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Abstract: Recent advancements in stochastic processes have uncovered a paradox associated with the Einstein model of
Brownian motion of random particles, which diffuse in the media with no boundary . The classical model developed by Einstein
provide diffusion coefficient which does not depend on numbers of particles (concentration) and does not degenerate. Based on
this model one can predict the propagation speed of particles movement, conflicting with the second law of thermodynamics.
We justify that within Einstein paradigm this issue can be resolved. For that we revisited approach proposed by Einstein, and
significantly modified his ideas by introducing inverse Kolmogorov equation, with coefficient degenerating as concentration of
the particle of interest vanishes. The modified model successfully resolves paradox affiliated to classical Brownian motion model
by introducing a concentration-dependent diffusion matrix, establishing a finite propagation speed. Proposed model utilize but of
inverse Kolmogorov stochastic parabolic equation and propose sufficient condition (Hypotheses 1.1) for degeneracy of diffusion
coefficient, which guarantee finite speed of propagation inside domain of diffusion. This paper outlines the necessary conditions
for this property through a counterexample, which provide infinite speed of propagation for the solution of the equation, with
diffusion coefficient, which degenerate as concentration vanishes but with lower speed than in (Hypotheses 1.1). The second part
focuses on the stability analysis of the solution of the degenerate Einstein model in case when boundary condition are crucial. We
considered degenerate Einstein model in the boundary domain with Dirichlet boundary conditions. Our model bridge degenerate
Brownian equation in the bulk of media with boundary of the domain. We with detail investigate stability of the problem with
perturbed boundary Data, which vanishes with time. A functional dependence is introduced on the solution that satisfies a
specific ordinary differential inequality. The investigation explores the solution’s dependence on the boundary and initial data of
the original problem, demonstrating asymptotic stability under various conditions. These results have practical applications in
understanding stochastic processes and its dependence on the boundary Data within bounded domains.

Keywords: Stability Analysis, Degenerate PDEs, Particle Localization, Finite Speed of Propagation

1. Introduction
In his seminal work, Einstein models the movement of a

particle as a random walk, where the step time τ and the
(random) displacement or free jump ∆ are both symmetrically
distributed, independent of the point and time of observation
[1, 2]. In this paper, the term free jump is defined as the
movement of particles without undergoing any collisions. It

refers to the scenario where particles can move freely and
independently, without encountering obstacles or interacting
with other particles. The definition of free jump in this context
is based on the classical Einstein paradigm, as presented in his
famous dissertation [1]. It is worth noting that in the literature,
the term free pass is sometimes used interchangeably with free
jump to describe the same phenomenon [3]. Therefore, in this
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context, free jump and free pass are synonymous terms.
The mass conservation law constrains the random walk,

expressed through the concentration function. Using Taylor’s
expansion, Einstein demonstrates that the concentration
function u, representing the particle distribution’s density,
satisfies the classical heat equation. Although Einstein’s paper
was groundbreaking in stochastic processes and an important
step toward the construction of Brownian motion, his proposed
model led to a physical paradox. While u is a solution to
the heat equation, it allows a void volume to reach a positive
concentration of particles instantly. Moreover, since the free
jumps process is reversible, the model permits all particles,
with remarkable coherence, to concentrate instantly in a small
volume. This contradicts the second law of thermodynamics
and demonstrates an infinite propagation speed.

The De Giorgi–Ladyzhenskaya iteration procedure [4, 5],
successfully utilized in [10], was employed to address the
paradox in the classical Einstein model as stated in [11–
13]. The resolution involved replacing the random walk
with a diffusion process and allowing the diffusion coefficient
to depend on the concentration function u, contrary to the
constant diffusion coefficient in Einstein’s model (see [11]).
The approach to modeling various dynamic processes based on
an experiment using the Einstein paradigm was very effective.
The authors used this method to model different processes
using a system of degenerate parabolic equations with a
drift depending on the concentration of the substance and its
gradient (see, for example, [12, 13, 19]). This modification
aims to preserve the isotropic nature of the stationary media
while removing the paradox by ensuring that the concentration
function u exhibits finite propagation speed property, namely,
if a neighborhood of a point is void of particles at time t∗,
then a smaller neighborhood of the same point has been void
of particles for some time before t∗. A formal definition of
the finite speed of propagation from recent work in [11] is
provided below.

