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Abstract: The battery system, as the core energy storage device of new energy vehicles, faces
increasing safety issues and threats. An accurate and robust fault diagnosis technique is crucial
to guarantee the safe, reliable, and robust operation of lithium-ion batteries. However, in battery
systems, various faults are difficult to diagnose and isolate due to their similar features and internal
coupling relationships. In this paper, the current research of advanced battery system fault diagnosis
technology is reviewed. Firstly, the existing types of battery faults are introduced in detail, where
cell faults include progressive and sudden faults, and system faults include a sensor, management
system, and connection component faults. Then, the fault mechanisms are described, including
overcharge, overdischarge, overheat, overcool, large rate charge and discharge, and inconsistency.
The existing fault diagnosis methods are divided into four main types. The current research and
development of model-based, data-driven, knowledge-based, and statistical analysis-based methods
for fault diagnosis are summarized. Finally, the future development trend of battery fault diagnosis
technology is prospected. This paper provides a comprehensive insight into the fault and defect
diagnosis of lithium-ion batteries for electric vehicles, aiming to promote the further development of
new energy vehicles.

Keywords: electric vehicles; lithium-ion batteries; battery faults; fault diagnosis methods

1. Introduction

Lithium-ion batteries have attracted widespread attention from both academia and
industry due to their high power and energy density, long cycle life, and low self-discharge
rate, which have been applied in different scenarios such as consumer electronics, electric
vehicles, distributed energy storage, and large-scale energy storage [1,2]. However, as
a typical energy storage device, which involves complex electrochemical reaction mech-
anisms, lithium-ion batteries inherently have high safety risks, having potential safety
issues that can threaten reliable vehicle operation [3–5]. Theories and techniques of system
engineering are demanded to pay attention to battery material system development, battery
management system (BMS) design, energy storage system structure optimization, and other
levels to ensure its safety and stability in actual utilization in electric vehicles [6].

Limited by the current development level of electrical, thermal, and safety manage-
ment system technologies, lithium-ion batteries will suffer from mechanical, electrical, and
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thermal abuse during actual operation, such as overcharge, overdischarge, and overheat-
ing [7,8]. These abuses can cause a rapid degradation in battery performances and even
cause internal short circuits that can lead to severe safety problems [9]. In electric vehicles,
distributed energy storage, and large-scale energy storage, a large number of individual
lithium batteries tend to be connected in series and parallel to form battery modules and
packs to meet the demand of current, voltage, power, and energy. The large number of
connected components greatly increases the complexity of the system and will leads to an
increased probability of various types of failures [10,11]. Consistent effort has been invested
to prevent the thermal runaway of onboard batteries. To understand the battery faults
mechanisms, Wu et al. reviewed the recent research on battery aging mechanisms. Besides,
the state estimation accuracy influences the performance of the battery management system
(BMS) [12]. Shrivastava et al. executed a review and analysis of the existing advanced state
estimation methods [13]. They also proposed the comprehensive co-estimation method
for battery states, which could effectively make use of the existing correlation between
different battery states and reduce computational expense [14]. Gu et al. aimed to design
an easy-to-implement diagnosis method that does not require accurate mathematical mod-
eling, expert understanding, and complex computational process [15]. It is necessary to
implement an effective and reliable fault diagnosis method of the battery system based on
the recognition of the battery system fault initiation mechanism. Early warning of battery
faults is required to improve the safety and reliability of the real application of the battery
system [16].

As for battery system fault diagnosis, researchers have conducted a lot of explo-
ration in terms of fault triggering mechanism, behavior characteristics, and reaction
mechanism [17–19]. A further understanding of battery system faults has been obtained,
and a preliminary fault diagnosis strategy has been developed based on the external char-
acteristic behavior exhibited by the occurrence of faults. In this paper, the fault diagnosis of
battery systems in new energy vehicles is reviewed in detail. Firstly, the common failures
of lithium-ion batteries are classified, and the triggering mechanism of battery cell failure is
briefly analyzed. Next, the existing fault diagnosis methods are described and classified in
detail. Finally, the perspective of future development in battery fault diagnosis technology
is summarized.

2. Battery Fault Mechanism

During the practical use of new energy vehicles, battery performances are influenced
by a variety of factors. In this section, different types of battery faults in new energy vehicles
are introduced and the failure mechanisms of the battery system are elaborated in detail.

2.1. Battery Fault Types

Common lithium-ion battery systems mainly include cells, BMS, sensors, connection
components, etc. Due to the complex internal operation mechanism and external user
conditions, there are various types of faults in lithium-ion battery systems and complex fault
evolution patterns. From the perspective of the control system, battery system fault modes
can be divided into two main types, including cell fault and system fault, respectively.
Cell fault is the dominant factor affecting the safety of battery systems, which can be
further divided into progressive faults and sudden faults. System faults can be classified as
management system faults, sensor faults, and connection component faults. This subsection
will elaborate on the different types of battery faults, as shown in Figure 1.

