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A B S T R A C T

This paper introduces a new Gradient Enhanced Gaussian Predictor (Kriging) constitutive
metamodel based on the use of principal stretches for hyperelasticity. The model further
accounts for anisotropy by incorporating suitable invariants of the relevant symmetry integrity
basis. The use of stretches is beneficial since it aligns to experimental practices for data
gathering, removes the challenge associated with stress projections in isotropy, and increases
the range of available constitutive models. This paper presents three significant novelties. The
first arises from the proposed approach highlighting the need to enforce physical symmetries
and resulted in the authors altering the standard Radial Basis style correlation function to
incorporate invariants which naturally uphold these symmetries. The invariants used are both
the commonly employed invariants of the right Cauchy–Green strain tensor and the lesser used
invariants of the stretch tensor. Note that one may consider using invariants in the correlation
function to be the same as using invariants for inputs to the metamodel and this would be
true if Ordinary Kriging was used. But the derivatives used in the chain rule clearly result
in a new formulation. Secondly, the authors compare two approaches to the infill strategies,
one consisting of the error in stress and the other utilising uncertainty provided by Kriging
directly. This enables Kriging to guide the user as to most efficient data to insert into the
dataset. The final novelty involves the integration of calibrated constitutive metamodels into
Finite Element simulations thereby showcasing the accuracy yielded even when handling highly
complex deformations such as bending, wrinkling and pinching. Furthermore, the constitutive
models are calibrated with data from both isotropic and anisotropic materials such as rank-one
laminates, making the accuracy achieved with the small calibration sets even more impressive.
The formulation is shown to perform equally well for both synthetic and experimental type of
collected data.

1. Introduction

Engineering design is increasingly reliant upon modelling techniques to streamline the design process and provide methods for
device analysis. In the context of soft active materials, which are of great interest to several fields including that of soft robotics [1],
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one of the most significant challenges is the modelling of complex materials. The need for optimised soft active materials has paved
the way for developing complex composites which exploit the advantageous properties from multiple materials whilst limiting the
compromising effects [2–4].

These composites can often be generalised into two main categories: laminates and inclusions. To capture the highly nonlinear
ehaviours of these materials requires equally intense constitutive models. When modelling these materials analytically, the
ommon approach is to employ rank-n homogenisation theory in the case of laminates [5], which has been demonstrated in
he following sections to be similar for the case of inclusions. The process of homogenisation yields effective properties of the
omposite by understanding the response of each material component independently and taking a weighted average. Furthermore,
his necessitates the use of a Newton–Raphson type procedure at the micro-scale thereby demonstrating the intricacy associated
ith this approach [6,7]. Thus, it is clear that as composite development continues, the traditional model fitting techniques are
oing to find it increasingly challenging to maintain an adequate level of accuracy.

Due to the challenge of accuracy, an increasing number of researchers are turning to leverage the capabilities Machine Learning
ML) techniques have to offer. The most commonly employed ML technique in the field of constitutive modelling is that of Neural
etworks (NNs). Constitutive Artificial Neural Networks (CANNs) were introduced to aid satisfaction of physical constraints such
s objectivity and material symmetry. Kuhl et al. demonstrated their application to rubber materials with validation from uniaxial,
iaxial and shear experimental data [8]. In work by Linka et al. CANNs were compared to standard Artificial Neural Networks (ANNs)
howcasing CANNs required less data for training on isotropic constitutive models [9]. When developing constitutive models it is
mportant to consider convexity which goes further to ensure model stability and robustness. Convex NNs have been developed
y Klein et al. whereby the inputs are invariants or the deformation gradient tensor, its cofactor and its determinant, quantities
hich are understood to develop polyconvex constitutive models [10]. Klein’s work has been further extended from mechanics to
lectro-mechanical coupled systems [11,12].

Furthermore, Laura De Lorenzis et al. has developed the EUCLID scheme – unsupervised automated discovery of material laws
EUCLID) [13]. This scheme uses a catalogue of constitutive material frameworks to enable the capability to fit a range of material
ata and has been investigated in the context of NN’s [14] and a Bayesian implementation [15] with the aim of learning elastic and
iscoelastic models with varying amounts of anisotropy.

A lesser used ML technique is that of Gaussian Process Regression (GPR). With its roots in probability theory, GPR is an
nterpolation technique that uses the properties of Gaussian distributions to generate a predictive distribution that can be sampled
o yield a solution. In using distributions, a significant benefit to the method is the capability to also evaluate the uncertainty which
ill be shown to prove useful for error estimation and infill strategies [16–18]. A key ingredient of this approach is the correlation

unction, of which there are many to choose from. In the present work the Radial Basis Function (RBF) is used as a template which
orrelates the observed data in the parametric space in order to reveal the importance certain data has over the prediction sites.
riging is a variation of GPR developed by Matheron upon theory from mining engineer, Krige, in the field of geostatistics in the
960’s [19]. Furthermore, Kriging has the capability to incorporate gradient data into the calibration process, referred to as Gradient
nhanced Kriging [20]. In previous work by the authors, it was demonstrated that utilising gradient data was significantly favourable
nabling either fewer data points to be used for calibration or an increased performance given the same number of data points as
he Ordinary Kriging counterpart [21].

Re-aligning to the context of constitutive modelling, Frankel et al. outlines the use of GPR through two different approaches [22].
irstly, through modelling the stress–strain relationship directly which requires additional measures, such as data augmentation,
o ensure satisfaction of physical constraints. The second is an energy-invariant relationship which naturally satisfies constraints
uch as objectivity – invariance to rigid body rotations. Enhancing GPR can be achieved by additionally using gradient data during
alibration. Aggarwal et al. demonstrated the importance of gradient data, to the point where only limited function data was required
o achieve an accurate constitutive model [23]. This is beneficial when considering experimental data, since the strain energy is
ot available on demand, whereas stress information is experimentally obtainable. Exploiting Kriging’s probabilistic roots, Rocha
as used an adaptive infill strategy based upon Kriging’s uncertainty to improve the accuracy of model results when simulating the
lastoplastic response of fibre reinforced composites [24].

The present work focuses on the formulation of constitutive models using principal stretches [25,26], a less common approach
o the typically employed invariants, widening the range of constitutive models available such as the Ogden type models [27].
n advantage to working with the stretch approach is that it more closely aligns with experimental practices, thus reducing
ost processing on the data obtained from laboratory equipment. Additionally, in the context of Gradient Enhanced Kriging the
tretch approach is particularly beneficial due to the simplicity of taking projections of the first Piola–Kirchhoff stress tensor. When
ormulating in terms of invariants, there are certain cases where taking projections is not possible without using a perturbation
rocedure. However, utilising stretches eradicates this problem which should lead to improved accuracy.

As mentioned, constitutive models are typically formulated in terms of invariants due to their inherent properties which
utomatically enforce physical constraints [28]. A key constraint is that of symmetry which for calibration with principal stretches
as found to not be upheld automatically. The present study goes on to demonstrate the limitation when using the Gradient
nhanced Kriging method with a Radial Basis type correlation function. As a consequence, the authors outline two alternative
ethods to enforce the symmetry constraint which includes data augmentation and an updated correlation function which exploits

he intrinsic properties of invariants.
The layout of the paper is as follows: Section 2 introduces the reader to the core concepts in nonlinear continuum mechanics

hich specifically brings emphasis to constitutive modelling in finite strain hyperelasticity in-line with the application for ML in

his work. Subsequently, Section 3 provides an in depth procedure for developing a Gradient Enhanced Kriging metamodel paying
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Fig. 1. Displays four time increments of a wrinkling simulation detailed in Section 5.2. Each subfigure amazingly consists of two halves stitched together, the
left half uses a ground truth constitutive model for a rank one laminate material (see Appendix A.8) and the right half uses the Kriging metamodel counterpart.
The near seamless subfigures reflects significantly on the performance of Gradient Enhanced Kriging.

specific attention to evaluating not only a predictive function but the corresponding derivatives for use in Finite Element simulations.
The issue regarding upholding physical symmetry constraints is also addressed and an updated correlation function detailed. The
numerical examples has been broken into two sections for reading convenience. The first of these, Section 4, delves into the
procedures for calibrating the metamodel, including details on sampling, infill strategies and handling noisy data. Information of
the metamodels used for the Finite Element simulations are also provided. Secondly, Section 5 provides an in-depth analysis of
complex three-dimensional deformations including bending, wrinkling, and pinching modes, an example of which is presented in
Fig. 1. Section 6 then draws the paper to a close with some final concluding remarks.

Notation: Throughout the paper, 𝑨 ∶ 𝑩 = 𝐴𝐼𝐽𝐵𝐼𝐽 , ∀𝑨,𝑩 ∈ R3×3, and the use of repeated indices implies summation.
The tensor product is denoted by ⊗ and the second order identity tensor by 𝑰 . The tensor cross product operation between
two arbitrary second order tensor 𝑨 and 𝑩 entails [𝑨 𝑩]𝐼𝐽 = 𝐼𝑃𝑄𝐽𝑅𝑆𝐴𝑃𝑅𝐵𝑄𝑆 [29]. Furthermore,  represents the third-
order alternating tensor. The full and special orthogonal groups in R3 are represented as O(3) = {𝑨 ∈ R3×3

|𝑨𝑇𝑨 = 𝑰} and
SO(3) = {𝑨 ∈ R3×3

|𝑨𝑇𝑨 = 𝑰 , det𝑨 = 1}, respectively and the set of invertible second order tensors with positive determinant is
denoted by GL+(3) = {𝑨 ∈ R3×3

|det𝑨 > 0}.

2. Finite strain elasticity

2.1. Governing equations in finite strain elasticity

A solid elastic body undergoing a deformation, as demonstrated in Fig. 2, can be described in an undeformed (material)
configuration by 0 ⊂ R3 and in a deformed (spatial) configuration by  ⊂ R3. A mapping for each material particle 𝝓 ∶ 0 → R3

describing its translation from the material configuration 𝑿 ∈ 0 to the spatial configuration 𝒙 ∈  is assumed to exist through the
relationship 𝒙 = 𝝓 (𝑿). This relationship can be used further to define the material gradient 𝑭 ∈ GL+ (3) also known as the fibre
map, which leads to definitions for the volume map 𝐽 and the area map 𝑯 as

𝑭 = 𝜕𝑿𝝓, 𝐽 = det𝑭 = 1
6
𝑭 ∶ (𝑭 𝑭 ) , 𝑯 = Cof𝑭 = 𝐽𝑭 −𝑇 = 1

2
𝑭 𝑭 . (1)

The mechanical response of the body 0 is governed by the following boundary value problem

DIV𝑷 + 𝒇 0 = 𝟎, in 0

𝝓 = 𝝓∗, on 𝜕𝝓0 (2)
𝑷𝑵 = 𝒕0, on 𝜕𝒕0,

where 𝑷 denotes the first Piola–Kirchhoff stress tensor, work conjugate to the deformation gradient tensor 𝑭 , and 𝒇 0 represents
the force acting on the body 0 per unit volume. The boundary of the undeformed body, 𝜕0, is described by two non-overlapping
regions for imposing Dirichlet 𝜕𝝓0 and Neumann 𝜕𝒕0 boundary conditions such that 𝜕0 = 𝜕𝝓0 ∪ 𝜕𝒕0 whilst 𝜕𝝓0 ∩ 𝜕𝒕0 = ∅.
Furthermore, 𝒕0 represents the traction forces per unit surface area and 𝑵 denotes the outward unit vector in 𝑿 ∈ 𝜕𝒕0.

2.2. Strain energy density requirements in hyperelasticity

The impact of a deformation, 𝑭 , on a solid body is captured by the constitutive model, often described in terms of the strain
energy density 𝛹

𝛹 ∶ GL+ (3) → R. (3)

In hyperelasticity, the constitutive relationship, namely the relationship between first Piola–Kirchhoff stress tensor 𝑷 and its work
conjugate the deformation gradient tensor 𝑭 , is given by the derivative of the strain energy density with respect to 𝑭 as

𝑷 = 𝜕 𝛹. (4)
𝑭

3 
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Fig. 2. Demonstrates the mappings of material coordinates to spatial coordinates (fibre map 𝑭 in blue, area map 𝑯 in green, and volume map 𝐽 in red). (For
full interpretation of the colours used within this figure and all following figures where colour legends have been applied, the reader is referred to the web
version of this article.)

Furthermore, taking the second derivative of 𝛹 with respect to 𝑭 yields the fourth order elasticity tensor as

 = 𝜕2𝑭𝑭𝛹. (5)

There are several physical conditions that the strain energy density must comply with. Firstly, the principle of objectivity (otherwise
known as material frame indifference) ensures the invariance of 𝛹 with respect to rotations 𝑸, namely

𝛹 (𝑸𝑭 ) = 𝛹 (𝑭 ), ∀𝑭 ∈ GL+(3), 𝑸 ∈ SO(3). (6)

Additionally, when capturing anisotropy the strain energy density must adhere to the material symmetry group ,

𝛹 (𝑭𝑸) = 𝛹 (𝑭 ), ∀𝑭 ∈ GL+(3), 𝑸 ∈  ⊆ O(3). (7)

In the absence of deformations the strain energy density and first Piola–Kirchhoff stress tensor are required to vanish, which can be
mathematically described as

𝛹 (𝑭 )|𝑭=𝑰 = 0, 𝜕𝑭𝛹 (𝑭 )|
|𝑭=𝑰 = 𝟎. (8)

It is customary to apply further physical conditions relating to the notions of convexity which ensure the propagation of real wave
speeds. In doing so the existence of minimisers is guaranteed thus providing numerical stability [30]. More detail will be provided
in the following sections.

2.3. Convexity conditions

Convexity is a simple condition that can be expressed for the strain energy density 𝛹 (𝑭 ) through

𝛹
(

𝜆𝑭 1 + (1 − 𝜆)𝑭 2
)

≤ 𝜆𝛹
(

𝑭 1
)

+ (1 − 𝜆)𝛹
(

𝑭 2
)

, ∀𝑭 1,𝑭 2 ∈ 𝐺𝐿+(3), 𝜆 ∈ [0, 1]. (9)

When the strain energy function is first order differentiable, then it can also be given by

𝛹 (𝑭 + 𝛿𝑭 ) − 𝛹 (𝑭 ) −𝐷𝛹 (𝑭 ) [𝛿𝑭 ] ≥ 0, ∀𝑭 ∈ 𝐺𝐿+(3), 𝛿𝑭 ∈ R3×3, (10)

which can be extended if the function is second order differentiable to

𝐷2𝛹 (𝑭 ) [𝛿𝑭 ; 𝛿𝑭 ] = 𝛿𝑭 ⋅  ⋅ 𝛿𝑭 ≥ 0, ∀𝑭 ∈ 𝐺𝐿+(3), 𝛿𝑭 ∈ R3×3. (11)

For (11) to hold, there is a requirement for the fourth order elasticity tensor  to be positive semi-definite, namely, to have
eigenvalues greater than or equal to zero.

