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Abstract 15 

In this study, the spatial variability of materials is incorporated into the static analysis 16 

of functionally graded sandwich nanoplates to achieve higher accuracy. Utilising a 17 

modified point estimation method and the radial point interpolation method, we 18 

develop a novel stochastic meshfree computational framework to deal with the 19 

material uncertainty. Higher-order shear deformation theory is employed to establish 20 

the displacement field of the plates. The elastic modulus of ceramic and metal (𝐸c and 21 

𝐸m) are treated as separate random fields and discretized through the Karhunen-Loève 22 

expansion (KLE) method. To improve the performance of procedure, the Wavelet-23 

Galerkin method is introduced to solve the second type of Fredholm integral equation. 24 

Subsequently, substituting the random variables obtained by KLE into the stochastic 25 

computational framework, a high accuracy stochastic response of structures can be 26 

acquired. By comparing computed findings with those of Monte Carlo simulation, the 27 

accuracy and efficiency of developed framework are verified. Moreover, the results 28 

indicate that the plate’s deflection exhibits varying sensitivities to the random fields 29 

𝐸c and 𝐸m. Also, the sandwich configuration as well as power-law exponents affect 30 

the stochastic response of structures. These findings offer valuable insights for the 31 

optimized design of functionally graded sandwich nanoplates. 32 

Keywords: Functionally graded sandwich nanoplate; Radial point interpolation 33 

method; Random field; Karhunen-Loève expansion method; Modified point 34 

estimation method. 35 

1. Introduction 36 

Functionally graded nanomaterials (FGMs) are a new type of non-homogeneous 37 

composites where the composition and microstructure continuously vary along the 38 

thickness, and this material gradation is customizable to fulfil specific application 39 
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requirements [1,2]. As a result, FGMs offer numerous unique and exceptional 40 

properties, rendering them applicable across a diverse range of engineering fields, 41 

such as medical, civil, mechanical, aerospace engineering and defence industries [3,4].  42 

Numerous studies on functionally graded (FG) nanostructures have been carried 43 

out and yielded a series of important results. Thai et al. [5,6] combined the modified 44 

coupled stress theory and higher-order shear deformation theory to examine the static, 45 

vibration and buckling behaviours of FG sandwiched nanoplates using the moving 46 

Kringing meshfree method. Vu et al. [7–9] analysed the mechanical behaviours of FG 47 

porous plates on elastic foundations based on a quasi-3D hyperbolic shear 48 

deformation theory. Their further contributions include the development of new 49 

logarithmic and arctangent exponential shear deformation theories [10,11]. Recently, 50 

Phung-Van et al. investigated the scale-dependent behaviour of functionally graded 51 

triply periodic minimal surface nanoplates [12] and honeycomb sandwich nanoplates 52 

[13]. This research applied nonlocal strain gradient theory to provide new findings on 53 

the microscopic complex mechanical behaviour of novel composite nanomaterials. 54 

Additionally, they investigate the nonlinear behaviours of FG nanoplates [14–16]. 55 

Hung et al. examined the free vibration of FG porous magneto-electro-elastic plates 56 

and honeycomb sandwich microplates using the isogeometric analysis method [17,18]. 57 

However, the majority of these vibration, static and buckling analysis of FG 58 

nanostructures are based on deterministic assumptions. In fact, most of structural 59 

material parameters are normally suboptimal as affected by construction, fabrication, 60 

ageing and the surrounding environment [19]. Therefore, it is necessary and 61 

reasonable to develop stochastic analysis methods for FGMs structures to optimise 62 

their design. Random field aims to characterize the spatial variability of random 63 

material or structural geometric parameters [20]. In the past decades, stochastic 64 

discretization techniques have been developed importantly as a necessary tool for 65 

stochastic field modelling. As an illustration, notable methods include the spatial 66 

averaging method [21], the centroid method [22], the spectral representation method 67 

[23], the wavelet expansion method [24] and the Karhunen-Loève expansion (KLE) 68 

method [25]. Particularly, KLE uses a set of random variables and deterministic 69 

eigenfunctions with eigenvalues to represent a stochastic process, which dramatically 70 

reduces the number of random variables required. Subsequently, Phoon et al. [26] and 71 

Tong et al. [27] improved the KLE to greatly enhance its applicability. 72 

        The discussion of random field modelling contributed to the development of 73 

various stochastic analysis theories, mainly including analytical methods and 74 

simulation methods. Monte Carlo simulation [28] is the most widely used simulation 75 

method, which requires a large number of simulated samples to compute the statistical 76 

moments, leading to inefficiency and expensive computational costs. Analytical 77 

methods include the Taylor expansion [29] or perturbation methods [30,31], the 78 

Neumann expansion method [32], the decomposition method [33], the polynomial 79 

chaos expansion method [34] and others. Taylor expansion or perturbation methods 80 

involve first-, second- or higher- order Taylor series expansion of output in terms of 81 

input random parameters, which usually entails costly computation of higher-order 82 

partial derivatives [35]. Neumann expansion method consists of Neumann series 83 
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expansion of the inverse of random matrices, which is absolutely convergent. 84 

Nevertheless, the algebra and numerical effort required for a relatively low-order 85 

Neumann expansion can be enormous when there are a large number of random 86 

variables [36]. Decomposition method and polynomial chaos expansion method 87 

involve alternative series expansions. In this case, the decomposition method results 88 

in a series of terms that may not converge due to the recursive relationship of the 89 

expansion terms [37], while the polynomial chaos expansion approximates a square-90 

integrable random variable by means of chaos polynomials. When a large number of 91 

input variables are involved, the polynomial coefficients grow exponentially, resulting 92 

in a huge computation [38]. In summary, all existing methods described above 93 

become computationally inefficient or less accurate when the number of input random 94 

variables is large. The point estimation method relies on Gaussian integration and 95 

does not involve solving for functional derivatives in reliability analysis [39]. By 96 

introducing multivariate function decomposition method [40] into the point estimation 97 

method, the multidimensional random variable function  is approximated as the sum 98 

of multiple unidimensional random variable functions. Sample estimation points are 99 

then selected to calculate the statistical moments of stochastic responses using the 100 

Gaussian-Hermite integration principle. The modified point estimation method, called 101 

MPEM, is derivative-free and allows handling arbitrarily large numbers of random 102 

variables [41]. Notably, when the input uncertainties are high, the point estimation 103 

method yields inaccurate results as it approximates the second-moment properties of 104 

response using a finite number of probability concentrations [42]. Therefore, it is 105 

necessary to increase the number of sample estimation points to improve the accuracy 106 

of the computed results. 107 

        Unlike the finite element method, the meshfree method employs a node-based 108 

discretization approach to avoid the burdensome meshing or remeshing required. The 109 

element-free Galerkin method [43], the reproducing kernel particle method [44], the 110 

moving Kringing meshfree method [45] and the radial point interpolation method 111 

(RPIM) [46] are some of the meshfree methods available in the literature. Among 112 

these, RPIM is convenient due to the simplicity of its shape functions, which are 113 

formed based on radial and polynomial bases and possess Kronecker delta function 114 

properties [47,48]. In particular, a novel Tchebychev radial point interpolation method 115 

