multiscale computation. However, due to the limited generalisation ability of the

network, developing a universal network-based constitutive model for various loading paths

poses a challenge. This chapter proposes a modified version of the machine learning-based

constitutive model, referred to as a material cell. By combining machine learning with the

principles of elasticity, yield, hardening, and plastic flow, the material cell adheres to physical

laws and exhibits greater generality.

7.2 Components of the elastoplastic constitutive model

The elastic-plastic model consists of a yield function, a hardening function and a plastic flow

rule.
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7.2.1 Yield function

The yield function serves as a criterion to determine whether a material undergoes irreversible

plastic deformation.

f = f(σij, H) (7.1)

where sigmaij is the stress and H is the hardening value. If the yield value of the trial stress

is larger than 0, plasticity calculations are performed; otherwise, the material remains in

the recoverable elastic phase. For cohesion-controlled materials (Fig 7.1a-b), the projection

of the yield function in the π plane typically takes a circular shape, with its magnitude

remaining constant regardless of the hydrostatic pressure axis. For friction materials (Fig

7.1c-f), the projection of the yield function in the π plane is influenced by the coefficient

b = σ2−σ3

σ1−σ3
. When b = 0, the material is subjected to compression, when b = 1.0, the material

is under tension. The elastic zone exhibits reduced bias stress in this direction, leading to

an approximately triangular projection on the π plane. The yield surface gradually expands

along the positive direction of the hydrostatic pressure axis.

Figure 7.1: Yield surfaces in stress space. (a) Tresca yield surface; (b) von Mises yield sur-

face (c) Drucker-Prager Yield surface; (d) Mohr-Coulomb yield surface; (e) Spatial mo-

bilised plane; (f) modified Cam-Clay surface.
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7.2.2 Hardening function

The hardening function describes changes in the yield surface with loading. As the material

experiences plastic deformation during loading, the yield surface gradually expands. In the

case of geo-materials, isotropic hardening is typically used to model material hardening. The

hardening function can incorporate various quantities related to plastic deformation, such as

total plastic strain ϵ̄p, plastic volumetric strain ϵpv, and plastic shear strain εps and the plastic

work W p =
∫
σdϵp to describe the hardening process. In this chapter, the hardening value

is assumed to be a non-linear function of plastic strain:

dH = dH(dϵpij, H
0, I) (7.2)

where H0 is the original hardening value, and I is certain internal variables influencing the

relationship between dH and dϵ. For example, the relative density indicator ξ (Eq. 7.3) in

the Unified Hardening rule can be I.

7.2.3 Plastic flow rule

A plastic flow law determines the direction of plastic deformation once it has occurred. There

are two categories: the associated flow rule and the non-associated flow rule. In Associated

flow, the plastic potential function and yield function always maintain the same direction as

the outer normal. This can be expressed by Eq. 7.3. In Non-associated flow, the directions

of the plastic potential function and yield function are not the same. This can be represented

by Eq. 7.4.

∂f

∂σij

=
∂g

∂σij

(7.3)

∂f

∂σij

̸= ∂g

∂σij

(7.4)

In an ideal elastoplastic material, the hardening function is constant, i.e., the hardening

function does not change with plastic strain or plastic work. Therefore, an ideal elastic-

plastic material will not strengthen when loading continues after reaching plasticity. The

stress remains constant while the deformation keeps increasing.

In numerical calculations, one crucial aspect is to incorporate the plastic strain increments

modification, commonly known as plastic return mapping. The objective of this step is to
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ensure that the stresses consistently reside on the yield surface. The stress is adjusted to

return to the yield surface by return mapping, which expands the yield surface and corrects

the stresses accordingly.

In the elastoplastic model, the calculation can be typically presented as follows:

1. Given a tensor of strain increment dϵkl;

2. Evaluated the trial stress σ′
ij = σ0

ij+De
ijkldϵkl, where σ

0
ij is the original stress, and De

ijkl

is the elastic matrix;

3. Check if the model is plastically deformed by Eq. 7.1;

4. If not, the update σ0
ij to σ′

ij. If yes, enter the plastic return mapping process and

modify the stress and hardening function.

In the return mapping process, both the stress and hardening value undergo modifications

according to the consistent condition. This condition ensures that the stress remains on the

yield surface after yielding. Mathematically, it can be expressed as follows:

f(σ0
ij + dσij, H

0 + dH) = 0

or as : df =
∂f

∂σ0
ij

dσij +
∂f

∂H0
dH = 0

(7.5)

where it is assumed that the yield function is fully differentiable at point (σ0
ij, H

0).

The stress increment can be expressed according to the tangent matrix:

dσij = De
ijkldϵ

e
kl = De

ijkl(dϵkl − dϵpkl) (7.6)

where Dijkl is the elastic material matrix, and the plastic strain increment can be calculated

as:

dϵpkl = dλ
∂g

∂σkl

(7.7)

where dλ is the plastic factor which can be solved later.

The increment of the hardening parameter can be expressed as Eq. 7.2. For example, if

the hardening function is set to be the plastic volume strain, then dH = dϵpkk = dλ ∂g
∂sigmakk

Substituting Eq. 7.6, 7.7 and 7.2 into Eq. 7.5, the plastic factor can be derived as:

∂f

σij

De
ijkl(dϵkl − dλ

∂g

∂σkl

) +
∂f

∂H

∂H

∂ϵpv
dλ

∂g

∂σkk

= 0 (7.8)
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So the plastic factor can be calculated as:

dλ =

(
∂f

σij

De
ijkldϵkl

)
/

(
∂f

σij

De
ijkl

∂g

∂σkl

− ∂f

∂H

∂H

∂ϵpv

∂g

∂σkk

)
(7.9)