Convexity is a very restrictive condition that is suitable at the origin (ie. 𝑭 ≈ 𝑰) but will inhibit the onset of other physical
and potentially desirable material behaviours such as buckling [31]. Quasiconvexity is an alternative condition which is less
4 
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restrictive [32], however, as a nonlocal condition it is unfeasible to verify. A necessary restriction implied by quasiconvexity is
that of generalised rank-one convexity. To place this back in context, a generalised rank-one convex strain energy density ensures

𝛹
(

𝜆𝑭 + (1 − 𝜆) �̃�
)

≤ 𝜆𝛹 (𝑭 ) + (1 − 𝜆)𝛹 (�̃� ), ∀𝑭 ∈ 𝐺𝐿+(3), 𝜆 ∈ [0, 1], (12)

with �̃� = 𝑭 + 𝛿𝑭 where 𝛿𝑭 = 𝒖⊗𝑽 and 𝒖,𝑽 taking any arbitrary vectors. Of course if the function is first order differentiable then
the condition can be re-written as

𝛹 (𝑭 + 𝛿𝑭 ) − 𝛹 (𝑭 ) −𝐷𝛹 (𝑭 ) [𝛿𝑭 ] ≥ 0, 𝛿𝑭 = 𝒖⊗ 𝑽 , ∀𝑭 ∈ 𝐺𝐿+(3), 𝒖,𝑽 ∈ R3. (13)

And for strain energies with second order differentiability this can further be expressed through

𝐷2𝛹 (𝑭 ) [𝛿𝑭 ; 𝛿𝑭 ] = 𝛿𝑭 ⋅  ⋅ 𝛿𝑭 ≥ 0, 𝛿𝑭 = 𝒖⊗ 𝑽 , ∀𝑭 ∈ 𝐺𝐿+(3), 𝒖,𝑽 ∈ R3. (14)

The condition expressed in (14) is commonly known as the Legendre-Hadamard or ellipticity condition and is directly associated
with the physics of plane wave propagation through a material characterised by vector 𝑽 and speed 𝑐. Ellipticity is used to ensure
the existence of real wave speeds [33], and can be monitored through evaluating the so-called acoustic tensor 𝑸𝑎𝑐 defined by

[

𝑸𝑎𝑐 (𝑭 ,𝑽 )
]

𝑖𝑗 =
[

 (𝑭 )
]

𝑖𝐼𝑗𝐽 𝑉𝐼𝑉𝐽 . (15)

The eigenvalues of the acoustic tensor are of specific interest since they are proportional to the square of the volumetric and shear
wave speeds. Thus, the onset of material instabilities can be identified through yielding negative eigenvalues. Material stability then,
can be ensured provided that the following is held true

𝒖 ⋅𝑸𝑎𝑐 (𝑭 ,𝑽 ) 𝒖 ≥ 0, ∀𝑭 ∈ 𝐺𝐿+(3), 𝒖,𝑽 ∈ R3. (16)

2.4. Polyconvexity

Polyconvexity is a condition that complies with rank-one convexity as outlined in (12)–(14). A strain energy density can be
classed as a polyconvex function provided that there exists a convex and lower semi-continuous function 𝑊 ∶ 𝐺𝐿+(3)×𝐺𝐿+(3)×R+ →

R ∪ {+∞} [34–36]

𝛹 (𝑭 ) = 𝑊 () ,  = {𝑭 ,𝑯 , 𝐽}. (17)

Applying the convexity condition to 𝑊 () yields

𝑊
(

𝜆1 + (1 − 𝜆)2
)

≤ 𝜆𝑊
(

1
)

+ (1 − 𝜆)𝑊
(

2
)

, ∀1,2 ∈ 𝐺𝐿+(3) × 𝐺𝐿+(3) × R+, 𝜆 ∈ [0, 1], (18)

which for first order differentiability can be re-written as

𝑊 ( + 𝛿) −𝑊 () −𝐷𝑊 ()
[

𝛿
]

≥ 0, ∀ ∈ 𝐺𝐿+(3) × 𝐺𝐿+(3) × R+,∀𝛿 ∈ R3×3 × R3×3 × R, (19)

and for second order differentiability expressed as

𝐷2 𝑊 ()
[

𝛿 ; 𝛿
]

= 𝛿 ⋅H ⋅ 𝛿 ≥ 0, 𝛿𝑭 = 𝒖⊗ 𝑽 , ∀ ∈ 𝐺𝐿+(3) × 𝐺𝐿+(3) × R+,∀𝛿 ∈ R3×3 × R3×3 × R, (20)

where H is the Hessian operator given by

H = 𝜕2𝑊 . (21)

Through utilising polyconvex energy density functions in conjunction with suitable growth conditions, the existence of a solution
is guaranteed [31].

2.5. Principal stretch based hyperelasticity

A common approach to embedding objectivity and satisfying the requirement of material symmetry is through the use of an
invariant formulation. An alternative method as presented by Poya et al. [25,37] is to formulate the strain energy density with
respect to the principal stretches ({𝜆1, 𝜆2, 𝜆3}) of 𝑭 as

𝛹 (𝑭 ) = 𝑈 (𝐈) , (22)

where for isotropy 𝐈 = {𝜆1, 𝜆2, 𝜆3}. These principal stretches can be obtained through the left polar decomposition of the deformation
gradient tensor by

𝑭 = 𝑹𝑼 . (23)

The rotation tensor 𝑹 ∈ SO(3) and symmetric positive definite stretch tensor 𝑼 can be retrieved through the singular value
decomposition (SVD) of 𝑭 as follows

̂ ̂ 𝑇 ̂ ̂ 𝑇 ̂ ̂ 𝑇
𝑭 = 𝑼𝜦𝑽 , 𝑹 = 𝑼𝑽 , 𝑼 = 𝑽 𝜦𝑽 , (24)

5 
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where �̂� and �̂� 𝑇 are the left and right singular-matrices respectively, and the tensor 𝜦 encodes the singular-values of 𝑭 , i.e. the
principal stretches 𝜆1 ≥ 𝜆2 ≥ 𝜆3 such that 𝜆𝑖 = 𝛬𝑖𝑖. Considering also the anisotropic case, the following notation is used to encompass
he anisotropic invariants. Let 𝐈 = {𝜆1, 𝜆2, 𝜆3, 𝐼4,… , 𝐼𝑛} where {𝐼4,… , 𝐼𝑛} represents the number of anisotropic invariants besides the

three principal stretches. As a result, the updated strain energy density is denoted by 𝑈 (𝐈). Application of the chain rule and Eq. (4)
yields the first Piola–Kirchhoff stress tensor in terms of the derivatives of 𝑈 (𝐈) as

𝑷 =
3
∑

𝑖=1

(

𝜕𝜆𝑖𝑈
)

𝜕𝑭 𝜆𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Isotropic contribution

+
𝑛
∑

𝑖=4

(

𝜕𝐼𝑖𝑈
)

𝜕𝑭 𝐼𝑖.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Anisotropic contribution

(25)

Furthermore, application of the chain rule over Eq. (5) permits the elasticity tensor  to be obtained in terms of the derivatives
of 𝑈 (𝐈) as

 =
3
∑

𝑖=1

3
∑

𝑗=1

(

𝜕2𝜆𝑖𝜆𝑗𝑈
)

𝜕𝑭 𝜆𝑖 ⊗ 𝜕𝑭 𝜆𝑗 +
3
∑

𝑖=1

(

𝜕𝜆𝑖𝑈
)

𝜕2𝑭𝑭 𝜆𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Isotropic contribution

+
𝑛
∑

𝑖=4

𝑛
∑

𝑗=4

(

𝜕2𝐼𝑖𝐼𝑗𝑈
)

𝜕𝑭 𝐼𝑖 ⊗ 𝜕𝑭 𝐼𝑗 +
𝑛
∑

𝑖=4

(

𝜕𝐼𝑖𝑈
)

𝜕2𝑭𝑭 𝐼𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Anisotropic contribution

+
3
∑

𝑖=1

𝑛
∑

𝑗=4
𝜕𝑭 𝜆𝑖 ⊗

(

𝜕2𝜆𝑖𝐼𝑗𝑈
)

𝜕𝑭 𝐼𝑗 +
𝑛
∑

𝑖=4

3
∑

𝑗=1
𝜕𝑭 𝐼𝑖 ⊗

(

𝜕2𝐼𝑖𝜆𝑗𝑈
)

𝜕𝑭 𝜆𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Mixed contribution

.

(26)

2.5.1. Isotropic contribution
To obtain the derivatives of the isotropic contributions in (25) and (26) , the derivatives of the principal stretches with respect

to 𝑭 (featuring in the isotropic contribution of the definition for 𝑷 in (25)) are required. These are given as

𝜕𝑭 𝜆1 = 𝒏𝑃1 ⊗𝑵𝑃
1 , 𝜕𝑭 𝜆2 = 𝒏𝑃2 ⊗𝑵𝑃

2 , 𝜕𝑭 𝜆3 = 𝒏𝑃3 ⊗𝑵𝑃
3 , (27)

where 𝒏𝑃𝑖 corresponds to the columns of �̂� and 𝑵𝑃
𝑖 corresponds1 to the columns of �̂� . With regards to the elasticity tensor , recall

he isotropic contribution of (26). Whilst the required partial derivatives 𝜕𝑭 𝜆𝑖 can be found in (27), the required second derivatives
2
𝑭𝑭 𝜆𝑖 may not be so clear. Through ingredients given by Smith et al. [38], Poya et al. [37] states that these second partial derivatives
an be expressed as

3
∑

𝑖=1

(

𝜕𝜆𝑖𝑈
)

𝜕2𝑭𝑭 𝜆𝑖 =
3
∑

𝑖=1
�̄�𝑖𝑳𝑖 ⊗𝑳𝑖 + �̄�𝑖+3𝑻 𝑖 ⊗ 𝑻 𝑖, (28)

ith

�̄�1 =
𝜕𝜆2𝑈 − 𝜕𝜆3𝑈
𝜆2 − 𝜆3

, �̄�2 =
𝜕𝜆1𝑈 − 𝜕𝜆3𝑈
𝜆1 − 𝜆3

, �̄�3 =
𝜕𝜆1𝑈 − 𝜕𝜆2𝑈
𝜆1 − 𝜆2

,

�̄�4 =
𝜕𝜆2𝑈 + 𝜕𝜆3𝑈
𝜆2 + 𝜆3

, �̄�5 =
𝜕𝜆1𝑈 + 𝜕𝜆3𝑈
𝜆1 + 𝜆3

, �̄�6 =
𝜕𝜆1𝑈 + 𝜕𝜆2𝑈
𝜆1 + 𝜆2

,
(29)

and where 𝑻 𝑖 and 𝑳𝑖 refer to the twist and flip tensors respectively, defined as

𝑳1 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑳2 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑳3 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 ,

𝑻 1 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑻 2 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 0 −1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 , 𝑻 3 =
1
√

2
�̂�

⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

𝑽 𝑇 .

(30)

emark 1. Notice that �̄�1, �̄�2 and �̄�3 have denominators which will equal zero if any of the stretch values coincide. As a result,
he L’Hôpital rule has been implemented such that in the scenarios where the stretches do coincide the equations outlined have
efinitions based on the second derivatives 𝜕2𝜆𝜆𝑈 . The tolerance for when stretch values coincide is set to be very small at 10−8

ensuring the rule has a minimal impact on the overall definition of the elasticity tensor . In the case of strict symmetry, isotropy
and using a displacement formulation, �̄�1, �̄�2 and �̄�3 become strictly zero and therefore the L’Hôpital rule becomes redundant [37].

1 The superscript ‘‘𝑃 ’’ distinguishes between principal directions (𝒏𝑃 , 𝑵𝑃 ) and anisotropic directions (𝑵).
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2.5.2. Anisotropic contribution (transverse isotropy)
The anisotropic contributions making an appearance in (25) and (26) will conveniently continue to use the invariant ap-

roach [30]. For transverse isotropy, the anisotropic invariants are

𝐼4 = 𝑭𝑵 ⋅ 𝑭𝑵 = tr (𝑪𝑵 ⊗𝑵) , 𝐼5 = 𝑯𝑵 ⋅𝑯𝑵 = tr (Cof𝑪𝑵 ⊗𝑵) , (31)

where 𝑵 is the preferred anisotropic direction, perpendicular to the plane of isotropy in the material. The first and second derivatives
of these invariants with respect to the deformation gradient tensor 𝑭 are given by

𝜕𝑭 𝐼4 = 2𝑭𝑵 ⊗𝑵 , 𝜕𝑭 𝐼5 = 2 (𝑯𝑵 ⊗𝑵) 𝑭 , (32)
[

𝜕2𝑭𝑭 𝐼4
]

𝑖𝐼𝑗𝐽 = 2𝛿𝑖𝑗 [𝑵 ⊗𝑵]𝐼𝐽 , 𝜕2𝑭𝑭 𝐼5 = 𝑭 𝜕2𝑯𝑯𝐼5 𝑭 +  𝜕𝑯𝐼5, (33)

where

𝜕𝑯𝐼5 = 2 (𝑯𝑵 ⊗𝑵) , 𝜕2𝑯𝑯𝐼5 = 𝜕2𝑭𝑭 𝐼4. (34)

2.5.3. Anisotropic contribution (orthotropy)
Of course the invariant definitions can be extended to other forms of anisotropy such as orthotropy which is a particular

case characterised by three preferential directions {𝑵1,𝑵2,𝑵3} which are unitary and orthogonal to one another. The additional
anisotropic invariants are therefore given by

𝐼4 = 𝑭𝑵1 ⋅ 𝑭𝑵1, 𝐼5 = 𝑯𝑵1 ⋅𝑯𝑵1, 𝐼6 = 𝑭𝑵2 ⋅ 𝑭𝑵2, (35)

𝜕𝑭 𝐼4 = 2𝑭𝑵1 ⊗𝑵1, 𝜕𝑭 𝐼5 = 2
(

𝑯𝑵1 ⊗𝑵1
)

𝑭 , 𝜕𝑭 𝐼6 = 2𝑭𝑵2 ⊗𝑵2, (36)
[

𝜕2𝑭𝑭 𝐼4
]

𝑖𝐼𝑗𝐽 = 2𝛿𝑖𝑗
[

𝑵1 ⊗𝑵1
]

𝐼𝐽 , 𝜕2𝑭𝑭 𝐼5 = 𝑭 𝜕2𝑯𝑯𝐼5 𝑭 +  𝜕𝑯𝐼5,
[

𝜕2𝑭𝑭 𝐼6
]

𝑖𝐼𝑗𝐽 = 2𝛿𝑖𝑗
[

𝑵2 ⊗𝑵2
]

𝐼𝐽 , (37)

where

𝜕𝑯𝐼5 = 2
(

𝑯𝑵1 ⊗𝑵1
)

, 𝜕2𝑯𝑯𝐼5 = 𝜕2𝑭𝑭 𝐼4. (38)

2.6. Application to composite materials

As described in the introduction, the complexity of material composition is increasing. The two key forms of composite
materials are through lamination and inclusions. Rank-n laminates enable the effective enhancement of the overall multi-material by
laminating together two or more materials with complimenting properties [2–4]. The numerical process for laminate homogenisation
has been presented previously by Marín et al. in [7] and utilises the process of rank-n homogenisation [5]. Alternatively, materials
can be developed such that a matrix material encompasses particulates known as inclusions also offering effective performance
enhancement. The approach to analytical homogenisation of these materials is surprisingly similar, and to demonstrate this the
authors have outlined the two approaches side by side in Fig. 3.