(TRPIM) was proposed by Kwak et al [49]. This method employs Tchebychev 116 

polynomial bases and radial bases to construct shape functions that approximate 117 

displacement components and applies them directly to the strong-form differential 118 

equations to obtain discretized control equations. Additionally, Thai et al. [50,51] 119 

developed a naturally stabilized nodal integration meshfree formulations for analysis 120 

of laminated composite and sandwich plates. These researches have significantly 121 

contributed to the application of meshfree methods in computational mechanics, 122 

providing an attractive alternative to the finite element method. 123 

        In this study, we developed a novel stochastic meshfree computational 124 

framework by incorporating the MPEM and RPIM. Compared with conventional 125 

stochastic analysis methods, the present method efficiently handles a large number of 126 

random variables and computes statistical moments using Gaussian integration 127 
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without solving functional derivatives. Particularly, the advantages of RPIM meshfree 128 

method further enhances the framework's ability to analyse the stochastic response of 129 

complex structures.  A three-layer functionally graded sandwich nanoplates (FGSNPs) 130 

with ceramic-metal combination is considered in this paper to investigate the effect of 131 

uncertainties in material parameters on its static response. Specifically, the elastic 132 

modulus of ceramic and metal are treated as separate random fields and discretized 133 

through the KLE method. The Wavelet-Galerkin method is introduced to solve the 134 

second type of Fredholm integral equation. Following that, the obtained stochastic 135 

variables are substituted into the MPEM-RPIM framework to compute deflections and 136 

stresses, enabling the evaluation of various stochastic responses of the structure. The 137 

results indicated that different types of FGSNPs exhibit varying sensitivities to 138 

uncertain material parameters in ceramics and metals. In particular, changes in the 139 

sandwich configuration and power-law exponents significantly affect the stochastic 140 

response of structures. Numerical examples confirmed the correctness and efficiency 141 

of the developed stochastic computational framework, providing valuable references 142 

for the optimized design of ceramic-metal functionally graded sandwich nanoplates. 143 

2. Functionally graded sandwich plate 144 

Consider rectangular FGSNPs with thickness ℎ, length 𝑎 and width 𝑏, as shown 145 

in Fig. 1. Fig. 1(a) shows a FGSNP of type A "FGSNP-A" with a ceramic core layer, 146 

and Fig. 1(b) is a FGSNP of type B "FGSNP-B" with a metal core layer. The edges of 147 

the plates are parallel to the 𝑥-axes and 𝑦-axes, and the vertical coordinates of its 148 

bottom, two interfaces, and top are denoted by ℎ0, ℎ1, ℎ2, ℎ3, respectively. FGSNPs 149 

consists of three isotropic elastic layers whose material properties of the top and 150 

bottom surface layers vary smoothly only in the thickness direction. In this paper, all 151 

numerical examples are described using simple symbols, for instance, the symbol 1-2-152 

1 indicates that the core thickness is twice as thick as the top/bottom, while the top 153 

and bottom panels have the same thickness. 154 

 155 

Fig. 1 The geometric configuration of FGSNPs: (a) FGSNP-A; (b) FGSNP-B. 156 

For the FGSNP-A with a power-law distribution, the volume fraction of ceramic 157 

in the 𝑘-th layer is expressed as follows [5], 158 
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For the FGSNP-B with a power-law distribution, the volume fraction of ceramic 160 

in the 𝑘-th layer is expressed as follows [52], 161 
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 163 

Fig. 2 The variation of the volume fraction for ceramics along the thickness of FGSNPs with different power-law 164 

exponent 𝑝: (a) FGSNP-A; (b) FGSNP-B 165 

The variation of ceramic volume fraction of FGSNPs along the thickness are 166 

illustrated in Fig. 2. According to a mixing rule [53], the effective material properties 167 

of the 𝑘-th layer can be calculated as, 168 

 ( )( ) ( )

m c m
( ) ( )

k k
P z P P P V z= + −  (3) 169 

where 𝑃 represents the effective material properties such as elastic modulus 𝐸, density 170 

𝜌 and Poisson's ratio 𝜈; 𝑉(𝑘)(𝑧) denotes the volume fraction of ceramics along the 171 

plate thickness; and the subscripts ‘ ’ and ‘ ’ denote the metal and ceramic 172 

compositions, respectively. 173 

3. Formula derivation 174 
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3.1 Displacement of HSDT 175 

The high-order shear deformation theory has been widely applied to the 176 

computation of plate  and shell  structures in current study [54]. According to HSDT, 177 

the displacement component at any point on the 𝑘-th layer of a sandwich plate can be 178 

expressed as, 179 
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where 𝑢𝑘 and 𝑣𝑘 are the in-plane displacements at any point (𝑥, 𝑦, 𝑧) of the 𝑘-th layer; 181 

𝑢0 , 𝑣0  and 𝑤0  are the displacement components of the mid-plane along the 𝑥, 𝑦, 𝑧 182 

directions; 𝜙𝑥 and 𝜙𝑦 are the rotational inertia of the mid-plane about 𝑦-axis and 𝑥-183 

axis, respectively; 𝛽𝑥 = 𝑤0,𝑥 as well as 𝛽𝑦 = 𝑤0,𝑦. 184 

To satisfy the zero shears at the inferior and superior surfaces, Eq. (4) introduces 185 

a shape function 𝑓(𝑧) varying along the thickness of FGSNPs. In this study, 𝑓(𝑧) =186 

𝑧 − 4𝑧2/(3ℎ
2) proposed by Reddy [55] is adopted. 187 

The displacement of Eq. (4) can be written in compact form as follows, 188 
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The displacement-strain relations for layer 𝑘 can be written as, 192 
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with, 194 
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By neglecting  𝜎𝑧
(𝑘)

= 𝜎3
(𝑘)

 for each orthogonal layer in the laminate structure, 196 
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the constitutive equation for the 𝑘-th orthogonal layer of laminate can be expressed as, 197 
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where subscripts 1, 2 and 3 correspond to the 𝑥, 𝑦 and 𝑧 directions, respectively. The 199 

FGSNPs in this study consist of isotropic elastic layers, 𝑄𝑖𝑗
(𝑘)

 can be written as, 200 
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3.2 Radial point interpolation method 202 

Let us consider a support domain 𝛺𝑠 that has a set of arbitrarily distributed nodes 203 

as shown in Fig 3. The approximate function 𝑢ℎ(𝒙) can be estimated for all values of 204 

nodes within the support domain based on radial point interpolation method (RPIM) 205 

by using radial basis function 𝑅𝑖(𝒙) and polynomial basis function 𝑝𝑗(𝒙) [56]. Nodal 206 

value of approximate function evaluated at the node 𝒙𝑖  inside support domain is 207 

assumed to be 𝑢𝑖. 208 

 209 

Fig 3 Supporting domain and supporting nodes of the meshless method. 210 

 
h T T

1 1

( ) ( ) ( ) ( ) ( )
n m

i i j j

i j

u R a p b
= =

= + = x x x R x a + p x b  (11) 211 

For a two-dimensional (2D) problem, the second-order polynomial basis 212 

functions are taken as, 213 
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thus, we have 𝑚 = 6. And the radial basis functions 𝑹(𝒙) is defined as, 215 

  
T

( ) ( ), ( ), , ( )
n

R x R x R x=R x
1 2

 (13) 216 

where the number of terms 𝑛 is the number of support nodes in supporting domain Ωs. 217 

There are various commonly used radial basis functions (RBF), in this paper 218 

Multi-quadratic (MQ) radial basis function is adopted and its expression is as follows, 219 

