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Abstract: Dynamical dark energy has gained renewed interest due to recent theoretical
and observational developments. In the present paper, we focus on a string-motivated dark
energy set-up, and perform a detailed cosmological analysis of exponential quintessence with
potential V = V0e

−λϕ, allowing for non-zero spatial curvature. We first gain some physical
intuition into the full evolution of such a scenario by analysing the corresponding dynamical
system. Then, we test the model using a combination of Planck CMB data, DESI BAO data,
as well as recent supernovae datasets. For the model parameter λ, we obtain a preference for
nonzero values: λ = 0.48+0.28

−0.21, 0.68+0.31
−0.20, 0.77+0.18

−0.15 at 68% C.L. when combining CMB+DESI
with Pantheon+, Union3 and DES-Y5 supernovae datasets respectively. We find no significant
hint for spatial curvature. We discuss the implications of current cosmological results for the
exponential quintessence model, and more generally for dark energy in string theory.
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1 Introduction

The ΛCDM model of cosmology has emerged in the last 20+ years as a successful phe-
nomenological model to describe the evolution of our universe from the time of the primordial
Big-Bang to today. In this scenario, the present accelerated expansion, discovered at the
turn of the 21st century [1, 2], is described by a positive cosmological constant, Λ, while
the three-dimensional space curvature is taken to be flat. In recent years, thanks to the
explosive increase in the volume and accuracy of cosmological measurements, challenges
to this model have started to emerge (see [3] for a recent summary of the so-called cos-
mological tensions). This is rather good news, as it places us in a remarkable era where
fundamental models can be tested and a more accurate cosmological model can emerge.
In this work, we study string-motivated dark energy models and confront them with the
most recent cosmological data.

Indeed, from the theoretical point of view, much work has been focused on a better
understanding of the present (and early) acceleration of the universe and the nature of its
source, dark energy, modelled by a cosmological constant in the ΛCDM. Since soon after its
discovery, cosmic acceleration has caused concerns due to the appearance of cosmological
horizons in eternal acceleration and questions around the consistency of such horizons in a
theory of quantum gravity, specifically in string theory [4, 5]. The possibility of realising a de
Sitter (dS) universe, namely a universe dominated by a positive cosmological constant, within
string theory has subsequently been a source of extensive work and debate (see e.g. [6] for
a review). In particular, it has recently been provocatively suggested that dS space cannot
arise in string theory and more generally, in quantum gravity [7, 8].

The possibility of a dynamical form of energy, rather than a constant, was put forward
early on after the discovery of the late time acceleration, and has received continuous attention
thereafter. The main such candidate is quintessence, a scalar field whose potential energy
drives the accelerated expansion [9–11]. In particular, quintessence models governed by
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exponential potentials [12–15], V = V0 e
−λϕ, are especially interesting as they are ubiquitous

at the boundaries of moduli spaces in string theory, which are regions that are parametrically
under good theoretical control. Cosmological constraints on exponential quintessence with
flat spatial slices have been studied recently in [16–18], where upper bounds on the exponent
λ were obtained using a combination of Planck CMB data, BAO data and supernovae data
available at that time. Moreover, in the recent study [18], cosmological constraints of other
quintessence potentials were also analysed under the assumption of flat spatial geometry.

Meanwhile, it has been highlighted recently [19] (see also [20]) that including spatial
curvature in the context of exponential quintessence may allow for eternally accelerating
solutions without cosmological horizons for exponents that are well motivated by string theory
constructions, λ >

√
2. It has also been argued that an open universe is a natural outcome of

Coleman-de Luccia tunnelling in the string landscape [21], although other possibilities may
also exist, as recently investigated in e.g. [22, 23]. As a further motivation to consider spatial
curvature, a recent study [24] (see also [25]) in the context of islands in cosmology1 [28] to
understand holography beyond adS/CFT, has found that a small amount of spatial curvature
can have a significant effect in the appearance of islands. In particular, in the presence of
negative, positive or zero cosmological constant, arbitrarily small positive curvature allows
the entire spacetime to be an island. On the other hand, a small amount of negative curvature
eliminates cosmological islands entirely.

The full dynamical system including radiation, matter, quintessence and negative spatial
curvature was studied in detail not long ago in [29] (see [30] for a review of dynamical systems
in cosmology and e.g. [19, 31–34] for some studies of relevant subsystems). An upper bound,
λ ≲

√
3, was found from the minimal phenomenological requirements of a past epoch of

radiation domination and acceleration today. Cosmological solutions were shown to start
universally in the past from the unique fully unstable fixed-point, a kination epoch, then
pass through radiation and matter dominated phases and an epoch of acceleration as finally
the unique stable fixed-point is approached. The characteristics of the attractor fixed-point
depend on λ; for λ >

√
2 it corresponds to a curvature scaling solution, with equation of state

w = −1
3 whilst for λ ≤

√
2 it corresponds to scalar domination with w < −1/3. How the

attractor is approached depends on the initial conditions and consequent trajectory; it turns
out that for λ >

√
2 and past radiation and matter domination the epoch of acceleration

is only transient, whereas for λ ≤
√

2 the acceleration is eternal and there is an associated
cosmological horizon.

Alongside these theoretical developments and motivations, from the cosmological point
of view, determining the equation of state of dark energy has been one of the main research
motivations and aims of several observational missions such as DES [35], DESI [36], Euclid [37]
and LSST [38]. Indeed, recent data from the DES [35] and DESI [36, 39–42] surveys hint
at a preference for a dynamical dark energy.2

1Islands have been proposed in the context of the black hole information paradox as hypothetical regions
inside the black hole that help encode information from it, ensuring it is not lost in evaporation (see [26] for a
review). The boundary of such island is called quantum extremal surface (QES) [27].

2See [43–54] for recent discussions related to the interpretations of the DESI results. Refs. [55–58] have
also analysed the viability of quintessence models in light of the DESI findings.
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These surveys use the so called w0wa or Chevallier-Polarski-Linder (CPL) parameteri-
sation [59, 60] of the equation of state w (at least for small redshifts), which varies linearly
with the scale factor a, that is

w(a) = w0 + wa(1 − a) . (1.1)

The exponential quintessence model in the presence of spatial curvature has not yet been
tested against the most recent cosmological data (see [61] for an early study using WMAP),
in particular the late time probes such as BAO from DESI [40], and supernovae datasets
such as DES [35], Pantheon+ [62] and Union3 [63].

