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Abstract
Vehicle-mounted detection methods have been widely applied in the main-
tenance of high-speed railways (HSRs), providing feasibility for diagnosing
ballastless track arching. However, applying detection data faces several key lim-
itations: (1) The threshold mostly requires manual setting, making recognition
accuracy highly subjective; (2) the extensive workload of manual inspections
makes it challenging to label detection data, hindering the application of super-
vised learning approaches. To address these problems, this paper utilizes the
longitudinal level irregularity data obtained from vehicle-mounted detection,
employing the concept of unsupervised learning for dimensionality reduc-
tion, combined with clustering algorithms and minimal label fine-tuning, to
design two frameworks: the fully unsupervised framework (FUF) and the few-
shot fine-tuned framework (FFF). Experiments on dynamic detection data
from a Chinese HSR line were conducted, comparing the performance of data
dimensionality reduction, clustering, and classification under different strategy
combinations. The results show that the improved variational autoencoder sig-
nificantly enhances the performance of the encoder in dimensionality reduction,
facilitating better feature extraction; the FUF achieves effective clustering out-
comes without any labeled samples and its adjusted rand index score exceeded
0.8, showcasing its robustness and applicability in scenarios with no prior anno-
tations; the FFF requires only a small number of labeled samples (labeling ratio
of 5%) and achieves excellent performance,withmetrics such as accuracy exceed-
ing 0.85, thus greatly reducing the reliance on labeled data. This study offers a
novel method for solving engineering issues with limited labeled data, providing
an efficient solution for identifying track arching defects and advancing railway
infrastructure monitoring.
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1 INTRODUCTION

Ballastless track has been widely used in the construction
of high-speed railway (HSR) all over the world due to
its advantages of high stability, rigidity uniformity, and
low maintenance (Cai, Tang, Pan, et al., 2023). However,
in the process of long-term operation, affected by the
high-frequency impact load of the train and complex envi-
ronmental conditions, track structure has appeared with
different degrees of disease, such as interlayer debonding
of the track (Peng et al., 2019; Ren et al., 2020), void of
mortar layer (Ren et al., 2016; H. Xu et al., 2013), wide and
narrow joints defects (Z. Li et al., 2020; Liu et al., 2019),
track arching deformation (Tang et al., 2023; Yu et al.,
2018), and so on. Among these diseases, the arching of
the track plate is the most common (Zhang et al., 2024).
These diseases seriously affect the stability, durability, and
smoothness of the track and bring great safety risks to
the normal operation of HSR. Therefore, it is particularly
important to efficiently and accurately achieve the detec-
tion and diagnosis of ballastless track diseases (Tang et al.,
2023).
Scholars have conducted extensive research on the

detection methods of ballastless track diseases. These
methods include manual detection (Shao et al., 2013),
impact echo method (J. Xu et al., 2018), ultrasonic method
(Fan et al., 2019), image method (W. Li et al., 2018),
ground-penetrating radar method (Liao et al., 2016), and
infrared method (Z. Li et al., 2020). In a comprehen-
sive analysis, the detection and assessment methods of
ballastless track diseases still face several challenges. Cur-
rent methods primarily focus on measuring specific arch
sections to quantitatively assess their deformation. How-
ever, these approaches are costly and fail to provide rapid
detection across the entire railway line. Moreover, they
typically require railway engineering personnel to oper-
ate during limited skylight periods, resulting in a complex
process with relatively slow speeds. Given the comprehen-
sive detection vehicle’s ability to collect a large amount of
track irregularity and vehicle response data (Zhang et al.,
2016), it is possible to identify arching diseases on the
track slab by installing acceleration sensors on the train
(Ngamkhanong et al., 2018), a method known as vehicle-
mounted detection. This method has high efficiency (Tian
et al., 2020; Yang et al., 2020). However, when using this
method to identify arching diseases, it is necessary to arti-
ficially set the threshold for these diseases (Hong, 2020;
Z. Li et al., 2019). Additionally, due to the difficulty of
on-site reinspection, supervised identificationmethods are
constrained by data labels, presenting certain challenges.
Unsupervised learning, which does not rely on subjective
experience and human judgment, emerges as a promising
direction in the field of track detection.

To accurately identify arching defects on track slabswith
minimal labeled data, this study proposes two frameworks
for arch diagnosis on ballastless tracks using unsuper-
vised learning: the fully unsupervised framework (FUF)
and the few-shot fine-tuning framework (FFF). The FUF
can uncover latent patterns from unlabeled data, mak-
ing it ideal for HSR monitoring where labeled data are
scarce. This approach enhances defect detection’s flex-
ibility and comprehensiveness, aiding decision-making.
The FFF, on the other hand, is both flexible and effi-
cient, enabling effective training with limited samples and
quickly adapting to various problems. This ensures reliable
model adjustment and prediction even in data-scarce envi-
ronments, suitable for rapid analysis of emerging issues.
These frameworks offer railway engineers the flexibility
to choose based on actual situations and better meeting
maintenance and operational needs. The flowchart of the
research steps is shown in Figure 1.
The study’s innovations include: (1) Optimization of

the spatial structure of the variational autoencoder (VAE),
significantly improving its dimensionality reduction per-
formance. (2) An innovative FUF framework combined
with a clustering algorithm, ensuring effective cluster-
ing even with entirely unlabeled training samples. (3)
Enhancement of the encoder with several fully connected
layers and fine-tuningwith a small number of labeled sam-
ples to form the FFF. This allows the encoder to achieve
significant performance improvements with minimal
labeled data. These frameworks provide significant conve-
nience to field engineers, which is crucial in engineering
practice.
This study is organized as follows: Section 2 presents

previous research on railway disease diagnosis. Section 3
introduces the dimensionality reduction methods and the
disease diagnosis framework. Section 4 presents the prin-
ciples of the track inspection system, the track inspection
data, and the experimental setup. Section 5 showcases the
experimental results of this study, while Section 6 provides
the conclusions.

2 RELATEDWORK

Currently, dynamic track inspection, as a mature onboard
detection method, has been adopted by many national
railway maintenance departments and is widely applied
in the diagnosis and evaluation of track arching defects.
However, existing research mainly relies on the geometric
features of the track for the qualitative detection of arching
locations, rarely utilizing the dynamic response charac-
teristics caused by the arching, and there is no research
on the quantitative estimation of the actual arching dis-
placement. The accuracy of identification methods based
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F IGURE 1 Flowchart of unsupervised learning-based framework for recognizing arches on high-speed railway ballastless track.