2.1.1. Cell Fault

Lithium-ion batteries can fail during actual operation due to changes in their internal
structure or characteristics. According to the different development stages of cell fault, it
can be mainly divided into two types: progressive fault and sudden fault.

Progressive fault is mainly caused by battery degradation, which is essentially a
superposition of a series of internal battery side reactions and is affected by both internal
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and external battery environments. During the charge and discharge cycle, abnormalities
such as loss of active material, electrolyte consumption, increase in internal resistance,
lithium deposition, gas generation, SEI thickening, and current collector corrosion will
occur inside the battery [20–22]. External stimulation and internal side reactions lead to
continuous loss of cell active components and accumulation of insoluble by-products [23].
The consequent shift in electrochemical equilibrium can cause the battery degradation
highly nonlinear and leads to high overpotential, low-rate capability, and especially limited
lifespan, which hinders the battery’s commercial application. Therefore, timely detection
of progressive faults and accurate assessment of battery health conditions can provide a
strong guarantee for safe battery operation.

Sudden fault is a failure that causes sudden failure or significant degradation of the
battery system without obvious signs or within a short period, including internal short
circuits [24], thermal runaway, capacity diving, liquid leakage, etc. Sudden fault and
progressive fault are equivalent to two successive processes in the reaction time sequence,
and the final stage of progressive fault development is to trigger a sudden fault. For
example, unreasonable charging and discharging strategies can lead to internal lithium
plating, causing battery capacity to fade, which is still a progressive failure. With the further
evolution of lithium deposition, lithium dendrites can penetrate the separator, triggering
internal short circuits [25]. Massive heat is released and even triggers thermal runaway in a
short period [26], which is a sudden failure. Therefore, progressive faults can develop into
sudden faults through continuous evolution. However, the occurrence of sudden faults
does not depend entirely on the evolution of progressive faults. In addition to battery
degradation, other battery external factors can also directly lead to the sudden faults of
batteries. For example, the battery in the use process, due to mechanical abuse resulting
in an internal short circuit, can generate a lot of heat in a short period, which can lead to
thermal runaway, smoke, fire, or even explosion [27].

2.1.2. System Fault

Battery system fault consists of the following three main types, management system
fault, sensor fault, and connection component fault, respectively.

Management system fault: In the field of new energy vehicles, the function of power
BMS mainly contains two aspects, which are monitoring and management. That is a
real-time estimation of battery performance parameters and effective control of battery
temperature according to the application environment [28]. BMS is the core control unit,
its normal performance is significantly important to ensure the safe, stable, and reliable
working condition of the battery [29]. The battery management system enables the safe
monitoring of power cell characteristics by collecting external characteristics of the power
cell system [30,31]. If the BMS fails, it will send an error command and interfere with the
proper operation. The functions will be limited, and in severe cases, irreversible damage
will be caused to the battery, which will lead to a series of chain failures [32]. For example,
the failure of the equalization component of the BMS can lead to increased inconsistency in
the battery system and affect the system’s performance. If the charging and discharging
control components of the BMS fail, it will cause an increased risk of overcharge and
overdischarge and reduce the battery life. If the temperature control component of the BMS
fails, it will cause the battery system to operate at an abnormal temperature, which may
lead to thermal abuse and even cause thermal runaway [33]. The development of BMS with
a high level of functional safety is a hot issue for the industry, which needs to be solved
from different aspects such as the design process, software, and hardware.
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Figure 1. Battery fault can be divided into cell fault (a–l) and (m–o) system fault. (a) Three-dimension
schematic for Li deposition [34]. Reproduced with permission from Elsevier. (b) The consumption of
active electrode materials. (c) Impedance profiles of the batteries [35]. Reproduced with permission
from Elsevier. (d) Electrolyte consumption at the anode/electrolyte interface [36]. Reproduced
with permission from Elsevier. (e) Mechanical failure of ceramic electrolyte [37]. Reproduced with
permission from Elsevier. (f) Current corrosion of cathode materials [36]. Reproduced with permission
from Elsevier. (g) Cross-sectional image of thickening SEI [38]. Reproduced with permission from
Elsevier. (h) Modeling of gas generation [39]. Reproduced with permission from the Elsevier.
(i) Lithium dendrite-induced internal short circuits in lithium-ion batteries [40]. (j) Thermal runaway
accident [41]. (k) Cell capacity loss [42]. (l) SEM images of the prepared porous membranes [43].
(m) Battery state estimation algorithm framework [44]. (n) Fault diagnosis scheme of sensor [45].
(o) Battery component connection fault [46].
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Sensor fault: The sensor measurements can be used to update the model parameters
in the battery management system in real-time to achieve highly accurate monitoring
and management of the battery. The battery management system is dependent on the
suitable operation of temperature, voltage, current and other sensors to achieve battery
state estimation, charging and discharging control, fault diagnosis, equalization control,
temperature control, and other functions. There are three main types of battery sensor
faults, including voltage sensor fault, current sensor fault, and temperature sensor fault,
respectively [45]. During usage, there will be inevitable faults such as deviation, drift,
decrease in accuracy level, or even stopping working. Once the sensor fault is not detected
in time, it can lead to the current, voltage, temperature, and other data cannot be measured
or can be measured inaccurately, affecting the accuracy of multi-state estimation of battery
SOC, SOH, SOT, etc. It is difficult to make accurate and reasonable judgments on the
current working state of the battery, inducing the BMS system to stop working or posting
wrong commands. However, lithium-ion batteries must operate within safe voltage and
temperature ranges, and exceeding these ranges can lead to reduced battery performance,
equalization errors, and even thermal runaway accidents. Generally, compared with sensor-
stopping faults, sensor faults such as deviation, drift, and accuracy level reduction are
more hidden and more difficult to diagnose, which is the focus and challenge of the current
sensor fault diagnosis technology research [47].