Therefore, we perform a cosmological analysis of exponential quintessence models in
curved space (k = ±1) using the latest cosmological data (see also appendix B for the flat
case k = 0). In what follows, we refer to this model as “curved quintessence”. When we
discuss this model in the context of cosmological constraints, we refer to it as qCDM+Ωk

As we will see, including the most recent data from DESI and supernovae data from DES,
Pantheon+ and Union3, we are able to constrain the parameter λ, finding it to lie roughly
2–4σ away from λ = 0 (which represents the cosmological constant), depending on the
supernovae dataset chosen. We quantify the improvement in the fit to data provided by
the qCDM model as compared to ΛCDM and also compare this model against the CPL
parametrisation, finding a mild preference for the latter.

In section 2 we introduce the cosmological system and perform a dynamical system
analysis in 2.1 for the closed case k = +1, while the open case k = −1 is reproduced from [29]
in appendix A (the flat case can be found in [30]). In section 3 we perform the full cosmological
analysis of the model with exponential potential for quintessence with curved spacetime
geometry. We preset the constraints on the relevant model parameters and discuss their
implications. The constraints on the full set of parameters, including 6 base parameters
in the standard ΛCDM model, and 2 more for the quintessence model and curvature, are
presented in appendix B. Finally in section 4 we summarise our findings.

See [64] for an independent cosmological analysis of curved quintessence and [65] for
the analysis in the flat case.

2 Cosmological system

We start by introducing the cosmological system we are interested in analysing: quintessence [9–
11] as a possible description of dark energy (DE), together with matter and radiation in
a curved space. This constitutes a modification of the standard ΛCDM model, where the
cosmological constant Λ, is replaced by a (canonically normalised) scalar field ϕ, and we
allow for curvature (k ̸= 0) of the 3D space slices. The corresponding dynamical analysis
is rich in possibilities, which we analyze in this section. In the next sections we study how
current data are able to discriminate among different options.

We consider a 4D Friedmann Lemaître Robertson Walker (FLRW) metric with arbitrary
curvature given by:

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θdψ2

)]
, (2.1)
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where k = 0,±1 denotes the curvature of the three-dimensional (3D) slices. The radiation (r),
matter (m) and quintessence field are each described by perfect fluids with energy density,
ρi, and pressure, pi, related by their equation of state parameter, wi as:

pi = wiρi , (2.2)

with i = r,m, ϕ, respectively. For radiation, ρr ∼ a−4 and wr = 1
3 ; for matter, ρm ∼ a−3 and

wm = 0; for the scalar, the energy density and pressure are given by

ρϕ = ϕ̇2

2 + V (ϕ) , pϕ = ϕ̇2

2 − V (ϕ) . (2.3)

Moreover, we can introduce an effective “curvature fluid component”, with energy density,
pressure and equation of state given by

ρk = −3 k
a2 , pk = k

a2 , wk = −1
3 . (2.4)

The equations of motion for this system are given by (we set M−2
Pl = 8πG = 1 in

this section):

H2 = ρeff
3 , (2.5a)

− Ḣ

H2 = 3
2(1 + weff) , (2.5b)

ϕ̈ = −3Hϕ̇− Vϕ . (2.5c)

In these equations, Vϕ ≡ ∂ϕV and we defined

ρeff =
∑

n

ρn , peff =
∑

n

pn , peff = weff ρeff , (2.6)

with n = r,m, ϕ, k, that is, running over radiation, matter, the scalar and curvature terms.
From this definition we can deduce that

weff =
∑

n

wnΩn . (2.7)

Moreover, from (2.5b), one can check that cosmic acceleration requires

weff < −1/3 ⇔ ϵ ≡ −Ḣ/H2 < 1 . (2.8)

Introducing the density parameters for each component, n, in the universe as

Ωn = ρn

3H2 , (2.9)

we can write the first Friedmann equation as

1 =
∑

n

Ωn , or 1 − Ωk = ΩT , (2.10)

where
ΩT =

∑
i

Ωi . (2.11)

From (2.10), we see the standard result that in an open universe (k = −1), ΩT < 1, in a
closed universe (k = 1), ΩT > 1 and in a flat universe ΩT = 1.
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For the rest of our analysis we restrict ourselves to an exponential potential for the
scalar field, given by

V (ϕ) = V0 e
−λϕ , (2.12)

where λ is a constant and we take λ > 0, V0 ≥ 0. As discussed in the Introduction, this is
motivated from the general form of a perturbatively generated potential for a closed string
modulus after canonical normalisation (see e.g. [6]).

2.1 Dynamical systems analysis

To study the background evolution of the system, it is useful to translate the equations of
motion into an autonomous system of first order coupled differential equations, and perform
a dynamical systems analysis. Curved exponential quintessence including a barotropic fluid
has been studied previously in [31] and in [32] an analysis was performed including matter
and radiation (see also [30] for a review on dynamical systems in cosmology and references
therein). More recently, in [29] the open case (k = −1) including radiation and matter was
studied in detail. We refer the reader to that paper for details and present a summary of
their main results in appendix A. Below we give some details on the closed case (k = +1).
As pointed out in [30, 31], the dynamical system in the closed case is non-compact.

We define the following dynamical system variables:

x̄ = ϕ′
√

6
, ȳ =

√
V√

3H̄
, ū =

√
ρr√
3H̄

, z̄ = H

H̄
, λ = −Vϕ

V
, (2.13)

together with the constraint

Ω̄m = 1 − x̄2 − ȳ2 − ū2 , (2.14)

where
Ω̄m ≡ ρm

3H2 , (2.15)

and, importantly, we introduce

H̄ = H
√

1 − Ωk , where Ωk ≡ − k

a2H2 , and k > 0 , (2.16)

to compactify our phase space [30]. Primes above denote derivatives with respect to the
new e-fold variable:

dN = Hdt . (2.17)

The equations of motion (2.5) can be rewritten in terms of variables (2.13) as follows:

x̄′ = 1
2 x̄ z̄

(
−3 + ū2 + 3x̄2 − 3ȳ2

)
+
√

3
2λ ȳ

2 , (2.18a)

ȳ′ = 1
2 ȳ z̄

(
3 + ū2 + 3x̄2 − 3ȳ2

)
−
√

3
2 λ x̄ ȳ , (2.18b)