 2 2
( ) ( )

i
R x r h
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where 𝑟  denotes the distance function, and for the 2D problem we have 𝑟 =221 

√(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 ; ℎ  is the average node spacing; 𝛼  and 𝛽  are the shape 222 

coefficients, and they are set to 1 and 1.03 respectively according to [57]. 223 

The following generic function is constructed from the set of dispersed nodes 224 

{𝑥𝑖}𝑖=1
𝑛 (∀𝑥𝑖 ∈ Ωs) on the local support domain Ωs at the computation point 𝒙, 225 
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Let 𝐽1 = 0,  𝐽2 = 0, the equation (17) can be obtained as follows, 228 
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where 𝑼̂𝑠 is the vector of all the support node displacements; 𝑹𝑛 and 𝑷𝑚 are express 230 

as: 231 
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Solving Eq. (17) yields, 234 
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thus, Eq. (11) can be rewritten as, 237 
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in which the shape function is defined, 239 
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        Another important issue that must be considered in meshfree methods is the 241 

selection of the radius of the support domain. As shown in Fig 3, for a computational 242 

node 𝒙Q, the radius of its support domain 𝑑𝑚 is determined by [5], 243 

 m c c
d d=  (24) 244 

where 𝑑𝑐 is a characteristic length related to the nodal spacing while 𝛼𝑐 denotes the 245 

scale factor. The value of 𝛼𝑐 will be determined in a subsequent numerical example. 246 

3.3 Governing equation 247 

For the static bending problem of FGSNPs, the application of the principle of 248 

virtual work leads to the following equation [52], 249 
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where 𝑞0 is the uniform sinusoidal transverse load. Substituting Eqs. (7) - (10) into Eq. 251 

(25), and making 𝛿𝑈 = 0, the weak form of governing equation can be expressed as 252 

follows, 253 
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According to RPIM shape function, the displacement field can be expressed as, 257 
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=
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  
  
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
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u

U258 

 (28) 259 

where 𝑼𝑖 is a displacement vector containing 𝑛 support nodes. 260 

Substituting Eq. (28) into Eq. (27), the bending and shear strains can be 261 

expressed as, 262 

 

0
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1 s1s
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,  
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i
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      

   

   

B
B
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 (29) 263 

where， 264 
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y i x
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 
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 (30) 265 

Substituting Eqs. (30) and (29) into Eq. (26), the discrete form of governing 266 

equation for static bending of FGSNPs can be obtained as, 267 

 =KU F  (31) 268 

where 𝑼 is the global displacement vector; 𝑲 and 𝑭 denote the global stiffness matrix 269 

and force vector, respectively, which are computed as, 270 
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 ( ) ( )
T T

b b b s s s
dΩ d

 
= +  K B Q B B Q B  (32) 271 

  
T

0
0 0 0 0 0 0 dΩ

i
q 


= F  (33) 272 

To solve the numerical integration of Eqs. (32) and (33), the problem domain 273 

needs to be discretized into a set of background mesh. In this study, a square plate is 274 

divided into a rectangular background mesh with 21 × 21 nodes at the mesh vertices, 275 

as illustrated in Fig. 4(a). Then the integration for each background cell is performed 276 

using a set of 4 × 4 Gaussian points. 277 

It is worth noting that structures with irregular polygons or simple curved edges 278 

will cause background mesh distortion and irregular nodal distributions as shown in 279 

Fig. 4(b), for which the irregular mesh can be transformed into a regular rectangle by 280 

coordinate mapping. However, for structures with complex irregular geometry, seen in 281 

Fig. 4(c), the Gaussian integral becomes highly complex and inapplicable. Thus, new 282 

methods are required to solve the integration for integration in domains with irregular 283 

nodal distributions. Effective solutions include the stabilized conforming nodal 284 

integration by Chen et al. [58] and the naturally stabilized nodal integration by Thai et 285 

al. [59,60]. 286 

 287 

 288 

Fig 4. Geometry and nodes distribution: (a) rectangle; (b) simple curved shape; (c) complex irregular shape. 289 

4. Approaches for stochastic analysis  290 

4.1 Discretization of random fields  291 
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4.1.1 Karhunen–Loève expansion 292 

A one-dimensional (1D) random field 𝑋(𝑥, 𝛾)  is a function of the spatial 293 

coordinates 𝑥 and random variable 𝜃. 𝑋̄(𝑥, 𝛾) is mean value of 𝑋(𝑥, 𝛾), and 𝑋̂(𝑥, 𝛾) is 294 

a zero-mean random field, then the stochastic process can be formulated as, 295 

 ˆ( , ) ( , ) ( , )X x X x X x  = +  (34) 296 

The covariance function 𝐶(𝑥1, 𝑥2)  of this random field is a positive definite 297 

function with bounded symmetry, which by Mercer's theorem [61], expands to, 298 

 
1 2 1 2

1

( , ) ( ) ( )
i i i

i

C x x f x f x


=

=  (35) 299 

where 𝜆𝑖  and 𝑓𝑖(𝑥)  are the eigenvalues and eigenfunctions of covariance function, 300 

which can be obtained by solving the Fredholm integral equation of the second kind 301 

as shown in Eq. (36), 302 

 
1 2 2 2 1

( , ) ( )dx ( )
i i i

C x x f x f x


=  (36) 303 

Symmetry and positive definiteness of covariance function will render the 304 

eigenfunctions to be orthogonal and complete and thus, 305 

 ( ) ( )dx
i j ij

f x f x 


=  (37) 306 

where Ω  is a random field region and the common covariance functions are 307 

Exponential and Gaussian as follows [35], 308 

 

1 2

2 2
1 2

| |/2

1 2

( ) /2

1 2

( , )      (Exponential type)

( , )   (Gaussial type)

x x c

x x c

C x x e

C x x e





− −

− −

 =


=

 (38) 309 

where 𝜎 is standard deviation and 𝑐 is correlative length. 310 

With 𝑓𝑖(𝑥) as the basis function to expand 𝑋̂(𝑥, 𝛾), the stochastic process can be 311 

rewritten as, 312 

 
1

( , ) ( , ) ( )
i i i

i

X x X x f x   


=

= +  (39) 313 

is called the Karhunen-Loève expansion [25]. 𝛾𝑖  is a set of uncorrelated random 314 

variables. When 𝑋(𝑥, 𝛾) belongs to a Gaussian random process, 𝛾𝑖 obeys a standard 315 

normal distribution. In practice, Eq. (39) is usually truncated after the N term as 316 

needed, so that the random field 𝑋(𝑥, 𝛾) is represented by the KLE, 317 

 
1

( , ) ( , ) ( )
N

i i i

i

X x X x f x   
=

= +  (40) 318 
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4.1.2 Wavelet-Galerkin method 319 

For the exponential covariance function of a 1D random field, the analytical 320 

solution of Fredholm integral equations of the second kind is [19], 321 

 

( )

2

2 2

2 2

2

1

1
( ) [ cos( ) sin( )]

1 / 2

i

i

i i i i

i

c

c

f x c x x

c L c






  



=

+

 = +
 + +


 (41) 322 

where 𝐿 is the length of a 1D random field and 
i

  can be found from the following 323 

transcendental equation, 324 

 
22

( 1)sin( ) 2 cos( )
i i i i

c L c L   − =  (42) 325 

However, the analytical method for solving Fredholm integral equations of the 326 

second kind is only applicable when the covariance function is exponential, triangular 327 

and Wiener-Levy type. Phoon [26] proposed a Wavelet-Galerkin solution method that 328 

is not restricted by the type of covariance function. 329 

When the random field area is [0, a], the mother wavelet function of Haar 330 

wavelet can be expressed as, 331 

 