Connection component fault: The battery connection component fault tends to be
induced by a bad connection between battery terminals. Connections between individual
cells in a battery pack or between battery modules need to be made by nuts or welding
processes. With the increase in vehicle running time and the uncertainty of operating
conditions, the vibration, corrosion of components, and expansion of battery gas production
can trigger the failure of internal connection components of the battery system, such
as loose nuts or welding joints and poor contact [46,48]. If a false connection occurs
between cells, it can affect the power performances of the battery system at high rates,
resulting in insufficient battery output power. If such faults are not effectively detected
and eliminated for a long time, they can cause the resistance to increase rapidly. Excessive
internal resistance can lead to a continuous accumulation of local heat, which can result
in an increase in the temperature of the battery and connections, causing accelerated
degradation of the battery or even thermal runaway safety accidents [49].

2.2. Battery Fault Mechanism

The study of the fault mechanism of battery can help us understand the occurrence
and evolution of the fault pattern, so as to provide a scientific basis for the development of
fault diagnosis methods. This subsection briefly introduces the causes and mechanisms of
different faults. Currently, there are mainly overcharge, overdischarge, overcool, overheat,
large rate charge and discharge, inconsistency, and other factors that may lead to battery
failure, as shown in Figure 2.

Overcharge: In order to meet the voltage and capacity requirements of automotive
power sources, the battery system consists of many individual cells connected in series or
parallel. However, there are inconsistencies between individual cells due to manufacturing
defects and differences in operating conditions [50]. During charging, overcharging of some
individual batteries will inevitably occur due to problems such as battery charger failure or
inaccurate detection or estimation of battery state (e.g., SOC) in the battery management
system [51]. Even if the total voltage of the battery system remains relatively below its
limit, some individual cells can still be overcharged [52]. Generally, when a battery is
overcharged, lithium plating will occur on the surface of the anode. If there is a slight
overcharge for a long period, it will lead to a progressive fault in the battery capacity fading
too fast due to the loss of active lithium. At the same time, lithium plating may induce
lithium dendrites, increasing the safety risk of micro or internal short circuits caused by
separator penetration. In some extreme cases, such as when a BMS failure occurs, a long
period of deep overcharge of the battery can occur. The battery temperature continues
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to rise, triggering a series of side reactions such as SEI film decomposition and cathode
material decomposition [53], which eventually trigger sudden failures such as internal
short circuits and thermal runaway of the battery [54,55].
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Overdischarge: Generally, the overdischarge is prevented by setting the discharge cut-
off voltage. However, overdischarge is still a common trouble in electric vehicle applications
due to high current inrush, unreasonable design of battery management system, long
battery storage time, and unbalance between battery modules. As for the long-term slight
overdischarge situation, the anode structure and the SEI film are easily damaged due to
the complete deintercalation of lithium ions. It leads to irreversible loss of active material
and triggers a progressive fault in which the battery capacity fades quickly. If a long period
of deep overdischarge occurs, the lithium-ion stripping ability of the anode decreases.
Battery polarization voltage rises, causing the negative current collector copper foil to be
oxidized, dissolved, and deposited on the cathode surface. On the one hand, it affects the
electron transport capacity of the negative current collector and hinders the deintercalation
of lithium ions, resulting in the progressive fault of rapid fade of battery capacity and
rapid increase of internal impedance [56]. On the other hand, copper deposited on the
surface of the cathode may penetrate the separator, triggering sudden faults such as internal
short circuits and thermal runaway of the battery [17]. In addition, deep overdischarge
can cause excessive lithium embedding in the cathode, triggering irreversible damage
to the crystal structure of the cathode material and leading to degradation of the battery
performance [57].

