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ABSTRACT 12 

Current 2D and 3D image-based crack detection methods in transportation 13 

infrastructure often struggle with noise robustness and feature diversity. To overcome 14 

these challenges, the paper use CSF-CrackNet, a self-adaptive 2D-3D image fusion 15 

model utilizes channel and spatial modules for automated pavement crack segmentation. 16 

CSF-CrackNet consists of four parts: feature enhanced and field sensing (FEFS) 17 

module, channel module, spatial module, and semantic segmentation module. A multi-18 

feature image dataset was established using a vehicle-mounted 3D imaging system, 19 

including color images, depth images, and color-depth overlapped images. Results 20 

show that the mean intersection over union (mIOU) of most models under the CSF-21 

CrackNet framework can be increased to above 80%. Compared with original RGB and 22 

depth images, the average mIOU increases with image fusion by 10% and 5%, 23 

respectively. The ablation experiment and weight significance analysis further 24 

demonstrate that CSF-CrackNet can significantly improve semantic segmentation 25 

performance by balancing information between 2D and 3D images. 26 

Keywords ： Pavement crack detection; Self-adaptive image fusion; Semantic 27 

segmentation; Multi-feature dataset  28 
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1. Introduction 1 

Cracks may cause significant failure to road surface infrastructures. In the past, 2 

the manual vision detection method was widely used for road distress detection that 3 

was unable to meet the mass inspection amount of the current in-service highways. 4 

Thus, researchers are paying more and more attention to the automatic detection of 5 

pavement distresses. While deep learning has undoubtedly made significant 6 

contribution to the field of image segmentation, its application in the real-world road 7 

engineering projects, faces considerable challenges. The diverse range of road 8 

distresses and the complexity of road environment are posed significant obstacles to 9 

accurately segmenting road cracks using advanced methods.  10 

2D RGB images have been used by many existing pixel-level crack recognition 11 

researches using deep learning because 2D RGB images are easy to obtain. However, 12 

in real-world road engineering cases, the shadows on the road, water stains, and wheel 13 

path on the road will cause the crack pixel level segmentation task to become 14 

particularly difficult to execute accurately. One of the possible problem-solving method, 15 

deep learning approach can be used in the road distress identification process [1]. Xu 16 

et al.[2] proposed a two-stage pavement distress image enhancement pattern for dataset 17 

expansion to improve the richness of data. The distress prediction performance was 18 

improved by increasing the number of complex samples. Ren et al. [3]proposed a semi-19 

supervised learning approach based on generative adversarial networks for identifying 20 

pixel-level anomalous image segments. This method can reduce the workload of data 21 

annotation, thus providing a richer data form for deep learning networks. Furthermore, 22 

researchers have extensively investigated 2D data analysis pertaining to pavement 23 

distress detection. Zhang et al. [4] proposed a framework for asphalt pavement distress 24 

detection called ShuttleNetV2, with capabilities of enhanced global modeling and 25 

retrieval of fine details. Tong et al.[5] proposed a deep neural network combining the 26 

Dempster-Shafer theory ( DST ) and a transformer network. The excellent information 27 
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extraction ability of the transformer also improves the pixel-level detection accuracy of 1 

the road surface. Lin et al. [6] proposed GoogleNet transfer learning with an improved 2 

gorilla optimized kernel extreme learning machine. Through transfer learning and 3 

graphics preprocessing, the poor detection accuracy of high noise images has been 4 

effectively improved. Optimized information extraction methods and image 5 

preprocessing can also improve the detection accuracy of simple 2D image targets. 6 

However, current research still struggles to address the challenges posed by 2D images 7 

greatly affected by sever environmental conditions and poor illumination.  Most 8 

existing research assumes of ideal conditions, overlooking the complexities exist in the 9 

real-world. 10 

Compared with 2D images, 3D images are less easily affected by environmental 11 

conditions. It provides more effective information for distress segmentation while 12 

reducing image noise. In 2017, Zhang et al. [7] developed a convolutional neural 13 

network architecture, CrackNet, for pixel-level crack detection in 3D pavement images. 14 

In order to eliminate the influence of local noise on crack prediction results, Zhang et 15 

al. [8] proposed CrackNet II using a deeper network structure in 2018. Both of them 16 

proved that 3D images can perform well in pavement crack detection tasks and can 17 

effectively reduce the interference of environmental factors on pavement crack 18 

prediction. However, various pavement forms and the complexity characteristics of 19 

pavement distress are still the reasons for the low accuracy of pre-distress prediction. 20 

Fei et al. [9] proposed an improved CrackNet called CrackNet-V for pixel-level 21 

automated crack detection on 3D asphalt pavements in 2020. Even after many 22 

improvements, CrackNet-V still faces the problem of inaccurate detection of wide 23 

cracks. This is because the wider cracks will be filled with fine impurities such as sand, 24 

which can easily cause the cracks to be discontinuous in 3D space. Liu et al. [10] 25 

proposed a hybrid method to automatically detect inverted-T patching for an efficient 26 

maintenance schedule. However, they found that the inverted-T patching and 27 

background in 3D image are so similar, which is the main cause of false-positive. 28 
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Therefore, 3D images frequently encounter issues in areas where there is minimal 1 

variation in the height. For instance, during the early stages of crack development 2 

(micro-cracks), as well as in the cases of co-developed distresses (cracks in local 3 

subsidence areas), and repaired distresses (cracks after filling), automatic detection 4 

often yields poor results. 5 

Deep learning has proved to be effective in image processing, however, the 6 

inherent limitations of using 2D or 3D images alone persist and cannot be fully 7 

addressed. Compared with other engineering cases, road images are much more 8 

difficult to process, which requires complicates subsequent data processing, distress 9 

analysis, information extraction and more. In practical applications, pavement crack 10 

images have the characteristics of irregularity, diversity of structural surface, variability 11 

of environment and uncertainty caused by non-crack features. In order to enrich the 12 

dimension of image information and increase recognition accuracy, the image fusion 13 

algorithm is often employed. In recent years, deep learning methods have shown great 14 

potential in the field of image fusion[11], among which convolutional neural networks 15 

(CNNs) have gradually become the main tool for image fusion. Prabhakar et al. 16 

[12]used a convolutional neural network to extract the information of the image in the 17 

brightness channel. Based on ResNet50, Li et al. [13]fully extracted the features of the 18 

source image to realize the fusion algorithm of the infrared and visible images. However, 19 

different data types have also different fusion strategies. In the field of pavement 20 

distress detection, Guan et al.[14] established a multi-feature pavement image dataset 21 

including color image, depth image and fusion image, and discussed the possibility of 22 

fusing 2D and 3D images to improve segmentation performance. Bavirisetti et al. 23 

[15]devised an adaptive thresholding technique that utilizes local image statistics for 24 

improved segmentation of MRI scans, thereby facilitating more accurate medical 25 

diagnoses. Heideklang et al. [16] integrated three different data types through 26 

heterogeneous data fusion to improve detection performance. Beckman et al. [17] 27 

developed a concrete spalling damage detection method based on convolutional neural 28 
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network using 2D and 3D images data. Zhang et al. [18] introduced a method leveraging 1 

a wavelet-based fusion technique to integrate global and local image features, 2 

enhancing underwater images with remarkable fidelity. Mouaddib et al. [19] employed 3 

a dual-method approach to assess the structural integrity of Notre-Dame's vaults by 4 

integrating 2D photogrammetric data and 3D laser scanning data, demonstrating the 5 

necessity of multi-temporal data fusion for precise structural diagnosis. At present, most 6 

of the fusion strategies are based on simple fixed formulas, resulting in poor fusion 7 

performance. In the field of pavement distress segmentation, there is also a lack of a 8 

fusion scheme combining the characteristics of cracks. Li et al. [20] proposed a method 9 

for detecting self-fusion pavement images based on convolutional neural networks. 10 

