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ABSTRACT
Understanding biotic interactions is a crucial goal in community ecology and species distribution modelling, and large strides 
have been made towards improving multivariate computational methods with the aim of quantifying biotic interactions and 
improving predictions of species occurrence. Yet, while considerable attention has been given to computational approaches and 
the interpretation of these quantitative tools, the importance of sampling design to reveal these biotic interactions has received 
little consideration. This study explores the influential role of priority effects, that is, the order of habitat colonisation, in shaping 
our ability to detect biotic interactions. Using a simple set of simulations, we demonstrate that commonly used cross-sectional 
co-occurrence data alone cannot be used to make reliable inferences on asymmetric biotic interactions, even if they perform 
well in predicting the occurrence of species. We then show how sampling designs that consider priority effects can recover the 
asymmetric effects that are lost when priority effects are ignored. Based on these findings, we urge for caution when drawing 
inferences on biotic interactions from cross-sectional binary co-occurrence data, and provide guidance on sampling designs that 
may provide the necessary data to tackle this longstanding challenge.

1   |   Introduction

No organism is independent of others, and therefore understand-
ing biotic interactions is a crucial goal in ecological studies of free-
living and symbiotic species (Hellard et al. 2015; Morales-Castilla 
et al. 2015). Ecologists have long recognised that habitat coloni-
sation order, known as priority effects, can profoundly shape the 
structures of communities (Connell and Slatyer 1977). Yet, despite 
considerable recent computational advances, priority effects have 
rarely been considered in interpreting species co-occurrence pat-
terns. One reason for this is that ecologists often attempt to draw in-
ferences about biotic interactions using binary cross-sectional data 
(Peres-Neto, Olden, and Jackson 2001; Kissling et al. 2012), which 

capture the established structure of a community at the timepoints 
in which these data were collected. Common statistical approaches 
to infer biotic interactions are, therefore, based on correlative ap-
proaches that draw inferences based on these cross-sectional co-
occurrence frequencies. However, these data, and models used to 
analyse them, inherently lack information on colonisation order. 
This is problematic because the order of colonisation, or priority ef-
fect, affects both the environmental niches and biotic interactions 
between species, and therefore, failing to account for these effects 
can lead to largely erroneous interpretations.

Priority effects are a very common and broadly recognised 
phenomenon that have been demonstrated in many different 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the 

original work is properly cited and is not used for commercial purposes.

© 2024 The Author(s). Ecology Letters published by John Wiley & Sons Ltd.

https://doi.org/10.1111/ele.14509
https://doi.org/10.1111/ele.14509
mailto:
https://orcid.org/0000-0001-9800-3100
https://orcid.org/0000-0003-0377-2463
https://orcid.org/0000-0001-7131-3301
mailto:francisca.powell@uq.net.au
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fele.14509&domain=pdf&date_stamp=2024-10-02


2 of 10 Ecology Letters, 2024

ecological contexts (Fukami  2015; Debray et  al.  2022; Stroud 
et al. 2024). One way that these priority effects can affect com-
munity structure is through modified environmental niches. This 
can occur in at least two different ways. First, niche pre-emption 
occurs when the arrival the first species results in the reduction 
of resources available to other species that require these same re-
sources for reproduction and survival (Fukami 2015), as shown 
in Figure 1a. Due to resource depletion, the priority effect in this 
situation is always inhibitory (Fukami 2015). An example of this 
type of interaction between free-living species has been demon-
strated between tadpoles of the southern leopard frog and the 
southern toad, whereby the development rate and survival of the 
toad are reduced by overwintering of the frog, due to algal deple-
tion in ponds (Hernandez and Chalcraft  2012). Similar priority 
effects can occur in within-host parasitic species, such as with dif-
ferent strains of Borrelia burgdorferi infecting the same host tissue 
(Devevey et al. 2015), or helminth and malaria parasites compet-
ing for resources within red blood cells of the host (Graham 2008).