3. Gaussian process prediction

3.1. Gradient Enhanced Kriging

Metamodelling or surrogate modelling involves the creation of an emulator, developed through data driven ML techniques, to
replicate complex relationships. The present work focuses on the use of Kriging, based strongly on GPR, which builds upon previous
work by the authors [21,39]. In the previous work, two types of Kriging were investigated; Ordinary and Gradient Enhanced Kriging,
and it was identified that when gradient data is available, it is strongly advantageous to use the Gradient Enhanced approach as it
can drastically improve the accuracy or decrease the number of required calibration data points. In addition, it has been seen that
the use of functional data can be minimised to a single data point and calibration take place only using gradient data, key when
considering calibration using experimental data where the strain energy density is unobtainable. As a result of these findings, the
current work will only use the Gradient Enhanced approach.

This section will now outline the Gradient Enhanced Kriging approach which has been broken down into several subsections
for ease of reading. Initially, Section 3.1.1 provides the reader with the full set of ingredients to formulate the Kriging metamodel.
The probabilistic nature of Kriging is then brought to light in Section 3.1.2 where the probability density function is used to obtain
expressions to optimise the model parameters. Section 3.1.3 provides the information on evaluating the Kriging metamodel given
prediction sites before Section 3.1.4 provides the reader with a diagrammatic demonstration. Finally, Section 3.1.5 outlines how to
evaluate derivatives of the metamodel which is important in the context of mechanics. The inputs will be described through 𝐈 as
introduced previously, which could take principal stretches or invariants. The output then is 𝑈 which represents the strain energy

density.
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Fig. 3. Presents a side by side comparison of the approach to evaluate the homogenised quantities from rank-one laminates and representative volume elements,
with the aim of demonstrating their similarities.

3.1.1. Metamodel formulation

The metamodel will be developed to take inputs denoted as 𝐈, which could take principal stretches or invariants (e.g. 𝐈 =
{𝜆1, 𝜆2, 𝜆3, 𝐼4, 𝐼5}), and produce an output, 𝑈 , which will represent the strain energy density. Since it is expected that the model will
handle a dataset, the notation must be extended to accommodate multiple data points each with multiple input features (i.e. principal
8 
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stretches or invariants). Superscripts will be used to denote the data point, ■(𝑖) for 𝑖 = [1,… , 𝑁], whilst a subscript will denote the
input feature, ■𝑘 for 𝑘 =

[

1,… , 𝑁𝑘
]

. In its simplest form, the metamodel is comprised of two additive components

𝑈 (𝐈) = 𝛽 +𝑍 (𝐈) , (56)

where immediately a model parameter 𝛽 is introduced alongside a noise term characterised through

𝑍 (𝐈) ∼ 
(

𝟎, 𝜎2𝑹 (𝐈)
)

, (57)

which represents a zero mean normal distribution with covariance given by 𝜎2𝑹 (𝐈). The second model parameter 𝜎2 is then
ntroduced and the correlation matrix 𝑹. Before constructing 𝑹 the user needs to first select a correlation function, which as in

previous work will be the Radial Basis Function (RBF) [21]


(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

= exp

[𝑁𝑘
∑

𝑘=1
−𝜃𝑘

(

I(𝑖)𝑘 − I(𝑗)𝑘
)2

]

. (58)

n RBF correlates each pair of data points spatially and scales by a hyperparameter denoted by 𝜃𝑘, where 𝑘 iterates through all 𝑁𝑘
input features. Of course to calibrate a metamodel, more than one data point will be needed. Therefore the notation extends such
that the 𝑖th and 𝑗th data points denoted by 𝐈(𝑖) and 𝐈(𝑗) respectively can take any of 𝑁 data points. Additionally, the output becomes
a vector denoted by 𝑼 .

In (57) the noise was characterised through a zero mean normal distribution, thus enabling the strain energy density vector
evaluation 𝑼 (𝐈) to be characterised by a translated normal distribution

𝑼 (𝐈) ∼ 
(

𝟏𝛽, 𝜎2𝑹 (𝐈,𝜽)
)

. (59)

Note that the functional dependence of the correlation matrix 𝑹 has extended to incorporate the hyperparameters 𝜽. In line with
the Gradient Enhanced Kriging approach [20], the construction of 𝑹 is broken into

𝑹 (𝐈,𝜽) =
[

𝑸11 𝑸12
𝑸𝑇

12 𝑸22

]

, (60)

where the first block formed of an 𝑁 ×𝑁 matrix, is evaluated using the correlation function described in (58)
[

𝑸11
]

𝑖𝑗 = 
(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

, 𝑖, 𝑗 ∈ [1,… , 𝑁] . (61)

The off-diagonal blocks are formed using the first derivatives of the correlation function. This leads to an
(

𝑁 ⋅𝑁𝑘
)

×𝑁 matrix as
there is a derivative for each feature evaluated through

[

𝑸12
]

𝑖𝑗 =
[

𝜕
(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)1
… 𝜕

(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)𝑁𝑘

]

, 𝑖, 𝑗 ∈ [1,… , 𝑁] , (62)

where
𝜕

(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

𝜕I(𝑗)𝑘
= 2𝜃𝑘

(

I(𝑖)𝑘 − I(𝑗)𝑘
)


(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

, 𝑘 ∈
[

1,… , 𝑁𝑘
]

. (63)

The final on-diagonal block is formed of the second derivatives of the correlation function. As one would expect, this forms an
(

𝑁 ⋅𝑁𝑘
)

×
(

𝑁 ⋅𝑁𝑘
)

matrix given by

[

𝑸22
]

𝑖𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2
(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)1 𝜕I(𝑗)1
… 𝜕2

(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)1 𝜕I(𝑗)𝑁𝑘
⋮ ⋱ ⋮

𝜕2
(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)𝑁𝑘
𝜕I(𝑗)1

… 𝜕2
(

𝐈(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)𝑁𝑘
𝜕I(𝑗)𝑁𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑖, 𝑗 ∈ [1,… , 𝑁] . (64)

here

𝜕2
(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

𝜕I(𝑗)𝑙 𝜕I
(𝑗)
𝑘

=

⎧

⎪

⎨

⎪

⎩

2𝜃𝑘

[

−2𝜃𝑘
(

I(𝑖)𝑘 − I(𝑗)𝑘
)2

+ 1
]


(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

, 𝑘 = 𝑙;

−4𝜃𝑘𝜃𝑙
(

I(𝑖)𝑘 − I(𝑗)𝑘
)(

I(𝑖)𝑙 − I(𝑗)𝑙
)


(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

, 𝑘 ≠ 𝑙.
(65)

or 𝑘, 𝑙 ∈
[

1,… , 𝑁𝑘
]

.

.1.2. Metamodel parameter optimisation
Having established the key quantities involved within the Gradient Enhanced Kriging approach, attention now turns towards

btaining values for the various parameters and hyperparameters. Firstly, an advantage of Kriging over other ML techniques is that
ts roots are in probability theory. This will become clearer in this section, starting with the probability density function (PDF) for

multivariate normal distribution [16]. Manipulating the PDF by computing its log and reversing the sign leads to the opposite
og-likelihood expressed as

ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

= 𝐴 log (2𝜋) + 𝐴 log
(

𝜎2
)

+ 1 log (|𝑹 (𝜽) |) + 1 (𝑼 − 𝟏𝛽)𝑇 𝑹−1 (𝜽) (𝑼 − 𝟏𝛽) , (66)

2 2 2 2𝜎2
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where 𝐴 = 𝑁
(

1 +𝑁𝑘
)

and the functional dependence of the inputs 𝐈 on the correlation matrix 𝑹 and output 𝑼 have been dropped
for notational convenience. Following the Maximum Likelihood Estimation technique (MLE) [16], the optimal parameters can be
obtained by minimising the opposite log-likelihood

{𝛽∗, 𝜎2∗} = argmin
𝛽,𝜎2

ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

. (67)

In doing so, the following expressions are retrieved

𝜕ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

𝜕𝛽
= 0,

𝜕ℒ
(

𝑼 |𝛽, 𝜎2,𝜽
)

𝜕𝜎2
= 0, (68)

𝛽∗ (𝜽) =
(

𝟏𝑇𝑹−1 (𝜽) 𝟏
)−1 𝟏𝑇𝑹−1 (𝜽)𝑼 , (69)

𝜎2∗ (𝜽) = 1
𝑁

(

1 +𝑁𝑘
)

(

𝑼 − 𝟏𝛽∗ (𝜽)
)𝑇 𝑹−1 (𝜽)

(

𝑼 − 𝟏𝛽∗ (𝜽)
)

. (70)

Conducting the minimisation leaves only the hyperparameters 𝜽 as unknowns. However, as a consequence of their complex nature,
there is not a straightforward expression for these thus resulting in the need for an optimisation algorithm. To use such an approach,
an objective function will be required which once again calls upon the opposite log-likelihood in (66). By substituting in the
optimised parameters {𝛽∗, 𝜎2∗} and neglecting the constant terms, a reduced log-likelihood can be obtained

𝜓 (𝜽) = 𝜎2∗ (𝜽) |𝑹 (𝜽) |
1

𝑁(1+𝑁𝑘) . (71)

As mentioned, to acquire the optimal hyperparameters 𝜽∗ an optimisation algorithm needs to be utilised. There are a number of
ossible algorithms available such as quasi-Newton methods [40], genetic algorithms [41] or gradient descent type algorithms such
s 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 which is commonly known to MatLab users [42]. In this work the 𝑏𝑜𝑥-𝑚𝑖𝑛 algorithm is used [43].

𝜽∗ = argmin
𝜽
𝜓 (𝜽) . (72)

3.1.3. Metamodel evaluation
Once the parameters and hyperparameters have been optimised then all pre-requisites are covered in preparation for metamodel

evaluation. For clarity, the only displayed functional dependence will be with respect to the set of 𝑀 unknown prediction sites
denoted 𝐈∙. The bullet symbol will be used to represent the prediction counterpart to any quantity shown.

As portrayed in (59), the metamodel is describing the relationship through a normal distribution. It is therefore logical that
the predictions will also be related through a normal distribution. Furthermore, the prediction will be related to the observed data
thereby introducing a joint normal distribution

[

𝑼
𝑼 ∙ (𝐈∙)

]

∼
([

𝟏
𝟏

]

𝛽∗, 𝜎2∗
[

𝑹 𝒓𝑇 (𝐈∙)
𝒓 (𝐈∙) 𝟏

])

, (73)

here it is important to recall that 𝑼 = 𝑼 (𝐈) and 𝑹 = 𝑹(𝐈). The covariance matrix of this distribution has expanded with new
erms including the cross-correlation matrix 𝒓 (𝐈∙). The role of the cross-correlation matrix is to obtain the correlation between the

observed data points 𝐈 and the unknown data points 𝐈∙. And similarly to the correlation matrix 𝑹, it is comprised of segments due
o the Gradient Enhanced Kriging approach, namely

𝒓 (𝐈∙) =
[

𝒒1
𝒒2

]

, (74)

here the first segment will be formed of an 𝑀 ×𝑁 matrix through the correlation function as defined in (58)
[

𝒒1
]

𝑖𝑗 = 
(

𝐈∙(𝑖), 𝐈(𝑗),𝜽
)

, 𝑖 ∈ [1,… ,𝑀] ; 𝑗 ∈ [1,… , 𝑁] . (75)

he second segment will utilise the first derivatives as outlined in (63) to form an
(

𝑀 ⋅𝑁𝑘
)

×𝑁 matrix

[

𝒒2
]

𝑖𝑗 =
[

𝜕
(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)1
… 𝜕

(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽
)

𝜕I(𝑗)𝑁𝑘

]𝑇

, 𝑖 ∈ [1,… ,𝑀] ; 𝑗 ∈ [1,… , 𝑁] . (76)

Having defined all of the above components, an expression for the prediction of the function can be found. Recall Eq. (73) which
describes the joint distribution. To get the distribution for 𝑼 ∙ (𝐈∙), the joint distribution needs to be conditionalised which yields the
following conditional mean function

𝑼 ∙ (𝐈∙) = 𝟏𝛽∗ + 𝒓 (𝐈∙)𝑹−1 (𝑼 − 𝟏𝛽∗
)

. (77)

The above expression demonstrates that in the Gradient Enhanced Kriging process, calibration is used to obtain the model parameters
and hyperparameters {𝛽∗, 𝜎2∗,𝜽∗}. Then to evaluate a prediction, only the cross-correlation matrix 𝒓 𝐈∙ needs to be constructed live.
( )
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Fig. 4. Demonstrates how the Gradient Enhanced Prediction evolves as the number of observed data points increases. The solid blue lines represents potential
functions, whilst the dashed blue line represents the conditional mean function given in (77). The grey region showcases the region of uncertainty and red dots
locate the observed data points. The function being predicted is 𝑓 (𝑥) = 𝑒𝑥 cos (4𝑥) and where the initial guess for hyperparameter 𝜃 was 0.1.

.1.4. Gradient Enhanced Kriging demonstration
To further understand the Kriging procedure the reader is invited to refer to Fig. 4 where Gradient Enhanced Kriging is being

alibrated on data to model the function 𝑓 (𝑥) = 𝑒𝑥 cos (4𝑥). As mentioned, Kriging is a probabilistic approach and this can be
sed to provide a more detailed understanding. When there is no observed data, as in Fig. 4(a), the predictions are only limited
y the prior distribution which encompasses knowledge from the chosen correlation function and initial hyperparameter 𝜃𝑘 [16].
he prior provides a uniform region of uncertainty (depicted by the grey region) where any functions conforming to the chosen
orrelation function (shown by the solid blue lines) could take the solution. Proceeding to introduce observed data points, which
ncludes gradient data, as in Fig. 4(b), the possible predictions can be seen to change drastically. Interestingly, at the observed data
oints (represented by the red dots) the grey region vanishes confirming that Kriging is an interpolation method. As the number of
bservations continues to increase as in Figs. 4(c) and 4(d) the posterior distributions result in a reduction of uncertainty indicated
y the reductions of the grey regions. Fig. 4 highlights one of the key advantages of Kriging, the ability to understand exactly
here uncertainty exists in the predicted distribution [44,45]. To further emphasise the value of this method, consider now the
ser wishes to carry out additional sampling and instead of collecting random additional data, an infill strategy could be devised to
ample data in the specific regions of high uncertainty. The effectiveness of data sampling is then significantly increased through
argeted sampling thus reducing the amount of data being thrown at the problem.

emark 2. Whilst the authors only use the conditional mean to provide the prediction value (represented by the blue dashed line
n Fig. 4), one could also evaluate the conditional covariance. This enables the user to sample a prediction from the distribution
haracterised by the conditional mean and covariance. The result would lead to any of the solid blue lines being demonstrated
n Fig. 4. Note that currently, using the conditional mean also enables the user to always render the same result. By sampling
rom a conditional distribution different solutions will appear even at the same evaluation site when evaluating in areas of higher
ncertainty.