Then, the stress tensor σij, plastic strain tensor ϵpij and the hardening value can be updated

according to the plastic factor. After substituting these variables, the yield function should

be 0 to keep the stress state on the yield surface. Substituting upon equation into Eq. 7.6,

the stress increment can be expressed as:

dσij = De
ijkl

[
dϵkl −

(
∂f

σpq

De
pqmndϵmn

∂g

∂σkl

)
/

(
∂f

σpq

De
pqmn

∂g

∂σmn

− ∂f

∂H

∂H

∂ϵpv

∂g

∂σkk

)]
(7.10)

In some works [6, 166,167], the stress increment is expressed as:

dσij = Dep
ijkldϵkl

= De
ijkldϵkl −

(
∂f

σpq

De
pqmndϵmn

∂g

∂σkl

De
ijkl

)
/

(
∂f

σpq

De
pqmn

∂g

∂σmn

− ∂f

∂H

∂H

∂ϵpv

∂g

∂σkk

)
= De

ijkldϵkl −
(
∂f

σpq

De
pqmndϵkl

∂g

∂σmn

De
ijkl

)
/

(
∂f

σpq

De
pqmn

∂g

∂σmn

− ∂f

∂H

∂H

∂ϵpv

∂g

∂σkk

)
=

[
De

ijkl −
(
∂f

σpq

De
pqmn

∂g

∂σmn

De
ijkl

)
/

(
∂f

σpq

De
pqmn

∂g

∂σmn

− ∂f

∂H

∂H

∂ϵpv

∂g

∂σkk

)]
dϵkl

(7.11)

where the subscripts highlighted in red fonts are exchanged. Specifically, dϵmn is changed

into dϵkl, and ∂g/∂σkl is changed to ∂g/∂σmn, which does not obey the tensor calculation

rule.

7.3 Enhanced IME model

7.3.1 Original IME model

The original IME model consists of Isotropic elasticity, von Mises yield surface and the

Exponential hardening function. For simplicity this model is referred to as the IME model.

The constitutive model can be expressed as following formulas:

σij = pδij + sij = Kϵkkδij + 2Geij

=

[
Kδijδkl + 2G(δikδjl −

1

3
δijδkl)

]
ϵkl

= De
ijklϵkl

f = σv −H − σ0

H = A(ϵ0 + ∥ϵpij∥F )n

(7.12)
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where σv =
√

3
2
sijsij is the von Mises stress, ∥ϵpij∥F is the the Frobenius norm of plastic

strain tensor, which can be expressed as ∥ϵpij∥F =
√∑

i,j |ϵij|2. The plastic shear strain,

which is evaluated as ϵps =
√

2
3
epije

p
ij where e

p
ij = ϵpij− δijϵ

p
kk/3, is always used for metals. The

von-Mises stress σv can be represented as:
σv =

√
3J2

J2 =
sij
sij

sij = σij − pδij

(7.13)

where J2 is the second invariant of the derivative stress.

In Eq. 7.9, ∂f
∂σij

and ∂H
ϵpij

are needed for the plastic return mapping. The differentiation of

σv to stress can be expressed as:

σv

σij

=
3(σij − pδij)

2σv

(7.14)

And the differentiation of the Frobeniusnorm of the plastic tensor can be shown as:

∂∥ϵpij∥F
∂ϵpij

=
ϵpij
∥ϵpij∥F

(7.15)

We also have ∂f/∂σv = 1, ∂f/∂H = −1 and dH/d∥ϵpij∥F = nA(ϵ0 + ∥ϵpij∥F ). According

to the chain rule, after substituting all of the derivatives to Eq. 7.9, the plastic factor dλ

is obtained. The stress, material tangent matrix and plastic strain can be fed to the FEM

solver.

Parameters used in the IME model are summarised as following table 7.1.

Table 7.1: Material constants of IME model

Young’s modulus E 20 MPa

Poisson’s ratio ν 0.2

σ0 0.1 MPa

A 0.3 MPa

ϵ0 0.02

n 0.2
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7.3.2 Enhance the original model

The original IME model is rather straightforward. It exhibits isotropic linear elasticity and

relies solely on the von Mises stress to govern the yield surface of plasticity. Due to these

basic functions, its capabilities are limited. As a result, the model is incapable of reproducing

nonlinear elasticity or yield criteria associated with mean stress, etc.

Consequently, we introduce several modifications to the original IME model in order to

augment its capabilities. For the elastic part, the material remains isotropic and is governed

by Young’s modulus E and Poisson’s ratio ν. However, we adjust Young’s modulus E to

become a nonlinear function, which now correlates with the plastic volume strain.

E = E0(1 + ϵpv)
nE (7.16)

where E0 is the initial Young’s modulus, and nE is an added material constant to describe

the changes of the elastic modulus. If nE = 0 then the elastic part degenerates to isotropic

linear elasticity.

And change the yield surface to mean stress-related:

f(p, σv) = Cpp+ σv −H − σ0 (7.17)

where Cp is the correlation coefficient between the yield surface and the mean stress, and if

Cp = 0, the yield surface degenerates to the original IME model yield surface.

In the original IME model, the hardening function is related to the Frobenius norm of the

plastic strain tensor, which in this case we divide into plastic volumetric strain and plastic

shear strain. Modify the hardening function into:

H(ϵps, ϵ
p
v) = A(ϵ0 + ϵps)

B + C(ϵ0p + ϵpv)
D (7.18)

where C, ϵ0p and D are added material constants to consider the influence of plastic volu-

metric deformation on the material hardening.

At the same time, the expansion coefficient Cd is used to change the associated plastic

flow into the non-associated flow:

∂g

∂p
= Cd +

∂f

∂p
= Cd + Cp (7.19)

where Cd is an added material constant to consider the plastic volumetric deformation.

With the above modifications, the enhanced IME model is able to take into account the

nonlinear elasticity, the mean stress-dependent yield function and the non-associated plastic

flow.
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7.4 CSUH model

Yao introduced the CSUH (Critical State Unified Hardening) model [6] based on the UH

(unified hardening model) [168] as an advancement to the modified Cam-Clay (MCC) model.