The second way in which priority effects can affect environmental 
niches is through niche modification, whereby the early-arriving 
species alters the underlying environment as an ‘ecosystem en-
gineer’ and determines the environmental conditions encoun-
tered by the late-arriving species (Fukami 2015), as illustrated in 
Figure 1b. Unlike niche pre-emption, niche modification can have 
either inhibitory or facilitative effects. An example of inhibitory 

effects through niche modifications has been demonstrated by the 
increased disturbance caused by burrowing and foraging activities 
of mole rats which have been shown to decrease the species rich-
ness of plant species (Hagenah and Bennett 2013). Conversely, a mi-
crobiome study demonstrated that a greater number of within-host 
ecosystem engineers can reduce competitive exclusion and pro-
mote colonisation and community diversity of pathogens (Yeakel 
et  al.  2020). Within-host immune modulation caused by early 
arrival of parasites that have also been demonstrated to promote 
co-infection is another example of facilitative niche modifications 
(Halliday et al. 2020), although the opposite effect has also been 
described among co-infecting symbionts (Halliday et  al.  2017). 
When considering more complex community assembly with larger 
numbers of interactions between species, niche modification can 
concurrently exhibit both inhibitory and facilitative effects. For 
instance, the early arrival of some fire-resistant plant species with 
combustion properties can boost the severity of fire, promoting the 
incursion of subsequent fire-resistant species and simultaneously 
decreasing the suitability of the environment for fire-sensitive 
species (Odion, Moritz, and DellaSala 2010; Fukami 2015). These 
studies collectively underscore the importance of priority effects 
in shaping species communities through environmental modifica-
tions that determine the identity of subsequent colonising species.

In addition to influencing community assembly through envi-
ronmental pre-emption or modification, priority effects can also 

FIGURE 1    |    Diagram illustrating the (1) indirect and (2) direct ways that priority effects can shape species co-occurrence patterns. Indirect effects 
include (a) pre-emption, whereby the first colonising species inhibits subsequent colonisation through resource depletion; and (b) modification, 
whereby the early coloniser modifies the characteristics of an environment to either facilitate or inhibit subsequent colonisation of another species. 
Direct priority effects refer to the effect of colonisation order that favours the direction of a biotic interaction. These interactions may be (c) symmetric, 
in which case the biotic interaction of one species on another is equal in both directions and therefore prior colonisation will not affect community 
assembly; or (d) asymmetric, where the effect of one species on another is unequal in each direction, and therefore, prior colonisation of a species 
will affect community assembly. This diagram is an extension of the figures illustrating niche pre-emption and niche modification by Fukami (2015).
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affect the structure of a community through direct biotic interac-
tions, as illustrated in Figure 1c,d. Considering the two-sidedness 
of the direction and magnitude of interactions is crucial because 
interactions in nature are often asymmetrical (Bascompte, 
Jordano, and Olesen 2006). This asymmetry can be manifested 
in different ways, such as with varying strengths in the same 
direction, as demonstrated by studies on asymmetric competi-
tion with parasitic fungi (Natsopoulou et al. 2015) and tickborne 
pathogens (Rynkiewicz et al. 2017), where one parasite demon-
strates stronger inhibitory effects than the other. Similarly, 
not all interactions are necessarily reciprocal. For instance, a 
3-year field experiment revealed interspecific competitive ef-
fect of leaf-eating ungulates on the leaf beetle Timarcha lugens, 
while no reciprocal effect was detected, revealing asymmetri-
cal interactions more closely reflecting amensalism rather than 
competition (Gómez and González-Megías 2002). Furthermore, 
interactions can also occur in opposing directions. For example, 
another experimental study investigating the impacts of priority 
effects on co-infection outcomes revealed that prior infection 
with the protozoan Chilomastix mesnili enhanced the fitness of 
both itself and yeasts of the genus Metschnikowia, while revers-
ing the order of colonisation led to a decline in the fitness of both 
species (Lohr, Yin, and Wolinska 2010). Considering the differ-
ent ways that asymmetric interactions naturally occur, failing 
to account for priority effects when drawing inferences from 
binary cross-sectional data means that we assume that colonisa-
tion order had no effect on the observed community or interac-
tions, biasing interpretations of interactions towards symmetric 
interactions (Blanchet, Cazelles, and Gravel 2020).