  1     [0, / 2)

( ) 1     [ / 2, )

  0     other

x a

x x a a




= − 



 (43) 332 

where the mother wavelet can generate a family of orthogonal Haar wavelets by 333 

shifting and scaling, 334 

 ,
( ) (2 )     ,

j

j k j
x x k j k Z  = −   (44) 335 

in which 𝑗 controls the frequency domain, 𝑘controls the time domain, 𝛼𝑗controls the 336 

amplitude. In this study, 𝛼𝑗  is taken to be 1, then 𝜓𝑗,𝑘(𝑥) is a series of orthogonal 337 

functions with unit amplitude. 338 

A series of Haar wavelet basis functions based on the area [0, 1] are introduced, 339 

 

0

,

( ) 1

( ) (2 )

2 ;  0,1, , 2 1;  0,1, , 1.

j

i j k

j j

x

x x k

i k k j m



 

 =


= −


= + = − = −

 (45) 340 

where 𝑚 is the maximum wavelet level. 341 

Since the wavelet basis functions are all orthogonal, their inner products satisfy, 342 

 
1

0
( ) ( )dx

i j i ij
x x h  =  (46) 343 
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therefore, the orthogonal function system satisfies, 344 

 
1

T

0
dx = H  (47) 345 

 

0

1

0

0
N

h

h
−

 
 

=
 
  

H  (48) 346 

where 𝑁 = 2𝑚 , ℎ0 = 𝑎, … , ℎ𝑖 = 2−𝑗, and the subscript is the same as in Eq. (45). 347 

Therefore, the eigenfunction 𝑓𝑘(𝑥) is expanded with a wavelet basis function as, 348 

 
1

( ) T ( )

0

( ) ( )
N

k k

k i i

i

f x d x
−

=

= = D  (49) 349 

where 𝐷(𝑘) represents the eigenvector corresponding to the 𝑘 -th order eigenfunction. 350 

The normalized orthogonal vector is defined as, 351 

 1/2ˆ − =    (50) 352 

then we have, 353 

 
1

T

0
ˆ ˆ dx 1=   (51) 354 

thus, Eq. (49) can be rewritten as, 355 

 
( ) 1/2 1/2 ( )ˆˆ( )

T k T k T k

k
f x D

−
= = =

（ ）
D H H D    (52) 356 

The eigenvalues 𝜆𝑘 and eigenvectors 𝑫̂(𝑘) can be obtained by solving Eq. (53), 357 

 
( ) ( )ˆˆ ˆk k

k
 =D AD  (53) 358 

where 𝑨̂ needs to be obtained by solving the 2D wavelet transform of the covariance 359 

function. 360 

The wavelet transform cannot be applied to a continuous signal thus it needs to 361 

be discretised. For the covariance function 𝐶(𝑥1, 𝑥2) , assume a set of values 𝐹(𝑥𝑖, 𝑥𝑗), 362 

where 363 

 2 ( 1) / 2 ,  2 ( 1) / 2 ,  ( , 0, , 1)
i j

x a i N x a j N i j N= + = + = −  (54) 364 

Substituting 𝐹(𝑥𝑖 , 𝑥𝑗) into 𝐶(𝑥1, 𝑥2) to obtain a matrix 𝑨 with 𝑁 × 𝑁 orders. A 365 

certain row of 𝑨 is a 1 × 𝑁 vector, which can be expressed as, 366 

 ,0 ,1 , , 1
[ ]

m m m k m N
a a a a

−  (55) 367 

where 𝑘 = 0,1,2, … , 𝑁 − 1. The vector is processed using an inverse binary tree, and 368 

then the nodal values in subsequent layers are computed as, 369 
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 ( ), 1,2 1,2 1

1

2
j k j k j k

a a a
+ + +

= +  (56) 370 

where 𝑘 = 0,1,2, … , 2𝑗 − 1 , and 𝑗 = 𝑚 − 1, … ,2,1,0 . The wavelet coefficients are 371 

evaluated from the nodal values in this binary tree as, 372 

 ( ), 1,2 1 1,2

1

2
j k j k j k

c a a
+ + +

= −  (57) 373 

Finally, the 1D wavelet transform of Eq. (55) is written, 374 

 
0,0 1 1

[ ]
N

a c c
−

 (58) 375 

in which, 376 

 

,

2

0,1, , 2 1

0,1, , 1

i j k

j

j

c c

i k

k

j m

=


= +


= −
 = −

 (59) 377 

Applying a 1D wavelet transform to each row of the matrix 𝑨 , and then 378 

performing 1D wavelet transform to each column result in 𝑨̄ ; performing 𝑨̂ =379 

𝑯1/2𝑨̄𝑯1/2 on  𝑨̄ leads to the coefficient matrix 𝑨̂ . The eigenvalues and eigenvectors 380 

can be derived by substituting 𝑨̂ into Eq. (53). 381 

4.2 Modified point estimation method 382 

 Assuming that 𝑔(𝜞) is a function of the random vectors 𝜞 = [𝛾1, 𝛾2, . . . , 𝛾𝑁]𝑇 383 

and 𝑝(𝛾) is the joint probability density of 𝜞, the expectation and variance of 𝑔(𝜞) 384 

are, 385 

 ( ) ( ) ( )dE g g p 
+

−
=    Γ  (60) 386 

 ( ) ( )( ) ( ) ( )
22

dD g E g g p   
+

−

 = − = −         Γ Γ
Γ Γ  (61) 387 

where 𝜇𝜞 is the expectation of 𝑔(𝜞). 388 

Since 𝜞 contains multiple random variables, the moments of 𝑔(𝜞) are difficult to 389 

be computed directly. According to the multivariate function decomposition method 390 

proposed by Xu and Rahman [40], an n-dimensional variational function can be 391 

approximated by the sum of multiple one-dimensional variational functions 𝑔𝑖(𝛾𝑖), 392 

 
( ) ( ) ( ) ( )

( ) ( )
1

1 1 1

1

, , , , , ,

N

i i

i

i i i i i N

g g N g

g g c c c c



 

=

− +


 − −


 =

Γ c
 (62) 393 

where 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑁]𝑇 is the vector of reference point and 𝑔𝑖(𝛾𝑖) only depends on 394 

the variable 𝛾𝑖. 395 
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Substituting Eq. (62) into Eqs. (60) and (61) respectively, the expectation and 396 

variance of  𝑔(𝜞) can be approximated as, 397 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
N N

i i i i

i i

E g E g N g E g N g 
= =

 
 − − = − −       

 
 Γ c c  (63) 398 

 

( ) ( )  ( ) ( ) ( )

( )  ( ) ( )

2 2 2

1

2 2

1

1

1

n

i i

i

n

i i

i

D g E g E g N g c

E g N g c

   

  

=

=

 
= −  − − − −               

 

= − − − −      





Γ Γ Γ

Γ Γ

Γ Γ

399 

 (64) 400 

If the random variables in the function 𝑔𝑖(𝛾𝑖)  obey a standard Gaussian 401 

distribution, 𝐸[𝑔𝑖(𝛾𝑖)] and 𝐸[(𝑔𝑖(𝛾𝑖) − 𝜇𝜞)2] can be approximated by the Gaussian-402 