Jones et al. [21] introduced an innovative technique for enhancing the resolution of 11 

satellite images by employing a deep learning-based super-resolution framework. Zhao 12 

et al. [22] introduced a novel coarse-to-fine LiDAR and camera fusion-based network, 13 

named LIF-Seg, to address the challenges of effective fusion and precise alignment of 14 

LiDAR and camera data for 3D semantic segmentation. Considering the significant 15 

progress, the fusion process of this model still depends on the ability of the neural 16 

network to extract information. This will make it difficult to deploy the network on the 17 

mobile devices in a lightweight design. It is also difficult to migrate the method to the 18 

real-world engineering applications. Because of the lack of fusion network optimization 19 

for the essential characteristics of pavement distresses, the method performs poorly for 20 

pavement cracks with high requirements for edge information extraction. However, it 21 

has been fully demonstrated that multi-dimensional information fusion can 22 

significantly increase information density and improve detection levels. 23 

In general, from the perspective of enriching image data, fusing multi-source 24 

images are more effectively than using homogeneous data from a single source. Since 25 

the 2D RGB image can provide rich real-world color information and reflect the plane 26 

gap between the pavement crack and the background, especially in the local high depth 27 

change area. The 3D depth image can ignore the road noise caused by poor illumination 28 
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conditions, thus it can more accurately reflect the road texture and crack shape 1 

information. It can also significantly improve the accuracy of crack segmentation. Thus, 2 

in this research, a multi-dimensional dataset of road cracks is constructed, and each 3 

image contains four RGB channels and depth. An adaptive 2D and 3D image fusion 4 

called CSF-CrackNet is proposed, which can be flexibly deployed at the front end of 5 

any semantic segmentation network to improve the network detection accuracy 6 

significantly. CSF-CrackNet aims to improve the accuracy and robustness of pavement 7 

crack segmentation by utilizing a self-adaptive 2D-3D image fusion mechanism. This 8 

approach integrates the rich color information from RGB images with the structural 9 

details from depth images, dynamically adjusting weights for different image channels 10 

and spatial regions. This fusion effectively mitigates issues such as shadows, varying 11 

lighting, and fine detail loss, enhancing segmentation precision across diverse real-12 

world scenarios. The model employs several innovative modules to enhance feature 13 

extraction, spatial weighting, and channel fusion, ensuring superior performance under 14 

challenging conditions. CSF-CrackNet is designed for flexible integration with various 15 

semantic segmentation networks, demonstrating significant performance 16 

improvements and broad applicability in real-world pavement crack detection tasks. 17 

The paper scrutinized the effects of varying input data on the model, and a comparative 18 

analysis of the proposed methods was carried out. 19 

2.Methodology 20 

CSF-CrackNet is a deep learning model with an encoder-only architecture 21 

optimized for pavement crack segmentation through a self-adaptive 2D-3D image 22 

fusion mechanism. The model integrates RGB and depth image data using specialized 23 

channel and spatial information analysis modules, which dynamically adjust to 24 

optimize feature capture and integration from both image types. These modules employ 25 

advanced convolution techniques, such as dilated and transposed convolutions, to 26 

enhance the processing of multiscale features critical for accurate segmentation. The 27 
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fusion of channel and spatial data is designed to maximize the complementary attributes 1 

of RGB and depth information, improving the model's accuracy and robustness across 2 

diverse environmental conditions. 3 

 4 

Figure 1. Overview of CSF-CrackNet(CSF-X) model 5 

Figure 1 illustrates the innovative architecture of CSF-CrackNet, highlighting the 6 

adaptive channel and spatial fusion modules. These modules are crucial for dynamically 7 

integrating RGB and depth information, setting the model apart from traditional fixed 8 

fusion approaches.  To achieve better adaptivity in pixel-level crack detection tasks, 9 

the encoder-only architecture in this paper can be divided into four parts: feature 10 

enhanced and field sensing model (FEFS), channel module, spatial module, and 11 

semantic segmentation model. Firstly, the receptive field block (RFB) and the shortcut 12 

pattern are combined to extract whole deep crack information, expand the receptive 13 

field, and summarize latent representations. Secondly, the channel feature maps from 14 

RGB images and depth images are reasonably applied to maps of different weights, and 15 

the intermediate features are adaptively refined. Thirdly, the information extraction 16 

module is added to the space module again and then recombines and strengthens the 17 

spatial features because the channel model re-processes the feature maps. Finally, the 18 

images after channel and spatial fusion are input into the semantic segmentation 19 

network for crack segmentation. In addition, there is no limitation of the semantic 20 

segmentation network used in this framework, indicating that the fusion model can be 21 
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easily deployed before any semantic segmentation network. Overall, the purpose of this 1 

framework is to improve segmentation accuracy through the fusion of multimodal 2 

features, where the architecture and function of each module are described in the 3 

following sections. 4 

2.1 Feature enhancement and field sensing module 5 

The FEFS module can generate feature maps with richer information by multilayer 6 

convolutional network operation. The depth is beneficial for the accuracy of 7 

information processing [23]. Therefore, the primary function of FEFS is to obtain a 8 

deeper feature map. By expanding the receptive field, rich contextual information can 9 

be effectively obtained. Additionally, using a larger convolution kernel or a larger 10 

pooling step size can increase the receptive field of the network [24]. As shown in 11 

Figure 2, the proposed improved Receptive Field Block (RFB) [25] in this study not 12 

only integrates the inception structure with dilated convolution layers but also 13 

introduces a novel multi-branch configuration tailored specifically for crack detection. 14 

This configuration enhances the capture of fine-grained details and long-range 15 

dependencies, crucial for detecting narrow and continuous road cracks. Additionally, 16 

by incorporating adaptive skip connections, our RFB mitigates the potential over-17 

amplification and weakening of responses, thereby maintaining stable and enhanced 18 

low-level feature representations. This refinement over traditional RFB designs makes 19 

our approach uniquely suited for the complexities of pavement crack detection. In 20 

addition, the jump connection can avoid over-amplification and over-weakening of the 21 

response between any two channels. And it can retain the representation level of low-22 

level features [26]. Therefore, the model structure with skip connection is utilized for 23 

stable feature enhancement. 24 
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 1 

Figure 2. Architecture of the receptive field block (RFB) module. (a) RFB model (b) RFB-2 

small model 3 

As shown in Figure 1, the image is first input into the embedded block with double 4 

convolutional layers, as shown in Figure 3. The 3 × 3 max pooling is also performed 5 

for downsampling until a quarter of the original size of the multi-channel simple 6 

semantic information is obtained [27]. Subsequently, the obtained feature map is copied 7 

and input into two branches. One branch maintains its course through a direct jump 8 

connection, preserving the fundamental simple information. Another branch is 9 

transferred into RFB. The feature map emerging from the RFB block is then 10 

reintroduced into the embedding block, generating deeper semantic information. This 11 

process is repeated until multi-channel simple semantic information, reduced to one-12 

eighth of the original size, is achieved. Next, the deep semantic information is inputted 13 

into the upsampling layer to enlarge feature maps to a quarter of the original to display 14 

them at higher resolution. Afterwards, these feature maps are concatenated with the 15 

previously branch-retained feature maps in the skip connection and then regularized. 16 

Ultimately, these feature maps are inputted into RFB-s to obtain enhanced feature 17 

information with multi-dimensional information. 18 
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 1 