.1.5. Metamodel derivatives evaluation
Given the context of this work is mechanics with a primary goal of implementation into Finite Element simulations, simply

redicting the strain energy density is not sufficient. The function itself is of little use and the key quantities of interest lie in the
erivatives which can be expressed as

𝜕𝑼 ∙ (𝐈∙)
=
𝜕𝒓 (𝐈∙)𝑹−1 (𝑼 − 𝟏𝛽∗

)

,
𝜕2𝑼 ∙ (𝐈∙)

=
𝜕2𝒓 (𝐈∙)𝑹−1 (𝑼 − 𝟏𝛽∗

)

. (78)

𝜕𝐈∙ 𝜕𝐈∙ 𝜕𝐈∙𝜕𝐈∙ 𝜕𝐈∙𝜕𝐈∙
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To evaluate these derivatives it can be seen that the derivatives of the cross-correlation matrix 𝒓 are required. Since these quantities
are segmented, then the derivatives will also be segmented for ease of formulation. The first derivative then is constructed through

𝜕𝒓 (𝐈∙)
𝜕𝐈∙𝑘

=
⎡

⎢

⎢

⎣

𝜕𝒒1
𝜕𝐈∙𝑘
𝜕𝒒2
𝜕𝐈∙𝑘

⎤

⎥

⎥

⎦

, 𝑘 ∈
[

1,… , 𝑁𝑘
]

. (79)

Note that there will be one of the above blocks for each 𝑁𝑘 feature, so for clarity the 𝑘 (and upcoming 𝑙 and 𝑚) iterator has
een re-introduced. Additionally ■(𝑖) refers to the prediction sites where 𝑖 ∈ [1,… ,𝑀] and ■(𝑗) refers to the observed data where
∈ [1,… , 𝑁]. The first segment takes the first derivative of the correlation function as

[

𝜕𝒒1
𝜕I∙𝑘

]

𝑖𝑗
=
𝜕

(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

𝜕I∙(𝑖)𝑘

. (80)

Unlike in previous definitions, the derivative is taken with respect to the unknown data point 𝐈∙(𝑖) which results in the following
definition (notice the change of sign)

𝜕
(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

𝜕I∙(𝑖)𝑘

= −2𝜃𝑘
(

I∙(𝑖)𝑘 − I∙(𝑗)𝑘

)


(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

. (81)

he second segment takes the derivative of the
[

𝒒2
]

𝑖𝑗 segment, given in (76), with respect to 𝐈∙(𝑖)

[

𝜕𝒒2
𝜕I∙𝑘

]

𝑖𝑗
=
[

𝜕2
(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽∗
)

𝜕I∙(𝑖)𝑘 𝜕I(𝑗)1
… 𝜕2

(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽∗
)

𝜕I∙(𝑖)𝑘 𝜕I(𝑗)𝑁𝑘

]𝑇

, (82)

where the expression for this derivative is given in (65) since the second derivative remains the same regardless of which data point
the derivative is taken with respect to. Moving now to the second derivatives of the cross-correlation matrix, the construction of
which is given by

𝜕2𝒓 (𝐈∙)
𝜕𝐈∙𝑙𝜕𝐈

∙
𝑘

=

⎡

⎢

⎢

⎢

⎣

𝜕2𝒒1
𝜕𝐈∙𝑙𝜕𝐈

∙
𝑘

𝜕2𝒒2
𝜕𝐈∙𝑙𝜕𝐈

∙
𝑘

⎤

⎥

⎥

⎥

⎦

, (83)

gain, there will be a block formed for each combination of the 𝑁𝑘 features. Taking the first segment, a second derivative will be
erformed on the correlation function taken with respect to the unknown data point 𝐈∙

[

𝜕2𝒒1
𝜕I∙𝑙𝜕I

∙
𝑘

]

𝑖𝑗
=
𝜕2

(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

𝜕I∙(𝑖)𝑙 𝜕I∙(𝑖)𝑘

, (84)

where the expression is again given in (65). The second segment takes the second derivative of the
[

𝒒2
]

𝑖𝑗 segment, given in (76)
[

𝜕2𝒒2
𝜕I∙𝑙𝜕I

∙
𝑘

]

𝑖𝑗
=
[

𝜕3
(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽∗
)

𝜕I∙(𝑖)𝑙 𝜕I∙(𝑖)𝑘 𝜕I(𝑗)1
… 𝜕3

(

𝐈∙(𝑖) ,𝐈(𝑗) ,𝜽∗
)

𝜕I∙(𝑖)𝑙 𝜕I∙(𝑖)𝑘 𝜕I(𝑗)𝑁𝑘

]𝑇

, (85)

he expression for which leads to a third derivative of the correlation function given by the following

𝜕3
(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

𝜕I∙(𝑖)𝑙 𝜕I∙(𝑖)𝑘 𝜕I(𝑗)𝑚
= 4

[

−𝜃𝑘𝜃𝑙 Î𝑙𝛿𝑘𝑚 − 𝜃𝑘𝜃𝑚 Î𝑚𝛿𝑘𝑙 − 𝜃𝑘𝜃𝑚 Î𝑘𝛿𝑙𝑚 + 2𝜃𝑙𝜃𝑘𝜃𝑚 Î𝑙 Î𝑘 Î𝑚
]


(

𝐈∙(𝑖), 𝐈(𝑗),𝜽∗
)

, (86)

where

Î𝑎 = I∙(𝑖)𝑎 − I∙(𝑗)𝑎 . (87)

This brings to a close the formulation of the Gradient Enhanced Kriging approach. Applying the outlined method directly to
invariants has been straightforward, however doing so with principal stretches has been more challenging as will become apparent
in the coming sections.

3.2. Projections of first Piola–Kirchhoff stress tensor

Gradient Enhanced Kriging is advantageous due to its capability to calibrate with superior performance but also because it can be
calibrated with just a single functional data point and a set of gradient data. When considering calibrating the metamodel based upon
experimental data this is critical since laboratory experiments do not provide an energy density but they do provide the derivative
values, i.e. the stress. The challenge then is how to break down the stress into the components needed for calibration, since the
stress contributions for each of the input variables is required. When this is the case, one can turn to the principles of linear algebra

to take projections of the stress tensor providing the individual contributions. This next section covers this process in more detail.

12 



N. Ellmer et al.

w

F
t
d

w

T

O
z
m

3

e

w

T

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117408 
3.2.1. Isotropic projections
From Eq. (25) it is possible to re-express the first Piola–Kirchhoff stress tensor 𝑷 in the case of isotropy as

𝑷 =
(

𝜕𝜆1𝑈
)

𝑽 1 +
(

𝜕𝜆2𝑈
)

𝑽 2 +
(

𝜕𝜆3𝑈
)

𝑽 3, (88)

here

𝑽 1 = 𝒏𝑃1 ⊗𝑵𝑃
1 , 𝑽 2 = 𝒏𝑃2 ⊗𝑵𝑃

2 , 𝑽 3 = 𝒏𝑃3 ⊗𝑵𝑃
3 . (89)

rom (88), it can be understood that the partials 𝜕𝜆𝑖𝑈 are merely scalar values providing the contribution in the direction of
he independent basis 𝑽 𝑖. With this knowledge it is logical that these contributions can be retrieved through projecting 𝑷 in the
irections of the principal stretch basis, namely

⎡

⎢

⎢

⎣

𝑷 ∶ 𝑽 1
𝑷 ∶ 𝑽 2
𝑷 ∶ 𝑽 3

⎤

⎥

⎥

⎦

= 𝑴 𝑖𝑠𝑜

⎡

⎢

⎢

⎣

𝜕𝜆1𝑈
𝜕𝜆2𝑈
𝜕𝜆3𝑈

⎤

⎥

⎥

⎦

, (90)

here the 𝑴 𝑖𝑠𝑜 matrix is constructed through

𝑴 𝑖𝑠𝑜 =
⎡

⎢

⎢

⎣

𝑽 1 ∶ 𝑽 1 𝑽 1 ∶ 𝑽 2 𝑽 1 ∶ 𝑽 3
𝑽 2 ∶ 𝑽 1 𝑽 2 ∶ 𝑽 2 𝑽 2 ∶ 𝑽 3
𝑽 3 ∶ 𝑽 1 𝑽 3 ∶ 𝑽 2 𝑽 3 ∶ 𝑽 3

⎤

⎥

⎥

⎦

. (91)

When using the principal stretch formulation 𝑴 𝑖𝑠𝑜 becomes the second order identity tensor. This property gives the principal
stretch approach an advantage over the invariants approach since 𝑴 𝑖𝑠𝑜 can always be inverted, an important property when taking
the projections outlined in (90). It was demonstrated in previous work [21] that with the invariant approach the basis {𝑽 1,𝑽 2,𝑽 3}
took the following expressions

𝑽 1 = 2𝑭 , 𝑽 2 = 2𝑯 𝑭 , 𝑽 3 = 𝑯 . (92)

aking the determinant of 𝑴 𝑖𝑠𝑜 with this invariant definition leads to

det
(

𝑴 𝑖𝑠𝑜
)

= 64
(

(

𝜆21 − 𝜆
2
2
)2 (𝜆21 − 𝜆

2
3
)2 (𝜆22 − 𝜆

2
3
)2) . (93)

f course from (93) it is clear to see that when any of the principal stretches take the same value, then the determinant goes to
ero, resulting in a singular matrix. This leaves cases where the projections cannot be directly applied and instead the invariants
ust first be perturbed, a limitation avoided through the principal stretch approach.

.2.2. Anisotropic projections
When handling anisotropic materials the projections must be extended to incorporate the additional contributions, take for

xample transverse isotropy

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑷 ∶ 𝑽 1
𝑷 ∶ 𝑽 2
𝑷 ∶ 𝑽 3
𝑷 ∶ 𝑽 4
𝑷 ∶ 𝑽 5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 𝑴 𝑡𝑖

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝜆1𝑈
𝜕𝜆2𝑈
𝜕𝜆3𝑈
𝜕𝐼4𝑈
𝜕𝐼5𝑈

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
[

𝑴 𝑡𝑖
]

𝑖𝑗 = 𝑽 𝑖 ∶ 𝑽 𝑗 , (94)

here

𝑽 4 = 2𝑭𝑵 ⊗𝑵 , 𝑽 5 = 2 (𝑯𝑵 ⊗𝑵) 𝑭 . (95)

he determinant of 𝑴 𝑡𝑖 is given by det
(

𝑴 𝑡𝑖
)

= 𝑐 (𝜃, 𝜙) 𝑔
(

𝜆1, 𝜆2, 𝜆3, 𝜃, 𝜙
)

where the functions are given by

𝑐 (𝜃, 𝜙) = 16 cos2(𝜙) cos2(𝜃) sin4(𝜙) sin2(𝜃), (96)
𝑔
(

𝜆1, 𝜆2, 𝜆3, 𝜃, 𝜙
)

= 𝜆21𝜆
6
2 − 2𝜆41𝜆

4
2 + 𝜆

6
1𝜆

2
2 + 𝜆

4
1𝜆

4
3 + 𝜆

6
1𝜆

2
3 + 𝜆

4
2𝜆

4
3 + 𝜆

6
2𝜆

2
3 − 2𝜆21𝜆

2
2𝜆

4
3 − 𝜆

2
1𝜆

4
2𝜆

2
3 − 𝜆

4
1𝜆

2
2𝜆

2
3

+ sin2(𝜙)
(

3𝜆41𝜆
4
2 − 𝜆

6
1𝜆

2
2 + 𝜆

2
1𝜆

6
3 − 𝜆

6
1𝜆

2
3 + 𝜆

2
2𝜆

6
3 − 3𝜆42𝜆

4
3 + 𝜆

2
1𝜆

2
2𝜆

4
3 − 𝜆

4
1𝜆

2
2𝜆

2
3
)

+ sin2(𝜙) sin2(𝜃)
(

−𝜆21𝜆
6
2 + 𝜆

6
1𝜆

2
2 − 3𝜆41𝜆

4
3 + 𝜆

6
1𝜆

2
3 + 3𝜆42𝜆

4
3 − 𝜆

6
2𝜆

2
3 − 𝜆

2
1𝜆

4
2𝜆

2
3 + 𝜆

4
1𝜆

2
2𝜆

2
3
)

,

where the angles are introduced through the direction of anisotropy 𝑵 = [cos(𝜃) sin(𝜙), sin(𝜃) sin(𝜙), cos(𝜙)]𝑇 . The specific cases
leading to a singular 𝑴 𝑡𝑖 preventing the system of equations in (94) from being solved are when either functions take zero.

3.3. Symmetry requirements in isotropy

When using ML approaches it is important to ensure that the physical constraints are still being satisfied. Take for example
handling isotropic constitutive models formulated using principal stretches. It is well understood that there exists a symmetry [28],
namely

𝑈
(

𝜆 , 𝜆
)

= 𝑈
(

𝜆 , 𝜆
)

, (97)
1 2 2 1
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when only two dimensions are being considered. This of course extends to the six permutations of {𝜆1, 𝜆2, 𝜆3} in the case of three
imensions

𝑈
(

𝜆1, 𝜆2, 𝜆3
)

= 𝑈
(

𝜆1, 𝜆3, 𝜆2
)

= 𝑈
(

𝜆2, 𝜆1, 𝜆3
)

= 𝑈
(

𝜆2, 𝜆3, 𝜆1
)

= 𝑈
(

𝜆3, 𝜆1, 𝜆2
)

= 𝑈
(

𝜆3, 𝜆2, 𝜆1
)

. (98)

Using the Kriging approach directly on principal stretches does not ensure that the symmetry property is upheld. Therefore, the
method needs to be adapted to ensure the calibrated model conforms to known physical constraints. The RBF based correlation
function outlined in (58) assigns a hyperparameter 𝜃𝑘 to each 𝑘th feature. It is therefore logical that if these hyperparameters
observe different data then a bias will be learnt making calibrating with symmetry unachievable. To overcome this problem, two
main approaches have been identified. Firstly, the calibration dataset could be augmented such that every data point is duplicated
to provide all the permutations of features. However, this would introduce a significantly larger dataset which is undesirable.
Alternatively, the correlation function could be adapted. Both strategies will now be discussed in further detail.

3.3.1. Data augmentation approach
Augmenting the data ensures that each feature observes all possible combinations from the calibration dataset eliminating the

opportunity for feature bias. Therefore the symmetry property will be instilled in the calibrated metamodel [10]. Despite this success,
the dataset will have increased by six times in the case of three dimensions. This is very significant and undesirable as it impacts
the efficiency of the method when implemented into simulation methodologies which evaluate the metamodel.