on track geometry needs further improvement, making it
difficult to effectively detect minor arching defects.
With the rapid advancement of computer technology,

deep learning techniques have seen significant progress
(Hassanpour et al., 2019; Martins et al., 2020) and have
been widely applied in the railway. These applications
include railway maintenance plan optimization based on
track segment conditions (Chang et al., 2023), railway
track detection using drone imagery (Tong et al., 2023),
3D track optimization for dedicated HSRs (Song et al.,
2022), and geographic information modeling for railway
alignment optimization (Pu et al., 2023). Additionally,
there is research on the rapid generation of railway lines
using multi-touch gestures (Nie et al., 2023). The meth-
ods, however, are significantly data-dependent and require
large amounts of labeled data for training, which is dif-
ficult to obtain in the field of railway track detection.
In the field of structural defect detection, deep learn-
ing has demonstrated excellent generalization capabilities
when faced with unknown datasets. Compared to tradi-
tional methods, it excels in learning complex categories
and boundaries (Rafiei & Adeli, 2016). Although Adeli
and Kamal (1989) did not directly address defect detection,
their research laid the foundation for parallel process-
ing in the field of structural engineering. Furthermore,
Adeli (2001) provided a review of the application of
neural networks in civil engineering, offering an impor-
tant background for understanding the potential of deep
learning.
For HSR infrastructure, manually labeling the track

slabs is a challenging task due to the high-speed move-
ment of trains and the limited window of opportunity
(Shao et al., 2013). The data collected by detection or mon-
itoring devices often include a large amount of unlabeled
data, which cannot be fully utilized by supervised deep
neural network models (Pan et al., 2023; Yang et al., 2021),
resulting in the waste of useful information. Unsuper-

vised learning can effectively address this issue (Zhao
et al., 2021), including research on unsupervised profile
evaluation of rail joints (Cong et al., 2023), unsupervised
defect segmentation (Midwinter et al., 2023), a general
unsupervised novelty detection framework (Soleimani-
Babakamali et al., 2022), dynamic learning rates for
continual unsupervised learning (Fernandez-Rodrıguez
et al., 2023), and unsupervised domain adaptive dose
prediction (Cui et al., 2023). Furthermore, in the field
of railroad inspection, multidimensional inspection and
monitoring data can significantly increase the complexity
of data-driven models. Therefore, dimensionality reduc-
tion methods have become an effective means to deal with
high-dimensional data, including the application of prin-
cipal component analysis (PCA)methods to the prediction
of the evolution of wheelset wear (Braga &Andrade, 2021),
and the use of autoencoder (AE) for track injury moni-
toring in urban railways (J. Chen et al., 2024) versus the
detection of obstacles and soiling in railroad tracks (Jahan
et al., 2021), among others. These dimensionality reduc-
tion methods are combined with clustering algorithms
such as Ordering Points to Identify the Clustering Struc-
ture to form an unsupervised deep learning framework,
which is being used in the identification of injuries and
damages to structures such as railway bridges (S. Li et al.,
2024), helping to reduce the computational complexity
and providing a new perspective for optimizing the
model.

3 METHODOLOGY

3.1 Dimensionality reduction

In the realm of HSR detection and monitoring, the
accumulation of massive high-dimensional data typ-
ically brings along redundancy and noise, potentially
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F IGURE 2 Schematic diagram of dimensionality reduction.

leading to errors and decreased accuracy. Adeli and Wu
(1998) initially highlighted the challenges of processing
high-dimensional data in civil engineering. Generally,
an excess of features will affect the effectiveness of clas-
sification and clustering tasks and significantly increase
the computational time required for complex models. To
address this issue, dimensionality reduction algorithms
have become essential in machine learning (Kakarla et al.,
2020; Rodriguez-Lozano et al., 2023). As illustrated in
Figure 2, the high-dimensional spatial data obtained from
the sampling of vehicle sensors can be effectively reduced
to within the low-dimensional space after being processed
by the dimensionality reduction algorithm. These algo-
rithms facilitate the extraction of crucial information
by minimizing data dimensions, which enhances the
accuracy of downstream processes and boosts efficiency
(Hinton & Salakhutdinov, 2006).
As shown in Equation (1) (Jiang et al., 2021), the essence

of dimensionality reduction is to learn a mapping func-
tion f. It reduces theD-dimensional real number setℝ to d
dimensions, where 1 ≤ d ≤D. The mapping function fmay
be linear or nonlinear, and common mapping functions
(models) include PCA, t-distributed stochastic neighbor
embedding (t-SNE), and so on.

𝑓 ∶ ℝ𝐷 → ℝ𝑑 (1)

3.1.1 AE

In 1986, Rumelhart et al. (1986) first introduced the
concept of AE and applied it to the processing of high-
dimensional complex data. As shown in Figure 3, the
AE consists of two parts: an encoder and a decoder.
The encoder transforms the high-dimensional input
data 𝒙 into a lower-dimensional code 𝒛; meanwhile, the
decoder attempts to reconstruct the input data from this
low-dimensional encoding, generating the reconstructed

F IGURE 3 Structure of the autoencoder (AE).

input 𝒙′. The specific representation of the encoder and
decoder are as follows (Rifai et al. 2011):

𝒛 = 𝑓(𝒙; 𝜃𝒆) = 𝑓(𝑾1𝒙 + 𝒃1) (2)

𝒙′ = 𝑔(𝒛; 𝜃𝒅) = 𝑔(𝑾2𝒛 + 𝒃2) (3)

where 𝑥 and 𝑧 are the high-dimensional input sample and
lower-dimensional code, 𝑥 ∈ ℝ𝐷 , 𝑧 ∈ ℝ𝑑, D≥d. 𝜃𝒆 is the
encoder parameters, which consist of𝑊1 and 𝑏1, and 𝑓(·)
is the encoder activation function. 𝑥′ is the reconstructed
input sample, 𝑥′ ∈ ℝ𝐷 . 𝜃𝒅 is the decoder parameter, which
consist of 𝑊2 and 𝑏2, and 𝑔(·) is the decoder activation
function.
The learning objective of the AE is to minimize the

reconstruction error. Hence, its loss function can be
defined as (Giglioni et al., 2023):

𝑳(𝐱, 𝑥′) = 𝑳(𝑥, 𝑔(𝑧; 𝜃𝒅)) = 𝑳(𝑥, 𝑔(𝑓(𝑥))) (4)

where 𝑔(𝑓(𝑥)) is a composite function, and for a per-
fect AE, it will be a unit (identity) function 𝐼(𝑥) = 𝑥. The
parameters of the network can be effectively learned by
minimizing the reconstruction error with the backpropa-
gation algorithm.
The primary distinction between traditional neural net-

work and AE lies in training supervision signals. For AE,
the signal is not external labels 𝐲 but the input data 𝑥. This
allows AE to achieve an efficient representation of data
through the nonlinear feature extraction capabilities of
neural networks. Moreover, in comparison to linear meth-
ods, AE provides enhanced performance, enabling a more
precise recovery of the input 𝑥. During this process, the
encoder part of the AE is capable of learning a compressed
representation of the input data, thereby facilitating effec-
tive data dimensionality reduction and feature extraction.
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F IGURE 4 Greedy layer-wise pre-training.