Figure 3. Double-layer convolution architecture 2 

Figure 2 describes two RFB configurations involving a multi-branch convolution 3 

layer in tandem with either dilated pooling or convolution layers [25]. The initial step 4 

involves the reduction of channel count in the input feature maps through a 1×1 5 

convolution to facilitate information aggregation. Subsequently, a series of convolution 6 

and dilation convolution operations transpire across multiple branches. Thereafter, the 7 

feature maps generated from these branches are concatenated along the channel 8 

dimension, followed by a 1×1 convolution to restore the original channel feature map. 9 

The resulting output is augmented with the shortcut outputs. This summation undergoes 10 

nonlinear activation through the Rectified Linear Unit (ReLU) to produce the final 11 

output. The aforementioned steps delineate the comprehensive process of the Receptive 12 

Field Block (RFB). Notably, the framework introduces RFB-s (depicted in Figure 2(b)), 13 

incorporating smaller convolution kernels and additional branches in the network to 14 

meticulously analyze the characteristics of fine and small cracks. 15 

2.2 Channel feature fusion based on one-dimensional convolution 16 

The channel feature fusion module applies one-dimensional convolution to 17 

automatically learn and adjust the significance of each channel in RGB and depth 18 

images. This adaptive weighting mechanism enhances the emphasis on critical features 19 

while minimizing less relevant information, refining the model's focus and improving 20 

segmentation performance. Unlike traditional channel fusion mechanisms that rely on 21 

fixed formulas or predefined rules, our method introduces a novel approach to channel 22 
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weight adaptation through one-dimensional convolution and fully connected layers. 1 

This approach allows the network to dynamically learn and adjust the importance of 2 

each channel based on the specific characteristics of the input images. By autonomously 3 

acquiring feature weights during training, our method ensures optimal feature 4 

extraction tailored to each image, enhancing robustness and accuracy in crack detection 5 

tasks. This process amplifies the weight assigned to more impactful feature channels, 6 

enhancing the network's ability to prioritize and leverage effective features. In this way, 7 

each sample will have its own independent set of weights. For instance, the weights of 8 

any two image samples can be adjusted adaptively according to the image quality. 9 

Pooling is a common operation in convolutional neural networks, also known as 10 

downsampling, which aims to reduce the dimension of each feature map[28]. Therefore, 11 

as shown in Figure 1, at the beginning of this module, the feature maps processed by 12 

the FEFS module are divided into two branches and input into the Max pooling layer 13 

and Average pooling layer, respectively, with one-dimensional output. After processing, 14 

the output of the feature maps of two branches is a multi-channel one-dimensional 15 

graph vector. 16 

Following this, the feature maps are fed into a data analysis block that incorporates 17 

one-dimensional convolution and fully connected layers. This block extracts 18 

information and condenses features from the input feature map. As depicted in Figure 19 

4, a crucial step involves smoothing and denoising the data processed by the pooling 20 

layers. The data values undergo compression, resulting in a 1024-dimensional vector 21 

that is subsequently normalized. Utilizing standardized image data, a one-dimensional 22 

convolution layer with a kernel length of 7 is employed to extract local features from 23 

the preprocessed vector. Generating 40 feature vectors, each with a length of 1024 24 

dimensions. Subsequently, these local features undergo abstraction through another 25 

one-dimensional convolution layer with a kernel size of 5, effectively reducing the 26 

number of feature vectors to one quarter. After three layers of one-dimensional 27 

convolution operations, four feature vectors, each with a length of 1024 dimensions, 28 
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are extracted and then flattened to generate a comprehensive feature vector of 4096 1 

dimensions, preparing it for full connection layer processing. The subsequent step 2 

involves concatenating two branches that employ different pooling methods. Feature 3 

compression occurs through five fully connected layers, incorporating the Rectified 4 

Linear Unit (ReLU) activation function. Following this, the Sigmoid function is applied 5 

for activation, resulting in the output of the channel weight mask. Finally, the weight 6 

and input 2D-3D images undergo channel-wise multiplication, yielding the ultimate 7 

refined feature maps. 8 

Figure 4. Architecture of one-dimensional convolution and linear fully connected layer 9 
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2.3 Spatial feature fusion module with multi-scale features and Scene Parsing 1 

The Spatial Feature Fusion Module selectively enhances features in key areas for 2 

crack segmentation by transforming and refining spatial information. This module 3 

generates a spatial weight mask for each position, adjusting the emphasis on relevant 4 

regions and diminishing background noise. Initially working with shallow features 5 

from the channel fusion, it abstracts these to deeper semantic levels for more precise 6 

segmentation. To achieve this, the model incorporates diversely connected multi-scale 7 

convolution blocks and Strip pooling blocks, which process images post-channel fusion 8 

to enhance detail representation and scene parsing. 9 

Although the low-level semantic feature information is less, the target location is 10 

clear. The high-level semantic feature information has opposite characteristics. The 11 

spatial pyramid structure fuses the features of different layers with low-level and high-12 

level semantic information to achieve better results[29]. Therefore, as Figure 5 shows 13 

the proposed structure of a diversely connected multi-scale convolution block, this 14 

block uses the feature pyramid structure to introduce region of interest pooling and 15 

transposed convolution for feature map abstraction. The block comprises two 16 

consecutive down-sampling operations utilizing ROI pooling, followed by two 17 

additional down-sampling steps facilitated by transposed convolution. By integrating 18 

region of interest pooling with transposed convolution, we achieve a more granular 19 

abstraction of feature maps, allowing for precise detection of various crack scales and 20 

forms. The block employs a dynamic feature pyramid structure that adaptively adjusts 21 

to different crack widths and patterns, ensuring robust performance across diverse 22 

pavement conditions. This design not only improves detection accuracy but also 23 

enhances computational efficiency, making it highly effective for real-time applications 24 

in road maintenance and monitoring.  25 

The fusion of semantic information across various depths is accomplished by 26 

concatenating feature maps from different levels. 27 
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 1 

Figure 5. Architecture of Diversely connected multi-scale convolution block 2 

Spatial pooling has been proven highly effective in capturing long-range 3 

contextual information for pixel-wise prediction tasks[30]. In Figure 6, different from 4 

the traditional N × N style convolution kernel, strip pooling introduces a novel pooling 5 

strategy that involves a long yet narrow kernel, specifically 1 × N or N × 1. This 6 

elongated pooling window allows the model to gather abundant global contextual 7 

information, a crucial aspect for enhancing the performance of scene parsing networks.  8 

Additionally, by incorporating dilated convolutions within the strip pooling 9 

framework, we significantly expand the receptive field, allowing the model to integrate 10 

more comprehensive scene context without increasing computational burden. This dual 11 

enhancement of spatial pooling and depthwise separability sets our method apart from 12 

conventional strip pooling techniques, delivering superior performance in pixel-level 13 

segmentation of complex crack patterns. 14 

The operation of spatial fusion is similar to channel fusion. The abstract deep 15 

semantic information is input into the maximum pooling layer and the average pooling 16 

layer, respectively, to obtain each spatial position's maximum and average values. After 17 

obtaining two matrices, the two matrices are concatenated. The model learns the weight 18 

mask for each spatial position by applying a convolutional layer and the sigmoid 19 

function. In the final step, this weight mask is applied to each feature map's spatial 20 
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position, emphasizing and highlighting crucial information.  1 