Definition 1.1 (Finite propagation speed). A function u ≥ 0
on Ω × [0, T ) is said to exhibit a finite propagation speed if,
for any open ball of the radius R0 B ⊂ Ω and any ε ∈ (0, 1),
there exists T ′ ∈ (0, T ] which might depend on B, ε and u,
such that, given u(x, 0) = 0 for all x ∈ B, one has u(x, t) = 0
for all (x, t) ∈ εB× [0, T ′).(Here εB is ball of the radius εR0)

The concept of finite propagation speed was first
demonstrated by G.I. Barenblatt for a degenerate porous
media equation, which is different from the Einstein model,
as it is based on the traditional divergent equation for fluid
density which is vanishing with pressure [6]. This equation
suggests that finite propagation speed occurs when a small
concentration leads to a small diffusion. To reflect the idea
of higher medium resistance for small numbers of particles,
it is assumed in this work that the diffusion coefficient is
a positive continuous function of concentration u and that
it degenerates as the concentration vanishes. The concept
of concentration functions finds frequent application in the
analysis of stochastic processes and their associated partial
differential equations (PDEs).

As mentioned in the prompt, concentration functions can

be understood in two distinct manners: As a function or as
a density of the distribution of particles. The first approach,
where concentration functions are considered as a function,
leads to the backward Kolmogorov equation, which describes
the evolution of the probability distribution of a stochastic
process from a given time to an earlier time. Specifically, the
equation describes the evolution of the concentration function
u(x, t) at time t, given its value at a later time T and position x.
This equation is useful in analyzing the behavior of stochastic
processes over time. The second approach leads to the forward
Kolmogorov equation. This equation describes the evolution
of the probability density function of a stochastic process
from an initial time to a later time. Specifically, the equation
describes the evolution of the concentration function u(x, t)
at time t, given its value at an earlier time s and position x.
This equation is useful in predicting the future behavior of
stochastic processes.

The generalized Einstein model is derived by treating the
concentration function u as a function of both time and space
[7]. For a space-time point of observation Z = (x, s) ∈
RN × [0,∞), an RN -valued random free-jumps process is
considered, describing an interaction-free displacement of a
particle from Z. Then, by assuming the extended axioms as
in [11, Hypothesis 1] and employing Taylor expansion as in
[8] for the generalized mass conservation law, the governing
partial differential inequality (3) is derived within a fixed
domain Ω and over a time horizon T > 0 for the scenario.

The upcoming hypothesis is introduced to delve into
the core of the phenomenon, assuming neither drift nor
consumption. The notion of a lower diffusion speed
corresponding to a decreased concentration of particles is
pivotal. This concept, crucial for achieving a finite propagation
speed, suggests heightened medium resistance in scenarios
with fewer particles.

Hypotheses 1.1. The diffusion matrix

aij(Z) = 2a(u(Z))δij ,

for i, j = 1, 2, . . . , N , and for some scalar function a ∈
C([0,∞)) with a(0) = 0 and a(s) > 0 for s > 0. Define

I(s) ,
∫ ∞
s

dτ

τ a(τ)
. (1)

Then I(s) is finite for all s > 0 and

lim sup
s→∞

a(s)I(s) <∞. (2)

Note that s→ a(s) is not necessarily differentiable.
Remark 1.1. I(s) → ∞ as s → 0. Moreover, from

equations (2) and (7), the function s → a(s)I(s) remains
bounded and continuous.

Under Hypothesis 1.1, the novel governing model is
reformulated as the following inequality

ut ≤ a(u)∆u, in ΩT . (3)
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To further analyze the above equation, (3) is multiplied
by a weight function, h(v) > 0, where h ∈ C((0,∞)) ∩
L1

loc([0,∞)). Let

H(v) ,
∫ v

0

h(r)dr, for v ≥ 0, (4)

and introduce a locally Lipschitz continuous function

F (v) , h(v)a(v), for v ≥ 0, (5)

which is nondecreasing. In addition require H(0) = 0 and
F (0) = 0. Consequently, the following partial differential
inequality is derived.