Given the interest in inferring biotic interactions, particularly with 
the widespread acknowledgement of their impact in driving spe-
cies co-occurrence and community assembly, a growing body of 
literature has emerged to caution against inferences of these types 
of interactions with binary co-occurrence data (Sander, Wootton, 
and Allesina 2017; Dormann et al. 2018; Blanchet, Cazelles, and 
Gravel 2020). Yet, while considerable attention has been given to 
methodological approaches and the interpretation of these meth-
ods, the importance of sampling design to reveal these biotic in-
teractions has so far received little consideration. In this paper, we 
explore the influential role of priority effects in shaping our ability 
to detect direct biotic interactions. Using a simple set of simulations 
combined with a parsimonious statistical model, we demonstrate 
that commonly used cross-sectional binary data without informa-
tion on colonisation history simply cannot be used to make reli-
able inferences when the direction and/or strength of the effect 
of one species on another is likely to differ. This is the case even 
if the chosen model performs well in predicting the occurrence 
of species. We then show how sampling designs that account for 
colonisation order can recover the asymmetric effects that are lost 
when priority effects are ignored. We urge for caution when draw-
ing inferences from cross-sectional binary co-occurrence data, 
and we conclude with guidance on the types of sampling designs 
that may provide ecologists with the necessary data to tackle this 
longstanding challenge.

2   |   Case Study: Simulated Scenarios

To demonstrate the impact of including or excluding priority ef-
fects on the ability to retrieve biotic interactions under varying 

degrees of asymmetry, we simulated six different interaction 
types: positive and negative symmetric biotic interactions (Pos-
Sym, Neg-Sym), positive and negative asymmetric interactions 
(Pos-Asym, Pos-Neg) of same directions, as well as small and 
large opposing asymmetric interactions (Sml-Opp-Asym, Lge-
Opp-Asym). While the specific simulated effect values are arbi-
trary, these six different interaction-type scenarios are intended 
to be generalisable to similar ecological contexts with similar 
patterns of strength and direction. For each interaction type, we 
generated 1000 two-by-two interaction matrices between two 
species (i and j) by drawing random numbers from a uniform 
distribution within a specified range. These matrices repre-
sented pairwise biotic interactions between the two species in 
1000 different communities. Using these interaction matrices, 
we generated co-occurrence data, from which we could attempt 
to retrieve these ‘true’ interaction values in statistical models 
with and without the inclusion of priority effects. The steps 
used to generate these co-occurrence datasets are illustrated in 
Figure 2, and the process is described in more detail below. For 
simplicity, we kept these interaction effects constant over time, 
while we anticipate that in real-world situations the strength of 
biotic interactions might change over time if, for example, an 
increase in density of a colonising species over time alters the 
strength of interactions.

To generate co-occurrence data that resembles the kind of 
cross-sectional data commonly used for analysing biotic in-
teractions, we simulated two arbitrary covariates with vary-
ing effects on the probability of species occurrence to capture 
the possible effects that other (abiotic/environmental) factors 
besides the biotic interactions may have on co-occurrence. 
Covariate values (‘EnvCov’) were drawn from standard 
Normal distributions (Figure  2a). The effect of each covari-
ate (on the logit scale) was simulated by drawing random ef-
fect sizes separately for each species–covariate relationship: a 
mean of 0.3 and standard deviation of 0.1 to simulate a positive 
effect for the first covariate (�1), and a mean of −0.3 and stan-
dard deviation of 0.1 to simulate a negative effect for the sec-
ond covariate 

(

�2
)

. Mean occurrence probabilities (α), again 
on the logit scale, were drawn from a normal distribution with 
a mean of −0.5 and a standard deviation of 0.5 for each spe-
cies. We then simulated two successive events of ‘colonisation’ 
for 1000 independent ‘sites’. In the first, the probability of col-
onisation (‘Pr(colonisation)’) at each site was calculated for 
each species (i and j):

as shown in Figure 2b. At each site, the probability of no coloni-
sation was also calculated based on the probabilities of colonisa-
tion by the two species, species i and j:

as shown in Figure 2c. We assumed that only one species (or nei-
ther species) could initially colonise the empty site. Specifically, 
a multinomial draw based on these probabilities was used to 
initialise the colonisation state matrix, resulting in a vector of 
occupancy states for each site where the possible states were: 
‘Species i present’, ‘Species j present’ or ‘Unoccupied’.