The key components of this model are the critical state-related internal parameter ξ and

the unified hardening function, which allows for a unified representation of clay and sand

behaviours.

7.4.1 Yield surface and hardening function

The CSUH model’s yield function comprises two main formulas: the reference yield surface

Eq. 7.20 and the current yield surface Eq. 7.21. Fig. 7.2 provides a visual representation of

these yield surfaces.

Figure 7.2: The reference and current yield surface of the CSUH model [6]

f = ln
p̄

p̄x0
+ ln

(
1 +

q̄2

M2p̄2

)
− ϵpv

cp
(7.20)

f = ln
p

px0
+ ln

(
1 +

q2

M2p2

)
− H

cp
(7.21)

where px0 is the where, px0 is the value corresponding to the intersection point of the initial

yield surface and the axis of the mean stress p, and the unit is generally kPa; cp =
λ−κ
1+e0

, e0

is the initial void ratio, and the unified hardening function is as follow:

H =

∫
M4

f − η4

M4
c − η4

dϵpv (7.22)
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where Mf is the potential failure stress ratio corresponding to current state and Mc is the

characteristic state stress ratio. These two variables are related with the current state ξ.

7.4.2 Current state representation

Before introducing the calculation of ξ, the over-consolidation ratio can be defined as OCR =
p̄
p
. We introduce the over-consolidation parameter R ∈ (0, 1]:

R =
p

p̄
(7.23)

where p̄ is the reference stress or the pre-consolidation pressure if the sample is isotropically

compressed as is shown in Fig. 7.3. From the figure, we can have the relationship of the

current stress and the reference stress:

ln p̄− ln p =
ξ

λ− κ
(7.24)

Then the over-consolidation parameter can be calculated as:

R = exp
−ξ

λ− κ
(7.25)

where ξ is the distance between the current void ratio and the corresponding void ratio at

critical state as is shown in Fig. 7.3:

ξ = eη − e (7.26)

where eη is the void ratio according to the anisotropic crtical state line, which can be calcu-

lated as:

eη = N − λ ln p− (λ− κ) ln (1 +
η2

M2
) (7.27)

And in this model, the potential failure stress ratio and the characteristic stress ratio are

calculated as: 
Mf = 6

(√
k

R
(1 +

k

R
)− k

R

)
, k =

M2

12(3−M)

Mc = M exp (−mξ)

(7.28)

whereM is the critical stress ratio, andm is a coefficient of dilatation which can be calibrated

by experiment. The potential failure stress ratio is related with the Hvorslev envelope and

different types of Hvorslev envelopes are compared in Zhou’s work [7]. The potential failure

ratio should not be larger than 3 so the piece-wise Hvorslev envelope is introduced to apply
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Figure 7.3: Normal consolidation line (NCL), anisotropic compression line (ACL), and the

critical state line (CSL) on the e− ln p plane

this constraint. In Fig. 7.4, we can find the parabolic Hvorslev envelope and the Hermite

Hvorslev envelope performs well. The potential failure stress ratio Mf in Eq. 7.28 is based

on the parabolic envolope.

As shown in Fig. 7.5, when the sand material is compressed isotropically, its curve is

composed of two straight lines on the logarithmic coordinate. At low confining pressure, the

material void ratio changes slightly with the consolidation pressure. Entering high confin-

ing pressure, the curves gradually approach the NCL and finally coincide. Therefore, the

isotropic compression line after introducing the inflection point is assumed to be:

e = Z − λ ln
p+ ps
1 + ps

(7.29)

The curve automatically satisfies the constraint condition of the first point, at p = 1e3kPa,

the void ratio is Z; the second condition, when the confining pressure tends to infinity, the

curve coincides with the NCL, and the above formula and e = N − λ ln p can be solved

simultaneously have to:

ps = exp

(
N − Z

λ

)
− 1 (7.30)

As shown in Fig. 7.5, the logarithmic coordinates of the curve are composed of approximately

straight lines at both ends, where the initial point is (1e3, Z) and the inflection point is

(ps, Z − λ ln ps
1+ps

). Note that if then the curved NCL degenerates into the original NCL

formula (6.131).

After modifying NCL, the material yield function should be accordingly modified to the
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Figure 7.4: Shear stress ratio according to different kinds of Hvorslev envelope [7]

Figure 7.5: The logarithmic coordinate ICL (Isotropic compression line) of Cambria sand

and the asymptote on the logarithmic coordinate [8]; (b) The two forms of the isotropic

compression line on the logarithmic coordinate with N = 1.9, Z = 0.9.
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following form:

f = ln

[
1 +

(1 + χ)q2

M2p2 − χq2
)p+ ps

]
− ln (px0 + ps)−

H

cp
(7.31)

where χ is the parameter represents the distance between NCL and CSL, which should be

less than non-negative and less than 1. Before modification the distance between NCL and

CSL is ln 2. Then the distance is changed to 1+χ
1−χ

ln 2

And the plastic potential function is:

g = ln
p

py
+ ln

(
1 +

q2

M2
c p

2

)
(7.32)

where the character stress ratio Mc is introduced the implement the non-associated flow rule

and the dilatation, which is critical stress ratio M in the UH model. So in CSUH model,

the direction of plastic deformation is:

dϵpv
dϵps

=
∂g/∂p

∂g/∂q
=

M2
c − η2

p(M2
c + η2)

/
2η

p(M2
c + η2)

=
M2

c − η2

2η
(7.33)

7.4.3 Influence of the medium principal stress ratio

The medium principal stress coefficient b = σ2−σ3

σ1−σ3
in loading affects the critical state stress

ratio. b = 0 represents the compression and b = 1 indicates the extension loading. In the

CSUH model, the distinction between compression and extension is realised by using the

transformed stress space [169] as follows:σ̃ij = σij q = 0

σ̃ij = pδij +
qc
q
(σij − pδij) q ̸= 0

(7.34)

where the stress qc =
2I1

3
√

(I1I2−I3)/(I1I2−9I3)−1
, and I1, I2 and I3 are the invariants for stress ten-

sor. The above method can transform the stresses from the original space to the transformed

space. Through this, it is possible to consider the effects of the tensile and compressive load-

ing conditions of the material by means of the circular yield surface on the π plane in the

transformed space. However, the multiple squaring and divisions involved in this method

make this calculation less robust in numerical calculations.