[H(u)]t − F (u)∆u ≤ 0 in ΩT . (6)

It is also important to assume that F (v)→ 0 when v → 0+.
This regularization step allows us to analyze (6) and utilize a
rich set of techniques for its weak solutions.

In this context, a solution to the partial differential inequality
(3) is sought, as a weak positive bounded solution to (6)
satisfies the finite speed of propagation property. This property
ensures that the solution does not propagate information faster
than a certain speed, resolving the paradox associated with the
violation of the second law of thermodynamics. The main
result in [11, Theorem 5.1] establishes the existence of an a
priori finite propagation speed for a weak non-negative the
bounded solution to the concentration equation (9). It states
that the concentration u demonstrates a finite propagation
speed if the diffusion coefficient a is defined in Hypothesis
1.1 satisfies the following two constraints

lim sup
s→0

a(s)I(s) <∞, (7)

and there exists c, µ > 0 such that

a(s)Iµ(s) ≥ c a(v)Iµ(v), (8)

for 0 < s < v < 1. These assumptions hold for a(s) = ksρ,
with k and ρ being positive constants, as proven in [12, 13].
They also hold for more general cases, such as regularly
varying functions with a strictly positive lower index.

It is worth noting that an example of a degenerate function
a(u) is constructed in such a way that a corresponding self-
similar solution to the inequality∫∫

ΩT

∇u · ∇(F (u)φ) dxdt ≤
∫∫
ΩT

H(u)φt dxdt, (9)

for φ ∈ Lipc(ΩT), exhibits an infinite propagation speed,
while the constraint (7) is not satisfied. Detailed examples
offering further insight into the latter phenomena can be found
in Section 2.

In Section 3, the stability analysis of the degenerate Einstein
model is explored by studying the initial boundary value
problem (IBVP) outlined in (38)-(40) with homogeneous

boundary conditions. This investigation spans both bounded
and unbounded strong solutions, focusing on the central
quantity of the analysis, Y (t) in the equation 19. Several
estimates for this crucial quantity are derived in various
situations. The exploration begins with the fundamental
degeneracy case of u−γ , which provides insights and
establishes a foundation for the subsequent analysis. To ensure
the validity of the analysis, essential assumptions are imposed
on the functions H and F and demonstrate that the estimate
Y (t) remains bounded concerning the initial data. This serves
as a fundamental basis for establishing asymptotic stability in
forthcoming results.

Furthermore, a thorough analysis of the parameters is
conducted within the framework of extended Assumption 3.6.
This analysis enables us to gain deeper insights into the
stability conditions under different values of β. The detailed
findings and conclusions of this extension are presented in
Theorem 3.6. Through these rigorous analyses and derived
results, a comprehensive understanding of the stability aspects
of the degenerate Einstein model is provided.

A stochastic approach was employed to transition from a
model in terms of partial differential equations to a system of
equations and ultimately to an integro-differential stochastic
PDE with a noise source (see [21–23]). This study adopts the
opposite direction, using Einstein’s random walk framework
to derive a PDE model of the process. Consequently, the PDE
formulation of Brownian motion is utilized for the density
function. This approach leverages the machinery of PDEs
to provide a counterexample to the condition in Hypothesis
1.1 regarding the speed of degeneration and to investigate the
stability of the system when subject to perturbations at the
boundary.