(1)

Pr(colonisation)i= inv ⋅ logit(�i+�1,i×EnvCov1+�2,i×EnvCov2)

Pr(colonisation)j= inv ⋅ logit(�j+�1,j×EnvCov1+�2,j×EnvCov2)

(2)
Pr(no colonisation)= (1−Pr(colonisation)i)× (1−Pr(colonisation)j)
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We then simulated a second event of colonisation, here termed 
site filling (‘Pr(filling)’), that allowed the occurrence probabili-
ties for each species to be adjusted, conditional on the colonisa-
tion state resulting from the first event:

where Ii and Ij are indicator functions of whether or not species 
i or species j were present at each site after the first colonisa-
tion event, respectively, and � ij and � ji are the priority effects 
of species i on species j and of species j on species i, respec-
tively, during the site-filling event, as illustrated in Figure 2d. 
For example, if species i colonised a site after the first event of 

colonisation, its occurrence probability was fixed at 1 (it occu-
pied the site, regardless of what happened in the second event, 
therefore Pr(filling)i = 1) and its interaction effect would have 
an influence on the ability of species j to colonise in the second 
event. If no species colonised a site during the first event, the 
colonisation probabilities for each species in the second event 
were determined only by their respective mean occurrence 
probabilities and environmental covariate effects. We randomly 
drew binary occurrence/co-occurrence data from these final oc-
currence probabilities.

The resulting dataset included information typically found in 
cross-sectional co-occurrence data, that is, presence–absence 
values for each species and the environmental covariates. 
However, it also contained a state variable indicating whether 

(3)

Pr(filling)j= inv ⋅ logit(�j+�1,j×EnvCov1+�2,j×EnvCov2+� ij× Ii)

Pr(filling)i= inv ⋅ logit(�i+�1,i×EnvCov1+�2,i×EnvCov2+� ji× Ij)

FIGURE 2    |    Diagram illustrating the data simulation process for six interaction types: positive and negative symmetric, positive and negative 
asymmetric, small opposing and large opposing asymmetric. (a) Specifying parameters for a simulated dataset with 1000 records for the presence 
of two species: two environmental covariates were simulated by drawing 1000 random numbers from a normal distribution with a mean of 0 and 
standard deviation of 1. The alpha values for each species, representing the average prevalence of each species on the logit scale, were drawn from 
a normal distribution with a mean of −0.5 and standard deviation of 0.5. The beta coefficients for each of the environmental predictors were drawn 
from two separate normal distributions with standard deviations of 0.1, the first with a mean of 0.3 and the second with a mean of −0.3. (b) The 
subsequent step in simulating the data was to simulate the probabilities of species colonisation in an empty environment. This was done for each 
species for the entire dataset of 1000 observations, where the probability of colonisation is equal to the inverse logit of the species' average prevalence 
(alpha value) and the environmental predictors multiplied by their respective coefficients. (c) Once probabilities for the first colonisation event were 
obtained, we simulated a ‘first colonisation event’, whereby either species could colonise during this time based on their respective probabilities, or 
the possibility of no colonisation. This was done 1000 times so that each observation recorded colonisation by either species, species i or species j, 
which were subsequently recorded in a state matrix. (d) Once the first event was recorded, the probabilities of colonisation were adjusted based on 
the colonisation state in event one, and the interaction coefficient corresponding with the order of colonisation. Using these updated probabilities, we 
simulated the second colonisation event accounting for the colonisation status in event 2. The resulting dataset, therefore, contained 1000 observations 
of the presence–absence of species i and j generated in two colonisation events, the colonisation status after event 1, and the environmental covariate 
values. This process was repeated 1000 times to generate 1000 datasets for each of the six interaction types.
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species i, species j or neither species colonised a site after the 
first colonisation event. We show below how this extra infor-
mation, which requires longitudinal rather than cross-sectional 
sampling (in our simulations, two subsequent colonisation 
events), can be used to gain more accurate insights into asym-
metric interaction effects from binary data.