3.3.2. Correlation function based on invariants
A more desirable approach which benefits from not duplicating data, is to use an alternative correlation function. Invariants by

their nature uphold the symmetry conditions and by setting a correlation function to be with respect to invariants negates the need
to ensure that the hyperparameters themselves maintain the symmetry. The adapted correlation function then takes the same RBF
form as seen in (58) but with the additional functional dependence

̃
(

𝐈
(

𝝀(𝑖)
)

, 𝐈
(

𝝀(𝑗)
)

,𝜽
)

= exp

[𝑁𝑘
∑

𝑘=1
−𝜃𝑘

(

I𝑘
(

𝝀(𝑖)
)

− I𝑘
(

𝝀(𝑗)
))2

]

. (99)

Whilst this appears to be a simple alteration, this requires careful consideration when applying this back into the Gradient Enhanced
Kriging procedure. To take the derivatives of the correlation function with respect to the principal stretches, required throughout the
procedure, the chain rule will need to be employed. For clarity, take Eq. (63) which expresses the first derivative of the correlation
function

𝜕
(

𝐈(𝑖), 𝐈(𝑗),𝜽
)

𝜕𝐼 (𝑗)𝑘
, 𝑘 ∈

[

1,… , 𝑁𝑘
]

. (100)

With the adapted correlation function the derivative would take the following form using the chain rule
3
∑

𝑛=1

𝜕̃
(

𝐈
(

𝝀(𝑖)
)

, 𝐈
(

𝝀(𝑗)
)

,𝜽
)

𝜕𝐼 (𝑗)𝑛

𝐼 (𝑗)𝑛
𝜆(𝑗)𝑘

, 𝑘 ∈
[

1,… , 𝑁𝑘
]

. (101)

Whilst this first derivative seems straightforward to apply the chain rule to, now consider the third derivative described in (86).
Extend this additionally to anisotropy where a mixed formulation of stretches and invariants is introduced and the challenge becomes
even more apparent. The resulting application of the chain rule has been included, and the interested reader is directed to Appendix B
where details are provided in full.

It is worth highlighting that any invariants, provided they are consistent, would be suitable to form the set of inputs 𝐈 used in
the adapted correlation function. For this work the authors have selected two sets of invariants used in mechanics to investigate; the
lesser used invariants of the stretch tensor 𝑼 and the commonly used invariants of the right Cauchy–Green strain tensor 𝑪 . These
are given by

𝐼𝑼1 = 𝜆1 + 𝜆2 + 𝜆3, 𝐼𝑼2 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3, 𝐼𝑼3 = 𝜆1𝜆2𝜆3, (102)

𝐼𝑪1 = 𝜆21 + 𝜆
2
2 + 𝜆

2
3, 𝐼𝑪2 = 𝜆21𝜆

2
2 + 𝜆

2
1𝜆

2
3 + 𝜆

2
2𝜆

2
3, 𝐼𝑪3 = 𝜆21𝜆

2
2𝜆

2
3. (103)

Remark 3. Initially, one may believe that using the adapted correlation function would arrive at the same formulation as if the
inputs to Kriging were themselves invariants. This would be true if the Ordinary Kriging approach was being considered, since the
correlation function then collapses to only 𝑸11, given in (61), due to the correlation function itself will produce the same output.
However, taking derivatives of the correlation function with respect to principal stretches will yield different results compared to
taking derivatives with respect to the invariants. Thus, the use of projections within Gradient Enhanced Kriging results in different
formulations when comparing the approaches.
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Table 1
Presents 𝐸𝑷 for all eight constitutive models calibrated on 9 data points (𝑛𝑿 = 𝑛𝐽 = 3 before filtering)
and with 10 data points added in through the use of an infill strategy (2 iterations of 5 added data
points).
Constitutive model: Correlation function approach:

Invariants Stretches augmented Stretches (𝐼𝑼 ) Stretches (𝐼𝑪 )

Ogden (a) – 3.15 × 10−1 2.03 × 10−4 9.05 × 10−4

Ogden (b) – 1.82 × 10−1 8.69 × 10−3 3.32 × 10−3

Arruda–Boyce 1.79 × 10−3 1.82 × 10−1 3.19 × 10−4 6.59 × 10−4

Gent 1.78 × 10−3 1.65 × 10−1 1.66 × 10−4 3.86 × 10−4

Yeoh 1.65 × 10−3 1.81 × 10−1 1.22 × 10−3 9.96 × 10−4

Mooney–Rivlin 1.48 × 10−2 2.98 × 10−1 4.10 × 10−3 1.55 × 10−3

Quadratic Mooney–Rivlin 9.90 × 10−3 4.14 × 10−2 5.12 × 10−3 4.80 × 10−4

Transversely Isotropic 1.72 × 10−2 6.94 × 10−2 2.86 × 10−2 1.88 × 10−2

Rank-one Laminate (a) 6.06 × 10−2 9.81 × 10−2 6.36 × 10−2 3.77 × 10−2

Rank-one Laminate (b) 1.43 × 10−2 5.99 × 10−2 3.26 × 10−3 4.24 × 10−3

Table 2
Presents 𝐸𝑷 for the two anisotropic constitutive models calibrated on 25 data points (𝑛𝑿 = 𝑛𝐽 = 5 before filtering)
and with 10 data points added in through the use of an infill strategy (2 iterations of 5 added data points).
Constitutive model: Correlation function approach:

Invariants Stretches augmented Stretches (𝐼𝑼 ) Stretches (𝐼𝑪 )

Transversely Isotropic 3.76 × 10−3 1.21 × 10−2 2.01 × 10−3 3.29 × 10−3

Rank-one Laminate (a) 1.57 × 10−2 5.40 × 10−2 1.80 × 10−2 2.46 × 10−2

Table 3
Presents 𝐸𝑷 for the more complicated rank-one laminate constitutive model calibrated on 25 data points
(𝑛𝑿 = 𝑛𝐽 = 5 before filtering) and with 20 data points added in through the use of an infill strategy (4 iterations
of 5 added data points).
Constitutive model: Correlation function approach:

Invariants Stretches augmented Stretches (𝐼𝑼 ) Stretches (𝐼𝑪 )

Rank-one Laminate (a) 1.95 × 10−2 3.60 × 10−2 7.14 × 10−3 1.10 × 10−2

3.3.3. Comparison of the proposed approaches
Having outlined three potential approaches that could be used to incorporate the symmetry conditions, several metamodels were

alibrated and compared to assess potential benefits and disadvantages. Previous work carried out by the authors used an invariants
nly approach where the input features consisted solely of invariants of the right Cauchy–Green strain tensor, which has been used
s a baseline for comparison.

Table 1 presents the relative error, 𝐸𝑷 (defined in (105)), for the first Piola–Kirchhoff stress tensor for the four different
approaches. The number of points in the calibration dataset is between 16−19, where nine points were initially provided and a
further 10 points added in using an infill strategy to be outlined in the next section. Although all models are provided the same
starting data, this number differs as there is a data filter removing extreme values from the dataset. All approaches per constitutive
model share exactly the same data points post filtering ensuring the approaches can be directly compared.

The results demonstrate that not only does the augmented data approach have a significantly larger dataset negatively impacting
its efficiency, but it also calibrates poorly. On the other hand, the new stretch approaches calibrate very well with errors in stress
smaller than the invariant approach across all isotropic constitutive models. The anisotropic models are much more challenging and
this is reflected in the close errors between all approaches.

Calibrating with as few as 16 points was clearly sufficient for the isotropic models, but does not provide the desired accuracy
when referring to the anisotropic models. Table 2 presents the results for the anisotropic models when the calibration set is increased
to between 23−27 data points. Firstly, note that the transversely isotropic model has had a magnitude of order reduction in its errors
indicating the need for an increased dataset size. However, the rank-one laminate is still poorly calibrated. For the benefit of the
challenging rank-one laminate material, the dataset was increased again using two more iterations of the infill strategy and the
results shown in Table 3 demonstrate a further reduction for the error of the rank-one laminate.

To summarise then, the results demonstrate the success of the adapted correlated functions approach within Gradient Enhanced
Kriging. For anisotropy, it is clear that the adapted correlation functions approach produces results on par with the invariants
approach. In contrast, the achieved accuracy for the isotropic models calibrated using very few data points is significantly improved.

Take the common Mooney–Rivlin model where almost a full order of magnitude improvement was recorded.

15 



N. Ellmer et al.

F
o
c

r

t
p

h

Computer Methods in Applied Mechanics and Engineering 432 (2024) 117408 
4. Numerical examples: Metamodel calibration

4.1. Calibration overview

The following section aims to provide key information on the calibration process used prior to conducting three-dimensional
inite Element simulations which will be covered in the next section. To begin with, an overview of the calibration process is
utlined, before providing the procedure for sampling the synthetic dataset, presenting the infill strategy used to enhance the
alibration process, and demonstrating the methods ability to handle noisy data.

An overview of the procedure used for metamodel calibration can be seen in Algorithm 1. For detail on each of these stages,
efer to the indicated sections and equations.

Algorithm 1 Pseudo-code for the calibration process
1: Sample a set of deformation gradient tensors 𝑭 — see Algorithm 2
2: Evaluate the ground truth stress tensor 𝑷 , and strain energy density 𝑈 — see models in Appendix A
3: Evaluate the singular matrices using singular value decomposition: �̂� ,𝜦,𝑽 = SVD (𝑭 ) — see (24)
4: Evaluate the projections of the stress tensor 𝑷 : 𝜕I𝑈 — see Section 3.2
5: Conduct the parameter minimisation: {𝛽∗, 𝜎2∗} = argmin𝛽,𝜎2 ℒ

(

𝑼 |𝛽, 𝜎2,𝜽
)

— see (69)
6: Conduct the hyperparameter optimisation: 𝜽∗ = argmin𝜽 𝜓 (𝜽) — see (71)
7: Evaluate a test dataset — see Section 3.1.3
8: Assess the success of the calibrated metamodel — see (105)
9: if Using an infill strategy and metamodel error > tolerance then

10: Update the calibration set with points of highest error — see Algorithm 4
11: goto step 3:
12: end if

4.2. Synthetic data sampling (concentric style)

Currently, the data being used for model creation is synthetic and has been generated through sampling deformation gradient
ensors 𝑭 and feeding them through the ground truth constitutive models that have been provided in Appendix A. The sampling
rocess follows the methodology provided in [46] and is briefly described in Algorithm 2.

Algorithm 2 Pseudo-code for process of sampling deformation gradient tensors
1: Set the number of amplitude, directions and determinants: {𝑛𝑡, 𝑛𝑿 , 𝑛𝐽 };
2: Initialise the vector of amplitudes and determinants: 𝑡 = [0,… , 1.7]𝑛𝑡×1 , 𝐽 = [0.9,… , 1.1]𝑛𝐽×1;
3: Initialise a vector of Latin Hypercube sampled angles: 𝝓1 = [0, 2𝜋]𝑛𝑿×1;
4: Initialise three vectors of Latin Hypercube sampled angles: 𝝓2,3,4 = [0, 𝜋]𝑛𝑿×1;
5: Construct the directions, 𝑿, using the extended spherical parametrisation in R5 — detailed in (104);
6: Evaluate the deformation gradient tensors, 𝑭 , parametrised in terms of deviatoric directions 𝑿, amplitudes 𝑡, and determinants
𝐽 — detailed in Algorithm 3.

To construct the deviatoric directions used in Algorithm 2, a spherical parametrisation in R5 is used. Specifically, these directions
ave been expressed in terms of four angles which formulate the directions through

𝑿𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos𝜙𝑖1
sin𝜙𝑖1 cos𝜙

𝑖
2

sin𝜙𝑖1 sin𝜙
𝑖
2 cos𝜙

𝑖
3

sin𝜙𝑖1 sin𝜙
𝑖
2 sin𝜙

𝑖
3 cos𝜙

𝑖
4

sin𝜙𝑖1 sin𝜙
𝑖
2 sin𝜙

𝑖
3 sin𝜙

𝑖
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑖 ∈
[

1,… , 𝑛𝑿
]

. (104)

The construction of the deformation gradient tensors 𝑭 demonstrated in Algorithm 3, is made possible through the use of the
symmetric and traceless tensor basis denoted here by 𝜳 . The details for the basis can be found in Appendix C.

Algorithm 3 Pseudo-code for process of constructing the set of deformation gradient tensors
1: for 𝑖 = 1 ∶ 𝑛𝑿 do
2: for 𝑗 = 1 ∶ 𝑛𝐽 do
3: for 𝑘 = 1 ∶ 𝑛𝑡 do
4: 𝑭 = 𝐽 1∕3

𝑗 exp
(

𝑡𝑘
[

∑5
𝑙=1𝑋

𝑖
𝑙𝜳𝑙

])

;
5: end for
6: end for
7: end for
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Table 4
Presents a range of performance metrics including 𝑅2, 𝐸𝑷 and �̂�𝑷 for all eight constitutive models. The models displayed were
taken from the best performing approach, and the number of data points for calibration post application of the infill strategy is
provided for reference.
Constitutive model: No. data Approach 𝑅2 𝐸𝑷 �̂�𝑷

Ogden (a) 18 𝐼𝑼 1.0000 2.03 × 10−4 1.11 × 10−3

Ogden (b) 18 𝐼𝑪 1.0000 3.32 × 10−3 2.11 × 10−2

Arruda–Boyce 18 𝐼𝑼 1.0000 3.19 × 10−4 1.86 × 10−3

Gent 18 𝐼𝑼 1.0000 1.66 × 10−4 1.63 × 10−3

Yeoh 19 𝐼𝑪 1.0000 9.96 × 10−4 5.89 × 10−3

Mooney–Rivlin 19 𝐼𝑪 1.0000 1.55 × 10−3 7.28 × 10−3

Quadratic Mooney–Rivlin 19 𝐼𝑪 1.0000 4.80 × 10−4 1.44 × 10−3

Transversely Isotropic 27 𝐼𝑼 1.0000 2.01 × 10−3 1.14 × 10−2

Rank-one Laminate (a) 36 𝐼𝑼 1.0000 7.14 × 10−3 5.21 × 10−2

Rank-one Laminate (b) 16 𝐼𝑼 1.0000 3.26 × 10−3 7.02 × 10−2

Remark 4. A limitation of the procedure in Algorithm 3 is that the set of deformation gradient tensors grows rapidly as the number
of directions, determinants, and amplitudes is increased (𝑛𝑿 ×𝑛𝐽 ×𝑛𝑡). To restrict this rapid growth and enable the desirable smaller
ataset sizes, 𝑛𝐽 and 𝑛𝑡 have been set to be equal enabling them to be incremented at the same time. Therefore the number of
roduced deformation gradient tensors is only related to (𝑛𝑿 × 𝑛𝐽 ). To provide an example, in Table 1, nine data points were
roduced prior to filtering and the infill strategy, achieved by setting 𝑛𝑿 and 𝑛𝐽 to three (of course as a consequence of the adaptation
𝑡 = 𝑛𝐽 = 3).

.3. Model calibration and validation

Upon generating the synthetic dataset, the Kriging calibration process can be carried out as described in Algorithm 1. To assess
he performance of the created metamodel, an un-observed evaluation dataset (created in the same manner as the calibration dataset)
s input and the predictions of the first derivative are compared to the ground truth data. This comparison uses a relative error given
y

𝐸𝑷 =
∑𝑀
𝑖=1 ‖𝑷

𝑖
𝐺𝑇 − 𝑷 𝑖

𝐾𝑟‖
∑𝑀
𝑖=1 ‖𝑷

𝑖
𝐺𝑇 ‖

, (105)

where 𝑷𝐺𝑇 denotes the first Piola–Kirchhoff stress tensor from the ground truth data and 𝑷𝐾𝑟 denotes the prediction counterpart.
Throughout this work the authors employ 𝑀 = 10,000 which provides a significantly larger dataset for validation than the dataset
sed for calibration. In doing so, this ensures a comprehensive validation process by evaluating the performance of the metamodel
cross a wide variety of data points verifying the capability to capture the entire validation region.