Here we refer to Pastor’s work [148], and use the following formula to consider the influ-

ence of the medium principal stress ratio:

M =
18Mcom.

18 + 3(1− sin 3θ)
(7.35)
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where θ is the Lode angle, Mcom. is the critical stress ratio under compression loading path.

The Lode angle ranges from −π
6
to π

6
, while θ = −π

6
represents extension and θ = π

6
is

extension.

According to the Mohr-Coulomb criterion, the stress ratio under compression can be

expressed as:

Mcom. =
6 sinϕ

3− sinϕ
(7.36)

where ϕ is the frictional angle.

7.5 Specificity of mechanical properties of granular ma-

terials

For granular materials, firstly we cannot obtain a stable one-to-one mapping relationship

between shear stress σs and shear strain ϵs, as shown in Fig. 7.6. The material exhibits

nonlinear elasticity in the small strain stage, where the material shear stress is basically

determined by the shear strain. Moreover, once the loaded shear strain increases, the shear

stress is no longer a unique value. In addition, as shown in Fig. 7.6b, there is an angle

between the stress tensor direction and the strain tensor direction, and it changes with

loading conditions. The angle is calculated based on Sec. 6.6.3.

Therefore, for granular materials, we are unable to introduce this co-axiality which as-

sumes the principal direction of the strain tensor and stress tensor aligns parallel. This

assumption is utilised in several papers [118, 142] to reduce the dimension of input and

output features. This assumption is further developed by Tang et al. [109] to map the

one-dimensional dataset to three dimensions.

It is worth mentioning that when we use the CSUH model for biaxial simulation, the re-

sults obtained for this material at the Gaussian point are shown in Fig. 7.7. The relationship

between shear strain and shear stress is affected by the medium principal stress coefficient b

and the relative compactness of the material; the difference in the angle between the princi-

pal direction of stress and strain tensor changes gradually with the loading. The difference is

not significant in the CSUH model, whereas the difference obtained from the exFEM-DEM

simulation is much larger and noisy. Due to the introduction of state-dependent shear expan-

sion properties, the CSUH model has the potential to reflect the nature of the strain-stress

relationship and deflection angle between the principal directions of strain and stress tensor.
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Figure 7.6: Mechanical responses on Gauss points in exFEM-DEM biaxial simulations (a)

Shear stress and shear strain relationship; (b) Difference in angle between strain tensor

and stress tensor θϵ − θσ(
◦)

Therefore, we construct a constitutive template based on the CSUH constitutive model. And

it is optimised by sequential training as is depicted in the recurrent material cell training.

7.6 Optimisation of constitutive models based on the

datasets collected from exFEM-DEM simulations

The theory of elastoplasticity of granular materials, especially geotechnical granular ma-

terials, has been widely studied [170]. The elastic-plasticity theory mainly includes the

definition of the elasticity, yield function, hardening function and plastic potential function

as is mentioned in Sec. 7.2.

The study of FEM-NN shows that the neural network-based constitutive model is more

similar to an interpolator, learning the constitutive patterns from the data and completing

the stress prediction by mapping the inputs and outputs. The performance of the network

in FEM is completely controlled by the training samples. When the training samples cover

enough sampling space with high accuracy, the network-based constitutive model is able to

fully reproduce the constitutive knowledge; however, when the inputs exceed the training

range, the network’s accuracy is quite poor.

We have to face the problem that for high dimensional cases, it is very difficult to guar-

antee that the trained network can be general and robust in any problem by completely
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Figure 7.7: Mechanical responses on Gauss points in CSUH model-based biaxial simula-

tions (a) Shear stress and shear strain relationship; (b) Difference in angle between the

principal direction of strain and stress tensor θϵ − θσ(
◦)

covering the input space by sampling, as the possible loading paths are infinite but the

samples are finite.

The generalisation ability and accuracy of network-based constitutive models are two

critical points for networks to reproduce constitutive relationships. Neural networks with

thousands of parameters have considerable mapping ability to excavate potential knowledge.

Yet poorly generalised models are unable to cope with a wide variety of inputs when em-

bedded in FEM, and therefore cannot guarantee prediction accuracy at every Gauss point.

Errors at individual Gauss points arise, accumulate and propagate leading to the failure of

the global computation.

Therefore, it is not wise to adopt a purely data-driven approach and completely discard

prior knowledge about elasticity and plasticity; we have to find a balance between the model’s

generalisation ability and its accuracy. By sacrificing some of the neural network’s degrees

of freedom, a generalised model is obtained. To implement this, the optimisable parameters

in the neural network are restricted by introducing some constraints.

As shown in Fig. 7.8, the calculation process of a constitutive model is basically the

same as that of the recurrent neural network calculation process. Therefore, we establish the

constitutive model based on prior knowledge in the framework of PyTorch. And optimised

the model on the strain stress sequences from FEM-DEM multi-scale simulations. Once the

stress and strain sequences are available, the material constants of the recurrent constitutive
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modelMcons can be optimised.

Figure 7.8: Constitutive model calculation process, from the strain sequence to the stress

sequence

7.6.1 Baseline: J2 model

Before training the model using the exFEM-DEM data, we validate the model using the J2

model with ideal plasticity under the assumption of planar stresses, as shown below:

σTR
ij = 2G ∗ eij + δijKϵv

p = σTR
kk /2

qTR =
√

2sTR
ij sTR

ij

σij = δijp+ sTR
ij min

(
σy

qTR
, 1

) (7.37)

where K and G are the bulk and shear elastic modulus, respectively, and σy is the yield

stress. There is no hardening in this model, so the model is defined on the three trainable

parameters {K,G, σy}.