Hermite integral function as [39], 403 

 ( ) ( ),

,

1

2
r

GH l

i i i GH l

l

E g g


 
=

=     (65) 404 

 ( )  ( )
22 ,

,

1

2
r

GH l

i i i GH l

l

E g g


   
=

 − = −    Γ Γ  (66) 405 

where 𝑟 represents the number of estimating points of a Gaussian-Hermite integration; 406 

𝛾𝐺𝐻,𝑙  and 𝜔𝐺𝐻,𝑙  are the abscissa and weight for the Gaussian-Hermite integration, 407 

respectively. 408 

4.3 Stochastic response estimation 409 

The Gaussian random field remain one of the most commonly utilized stochastic 410 

models in current research [35]. Given the absence of prior investigations into random 411 

field of ceramic-metal FGSNPs, the elastic modulus of ceramics and metals (𝐸c and 412 

𝐸m ) are treat as stationary homogeneous Gaussian random fields for stochastic 413 

analysis in this study, which are expanded using the KLE as, 414 

 ( )c c

1

( ) ( )
N

i i i

i

E x E x f x 
=

= +  (67) 415 

 ( )m m

1

( ) ( )
N

i i i

i

E x E x f x 
=

= +  (68) 416 

        In Eqs. (67) and (68), the uncertainties in material properties are characterized by 417 

the random variables 𝛾𝑖. Let 𝜞 = [𝛾1, 𝛾2, . . . , 𝛾𝑁]𝑇represent an n-dimensional random 418 

vectors including these random variables. Then Eq. (31) is rewritten as,  419 
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 ( ) ( ) =K U F   (69) 420 

where 𝑲(𝜞) is the random stiffness matrix and 𝑼(𝜞) denotes random displacement 421 

(response) vector of the structure, which is solved by the following equation, 422 

 1
( ) ( )

−
=U K F   (70) 423 

       Thus, the stochastic static response of the structure is evaluated by solving the 424 

mean and variance of the stochastic stiffness matrix. According to Eqs. (60)-(66), the 425 

expectation and variance of 𝑲(𝜞) can be computed as, 426 

 ( ) ( ) ( )
,

, ,

1 1

1
N r

GH l

i l i l

i l

K N K


 
= =

 − −K
c  (71) 427 

 

( ) ( ) ( )
2 2,

, ,

1 1

var 1

                                . var

N r
GH l

i l i l

i l

R N K

Std D


  

= =


 = − − − −    




=

K K K

K K

c

 (72) 428 

where, 𝜇𝑲, var𝑲 and 𝑆𝑡𝑑. 𝐷𝑲 are the mean, variance and standard deviation of 𝑲(𝜞), 429 

respectively. 𝐾𝑖,𝑙(𝛾𝑖,𝑙) denotes the l-th estimation point of the i-th random variable, 430 

and 𝛾𝑖,𝑙 = [𝛾𝑐, 𝛾𝑐, ⋯ , √2𝛾𝐺𝐻,𝑙, ⋯ , 𝛾𝑐, 𝛾𝑐] denotes that all the variables are 𝛾𝑐, except for 431 

the i-th variable which is √2𝛾𝐺𝐻,𝑙. The 𝒄 of 𝐾(𝒄) is the reference point vector, which 432 

can be written as 𝒄 = [𝛾𝑐 , 𝛾𝑐, ⋯ , 𝛾𝑐, 𝛾𝑐]. When the reference point 𝒄 = [0,0, ⋯ ,0,0], 433 

we have, 434 

 ( ) ( ), , , ,
0,0, , 2 , 0,0

i l i l i l GH l
K K  =

 
 (73) 435 

 ( )  ( )0,0, , 0, 0,0K K=c  (74) 436 

The sample of the material elastic modulus for the l-th estimating point of the i-437 

th variable that is associated with 𝐾𝑖,𝑙(𝛾𝑖,𝑙) and 𝐾(𝒄) is expressed as, 438 

 
, ,

( ) ( ) 2 ( )
K il K GH l i i

E x E x f x = +  (75) 439 

 ( ) ( )
K,c K

E x E x=  (76) 440 

therefore, 𝐾𝑖,𝑙(𝛾𝑖,𝑙) and 𝐾(𝒄) in Eqs. (71) and (72) can be obtained by adopting 𝐸𝐾,𝑖𝑙 441 

from Eq. (75) and 𝐸𝐾,𝑐  from Eq. (76), respectively, and thus the mean and the 442 

variance of displacements and stress will be found finally. 443 
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As a result, a novel stochastic meshfree computational framework of MEPEM-444 

RPIM was developed. Initially, the governing equation of plates are deduced 445 

employing the HSDT-based RPIM meshfree method, and then the mean and variance 446 

of stochastic static response are computed through the MPEM. 447 

5. Numerical examples and discussions 448 

To compute the integrals, boundary conditions are imposed on the governing 449 

equations, and the common boundary conditions are shown in Table 1. Unless 450 

otherwise specified, a square simply supported (SSSS) plate with a width-to-thickness 451 

ratio of 𝑎/ℎ = 10 is employed in this paper, whose material parameters are set to: 452 

𝐸m = 70  P , 𝐸c = 151  P , 𝜌m = 2700 kg/ 3, 𝜌c = 5680 kg/ 3, 𝜈m = 𝜈c = 0.3. 453 

In addition, the normalisation parameters for all numerical results analysis are 454 

evaluated in the following form 455 

• Dimensionless central deflection: 456 
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where𝐸0 = 1    . 458 

• Dimensionless axial stress: 459 
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• Dimensionless shear stress: 461 
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Table 1. The boundary conditions for plates. 463 

Type Conditions Values 

SSSS 
At  𝑦 = 0, 𝑏 

At  𝑥 = 0, 𝑎 

𝑢 = 𝑤0 = 𝛽𝑥 = 𝜙𝑥 = 0 

𝑣 = 𝑤0 = 𝛽𝑦 = 𝜙𝑦 = 0 

CCCC At all edges 𝑢 = 𝑣 = 𝑤0 = 𝛽𝑥 = 𝛽𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

SCSC 
At  𝑦 = 0, 𝑏 

At  𝑥 = 0, 𝑎 

𝑢 = 𝑣 = 𝑤0 = 𝛽𝑥 = 𝛽𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

𝑣 = 𝑤0 = 𝛽𝑦 = 𝜙𝑦 = 0 

CSCS 
At  𝑦 = 0, 𝑏 

At  𝑥 = 0, 𝑎 

𝑢 = 𝑤0 = 𝛽𝑥 = 𝜙𝑥 = 0 

𝑢 = 𝑣 = 𝑤0 = 𝛽𝑥 = 𝛽𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0 

5.1 Verification and comparison 464 

Initially, in order to estimate the influence of scale factor 𝛼𝑐 for dimensionless 465 

size of the support domain, the term 𝛼𝑐 has been chosen from 2.0 to 3.0 as suggested 466 

by Liu et al. [62]. The obtained results are depicted in Table 2 and compared with the 467 
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analytical solution of Reddy et al. [55] based on the third-order shear deformation 468 

theory. It is clear that the minimum error occurs at 𝛼𝑐 = 2.4. Therefore, the scale 469 

factor 𝛼𝑐  can be fixed at 2.4 for all of following problems to cover the large enough 470 

nodes in the support domain for constructing shape functions and achieving high 471 

accuracy in solutions. 472 

Table 2 The normalized deflection of isotropic square plate under a uniformly distributed load (a/h = 10) with a 473 

range of 𝛼𝑐 values. 474 

𝛼𝑐 Reddy [55] TSDT  RPIM-HSDT 𝛼𝑐 Reddy [55] TSDT  RPIM-HSDT 

𝑤̄  𝑤̄ 𝛥𝑤̄(%) 𝑤̄  𝑤̄ 𝛥𝑤̄(%) 