To quantify ‘interaction effects’ (γij and γji) from co-occurrence 
data with and without accounting for colonisation history, we 
used univariate generalised linear models (GLMs). Specifically, 
we constructed two individual GLMs for each species (i and j) 
that aimed to estimate both the environmental responses and 
biotic interaction effects. The first model represented what re-
searchers might typically do with cross-sectional data to esti-
mate the occurrence of one species, using the binary vector of 
the  co-occurrence of the second species as a covariate (Bioticj 
or Biotici). The second model took advantage of the additional 
information from the recorded colonisation history, instead 
using the presence of the second species after the first colonisa-
tion event as Bioticj or Biotici. In other words, this second model 
could estimate a different probability of occurrence for one spe-
cies depending on whether or not the other species had priority 
at the site (i.e., had previously occupied the site). In compari-
son, the first model could only estimate a different probability 
of occurrence for a given species depending on whether a site 
was jointly occupied by the other species, which we show below 
makes it impossible to estimate asymmetric interaction effects. 
Both models also included effects of the two environmental vari-
ables (EnvCovT):

From these models, we extracted the coefficient estimates for 
the interaction terms (γij) and γji) that accounted for either colo-
nisation history/priority effects (γpriority) or co-occurrence (γocc) 
to compare the ability of the models in recovering the true inter-
action effects between species in each scenario.

3   |   Inference on Asymmetric Interactions in 
Statistical Models

Models that included priority effects provided accurate esti-
mates of interaction effects (γpriority) across all interaction types 
(Figure  3). In contrast, estimates from co-occurrence models 
(γocc) were largely variable, with more accurate estimates ob-
tained when interactions were symmetric. These findings are 
consistent with existing evidence that occurrence data can be 
potentially useful for inferring species interactions from non-
trophic interactions (Freilich et al. 2018). However, for the two 
scenarios with opposing interactions, the interaction estimates 
for γocc tended towards zero with large uncertainty. This in-
dicates that the models that exclude priority effects may lead 
researchers to conclude that there is no statistical support for 
interaction effects, even when the true effects could be strong in 
opposing directions. These findings are consistent with previous 

suggestions that occurrence data do not allow for inferences on 
species interactions, unless strong signals of mostly nontrophic 
positive interactions are discernible from noise and environ-
mental forcing (Freilich et al. 2018).

A finding that may be surprising to many users of co-occurrence 
models, which we feel underpins the need for this paper, is that 
the co-occurrence estimates were never able to detect asymme-
try in interaction effects. Figure  4, which shows the absolute 
difference between the true interaction effects among the spe-
cies pairs and those estimated by the models (i.e., the absolute 
difference between the true effect of species i on species j and 
species j on species i, and the corresponding absolute difference 
between the estimated effects), highlights that the inclusion of 
priority effects accurately captured asymmetric interactions, 
particularly in cases with opposing interactions (Figure 4a). In 
contrast, co-occurrence models that did not consider colonisa-
tion history always inferred that any possible interactions were 
symmetric. This means that, regardless of how asymmetric 
interactions are, interpretations of detected associations from 
cross-sectional binary data will never capture such asymmetric 
effects. Instead, these models were prone to suggesting spurious 
symmetric interactions (Figure  4b), highlighting that there is 
simply not enough information content in cross-sectional binary 
data to detect these effects. Combined with the findings relating 
to the true interaction estimates, highly asymmetric opposing 
interactions will never ever be detected if priority effects are not 
included within the model.

4   |   Predicting the Probability of Species 
Occurrences

A secondary aim of our study was to understand whether in-
clusion of colonisation history impacted predictive accuracy of 
models. We compared the predicted species occurrence prob-
abilities to the true (simulated) occurrence probabilities, and 
quantified the accuracy of these predictions as Brier scores:

where the Brier score value can range from 0 to 1, with 0 rep-
resenting perfect accuracy and 1 representing perfect inaccu-
racy. Figure 5 compares the mean Brier scores of models that 
excluded priority effects versus models that included prior-
ity effects. Models that included priority effects consistently 
showed better performance. This improvement in predictive 
performance, particularly for asymmetric interactions, may be 
dependent on the relative importance of these interactions as 
predictors of species occurrence, as suggested in parasitic inter-
actions (Natsopoulou et al. 2015). But despite this, both models 
tended to show good predictive performance, as indicated by rel-
atively low mean Brier scores (i.e., under 0.12). In other words, 
variation in species occurrence/co-occurrence appears to be al-
most equally well captured in variables that account for the true 
interactions (including priority effects) or the joint occurrence 
and any additional covariates. This is particularly relevant when 
considering the usefulness of co-occurrence models for predic-
tive performance, given that cross-sectional co-occurrence data 

(4)