ū′ = 1
2 ū z̄

(
−1 + ū2 + 3x̄2 − 3ȳ2

)
, (2.18c)

z̄′ = 1
2
(
z̄2 − 1

) (
1 + ū2 + 3x̄2 − 3ȳ2

)
, (2.18d)

λ′ = −
√

6 x̄
[
Vϕϕ

V
−
V 2

ϕ

V 2

]
. (2.18e)

– 5 –
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(x̄, ȳ, z̄, ū) Ω̄m Existence weff

Q̄±
kin = (±1, 0, 1, 0) 0 ∀λ 1

Q̄m = (0, 0, 1, 0) 1 ∀λ 0

Q̄k ϕ =
(

1√
3 ,±

√
2
3 ,

λ√
2 , 0
)

0 λ <
√

2 −1
3

(For λ =
√

2, Q̄kϕ = Q̄ϕ)

Q̄ϕ =
(

λ√
6 ,±

√
6−λ2√

6 , 1, 0
)

0 λ <
√

6 λ2

3 − 1

(For λ =
√

6, Q̄ϕ = Q̄+
kin)

Q̄m ϕ =
(

1
λ

√
3
2 ,±

1
λ

√
3
2 , 1, 0

)
1 − 3

λ2 λ >
√

3 0

(For λ =
√

3, Q̄mϕ = Q̄ϕ)

Q̄r = (0, 0, 1,±1) 0 ∀λ 1
3

Q̄r ϕ =
(

1
λ

√
8
3 ,±

2
λ

√
3 , 1,±

√
1 − 4

λ2

)
0 λ > 2 1

3

(For λ = 2, Q̄rϕ = Q̄ϕ)

Table 1. Fixed points for the system (2.18) with the constraint (2.14) and the exponential poten-
tial (2.12). See the main text for their description.

The fixed points for this system are given in table 2 below; since we are interested only
in expanding universes, we stick there to the case z̄ > 0. The stability of the closed universe
fixed points is summarised in table 7. For comparison, the fixed points for the open case as
well as their properties and stability as discussed in [29] are reproduced in appendix A.

Let us now discuss the properties and stability of the fixed points in the closed case.

• Q̄±
kin — kinetic domination: the energy density is dominated by the kinetic energy of

the scalar field, with x̄2 = 1, and thus weff = 1. These points are the only fully unstable
fixed points, and thus all cosmological trajectories originate near them in the far past.
This is analogous to the open case.

• Q̄m — matter domination: the energy density is dominated by matter, Ω̄m = 1, and
thus weff = 0. This point is a saddle and thus cosmological trajectories may pass
through it depending on the initial conditions. This is analogous to the point Pm in
the open case (see table 7).

• Q̄k ϕ — curvature scaling: at this point the universe evolves under the influence of both
curvature and the scalar field, but the expansion mimics curvature domination with
weff = −1

3 . This is analogous to the Pk ϕ point in the open case (see table 7), however,
the existence condition is the opposite: λ <

√
2. Contrary to the open case, this point

is a saddle in the closed case.

– 6 –
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• Q̄ϕ — scalar domination: the energy density is dominated by the scalar, with weff = wϕ

and Ω̄ϕ = 1. This is analogous to the point Pϕ in the open case and the stability
properties are the same: stable for λ ≤

√
2, saddle otherwise. For λ <

√
2 it therefore

represents the late-time accelerating attractor for all cosmological trajectories.

• Q̄m ϕ — matter scaling: the evolution is driven by the scalar and matter energy densities,
but mimics a matter dominated evolution, with weff = 0 and Ω̄m = 1 − 3/λ2. This is
analogous to the point Pm ϕ in the open case and it is a saddle.

• Q̄r — radiation domination: The energy density is dominated entirely by radiation
with weff = 1/3. This is analogous to the point Pr in the open case and it is a saddle.

• Q̄r ϕ — radiation scaling: the evolution is driven by both the scalar and radiation,
though the evolution mimics a radiation dominated universe with weff = 1

3 , while
Ω̄r = ū2 = 1 − 4/λ2. This is a saddle point and it is analogous to the point Prϕ in the
open case.

In summary, there are three main differences with the open universe case (see tables 7
and 8 in appendix A). The first is that in the closed case there is no curvature dominated
point, as expected (in the open case, this is Pk in table 8). The second is that the curvature
scaling point is not stable, and its existence condition is complementary to the open case:
λ <

√
2 vs. λ >

√
2, for the closed and open case respectively. Finally, whilst both the open

and closed universe systems have a scalar dominated fixed point attractor when λ <
√

2, when
λ >

√
2 the open universe has a curvature scaling fixed point attractor but the closed universe

system has no attractor. In other words, for the closed universe, the entire cosmological
trajectory depends on the initial conditions.

In figure 1 we present an example slice of the dynamical systems phase space for λ =
√

8/3,
choosing to present the variables x̄, ȳ and

√
Ω̄m and dropping ū and z̄ (but recall the constraint

Ω̄m = 1 − x̄2 − ȳ2 − ū2). We also plot in the phase space an example trajectory, with initial
conditions fixed by present-day values for the density parameters and wϕ, chosen to match the
CAMB runs described in the following subsection. We learn that the cosmological solution
starts in a kination epoch, from the fixed point Q̄+

kin, passes through radiation and matter
domination as it approaches Q̄m and Q̄r, respectively, meets the point corresponding to today
(as it must), where there is transient acceleration, and eventually returns to Q̄+

kin, another
kination epoch. Recall that the latter fixed point is a saddle, thus we do not expect it to be
a final destination. See [29] for similar phase space diagrams for the open universe.

2.2 Background evolution

We now study the cosmological evolution of the curved exponential quintessence. We
implement the curved quintessence model in the cosmological Boltzmann code CAMB [66, 67].
We choose initial conditions for the field: ϕi = 0, ϕ̇i = 0, deep in the radiation era.3 For
a given input value of λ and other background density parameters {Ωb,Ωc,Ωk,Ωr}, the

3Note that a non-zero value of ϕi can be absorbed into a redefinition of V0. Moreover, any non-zero initial
velocity is quickly washed out due to Hubble friction.