Large rate charge and discharge: As the charge and discharge rate of the battery
increases, the heat production rate increases consequently. It is easy to trigger exothermic
side reactions inside the battery, increasing the risk of internal short circuits, and can cause
sudden fault of the battery thermal runaway [58,59]. Especially for the large rate charging
process, due to the solid phase diffusion rate limitation, the lithium plating tends to occur
at the anode surface. It causes progressive fault of capacity fading, and induces lithium
dendrite growth, causing internal short circuits as a safety hazard.

Overheat: Battery charging and discharging process will be accompanied by the vio-
lent movement of electrons, the result of this violent movement is the thermal effect. Many
conditions can cause abnormal battery heating, such as side reactions during overcharge
and overdischarge, external short circuits, internal short circuits, insufficient cooling system
heat dissipation capability, etc. When the battery is at a relatively high operating tempera-
ture, it can increase the rate of internal side reactions, such as the rate of SEI decomposition
and regeneration. It leads to an accelerated rate of irreversible loss of active material and
triggers a progressive fault in which the battery capacity fades quickly [60,61]. In the
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charging and discharging process, if the battery working environment temperature is too
high and the heat production rate is significantly higher than the heat dissipation rate,
the lithium-ion battery may have different degrees of expansion. It can cause resistance
increase and cycle life degradation, which triggers a series of exothermic side reactions
such as electrolyte consumption and separator melting. The degradation of cathode mate-
rial and the growth of solid electrolyte interfacial in the anode can be accelerated, which
eventually leads to sudden faults such as internal short circuits and thermal runaway of
the battery. If the decomposition of the materials inside the lithium-ion battery produces
gas, the increased pressure will cause the battery to expand and possibly explode.

Overcool: When the battery is in a low-temperature operating environment, it may
cause some of the solvents in the electrolyte to condense and solidify. Lithium-ion diffu-
sion or migration rate becomes significantly smaller. Especially for the low-temperature
charging case, there is a mismatch between the electrochemical reaction and the solid phase
diffusion rate. The ionic conductivity of the SEI and electrolyte and the diffusion of lithium
into the graphite can be decreased significantly, resulting in the battery capacity fading
rapidly [62,63]. The lithium plating on the surface of the anode tends to occur, and the
uncontrollable dendrites can cause a series of sudden faults such as separator penetration,
internal short circuit, etc., [64,65].

Inconsistency: In the various stages of battery manufacturing, screening into groups
and usage, there is a certain degree of inconsistency in internal and external parameters such
as available capacity, internal resistance, open-circuit voltage, self-discharge rate, and charge
state among the individual cells in the battery system, which can affect the system efficiency,
safety, and service life [66,67]. Generally, with the charging and discharging cycles, the
inconsistency among the individual cells tends to gradually increase due to the different
degradation histories, which affects the overall capacity of the system. For example, in
the screening stage, the low available capacity cell can be fully charged and discharged
during actual operation, or even overcharged and overdischarged. It will accelerate the
degradation process, which will eventually lead to premature battery failure, and the
whole battery system will also show the progressive fault of capacity fade. Therefore, it
is an important part of battery fault diagnosis to identify and locate the faulty single unit
in advance and implement targeted operation and maintenance through real-time and
accurate assessment of battery system inconsistency.

The trigger mechanism of battery cell fault is complex and requires optimal design
and regulation at all stages of battery manufacturing, screening into groups, and use
to improve battery system safety. During the actual operation, the electric and thermal
management strategies are optimally designed to avoid abnormal operations such as over-
charge, overdischarge, overcooling, overheating, and large rate charging and discharging
as much as possible. It can delay the rate of capacity fade and internal resistance increase,
reducing the risk of lithium plating, micro or internal short circuit, thermal runaway, etc.
By designing a reasonable battery cell fault diagnosis technology to achieve accurate early
identification of faulty cells, it can provide support for targeted operation and maintenance
of the safety and reliability of the battery system.

3. Fault Diagnosis Method

The battery system itself is a complex, strongly nonlinear, and time-lagged system.
Based on the information on current, voltage, temperature, etc., [68]. collected in real-
time, a reasonable fault diagnosis system can be designed to realize fault warnings. It can
feedback on fault information to the battery management system to take necessary protec-
tion measures to guarantee the safe, stable, and reliable working condition of the battery
system. Currently, the methods used for battery system fault diagnosis mainly include
model-based, data-driven, knowledge-based, and statistical analysis-based methods, as
shown in Figure 3. Furthermore, Table 1 shows the fault diagnosis methods and typical
fault diagnosis cases.
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Figure 3. The fault diagnosis models mainly include (a,b) the electrochemical model [69,70] and
(c,d) the empirical/semi-empirical model [71,72]. The model-based battery fault diagnosis algorithm
is to establish a lithium-ion battery correlation model, generates residuals by comparing the predicted
values of the model with the real values measured by sensors, and then evaluates the residuals to
achieve fault diagnosis.