Presencei∼Bernoulli
(

pi
)

logit
(

pi
)

=�i+� i×EnvCov
T
+� ij×Bioticj

Presencej∼Bernoulli
(

pj
)

logit
(

pj
)

=�j+� j×EnvCov
T
+� ji×Biotici

(5)Brier Score =
1

N

N
∑

s=1

(predicted−observed)2
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FIGURE 4    |    Scatterplot showing the true absolute difference between the interaction effects of species i and species j on the x-axis and the absolute 
difference between the interaction effect estimates of species i and species j on the y-axis based on generalised linear model estimates that (a) included 
priority effects, and (b) excluded priority effects. Six interaction types are represented in the plot: positive and negative symmetrical interactions 
(green), positive and negative asymmetrical interactions (blue) and small opposing and large opposing asymmetrical interactions (purple). The 1:1 
ratio line is indicated by the grey dashed line.

FIGURE 3    |    Scatterplot showing the true interaction effects on the x-axis and the estimated interaction effects on the y-axis based on generalised 
linear model � coefficient estimates that (a) included priority effects and (b) excluded priority effects. Six interaction types are represented in the 
plot: positive and negative symmetrical interactions (green), positive and negative asymmetrical interactions (blue) and small opposing and large 
opposing asymmetrical interactions (purple). The 1:1 ratio line is indicated by the grey dashed line.
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are much more readily available than the type of additional data 
required for analysing priority and biotic interaction effects. 
This also emphasises that a model's predictive performance does 
not necessarily allow insights into whether covariates represent 
the true underlying mechanisms at work, an argument that is 
consistent with the much debated challenge on separating bi-
otic interactions from environmental forces in biotic interaction 
modelling (Godsoe, Franklin, and Blanchet 2017).

5   |   Future Directions: Considering Sampling 
Design

In this study, we chose a straightforward approach that allowed 
us to simulate interactions between two species to highlight a 
very simple point: that without consideration of priority effects, 
we cannot infer asymmetric interactions from binary cross-
sectional data. This does not mean that priority effects will 
always be present or strong enough to influence asymmetric 
interactions; rather, if they are, they cannot be detected with 
cross-sectional data. While we have used GLMs to highlight 
this, similar findings have been demonstrated with other mod-
els. For example, a recent study that simulated co-occurrences 
with various interaction types including mutualistic, competi-
tive, amensalism, commensalism and predator–prey interac-
tions to evaluate the efficacy of joint species distribution models 
(JSDMs) in discerning interactions found that while mutualistic 

interactions could be accurately identified, these models were 
unable to detect predator–prey interactions with opposing inter-
action direction (Zurell, Pollock, and Thuiller 2018). Similarly, 
correlation-based approaches have also been shown to be highly 
unreliable in experimental studies, which often resulted in esti-
mated interaction effects that were in the opposite direction to 
true underlying interactions (Fenton et  al.  2014). While other 
studies have noted some variability in terms of the reliability of 
JSDMs to infer interactions, with some models indicating supe-
rior performance over others, the potential utility of these is lim-
ited to symmetric interactions (Harris  2016; Sander, Wootton, 
and Allesina  2017; Barner et  al.  2018), and therefore, do not 
extend to asymmetric opposing interactions. While we do not 
believe our simple models will be enough to detect these inter-
actions from real data, our example builds on these findings by 
demonstrating that cross-sectional data will fail to detect asym-
metric interactions if colonisation order is not considered.

One of the main reasons that researchers might be driven to 
use cross-sectional co-occurrence data is the ease at which it 
can be collected compared to longitudinal data, which requires 
more forward planning and consideration of design. However, 
depending on these data for inferring biotic interactions can be 
very misleading and should, therefore, be avoided, even if some 
models might offer good predictions of species distributions. If 
asymmetric effects are to be captured, we suggest that attention 
should be paid equally to building more sophisticated models 