– 7 –
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|Ωk |

Ωϕ

weff

Ωm
Ωr

wϕ

-20 -15 -10 -5 5
N

-1.0

-0.5

0.5

1.0

Ωn,w

Figure 1. Left: a slice of the phase space for the dynamical system including quintessence, matter,
radiation and positive spatial curvature, with the selection of variables x̄, ȳ and

√
Ω̄m, for λ =√

8/3. Plotted in red is the trajectory determined by the initial conditions set today by Ωk,0 =
−0.005000423845, Ωϕ,0 = 0.684587702938, Ωr,0 = 0.000080007654 and wϕ,0 = −0.573508930813358,
with: z̄0 = 1/

√
1 − Ωk,0, x̄0 =

√
Ωϕ,0z̄ 2

0 (1 + wϕ,0)/2, ȳ0 =
√

Ωϕ,0z̄ 2
0 − x̄ 2

0 , ū0 =
√

Ωr,0z̄0. These
values are taken from the run of CAMB described in the following section, with a large amount
of precision necessary to ensure past radiation domination. Right: The corresponding evolution of
density parameters, Ωn (Ωϕ in green, Ωr in red, Ωm in yellow, and Ωk in blue) and equations of state
(wϕ in brown and weff in purple), with respect to N , related to N̄ as dN = z̄dN̄ . See main text for
more details.

Point Eigenvalues Stability Existence

Q̄−
kin: Fully unstable

Q̄±
kin

(
4, 3, 3 ∓ λ

√
3
2 , 1
)

Q̄+
kin: Fully unstable for λ ≤

√
6 —

Q̄+
kin: Saddle for λ >

√
6

Q̄k (−3
2 ,

3
2 ,−

1
2 , 1) Saddle —

Q̄k ϕ

(
− λ√

2 ,−
λ√
2 ,

−λ+
√

8−3λ2√
2 ,−λ+

√
8−3λ2√
2

)
Saddle λ <

√
2

Stable for λ <
√

2

Q̄ϕ

(
λ2

2 − 3, λ2

2 − 3, λ2 − 2, λ2 − 2
)

λ <
√

6

Saddle for λ >
√

2

Q̄m ϕ

(
−1

2 , 1,
3(−λ+

√
24−7λ2)

4λ ,−3(λ+
√

24−7λ2)
4λ ,−1

2

)
Saddle λ >

√
3

Q̄r (2, 2, 1,−1) Saddle —

Q̄r ϕ

(
1, 2, −λ+

√
64−15λ2

2λ ,−λ+
√

64−15λ2

2λ

)
Saddle λ > 2

Table 2. Summary of the stability analysis for the fixed points in table 2 corresponding to a
closed universe.
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λ V0 (eV2) wϕ,0

0.5 1.0715 × 10−7 −0.96369√
8/3 2.1765 × 10−7 −0.58169

√
3 2.5255 × 10−7 −0.52205

2 4.8067 × 10−7 −0.32093

Table 3. Parameter values for k < 0 for the plots in figures 2, 3 and 4 as computed from CAMB. The
associated values for today’s density parameters are Ωk,0 = 0.00500, Ωc,0 = 0.27018, Ωb,0 = 0.04872,
and Ωϕ,0 = 0.67459.

amplitude of the potential V0 is tuned by the code and adjusted to obtain the correct Ωϕ

today, in order to satisfy eq. (2.10).
We consider two cases motivated by string theory set-ups as discussed in [29], λ =√

3,
√

8/3, as well as a larger and smaller value motivated by our further cosmological analysis
in the next section. The field typically remains frozen due to Hubble friction in the radiation
era and starts to evolve much later when dark energy begins to dominate (see figures 4, 7
below). We can understand the evolution from the dynamical system analysis. For λ =

√
3,

for both open and closed universes, the matter scaling points merge with the scalar dominated
point: Pmϕ = Pϕ and Q̄mϕ = Q̄ϕ respectively. For the open case, there is a curvature scaling
point Pkϕ, but not in the closed case. For λ =

√
8/3, for both closed and open universes,

the matter scaling points do not exist, while the scalar dominated points still exist and are
saddles (Pϕ, Q̄ϕ). Further, the open curvature scaling point (Pkϕ) also exists (and is stable).
Finally we also plot the evolution for λ = 1/2 and λ = 2. For λ = 1/2 the closed curvature
scaling point exists, but not for the open case. The scalar dominated point instead exists for
both open and closed cases, it gives rise to acceleration and it is stable. For λ = 2, the closed
scaling point does not exist, but it does for the open case, while the scalar dominated point
exists in both cases and it is a saddle. For all the values of λ <

√
2, the scalar fixed point

is an accelerating attractor. In this case, the universe will evolve towards an accelerating
future with a cosmological horizon.

2.2.1 Open universe

In figure 2 we show the evolution of the curvature and scalar density parameters for the
values of λ described therein (at the top left panel). In the bottom left panel, we show the
deviation of our model from ΛCDM by plotting the temperature angular power spectrum
DT T

ℓ ≡ ℓ(ℓ + 1)CT T
ℓ /(2π), and we plot the difference ∆DT T

ℓ ≡ DT T,ΛCDM
ℓ − DT T,qCDM+Ωk

ℓ

in the bottom right panel.
In figure 3 we show the evolution of the corresponding scalar and effective equations

of state, wϕ and weff . The values of the parameters today together with V0, as computed
by CAMB, are given in table 3.

2.2.2 Closed universe

In figure 5 we show the evolution of the density parameters as well as the angular power
spectrum DT T

ℓ and ∆DT T
ℓ , for the values of λ described above. In figure 6 we show evolution
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Figure 2. Upper panel: Curvature and scalar density parameter evolution for various values of λ for
an open universe k < 0. Lower panel: angular power spectrum DT T

ℓ and the residuals ∆DT T
ℓ with

respect to ΛCDM, for the same values of λ and k < 0. The grey shaded regions represent the error
bars on DT T

ℓ from Planck [68].
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Figure 3. Equations of state evolution for the same parameter values as in figure 2 computed
from CAMB.
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Figure 4. Scalar field evolution for the open quintessence case.
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Figure 5. Curvature and scalar density parameter evolution for a closed universe, k > 0 for various
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ℓ and residuals ∆DT T
ℓ for same values of λ

and k > 0 (lower panel). The grey shaded regions represent the error bars on DT T
ℓ from Planck [68].
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Figure 6. Evolution of the equations of state for k > 0 for the different values of λ discussed in
the text.
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Figure 7. Scalar field evolution for the closed quintessence case.

of the scalar and effective equations of state and in figure 7 we show the corresponding
evolution of the scalar field. The values of current-day parameters as computed from CAMB
for these cases are given in table 4.