3.1.2 Stacked VAE (SVAE)

When training neural networks using gradient descent,
the problem of vanishing gradients becomes significant as
the number of network layers increases, which increases
the difficulty of training deep network and limits its
widespread application. To overcome this challenge, Hin-
ton et al. (2006) improved upon the traditional AE propos-
ing stacked AEs (SAEs), also known as deep AEs (DAEs).
These models leverage multiple layers of encoding and
decoding to learn more complex representations, effec-
tively mitigating the vanishing gradient issue. Specifically,
in SAE, the encoder and decoder usually have the same
number of layers and are symmetrically arranged. To
enhance efficiency further, the parameters of these sym-
metrical layers can have a transposed relationship, a design
known asweight tying. This approach not only reduces the
model parameters by half, speeding up the training pro-
cess, but also significantly reduces the risk of overfitting.
Additionally, to effectively train deep networks, Hinton

creatively introduced a unique training methodology:
greedy layer-wise pre-training. That is, an initialized
parameterWi is formed by layer-by-layer individual train-
ing. Specifically, when training the 1 layer, the parameters
of the 1∼(L − 1) layers are frozen, thereby achieving
independent training for each layer. Afterward, all layers
are unrolled together, and the entire neural network
undergoes parameter optimization adjustments using
algorithms like backpropagation. This results in adjusted
parameters Wi + εi. This training strategy, illustrated in
Figure 4, effectively addresses the issue of the backprop-
agation algorithm easily getting trapped in local minima,
thus enabling efficient training of deep neural networks
(Bengio et al., 2007).
However, during the training phase, the encoder’s

search for a probability distributionwithin the latent space
lacks specific constraints (such as ensuring Gaussian char-
acteristics). This makes decoding samples from the latent

space to produce meaningful outputs a challenging task
(Sajedi & Liang, 2022). VAE addresses the aforementioned
issue by employing variational inference, introducing
a different perspective and methodology (Kingma &
Welling, 2014). As a deep generative model, its primary
objective is to establish a probabilistic model that can not
only describe the data generation process but also learn the
distribution of latent variables from observed data. Unlike
traditional AEs that describe the latent space directly in a
numerical form, VAEs observe the latent space in a prob-
abilistic manner, encoding input data 𝑥 into a standard
Gaussian distribution. This constraint helps to regularize
the latent space, thereby reducing the risk of model
overfitting.
Based on the mentioned VAE and SAE, an SVAE model

is constructed as illustrated in Figure 5a. In the SVAE,
the role of the encoder is to output the key parameters of
the latent variable distribution: mean and variance. They
describe the Gaussian distribution of the latent space. And
the reparameterization trick is applied to resample this dis-
tribution to obtain specific latent feature values, a process
depicted in Equation (5) (Hoffman et al., 2013).

𝑧 = 𝜇 + 𝜎 ⋅ 𝜀 (5)

where 𝜇 and 𝜎 are the mean and standard deviation for
the latent variable z. 𝜀 is a noise term following a standard
normal distribution, 𝜀 ∼ (0, 1).
The loss function of SVAE comprises two components:

reconstruction loss and Kullback–Leibler (KL) divergence.
The optimization goal is to minimize the difference
between the input 𝑥 and the reconstructed output 𝑥′ and to
ensure that the distribution of the encoded latent variables
𝑧 closely aligns with a predetermined prior distribution.
This can be specifically represented as (Kingma&Welling,
2014):

𝑳(𝐱, 𝐱′) = −𝐸𝑞𝜙(𝐳|𝐱)[𝑙𝑜𝑔𝑝𝜃(𝐱|𝐳)] + 𝐾𝐿[𝑞𝜙(𝐳|𝐱) ‖|𝑝(𝐳) ] (6)
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F IGURE 5 Structure of stacked variational AE and proposed framework (z is latent variable). KL, Kullback–Leibler; SVAE, stacked
variational autoencoder.

where the first term is the reconstruction term, which
encourages the model to reconstruct the input data 𝑥

based on the latent variable 𝑧. The second term is the
regularization term, which is the KL divergence between
𝑞𝜙(𝐳|𝐱) and the prior distribution 𝑝(𝐳), ensuring that the
distribution of the latent variables does not deviate from
the prior distribution.
Training the SVAE involves optimizing the parameters

of the generative model 𝜃 and the variational parameters 𝜙
simultaneously. The objective is to maximize the Evidence
Lower BoundObjective,which is equivalent tominimizing
the loss function.

3.1.3 Improved AE design

This study employs a dimensionality reduction algo-
rithm to reduce high-dimensional detection data to
low-dimensional potential space. However, when VAE
is applied to the low-dimensional potential space,
it is prone to problems such as loss of information
and degradation of reconstruction quality, which
is hypothesized to be that the data distribution of
the potential space is not suitable for the dataset of

this study. Based on this, this study proposes a new
strategy.
As illustrated in Figure 5b, a high-dimensional latent

space is introduced on the basis of the original model to
assist in the computation of the KL scatter, while a two-
dimensional latent space is reserved exclusively for extract-
ing the downscaling results. These data are subsequently
used for clustering and classification tasks. This strategy
not only enhances the model’s reconstruction quality and
performance in subsequent tasks but also offers a new
perspective in the analysis and dimensionality reduction
of high-dimensional data. This enhanced version of the
model focusing on potential spatial improvement (PSI) is
named SVAE with PSI (SVAE-PSI).

3.2 FUF design

The previous section explains the improvements made in
this study in terms of dimensionality reduction. As shown
in Figure 5c, the hidden layer coding 𝑧 with dimension 2
was obtained after the dimensionality reduction process
by using SVAE-PSI. Then, 𝑧 was used as the input to the
clustering algorithm, and the highly flexible clustering
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capability of methods such as the Gaussian mixture model
(GMM) was utilized to successfully achieve a diagnosis
of arches on the track structure. This training process
is entirely independent of any label information, hence
the name FUF. This framework not only significantly
enhances the precision of clustering but also provides an
effective solution for practical issues in the HSR domain,
where labels are difficult to obtain.
Algorithm 1 details the training process of the FUF.

First, the track inspection data collected by the onboard
sensors is preprocessed to obtain the training and test
sets. Next, the encoder network parameters are initialized,
and a layer-wise greedy pre-training strategy along with a
global fine-tuning strategy is employed to train the dimen-
sionality reduction encoder network. After completing the
network training, the number of clusters n is specified,
and the dimensionality-reduced results are input into the
GMM for clustering, ultimately returning the cluster labels
for each group.

3.3 Few-shot fine-tuned framework
(FFF) design

Considering that railway workers routinely evaluate the
condition of the track structure during regular inspections,
thereby obtaining a small amount of labeled data sam-
ples, this study proposes the FFF. As shown in Figure 5d,
the dimensionality reduction results are fed into a fully
connected layer network to perform the supervised clas-
sification task. In addition, during the model fine-tuning
process, there is flexibility to choose whether to freeze the
encoder parameters or not, depending on the number of
samples used (to be discussed further). This provides field
workers with greater operational flexibility.
Algorithm 2 describes the training process of the FFF.