In order to obtain sufficient training data, we adopt a stochastic Gaussian process for

a large number of strain-controlled loading paths. This is done in the following way, the

Gaussian process is used to generate two principal strains and the Lode angle θ which are

then rotated from the principal space to the tensor space.

The constitutive model constructed via the trainable parameters {K,G, σy} was trained
by error back-propagation on the datasets generated under the J2 model. In this case, the

error back-propagation optimisation corrects these parameters to the values used in the train-

ing data preparation. The training process is shown in Fig. 7.9, where trainable parameters

perfectly align with the original values. Getting perfect results is not a surprise, the reason
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is straightforward. The physical mechanism used to construct the model matches exactly

the constitutive relationship contained in the dataset. Finally parameters are optimised to

the right values K → 1.25e6, G→ 8.3e5 and σy → 1e5.

The example illustrates the feasibility of the error back-propagation method for cali-

brating material parameters. As long as the physical mechanisms introduced match the

constitutive knowledge of the dataset, a satisfactory constitutive model can be obtained.

Figure 7.9: Optimising process of the J2 model. (a) The calculation error. (b) The train-

able model parameters.

7.6.2 Enhanced IME model

Instead of using mathematical models to generate the data sets like the optimisation of the J2

model, we extract the data sets from the explicit FEM-DEM simulation, which is more similar

to the granular material’s nature. There are no exact mathematical models competent to

reproduce the constitutive relationship contained in these data sets fully. As depicted before,

the complexity is caused by history-dependency, friction, density-dependency, etc.

Then this constitutive knowledge is assumed to match the elastoplasticity constraints of

the enhanced IME model. Specifically, the constitutive relationship is assumed to be mean

stress-dependent nonlinear elasticity, isotropic exponential hardening and non-associated

flow rule as is shown in Sec. 7.3. The material constants of the enhanced IME model are

optimised on these data sets. The loss is shown in Fig. 7.10. Finally, the training loss

stopped at 3.5e-2. The original and optimised parameters are listed in Tab. 7.2.

It’s important to take note that the parameter Cp has been optimised to -0.512, signifying

that the behaviour of friction governs the yield surface. This mirrors the yield surfaces of

Drucker-Prager and Mohr-Coulomb. Parameter A and parameter C have been optimised
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very close to 0. This implies that the optimised model approaches the ideal plasticity,

where deformation occurs without altering the yield surface. The parameter nE captures

the softening of the model, where the average stress p increases while Young’s modulus of

the material decreases during loading. Typically, an increase in pressure or material stress

would result in a higher Young’s modulus. This phenomenon is intricate to explain due to

the interconnectedness of parameters within the model.

Table 7.2: The optimised material constants of the enhanced IME model

Parameters E ν A B ϵ0 σy

Original 2e7 0.2 3e5 0.2 0.02 1e4

Optimised 4.81e8 0.216 34.5 -2.23 2.79e-2 5.17e-6

Parameters Cd Cp C D ϵ0p nE

Original 0.1 -0.1 3e5 0.2 0.02 0.1

Optimised 0.155 -0.512 8.35e-5 0.424 8.83e-4 -3.54

Figure 7.10: Evolution of the loss during the optimisation process: enhanced IME mdoel

The stress values predicted after optimising the Enhanced IME model are depicted in Fig.

7.11. The optimised model successfully captures the characteristics of nonlinear elasticity

and the critical state of the material. While the peak stresses calculated by the Enhanced

IME model are slightly lower than the actual peak stresses, the stresses at the initial stages

of model calculations are slightly higher than those in the training set. This discrepancy

arises because the model doesn’t account for a peak failure stress ratio. Most post-peak

stresses align well with the actual values, although the stress at point 192 exhibits a notably
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abrupt post-peak surge, and the post-peak stresses at points 0 and 48 are somewhat lower.

In summary, the Enhanced IME model better replicates the attributes of the FEM-DEM

simulation dataset, achieving good agreement in terms of nonlinear elasticity and post-peak

critical states.

(a) Point number 0. (b) Point number 48. (c) Point number 96.

(d) Point number 144. (e) Point number 192. (f) Point number 240.

(g) Point number 288. (h) Point number 336. (i) Point number 384.

Figure 7.11: Predicted σyy curves after optimisation of Enhanced IME model.

7.6.3 CSUH model

Through the training of the Enhanced IME model, we gather insights that the FEM-DEM

dataset showcases attributes like nonlinear elasticity, yield surface related with mean stress

p, and peak stress surpassing critical state stress. In contrast, the CSUH model considers

aspects such as nonlinear elasticity, the Cambridge yield surface, peak stress in dense sands,
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the non-associative plastic flow rule, etc. Consequently, the CSUH model aligns more closely

with the constitutive knowledge contained within the FEM-DEM dataset.

The CSUH model underwent optimisation using the FEM-DEM dataset. The parame-

ters of the CSUH model before and after optimisation are outlined in Tab. 7.3. Prior to

optimisation, the slope of the rebound line stood at κ = 0.04, while post-optimisation, it

became κ = 0.329. Consequently, the material’s elasticity modulus decreased, rendering the

material softer. Simultaneously, the over-consolidation ratio ocr experienced an increment,

aligning with the material’s elevated yield stress to reproduce its peak stress levels. The

critical stress ratio M was reduced from 1.25 to 0.63, aimed at diminishing shear stress

during the critical state. Pre-optimization, the parameter ps = exp
(
N−Z
λ

)
− 1 = 0. Here,

N = Z, signifying the degeneration of the natural consolidation line with inflexion points

into a straight line within the e − ln p space. Through optimisation, the parameter Z was

determined to be −0.769, indicating that natural compression corresponds to a pore ratio e

of -0.96 when the mean pressure p = 1 kPa. Additionally, the parameter m escalated from

1.8 to 29.26. This parameter, m, exerts control over the characteristic state stress ratio via

Mc = M exp (−mξ), thereby governing shear expansion through the hardening equation.