Comparing the open and closed universes, we learn that the closed universe yields slightly
higher values for the dark energy density parameter today, Ω0

ϕ, for a given λ. This is to
be expected from (2.10). On the other hand, the value of wϕ for a given λ is slightly less
negative in the closed case (see table 3 and table 4).
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λ V0 (eV2) wϕ,0

0.5 1.0886 × 10−7 −0.96300√
8/3 2.2576 × 10−7 −0.57350

√
3 2.6350 × 10−7 −0.51259

2 5.1973 × 10−7 −0.30628

Table 4. Parameter values as computed from CAMB for the plots in figures 5, 6 and 7 (k > 0). The
associated values for today’s density parameters are Ωk,0 = −0.00500, Ωc,0 = 0.27018, Ωb,0 = 0.04872,
and Ωϕ,0 = 0.68459.

3 Cosmological constraints

With the modified CAMB code, we are now ready to analyse our curved quintessence model
against cosmological datasets. We explore the parameter space of the model using Markov
Chain Monte-Carlo (MCMC) methods, varying λ alongside the other cosmological parameters
{Ωbh

2,Ωch
2,Ωk, H0, τ, As, ns}.4 We use the following cosmological likelihoods:

1. CMB from Planck:

• Planck 2018 low-ℓ temperature and polarisation likelihood [68].

• Planck high-ℓ CamSpec TTTEEE temperature and polarization likelihood using
NPIPE (Planck PR4) data [69].

• Planck 2018 lensing likelihood [70].

In what follows, we collectively denote all the Planck likelihoods as ‘CMB’.5

2. BAO likelihoods from DESI DR1 [36, 39, 40] consisting of bright galaxy survey (BGS),
luminous red galaxies (LRG), emission line galaxies (ELG), quasars and Lyman-α (Lyα)
data which cover a total redshift range 0.1 < z < 4.2. Sloan Digital Sky Survey (SDSS)
DR16 likelihoods [71] covering a total redshift range 0.07 < z < 3.5 for the ELG, LRG,
quasar and Lyα tracers.

3. Pantheon+ [62], Union3 [63] and DES-Y5 [35] type Ia supernovae samples. Altogether,
these samples consist of about 4000 supernovae which cover a redshift range 0.001 <
z < 2.26. Note that the samples cannot be combined since Pantheon+ and Union3
have 1363 supernovae in common while DESY5 has 194 low redshift supernovae shared
with the other two.

4The parameter λ is the only free parameter of the quintessence model since V0 is getting tuned at each
step of the MCMC to satisfy the budget equation (2.10).

5Note that the Planck high-ℓ and lensing likelihoods require the modelling of non-linear scales by codes such
as HMcode/halofit, which do not have a quintessence background evolution. Thus, the effects of quintessence
on these non-linear scales cannot be accounted for here. However, we expect the corrections from non-linear
scales on our conclusions about evolving dark energy to be quite small at present. In particular, the preference
for dynamical dark energy is primarily driven by the BAO and SN datasets for which the observables are
mainly background quantities and thus should not be affected by non-linear physics.
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Figure 8. Constraints on cosmological parameters from the combinations of datasets described in
the main text. See appendix B for the inclusion of all the other parameters.

We implement wide uniform priors on all the cosmological parameters. The likelihoods
are sampled using the MCMC sampler [72, 73], through its interface with Cobaya [74]. We
continue the sampling until we reach a value R− 1 = 0.03 for the Gelman-Rubin diagnostic.
The resulting chains are analysed and plotted with GetDist package [75]. At the end of
the sampling, we also run the Py-BOBYQA [76, 77] minimizer through the Cobaya interface
to find the best-fit point and the corresponding χ2 values.

The recent DESI BAO data alone, as well as in conjunction with the supernovae datasets,
have already been shown to have a preference for a time varying dark energy equation of
state as compared to ΛCDM [40–42]. When the same datasets are used with our exponential
quintessence model as the underlying dark energy model, this manifests as a slight preference
for a non-zero λ, resulting in the following marginalised mean and limits (at 68% C.L)
shown in table 5.6

The marginalised 1D and 2D joint distributions for these parameters are plotted in figure 8.
As we can see, the combination of CMB and DESI BAO data is not able to significantly
constrain the quintessence model parameter λ. However, this changes with the addition of the
supernovae datasets and depending on the dataset chosen, the obtained values for λ lie about
2–4σ away from the λ = 0 case that corresponds to a cosmological constant. In appendix B,

6The datasets we use correspond to slightly different values of H0 (see table 9), decreasing with increasing
values of λ, a trend consistent with previous works [78, 79] for the flat case.
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Parameter CMB+DESI +Pantheon+ +Union3+ +DESY5

λ < 0.537 0.48+0.28
−0.21 0.68+0.31

−0.20 0.77+0.18
−0.15

Ωk 0.0026 ± 0.0015 0.0025 ± 0.0015 0.0028+0.0016
−0.0019 0.0027 ± 0.0016

Ωch2 0.1196 ± 0.0012 0.1197 ± 0.0012 0.1195 ± 0.0012 0.1195 ± 0.0012

H0 67.89+0.96
−0.61 67.73+0.72

−0.64 67.12+0.97
−0.83 66.95 ± 0.72

Ωbh2 0.02219 ± 0.00014 0.02219 ± 0.00013 0.02220+0.00013
−0.00015 0.02221 ± 0.00013

Table 5. Parameter means and 68% limits for the combination of the CMB+DESI and with the
addition of the different supernovae datasets to the CMB+DESI baseline.

Parameter CMB+DESI+Pantheon+ CMB+SDSS+Pantheon+

λ 0.48+0.28
−0.21 0.40+0.20

−0.29

Ωk 0.0025 ± 0.0015 0.0014 ± 0.0017

Ωch2 0.1197 ± 0.0012 0.1197+0.0013
−0.0012

H0 67.73+0.72
−0.64 67.44 ± 0.64

Ωbh2 0.02219 ± 0.00013 0.02220+0.00013
−0.00016

Table 6. Parameter means and 68% limits.

we plot the contours for the full parameter set, including {ns, As, τ}. There, we also present
the results of the MCMC analysis for the dataset combination CMB+DESI+Pantheon+,
fixing Ωk = 0 and compare it to the free spatial curvature case (figure 13). We do not
find any major difference for the cosmological parameters constraints, in particular for λ,
obtaining λ = 0.42 ± 0.22 at 68% C.L.