 4.666     4.666    

2.0   4.7156 1.06% 2.6   4.6488 -0.37% 

2.1   4.7018 0.77% 2.7   4.6429 -0.50% 

2.2   4.7002 0.73% 2.8   4.6314 -0.74% 

2.3   4.6819 0.34% 2.9   4.6303 -0.77% 

2.4   4.6684 0.05% 3.0   4.6299 -0.77% 

2.5   4.6584 -0.16%      

Table 3 Comparison of dimensionless central deflection of FGSNP-A with those of Zenkour et al. [63]. 475 

p Source Type    

1-1-1 2-1-2 1-2-1 2-2-1 

1 Zenkour(CLPT) 0.28026 0.29417 0.25958 0.26920 

Zenkour(FSDT) 0.29301 0.30750 0.27167 0.28168 

Zenkour(TSDT) 0.29199 0.30632 0.27090 0.28085 

Present 0.29011  0.30450  0.27076  0.28076  

2 Zenkour(CLPT) 0.32067 0.33942 0.29095 0.30405 

Zenkour(FSDT) 0.33441 0.35408 0.30370 0.31738 

Zenkour(TSDT) 0.33289 0.35231 0.30263 0.31617 

Present 0.33164  0.35104  0.30187  0.31541  

5 Zenkour(CLPT) 0.35865 0.37789 0.32283 0.33693 

Zenkour(FSDT) 0.37356 0.39418 0.33631 0.35123 

Zenkour(TSDT) 0.37145 0.39183 0.33480 0.34960 
Present 0.37088  0.39104  0.33456  0.34822  

10 Zenkour(CLPT) 0.37236 0.38941 0.33612 0.34915 

Zenkour(FSDT) 0.38787 0.40657 0.34996 0.36395 

Zenkour(TSDT) 0.38551 0.40407 0.34824 0.36215 

Present 0.38517  0.40333  0.34823  0.36188  

Table 4 Comparison of dimensionless axial stress and shear stress of FGSNP-A with those of Zenkour et al. [63]. 476 

p Source Type 

1-1-1  2-1-2  1-2-1  2-2-1 

𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑧(0) 𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑧(0) 𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑧(0) 𝜎̄𝑥𝑥(ℎ/2) 𝜏̄𝑥𝑧(0) 

1 Zenkour(CLPT) 1.38303  0.23257   1.45167  0.24316   1.28096  0.22057   1.27749  0.22762  

Zenkour(FSDT) 1.42617  0.26117  1.49587  0.27104  1.32309  0.25258  1.32062  0.25951  

Zenkour(TSDT) 1.42892  0.26809  1.49859  0.27774  1.32590  0.26004  1.32342  0.26680  

Present 1.41253  0.27022  1.48463  0.28399  1.30872  0.26966  1.30737  0.28173  

2 Zenkour(CLPT) 1.58242  0.25077  1.67496  0.26752  1.43580  0.23257  1.42528  0.24316  

Zenkour(FSDT) 1.62748  0.27188  1.72144  0.28838  1.47988  0.25834  1.47095  0.26939  

Zenkour(TSDT) 1.63025  0.27807  1.72412  0.29422  1.48283  0.26543  1.47387  0.27627  

Present 1.61521  0.28257  1.71165  0.29967  1.46615  0.27752  1.45898  0.29984  

5 Zenkour(CLPT) 1.76988  0.27206  1.86479  0.29731  1.59309  0.24596  1.56401  0.26099  

Zenkour(FSDT) 1.81580  0.28643  1.91302  0.31454  1.63814  0.26512  1.61181  0.28265  

Zenkour(TSDT) 1.81838  0.29150  1.91547  0.31930  1.64106  0.27153  1.61477  0.28895  

Present 1.80620  0.30108  1.90525  0.32743  1.62619  0.28780  1.60181  0.31978  

10 Zenkour(CLPT) 1.83754  0.28299  1.92165  0.31316  1.65844  0.25257  1.61645  0.26998  

Zenkour(FSDT) 1.88376  0.29566  1.97126  0.33242  1.70417  0.26895  1.66660  0.29080  

Zenkour(TSDT) 1.88147  0.29529  1.97313  0.33644  1.64851  0.27676  1.61979  0.29671  

Present 1.87540  0.30976  1.96372  0.34393  1.69304  0.29141  1.67612  0.32638  

Next, the central deflections, axial stresses and shear stresses of the plates are 477 

computed for different sandwich configurations as well as varying power-law 478 
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exponents 𝑝, as listed in Tables 3 and 4. Comparison with the analytical solution of 479 

Zenkour et al. [63] verifies the correctness of the governing equations developed 480 

based on RPIM. It was observed that increasing 𝑝 leads to greater plate’s central 481 

deflection and axial stress at the top centre point. This occurs because an increase in 𝑝 482 

reduces the ceramic content in the surface of the FGSNP-A, resulting in decreased 483 

stiffness and increased deflection, which concentrates stresses in localized areas. 484 

Moreover, Fig. 5 shows the variation of axial stress with thickness for FGSNPs, while 485 

Fig. 6 presents the variation of shear stress, from which we can notice that the 486 

variation curves of stresses exhibit 'folded corners' at the interface between the core 487 

and surface layers as p increases. The larger the value of p, the more pronounced this 488 

effect. This is attributed to the fact that an increase in p leads to either a decrease (for 489 

FGSNP-A) or an increase (for FGSNP-B) in the ceramic content of the surface layers 490 

of FGSNPs, accentuating the stiffness difference between the core and surface layers 491 

and thus causing an abrupt interfacial stress change. The correctness of Figs. 5 and 6 492 

is validated by comparing the results with those of FGSNPs obtained by Daikh et al. 493 

[52] using an analytical solution. These comparative analyses further demonstrate that 494 

the computational framework and procedures developed in this paper using RPIM are 495 

reliable and efficient, effectively replacing analytical methods. 496 

 497 

Fig. 5 Dimensionless axial stresses along the thickness of 1-1-1 FGSNPs: (a) FGSNP-A; (b) FGSNP-B.  498 

 499 
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Fig. 6 Dimensionless shear stresses along the thickness of 1-1-1 FGSNPs: (a) FGSNP-A; (b) FGSNP-B.  500 

Table 5 The parameters of the random fields. 501 

Stochastic structural parameters Values Region Correlative length Type 

𝐸c 151 Gpa 
0 ≤ 𝑥 ≤ 𝐿𝑥 = 𝑎 

0 ≤ 𝑦 ≤ 𝐿𝑦 = 𝑏 

𝑐𝑥 = 0.5𝐿𝑥 

𝑐𝑦 = 0.5𝐿𝑦 
Gaussian 

𝐸m 70 Gpa 
0 ≤ 𝑥 ≤ 𝐿𝑥 = 𝑎 

0 ≤ 𝑦 ≤ 𝐿𝑦 = 𝑏 

𝑐𝑥 = 0.5𝐿𝑥 

𝑐𝑦 = 0.5𝐿𝑦 
Gaussian 

5.2 Stochastic analysis 502 

5.2.1 Using KLE method to discretize random fields 503 

Given the spatial variability of material parameters, the elastic modulus of 504 

ceramics and metals (𝐸c     𝐸m) are treated as smooth uniform Gaussian random 505 

fields in this study, respectively. Table 5 provides relevant parameters of the random 506 

fields. Taking a 1D random field (                g   𝐿 = 6,          v     g   𝑐 =507 