The interplay of material parameters within the elastic and plastic components is impor-

tant but makes it harder for us to analyse the influence of the material constants changes. In

the optimised model, a clear demarcation between elastic and plastic behaviour, as outlined

in the original theory, will be influenced by each other. For instance, the parameter κ can

be adjusted to modify the model’s elastic characteristics, given that the modulus of elastic-

ity K = (1+e)p
κ

. Manipulating the elastic modulus can influence the peak stress by tuning

the over-consolidation ratio ocr, which in turn impacts elasticity. Due to these intricate

interactions, a singular solution to the optimisation is not guaranteed.

Nonetheless, this approach offers enhanced interpretability in comparison to utilising a

black-box method like a neural network. The optimisation process of the parameters facili-

tates a clearer understanding of the underlying knowledge embedded within the dataset. For

example, the optimisation shifted the critical state stress M ratio from 1.25 to 0.63, indicat-

ing that the initial model overestimated shear resistance attributed to material friction. In

the critical state, the shear stress to mean stress ratio q/p should ideally reduce to 0.63.

The model’s predictions on the training dataset (from the footing simulation) follow-

ing optimisation are depicted in Fig. 7.12. The model demonstrates robust performance

across the majority of data points, particularly those featuring higher stress levels. Notably,
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Table 7.3: The CSUH parameters optimised on the exFEM-DEM footing simulation

Parameters κ λ N Z

Original 0.04 0.135 1.9 1.9

Optimised 0.329 0.342 2.708 -0.769

Parameters m ν ocr M

Original 1.8 0.2 120 1.25

Optimised 29.26 0.263 787.8 0.630

at integration points 48 and 288, the relative error appears substantial visually; however,

the absolute error remains minimal. These specific points are situated near the boundary,

resulting in stress levels approximating the designated simulated confining pressure of 1 kPa.

Comparing Fig. 7.11 (training results of the IME model) with Fig. 7.12 (training results

of the CSUH model), the average prediction error for the IME model is 7.81% after removing

outliers (points with excessive error), while the CSUH model’s prediction error is 0.42%.

This suggests that the priors/assumptions in the CSUH model align more closely with the

FEM-DEM data.

Following the optimisation of the CSUH model using footing simulation datasets, its

performance is assessed against the biaxial simulation dataset. When compared to Fig. 7.11,

the predictions from the optimised CSUH model performs much better in at the beginning

of the loading, and successfully capturing the nonlinear elastic phase and the peak state at

all test points. The optimised IME model performs poor in capturing the peak state. At

point 0, 96 and 336, results of the computation with optimised CSUH model perfectly agree

with the FEM-DEM simulation.

This result highlights the alignment between the CSUH model’s constitutive representa-

tion of nonlinear elasticity, which is captured by the natural compression line, as well as the

properties defined by the yield and hardening function.

Subsequently, the optimised model is incorporated into the explicit FEM solver. The

results of macroscopic calculations are displayed in Fig. 7.14. On a macroscopic scale,

the optimised CSUH model adequately reproduces the outcomes of FEM-DEM multiscale

simulations. This includes the macroscopic peak stresses and the emergence of shear zones

during biaxial shear. The experiment illustrates that despite the CSUH model’s parame-

ters not being determined through standard physical experiments, the parameters derived
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(a) Point number 0. (b) Point number 48. (c) Point number 96.

(d) Point number 144. (e) Point number 192. (f) Point number 240.

(g) Point number 288. (h) Point number 336. (i) Point number 384.

Figure 7.12: Predicted stress component σyy of the CSUH model after optimisation on the

data sets collected from exFEM-DEM footing simulation.
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(a) Point number 0. (b) Point number 48. (c) Point number 96.

(d) Point number 192. (e) Point number 288. (f) Point number 336.

(g) Point number 432. (h) Point number 480.

Figure 7.13: Test on data sets collected from the biaxial simulation: predicted stress com-

ponent σyy after the CSUH model optimised on the footing simulation. The test data sets

are from the exFEM-DEM biaxial simulation.
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Figure 7.14: Macroscopic results of biaxial compression based on the optimised CSUH

model

from this optimisation technique, based on error back-propagation, effectively replicate the

macroscopic mechanical response of geotechnical materials.

Analyzing the constitutive behaviour of the optimised CSUH model at integration points,

the outcomes are depicted in Fig. 7.15. The top row of the figure illustrates the divergence

between the strain tensor Lode angle (θϵ) and the stress tensor Lode angle (θσ). The second

line is the shear stress. Within FEM-DEM computations, a substantial and unstable discrep-

ancy emerges between the principal directions of tensor ϵij and tensor σij. In low-scale DEM

calculations, stress exhibits fluctuations as particles within the aggregate experience events

like collision or sliding. At point 0, the disparity between the principal directions of these

two tensors remains minimal due to the material’s deformation closely resembling elastic

deformation. This can be elucidated through calculations involving elastic stress. Assuming

isotropic linear elasticity, stress is computed as σij = Dijklϵ
e
kl = Kϵevδij + 2Gseij in cases of

purely elastic deformation. Consequently, in cases of elastic deformation only, the principal

direction of the elastic strain tensor coincides with that of stress. Thus, the deflection angle

at point 0 remains modest.

Contrastingly, points 265 and 477 correspond to larger deflection angles. The shear

stress curve illustrates a peak followed by a decline, indicating plastic deformation or the

occurrence of damage. During such instances, the principal directions of the material’s strain

and stress tensors undergo significant deflection. Stress calculation at these points follows

the aforementioned equation, yet plastic deformation transitions from ϵpij = 0 to a non-zero
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tensor. Plastic strain is determined as dϵpij = dλ ∂g
∂σij

. Consequently, the direction of plastic

strain typically diverges from that of the elastic strain tensor ϵeij. Hence, in cases of plastic

strain, the principal axes of the strain and stress tensors no longer align. As observed in

the figure, for points 265 and 477, the deflection angle remains small prior to the material’s

onset of plastic strain. However, after plastic strain initiates, the deflection angle increases

significantly in both magnitude and prominence. The stress predictions of the optimised

CSUH model closely resemble those obtained from FEM-DEM biaxial simulations. The

optimised CSUH model adeptly captures the trend of deflection angle alterations.