As previously mentioned this Gradient Enhanced Kriging approach has been tested against an extensive range of nonlinear
onstitutive models, all provided in Appendix A. This includes six isotropic models of type: (a) Ogden; (b) Arruda–Boyce; (c) Gent;
d) Yeoh; (e) Mooney–Rivlin; (f) Quadratic Mooney–Rivlin. The Ogden model has been added to this list from the authors previous
ork as a result of employing the principal stretch formulation. The two anisotropic models are of types: (g) Transversely Isotropic;

h) Rank-one Laminate.
Another useful metric is to understand what the maximum error is across all evaluated data points. In taking this maximum, it

an become clear whether the relative error is truly indicative or if there are some outliers with larger inaccuracies. This metric is
enoted as

�̂�𝑷 = max

(
∑𝑀
𝑖=1 ‖𝑷

𝑖
𝐺𝑇 − 𝑷 𝑖

𝐾𝑟‖
∑𝑀
𝑖=1 ‖𝑷

𝑖
𝐺𝑇 ‖

)

. (106)

Table 4 provides a compilation of the best approach for each constitutive model as determined in Tables 1–3. The number
f points used in the calibration data set post application of an infill strategy has also been provided along with the metrics just
efined. Table 4 highlights the challenge of calibrating for anisotropic models but demonstrates the strength and capability Gradient
nhanced Kriging has to offer.

.4. Synthetic data sampling (experimental style)

The method of concentric sampling presented in Section 4.2 is advantageous for creating a dense and well distributed set of
eformation gradient tensors. However, it is not necessarily consistent with data gathered from laboratory experiments which
ypically employ uniaxial, biaxial and shear mechanical tests. As a result, it is important to consider and verify that datasets aligned
ith these testing methods can also be used to calibrate the Gradient Enhanced Kriging metamodels to the same level of accuracy.

To replicate these experimental tests, deformation gradient tensors were constructed using the following

𝑭 𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 =
⎡

⎢

⎢

⎣

𝜆𝛼 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑭 𝑏𝑖𝑎𝑥𝑖𝑎𝑙 =

⎡

⎢

⎢

⎢

𝜆𝛼 0 0
0 1

2𝜆 0
0 0 2

⎤

⎥

⎥

⎥

, 𝑭 𝑠ℎ𝑒𝑎𝑟 =
⎡

⎢

⎢

⎣

𝜆𝛼 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, (107)
𝜆 ⎣ 𝜆2 ⎦ 𝜆
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Table 5
Presents the error in first Piola–Kirchhoff stress tensor (𝐸𝑷 ) for three constitutive model frameworks when tested against the
same test datasets as the metamodels calibrated for Table 4. The number of calibration data points (post infill and filtering) has
been included in brackets beside the errors.
Constitutive model: Uniaxial only Uniaxial & Shear Biaxial only Biaxial & Shear

Mooney–Rivlin 5.48 × 10−3 (15) 3.27 × 10−3 (15) 3.09 × 10−3 (15) 4.62 × 10−5 (14)
Transversely Isotropic 1.03 × 10−1 (16) 1.46 × 10−2 (12) 4.34 × 10−2 (15) 1.57 × 10−3 (13)
Rank-one Laminate (a) 7.98 × 10−2 (35) 3.02 × 10−2 (34) 1.94 × 10−2 (33) 4.78 × 10−3 (32)

Fig. 5. Presents a load path combining biaxial and shear deformation for two constitutive frameworks. The solid lines represent the ground truth function and
he markers denote the Kriging prediction.

here

𝜆 ∈ [0.6, 2.1] , 𝛼 ∈ [0.9, 1.1] , 𝛾 ∈ [0, 0.7] . (108)

Note that 𝛼 has been introduced as a random number between the indicated bounds enabling a range of values for the Jacobian,
𝐽 . This serves two purposes, to enable the calibrated metamodel to be tested against the same concentric dataset allowing direct
omparison, as well as to ensure that the stretch values do not take the same value leading to projection challenges highlighted
n Section 3.2. Following the calibration process using only the deformation gradient tensors constructed in (107), the metamodels
re tested against the same test dataset generated by the concentric approach (used for Tables 1–4). The results in Table 5 show
he error for three constitutive models (Mooney–Rivlin, Transversely Isotropic and Rank-one Laminate (a)) when the metamodel is
alibrated using four combinations of experimental type deformation gradient tensors. Using only uniaxial data for calibration can
e seen to be sufficient for the isotropic constitutive framework but not sufficient for the anisotropic frameworks. Calibrating via a
ombination of biaxial and shear data produces metamodels which are as accurate or even improved when compared to the previous
oncentric approach. Furthermore, it is important to note that the number of data points has also been reduced thus indicating that
his method of data sampling appears to be more efficient.

Additionally, to showcase the strength of the calibrated Gradient Enhanced Kriging metamodel, a new unseen load path was
reated which combined the biaxial and shear mechanisms using the following deformation gradient tensors

𝑭 𝑏𝑖𝑎𝑥𝑖𝑎𝑙,𝑠ℎ𝑒𝑎𝑟 =
⎡

⎢

⎢

⎣

𝜆 𝛾 0
0 0.95𝜆 0
0 0 1

𝜆2

⎤

⎥

⎥

⎦

, 𝜆 ∈ [0.7, 1.7] , 𝛾 ∈ [0, 0.5] . (109)

he metamodels for transverse isotropy and rank-one laminate presented in Table 5 were then used to predict this more challenging
oad path. The results for the prediction of the six components of first Piola–Kirchhoff stress tensor can be seen in Fig. 5 which clearly
emonstrates that Gradient Enhanced Kriging has been able to accurately combine the observed biaxial and shear data and utilise
his to predict a hybrid load path. The error 𝐸𝑷 achieved for the transversely isotropic and rank-one laminate models respectively
s 4.59 × 10−4 and 1.28 × 10−2. Note that the rank-one laminate metamodel loses accuracy towards the higher stretch values which
s indicative of approaching the extrapolation range. If the range was limited to 𝜆 ∈ [0.7, 1.5] then the 𝐸𝑷 reduces by an order of
agnitude to 1.86 × 10−3.

The strong agreement between metamodel and ground truth data demonstrated in Fig. 5 provides confidence that Gradient
nhanced Kriging can be calibrated on either style of data.
.5. Calibration using an infill strategy

Throughout the discussion of the calibration process there has been reference to the use of an infill strategy. This is referring to

procedure which enables the calibration dataset to be appended to during the calibration process to provide targeted metamodel
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Fig. 6. Demonstrates how the choice of infill strategy impacts the performance of the metamodel calibration and in particular (b) highlights the benefit of using
the uncertainty based strategy.

error reduction. There are several ways in which this method could select data points to append to the calibration dataset such as
directly through using the uncertainty output from Kriging [45]. In the present work it has been decided that the selection will
use the highest error in the derivative value as this has been simple to implement and appeared to work effectively. Algorithm 4
describes the process but note that this algorithm forms part of the larger Algorithm 1.

Algorithm 4 Pseudo-code for the infill strategy

1: Evaluate the relative error in 𝑷 for all evaluation points, 𝐸𝑖𝑷 ;
2: Sort 𝐸𝑖𝑷 for all evaluation points into largest to smallest;
3: Take 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 with the largest relative errors;
4: Append these data points to the calibration dataset;
5: Break to re-calibrate the meta-model with adjusted calibration dataset;

To demonstrate the benefits of using an infill strategy, Fig. 6(a) shows the evolution of the log𝐸𝑷 metric for the rank-one laminate
material starting with 9 points. It can be seen that as the number of infill points increases the overall error in stress decreases. Adding
a single data point at a time initially has a significant impact but does appear to converge as the number of points increases.

The pattern shown in Fig. 6(a) was unexpected since one would envision that increasing the number of points should continue
the trend of reducing error. In response to seeing this, the authors implemented the strategy illuded to in Section 3.1.4, where the
uncertainty provided by Kriging is used to select the infill points. For the same starting dataset, Fig. 6(b) presents the evolution of
the metric when applying the uncertainty based infill strategy. A more anticipated trend can be observed and this demonstrates the
superior performance that can be gained by utilising Kriging’s probabilistic roots. Note that because the models have been calibrated
with ten infill points which yields roughly the same metamodel performance regardless of strategy, this work continues to use the
strategy outlined in Algorithm 4. However, in future works this updated strategy will be considered.

4.6. Calibration with a noisy dataset

In the current work, the calibration dataset has used synthetic data which when generated does not contain any noise. It is the
aim however, for this Kriging approach to be used with experimental datasets from laboratory testing which will inevitably contain
noisy data. As a result, it is necessary to demonstrate the capability of Gradient Enhanced Kriging to handle noise and provide
accurate predictions regardless.

To handle noisy data a simple adjustment needs to be made to the procedure outlined in Section 3. In order for the correlation
matrix 𝑹 to avoid becoming ill-posed due to trying to interpolate directly between all noisy observed data, an additional two
perturbation terms need to be appended to the set of hyperparameters, namely, 𝜽 = {𝜃1, 𝜃2, 𝜃3, 𝜀1, 𝜀2} for the case of isotropy. Notice
hat there are two perturbation terms, the first for the functional correlation data and the second for the gradient data.

The chosen optimisation algorithm now has these additional two parameters to optimise which transforms Gradient Enhanced
riging from being directly an interpolation technique to a regression approach. To test the ability to calibrate with noisy data, the
rocedure in Algorithm 5 is followed. Moreover, noise has been incorporated into the sampled data through perturbation as

�̃� = 𝑈 +
(

0, 𝜎𝑈
)

, ̃𝜕𝐈𝑈 = 𝜕𝐈𝑈 +
(

0, 𝜎𝜕𝐈𝑈
)

, (110)

here

𝜎𝑈 = 0.2�̄� , 𝜎𝜕𝐈𝑈 = 0.2 ̄𝜕𝐈𝑈, (111)

nd ■̄ denotes the average. Fig. 7 presents an example of the unperturbed data (the black circles) which has been transformed to

he perturbed data (red squares) by adding noise through the aforementioned equations.
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Fig. 7. Presents the ground truth strain energy density data represented by black dots and the perturbed counterparts denoted by red squares.

Fig. 8. Demonstrates the capability of Kriging to calibrate with a noisy dataset. Note that the unperturbed function is captured by the metamodel.

Algorithm 5 Pseudo-code for the calibration process with the addition of noise
1: Sample a set of deformation gradient tensors 𝑭 — see Algorithm 2
2: Evaluate the ground truth stress tensor 𝑷 , and strain energy density 𝑈 — see models in Appendix A
3: Add noise to the functional energy density 𝑈 — see (110)
4: Evaluate the singular matrices using singular value decomposition: �̂� ,𝜦,𝑽 = SVD (𝑭 ) — see (24)
5: Evaluate the projections of the stress tensor 𝑷 : 𝜕I𝑈 — see Section 3.2
6: Add noise to the gradient projections 𝜕I𝑈 — see (110)
7: Conduct the parameter minimisation: {𝛽∗, 𝜎2∗} = argmin𝛽,𝜎2 ℒ

(

𝑼 |𝛽, 𝜎2,𝜽
)

— see (69)
8: Conduct the hyperparameter optimisation with the extended set: {𝜃1,… , 𝜃𝑁𝑘 , 𝜀1, 𝜀2} — see (71)
9: Evaluate a test dataset — see Section 3.1.3

10: Assess the success of the calibrated metamodel — see (105)

To provide an example of calibration with noisy data, refer to Fig. 8. Starting from the left, Fig. 8(a) displays a black line denoting
he ground truth energy density function for a Mooney–Rivlin model. Marked by red squares are the noisy calibration points, which
an also be more clearly seen in Fig. 7. These noisy calibration points are then passed to Kriging to produce the metamodel as per
lgorithm 5. Fig. 8(b) shows the metamodel prediction denoted by the black curve and overlaid by randomly selected ground truth
ata given by the blue squares. The black curve here can be seen to be passing through all blue squares indicating that the noise
as been eradicated during the calibration and the unperturbed curve has been captured very well. One may notice that the tips of
he function are slightly lower for the prediction and this can be expected since there are no calibration points directly at the tips.
ore importantly notice the noisy data that has an unphysical energy subzero energy value. Again, Kriging has been able to ignore
his noise and learn where the baseline should be at zero.
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Fig. 9. Displays a schematic of the RVE used within the upcoming calibration and simulations. Model details can be found in Appendix A.9.

Table 6
Presents a range of performance metrics including 𝑅2, 𝐸𝑷 and �̂�𝑷 for the orthotropic RVE constitutive model.
The model details can be found in Appendix A.9 and specific material parameters in Table 15.
Constitutive model: No. data Approach 𝑅2 𝐸𝑷 �̂�𝑷

RVE 34 𝐼𝑼 0.9999 6.22 × 10−3 2.44 × 10−2

4.7. 0D example

Post calibration, a rapid method to analyse the performance of the calibrated constitutive metamodel prior to embedding in
three-dimensional FEM simulations is to conduct a so called zero-dimensional simulation, a simulated load path for a single gauss
point. A short example is provided to showcase two aspects, the accuracy yielded for a load path simulation as well as the application
of an additional composite material, namely the inclusion. An RVE comprising of a spherical inclusion in a hexahedral matrix, as
seen in Fig. 9, has been simulated and the specific details for this model can be found in Appendix A.9.

This model followed the same procedure for calibration as the other constitutive models starting with an initial data sample and
using two iterations of the infill strategy to extend the calibration dataset to 34 points. The results for calibration are presented
in Table 6. Note that these results are on par with those of the challenging rank-one laminate material given in Table 4, which is
impressive since this model uses the orthotropy symmetry group thereby increasing the number of features to six.

Following calibration, the RVE metamodel was implemented into a load path simulation, which can be seen in Fig. 10. To achieve
the equibiaxial load path seen in Fig. 10(a), the following deformation gradient tensors were formed

𝑭 𝑏𝑖𝑎𝑥𝑖𝑎𝑙 =
⎡

⎢

⎢

⎣

𝜆 0 0
0 𝜆 0
0 0 1

𝜆2

⎤

⎥

⎥

⎦

, 𝜆 ∈ [1, 1.8] . (112)

As for the uniaxial combined with shear load path shown in Fig. 10(b), the following 𝑭 were constructed

𝑭 𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙,𝑠ℎ𝑒𝑎𝑟 =
⎡

⎢

⎢

⎣

𝜆 𝛾 0
0 1 0
0 0 1

𝜆

⎤

⎥

⎥

⎦

, 𝜆 ∈ [1, 1.8] , 𝛾 ∈ [0, 0.5] . (113)

The Kriging prediction in Fig. 10 displays a strong agreement with the ground truth data. It is important to emphasise that these
load paths were unobserved during calibration. Fig. 10(a) does appear to lose accuracy in the 𝑃33 component, however this occurs
as 𝜆 increases beyond 1.6 leading to an 𝐹33 component falling below 0.4. This is towards an extreme point and consequently the
evaluation points are outside of the calibration set and Kriging begins to extrapolate hence reducing the accuracy.