2. Necessary Condition for Finite Speed
of Propagation

In this section, it is shown that the constraint 7 is essential
for the property of finite speed of propagation in the sense of
Definition 1.1. Specifically, a diffusion coefficient function
a that degenerates at u = 0 but violates the condition (7) is
presented, demonstrating that the corresponding inequality’s
solution exhibits the property of infinite propagation speed.
Define

Lu , ut− a(u)∆u. (10)

The objective is to identify a non-negative solution u of the
inequality Lu ≤ 0. This sup-solution possesses the following
properties: It is positive for each moment of time t > 0 and
each x, while being equal to zero for t = 0 outside of a
compact set K. Assume u has the form

u(x, t) = φ(t)f

(
|x|
θ(t)

)
, where θ(t) 6= 0. (11)

Then
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ut = φ′(t)f(s)− φ(t)θ′(t)

θ(t)
sf ′(s),∆u =

φ(t)

θ2(t)

[
f ′′(s) +

(N − 1)

s
f ′(s)

]
, where s = |x|

/
θ(t).

Set φ(t) = 1 and θ(t) =
√

2t. Note that

θ′(t)
/
θ(t) = 1

/
θ2(t),

and using (10) one can write

−sf ′(s) = a(f(s))

[
f ′′(s) +

(N − 1)

s
f ′(s)

]
= a(f(s))

1

sN−1

[
sN−1f ′(s)

]′
,

which yields

− s

a(f(s))
=

d

ds

(
ln |sN−1f ′(s)|

)
.

Let f be the form

f(s) = e−s
λ
,

for s > 0, and some λ > 0. Then f ′(s) < 0. Consequently,

a(e−s
λ

) =
s2

λsλ − (λ+N − 2)
, (12)

and the above is positive for

s ≥ s0 , 2

(
λ+N − 2

λ

) 1
λ

.

Note that u = e−s
λ

. Let

u∗ , e−s0
λ

and a∗ ,
s0

2

λs0
λ − (λ+N − 2)

, (13)

for fixed λ > 2. Then, one can define the function a : [0,∞)→ [0,∞) by

a(u) = 010 +
| lnu| 2λ

λ| lnu| − (λ+N − 2)
1(0,u∗) +

a∗
u∗ + 1

(u+ 1)1[u∗,∞), (14)

where u∗ ∈ (0, 1) and a∗ > 0. Then the function a(·) is continuous on [0,∞)) and∫ ∞
u∗

dτ

τa(τ)
, c∗ <∞. (15)

Also, there is C1 > 0 such that

a(u) ≥ C1| lnu|
2
λ−1 for u ∈ (0, u∗]. (16)

By (14) and using (15), the following integral is computed.

I(u) =
λ

2− 2
λ

(
| ln(u)|2− 2

λ − | ln(u∗)|2−
2
λ

)
− λ+N − 2

1− 2
λ

(
| ln(u)|1− 2

λ − | ln(u∗)|1−
2
λ

)
+ c∗, (17)

for u ∈ (0, u∗]. Combining (17) and (16), implies

a(u)I(u) ≥ C2| ln(u)| 2λ−1+2− 2
λ = C2| ln(u)|, (18)
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for all u ∈ (0, u∗]. Therefore,

a(u)I(u)→∞ when u→ 0.

Hence, a(u) does not satisfy (7).

For the condition s =
|x|√
2t

> s0, the choices |x| >
√

2s0 and t < 1 are made.

With such (x, t), it follows that u(x, t) = e
−
(
|x|√
2t

)λ
< u∗.

In summary, u(x, t) = e
−
(
|x|√
2t

)λ
, with λ > 2, satisfies

equation
ut = a(u)∆u,

for 0 < t < 1 and |x| >
√

2s0, and the function a(u) given by
(14) does not satisfy (7). Thus, for all x 6= 0,

lim
t→0+

u(x, t) = 0, u(x, t) > 0 for any t > 0,

i.e., u(x, t) has infinite speed of propagation.

3. Stability Analysis of Degenerate
Einstein Model

A simple observation is first made for a basic degenerate
model with degeneration of the power degree, and the solution
of the problem is defined. This observation is then generalized
for more complex non-linearity. In the stability analysis of
the degenerate Einstein model under homogeneous boundary
conditions, the emphasis is on the central quantity.