0.5𝐿,                v         𝑐𝑣 = 0.05) as an example, the first four eigenfunctions 508 

of exponential covariance function for analytical method are given by Eq. (41), as 509 

shown in Eq. (80). Fig. 7 illustrates the simulation results by Wavelet-Galerkin 510 

method. Comparing with analytical solution, it can be observed that simulation 511 

accuracy improves with the increase of the maximum wavelet level 𝑚. To strike a 512 

balance between simulation accuracy and computational cost, we set ‘ 𝑚 = 7’ for this 513 

study. 514 
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(a) Analytical solution 517 
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 518 

(b) Numerical solution by Wavelet-Galerkin method (m=3) 519 

 520 

(c) Numerical solution by Wavelet-Galerkin method (m=5) 521 

 522 

(d) Numerical solution by Wavelet-Galerkin method (m=7) 523 

Fig. 7 The first four eigenfunctions computed by analytical method and Wavelet-Galerkin method. 524 

 525 

Fig. 8 The growth of index  𝜏         and 𝜏Ex          with the increase of the truncating KLE term number. 526 

Although the analytical method provides exact solutions, it is limited to solving 527 

transcendental equations and can only be applied to specific covariance functions. In 528 

addition, there is a notable difference in truncating KLE terms between Exponential 529 

and Gaussian covariance functions due to the different decay rates of their 530 

eigenvalues. The following exponent 𝜏  is utilised to assess the completeness of 531 

simulating random fields with different covariance functions [19].  532 
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where Ω is a random region. In present study, KLE terms are truncated when 𝜏 534 
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reaches 95%. Substituting the eigenvalues into Eq. (81), the growth of 𝜏Guassian and 535 

𝜏Exponential with increasing truncation number 𝑁 = 2𝑚 is shown in Fig. 8. It is clear 536 

that the decay rate of Gaussian’  eigenvalues is significantly faster than that of 537 

Exponential, indicating that fewer KLE terms are needed for the Gaussian covariance 538 

function to simulate random fields, resulting in considerable computational cost 539 

savings. 540 

It is worth noting that the Gaussian random fields 𝐸c and 𝐸m in this investigation 541 

belong to 2D random fields. The 2D random field with regular shape can be 542 

decomposed into 1D random fields in two directions for the KLE, as described in [19]. 543 

Therefore, the covariance function of 2D random field 𝐶(𝑥1, 𝑥2; 𝑦1, 𝑦2)  can be 544 

decomposed into 1D random fields in 𝑥 direction with 𝐶(𝑥1, 𝑥2) and 𝑦 direction with 545 

𝐶(𝑦1, 𝑦2). Then solving the Fredholm integral equations respectively to obtain the 546 

eigenvalues 𝜆𝑚
𝑥 , 𝜆𝑛

𝑦
 and eigenfunctions 𝑓𝑚

𝑥(𝑥), 𝑓𝑛
𝑦

(𝑦), and combing them to form the 547 

2D eigenvalues and eigenfunctions as follows.  548 
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Fig. 9 displays the shape of the first four eigenfunctions for a 2D random field. 551 

Here, [𝑖, 𝑗] represents the combination of the 𝑖-th eigenfunction in direction 𝑥 with the 552 

𝑗-th eigenfunction in direction 𝑦. By now, we have investigated the characteristics of 553 

covariance functions for random fields and illustrated the KLE method. 554 

 555 

Fig. 9 The first four eigenfunctions of the 2D random field with exponential covariance function. 556 
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5.2.2 Stochastic static analysis for FGSNPs 557 

To verify the correctness of MPEM-RPIM, Monte Carlo simulation (MCS) with 558 

a sample size of 10,000 is performed on the same stochastic structure. Taking the 559 

random field 𝐸c of FGSNP-A as an example, Fig. 10 compares the mean and standard 560 

deviation of      ’          deflection computed by MCS and MPEM, respectively. 561 

The results show that both two methods produce nearly identical outcomes, indicating 562 

that MPEM-RPIM is a reliable stochastic computational method. Moreover, Table 6 563 

provides the CPU time required for computation using these two methods. The 564 

presented method requires only about 1/740th of the time needed by MCS.  Therefore, 565 

it can be concluded that, under the same computational conditions, the novel 566 

stochastic meshfree computational framework developed in this paper significantly 567 

reduces computational time and thus saves computational costs. 568 

Table 6 Comparison of CPU time of MCS and MPEM. 569 

𝒄𝒗 MCS MPEM 𝒄𝒗 MCS MPEM 

0.05 38643.5437 52.2834 0.20 38714.4581 52.3473 

0.10 38552.6485 52.1677 0.25 38561.3267 52.2461 

0.15 38586.5561 52.2054 0.30 38629.7461 52.2294 

   Mean 38614.7132 52.2466 

 570 

 571 

 572 

Fig 10 Comparison of mean and standard deviation of dimensionless central deflection of 1-1-1 FGSNP-A subjects 573 

to random field Ec computed by MCS and NPEM. 574 

As the second stochastic comparison example, the validation of deflection statics 575 

of Ni/Al2O3 FGM plate with power-law exponents 𝑝 = 2 and thickness ratio 𝑎/ℎ = 10 576 

is presented. Elastic modulus of metal 𝐸m is considered to be independent random 577 

variable. Fig. 11 demonstrates that the result obtained by present method agrees fairly 578 

well with those reported by Tomar et al. [64] using the first-order perturbation 579 

technique and Yang et al. [65] using the semi-analytical method. This further validates 580 

the correctness of MPEM-RPIM. 581 
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 582 

Fig. 11 Comparison of the coefficient of variation 𝐶̄𝑣 of central deflection of Ni/Al2O3 FGM plate 583 

After validation, the developed stochastic meshfree computational framework is 584 

utilized for the static bending analysis of structures to determine the stochastic 585 

response sensitivity of FGSNPs. In this research, the spatial coefficients of variation 586 

𝑐𝑣 for the random fields 𝐸c and 𝐸m are taken to be in the range of 0.005 to 0.3, while 587 

the coefficient of variation 𝐶̄𝑣  (Std.D/Mean) for the stochastic response of the 588 

structure is used to assess its sensitivity to the random fields. 589 

Fig. 12 illustrates the effects of the random field 𝐸c on FGSNPs, showing that 𝐶̄𝑣 590 

of central deflection increases as 𝑐𝑣  increases, indicating an augmentation in 591 

sensitivity of plates with heightened spatial variability of materials. Furthermore, 592 

compared to FGSNP-B, random field 𝐸c has a greater effect on FGSNP-A, while the 593 

structures with larger power-law exponent 𝑝 are subjected to lower the effects. This is 594 

because FGSNP-A has a higher ceramic content than that of FGSNP-B, making it 595 

more susceptible to the random field 𝐸c. Conversely, increasing power-law exponent 596 

reduces the ceramic content, which mitigates the adverse effects. In contrast, Fig. 13 597 

shows that for the random field 𝐸m, FGSNP-B is more significantly affected, with 598 

effects increasing as the power-law exponent increases. This is due to FGSNP-B's 599 

metal core layer and the opposing distribution of ceramic volume percentage 600 

compared to FGSNP-A, which leads them to manifest two completely contrasting 601 

material properties. Notably, the maximum 𝐶̄𝑣 of central deflection of FGSNP-A is 602 

lower than that of FGSNP-B, which can be attributed to the higher elastic modulus of 603 

ceramics, providing greater stability to FGSNP-A. 604 
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 605 