The data preprocessing and dimensionality reduction steps
are the same as in Algorithm 1. After obtaining the trained
encoder network, the fully connected layers are added,
and the encoder network parameters are frozen. The fully
connected layers are trained separately using a small num-
ber of labeled samples. This training is conducted for 50
epochs to obtain the framework parameters. The classifi-
cation results of the model are then validated based on the
training set.

4 EXPERIMENT DESIGN

4.1 Data acquisition

The track irregularity detection data selected in this study
comes from an operational HSR in China, with CRTS II

ALGORITHM 1 Fully unsupervised framework

Input: Training and test datasets 𝑋 = [𝐱𝟏, … , 𝑥𝑚] ∈ ℝ𝐷×𝑚

and 𝑇 = [𝐭𝟏, … , 𝑡𝑛] ∈ ℝ𝐷×𝑛 ⊳D is the dimension
of original data,m and n are the number of training
and test sets

Output: Cluster label 𝑌; encoder network 𝜃𝒆
Dimensionality reduction phase
1: Initializes the encoder and decoder network, based

on the Kaiming Uniform (He Uniform) initialization
method

2: // Pre-training
3: (a) For i = 1 to the number of encoder layer (refer to

Table 3 for setting the number of layers)
Freeze encoder and decoder parameters 𝜃𝒆, 𝜃𝒅
Unfreeze encoder layer i and symmetric decoder

layer j parameters
(b) For k = 1 to 50 epochs (number of pre-training)
Input X in batches of size 32
Forward propagation
Calculate the reconstructed 𝑋′ and the mean

and 𝜎 variance 𝜇 of the latent spatial distribution.
Calculate the loss function by Equation (6)
Backpropagation to update parameters using

Adam optimizer with learning rate 0.001
End for

End for
4: // Fine-tuning
5: Unfreeze all layer parameters
6: (c) For i = 1 to 50 epochs (number of fine-tuning)

Repeat (b)
End for

7: Return encoder network 𝜃𝒆
8: (d) For i = 1: n

𝐫𝐢 =𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝜽𝒆; 𝐭𝐢) ⊳𝐭𝐢 ∈ ℝ𝐷, 𝐫𝐢 ∈ ℝ2

End for
9: Return two-dimensional test datasets 𝑅 ∈ ℝ2×𝑛

Clustering phase (Take GMM for example)
10: n_cluster = number of disease category
11: Initialize the GMM based on random or k-means
12: Fitting GMM to 𝑅 using the EM algorithm
13: (e) For i = 1: n

𝐲i=𝐺𝑀𝑀(𝐫𝐢;𝑛_𝑐𝑙𝑢𝑡𝑒𝑟)
End for

14: Return test cluster label 𝑌 = [𝐲𝟏, … ,𝐲𝐧] ∈ ℝ𝑛

ballastless track. Since the operation of the railway, the
track irregularity detection system has regularly detected
the status of the line and accumulated a large amount of
detection data.



8 TANG et al.

ALGORITHM 2 Few-shot fine-tuned framework

Input: Training and test datasets 𝑋 = [𝐱𝟏, … , 𝑥𝑚] ∈ ℝ𝐷×𝑚

and 𝑇 = [𝐭𝟏, … , 𝑡𝑛] ∈ ℝ𝐷×𝑛, small training sets label
𝑆 = [𝐬𝟏, … , 𝑠𝑝] ∈ ℝ𝑝 ⊳D is the dimension of original
data,m and n are the number of training and test
sets, p is the number of labeled training set, p ≤ m

Output: Classify label 𝑌;
Few-shot fine-tuned framework 𝜃

Pre-training phase
1: Same as Algorithm 1 Steps 1 to 7
2: Return encoder network 𝜃𝒆
Fine-tuning phase
3: Extract the encoder network structure
4: Add fully connected layers referring to Figure 5c
5: Load parameters 𝜃𝒆 and freeze the encoder layer
6: (a) For i = 1 to 50 epochs (number of fine-tuning)

Input labeled set 𝑋𝐿 forward propagation
Calculate of classification results 𝑆
Calculate the loss function by loss (𝑆, 𝑆)
Backpropagation to update parameters

7: End for
Return few-shot fine-tuned framework 𝜃
Classification phase
8: Load parameters 𝜃
9: Input test datasets 𝑇
10: Return classify label 𝑌=𝐹𝐹𝐹(𝜃;𝑇)

4.1.1 Track irregularity detection system

The track irregularity detection system mainly consists of
a laser camera component and an inertial measurement
component (Cai, Tang, Yang, et al., 2023). The laser camera
component measures the lateral displacement and verti-
cal displacement of the rail relative to the detection beam
by processing the image information of the collected rail
profile. The inertial measurement component is mainly
composed of gyro platform, accelerometers, and so on. The
main function of the inertial measurement component is
to establish the inertial reference for track detection,which
is shown in Figure 6a.
The detection items of the track irregularity detection

system include gauge, alignments, longitudinal level, cross
level, twist as shown in Figure 6b. The spatial sampling
interval of the irregularity data is 0.25 m, and the detailed
data acquisition process can be found in the literature (S.
Wei et al., 2011). The description of various types of track
irregularities is as follows:

1) Longitudinal level irregularity refers to the unevenness
of the track in the vertical direction along the length of
the rail.

F IGURE 6 Acquisition and presentation of track irregularity.
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2) Alignment irregularity refers to the unevenness of the
track in the transverse direction along the length of the
rail.

3) Cross level refers to the difference in height between
the top surfaces of the two rails at the cross-section of
the track.

4) Gauge refers to the deviation of theminimum inner dis-
tance between the two rails at the same cross-section of
the track, 16mm below the top surface of the rails, from
the standard gauge.

5) Twist refers to the algebraic difference in the cross-level
amplitudes between two track cross-sections that are
separated by a certain distance.

4.1.2 Dataset

Longitudinal level irregularity refers to the unevenness
of the track along the length of the rail, in the vertical
direction. When the track is arched, the rail will have
additional irregularity with the deformation of the track,
which makes the longitudinal level irregularity appear as
an arching feature (Z. Chen et al., 2024). As a regular
item of the track detection system, the irregularity is obvi-
ous, and the feature position corresponds well with the
position of the arching, which provides an opportunity
for the rapid investigation and positioning of the arching
disease.
This paper collects a large amount of inspection data

fromboth normal sections and sectionswith arching. First,
the data are classified using clustering algorithms, reveal-
ing that they can be divided into four clusters. These
four clusters are then compared with the actual arch-
ing conditions recorded in the maintenance logs of HSRs.
One cluster corresponds to normal sections, while the
other three clusters correspond to slightly arching sec-
tions (Level 1), moderately arching sections (Level 2),
and severely arching sections (Level 3), as shown in
Figure 6c.
Arching is determined by differences in longitudinal

level irregularity data. Damaged connections between
track slabs cause arching at high temperatures, resulting
in larger irregularity amplitudes, while low tempera-
tures lead to smaller amplitudes. Significant differences in
irregularities between low- and high-temperature months
indicate arching, whereas minimal differences suggest no
arching. It compares longitudinal-level irregularities in
January (low temperature) and July (high temperature).
In normal sections, irregularity amplitudes are consistent
acrossmonths. In arched sections, however, significant dif-
ferences in July compared to January indicate the severity
of arching, with greater differences reflecting more severe
conditions.