To further demonstrate the performance, Fig. 11 provides the evaluation of Kriging at approximately 1600 unobserved data
points. In each of the subfigures, each component of the first Piola–Kirchhoff stress tensor can be seen to be compared for all 1600
points. The dashed line represents a perfect prediction of which Kriging is doing incredibly well to achieve.

5. Numerical examples: 3D simulations

Having demonstrated the capability of Gradient Enhanced Kriging to effectively calibrate constitutive models, it is now time to
move to the papers primary objective, to evaluate their accuracy and performance once embedded in the challenging context of
three-dimensional Finite Element simulations. The following set of examples seeks to confirm that the proficiency of the metamodel
integration previously demonstrated by Ellmer et al. [21] extends to the stretch-based models when addressing complex engineering
problems.
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Fig. 10. Presents the six components of the first Piola–Kirchhoff stress tensor for two different types of load paths. The solid lines represent the ground truth
unction and the markers denote the Kriging prediction.

Fig. 11. Presents a comparison of all six components for the symmetric first Piola–Kirchhoff stress tensor 𝑷 produced by the ground truth model and predicted
through the calibrated Kriging model. The dotted centre line represents a perfect prediction and the red marks demonstrate the closeness in predictions.

The upcoming series of examples will include complex and demanding cases including wrinkling and pinching. By conducting
these scenarios, the success of the implementation can be rigorously assessed through direct comparison of the metamodel prediction
based simulations and their ground truth counterparts. Each example will have an outline of its specific details and the applied
constitutive models can be found accompanied by their specific material parameters in Appendix A.

Remark 5. In the continuum mechanics section there was discussion on the use of polyconvex energy density functions to ensure
the existence of a solution. To enforce this condition, simple steps could be taken as outlined by Poya et al. [47]. This would
involve monitoring the Hessian given by (21) and setting any subzero eigenvalues to zero hence satisfying (20). However, this
was not deemed necessary with the examples provided in this work since all of the conducted simulations converged without any
unphysical instabilities.

5.1. Cantilever beam bending example

The first example is a simple cantilever beam bending problem which is depicted in Fig. 12. With regards to the Finite Element
iscretisation, quadratic hexahedral elements are used for the interpolation of the displacement field.
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Fig. 12. Presents the cantilever beam of 0.01×0.01×0.1 m discretised into 4 × 4 × 40 elements where it is fixed at the red face and a surface load of 0.018 Nm−2

is applied at the green face (indicated with the arrows).

Fig. 13. Demonstrates the deformation produced when using the ground truth and Kriging implementations of the Ogden (b) model. Note that the shaded
shapes represent the deformation at load factor 0.5. Subfigure (b) provides the relative error in pressure and (c) presents the joined ground truth and Kriging
solutions which produce a seamless beam emphasising the remarkably accurate prediction.

This example examines the use of two materials, the isotropic Ogden (b) model (see Appendix A.1) with material parameters
given in the right Table 7 and the anisotropic rank-one laminate (a) model (see Appendix A.8) with material parameters given in
the first row of Table 14.

Applying the loads as described for the Ogden model leads to the deformations and distributions of hydrostatic pressure displayed
in Fig. 13. The pressure is evaluated through 𝑝 = 1

3 tr (𝝈) where 𝝈 = 𝐽−1𝑷𝑭 𝑇 . Fig. 13(a) presents a side by side view of the
deformation when using the ground truth constitutive model compared to the Kriging model. The relative error in pressure has
been displayed in Fig. 13(b) where it is clear that Kriging does remarkably well to capture the distribution with a maximum relative
error at the stress concentrations of approximately 4% but most of the domain remaining under 0.01%. Furthermore, to present
how seamless the Kriging metamodel implementation has been, Fig. 13(c) shows the left half of the deformation as the ground truth
model and the right half as Kriging. The unnoticeable split demonstrates the impeccable accuracy achieved by the metamodel.

Moving now to the rank-one laminate example presented in Fig. 14, again the side by side is presented in Fig. 14(a). The
anisotropy is clearly evident here with the addition of twisting alongside the bending deformation. The relative error is small,
mostly in the range of 0.02% but peaking to 6% at the concentrations as demonstrated in Fig. 14(b). Finally, Fig. 14(c) portrays
again the smooth transition between models.

5.2. Thin walled wrinkling example

To push the complexity of the problem and challenge the ability of the metamodel based simulation, this next example studies
a thin walled cylinder subjected to an initial compressive velocity. The geometry and boundary conditions have been highlighted
in Fig. 15. The Finite Element discretisation uses linear hexahedral elements for the interpolation of the displacement field.

This example examines the use of two materials, the isotropic Mooney–Rivlin model (see Appendix A.2) with material parameters
given in Table 8 and the anisotropic rank-one laminate (b) model (see Appendix A.8) with material parameters given in the second
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Fig. 14. Demonstrates the deformation produced when using the ground truth and Kriging implementations of the rank-one laminate (a) model. Note that the
shaded shapes represent the deformation at load factor 0.5. Subfigure (b) provides the relative error in pressure and (c) presents the joined ground truth and
Kriging solutions showcasing the extraordinary accuracy.

Fig. 15. Presents the thin walled cylinder discretised into {2, 240, 150} thickness, circumferential and length elements respectively for one quarter of the geometry.
The cylinder is fixed at the base indicated by the red line and an initial compressive velocity profile 𝒗|𝑡=0 is applied on the top surface as indicated by the green
line and arrows where 𝒗|𝑡=0 = [0, 0,−80] ms−1.

row of Table 14. Additionally, to emulate a dynamic setting, a fictitious density has been introduced of 𝜌 = 0.01 kgmm−3 along with
a mass-proportional Rayleigh coefficient of 100 s−1. A leap frog time integrator was used with time step 𝛥𝑡 = 1 × 10−5 s. Since the
material being simulated is incompressible, an additional volumetric term has been added to the strain energy given by

𝜆
2
(𝐽 − 1)2 , where 𝜆 = 100. (114)

This penalty term has been added to both the ground truth model as well as its Kriging counterpart.
Fig. 16 exhibits the thin shell wrinkling after applying an initial velocity with a Mooney–Rivlin material. A progression of the

complex wrinkling pattern and pressure distribution is demonstrated for both the ground truth and Kriging models in Figs. 16(a)–
16(c). Visibly the Kriging prediction is exceptionally close and to further demonstrate this, Fig. 16(d) showcases the relative error
for the final deformation pattern which has a maximum value of 1.2%. To highlight how impressive the prediction is, Figs. 16(e)
and 16(f) display both the ground truth and Kriging halves of the deformation and consist of a seamless transition between the two.

The anisotropic rank-one laminate model has also been used for a wrinkling simulation as displayed in Fig. 17. Figs. 17(a),
17(b), and 17(c) present the progression in wrinkling pattern and the complexity brought about by the anisotropy can be clearly
seen. Pushing the simulations to showcase complex deformations with challenging materials leads to the relative error having a
larger maximum value of 7%, however, note that most of the domain remains under 0.5%. And the deformation itself continues to
have an impressive likeness in Figs. 17(e) and 17(f).
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Fig. 16. Subfigures (a)–(c) demonstrate the progression of the wrinkling deformation for a Mooney–Rivlin material model and the pressure distribution for both
the ground truth and Kriging solutions. Subfigure (d) presents the relative error in pressure distribution while (e) and (f) display both solutions stitched together
to showcase the closeness in results.

5.3. Thin walled pinching example

Continuing the theme of complex deformations, the following simulation entails a thin walled cylinder which is constrained as
shown in Fig. 18. As with the first example, the Finite Element discretisation uses quadratic hexahedral elements for the interpolation
of the displacement field.

The final example examines the use of two materials, the isotropic Mooney–Rivlin model (see Appendix A.2) with material
parameters given in Table 8 and the transversely isotropic model (see Appendix A.7) with material parameters given in Table 13.

Starting with the Mooney–Rivlin material, Fig. 19 demonstrates the deformations as the load is applied in increasing increments.
Figs. 19(a)–19(c) portray the changing pressure distribution as the load is increased. The interesting buckling pattern brought about
by the load becomes more prominent in the final increment and appears to be well captured. To re-enforce this, Fig. 19(d) presents
the relative error which shows the largest error (although still small, maximising at 0.6%) is located with the sharpest gradient,
something to be expected. Figs. 19(e) and 19(f) are in place to showcase the striking similarity even as the deformation grows.

Fig. 20 showcases the same deformation pattern but using the transversely isotropic model. A similar pattern is seen across
Figs. 20(a)–20(c) with higher pressure values due to the change in material. This material has demonstrated throughout the paper
to be tougher for Kriging to accurately model, and this is portrayed in Fig. 20(d). Despite this, the maximum error is 2.9% which
remains sufficiently small. And the overall comparison between ground truth and Kriging shown in Figs. 20(e) and 20(f) still displays
an impressive likeness.

6. Concluding remarks

Several topics have been covered in this work including the formulation of the Gradient Enhanced Kriging approach, the need to
alter the correlation function to uphold physical constraints and a series of detailed and informative three-dimensional simulations.

Kriging has once again demonstrated its capability, specifically towards its application to nine principal stretch based hyperelastic
constitutive models. The strength of the approach has been highlighted by enabling the prediction through a mixed formulation in
the case of anisotropy of up to six input features with still fewer than 40 data points. The importance of the infill strategy has also
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Fig. 17. Subfigures (a)–(c) demonstrate the progression of the wrinkling deformation for the rank-one laminate (b) material model as well as the pressure
distribution for both the ground truth and Kriging solutions. (e) and (f) display both solutions joined together to showcase the accuracy achieved.

Fig. 18. Presents the thin walled cylinder discretised into {2, 40, 30} thickness, radial and length elements respectively for one half of the geometry. The cylinder
is fixed at the rear indicated by the red line and a point load is applied on the free end demonstrated with the green arrow.

been brought to light where it is clear that using the uncertainty from Kriging to directly inform the location of new data points is
imperative moving forward to avoid the plateauing of performance. Additionally, the capability to handle noise has been showcased
bringing confidence for the application of this method to experimental data. Through embedding accurate data driven constitutive
models in Finite Element simulations, computational modelling and experimental demonstrators have the opportunity to become
increasingly complimentary. Finally, a number of the calibrated models incorporating isotropy and anisotropy have been rigorously
tested in the context of three-dimensional simulations. Extreme deformation patterns have been impeccably captured leading to
a remarkable set of seamless results demonstrating that this approach is a promising tool for modelling increasingly complex
materials.
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Fig. 19. Subfigures (a)–(c) demonstrate the progress in deformation for the pinching mode. Subfigure (d) displays the pressure distribution obtained using a
Mooney–Rivlin material model has been presented along with the relative error whilst (e) and (f) display the joined ground truth and Kriging based solutions
highlighting the accuracy achieved.
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Fig. 20. Subfigures (a)–(c) displays the pinching deformation for a transversely isotropic material and the pressure distribution for a range of load factors. The
relative error for the final deformation is given in Subfigure (d) whilst (e) and (f) present the side by side view of the ground truth and Kriging based solutions
with an accurate representation.

Table 7
Material parameters used with the Ogden model. (Left: Ogden (a), Right: Ogden (b)).

Parameter: 𝜇 𝛼 �̄�

Value (𝑝 = 1): 0.5 2 5
Value (𝑝 = 2): 0.5 3 5

Parameter: 𝜇 𝛼 �̄�

Value (𝑝 = 1): 0.5 1 5
Value (𝑝 = 2): 0.5 3.5 5
Value (𝑝 = 3): 0.5 5 5
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Appendix A. Constitutive models

A.1. Ogden

The strain energy density for the Mooney–Rivlin model is:

𝑈
(

𝜆1, 𝜆2, 𝜆3
)

=
𝑁
∑

𝑝=1

𝜇𝑝
𝛼𝑝

(

𝜆
𝛼𝑝
1 + 𝜆

𝛼𝑝
2 + 𝜆

𝛼𝑝
3 − 3

)

− 𝜇𝑝 ln
(

𝜆1𝜆2𝜆3
)

+
�̄�𝑝
2

(

𝜆1𝜆2𝜆3 − 1
)2 , (115)

and the material parameters used can be found in Table 7.
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Table 8
Material parameters used with the Mooney–Rivlin model.

Parameter: 𝜇1 𝜇2 𝜆

Value: 0.5 0.5 5

Table 9
Material parameters used with the Quadratic Mooney–Rivlin
model.

Parameter: 𝜇1 𝜇2 𝜆

Value: 0.5 0.5 5

Table 10
Material parameters used with the Gent model.

Parameter: 𝜇 𝐽𝑚 𝜆

Value: 1 19 5

Table 11
Presents the material parameters used with the Yeoh model.

Parameter: 𝐶10 𝐶20 𝐶30 𝜆

Value: 1 1 1 5

A.2. Mooney–Rivlin

The strain energy density for the Mooney–Rivlin model is:

𝑈
(

𝐼1, 𝐼2, 𝐼3
)

=
𝜇1
2

(

𝐼1 − 3
)

+
𝜇2
2

(

𝐼2 − 3
)

−
(

𝜇1 + 2𝜇2
)

ln
(

𝐼3
)

+ 𝜆
2
(

𝐼3 − 1
)2 , (116)

nd the material parameters used can be found in Table 8.

.3. Quadratic Mooney–Rivlin

The strain energy density for ‘‘quadratic’’ Mooney–Rivlin model is:

𝑈
(

𝐼1, 𝐼2, 𝐼3
)

=
𝜇1
2

(

𝐼1
)2 +

𝜇2
2

(

𝐼2
)2 − 6

(

𝜇1 + 2𝜇2
)

ln
(

𝐼3
)

+ 𝜆
2
(

𝐼3 − 1
)2 , (117)

and the material parameters used can be found in Table 9.

A.4. Gent

The strain energy density for Gent model is:

𝑈
(

𝐼1, 𝐼3
)

= −
𝜇
2
𝐽𝑚ln

(

1 −
𝐼1 − 3
𝐽𝑚

)

− 𝜇ln
(

𝐼3
)

+ 𝜆
2
(

𝐼3 − 1
)2 , (118)

and the specific values for the material parameters used can be found in Table 10.

A.5. Yeoh

The strain energy density for Yeoh model is:

𝑈
(

𝐼1, 𝐼3
)

= 𝐶10
(

𝐼1 − 3
)

+ 𝐶20
(

𝐼1 − 3
)2 + 𝐶30

(

𝐼1 − 3
)3 − 2𝐶10ln

(

𝐼3
)

+ 𝜆
2
(

𝐼3 − 1
)2 , (119)

and the material parameters used can be found in Table 11.

A.6. Arruda–Boyce

The strain energy density for Arruda–Boyce model is:

𝑈
(

𝐼1, 𝐼3
)

= 𝑎1

(

𝛽
(

𝐼1
)

𝜆𝑐
(

𝐼1
)

− 𝑎2ln
(

sinh
(

𝛽
(

𝐼1
))

( )

))

− 𝐴ln
(

𝐼3
)

+ 1𝜆
(

𝐼3 − 1
)2 , (120)
𝛽 𝐼1 2
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Table 12
Material parameters used with the Arruda–Boyce model.