Y (t) =

∫
Ω

(H(u(x, t)))νdx, with ν ≥ 1, (19)

for t ≥ t0. This function was utilized to study the stability of

the solution of p-Laplacian type equations, which occur in the
modeling of filtration in porous media (see [14–18]). To ensure
coherence in this work, the following fundamental estimate is
consistently applied throughout this section.

Lemma 3.1. Let k > 0 and β > 1 be constants. Let
Y (t) ∈ AC([t0,∞)) be a nonnegative solution of

d

dt
Y (t) + k (Y (t))β ≤ 0, for t > t0, (20)

with Y (t0) , Y0.
(i) If Y0 = 0 then Y (t) = 0 for all t ≥ t0.

(ii) If Y0 > 0 then

Y (t) ≤
[
k(β − 1)(t− t0) + Y

−(β−1)
0

]− 1
β−1

, (21)

for t ≥ t0. Consequently,

lim
t→∞

Y (t) = 0. (22)

Proof Part (i). Using the inequality (20), it follows that

d

dt
(Y (t)) ≤ −k(Y (t))β . (23)

Then
d

dt
(Y (t)) ≤ 0.

Consequently, if Y0 = 0 then Y (t) = 0 for all t ≥ t0.
Part (ii). Let Y0 > 0.
1. Case 1: Y (t) > 0 for all t ≥ t0. By the inequality (20),

d

dt
(Y (t))−β+1 ≤ −k(1− β), (24)

Integrating both sides over (t0, t), yields,

(Y (t))−β+1 − Y −β+1
0 ≥ −k(1− β)(t− t0), (Y (t))−β+1 ≥ k(β − 1)(t− t0) + Y −β+1

0 . (25)

From above (21) follows.
2. Case 2: There is t∗ > t0 such that Y (t∗) = 0. Then

there exists t′ ∈ (t0, t
∗] so that Y (t′) = 0 and Y (t) > 0 for all

t ∈ [t0, t
′) and Y (t) = 0 for all t ≥ t′. Hence, the inequality

(21) holds for all for all t ≥ t0.
Consequently, in both cases, the inequality (21) holds for all

t ≥ t0.
Remark 3.1. The result of the above Lemma is under some

assumption on the speed of convergence of function Y(s) →
∞, as s → ∞. One can consider more general ordinary
differential inequality

d

dt
(Y (t)) + Y (Y (t)) ≤ 0, (26)

for t > t0. This will make it possible to consider the stability
of a more sophisticated non-linear Einstein model.

3.1. Basic Degenerate Model

As a model let us start with the basic non-linear function
a(u) = Kuγ , for constants K > 0 and γ ∈ (0, 1). Suppose
u ≥ 0 is a solution of the following IBVP

(u1−γ)t −K∆u ≤ 0 in Ω× (0,∞), (27)

u(x, 0) = u0(x) on Ω, (28)

u(x, t) = 0 on ∂Ω× (0,∞), (29)

where K > 0 is a constant. The following asymptotic stability
result is obtained for the solution of the above IBVP in the
following sense.

Definition 3.1. u(x, t) is called a solution of the IBVP (27)-
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(29) if (u1−γ)t ∈ L2(Ω × (0,∞)), ∆u ∈ L2(Ω), and the
divergent formula is applicable for the vector field ∇u, such

that inequality (27) holds alomat everywhere.

Theorem 3.1. Assume u ≥ 0 and be as in Definition 3.1. Let m ≥ 2− γ. Define

Y (t) ,
∫

Ω

(u(x, t))mdx, (30)

for t ≥ t0, and Y (t0) , Y0. Then there exists a constant k1 > 0 independent of the solution u(x, t) such that

(Y (t))′ + k1(Y (t))
m+γ
m ≤ 0, for all t > t0. (31)

If Y0 = 0 then Y (t) = 0 for all t ≥ t0. If Y0 > 0 then

Y (t) ≤

[
k1γ

m
(t− t0) + Y

− γ
m

0

]−mγ
for all t ≥ t0, (32)

and consequently,

lim
t→∞

Y (t) = 0.