At integration point 0, the shear stresses exhibit behaviour more akin to elasticity during

loading. There is no plastic deformation in the CSUH model-based simulation at point 0.

Despite the higher magnitudes of shear stresses at this point, they are overshadowed by

the greater compressive stresses. This phenomenon is interpreted by the CSUH model as

indicative of shear strengthening. This inference is supported by insights from the yield

function, revealing that as the mean stress elevates, the shear stress on the yield surface also

increases.

At integration point 477, the shear stress experiences a rapid decline to zero after reaching

its peak. Within the DEM simulation, the calculation of shear stress follows the expression

σij = 1
V

∑
c f

c
i l

c
j , where f c

i represents the vector of contact forces, and lcj is the vector con-

necting the centres of the two spheres [125, 171]. In the context of the DEM simulation,

when all contact forces become zero, the stress tensor of the particle assembly also becomes

zero, indicating a shear failure within the particle assembly. This phenomenon is commonly

observed in experiments involving shear damage of granular materials. The stress distribu-

tion observed at integration point 477 provides evidence that the optimised CSUH model is

proficient in simulating this specific type of shear-induced damage encountered in granular

materials.

Overall, at a macroscopic level, the optimised CSUH model demonstrates the capacity

to closely replicate concentrated forces and macroscopic shear strain as observed in FEM-

DEM simulations. At the integration points, the optimised CSUH model aligns with the

FEM-DEM well in aspects of stress magnitude and stress-strain deviation angles. On a lo-

calised scale, the error of the optimised CSUH model is evident. However, this discrepancy

diminishes on a macroscopic scale where it aligns well with the concentrated forces. This

phenomenon can be attributed to the presence of substantial noise within the data. The

optimised model adeptly identifies patterns within stress-strain data sequences at integra-
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Figure 7.15: Comparison of the constitutive response at integration points of the biaxial

compression simulation. The x coordinate is the strain in the vertical direction.

tion points, automatically filtering out the influence of such noise. The errors observed in

stress-strain curves at integration points 7.15 primarily stem from noise interference. During

the computation of the overall concentrated force, this noise tends to cancel each other out,

resulting in a favourable match with FEM-DEM simulation outcomes concerning the mag-

nitude of the overall concentrated force. This underscores the effectiveness of the optimised

CSUH model.

To further validate the efficacy of the optimised CSUH model, we apply it to the as-

sessment of a retaining wall scenario. The macroscopic structural analysis is portrayed in

Fig. 7.16. The optimised CSUH model closely approximates the multi-scale FEM-DEM

simulated results for the retaining wall. Particularly noteworthy is the fact that simulations

founded on the optimised CSUH model yield maximum node acceleration values orders of

magnitude lower than those obtained through multi-scale FEM-DEM simulations. The in-

herent limitations associated with the usage of a limited number of particles in low-scale

DEM simulations give rise to evident interactions (e.g., friction, collision) between particles,

exerting a substantial impact on stress outcomes. The subsequent oscillations in node ac-

celeration, stemming from the fluctuating stress response in the explicit FEM solver, are

effectively minimised through the optimised CSUH model. By deriving the constitutive rela-

tion under static conditions from the data, the optimised model achieves relatively reduced

maximum node accelerations. This reduction reinforces heightened stability in explicit FEM

simulations.
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Figure 7.16: Macroscopic results of the optimised CSUH model in the retaining simulation

7.7 Concluding remarks

In this chapter, we construct an Enhanced IME model by integrating concepts from linear

elasticity, the von Mises yield surface and exponential hardening. Additionally, we introduce

the CSUH model and modified it based on the work of Pastor et al., specifically adjusting

the transform stress component. The parameters of these constitutive models, which are

implemented using the PyTorch framework, are optimised using the Adam optimisation

algorithm.

To develop a versatile constitutive model, we incorporate traditional elastoplastic model

constraints and devise a machine learning optimisation approach based on conventional con-

stitutive frameworks. Following a methodology akin to training recurrent neural networks,

stress-strain sequences are utilised as training data, and the error backpropagation technique

is applied to optimise the model parameters.

We begin by demonstrating the capacity of recurrent structures, under the J2 ideal

plastic constraint, to optimise model parameters in a manner reminiscent of the optimisation

mechanisms employed by recurrent neural networks. Subsequently, the Enhanced IME model

is trained using strain stress sequences derived from FEM-DEM simulations. The evolution of

the model’s training parameters reveals fundamental physical principles, including non-linear

elasticity and the mean stress-related yield surface, reflected within the training dataset. We

then introduce the CSUH model, tailored for geomaterials, to improve the model’s ability to

replicate FEM-DEM results. During the optimisation process, the CSUH model fine-tunes

parameters such as increasing the slope of the elastic unloading line (κ) to adjust the elastic
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modulus, enhancing the over consolidation ratio OCR to amplify peak stress, and reducing

the critical state stress ratio M to modulate the magnitude of critical shear stress.

The optimised CSUH model exhibits strong agreement both at the macroscopic and inte-

gration point levels with FEM-DEM simulations, thereby discerning patterns of compression

hardening and shear failure from the dataset. Notably, FEM-DEM simulations exhibit fluc-

tuations in deviatoric angles due to the stochastic nature of low-scale DEM simulations.

This effect of chance is amplified by the insufficient number of particles in the assemblage.

However, the optimised CSUH model adeptly captures these patterns of deviatoric angles.