3.1. Model-Based Methods

The model-based fault diagnosis method requires that the estimated values derived
from the battery-related model are compared with the actual measured values, and the
difference between the two produces the system residuals. The residual can be used as
a fault signal, and this signal can be used to further analyze the fault characteristics and
provide theoretical data support for system fault diagnosis. Noted that system residuals
should, ideally, contain only fault information. With the help of battery models and
measurement data, many researchers have used observers or filters to perform state or
parameter estimation and use the difference between the estimated and actual values to
determine faults. Generally, battery models can be divided into two types, that is, the
electrochemical models and empirical/semi-empirical models.

The electrochemical model of a lithium-ion battery can further connect the internal
microscopic mechanism of the battery with engineering applications by solving the complex
coupling relationship between multiple physical fields such as electric field, concentration
field, thermal field, and electrochemical reaction, thus playing an active role in the design
of battery structure and battery thermal management system. Feng et al. proposed a
method for online detection of internal short circuit faults based on a three-dimensional
electrochemical-thermal-internal short circuit coupling model, which uses the least squares
method based on the forgetting factor for online parameter estimation to achieve internal
short circuit detection [70]. However, the method was not experimented and was not
validated in practical applications. After that, they proposed a model-based fault-diagnosis
algorithm for online internal-short-circuit detection [73]. This algorithm can transform
the measured voltage and temperature to the intrinsic electrochemical status that can
reflect typical internal-short-circuit features, relying on the theory of model-based control.
Furthermore, they constructed a coupled electrochemical-thermal model to predict the
voltage drop and temperature increase during thermal runaway [74]. The coupled model
could capture the underlying mechanism, including capacity degradation under high
temperatures, the internal short circuit caused by the thermal failure of the separator,
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and the chemical reactions of the cell components that can release heat under extreme
temperatures. Kong et al. constructed a pseudo-two-dimensional model of micro internal
short circuit batteries, revealing the phenomenon of electric quantity depletion and the
variation of internal electrochemical parameters. The effective electric conductivity of the
separator found a crucial parameter that could describe the internal short circuit severity.
They determined reasonable values for this effective conductivity for fault diagnosis and
battery design [75]. Seo et al. estimated the short-circuit resistance by optimizing the
short-circuit model within a lithium-ion battery through a switching model. The Open
Circuit Voltage (OCV) and state of charge (SOC) were estimated by the recursive least
squares method by combining the OCV and SOC curves, and the short-circuit resistance
was estimated based on the variation of the estimated OCV and SOC [76]. Gao et al.
aimed to quantitatively analyze micro-short-circuit in an initial stage. An equivalent
micro-short-circuit experiment was carried out to verify the feasibility of the proposed
method [77]. Zhao et al. proposed a modified electrochemical-thermal model, which
can incorporate an additional heat source from the nail site and prove to be successful in
depicting temperature changes in batteries. This model was able to estimate the occurrence
and approximate start time of thermal runaways [78]. Presently, the electrochemical model
is developing toward multi-dimensionality, multi-scale, and multiple electrode materials,
further establishing accurate mathematical models and laying the foundation for optimal
design of power batteries.

The empirical/semi-empirical model uses battery measurement data to generate
residuals to detect faults through state and parameter estimation techniques. Due to its
simplicity and convenience, it is widely used for fault diagnosis of battery components
and battery packs. He et al. utilized the adaptive extended Kalman filter to estimate the
states of each individual battery. The estimated values are compared with the measured
values to determine the fault [72]. Besides, Liu et al. presented an effective model-based
sensor fault detection method with low computational effort. The estimated output voltage
from the adaptive extended Kalman filter is compared with the measured voltage to
generate a residual. The residuals can be evaluated to determine the occurrence of fault [79].
Ouyang et al. developed an internal short circuit detection method based on battery
consistency within the battery pack. This method employs the recursive least square
algorithm, which derives from the equivalent circuit model [80]. Alavi et al. obtained an
estimation of the Li+ transport rate in electrodes and compared it with the boundary values
in order to generate an appropriate fault alarm of lithium plating [81]. Dey et al. proposed
a partial differential equation model to detect thermal faults in lithium-ion batteries. The
distributed parameter 1-D thermal model for the cylindrical battery was utilized combined
with partial differential equation observer-based techniques [82].

3.2. Data-Driven Methods

With the rise of artificial intelligence, data-driven fault diagnosis methods have grad-
ually become a research hotspot. The data-driven fault diagnosis method does not re-
quire a precise analytical mathematical model of the system, and the fault detection and
separation of the system is completed mainly by analyzing and processing the system
process operation data with the help of relevant technical means. The battery fault is
diagnosed by learning the potential fault occurrence pattern from a large number of battery
training samples.