Proof First of all, note that m+ γ − 1 ≥ 1 and

(u1−γ)t · um+γ−1 =
(
u1−γ)

t
·
(
u1−γ) m

1−γ−1
=

1− γ
m

(
um
)
t
.

Multiplying (27) by um+γ−1, and using integration by parts over Ω, yields that

1− γ
m
· d
dt

∫
Ω

um dx+K(m+ γ − 1)

∫
Ω

um+γ−2|∇u|2 dx ≤ 0. (33)

Computing ∫
Ω

um+γ−2|∇u|2dx =
4

(m+ γ)2

∫
Ω

∣∣∇um+γ
2

∣∣2 dx .
Then (33) becomes

d

dt

∫
Ω

um dx+
4Km(m+ γ − 1)

(1− γ)(m+ γ)2

∫
Ω

∣∣∇um+γ
2

∣∣2 dx ≤ 0 . (34)

Let

q = 2m
/

(m+ γ). (35)

Note that q ∈ (1, 2). By Poincaré-Sobolev inequality [9] with power q in (35), it is obtained that[∫
Ω

(
u
m+γ

2

)q
dx

] 2
q

≤ c20
∫

Ω

∣∣∇um+γ
2

∣∣2 dx,
where c0 is a positive constant that depends on N . Hence,

c−2
0 (Y (t))

m+γ
m ≤

∫
Ω

∣∣∇um+γ
2

∣∣2 dx, (36)

Using (36) in (34), it follows that

d

dt
Y (t) +

4Km(m+ γ − 1)

c20(1− γ)(m+ γ)2
(Y (t))

m+γ
m ≤ 0 . (37)
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Note that m+γ
m > 1. By the virtue of Lemma 3.1, Theorem

3.1 holds.
Remark 3.2. One can easily consider the case when γ = 0

in Theorem 3.1 and obtain the asymptotic exponential stability
of the classical heat equation.

Next, the stability of the generalized Einstein model with
the inequality (6) will be investigated.

3.2. Generalized Degenerate Model

(H(u))t − F (u)∆u ≤ 0 in Ω× (t0,∞), (38)

u(x, t0) = u0(x) on Ω, (39)

u(x, t) = 0 on ∂Ω× (t0,∞). (40)

Recall that H and F are defined by equation (4) and
equation (5), respectively, with H(0) = 0 and F (0) = 0.

3.2.1. Stability Analysis of Bounded Solutions
The stability of the bounded solution of the above IBVP is

studied in the following sense.
Definition 3.2. u(x, t) is called a bounded solution of the

IBVP (38)-(40) if

sup
Ω×(0,∞)

u(x, t) ,M <∞, (41)

(H(u))t ∈ L2(Ω × (0,∞)) and F (u)∆u ∈ L2(Ω), such
that (38) holds almost everywhere.

Then, the following assumptions are made for the functions
H and F .

Assumption 3.1. There exists γ1 > 0 such that Hγ1+1 ∈
C1([0,∞)), and for all M > 0, there is c1 = c1(M) > 0 such

that

(H(s)γ1+1)′ ≤ c1, for all s ∈ [0,M ]. (42)

It follows from (42) that

H(s) ≤ c
1

γ1+1

1 s
1

γ1+1 .

Evidently by Definition 4, it is obtained that

(H(s)γ1+1)′ ≥ 0. (43)

Assumption 3.2. For any M > 0, there exists

c2 = c2(M) > 0

such that

(F (s)Hγ1+1(s))′ ≥ c2, for all s ∈ [0,M ].

Based on the above, the theorem on asymptotic stability is
now stated.

Theorem 3.2. Let Assumption 3.1, and Assumption 3.2 hold.
Assume u ≥ 0 is a bounded solution for IBVP (38)-(40). Let
p ≥ γ1 + 1. Define

Y (t) ,
∫

Ω

(H(u(x, t)))p+1 dx, (44)

for t ≥ t0, and Y0 , Y (t0). Then Y (t) satisfies the differential
inequality

d

dt
Y (t) + c(Y (t))

p+1+γ1
p+1 ≤ 0, for all t > t0, (45)

where c > 0 is a constant depending on M . If Y0 = 0 then
Y (t) = 0 for all t ≥ t0. If Y0 > 0 then

Y (t) ≤

[
c

(
γ1

p+ 1

)
(t− t0) + Y

−( γ1
p+1 )

0

]− p+1
γ1

for t ≥ t0, (46)

and consequently,

lim
t→∞

Y (t) = 0. (47)

Proof With M defined by (41), let c1 = c1(M) and c2 = c2(M) be positive constants in Assumption 3.1 and Assumption 3.2
respectively.