The CSUH model approached as a guiding constraint for constructing surrogate models,

is systematically tailored to align with the inherent constitutive patterns embedded in the

FEM-DEM datasets. This approach produces a refined surrogate model that faithfully re-

produces FEM-DEM simulation outcomes, thereby advancing precision and computational

efficiency.
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Chapter 8

Conclusion

Many scholars begin to introduce machine learning methods into computational mechanics

in recent years. Due to the development of measurement and simulation techniques, a large

amount of high-precision data can be used for the study of the data-driven constitutive

modelling of rock-fill materials.

In this study, machine learning methods are introduced to learn and reproduce the consti-

tutive knowledge. Machine learning constitutive models are established in different manners.

They are subsequently implemented with the implicit and explicit FEM solvers. The net-

work structure, training cost, prediction accuracy, generalisation, and error propagation and

propagation are analysed. The main conclusions are summarised as follows:

• In geotechnical computations, first-principle modelling is computationally demanding.

Multiscale simulations like FEM-DEM aim to boost accuracy and speed. However, as

the number of CPUs increases in parallel computing, the efficiency gains slow down

and reach a plateau due to the cost of inter-node communication.

• Recurrent neural networks, particularly those based on LSTM or GRU, are able to

accurately capture and reproduce the memory effects observed in granular materials.

• Active learning resampling can identify the most informative data for network training

from massive datasets. Nevertheless, the presence of noise within the dataset can

significantly impact the efficacy.

• In BVP analysis, achieving high accuracy at specific integration points doesn’t neces-

sarily ensure overall simulation accuracy. Instead, errors that occur at one or multiple
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integration points tend to accumulate and propagate, ultimately causing a decline in

the accuracy of the entire calculation or even causing it to fail. Hence, it becomes more

important to maintain an acceptable level of accuracy across all integration points,

rather than solely focusing on improving the accuracy of select ones.

• Neural network-based constitutive modelling can extract constitutive knowledge di-

rectly from data, bypassing the need for phenomenological assumptions. However,

achieving generalisation with this approach remains challenging. It is crucial to bal-

ance data-driven methods with physical priors/assumptions. By incorporating physics,

a more generalised constitutive model can be developed. Furthermore, refining the

physical priors according to both of the training process and constitutive knowledge

can significantly improve the model’s performance.

It is essential to strike a balance between data requirements, generalisation, and accuracy,

which requires ongoing exploration to achieve optimal results. Data-driven methods hold

the potential to address larger-scale and more complex engineering challenges, offering more

efficient and reliable solutions in the field of geotechnical engineering.
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[65] R. Kawamoto, E. Andò, G. Viggiani, and J. E. Andrade, “All you need is shape:

Predicting shear banding in sand with LS-DEM,” Journal of the Mechanics and Physics

of Solids, vol. 111, pp. 375–392, 2018.

[66] J. E. Andrade and X. Tu, “Multiscale framework for behavior prediction in granular

media,” Mechanics of Materials, vol. 41, no. 6, pp. 652–669, 2009.

201



[67] J. E. Andrade, C. F. Avila, S. A. Hall, N. Lenoir, and G. Viggiani, “Multiscale mod-

eling and characterization of granular matter: From grain kinematics to continuum

mechanics,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 2, pp. 237–

250, 2011.

[68] M. Nitka, G. Combe, C. Dascalu, and J. Desrues, “Two-scale modeling of granular

materials: A DEM-FEM approach,” Granular Matter, vol. 13, no. 3, pp. 277–281,

2011.

[69] P. Guo andW. C. Li, “Development and implementation of Duncan-Chang constitutive

model in GeoStudio2007,” Procedia Engineering, vol. 31, no. December, pp. 395–402,

2012.

[70] N. Guo and J. Zhao, “Parallel hierarchical multiscale modelling of hydro-mechanical

problems for saturated granular soils,” Computer Methods in Applied Mechanics and

Engineering, vol. 305, pp. 37–61, 2016.

[71] J. D. Zhao and N. Guo, “Bridging the micro and macro for granular media: A compu-

tational multi-scale paradigm,” Geomechanics from Micro to Macro - Proceedings of

the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro,

IS-Cambridge 2014, vol. 2, pp. 747–752, 2015.

[72] H. A. Meier, P. Steinmann, and E. Kuhl, “On the multiscale computation of confined

granular media,” Computational Methods in Applied Sciences, vol. 14, pp. 121–133,

2009.

[73] K. Karapiperis, L. Stainier, M. Ortiz, and J. E. Andrade, “Data-Driven multiscale

modeling in mechanics,” Journal of the Mechanics and Physics of Solids, vol. 147,

p. 104239, 2021.

[74] W. Liang and J. Zhao, “Multiscale modeling of large deformation in geomechanics,”

International Journal for Numerical and Analytical Methods in Geomechanics, vol. 43,

no. 5, pp. 1080–1114, 2019.

[75] W. Liang, H. Wu, S. Zhao, W. Zhou, and J. Zhao, “Scalable three-dimensional hybrid

continuum-discrete multiscale modeling of granular media,” International Journal for

Numerical Methods in Engineering, vol. 123, no. 12, pp. 2872–2893, 2022.

[76] Y. Lian, F. Zhang, Y. Liu, and X. Zhang, “Material point method and its applications,”

Advances in Mechanics, vol. 43, no. 2, pp. 237–264, 2013.

202



[77] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang, “14. MLS-MPM

supplementary document,” ACM Transactions on Graphics, vol. 37, no. 4, pp. 1–5,

2018.

[78] V. P. Nguyen, “Material point method: basics and applications,” no. May, p. 207,

2014.

[79] G. Remmerswaal, M. Bolognin, P. J. Vardon, M. A. Hicks, and A. Rohe, “Imple-

mentation of non-trivial boundary conditions in MPM for geotechnical applications,”

Proceedings of the 2nd International Coneference on the Material Point Method for

Modelling Soil-Water-Structure Interaction, no. November, pp. 61–67, 2019.

[80] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks

and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[81] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-

bert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van

Den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go without

human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[82] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of Artificial Intelligence Research, vol. 4, no. 19, pp. 237–285, 1996.

[83] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
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