The data-driven methods require to construct the relationship between fault features
and fault labels. However, the fault data tends to take a lot of time to obtain, making
the methods difficult to apply in real applications. With the rapid development of cloud
computing platforms, there is a dynamic increase in the speed of data collection, resulting
in a great breakthrough in data size and quality. Combined with the powerful computing
ability, data-driven methods have gradually been employed to achieve online battery
fault diagnosis [83]. Machine learning algorithms can be classified into four types based
on problem attributes, that is, regression, classification, clustering, and dimensionality
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reduction, as shown in Figure 4. The data is first collected and pre-processed and then
used to train and optimize the data-driven model. The optimized model is used to predict
and analyze the actual data and to achieve fault diagnosis. Chen et al. proposed an online
two-step prediction approach for the maximum temperature rise. The experimental data
were used to validate the approach, and the mean absolute error of prediction results
was 3.05% [84]. Kim et al. proposed a data mining-based real-time fault diagnosis for
multicell lithium-ion batteries using a microcontroller. The physical model parameters
and operation states were estimated and utilized to detect abnormal batteries, identifying
the types of faults such as internal short circuits and anomy-aged cells [85]. Zhao et al.
presented a fault diagnosis method for battery systems in electric vehicles based on the
machine learning method [83]. The 3σ multi-level screening strategy was applied to detect
and analyze the abnormal changes of cell terminal voltages in a battery pack in the form
of probability [86]. To validate the diagnosis model, the actual vehicle operating data is
utilized. Jiang et al. proposed a fault diagnosis method with an isolated forst algorithm.
The original voltage data can be decomposed into static components, reflecting anomalous
information [87]. Yang et al. proposed a random forests-based classification method to
identify the electrolyte leakage behavior during external short circuit fault experiments.
Furthermore, a three-step model-based diagnosis algorithm for identifying the external
short circuit fault was proposed [88]. Xia et al. proposed a fault diagnosis method for
battery fault diagnosis based on supervised statistical learning. The statistical properties
of fault were captured based on the maximum likelihood estimator and the excellent
performance of the proposed method in dynamic conditions was demonstrated with the
validation experiments [89]. Hong et al. utilized long short-term memory recurrent neural
network to develop a novel deep-learning enabled method, performing accurate voltage
prediction for battery systems. The battery safety can be assessed by predicting battery
voltage to diagnose the occurrence of faults and decrease runaway risk [90].
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Figure 4. The data-driven methods can be divided into (a,b) classification [84,88], (c,d) regression [89,90],
(e,f) clustering [83,85], and (g,h) dimensionality reduction [91,92]. Data-driven battery fault diagnosis
algorithm directly analyzes and processes a large amount of offline and online operational data of
batteries, establishes a mapping mechanism between the input and output of batteries, and extracts
the corresponding features for fault diagnosis.
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3.3. Statistical Analysis-Based Methods

The fault diagnosis method based on statistical analysis is analyzed using statistical
methods such as information entropy, normal distribution, correlation coefficient analysis
and other methods directly based on the current, voltage, and temperature data obtained
from the signal acquisition system, setting reasonable abnormality coefficients and thresh-
olds [93], as shown in Figure 5. Xia et al. proposed a fault detection method for battery
faults of short circuits based on the correlation coefficient. This method can utilize the
direct voltage of the battery cell and does not require any additional hardware [94]. Wang
et al. utilized the modified Shannon entropy to propose an in-situ voltage fault diagnosis
method, which can predict the voltage fault in time by monitoring battery voltage during
operations [95]. Ma et al. proposed a connecting fault detection method of lithium-ion
batteries in series. The cross-voltage test was adopted to recognize the increase in contact
resistance and internal resistance [96]. Cao et al. proposed an internal short circuit diagno-
sis algorithm for battery packs through voltage anomaly detection. The mean-difference
algorithm was applied to characterize large battery packs. The diagnosis of an internal
short circuit was approached based on residual analysis [97]. Liu et al. utilized sequential
residual generation with structural analysis theory. The structural analysis can deal with
the pre-analysis of sensor faults without the demands of the accurate detection of battery
parameters, which is efficient during the early design stages of fault diagnosis [98]. Fan et al.
constructed a generalized dimensionless indicator with a tolerance factor and mapped it to
2-dimensional space to represent voltage evolution patterns. Then the local outlier factor
algorithm was used to find the anomalies pattern and identify faulty batteries [99]. These
methods have low computational complexity and high execution efficiency. It can extract
useful fault characteristics directly from the battery measurement data to achieve faults
diagnosis, without the necessity of building accurate battery analysis models, and is proper
for a wide range of applications. However, it tends to be possible to achieve fault detection,
and it is difficult to identify the type of fault.
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Figure 5. The statistical analysis-based methods include (a) correlation coefficient analysis [94],
(b) entropy theory [95], (c) statistical distribution [96], (d) mean difference algorithm [97], etc. The
statistical analysis method is based on a large number of experimental analysis techniques to obtain
the characteristic parameters of the battery and uses statistical methods to analyze the collected data
to achieve battery fault diagnosis.
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3.4. Knowledge-Based Methods