Our spatial feature fusion module introduces an innovative self-adaptive spatial 2 

weighting mechanism that leverages multi-source information from both RGB and 3 

depth images. By combining diversely connected multi-scale convolution blocks and 4 

enhanced strip pooling, our approach dynamically adjusts spatial weights to emphasize 5 

crack regions and suppress irrelevant background noise. This fusion of multi-source 6 

information ensures that the most critical features from both RGB and depth images are 7 

prioritized, significantly improving the precision of crack segmentation. The RGB 8 

images provide rich color and texture data, which is essential for identifying surface 9 

characteristics and crack edges under varying lighting conditions. However, they can 10 

be affected by shadows and other environmental factors. On the other hand, depth 11 

images offer structural details and depth information that are less susceptible to lighting 12 

variations, providing a complementary perspective that enhances the overall robustness 13 

of the segmentation process. By integrating these two types of information, our module 14 

captures a wider range of contextual data, crucial for accurate crack detection. 15 

Traditional single-source methods struggle to achieve the same level of detail and 16 

robustness, as they cannot simultaneously address the challenges posed by varying 17 

lighting conditions and the need for structural depth information. Our multi-source 18 

approach ensures that the segmentation model benefits from the strengths of both image 19 

types, resulting in a more comprehensive and reliable detection framework. 20 

 21 

Figure 6. Architecture of improved Strip Pooling based on Depthwise Separable Convolution 22 
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2.4 Semantic segmentation model 1 

Following spatial fusion, the resulting 2D-3D fusion image undergoes semantic 2 

segmentation for detailed crack analysis. The model is designed to seamlessly integrate 3 

with existing semantic segmentation architectures, including Deeplab V3+, Unet, 4 

PSPnet, HRNet, and Segnet, enhancing their performance without the need for 5 

structural modifications. This compatibility ensures that the sophisticated feature 6 

processing capabilities of CSF-CrackNet can be utilized across various platforms to 7 

achieve precise pixel-level crack segmentation. 8 

2.5 Previous fusion methods used for comparison  9 

In the realm of image fusion, Multi-scale Guided Filter Fusion (MGFF) and 10 

Convolutional Neural Network (CNN)-based methods stand out due to their widespread 11 

application and exceptional capabilities in enhancing image quality. Therefore, this 12 

paper selects these two methods as comparative algorithms. 13 

2.5.1 Multi-scale Guided Filter Fusion  14 

The multi-scale guided filter fusion (MGFF) integrates information from different 15 

source images using a guided image filter (GF) and advanced techniques such as multi-16 

scale image decomposition, visual saliency detection, and structure transferring 17 

property[15]. By combining pixel-level details from various sources, the algorithm 18 

ensures a comprehensive representation in the fused image or video. Through multi-19 

scale decomposition, the algorithm extracts feature at different levels of detail, 20 

preserving important information during fusion. Visual saliency detection identifies 21 

significant regions in the source images, focusing on key areas for preservation. The 22 

structure transferring property transfers structural information from source images to 23 

maintain coherence in the final output. Weight maps guide the fusion process based on 24 

the importance of different regions. Overall, the algorithm aims to maximize fusion 25 

gain, minimize loss and artifacts, and optimize run time. This results in efficient and 26 



 

17 

 

high-quality fused images and videos for applications in diverse fields like robotics, 1 

surveillance, and medical imaging[31-33].  2 

2.5.2 Fusion based on convolutional neural networks 3 

The fusion using convolutional neural networks (CNN) involves a multi-step 4 

process[21]. Firstly, a Siamese convolutional network generates a weight map by 5 

processing the images separately. This weight map integrates pixel activity information 6 

from both images. To handle images of arbitrary sizes, the fully-connected layer of the 7 

network is converted into an equivalent convolutional layer with two kernels. This 8 

allows the network to process source images as a whole and generate a dense prediction 9 

map containing clarity information for each patch pair. The network output simplifies 10 

to the weight of the first or second source image. Finally, a weight map with the same 11 

size as the source images is obtained by assigning weights to all pixels within the patch 12 

locations and averaging the overlapped pixels. This fusion scheme ensures that the 13 

fusion process is conducted multi-scale, adapting the fusion mode for decomposed 14 

coefficients based on local similarity, ultimately achieving high-quality fusion results. 15 

This method is widely used in agriculture, computer vision and other fields with 16 

excellent image fusion performance [34-36]. 17 

2.5.3 Comparison between the proposed method and the previous methods 18 

The mentioned image fusion methods primarily include approaches based on 19 

multi-scale decomposition and sparse representation. Different fusion methods rely on 20 

the selection of image decomposition techniques and the formulation of fusion rules. 21 

The core of image fusion lies in obtaining weight maps that capture significant 22 

information from each source image. This crucial step is achieved through saliency 23 

level estimation and weight allocation. Methods based on convolutional neural 24 

networks are constrained by network structures and lack optimization for image fusion 25 

algorithms in complex road scenarios. While conventional fusion methods have shown 26 

promising application results, several technical challenges urgently need to be 27 

addressed. Firstly, the limitation lies in manually designed fusion rules, leading to 28 
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insufficient robustness in image fusion effects. Secondly, efficiency is compromised in 1 

the case of complex and diverse datasets. Thirdly, for road crack problems, there is a 2 

lack of fusion strategies specific to road defect features and a shortage of fusion 3 

algorithms tailored to road scenes. 4 

CSF-Cracknet is an adaptive graphic fusion algorithm built upon a finely multi-5 

source dataset of road cracks. Addressing the characteristics of both fine and large-scale 6 

cracks on road surfaces, it introduces a pyramid-structured surface feature map 7 

abstraction unit. A scene-awareness module is proposed to account for the diversity in 8 

road surface textures. A weight-based fusion strategy is presented in response to road 9 

surface occlusion and shadow issues. The aim is to achieve a high-confidence extraction 10 

of road texture features and robust pixel-level segmentation of road cracks. 11 

3. Data preparation 12 

3.1 Data collection and processing 13 

This study used a 3D imaging system developed by our research team[14] . The 14 

vehicle-mounted photography system based on multi view stereo imaging technology 15 

was used to generate the digital pavement surface model. Based on a high-resolution 16 

point cloud model, a multi feature image dataset consisting of color images, depth 17 

images, and color-depth overlapped images was created using image processing 18 

algorithms. 19 

The dataset collection utilizes a vehicle-mounted photography system with several 20 

GoPro cameras to capture pavement images. Camera calibration is performed to 21 

eliminate lens distortion. The images are processed using structure from motion (SfM) 22 

technology to reconstruct a 3D point cloud model. The point cloud model is 23 

transformed into orthoimages by a Python script with batch image processing. This 24 

comprehensive approach ensures acquiring and processing a high-quality dataset for 25 

automated pixel-level pavement distress detection. For the 2D color images, the RGB 26 
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values of each pixel on the image are represented. In contrast, each pixel on the 3D 1 

depth image represents the average height of the point cloud within the region. Both 2 

types of orthophoto images utilize the same data source and share an identical imaging 3 

range. Therefore, the generated two-dimensional and 3D images exhibit complete 4 

overlap characteristics. 5 

3.2 Pavement crack multi-dimensional dataset 6 

The 900 sets of pavement crack multi-dimension datasets were used in this paper 7 

by the 3D imaging system. The 900 datasets were randomly divided into 700 training 8 

sets, 100 validation sets, and 100 testing sets. Each dataset consists of three images: an 9 

RGB image, a depth image, and a Ground Truth image. Crack distresses primarily 10 

manifest in linear and grid-like forms. Among them, the longitudinal and transverse 11 

cracks exhibit relatively regular patterns, while block-like and grid-like cracks typically 12 

intertwine with multiple cracks in images. These sets were utilized as the source data 13 

to train and assess various deep learning networks.  14 

The 3D image fundamentally differs from the 2D image in expressing detailed 15 

road surface information by representing distance and depth, offering a comprehensive 16 

depiction of crack location, depth, and shape. In contrast, the 2D image conveys color 17 

information characterizing surface brightness and providing details on color and texture. 18 