This paper detects arching defects based on the mea-
sured data of track irregularities. The mileage deviation
between the identified arching defects and the actual
arching defects depends on the deviation between the
mileage of the track irregularity detection data and the
actual mileage. In fact, the authors have conducted exten-
sive work on correcting the mileage deviation in track
irregularity detection data using the positioning index,
confidence index (Qin et al., 2024), and dynamic time
warping method (H. Wei, Yang, Wu, et al., 2022; H. Wei,
Yang, Zhu, et al., 2022). After validation, the deviation
between the detection data mileage and the actual mileage
can be controlled within 0.5 m.
Due to the relativelyweak connection between two track

slabs, the maximum arching typically occurs at the junc-
tion of the two slabs. The arching magnitude gradually
decreases as the distance from the junction increases, even-
tually reaching zero. Therefore, the arching of the track
slab does not occur at a specific mileage point but rather
forms within a mileage range. This study refers to this as
the “track slab arching interval.” The length of the arch-
ing interval is typically 12.5 m, which includes 50 sampling
points of track irregularity. The purpose of this research is
to utilize detection data to identify whether a certain inter-
val is an arching interval; if so, it is believed that there is
an arching defect within the range of that interval. Based
on the deviation between the detection data and the actual
mileage, the deviation between the arching interval and
the actual mileage can be derived.
Assume the starting point of the detected arching inter-

val is D1 (detection data), and the actual starting point is
R1. Therefore, it holds that:∣D1−R1∣≤0.5 m.
If the starting point of the arching interval isD1, then the

endpoint D2 is: D2 = D1 + 12.5 m.
The actual endpoint R2 is: R2 = R1 + 12.5 m.
The deviation of the arching interval’s start-

ing and ending points from the actual mileage is:
∣D2−R2∣ = ∣(D1+12.5)−(R1+12.5)∣ = ∣D1−R1∣≤0.5 m.
Thus, the deviations of both the starting and ending

points of the arching interval from the actual mileage are
within 0.5 m. This means that the overall deviation of
the arching interval is also within 0.5 m, which is accept-
able for railwaymaintenance personnel. In this study, data
preprocessing mainly includes the alignment, cutting and
division of 2 months’ track inspection data. The alignment
process is as follows:

1) First, the track irregularity data for January and July are
obtained, denoted as f(x) and g(x), respectively.

2) Themaximum correlationmethod is employed to align
the mileage of the data from the 2 months: for the two
discrete irregularity datasets f(x) and g(x), let g(x) be
shifted by m units, denoted as g(x+m). The correlation
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TABLE 1 Sample composition of the dataset.

Name Training set Test set All
Normal 900 100 1000
Arch-level 1 360 40 400
Arch-level 2 180 20 200
Arch-level 3 180 20 200
All 1620 (90%) 180 (10%) 1800

distribution between f(x) and g(x+m) is calculated for
different values of m to find the value of m that corre-
sponds to the maximum correlation coefficient. Thism
represents the phase difference between the irregular-
ity data f(x) and g(x). By shifting g(x) by m units, the
alignment of the two sets of irregularity data can be
achieved.

After data preprocessing, 1800 sets of track detection
data with track irregularity are used, each data segment
contains 50 measuring points (measuring point spacing
0.25 m), and the longitudinal length along the railway
is 12.5 m (covering the complete track slab size). Since
the training set has a small amount of data, in order
to avoid the risk of overfitting, this study used 10-fold
cross-validation to fully evaluate the performance of the
SVAE-PSI model. Therefore, in this study, the dataset
was divided into a training set and a test set at a
ratio of 9:1. The specific amount of data is detailed in
Table 1.

4.2 Comparative experiments

Corresponding to Section 2, three sets of comparison exper-
iments are designed to focus on the visualization results of
dimension reduction algorithms, the performance of unsu-
pervised clustering, and the effects of classification after
fine-tuning. They were all trained under the same condi-
tions to reduce the error introduced by randomness. Both
clustering and classification experiments were repeated
three times, with the results averaged.

4.2.1 Comparison of dimensionality
reduction algorithms

As shown in Table 2, three sets of experiments, tra-
ditional dimensionality reduction algorithm, encoder-
based dimensionality reduction algorithm, and improved
encoder-based dimensionality reduction algorithm, were
used for the comparison of dimensionality reduction algo-
rithms. The test set was reduced to a two-dimensional

space, and the dimension reduction effects of different
methods were observed through visual scatter plots.
The AE configurations used in this study are shown

in Table 3, including four types: SAE, stacked denoising
AEs (SDAEs), stacked contractive AE (SCAE), and SVAE.
Additionally, on the basis of the four SVAE, a latent space
ranging from 10 to 100 dimensions (with a step size of 10)
was added, resulting in a total of 40 groups of SVAE-PSI.
It is important to note that in this study, we set the

dimensionality of the low-dimensional space to 2 and used
the two-dimensional output as input for subsequent tasks.
This parameter setting is based on early experimental
attempts. As shown in Table 4, we employed two mod-
els, SVAE-1 and SVAE-PSI-1 (with a latent space dimension
of 50), for the dimensionality reduction task and used
the GMM method as the clustering algorithm. The table
presents the adjusted rand index (ARI) under different
dimensional outputs.

4.2.2 Comparison of FUF

As shown in Table 5, after reducing the dimensionality
of high-dimensional data using different algorithms, the
two-dimensional samples were input into five types of
clustering methods: KMeans, agglomerative hierarchical
clustering, density-based spatial clustering of applications
with noise, GMM, and fuzzy c-means, to achieve com-
pletely unsupervised classification of the arching degree
of the track. External indices (using a labeled test set),
such as the ARI, normalized mutual information, as well
as internal indices (unlabeled test set), like the silhouette
coefficient (SC) and v-measure, were used to evaluate the
clustering performance, with ARI serving as the primary
comparison metric.
To comprehensively compare the impact of introduc-

ing a high-dimensional latent space on model perfor-
mance, the parameters, floating-point operations per sec-
ond (FLOPs), and testing times of the SVAE and the
SVAE-PSI were compared. Additionally, the clustering
effects of incorporating identical fully connected layers in
SAE, SDAE, and SCAE were compared. This comparison
was aimed at validating that the improvements in cluster-
ing achieved by SVAE-PSI are not attributable to changes
in the encoder structure settings.

4.2.3 Comparison of FFF

The preliminary trials indicated that SVAE-PSI has signif-
icant advantages in dimensionality reduction and feature
extraction. Therefore, the SVAE-PSI-1, with a latent
space dimensionality of 50, was selected for the study.
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TABLE 2 Comparison of different dimensionality reduction algorithms.