Fig. 12 Effect of random fields Ec on the dimensionless central deflection of 1-1-1 FGSNPs with different power-606 

law exponent p. 607 

 608 

Fig. 13 Effect of random fields Em on the dimensionless central deflection of 1-1-1 FGSNPs with different power-609 

law exponent p. 610 

The standard deviation of deflection curves is depicted in Fig. 14 to reveal the 611 

effects of random field 𝐸c on the FGSNP-A with different sandwich configurations 612 

and power-law exponents. Observing the figure, it becomes apparent that the thicker 613 

core layer, the more FGSN-A is affected by random field 𝐸c, whereas an increase in 614 

the power-law exponent diminishes this effect. This arises because FGSNP-A has a 615 

ceramic core layer, and increasing its thickness raises the ceramic content, which 616 

enhances the sensitivity of structures to random field 𝐸c. In addition, the effects of 617 

random field 𝐸c  on the FGSNP-B with different sandwich configurations are 618 

illustrated in Fig. 15. Comparing Figs. 14 and 15, we can obtain the opposite 619 

conclusions. Furthermore, it can be anticipated that the impact of random field 𝐸m on 620 

the stochastic deflection of FGSNPs will yield conclusions opposite to those drawn 621 

for random field 𝐸c .  622 
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 623 

Fig. 14 Effect of random field Ec on the dimensionless deflection curve at (𝑥, 𝑦 = 𝑏/2) of FGSNP-A with different 624 

sandwich configurations and power-law exponent p. 625 

 626 

Fig 15 Effect of random field Ec on the dimensionless deflection curve at (𝑥, 𝑦 = 𝑏/2) of FGSNP-B with different 627 

sandwich configurations and power-law exponent p. 628 

For further examination of stochastic static response, we plotted stochastic bands 629 
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to better visualize the effect of random field fluctuations on the structural stresses. 630 

The stochastic bandwidth was determined using the Chebyshev inequality, which can 631 

be expressed as follows: 632 
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According to the above equation, the stochastic bandwidth with a confidence 634 

level of 95% contains 4.5 standard deviations, that is, the stochastic bandwidth is set 635 

to 𝜇̄ ± 4.5𝜎, where 𝜇̄ and 𝜎 are the mean and standard deviation, respectively. 636 

The maximum stress in static analysis significantly influences structural damage, 637 

and thus it is necessary to examine effects of stochastic material parameters on the 638 

maximum stress. The stochastic bands depicting maximum axial and shear stresses of 639 

FGSNPs affected by random field 𝐸c are illustrated in Figs. 16-19.  640 

 641 

Fig. 16 Effect of random field Ec on the maximum dimensionless axial stress of 1-1-1 FGSNP-A with different 642 

power-law exponent p. 643 

 644 

Fig. 17 Effect of random field Ec on the maximum dimensionless axial stress of 1-1-1 FGSNP-B with different 645 

power-law exponent p. 646 

 647 

Fig. 18 Effect of random field Ec on the maximum dimensionless shear stress of 1-1-1 FGSNP-A with different 648 
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power-law exponent p. 649 

 650 

Fig. 19 Effect of random field Ec on the maximum dimensionless shear stress of 1-1-1 FGSNP-B with different 651 

power-law exponent p. 652 

It is evident that the stochastic bandwidth increases with the growth of 𝑐𝑣 , 653 

indicating a more pronounced stochastic response of structures as random field 654 

fluctuates. When comparing FGSNP-A and FGSNP-B, it is observed that the 655 

stochastic bandwidth of both axial and shear stresses decreases with an increase in 𝑝 656 

for FGSNP-A, while the opposite holds for FGSNP-B. This phenomenon occurs 657 

because an increase in 𝑝  diminishes the ceramic content in FG surface layer of 658 

FGSNP-A, thereby reducing the impact of random field 𝐸c on stresses. Conversely, 659 

the ceramic content in FG surface layer of FGSNP-B rises with an increase in 𝑝, 660 

making it more susceptible to random field 𝐸c , which leads to a larger stochastic 661 

bandwidth. Importantly, we found that the stochastic bandwidths of shear stresses are 662 

all narrower than those of axial stresses, with FGSNP-B showing particularly 663 

pronounced. This can be explained by the fact that since the maximum axial stresses 664 

are acquired at the top/bottom surface of FGSNPs, the variation of ceramic percentage 665 

in FG surface layer further exacerbates the effect of random field 𝐸c on the stress. In 666 

contrast, the maximum shear stress at the intermediate layer or demarcation benefits 667 

from the single stable material properties of core layer, mitigating the effect of 668 

random field. Particularly, the effect of random field 𝐸c on shear stress of FGSNP-B, 669 

which has a metal core layer, is extremely weak. 670 

6. Conclusion 671 

In this study, we develop a novel stochastic computational framework that 672 

integrates the capabilities of MPEM and RPIM for addressing the stochastic static 673 

response of FGSNPs. The spatial variability of material parameters is introduced into 674 

elastic modulus of ceramic and metal, which are considered as random fields. To 675 

compute the mean and standard deviation of stochastic static response, the random 676 

fields are discretized by KLE method and then the obtained random variables are 677 

substituted into MPEM-RPIM for further computation. This framework has been 678 

demonstrated to be effective and robust, and the following conclusions can be drawn 679 

based on the analysis of numerical examples: 680 

• The computational framework of MPEM-RPIM enables accurate and efficient 681 

computation for the stochastic static response of plate structures. It demonstrates 682 
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higher efficiency compared to MCS method, substantially reducing computation 683 

time and cost. 684 

• Compared to random field 𝐸m , the stochastic static deflection of FGSNP-A 685 

becomes more sensitive to random field 𝐸c , while the opposite is true for 686 

FGSNP-B. Notably, FGSNP-A exhibits higher stability than FGSNP-B 687 

concerning the impact of stochastic material parameters. 688 

• Increasing coefficient of variation 𝑐𝑣 exacerbates the fluctuation of random fields, 689 

leading to a more sensitive performance in the stochastic response of structures. 690 

Furthermore, enlarging power-law exponent diminishes the impact of random 691 

field 𝐸c on FGSNP-A, while enhances its effect on FGSNP-B. 692 

• The stochastic bands show that the maximum shear stress of FGSNPs is less 693 

affected by the random fields compared to the maximum axial stress. Particularly, 694 

the effect of random field 𝐸m  on the maximum shear stress of FGSNP-B is 695 

extremely weak. 696 

Due to space limitations, only the sensitivity analysis of static stochastic 697 

response is performed in this paper. However, the developed stochastic computational 698 

framework can be extended to stochastic analysis of plates subject to impact loads, 699 

forced vibration, moving loads, etc., to investigate the effect of material uncertainty 700 

on structural response and optimise the structural design. 701 
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