Both the road depth information and road color information can be expressed in a 2D 19 

matrix. However, the 2D image of the road surface differs from the 3D image, but they 20 

are interrelated. Because of the great complementarity between the two types of images, 21 

the efficient fusion of the two images can make up for the defects between the two and 22 

make it more accurate for feature extraction and recognition. 23 

To ensure that the damage identification method can adapt to real road surface 24 

scenarios, the road surface damage image dataset incorporates various complex road 25 

environment conditions. Road surface color, lighting shadows, and surface stains 26 

significantly impact the robustness of damage identification. The usage conditions of 27 
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roads affect the contrast and color difference between damaged and non-damaged areas. 1 

The road surface damage images include mildly worn surfaces (tending to black), 2 

heavily worn surfaces (tending to gray), and surfaces with surface floating dust (tending 3 

to yellow). On the other hand, considering the intensity and angle of illumination can 4 

affect the visual conditions of the road surface, and shadows cast by trees or buildings 5 

can lead to irregular color difference distributions. Additionally, surface stains such as 6 

oil stains, water stains, and repairs are complex interference factors. Under various 7 

combinations of external interferences, the road surface damage image dataset 8 

comprehensively tests the stability of subsequent recognition algorithms in various real-9 

world scenarios. Figure 7 illustrates several representative matched sets of 2D and 3D 10 

images, including various complex noises such as shadow, water stains, road marking, 11 

wheel paths, and local subsidence.  12 

In addition, the size of the pavement crack multi-dimension images is 512 × 512 13 

(H × W) pixels. Each dataset includes a 3D pavement image, a paired 2D image and a 14 

ground-truth image aligned on a pixel-to-pixel basis. All ground-truth images 15 

underwent manual labeling using the LabelMe[37]. 16 

 17 

Figure 7. Partially representative 2D-3D images- 18 
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4. Experimental results and performance comparison 1 

4.1 Evaluation of segmentation performance 2 

4.1.1 Benchmarking experiments and models 3 

In this paper, two sets of comparative experiments are carried out using CSF-4 

CrackNet to ascertain its superiority over other fusion and non-fusion methods, along 5 

with its compatibility with different segmentation networks. To prove that the images 6 

processed by CSF-CrackNet are more conducive to crack segmentation, the paper uses 7 

different kinds of data to deploy in the same model framework for comparative 8 

experiments, including the fusion images based on convolutional neural network and 9 

feature pyramid (CNN)[38], the fusion images based on Multi-scale Guided Filter 10 

Fusion (MGFF)[39], RGB images, depth images and 2D-3D images. To demonstrate 11 

that the CSF-CrackNet model can be flexibly deployed at the front end of any semantic 12 

segmentation network to improve the network detection accuracy significantly, the 13 

paper attempts to deploy CSF-CrackNet to the front end of multiple mainstream 14 

semantic segmentation models for testing, including DeepLab V3+[40], Unet[27], 15 

PSPNet[41], HRNet[42] and SegNet[43]. For a fair comparison, all these networks are 16 

trained with the same hyperparameters mentioned above. In the following subsections, 17 

the evaluation results of CSF-CrackNet are described in detail. 18 

4.1.2 Quantitative comparison of different models 19 

Table 1 describes our experiments to verify the good performance of the model in 20 

CSF-CrackNet. We also performed similar experiments based on DeepLab V3 +, 21 

PSPNet, and HRNet, for a total of 25 sets of experiments that combine various models 22 

and data for comparative analysis.  23 

 24 

Table 1 Description of the models to be trained 25 

Framework Model name Description Dataset of training 

Deeplab V3+ 2D Original Deeplab V3+ network RGB images 
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Deeplab 

V3+ 

Deeplab V3+ 3D Original Deeplab V3+ network Depth images 

MGFF-Deeplab V3+ 2D+3D 
Fused images based on MGFF fusion is 

segmented by Deeplab V3+ network. 

RGB & Depth 

images 

CNN-Deeplab V3+ 2D+3D 
Fused images based on CNN is 

segmented by Deeplab V3+ network. 

RGB & Depth 

images 

CSF-Deeplab V3+ 2D+3D 

Method based on channel and space 

fusion proposed in this paper is deployed 

in the front of Deeplab V3+ network. 

RGB & Depth 

images 

Unet 

Unet 2D Original Unet network RGB images 

Unet 3D Original Unet network Depth images 

MGFF-Unet 2D+3D 
Fused images based on MGFF fusion is 

segmented by Unet network. 

RGB & Depth 

images 

CNN-Unet 2D+3D 
Fused images based on CNN is 

segmented by Unet network. 

RGB & Depth 

images 

CSF-Unet 2D+3D 

Method based on channel and space 

fusion proposed in this paper is deployed 

in the front of Unet network. 

RGB & Depth 

images 

PSPnet 

PSPnet 2D Original PSPnet network RGB images 

PSPnet 3D Original PSPnet network Depth images 

MGFF-PSPnet 2D+3D 
Fused images based on MGFF fusion is 

segmented by PSPnet network. 

RGB & Depth 

images 

CNN-PSPnet 2D+3D 
Fused images based on CNN is 

segmented by PSPnet network. 

RGB & Depth 

images 

CSF-PSPnet 2D+3D 

Method based on channel and space 

fusion proposed in this paper is deployed 

in the front of PSPnet network. 

RGB & Depth 

images 

Hrnet 

Hrnet 2D Original Hrnet network RGB images 

Hrnet 3D Original Hrnet network Depth images 

MGFF-Hrnet 2D+3D 
Fused images based on MGFF fusion is 

segmented by Hrnet network. 

RGB & Depth 

images 

CNN-Hrnet 2D+3D 
Fused images based on CNN is 

segmented by Hrnet network. 

RGB & Depth 

images 

CSF-Hrnet 2D+3D 

Method based on channel and space 

fusion proposed in this paper is deployed 

in the front of Hrnet network. 

RGB & Depth 

images 

Segnet 

Segnet 2D Original Segnet network RGB images 

Segnet 3D Original Segnet network Depth images 

MGFF-Segnet 2D+3D 
Fused images based on MGFF fusion is 

segmented by Segnet network. 

RGB & Depth 

images 

CNN-Segnet 2D+3D 
Fused images based on CNN is 

segmented by Segnet network. 

RGB & Depth 

images 
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CSF-Segnet 2D+3D 

Method based on channel and space 

fusion proposed in this paper is deployed 

in the front of Segnet network. 

RGB & Depth 

images 

Figure 8 illustrates the loss and mIOU of different models on the validation images 1 

during the training process. Figure 8 (a) shows the loss curve of different datasets 2 

mentioned in section 4.2.1 using the Unet model on the validation dataset. It can be 3 

seen from the figure that as the number of iterations increases, the loss gradually 4 

decreases, indicating that the performance of the model is gradually improving. 5 

Simultaneously, the number of iterations required for different network structures to 6 

achieve the same performance is also different. The model (CSF-Unet 2D+3D) 7 

proposed in this paper requires fewer iterations to achieve lower losses. This means that 8 

these network structures perform better when dealing with crack segmentation. Figure 9 

8 (b) shows the loss curves of different datasets using the SegNet model on the 10 

validation dataset. Like the results of the Uent model, the loss curve of the model (CSF-11 