Parameter: 𝑎1 𝑎2 𝜆 𝐴

Value: 2.1899
√

6 4.9159 1

Table 13
Material parameters used with the Transversely Isotropic model.

Parameter: 𝜇1 𝜇2 𝜇3 𝜆 𝛼 𝛽 𝑵

Value: 0.5 0.5 7.5 5 2 2
[

1 1 1
]𝑇

Table 14
Material parameters used with the Rank One Laminate model.

Parameter: 𝜇𝑎1 𝜇𝑎2 𝜆𝑎 𝛼 𝛽 𝑓𝑚 𝑐

Value (ROL (a)): 0.5 0.5 5 𝜋∕4 𝜋∕4 10 0.6
Value (ROL (b)): 0.5 0.5 5 𝜋∕4 𝜋∕4 1.5 0.3

where

𝜆𝑐
(

𝐼1
)

=
√

1
3
√

𝐼1, −1 (𝑥) = 3𝑥 − 𝑥3

1 − 𝑥2
, 𝛽

(

𝐼1
)

= −1

(

𝜆𝑐
(

𝐼1
)

𝑎2

)

.

The material parameters used in the model can be found in Table 12.

A.7. Transversely isotropic

The strain energy of the polyconvex transversely isotropic model is:

𝑈
(

𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5
)

=
𝜇1
2

(

𝐼1 − 3
)

+
𝜇2
2

(

𝐼2 − 3
)

−
(

𝜇1 + 2𝜇2 + 𝜇3
)

ln
(

𝐼3
)

(121)

+ 𝜆
2
(

𝐼3 − 1
)2 +

𝜇3
2𝛼

(

𝐼4
)𝛼 +

𝜇3
2𝛽

(

𝐼5
)𝛽 + 1

2

(

1
2𝛼
𝜇3 +

1
2𝛽
𝜇3

)

.

The material parameters used for this model can be found in Table 13.

.8. Rank-one laminate

We consider Mooney–Rivlin strain energy densities for the individual phases 𝑎 and 𝑏 within this composite (refer to Section 2.6),
amely

𝑈𝑎 (𝐼𝑎1 , 𝐼
𝑎
2 , 𝐼

𝑎
3
)

= 1
2
𝜇𝑎1

(

𝐼𝑎1 − 3
)

+ 1
2
𝜇𝑎2

(

𝐼𝑎2 − 3
)

−
(

𝜇𝑎1 + 2𝜇𝑎2
)

ln
(

𝐼𝑎3
)

+ 1
2
𝜆𝑎

(

𝐼𝑎3 − 1
)2 ,

𝑈 𝑏 (𝐼𝑏1 , 𝐼
𝑏
2 , 𝐼

𝑏
3
)

= 1
2
𝜇𝑏1

(

𝐼𝑏1 − 3
)

+ 1
2
𝜇𝑏2

(

𝐼𝑏2 − 3
)

−
(

𝜇𝑏1 + 2𝜇𝑏2
)

ln
(

𝐼𝑏3
)

+ 1
2
𝜆𝑏

(

𝐼𝑏3 − 1
)2 . (122)

being the effective strain energy 𝛹 (𝑭 )

𝛹 (𝑭 ) = argmin
𝜶

{�̂� (𝑭 ,𝜶)}, �̂� (𝑭 ,𝜶) = 𝑐𝑎𝛹𝑎 (𝑭 𝑎 (𝑭 ,𝜶)) + 𝑐𝑏𝛹 𝑏
(

𝑭 𝑏 (𝑭 ,𝜶)
)

, (123)

with

𝛹 𝑎 (𝑭 𝑎 (𝑭 ,𝜶)) = 𝑈𝑎 (𝐼𝑎1 , 𝐼
𝑎
2 , 𝐼

𝑎
3
)

, 𝛹 𝑏
(

𝑭 𝑏 (𝑭 ,𝜶)
)

= 𝑈 𝑏 (𝐼𝑏1 , 𝐼
𝑏
2 , 𝐼

𝑏
3
)

. (124)

where {𝐼𝑎1 , 𝐼
𝑎
2 , 𝐼

𝑎
3 } and {𝐼𝑏1 , 𝐼

𝑏
2 , 𝐼

𝑏
3} represent the principal invariants of 𝑭 𝑎 and 𝑭 𝑏, related to the macroscopic deformation gradient

tensor 𝑭 . The material parameters used for this composite material can be found in Table 14.
where 𝑓𝑚 represents the contrast in material properties, namely

𝑓𝑚 =
𝜇𝑏1
𝜇𝑎1

=
𝜇𝑏2
𝜇𝑎2

= 𝜆𝑏

𝜆𝑎
. (125)

A.9. RVE with spherical inclusions

The RVE is divided into the region associated to the matrix 𝑿𝜇 ∈ 𝑚0𝜇 and the inclusion 𝑿𝜇 ∈ 𝑖0𝜇 , such that 0𝜇 = 𝑚0𝜇 ∪ 𝑖0𝜇 ,
and 𝑚0𝜇 ∩ 𝑖0𝜇 = ∅. At each region, we define the energy density 𝑈𝜇(𝑿𝜇 , 𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) = 𝛹𝜇(𝑿𝜇 ,𝑭 𝜇) according to

𝛹𝜇(𝑿𝜇 ,𝑭 𝜇) = 𝑈𝜇(𝑿𝜇 , 𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) =

⎧

⎪

⎨

⎪

𝑈𝑚
𝜇 (𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) 𝑿𝜇 ∈ 𝑚0𝜇

𝑈 𝑖
𝜇(𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) 𝑿𝜇 ∈ 𝑖0𝜇

(126)
⎩
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Table 15
Material parameters used for the RVE.

Parameter: 𝜇𝑚1 𝜇𝑚2 𝜆𝑚 𝑓𝑚 𝑅

Value: 1 1 10 5 0.2

We consider Mooney–Rivlin strain energy densities of both matrix and inclusion, namely

𝑈𝑚
𝜇 (𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) =

1
2
𝜇𝑚1

(

𝐼𝑚1𝜇 − 3
)

+ 1
2
𝜇𝑚2

(

𝐼𝑚2𝜇 − 3
)

−
(

𝜇𝑚1 + 2𝜇𝑚2
)

ln
(

𝐼𝑚3𝜇

)

+ 1
2
𝜆𝑚

(

𝐼𝑚3𝜇 − 1
)2
,

𝑈 𝑖
𝜇(𝐼1𝜇 , 𝐼2𝜇 , 𝐼3𝜇 ) =

1
2
𝜇𝑖1

(

𝐼 𝑖1𝜇 − 3
)

+ 1
2
𝜇𝑖2

(

𝐼 𝑖2𝜇 − 3
)

−
(

𝜇𝑖1 + 2𝜇𝑖2
)

ln
(

𝐼 𝑖3𝜇

)

+ 1
2
𝜆𝑖

(

𝐼 𝑖3𝜇 − 1
)2
. (127)

The material parameters used for this composite material can be found in Table 15.
where 𝑅 represents the radius of the centred sphere within the hexahedral RVE and 𝑓𝑚 represents the contrast in material

properties, namely

𝑓𝑚 =
𝜇𝑖1
𝜇𝑚1

=
𝜇𝑖2
𝜇𝑚2

= 𝜆𝑖

𝜆𝑚
. (128)

Appendix B. Application of chain rule

The need for a complex chain rule was hinted at in Section 3.3.2. For completeness this section of the appendix will provide the
entire set of equations required to apply the chain rule to all segments of the Gradient Enhanced Kriging approach, specifically the
correlation and cross-correlation matrices, 𝑹 and 𝒓 respectively. Starting with 𝑹 and for the case of isotropy, the first and second
derivatives of the correlation function are required as

𝜕̃
𝜕𝜆(𝑗)𝑛

=
3
∑

𝑙=1

𝜕̃
𝜕𝐼 (𝑗)𝑙

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

, (129)

and

𝜕2̃
𝜕𝜆(𝑗)𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑘,𝑙=1

𝜕2̃
𝜕𝐼 (𝑗)𝑘 𝜕𝐼 (𝑗)𝑙

𝜕𝐼 (𝑗)𝑘
𝜕𝜆(𝑗)𝑚

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

+
3
∑

𝑙=1

𝜕̃
𝜕𝐼 (𝑗)𝑙

𝜕2𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑚 𝜕𝜆

(𝑗)
𝑛

, (130)

here for notational convenience ̃ denotes ̃
(

𝐈
(

𝝀(𝑖)
)

, 𝐈
(

𝝀(𝑗)
)

,𝜽∗
)

. For 𝒓 in the case of isotropy, only the first derivative of the
orrelation function with respect to the observation is required leading to the same expression as (129). Taking the first derivative
f 𝒓 with respect to the evaluation point (needed for (79)) is given by the following two segments

𝜕̃
𝜕𝜆(𝑖)𝑚

=
3
∑

𝑘=1

𝜕̃
𝜕𝐼 (𝑖)𝑘

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

, (131)

nd

𝜕2̃
𝜕𝜆(𝑖)𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑘,𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑘 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

+
3
∑

𝑙=1

𝜕̃
𝜕𝐼 (𝑗)𝑙

𝜕2𝐼 (𝑗)𝑙
𝜕𝜆(𝑖)𝑚 𝜕𝜆

(𝑗)
𝑛

𝛿𝑖𝑗 . (132)

he second derivative of 𝒓, needed for (83), is given by the following two segments

𝜕2̃
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

=
3
∑

𝑞,𝑘=1

𝜕2̃
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

+
3
∑

𝑘=1

𝜕̃
𝜕𝐼 (𝑖)𝑘

𝜕2𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

, (133)

nd

𝜕3̃
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑞,𝑘=1

𝜕3̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑖)
𝑘 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

𝜕𝐼 (𝑖)𝑙
𝜕𝜆(𝑗)𝑛

+
3
∑

𝑘,𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑘 𝜕𝐼

(𝑗)
𝑙

𝜕2𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

+

3
∑

𝑘,𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑘 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

𝜕2𝐼 (𝑗)𝑙
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑗)
𝑛

𝛿𝑖𝑗 +
3
∑

𝑞,𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

𝜕2𝐼 (𝑗)𝑙
𝜕𝜆(𝑖)𝑚 𝜕𝜆

(𝑗)
𝑛

𝛿𝑖𝑗+ (134)

3
∑

𝑙=1

𝜕̃
𝜕𝐼 (𝑗)𝑙

𝜕3̃
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚 𝜕𝜆

(𝑗)
𝑛

𝛿𝑖𝑗 .

xtending to the case of anisotropy, mixed terms need to be introduced for all of the second and third derivatives expressed thus
ar. So for quadrant

[

𝑸22
]

𝑖𝑗 of 𝑹 (refer to (65)), the mixed second derivatives are given by

𝜕2̃
(𝑗) (𝑗)

=
3
∑ 𝜕2̃

(𝑗) (𝑗)

𝜕𝐼 (𝑗)𝑘
(𝑗)
, (135)
𝜕𝜆𝑚 𝜕𝐼𝑛 𝑘=1 𝜕𝐼𝑘 𝜕𝐼𝑛 𝜕𝜆𝑚
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and

𝜕2̃
𝜕𝐼 (𝑗)𝑚 𝜕𝜆(𝑗)𝑛

=
3
∑

𝑙=1

𝜕2̃
𝜕𝐼 (𝑗)𝑚 𝜕𝐼 (𝑗)𝑙

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

. (136)

For the first derivative of 𝒓 with respect to the evaluation point, the mixed second derivatives are given by

𝜕2̃
𝜕𝜆(𝑖)𝑚 𝜕𝐼

(𝑗)
𝑛

=
3
∑

𝑘=1

𝜕2̃
𝜕𝐼 (𝑖)𝑘 𝜕𝐼

(𝑗)
𝑛

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

, (137)

nd

𝜕2̃
𝜕𝐼 (𝑖)𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑚 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

. (138)

he second derivative of 𝒓 has both second and third derivatives of the correlation function (refer to (84) and (86) respectively).
irstly, the mixed second derivatives are given by

𝜕2̃
𝜕𝜆(𝑖)𝑝 𝜕𝐼

(𝑖)
𝑚

=
3
∑

𝑞=1

𝜕2̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑖)
𝑚

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

, (139)

and

𝜕2̃
𝜕𝐼 (𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

=
3
∑

𝑘=1

𝜕2̃
𝜕𝐼 (𝑖)𝑝 𝜕𝐼

(𝑖)
𝑘

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

. (140)

econdly the longer set of mixed third derivatives can be evaluated through

𝜕3̃
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑛

=
3
∑

𝑞,𝑘=1

𝜕3̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑖)
𝑘 𝜕𝐼

(𝑗)
𝑛

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

+
3
∑

𝑘=1

𝜕2̃
𝜕𝐼 (𝑖)𝑘 𝜕𝐼

(𝑗)
𝑛

𝜕2𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚

, (141)

𝜕3̃
𝜕𝜆(𝑖)𝑝 𝜕𝐼

(𝑖)
𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑞,𝑙=1

𝜕3̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

+
3
∑

𝑙=1

𝜕2̃
𝜕𝐼 (𝑖)𝑚 𝜕𝐼

(𝑗)
𝑙

𝜕2𝐼 (𝑗)𝑙
𝜕𝜆(𝑖)𝑝 𝜕𝜆

(𝑗)
𝑛

𝛿𝑖𝑗 , (142)

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑘,𝑙=1

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝐼

(𝑖)
𝑘 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

, (143)

𝜕3̃
𝜕𝜆(𝑖)𝑝 𝜕𝐼

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑛

=
3
∑

𝑞=1

𝜕3̃
𝜕𝐼 (𝑖)𝑞 𝜕𝐼

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑛

𝜕𝐼 (𝑖)𝑞
𝜕𝜆(𝑖)𝑝

, (144)

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝜆

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑛

=
3
∑

𝑘=1

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝐼

(𝑖)
𝑘 𝜕𝐼

(𝑗)
𝑛

𝜕𝐼 (𝑖)𝑘
𝜕𝜆(𝑖)𝑚

, (145)

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝐼

(𝑖)
𝑚 𝜕𝜆

(𝑗)
𝑛

=
3
∑

𝑙=1

𝜕3̃
𝜕𝐼 (𝑖)𝑝 𝜕𝐼

(𝑖)
𝑚 𝜕𝐼

(𝑗)
𝑙

𝜕𝐼 (𝑗)𝑙
𝜕𝜆(𝑗)𝑛

. (146)

Appendix C. Symmetric and traceless tensor basis

The basis for the symmetric and traceless second order tensors are given as

𝜳 1 =
√

1
6

⎡

⎢

⎢

⎣

2 0 0
0 −1 0
0 0 −1

⎤

⎥

⎥

⎦

, 𝜳 2 =
√

1
2

⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 −1

⎤

⎥

⎥

⎦

, 𝜳 3 =
√

1
2

⎡

⎢

⎢

⎣

0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, (147)

𝜳 4 =
√

1
2

⎡

⎢

⎢

⎣

0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

, 𝜳 5 =
√

1
2

⎡

⎢

⎢

⎣

0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎦

. (148)
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