Fixing our supernovae dataset to Pantheon+, we also assess the effect of replacing the full
DESI BAO data with the SDSS data, finding nearly identical results for most cosmological
parameters with a slightly lower deviation from a cosmological constant in terms of the
preferred values of λ (see figure 9 and table 6). The result could be attributed to the increased
constraining power of the DESI data as compared to SDSS. For all the datasets used in this
section, we also observe a mild shift towards Ωk > 0 with the difference from Ωk = 0 being
less than 2σ. There is no noticeable shift for any of the other cosmological parameters.

Considering that the new DESI dataset favours dynamical dark energy, we can compare
how well our model fits the data against the CPL parametrisation presented in [40]. For
this, we first compute the ∆χ2 for both the qCDM+Ωk model and the w0waCDM+Ωk model
with respect to ΛCDM +Ωk, i.e.

∆χ2
model ≡ χ2

model − χ2
ΛCDM+Ωk

, (3.1)

where the χ2 = −2 ln Lmax for a given model. We find for the CMB+DESI+Pantheon+
combination

∆χ2
qCDM+Ωk = −1.8 and ∆χ2

w0waCDM+Ωk = −6 , (3.2)
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Figure 9. Constraints on cosmological parameters for CMB+DESI+Pantheon+ and
CMB+SDSS+Pantheon+. See appendix B for the inclusion of all the other parameters.

showing that both models provide a better fit to the data compared to ΛCDM+Ωk. This
is to be expected since we can always recover ΛCDM+Ωk from the two models by fixing,
respectively, λ = 0 or w0 = −1, wa = 0. We remind the reader that the qCDM+Ωk model
features one additional parameter compared to ΛCDM+Ωk whereas the w0wa model has two.

When comparing cosmological models using their best-fit χ2 values, one should also take
into account the number of free parameters of the model. For non-nested models,7 a simple
method to compare the quality of the fit to the data while at the same time accounting for the
number of model parameters is provided by the Akaike information criterion (AIC) [80, 81].
We compute this quantity for the qCDM+Ωk and w0waCDM+Ωk models. The AIC value
for a given model is defined as

AIC = 2n− 2 ln Lmax , (3.3)

where Lmax denotes the maximum likelihood value for the model and n is the number of free
parameters (note nw0waCDM −nqCDM = (7+2)− (7+1) = 1). AIC represents the information
loss in using a particular model to represent the true underlying process with the best fitting
model among the candidate models having the smallest AIC value, i.e. the lowest information

7It is only for nested models that the maximum (log) likelihood ratio or ∆χ2 is approximately χ2

distributed [80]. The AIC has no such requirement but is a simplistic comparison method. A more rigorous
comparison would be to compute the Bayesian evidences but this is computationally quite expensive.
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loss [80, 81]. For our analysis with CMB+DESI+Pantheon+, we find

AICw0waCDM+Ωk − AICqCDM+Ωk = −2.2 , AICqCDM+Ωk − AICΛCDM+Ωk = 0.2 (3.4)

which indicates a preference, albeit not very strong, for the w0wa parametrisation over the
exponential quintessence model and no preference between qCDM+Ωk and ΛCDM+Ωk. On
replacing the Pantheon+ dataset with Union3 or DESY5, the results change slightly. For
example, for CMB+DESI+Union3, we find:8

AICw0waCDM+Ωk − AICqCDM+Ωk = −3 and AICqCDM+Ωk − AICΛCDM+Ωk = −2.3 . (3.5)

The increase in preference for qCDM +Ωk over ΛCDM +Ωk comes from the fact that these
datasets require a larger deviation from the cosmological constant compared to Pantheon+,
as seen in the preferred values of λ (and also with the CPL parametrisation [40]). The
preference for w0waCDM+Ωk over qCDM+Ωk is likely due to DESI + supernovae data (as
seen in [40, 41]) indicating a preference for phantom-like behaviour for dark energy (w < −1)
in the past and going towards w > −1 near z ≈ 0 more rapidly than what can be obtained
in the qCDM+Ωk model.

Note however that the data does not constrain w(z) directly but only indirectly through
H(z) and integrals of H(z) that enter when calculating cosmological distances to a given
redshift. In particular, w(z) is well constrained close to the point z = 0.4 with the uncertainties
increasing, especially at higher redshifts [40, 41]. Thus, to provide a good fit to the data a
given quintessence model need not match the entire evolution of w(z) with that in the w0wa

model, but rather match H(z) (or the distances) to a given accuracy, as pointed out in [58].
According to the latter’s analysis based on this matching procedure, hilltop and plateau
type models of quintessence may fit the data better as compared to the exponential model.
Analysis of quintessence models from the DESI collaboration, based on parametrisations
of classes of quintessence models (thawing, emergent, mirage) rather than using specific
models, also finds that quintessence models can significantly improve the fit to the data w.r.t.
ΛCDM [42], with the mirage class faring the best.

We also compare our results against the dark energy model-independent reconstruction
of w(z) using Chebyshev polynomials carried out by the DESI collaboration [41]. To do
this, we plot w(z) and the quantity h(z) ≡ H(z)/H0 for the best-fit qCDM+Ωk model vs
the DESI reconstruction for the CMB+DESI+Union3 data combination in figure 10. We
see that even though w does not go below −1, the evolution of the Hubble parameter in
the best-fit qCDM model matches fairly well with the DESI reconstruction. Although the
deviation increases at z ≈ 0.5, the best-fit qCDM quantities still lie with the 95% confidence
regions of the DESI reconstruction. It is also clear from the plots that the best-fit qCDM
model leads to a much lower deviation from ΛCDM compared to the reconstruction (or for
that matter, the w0wa parametrisation).

8For flat ΛCDM we find with CMB+DESI+Union3: AICqCDM(+Ωk) − AICΛCDM = −1.7(−3.7), i.e., values
similar to the ΛCDM+Ωk case above (3.5).
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Figure 10. Evolution of w(z) and h(z) ≡ H(z)/H0 for the best-fit qCDM+Ωk model compared
against the DESI reconstruction using CMB+DESI+Union3 data. The shaded regions represent the
95% confidence regions for the reconstruction (data taken from figure 1 of [41]). Note that the w0wa

evolution matches the reconstruction very well, so we do not plot it separately. At z = 0 we have
w0 = −0.89 for qCDM+Ωk while for the reconstruction it is w0 = −0.65.