Segnet 2D+3D) proposed in this paper decreases the fastest. However, the loss value of 12 

the fused image dataset using MGFF is larger than that of the Unet model. This means 13 

that the fusion method of MGFF shows unstable performance when fusing crack RGB 14 

images and depth images. The model (CSF-Segnet 2D+3D) proposed in this paper is 15 

more robust and has a faster convergence speed in the training process. This is because 16 

good image fusion results can help the network capture the deep information of the 17 

graph faster and more accurately.  18 

Figure 8 (c) and 8 (d) describe the mIOU performance results of different datasets 19 

and model, which show similar characteristics. It is evident from the figure that the 20 

model (CSF-Segnet 2D + 3D) proposed in this paper shows the best results. The mean 21 

intersection over union ratio at stability exceeds 0.8, and the convergence speed is also 22 

the fastest. Our proposed model mIOU exceeds the training results (Segnet 2D) of the 23 

RGB image dataset by about 8 % and exceeds the training results (Segnet 3D) of the 24 

depth image dataset by about 3 %. This shows that the fusion method realizes the 25 

extraction and enhancement of the effective information of the image, which is helpful 26 
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for the segmentation of pavement cracks. Furthermore, the fusion performance is better 1 

than other fusion methods. It is worth mentioning that the MGFF fusion method 2 

(MGFF-Segnet 2D + 3D) has a harmful effect on the segmentation performance results, 3 

which further illustrates the importance of combining the fusion network with the 4 

segmentation model.  5 

  

  

Figure 8 Validation loss and mIOU based on different frameworks and datasets. (a)-(b): loss 6 

curves of different datasets using the Unet andSegNet model. (c)-(d): mIOU performance results 7 

of different datasets and model. 8 

Table 2 presents the specific performance results of 25 experiments on validation 9 

images, illustrating the substantial improvements achieved by CSF-CrackNet. The 10 

adaptive fusion strategies result in significant gains in mIOU, precision, and recall, 11 
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demonstrating the technical superiority of our approach over conventional fusion 1 

methods. It can be seen from the table that the performance of different models on the 2 

same dataset is quite different. However, CSF-CrackNet has a good performance 3 

improvement effect on the original model. For example, the mIOU of most models can 4 

be increased to 80%. Compared with the original RGB image, the average increase of 5 

mIOU is nearly 10%, and the average increase of mIOU is nearly 5% compared with 6 

the original depth image. Other evaluation metrics can also reflect similar results. 7 

Compared with other fusion methods, CSF-CrackNet also exhibits better performance. 8 

Overall, CSF-CrackNet can be flexibly deployed at the forefront of most semantic 9 

segmentation networks, enhancing the performance of segmentation models. 10 

Table 2 Comparison of segmentation results 11 

Framework Model mIOU F1 mAP Precision Recall 

Deeplab 

V3+ 

DeepLab V3+ 2D 67.16% 74.10% 71.93% 83.05% 71.93% 

DeepLab V3+ 3D 73.46% 81.20% 78.11% 88.24% 78.11% 

MGFF-DeepLab V3+ 2D+3D 73.08% 81.10% 78.53% 86.57% 78.53% 

CNN-DeepLab V3+ 2D+3D 73.41% 81.30% 76.02% 88.18% 76.02% 

CSF-DeepLab V3+ 2D+3D 80.31% 89.22% 87.15% 88.77% 87.15% 

Unet 

Unet 2D 69.11% 77.00% 72.89% 87.31% 72.89% 

Unet 3D 75.54% 84.00% 82.35% 88.11% 82.35% 

MGFF-Unet 2D+3D 73.64% 82.00% 78.89% 87.27% 78.89% 

CNN-Unet 2D+3D 73.47% 81.80% 78.84% 86.97% 78.84% 

CSF-Unet 2D+3D 80.50% 88.00% 86.83% 89.97% 86.63% 

PSPnet 

PSPnet 2D 68.10% 72.90% 83.90% 87.33% 72.90% 

PSPnet 3D 71.69% 80.00% 76.23% 87.33% 76.23% 

MGFF-PSPnet 2D+3D 71.29% 77.90% 77.52% 83.99% 77.52% 

CNN-PSPnet 2D+3D 70.46% 78.30% 75.76% 84.90% 75.76% 

CSF-PSPnet 2D+3D 77.23% 85.00% 84.93% 86.21% 84.93% 

Hrnet 

Hrnet 2D 71.04% 80.70% 76.27% 85.50% 76.27% 

Hrnet 3D 75.90% 85.00% 80.93% 88.92% 80.93% 

MGFF-Hrnet 2D+3D 74.04% 83.40% 80.09% 86.25% 80.09% 

CNN-Hrnet 2D+3D 74.03% 82.74% 79.79% 86.69% 79.79% 



 

26 

 

CSF-Hrnet 2D+3D 79.81% 87.10% 86.48% 88.72% 86.48% 

Segnet 

Segnet 2D 72.98% 81.90% 79.65% 84.65% 79.65% 

Segnet 3D 76.90% 84.50% 83.09% 87.79% 83.09% 

MGFF-Segnet 2D+3D 73.52% 82.20% 79.28% 86.35% 79.28% 

CNN-Segnet 2D+3D 74.40% 82.80% 80.86% 85.92% 80.86% 

CSF-Segnet 2D+3D 80.51% 88.50% 87.45% 88.76% 87.54% 

4.1.3 Visual comparison among different models  1 

Figure 9 shows the segmentation results from different datasets using the Unet 2 

model on the test dataset. The pixels of the cracks in the RGB images are similar to the 3 

background pixels and are greatly affected by shadows and road attachments. The edge 4 

information of the cracks in the depth images is not obvious, and there are many noise 5 

points. All these make it difficult for any experienced engineer to obtain a complete 6 

image of pavement cracks. For example, in the example of the first row in Figure 9, the 7 

fourth column of RGB image segmentation results are affected by shadows, resulting 8 

in obvious false-positive errors. However, the depth image will not be affected by 9 

illumination, so the depth image segmentation results in this data group are suitable. 10 

The segmentation result of the depth image in the fourth column of the sixth row has a 11 

false-negative error in the segmentation result of the region in the image's upper left 12 

corner due to local subsidence. Segmentation of micro-cracks is challenging due to the 13 

unclear 3D characterization, leading to false-negative errors at crack ends in depth 14 

image segmentation. Methods like MGFF and CNN partially succeed in fusing RGB 15 

and depth images, producing good results in some cases. However, they struggle with 16 

discontinuous cracks, lacking robustness to adapt to the unique characteristics of 17 

pavement cracks. CSF-CrackNet integrates features from both RGB and depth images, 18 

enabling it to effectively address the challenges of crack segmentation in most scenarios. 19 

It uses multi-dimensional image fusion and adaptive channel weights to accurately 20 

segment crack widths despite distortions caused by water stains, leveraging the 21 

complementary strengths of 2D RGB and 3D images. As shown in the fourth row, this 22 
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approach ensures precise segmentation even under challenging conditions. However, it 1 

tends to produce false positive errors in the segmentation of crack intersection points, 2 

especially in complex mesh cracks, such as the last row of results in Figure 9. 3 

 4 

Figure 9. Visual prediction results and comparison between our model and previous models 5 

with Unet framework 6 

Figure 10 shows the results of segmentation using CSF-CrackNet based on 7 

different frameworks. It can be seen from this figure that our method can better segment 8 

the crack pixels from the background pixels. The DeepLab V3 + framework has a good 9 

effect on complex fractures because it uses the ASPP network to adapt to the fracture 10 

characteristics of different scales. The Unet network’s exceptional information 11 

extraction capability contributes to superior segmentation results for the crack 12 

continuity preservation. Specifically, the Unet framework excels in retaining the 13 
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continuous characteristics of cracks. Conversely, the Segnet framework employs an 1 

index method for up-sampling. In essence, the pooling operation records the position 2 

of the value, enabling direct UpPooling with the position recorded position during up-3 

sampling., This approach yields favorable segmentation results for the edge 4 

characteristics of the crack. The Hrnet and the Pspnet frameworks exhibit slightly 5 

inferior performance compared to other frameworks. However, they still demonstrate 6 

improved performance compared to the original network results.  7 

 8 

Figure 10. Visual prediction results and comparison of different frameworks using CSF-9 