Knowledge-based power battery fault diagnosis method research started early and is
widely applied. This type of method does not require the use of complex mathematical
models and relies on the understanding of battery mechanisms and the knowledge and
experience accumulated over time to make fault judgments through intellectualization in
concepts and processing methods, which can establish the connection between specific
faults and fault data characteristics [100]. The main knowledge-based fault diagnosis
methods are expert systems, fault trees, threshold rules, etc.

The expert system method is the most studied and widely used class of fault diag-
nosis techniques [101]. The key to this method is the size of the system knowledge base
and the design of the reasoning machine, and a comprehensive and effective knowledge
database can greatly help the reasoning judgment results. Huber et al. [102] utilized the
expert knowledge to derive a database and proposed a method consisting of five phases.
Chao et al. utilized fuzzy logic algorithms to determine different battery failure situa-
tions, extracting electric parameters and incremental capacity parameters under dynamic
conditions as features [103]. Anwar et al. used a fuzzy logic-based residual evaluation
algorithm to detect battery faults, constructing an electrochemical model to generate resid-
ual signals for voltage, temperature, and state of charge [104]. The expert system method
does not require mathematical models and is easy to understand [11]. However, there
are still limitations such as difficulty in acquiring knowledge and poor self-adaptation
and learning ability. The fault tree analysis method is a practical method for the safety
and reliability analysis of power battery systems [44]. The fault diagnosis network can be
constructed based on various components in the system [105]. Singer utilized the fault tree
and reliability analysis method to give a picture concerning tolerances of the probability
values of hazards. The construction of a correct and reasonable fault tree is the core and
key of diagnosis, once the fault tree is incomplete or incorrect, this diagnosis method
will be useless [106]. Fault diagnosis based on threshold rules is now widely adopted by
vehicle remote supervision platforms due to its easy setting of thresholds and low method
difficulty factor. The threshold is established by utilizing a historical database and the
rich experience of domain experts. Zhu et al. proposed a safety management method to
mitigate the impact of overcharge and avoid the thermal runaway risk. The sharp drop in
voltage before thermal runaway was used to provide a feasible approach to forewarn the
impending risk [107]. Xiong et al. proposed a threshold rule-based detection method for
overdischarged lithium-ion batteries. According to the temperature increase and voltage
decrease during battery overdischarge, respectively temperature and voltage rules were
established, and the Boolean expressions were used to directly give fault detection and early
warning through Boolean expressions. However, in practical applications, the appropriate
rules or time [108]. Liu et al. used each time step length of all cell voltage values as an
indicator and used the entropy value method to obtain the target weights of each indicator.
Based on the combined score and threshold value, the cells can be accurately identified
voltage anomaly [109].
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Table 1. Summary of fault diagnosis methods and typical fault diagnosis cases.

Methods Techniques Fault Types Algorithm Properties Typical Examples

Model-based
methods

Kalman filter Overcharge, overdischarge, sensor faults Insensitive to noise; high computational complexity Present an effective sensor fault detection and isolation
scheme based on extended Kalman filter [72]

Particle filter Lithium plating Insensitive to noise; large computational effort Combine the particle filter and electrochemical models to
diagnosis lithium plating [81]

Partial differential equations Thermal faults High accuracy; complex Approach real-time diagnosis for thermal faults based on
PDE model [82]

least squares method Internal short circuit, micro short circuit Low computational cost and high accuracy; low
fault tolerance

Approach real-time ISC detection based on the combination
of least squares method and coupled electrochemical

model [70]
Luenberger learning

observers
Fault caused by internal resistance,

thermal faults
It can assess faults quantitatively; it’s noise sensitive and

less robust
Detect and isolate three main thermal resistance faults based

on Luenberger learning observers [110]

Non-linear observer Thermal faults High accuracy, simple; the parameters identification
is difficult

Approach battery thermal faults detection based on
non-linear observer [111]

Equivalent circuit model Faults related with voltage and current Simple and convenient; poor universality Approach the identification of battery micro-short circuit
based on equivalent circuit model [71]

Data-driven
methods

Support vector machines External short circuit Excellent robustness; heavy computing Approach a two-step prediction of max temperature rise
based on SVM [84]

Neural networks Short circuit, performances High accuracy; it depends on amount and quality of data Approach accurate multi-forward-step voltage prediction
based on LSTM [90]