4 Discussion

In this work we have performed a cosmological analysis of single field quintessence for a
string theory motivated potential, namely the exponential V = V0e

−λϕ, with open, closed
or flat 3D spaces. Using the most recent cosmological data from Planck CMB, DESI BAO,
as well as recent supernovae catalogues, we obtain the following marginalised means and
limits on the potential parameter at the exponent:

λ = 0.48+0.28
−0.21, 0.68+0.31

−0.20, 0.77+0.18
−0.15

at 68% C.L., by combining CMB+DESI with PantheonPlus, Union3 and DES-Y5 supernovae
datasets respectively. These results indicate an increasing preference for a non-zero value
of λ, where λ = 0 corresponds to a pure cosmological constant. Regarding the curvature of
the 3D space slices, we find that the results point towards an open universe, k < 0, with
the following marginalised means and limits:

Ωk = 0.0025 ± 0.0015, 0.0028+0.0016
−0.0019, 0.0027 ± 0.0016

at 68% C.L., with datasets as above; the preference for non-zero curvature is, however, so
far not statistically significant.

Whilst exponential quintessence is marginally favoured over ΛCDM by the cosmological
data, our results indicate that the typical values for the parameter λ arising in string theory
examples, conjectured to be always greater than

√
2 [82, 83] (see [19, 29, 33] for constructions

with e.g. λ =
√

8/3,
√

3), are excluded. At the same time, given a best-fit value for λ, the
dynamical system analysis that we presented (see sections 2.1 and appendix A) reveals the
future evolution of the universe, in the case that dark energy is described by exponential
quintessence. The observationally preferred values for λ, having λ <

√
2, indicate that —

rather than having a transient phase of acceleration — the universe will evolve towards the
eternally accelerating fixed point (Pϕ or Q̄ϕ), thus giving rise to the presence of a cosmological
horizon. Alternatively, this may well indicate that the simplest single field exponential
potentials are not the correct ones to describe the observed dark energy.
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We have also compared our results with the CPL parametrisation used in (past and)
recent cosmological studies of dynamical dark energy [40], as well as dark energy model
independent reconstructions [41] of w(z) using DESI and supernovae data. The data appear
to prefer a more pronounced evolution of w(z) than what can be obtained in the qCDM
model, requiring w(z) < −1 in the past (z > 1), and rapidly growing to w0 > −1 closer to
the present. In contrast, for the exponential quintessence model, w(z) remains very close to
(but always greater than) −1 in the past, and evolves more slowly towards w0 > −1 near the
present. This results in a mild to moderate preference for the CPL parametrisation over our
model, even though the evolution of the background quantities such as H(z) in our curved
exponential quintessence model is not significantly different, and still lies within the 95%
confidence regions of the DESI reconstructions (see figure 10).

The hint from [41] for a phantom like equation of state for dark energy in the past is
interesting from a fundamental point of view. In principle, scalar potentials arising from string
theory, such as exponentials and hilltops, do all obey the energy conditions, and therefore do
not give rise to phantom behaviour in a consistent way (although see [58]). However, it would
be interesting to further investigate whether there can be string inspired constructions giving
rise to an “effective” phantom behaviour. More generally, we emphasize the importance
of developing complete fundamental scenarios that encompass the standard model as well
as the dark sectors, in order to address the crucial challenges that any quintessence model
presents, including time-evolution of fundamental constants, unobserved fifth forces, and
the ultraviolet stability of the quintessence potential.

As we mentioned before, the present results disfavour the simplest potentials motivated
by string theory constructions. On the other hand, it is fair to say that a single exponential is
a rather simple case and more complex runaway exponentials could perform better, although
see [84] for a no-go on string motivated potentials in supergravity. Moreover, string theory
motivated hilltop potentials [85] may also perform better (see e.g. [58]). Certainly, much work
is left for future studies towards systematically comparing string theory models of cosmology
with current and forthcoming cosmological data.

Given that DESI will collect data over a period of five years and that the results discussed
here are only based on the first year of observations, there is hope to further improve the
comparison between qCDM models and the phenomenological CPL parametrisation. It
would also be interesting to compare these models with other well-motivated scenarios of
quintessence. At this stage it is too early to say what was (and will be!) the evolution of the
dark energy equation of state parameter in our universe. Hopefully, future data from DESI
as well as other dark energy focused experiments will further tighten the constraints on dark
energy evolution and allow us to draw definitive conclusions on the nature of dark energy.
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A Open quintessence

In this appendix we provide a short summary of the open quintessence case, which is described
in detail in [29]. The cosmological equations of motion, (2.5), can be written as a dynamical
system in terms of the following variables [29]:

x = ϕ′
√

6
, y =

√
V√

3H
, u =

√
ρr√
3H

, z =
√

−k
aH

, λ = −Vϕ

V
, (A.1)

together with the constraint

Ωm = 1 − x2 − y2 − u2 − z2 , (A.2)

where prime ′ denotes derivative with respect to the number of efolds dN = Hdt, as

x′ =
√

3
2 y

2 λ+ x

(
3 (x2 − 1) + z2 + 3

2Ωm + 2u2
)
, (A.3a)

y′ = y

(
−
√

3
2 xλ+ 3x2 + z2 + 3

2Ωm + 2u2
)
, (A.3b)

z′ = z

(
z2 − 1 + 3x2 + 3

2Ωm + 2u2
)
, (A.3c)

u′ = u

(
z2 − 2 + 3x2 + 3

2Ωm + 2u2
)
, (A.3d)

λ′ = −
√

6x
(
∂2

ϕV

V
− (∂ϕV )2

V 2

)
, (A.3e)

The fixed points for this system are given in table 7 (see table 2 from [29]). The properties
of the fixed points are as follows [29]:

• Pkin — Kinetic domination. The energy density is dominated by the kinetic energy of
the scalar field, with weff = 1. These points are the only fully unstable points in the
past.

• Pk — Curvature domination. The energy density is dominated by the curvature with
Ωk = 1 and weff = −1/3. This point is a saddle.

• Pkϕ — Curvature scaling. At this point, the universe evolves under the influence of
both the curvature and the scalar field. However, the expansion mimics pure curvature
domination with weff = −1/3. This point exists for λ >

√
2 and it is fully stable.

• Pϕ — Scalar domination. The energy density is fully dominated by the scalar field with
Ωϕ = 1. This is a standard point that arises in quintessence models [30]. It exists for
λ <

√
6 and is the only point that allows acceleration for λ <

√
2 with weff < −1/3.