CrackNet (ours) 10 

4.2 Evaluation of model complexity 11 

The parameters number and processing time for each network are shown in Table 12 
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3. The incorporation of CSF-CrackNet does introduce an additional computational load 1 

to the operation of the underlying pavement crack segmentation network. It is crucial 2 

to highlight that the processing time provided in Table 3 is obtained within a 3 

computational environment that includes a personal computer equipped with an 4 

NVIDIA GeForce RTX 3090, and the input image pixel size is 512 × 512 (width × 5 

height). Various factors, such as image size and computer performance, may influence 6 

the processing time. The calculation time of the model is related to the parameters. In 7 

contrast, the introduction of CSF-CrackNet leads to a significant increase in model 8 

parameters. However, many residual structures are introduced into the model, which 9 

makes the calculation speed less affected, and the model can still be flexibly deployed 10 

in mobile/low-performance devices. Despite the compromise in fast calculation 11 

capability with the deployment of CSF-CrackNet, we deem it worthwhile as it 12 

significantly enhances the accuracy of pavement crack semantic segmentation. 13 

Additionally, the network structure can be pruned to suit the requirements of practical 14 

tasks[44]. In the case described in Section 4.1.3, the CSF-DeepLab V3 + model with 15 

the slowest processing speed is taken as an example. The most significant addition in 16 

CSF-DeepLab V3+ is the increase in computational complexity, leading to a more than 17 

38% increase in computation time. However, it has also achieved excellent performance. 18 

It is worth noting that the increase in computation time is more pronounced when 19 

deploying large parameter networks. This is because when the number of basic 20 

parameters in the network model is very large, updating each parameter requires 21 

computational resources, resulting in a significant increase in computation time. At the 22 

same time, many parameters need to be stored in memory for updating during training. 23 

Memory limitations can also result in slower computation speeds. In contrast, the CSF-24 

Segnet, which has a smaller number of basic parameters, introduces almost the same 25 

number of parameters as the CSF-CrackNet, with only a 9% increase in computation 26 

time. It still achieves good pixel-level segmentation performance. Therefore, we believe 27 

the additional computation time can be reduced by using more efficient computing 28 
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hardware or distributed training methods, further optimizing network performance. 1 

Table 3 Processing time and parameters of models 2 

Framework Model Processing Time ( ms/Frame) Parameters 

Deeplab 

V3+ 

CSF-DeepLab V3+ 2D+3D 69.54  59,623,713 

DeepLab V3+ 3D 50.05  54,708,674 

DeepLab V3+ 2D 50.79  54,708,674 

MGFF-DeepLab V3+ 2D+3D 49.90  54,708,674 

CNN-DeepLab V3+ 2D+3D 49.64  54,708,674 

Unet 

CSF-Unet 2D+3D 47.55  48,847,905 

Unet 3D 36.95  43,932,866 

Unet 2D 37.31  43,932,866 

MGFF-Unet 2D+3D 33.48  43,932,866 

CNN-Unet 2D+3D 33.36  43,932,866 

PSPnet 

CSF-PSPnet 2D+3D 53.42  51,621,945 

PSPnet 3D 41.27  46,706,626 

PSPnet 2D 39.98  46,706,626 

MGFF-PSPnet 2D+3D 41.56  46,706,626 

CNN-PSPnet 2D+3D 39.51  46,706,626 

Hrnet 

CSF-Hrnet 2D+3D 22.21  14,551,831 

Hrnet 3D 19.47  9,636,512 

Hrnet 2D 19.52  9,636,512 

MGFF-Hrnet 2D+3D 19.03  9,636,512 

CNN-Hrnet 2D+3D 19.23  9,636,512 

Segnet 

CSF-Segnet 2D+3D 30.28  32,240,065 

Segnet 3D 27.73  27,322,178 

Segnet 2D 27.12  27,322,178 

MGFF-Segnet 2D+3D 28.34  27,322,178 

CNN-Segnet 2D+3D 26.43  27,32,2178 
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5. Discussion 1 

5.1 Ablation experiments 2 

To verify the validity of modules in the CSF-CrackNet, Table 4 shows the different 3 

combinations of modules used for the ablation experiments. This section aims to discuss 4 

the improvement of the effect of the module rather than explain the characteristics of 5 

the semantic segmentation network. Therefore, the experimental results listed in Table 6 

4 are based on the Unet framework. It can be seen that the networks obtained by both 7 

modules perform better than combining them individually. Compared with the original 8 

Unet, the channel module is the most effective, which can increase the mIOU by about 9 

5 %. The space module also has a positive effect on the improvement of segmentation 10 

accuracy. The above conclusions show that each module plays an important role in the 11 

fusion process. 12 

Table 4 Results of ablation experiments 13 

 dataset 
Channel 

Module 

Spatial 

Module 
mIOU F1 mAP Precision Recall 

#1 RGB images  none none 75.54% 84.00% 82.35% 88.11% 82.35% 

#2  Depth images none none 69.11% 77.00% 72.89% 87.31% 72.89% 

#3 RGB images + Depth images √ none 79.11% 86.00% 85.55% 88.03% 86.02% 

#4 RGB images + Depth images none √ 78.33% 85.00% 85.01% 87.21% 85.21% 

#5 RGB images + Depth images √ √ 80.50% 88.00% 86.83% 89.97% 86.63% 

5.2 Self-adapting channel weight 14 

The weight of channel fusion is the weight of each channel feature map, which 15 

controls the fusion degree of different channel feature maps. Since the feature maps of 16 

different channels contain different image information, the setting of channel fusion 17 

weights is crucial for the final image feature extraction and visual effect. If the quality 18 

of the feature map of a channel is poor, the weight of the channel should not be too 19 

large. Otherwise, it will affect the final feature extraction effect and image quality. To 20 

achieve a better channel fusion effect, it is necessary to adjust and optimize images of 21 
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different quality. Therefore, the image quality determines the channel fusion weight, 1 

which can help us better control the fusion degree of different channel feature maps, 2 

improve the accuracy and robustness of image feature extraction, and finally obtain 3 

better image quality and crack segmentation effect. 4 

The channel fusion strategy proposed in this paper uses the one-dimensional 5 

convolution method described in Section 2.2 to extract channel weights. Figure 11 6 

depicts the channel fusion weights of the proposed method based on the Unet 7 

framework. Below the image are the weights of the deep, red, green, and blue channels, 8 

respectively. The RGB image uses a linear combination of three colors components to 9 

represent the color, and any color is related to these three components. The images 10 

obtained in the natural environment are easily affected by natural lighting, occlusion 11 

and shadows, and the sensitivity of different color channels to information such as 12 

brightness is different. The weight distribution in Figure 11 shows that the blue channel 13 

has the best information representation ability in this experimental sample compared 14 

with other color channels. In contrast, the red channel has the weakest representation 15 

ability. This conclusion can also be seen through the images in Figure 11, especially the 16 

information representation ability of the crack edge position. In short, calculated 17 

weights are consistent with human perception of the image.  18 

The depth channels of the image shown in Figure 11 (a) and (b) have large weights. 19 