FIGURE 5    |    Scatterplot comparing the mean Brier scores calculated from the probability predictions from generalised linear models, with the 
scores for models that excluded priority effects on the x-axis and scores for models that included priority effects shown on the y-axis. Six interaction 
types are represented in the plot: positive and negative symmetrical interactions (green), positive and negative asymmetrical interactions (blue) and 
small opposing and large opposing asymmetrical interactions (purple). The 1:1 ratio line is indicated by the grey dashed line, where values above 
the line indicate better predictive performance by the co-occurrence model, and values below the line indicate better predictive performance by the 
priority effects model.
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and to considerations of sampling designs specifically suited for 
inference. For disease ecologists seeking to understand interac-
tions between pathogens, experimental study designs would be 
best suited for obtaining information on colonisation history, 
as also suggested by others (Stroud et al. 2024), as this allows 
for the order of colonisation to be easily controlled. Indeed, 
this approach has been previously adopted (Hoverman, Hoye, 
and Johnson 2013; Doublet et al. 2015; Natsopoulou et al. 2015; 
Wuerthner, Hua, and Hoverman 2017). For example, one study 
experimentally examined how the sequence of host exposure 
to two trematode parasites influenced interactions within 
hosts, finding no evidence for interactions when colonisation 
occurred simultaneously, and asymmetric competition when 
introduced sequentially (Hoverman, Hoye, and Johnson 2013). 
Similar approaches might also be feasible for ecologists seeking 
to understand interactions between plants (Ploughe, Carlyle, 
and Fraser 2020) and for smaller species, including insects and 
amphibians (Hernandez and Chalcraft 2012; Rasmussen, van 
Allen, and Rudolf  2014). However, designing sampling strat-
egies where experimental approaches are not feasible is more 
challenging. Longitudinal sampling strategies with several 
sampling events may be a suitable approach (Fenton et al. 2014), 
provided that they are able to differentiate between the order of 
arrival for each species of interest. Before–after control design 
studies that use comparative sampling over time across simi-
lar locations may improve the ability of longitudinal designs to 
obtain information on colonisation history (Krushelnycky and 
Gillespie  2010). However, unless both species are introduced 
sequentially, asymmetric effects will not be able to be recov-
ered. Alternatively, existing data from previously published 
studies, or ongoing long-term ecological programmes such as 
the National Ecological Observatory Network  (2024), or the 
Biodiversity Exploratories (2024), as well as large-scale citizen 
science projects such as eBird (2024), might offer ecologists the 
opportunity to use retrospective data on estimate the probabil-
ity that one species was present in a site before another species 
attempted to colonise. This strategy may be particularly suited 
to modelling invasion pathways or recolonisation events after 
major disturbances.

Although we argue the importance of colonisation history in 
sampling design and demonstrate the strong capability of de-
tecting interactions through the inclusion of priority effects in 
our simulated example, this does not necessarily mean that 
interactions will always be detectable. While we have focused 
specifically on how priority effects shape direct biotic interac-
tions, priority effects can also shape community assembly pat-
terns of co-occurrence through environmental pre-emption 
and modification (Fukami  2015), making the detection of 
direct biotic interactions more challenging. The relative im-
portance of these effects may be reflected, for instance, in the 
timing of prior colonisation, which may influence the strength 
of the detected biotic interactions. For example, in mice, the 
competitive effects between distinct clones of malaria para-
sites were found to be stronger when there was a greater time 
difference between inoculation events (de Roode et al. 2005). 
Similarly, the relative timing of arrival, or size-mediated pri-
ority effects, was found to alter the nature of intraguild in-
teractions between nymphs of two dragonfly species, where 
earlier arrival resulted in greater exclusion of the late arrival 
(Rasmussen, van Allen, and Rudolf  2014). Moreover, the 

timing of species interactions and potential priority effects 
in the context of the dynamical processes of site colonisa-
tion and establishment could also lead to transient dynamics 
and variable long-term outcomes (Hastings et  al.  2018; Tao 
et  al.  2021), which, to our knowledge, remain largely unex-
plored. Furthermore, other important factors that could in-
fluence the ability to detect these interactions should also be 
considered, such as the scales at which inferences are made as 
interactions may be dynamic at both the spatial scale (König 
et al. 2021) and at the population scale (Clay et al. 2019).

6   |   Conclusions

Through simple simulations and models, this study demon-
strates why biotic interactions cannot be inferred from binary 
cross-sectional occurrence data. Doing so can lead to particu-
larly misleading conclusions if the underlying interactions have 
asymmetric effects. The way forward requires appropriate sam-
pling design, where, at the very least, colonisation order is re-
corded so that priority effects can be taken into account.
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