Algorithm type Algorithm name Characteristic
Traditional algorithms PCA, KPCA, SPCA, ICA,

UMAP, t-SNE
Less computationally intensive and suitable for linear
relationships with simple datasets

Encoder-based algorithms SAE, SDAE, SCAE, SVAE Specializes in capturing complex non-linear relationships in
high-dimensional data and can effectively work with
structured data such as images and sequences

Improved encoder-based
algorithms

SVAE-PSI Improvements to the potential space reduce the loss of
information in the dimensionality reduction process

Abbreviations: PCA, principal component analysis; SAE, stacked autoencoder; SCAE, stacked contractive autoencoder; SDAE, stacked denoising autoencoder;
SVAE-PSI, stacked variational autoencoder with potential spatial improvement; t-SNE, t-distributed stochastic neighbor embedding.

TABLE 3 Different configurations of the autoencoder (AE) in this paper.

Name Encoder structure Activation function Encoder out Decoder out Loss function
SAE-1 200-100-50-30-10-2 Relu Linear Linear MSE
SAE -2 200-100-50-30-10-2 Relu Tanh Linear MSE
SAE -3 200-500-200-30-20-2 Relu Linear Linear MSE
SAE -4 200-500-200-30-20-2 Relu Tanh Linear MSE
SDAE-1 200-100-50-30-10-2 Relu Linear Linear MSE
SDAE-2 200-100-50-30-10-2 Relu Tanh Linear MSE
SDAE-3 200-500-200-30-20-2 Relu Linear Linear MSE
SDAE-4 200-500-200-30-20-2 Relu Tanh Linear MSE
SCAE-1 200-100-50-30-10-2 Relu Linear Linear MSE + CL
SCAE-2 200-100-50-30-10-2 Relu Tanh Linear MSE + CL
SCAE-3 200-500-200-30-20-2 Relu Linear Linear MSE + CL
SCAE-4 200-500-200-30-20-2 Relu Tanh Linear MSE + CL
SVAE-1 200-100-50-30-10-2 Relu Linear Linear MSE + KLD
SVAE-2 200-100-50-30-10-2 Relu Tanh Linear MSE + KLD
SVAE-3 200-500-200-30-20-2 Relu Linear Linear MSE + KLD
SVAE-4 200-500-200-30-20-2 Relu Tanh Linear MSE + KLD
SVAE-PSI-1 200-100-50-30-10-2+latent

space (10-100)
Relu Linear Linear MSE + KLD

SVAE-PSI-2 200-100-50-30-10-2+latent
space (10-100)

Relu Tanh Linear MSE + KLD

SVAE-PSI-3 200-500-200-30-20-2+latent
space (10-100)

Relu Linear Linear MSE + KLD

SVAE-PSI-4 200-500-200-30-20-2+latent
space (10-100)

Relu Tanh Linear MSE + KLD

Abbreviations: CL, contrastive loss; KLD, Kullback-leibler divergence; MSE, mean squared error; Relu; rectified linear unit; SAE, stacked autoencoder; SCAE,
stacked contractive autoencoder; SDAE, stacked denoising autoencoder; SVAE-PSI, stacked variational autoencoder with potential spatial improvement.

TABLE 4 Clustering results under different dimensions of
low-dimensional space.

Dimensions SVAE-1 SVAE-PSI-1
2 0.72 0.73
5 0.70 0.72
10 0.69 0.71
15 0.73 0.72
20 0.72 0.72

Abbreviations: SVAE, stacked variational autoencoder.

Additionally, fully connected layers with node counts of
50 and 100 were introduced to construct the FFF. Table 6
presents the outcomes of employing different training
strategies. During the pre-training phase, two approaches
were utilized: unsupervised greedy layer-wise pre-training
for the encoder and proceeding without pre-training the
encoder parameters. The fine-tuning phase explored the
effects of either freezing or not freezing the pre-trained
encoder parameters. The framework employs accuracy,
precision, recall, and F1 score as evaluation metrics to
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TABLE 5 Comparative settings of different clustering algorithms.

Strategy name
Clustering
strategy-1

Clustering
strategy-2

Clustering
strategy-3

Clustering
strategy-4

Clustering
strategy-5

Dimensionality reduction Traditional AE, improved AE
Cluster method KMeans AHC DBSCAN GMM FCM

Abbreviations: AHC, agglomerative hierarchical clustering; DBSCAN, density-based spatial clustering of applications with noise; GMM, Gaussianmixture model;
FCM, fuzzy c-means.

TABLE 6 Comparative settings for different fine-tuning
methods.

Strategy name Pre-training Fine-tuning
Fine-tuning
strategy-1

Unsupervised Supervised +
freezing encoder

Fine-tuning
strategy-2

Unsupervised Supervised +
unfreezing encoder

Fine-tuning
strategy-3

None Supervised

F IGURE 7 Adjusted rand index (ARI) under multiple track
irregularity metrics. AHC, agglomerative hierarchical clustering;
DBSCAN, density-based spatial clustering of applications with
noise; FCM, fuzzy c-means; GMM, Gaussian mixture model;
SVAE-PSI, stacked variational autoencoder with potential spatial
improvement.

observe the performance when trained with only a small
number of labeled samples.

5 RESULTS AND DISCUSSION

5.1 Track irregularity type selection

As mentioned in the previous section, track irregular-
ity includes multiple indicators. This study attempted
to use various irregularity indicators, including gauge,
alignment, longitudinal level, cross level and twist, as
input for dimensionality reduction in the model. Figure 7
shows the ARI scores of the clustering after dimen-
sionality reduction, indicating that the clustering per-
formance is poor when multiple indicators are used

as input together. Therefore, based on the findings of
other studies, this research focuses on using longitudinal-
level irregularity as the input indicators for subsequent
studies.

5.2 Visualization of dimensionality
reduction results

The performance of dimensionality reduction algorithms
is visualized by 2D scatterplots as shown in Figure 8. In the
reduced-dimensional scatterplot, the x and y axes repre-
sent the projections of the original high-dimensional data
in the new low-dimensional space. These two dimensions
are generated by the algorithm with the aim of capturing
and illustrating themain features and structure of the orig-
inal data. Specifically, the x axis typically represents the
first principal component or feature obtained during the
dimensionality reduction process, which accounts for the
largest variance in the data; whereas the y axis represents
the second principal component or feature, which usu-
ally explains the largest portion of the remaining variance.
The combination of these two dimensions allows us to
intuitively observe the distribution of the data, clustering
structures, and potential patterns.
Figure 8a illustrates the 2D scatterplot obtained based