This is because there is a shadow in the RGB image of Figure 11 (a). And the depth of 20 

the micro-cracks in Fig. 11 (b) is shallow, resulting in no obvious color difference. From 21 

a large number of experiments, it seems that images with shadows, water stains, and 22 

wheel paths tend to have a higher weight in the depth channel. The depth channel of the 23 

images shown in Figure 11 (c) (d) has a small weight. Figure 11 (c) shows that the crack 24 

edge distribution is irregular and there is local subsidence in Figure 11 (d), which are 25 

the reasons for the low depth weight. 26 
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 1 

Figure 11. Adaptive channel fusion weight display based on SCF-Unet framework. 2 

5.3 Self-adapting space weight 3 

Spatial fusion can be regarded as a self-adapting spatial region selection 4 

mechanism. Not all regions in the image are equally important to the task’s contribution. 5 

Only task-related regions, particularly in crack segmentation, require attention. By 6 

employing self-adapting spatial fusion, the feature information expands its receptive 7 

field, thereby strengthening the feature map information. 8 

Figure 12 (a) and (b) show the weight distribution of crack images space fusion in 9 

the form of a heat map, and it can be seen that the crack areas, especially the crack edge 10 

information, are strengthened. In the adaptive calculation of the spatial feature 11 

enhancement matrix, one row of eigenvalues with a larger value is distributed every ten 12 

rows, presented in Figure 12 (a)(b) as multiple evenly distributed darker horizontal lines. 13 
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To explore the causes of this phenomenon, this paper selects the rows with larger values 1 

and draws them as a heat map to get Figure 12 (c)(d). From the figure it is apparent that 2 

the image in Figure 12 (a)(b) exhibit similarities to the vertical reduction of the image 3 

in Figure 12 (c)(d). This part of the characteristic value still stores the information about 4 

the crack, and the larger weight can better retain the original information about the crack. 5 

Therefore, the reason for considering this phenomenon is that the original 6 

morphological information of cracks in the previous linear pooling layer is retained by 7 

uniform sampling. 8 

 9 

Figure 12. Adaptive spatial fusion weight display based on SCF-Unet framework. (a)-(b): 10 

Weight distribution of crack images space fusion in the form of a heat map. (c)-(d): The high weight 11 

position is displayed in the form of heat map. 12 

5.4 Limitations and future work 13 

This paper introduces CSF-CrackNet, a groundbreaking multidimensional image 14 

analysis method that innovatively utilizes channel and spatial fusion. The model's 15 

ability to adaptively integrate RGB and depth data represents a significant advancement 16 

in pavement crack detection technology the results are better than those of other 17 

methods on the dataset used in this paper. However, there are still some problems that 18 

are worthy of further study. 19 
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(1) Data collection: This paper generates a 3D point cloud model using Structure 1 

from Motion (SfM) from multi-view images. Then, it is converted to an orthographic 2 

image. Although this method can obtain depth images at a lower cost, it requires a lot 3 

of computing resources and time to process the point cloud conversion. In addition, the 4 

noise and error introduced in data generation are unavoidable. Improving data accuracy 5 

is one of the important ways to improve computing performance. Although 3D laser 6 

imaging can also be used to generate depth images quickly and efficiently, it also faces 7 

the problem of high cost.  8 

(2) Based on the operation principle of neural networks, this method should be 9 

able to be deployed in the front end of semantic segmentation and target detection 10 

networks. However, subject to datasets and detection methods, this paper does not try 11 

to combine the network with target detection network frameworks such as Yolo. Future 12 

research will take this issue into consideration. 13 

6. Conclusions 14 

To improve the accuracy and robustness of pavement crack segmentation, this 15 

paper proposes an adaptive fusion method of pavement multi-dimensional images 16 

based on channel and space modules, which can be easily and quickly deployed in the 17 

front end of the most common semantic segmentation network. CSF-CrackNet is then 18 

compared with MGFF and CNN regarding numerical evaluation and visualization 19 

results. Finally, we discuss the validity and enhancement mechanism of the model 20 

through weight analysis of feature maps. The main contributions and findings of the 21 

work can be summarized as follows: 22 

(1) We created a comprehensive pavement crack dataset using Structure from Motion 23 

(SfM), which includes various crack forms and complex scenarios. This dataset 24 

provides a robust foundation for evaluating crack segmentation networks and 25 

ensures the method’s applicability to real-world conditions.  26 

(2) CSF-CrackNet employs an adaptive 2D-3D image fusion mechanism that integrates 27 
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the rich color information from RGB images with the structural details from depth 1 

images. Advanced channel and spatial modules autonomously learn and apply 2 

optimal weights for different image channels and spatial regions. This dynamic 3 

adjustment addresses issues like shadows and varying lighting in RGB images, as 4 

well as fine detail loss in depth images, by emphasizing informative features and 5 

suppressing problematic information from each source. By combining the 6 

complementary strengths of RGB and depth data, CSF-CrackNet effectively 7 

mitigates environmental noise and enhances segmentation precision. This ensures 8 

robust segmentation performance across diverse real-world scenarios by leveraging 9 

both the visual details from RGB images and the spatial information from depth 10 

images.  11 

(3) Advanced Modules for Robust Feature Extraction and Real-world Performance: 12 

CSF-CrackNet incorporates several innovative modules, including the improved 13 

Receptive Field Block (RFB), Strip Pooling, one-dimensional convolution and 14 

linear fully connected layers, and Diversely Connected Multi-Scale Convolution 15 

Block. These modules enhance feature extraction, spatial weighting, and channel 16 

fusion, contributing to the model’s superior performance. The improved RFB 17 

enhances capture of fine details, Strip Pooling improves spatial context integration, 18 

the one-dimensional convolution and linear fully connected layers optimize channel 19 

fusion, and the Diversely Connected Multi-Scale Convolution Block ensures robust 20 

feature abstraction across scales. These enhancements enable CSF-CrackNet to 21 

maintain high accuracy under diverse and challenging real-world conditions, such 22 

as varying illumination, shadows, and road surface irregularities. The model’s 23 

robustness makes it particularly suitable for practical engineering applications, 24 

ensuring its utility in real-world pavement crack detection tasks. 25 

(4) CSF-CrackNet is designed to seamlessly integrate with a range of established 26 

semantic segmentation networks, including DeepLab V3+, Unet, PSPNet, HRNet, 27 

and SegNet. Experimental results demonstrate significant performance 28 
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improvements across these networks, with the adaptable fusion strategies of CSF-1 

CrackNet enhancing the mIOU of most models to around 80%. This reflects an 2 

average increase of nearly 10% compared to the original RGB image and about 5% 3 

compared to the original depth image. Other evaluation metrics have also shown 4 

substantial improvement. Furthermore, CSF-CrackNet's design ensures it can be 5 

flexibly deployed in the front end of most common semantic segmentation networks, 6 

highlighting its strong potential for broad and effective integration across diverse 7 

architectures. 8 

(5) The study provided visual and analytical evidence of CSF-CrackNet’s effectiveness 9 

through channel and spatial weight outputs. These weights align with human 10 

intuitive assessments, with regions of clearer crack texture receiving higher weights. 11 

This alignment demonstrates the model's ability to accurately prioritize critical 12 

image features, thus enhancing information fidelity and segmentation accuracy. The 13 

effectiveness of the adaptive weights in CSF-CrackNet highlights its capability to 14 

dynamically respond to varying image conditions, ensuring superior segmentation 15 

outcomes. 16 

There are still many challenges, including the computational complexity of the 3D 17 

point cloud model generation and the slower calculation speed introduced by additional 18 

modules. The neural network's operational mechanism requires further analysis, 19 

highlighting the need for a more thorough understanding and potential application of 20 

network self-regulating feedback for semi-supervised learning. Additionally, the paper 21 

suggests the unexplored integration of the method with target detection network 22 

frameworks, such as Yolo, presenting promising further research. 23 
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