Clustering analysis Short circuit Simple and fast; it’s sensitive to outliers and noise Approach fault diagnosis for multi-cell batteries based on
clustering analysis [85]

Random forest Leakage No feature selection; it requires large amounts of
training data

Approach the identification of leakage based on random
forests algorithm [88]

Knowledge-
based

methods

Expert system methods Both internal and external battery faults No mathematical models required, convenient; the
knowledge base is difficult to access The expert knowledge is used to derive a database [102]

Fuzzy logic Sensor fault, connection component fault Highly fault tolerant and easy to implement; poor
learning ability The Fuzzy logic is used to control the observation noise [112]

Fault trees Sensor fault, overcharge
and overdischarge Clear cause-effect relationship; complex Provide a picture concerning the tolerances of the probability

values of hazards [106]

Threshold rules Overcharge, internal short circuit,
connection component fault Simple and fast; high false alarm rate Mitigate the impact of overcharge and avoid the risk of

thermal runaway [107]

Statistics-based
methods

Entropy theory Voltage fault, temperature fault,
connection component fault High diagnostic accuracy; sensitive to noise Approach in-situ voltage fault diagnosis based on modified

Shannon entropy [95]

Statistical distribution Connection component fault Simple and convenient; sensitive to noise The cross-voltage test is adopted to distinguish resistance
fault [96]

Mean-difference algorithm Internal short circuit Simple calculation; it needs to be integrated with
other methods

The mean-difference model is applied to characterize large
battery packs [97]

Correlation coefficient
analysis

Short circuit, voltage fault, connection
component fault Fast calculation speed; sensitive to measurement noise Approach the fault detection for short circuits based on

correlation coefficient of voltage curves [94]
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4. Summary and Perspective

In this paper, a detailed review of battery fault diagnosis research is provided. Firstly,
the types of battery faults are introduced, including cell faults and system faults. Then a
comprehensive analysis of battery failure mechanisms is presented, including overcharge,
overdischarge, overheat, overcool, large rate charge and discharge and inconsistency, etc.
Researchers have carried out a large number of experiments and model simulations to
reveal the battery fault mechanism, and further develop a series of diagnosis methods. Four
major diagnostic methods are summarized for battery systems, including model-based,
data-driven, knowledge-based, and statistical analysis-based methods, yet researchers
continue to pursue more efficient and accurate battery fault diagnosis methods to ensure
the safety of electric vehicles.

The traditional battery management system relies on the vehicle-side computing
platform, which is limited by the storage capacity of embedded devices and can only achieve
basic battery management functions such as data monitoring, equalization, communication,
charge, and discharge control, etc. It cannot be adapted to advanced models and algorithms
such as micro-macro coupled fine regulation of batteries and fault warning. The process of
intelligence and networking provides an opportunity to solve this problem and promotes
the development and application of a new generation of cloud-based battery management
systems. This paper presents some new understandings for future battery fault diagnosis
development, which can be summarized as follows.

1. Big data technology shows a good application prospect in the field of new energy
vehicles. How to establish vehicle-level failure risk prediction and early warning based
on electric vehicle operation data from the prospective of big data will become a hot
spot for future research. Based on big data technology, the rapidly developing cloud
management platform can provide the excellent organizational and computational
ability for urgent demands of online battery fault diagnosis.

2. The rapid development of highly accurate sensors and 5G communication networks
are important to obtain and transfer detailed battery data. The future high-precision
battery fault diagnosis poses higher demands on the scale and quality of battery data.
To achieve online fault diagnosis, the highly accurate sensors and 5G communication
network can provide excellent data transfer ability, enabling the efficient fusion of
large-scale data.

3. Multi-model fusion methods have the potential to achieve accurate battery fault
diagnosis. The model-based methods have poor generalization ability. The data-
driven methods have poor interpretability. The knowledge-based and statistical
analysis-based methods have limited accuracy. Therefore, a single fault diagnosis
method cannot meet the demands of battery fault diagnosis, which is strongly time-
varying and has a non-linear complex vehicle environment. The joint estimation
approach using multi-model fusion is expected to break the bottleneck limitation of a
single model.

4. Vehicle-cloud collaboration platform can provide model and platform support for
battery fault diagnosis. Traditional in-vehicle embedded systems have limited stor-
age and calculation ability, and it is difficult to implement online accurate battery
fault diagnosis. A vehicle-cloud collaboration battery fault diagnosis platform can
be constructed based on the fusion of multi-dimensional fault diagnosis models. The
rapid development of big data, 5G communication, and highly accurate sensors can
break the network barrier between vehicle and cloud, achieving a high-performance
information processing system to minimize the interaction expenses between sys-
tem functions. The construction of a fault diagnosis-oriented vehicle-cloud collab-
oration management system can be expected to realize fine-grained online battery
fault diagnosis.
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