For this value of λ, it is a stable point. It becomes a saddle for λ >
√

2.
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(x, y, z, u) Ωm Existence weff

Pkin = (±1, 0, 0, 0) 0 ∀λ 1

Pk = (0, 0,±1, 0) 0 ∀λ −1
3

Pkϕ =
(

1
λ

√
2
3 ,±

2
λ

√
3 ,±

√
1 − 2

λ2 , 0
)

0 λ >
√

2 −1
3

(For λ =
√

2, Pkϕ = Pϕ)

Pϕ =
(

λ√
6 ,±

√
6−λ2√

6 , 0, 0
)

0 λ <
√

6 λ2

3 − 1

(For λ =
√

6, Pϕ = Pkin)

Pmϕ =
(

1
λ

√
3
2 ,±

1
λ

√
3
2 , 0, 0

)
1 − 3

λ2 λ >
√

3 0

(For λ =
√

3, Pmϕ = Pϕ)

Pm = (0, 0, 0, 0) 1 ∀λ 0

Pr = (0, 0, 0,±1) 0 ∀λ 1
3

Prϕ =
(

1
λ

√
8
3 ,±

2
λ

√
3 , 0,±

√
1 − 4

λ2

)
0 λ > 2 1

3

(For λ = 2, Prϕ = Pϕ)

Table 7. Fixed points for the system (A.3) (see [29]).

• Pmϕ — Matter scaling. The universe evolves under the influence of both matter and
scalar field. Similar to the scaling curvature point, the evolution mimics a matter
dominated epoch with weff = 0. This point is a saddle.

• Pm — Matter domination. The energy density is dominated by matter with Ωm = 1
and weff = 0 and it is a saddle.

• Pr — Radiation domination. The energy density is dominated by radiation with Ωr = 1
and weff = 1

3 . This point is also a saddle.

• Prϕ — Radiation scaling. The universe evolves under influence of radiation and the
scalar field. As the other scaling points, it mimics a pure radiation domination universe
with weff = 1

3 .

The stability of the fixed points in the open quintessence can be found in table 3 of [29],
which we reproduce in our table 8.
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Point Eigenvalues Stability Existence

P+
kin: Fully unstable

P±
kin

(
3, 2, 3 ∓ λ

√
3
2 , 1
)

P−
kin: Fully unstable for λ ≤

√
6 —

P−
kin: Saddle for λ >

√
6

Pk (−2,−1, 1,−1) Saddle —

Pkϕ

(
−1,−1 −

√
8−3λ2

λ ,−1 +
√

8−3λ2

λ ,−1
)

Stable λ >
√

2

Stable for λ <
√

2

Pϕ

(
λ2

2 − 3, λ2 − 3, λ2

2 − 1, λ2

2 − 2
)

λ <
√

6

Saddle for λ >
√

2

Pmϕ

(
1
2 ,−

3(λ+
√

24−7λ2)
4λ ,−3(λ−

√
24−7λ2)
4λ ,−1

2

)
Saddle λ >

√
3

Pm (−3
2 ,

3
2 ,

1
2 ,−

1
2) Saddle —

Pr (−1, 2, 1, 1) Saddle —

Prϕ (1, 1,−λ+
√

64−15λ2

2λ ,−λ−
√

64−15λ2

2λ ) Saddle λ > 2

Table 8. Stability of the fixed points in table 7 (see reference [29] for details).

B Full cosmological constraints

In this appendix we collect the results for the constraints on the full set of cosmological
parameters in figure 11 and table 9 for the CMB+DESI data as well as with the addition
of the various supernovae data described before. In figure 12 and table 10 we compare the
constraints on the parameters using CMB+DESI+Pantheon+ vs CMB+SDSS+Pantheon+.
Finally, in figure 13 we show the constraints for the exponential quintessence model under
the assumption of flat spatial geometry of the universe.
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Figure 11. Constraints on the full set of cosmological parameters for CMB+DESI as well as with
the addition of the different supernovae datasets.
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Parameter CMB+DESI +Pantheon+ +Union3+ +DESY5

λ < 0.537 0.48+0.28
−0.21 0.68+0.31

−0.20 0.77+0.18
−0.15

Ωk 0.0026 ± 0.0015 0.0025 ± 0.0015 0.0028+0.0016
−0.0019 0.0027 ± 0.0016

Ωch2 0.1196 ± 0.0012 0.1197 ± 0.0012 0.1195 ± 0.0012 0.1195 ± 0.0012

log(1010As) 3.045 ± 0.014 3.044 ± 0.014 3.049 ± 0.013 3.047 ± 0.014

ns 0.9636 ± 0.0041 0.9635 ± 0.0041 0.9640 ± 0.0041 0.9637 ± 0.0047

H0 67.89+0.96
−0.61 67.73+0.72

−0.64 67.12+0.97
−0.83 66.95 ± 0.72

Ωbh2 0.02219 ± 0.00014 0.02219 ± 0.00013 0.02220+0.00013
−0.00015 0.02221 ± 0.00013

τreio 0.0559 ± 0.0071 0.0554 ± 0.0072 0.0571 ± 0.0067 0.0577 ± 0.0069

Table 9. Parameter means and 68% limits.

Parameter CMB+DESI+Pantheon+ CMB+SDSS+Pantheon+

λ 0.48+0.28
−0.21 0.40+0.20

−0.29

Ωk 0.0025 ± 0.0015 0.0014 ± 0.0017

Ωch2 0.1197 ± 0.0012 0.1197+0.0013
−0.0012

log(1010As) 3.044 ± 0.014 3.046 ± 0.014

ns 0.9635 ± 0.0041 0.9639 ± 0.0043

H0 67.73+0.72
−0.64 67.44 ± 0.64

Ωbh2 0.02219 ± 0.00013 0.02220+0.00013
−0.00016

τreio 0.0554 ± 0.0072 0.0562 ± 0.0065

Table 10. Parameter means and 68% limits.
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Figure 12. Constraints on cosmological parameters for CMB+DESI+Pantheon+ and
CMB+SDSS+Pantheon+.
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Figure 13. Comparison of the exponential quintessence model analysed in the main text with curved
vs flat spatial geometry for CMB+DESI+Pantheon+. The constraints are slightly relaxed for the
model with non-zero Ωk but there is no major shift in any cosmological parameter. In particular, the
marginalised distribution of λ does not show a significant difference. Note that for the curved case,
the constraints shown are obtained after marginalising over Ωk.
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