on traditional dimensionality reduction methods. From
the figure, it can be observed that most of the dimen-
sionality reduction methods fail to effectively distinguish
between the normal category and different degrees of arch
anomalies. In t-SNE and the uniform manifold approxi-
mation and projection (UMAP) algorithm based on flow
learning, the scatter points show a uniform distribution,
and the points representing normal are scattered in the
central area; however, the distance between the points of
different categories is the same, thus failing to form effec-
tive clusters. In contrast, the visualization results of PCA,
SPCA and independent component analysis (ICA) are rel-
atively consistent, showing a tendency of spreading from
the central to the periphery, with the normal categories
concentrated in the central of the scatterplot, but also inter-
mixedwith scatters from other categories. Kernel principal
component analysis (KPCA), on the other hand, performs
better, compared to the other methods, with the scatters of
the normal category located in the lower left corner, which
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F IGURE 8 Visualization results of dimensionality reduction for different models. PCA, principal component analysis; SAE, stacked
autoencoder; SCAE, stacked contractive autoencoder; SDAE, stacked denoising autoencoder; SVAE-PSI, stacked variational autoencoder with
potential spatial improvement; t-SNE, t-distributed stochastic neighbor embedding.
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is more clearly differentiated from the other categories,
which is a more satisfactory result.
Figure 8b demonstrates the results of the dimensionality

reduction based on the encoder model. From the figure, it
can be observed that the performances of SAE and meth-
ods like SPCA are similar, both showing that the normal
category scatter points are concentrated while the scatter
points of other categories are dispersed. In contrast, the
downscaling results of SCAE are relatively consistent, with
all scatters distributed near the diagonal, suggesting that
the addition of the CL term to the loss function causes
the downscaled scatters to converge toward the diagonal.
In the results of the SCAE-1, the normal category is con-
centrated in the upper left corner of the scatter plot and
gradually concentrates toward the lower right corner as
the degree of disease in the arch deepens, which is a sat-
isfactory result. From the visualization results alone, the
SDAE-1 showed the best results in terms of dimensionality
reduction, with the scatters of the different classes largely
unadulterated, which facilitated the subsequent clustering
task. The SVAE, on the other hand, performed surprisingly
well, and while SVAE-1 performed excellently, the remain-
ing three models all performed extremely poorly as the
model parameters were adjusted, with different categories
of scatters confounded together. From the performance of
the four AEs, it can be seen that each encoder performs
better when the first parameter setting is used (nodes 200-
100-50-30-10-2), but the performance decreases to varying
degrees when the parameters are adjusted, especially for
the SVAE. Therefore, it is hypothesized that for the dataset
used in this study, increasing the number of hidden layer
nodes is not an improved idea.
Figure 8c demonstrates the downscaling visualization

results based on the SVAE-PSI for potential space dimen-
sion = 50, and it can be seen that the downscaling
performances of the four model settings are satisfactory,
and clusters with more distinct boundaries can be formed
between different categories, which indicates that the
improvement is effective.

5.3 Analysis of clustering results

After achieving feature extraction by different dimension-
ality reduction algorithms, various clustering algorithms
are accessed to evaluate the performance of FUF, and the
detailed metrics are shown in Figures 9 and 10. The results
in Figure 11 represent the average obtained through 10-fold
cross-validation.
Figure 9a shows the results of clustering after prepro-

cessing by traditional dimensionality reduction methods
such as PCA and direct clustering of the original data.
The figure shows that the performance of the original data

when clustering directly ismore general, which is only bet-
ter than t-SNE and UMAP methods, which indicates that
the dimensionality reduction operation of the data helps
to improve the performance of clustering, and verifies that
the idea of this study is correct. Among the traditional
dimensionality reduction algorithms, KPCA is the best
performer, which indicates that the introduction of ker-
nel function for constructing complex nonlinear classifiers
can effectively cope with the nonlinear data in this study.
Among the clustering algorithms, GMM performs most
satisfactorily with the best performance in several evalu-
ation metrics, which indicates that the GMMmethod as a
soft clustering method can better deal with the ambiguity
and uncertainty in the dataset of this study.
Figure 9b shows the model performance under differ-

ent clustering strategies using SC as the evaluation metric.
It can be seen that all models have achieved good perfor-
mance, indicating that thesemodels have high consistency
and good clustering quality. Figure 9c shows the ARI
scores, and it can be seen that GMM achieved the best
scores in all combinations. However, except for SVAE-1,
the scores of other SVAE models have a sharp decline,
indicating that the dimensionality reduction results are
unstable when the latent space dimensionality is 2. This
is speculated to be due to the over-regularization problem
and the limitations of the prior distribution in traditional
VAE (Dilokthanakul et al., 2017). This might lead to overly
simplified learned latent representations, failing to suffi-
ciently capture the complexity and diversity of the data,
thus limiting the model’s ability to capture multimodal
data distributions.
Moreover, despite the good performance shown by the

SC scores under different clustering strategies, some mod-
els perform poorly in ARI scores, reflecting that model
performance may vary under different evaluation metrics.
The performance of SVAE in ARI scores further indicates
the need to consider latent space dimensionality and reg-
ularization strategies in model design to enhance model
robustness and adaptability to complex data structures.
The SVAE is improved by adding 10–100 dimensions (in

steps of 10) of latent space, and the results are shown in
Figure 10. As can be seen from the figure, the clustering
performance of the framework is significantly improved
with the introduction of high dimensional latent space
followed by dimensionality reduction, especially the ARI
scores are in the range of 0.8–0.9 when using GMM for
clustering, which is satisfactory. Table 7 gives the model
complexity of different SVAEs when the potential space
dimension 50/100 is introduced. The comparison of the
number of parameters, FLOPs, and test time shows that the
introduction of the potential space only slightly increases
the complexity of themodel and has almost no effect on its
actual operation and deployment.
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F IGURE 9 Clustering results under preprocessing based on different dimensionality reduction methods. AHC, agglomerative
hierarchical clustering; DBSCAN, density-based spatial clustering of applications with noise; FCM, fuzzy c-means; GMM, Gaussian mixture
model; PCA, principal component analysis; SAE, stacked autoencoder; SCAE, stacked contractive autoencoder; SDAE, stacked denoising
autoencoder; SVAE-PSI, stacked variational autoencoder with potential spatial improvement; t-SNE, t-distributed stochastic neighbor
embedding.

TABLE 7 The parameter quantity, floating-point operations per second (FLOPs) and test time before and after AE improvement.

Params FLOPs Testing time
Name Initial Dim = 50 Dim = 100 Initial Dim = 50 Dim = 100 Initial Dim = 50 Dim = 100
SVAE-1 74,494 75,252 76,052 73.7 K 74.3 K 75.0 K 5.3 ms 5.2 ms 5.6 ms
SVAE-2 74,494 75,252 76,052 73.7 K 74.3 K 75.0 K 6.2 ms 5.1 ms 5.9 ms
SVAE-3 435,274 436,492 437,792 433.3 K 434.4 K 435.6 K 6.6 ms 6.5 ms 6.1 ms
SVAE-4 435,274 436,492 437,792 433.3 K 434.4 K 435.6 K 6.7 ms 6.6 ms 6.0 ms

Abbreviation: SVAE, stacked variational autoencoder.

Figure 11 shows the clustering performance after adding
fully connected layers of dimensions 20/50/80 to the other
AEmodels. As seen in the figure, the introduction of these
fully connected layers in these models did not improve the
ARI score, indicating that the change in SVAE is due to the
change in the latent space and not a tweak in the structural
settings.

5.4 Analysis of classification results

The results in the previous section show that the SVAE-
PSI has advantages in dimensionality reduction and
can achieve superior results in a fully unsupervised
clustering framework, so in this section, the fine-tuning
results are computed with the SVAE-PSI-1, with latent
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F IGURE 10 Comparison of clustering results after AE improvement. AHC, agglomerative hierarchical clustering; DBSCAN,
density-based spatial clustering of applications with noise; FCM, fuzzy c-means; GMM, Gaussian mixture model; SVAE-PSI, stacked
variational autoencoder with potential spatial improvement.

F IGURE 11 Clustering results of other AEs after structural adjustment (with Gaussian mixture model [GMM] as the clustering
algorithm). SAE, stacked autoencoder; SCAE, stacked contractive autoencoder; SDAE, stacked denoising autoencoder.

space = 50/100, and with the incorporation of fully con-
nected (FC) = 50/100.
Figure 12 illustrates the performance after fine-tuning

with different labeled training sets. As can be seen from
the figure, Fine-tuning strategy-1 achieves better perfor-
mance when using a very small number of labeled training
sets (only 5% of the total number of samples), while Fine-
tuning strategy-2 gradually overtakes it as the number of
samples increases. This suggests that better feature extrac-
tion can be achieved by retaining the original encoder
parameters when using a very small number of samples
and that unfreezing the parameters at this point may
cause overfitting due to too little data. As the number of
samples increases, the risk of model overfitting is greatly
reduced, so Fine-tuning strategy-2 gradually outperforms
Fine-tuning strategy-1. The performance of Fine-tuning

strategy-3 is lower than that of other strategies, which
indicates that pre-training of the encoder is necessary.
Additionally, to explore the impact of using pre-trained

encoders as feature extraction layers on the performance of
fully connected networks, the number of labeled samples
was gradually increased during the training process of the
FFF framework. The results are shown in Figure 13. In the
figure, the dashed lines represent the results for the FFF
framework with FC = 100, data_scale = 5% and FC = 50,
data_scale = 5%. The specific procedure is as follows: first,
the SVAE-PSI-1 encoder structure was pre-trained using
unlabeled training set samples to extract data features and
perform dimensionality reduction. Then, the pre-trained
encoder was connected to fully connected layers (with 50
and 100 hidden node), and the encoder network param-
eters were frozen. Next, the FFF framework was trained
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F IGURE 1 2 Classification results of few-shot fine-tuned framework with different numbers of hidden nodes and proportion of labeled
samples.

using 5% of the labeled training set samples, and the results
were obtained from the test set. Figure 13 shows that with-
out pre-training the encoder structure, 50% of the labeled
samples are required to achieve the same effect as using 5%
of the labeled samples with pre-training.
To ensure line safety in practical engineering, railway

engineers also conduct regular inspections to check the
track structure status. To estimate the workload of this
study dataset only, each piece of data is about 12.5 m, so
45% (810 labels) of the labels need to be checked by the
staff inspecting a railway section of about 10 km, which

is an extremely large amount of workload and can be
carried out only during the daytime window period, so
the sample-less fine-tuning framework of this paper is of
significant engineering significance.

5.5 Generalization performance
validation

To verify the generalization performance of the pro-
posed framework, we collected track inspection data from
another HSR line. The specific data collection process
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F IGURE 13 Comparison of classification results for pre-trained and un-pretrained encoder parameters (where the dashed and dotted
lines line is the classification result when freezing the encoder parameters, latent space dimension = 50).

TABLE 8 Sample composition of the dataset.

Name Training set Test set All
Normal 540 60 600
Arch-level 1 180 20 200
Arch-level 2 90 10 100
Arch-level 3 90 10 100
All 900 100 1000

is detailed in Section 4.1, and the data composition is
shown in Table 8. Figure 14 presents the clustering results
obtained using the FUF framework.
As can be seen from the figure, applying the SVAE-PSI

series model for dimensionality reduction before cluster-
ing significantly improved the results, compared to direct
clustering, achieving an ARI score of approximately 0.8.
This indicates that the proposed framework performs well
on other operational lines and can accurately diagnose
arching defects.
In addition, regarding the generalization to other types

of track defects, although this study primarily focuses on

F IGURE 14 ARI under preprocessing based on different AE
structures and configurations. AHC, agglomerative hierarchical
clustering; DBSCAN, density-based spatial clustering of
applications with noise; FCM, fuzzy c-means; SVAE-PSI, stacked
variational autoencoder with potential spatial improvement.

the identification of arch defects in ballastless tracks, the
proposed framework demonstrates broad applicability due
to the similarities among various track diseases and faults
encountered in HSR systems. With appropriate adjust-
ments to the model’s input and output structures, it is
anticipated that this framework can be extended to iden-
tify other types of track defects in the future. This direction
will be an important focus of our subsequent research.
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6 CONCLUSION

This study introduces two frameworks for identifying
track slab arch, FUF and FFF, which are based on unsu-
pervised algorithms. These frameworks provide railway
maintenance personnel with the flexibility to choose based
on actual conditions, thereby better meeting the mainte-
nance and operational needs of railway engineering sites.
The results indicate that both frameworks can enhance
the diagnostic effectiveness of track slab arch defects,
whichholds significant practical engineering implications.
Specific details are as follows:

(1) The structure of the latent space in the VAE has been
modified to create SVAE-PSI, enhancing the encoder’s
performance in dimensionality reduction tasks.

(2) The FUF framework is designed in combination with
the clustering algorithm. It incorporates the feature
extraction benefits of the dimensionality reduction
algorithm along with the superior clustering per-
formance of methods such as GMM, ensuring the
effective clustering of various data categories even in
the complete absence of labeled training samples.

(3) The FFF framework is designed in combination with
the idea of model fine-tuning. Results show that
this framework can achieve significant performance
improvements with very few labeled samples. It can
significantly reduce the demand for labeled samples.
In practical railway applications, it greatly reduces the
workload of field personnel.

It should be noted that this study has some limitations.
First, there remains significant potential to enhance the
performance of the proposed model. Strategies such as
clustering integration, data augmentation techniques, and
hyperparameter optimization can be employed to improve
the model’s effectiveness in clustering and classification
tasks. To further enhance the generalizability of the pro-
posed frameworks, it is essential to incorporate data from
a broader range of routes and to conduct a thorough
evaluation of model performance in handling large-scale
on-site data. Specifically, implementing strategies such as
dynamic adjustments to model complexity, along with
batch and stream processing, will be vital for achieving
an optimal balance between model complexity and perfor-
mance. Additionally, exploring advanced methodologies
such as the neural dynamic classification algorithm (Rafiei
& Adeli, 2017), dynamic integrated learning algorithm
(Alam et al., 2020), finite elementmachine for fast learning
(Pereira et al., 2020), and self-supervised learning (Rafiei
et al., 2023) represents promising avenues for the future
development.
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