Note that (H(u))pF (u)
∣∣
∂Ω

= 0. Multiplying the first inequality in (38) by (H(u))p, and integrating over Ω, to obtain∫
Ω

(H(u))p(H(u))t dx−
∫

Ω

(H(u))pF (u)∆u dx ≤ 0. (48)

Using integration by parts for the second integral in (48), yields

d

dt

∫
Ω

(H(u))p+1 dx+ (p+ 1)

∫
Ω

∇u · ∇((H(u))pF (u)) dx ≤ 0. (49)
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Note that

[Hp]′ =
(

[Hγ1+1]
p

γ1+1

)′
=

p

γ1 + 1
(Hγ1+1)

p
γ1+1−1(Hγ1+1)′ =

p

γ1 + 1
Hp−(γ1+1)(Hγ1+1)′.

Recall that p ≥ γ1 + 1, and H subject to (43). Using the above, it is found that

∇u · ∇((H(u))pF (u))

= |∇u|2F (u)
p

γ1 + 1
Hp−(γ1+1)(Hγ1+1)′ + |∇u|2(H(u))pF ′(u)

=

[
γ1 + 1

p
F ′(u)Hγ1+1(u) + F (u)[Hγ1+1]′(u)

]
· p

γ1 + 1
|∇u|2(H(u))p−(γ1+1)

≥ (FHγ1+1)′(u) |∇u|2(H(u))p−(γ1+1). (50)

By Assumption 3.2, it is shown that

∇u · ∇((H(u))pF (u)) ≥ c2 · |∇u|2(H(u))p−(γ1+1). (51)

Using (51) in the inequality (49) becomes

d

dt

∫
Ω

(H(u))p+1 dx+ c2(p+ 1)

∫
Ω

|∇u|2(H(u))p−(γ1+1) dx ≤ 0 . (52)

Let

q = (2p+ 2)
/

(p+ γ1 + 1). (53)

Note that q ∈ (1, 2). Applying Poincaré-Sobolev inequality with power q in (53), it follows that[∫
Ω

((
H(u)γ1+1

) γ1
(γ1+1)(2−q)

)q
dx

] 2
q

≤ c20
∫

Ω

∣∣∇ (H(u)γ1+1
) γ1

(γ1+1)(2−q)
∣∣2dx, (54)

where c0 > 0 represents a constant that depends on N . Observe that((
Hγ1+1

) γ1
(γ1+1)(2−q)

)q
= Hp+1.

Therefore, (54) becomes

[∫
Ω

(H(u))p+1 dx

] 2
q

≤ (55)

K1

∫
Ω

∣∣∣(H(u)γ1+1
) γ1

(γ1+1)(2−q)−1
(H(s)γ1+1)′|s=u(x,t)∇u

∣∣∣2 dx, (56)

for

K1 = c20γ
2
1

/
(γ1 + 1)2(2− q)2.

Using Assumption 3.1 in (56), gives

(Y (t))
2
q ≤ c1K1

∫
Ω

∣∣∣ (H(u)γ1+1
) γ1

(γ1+1)(2−q)−1∇u
∣∣∣2dx. (57)

One can obtain that

γ1

(γ1 + 1)(2− q)
− 1 =

p− (γ1 + 1)

2(γ1 + 1)
. (58)
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Hence, the right-hand side of (57), becomes

(Y (t))
2
q ≤ c1K1

∫
Ω

[H(u)]
p−(γ1+1) |∇u|2 dx. (59)

Using (59) in (52), it is obtained that

(Y (t))′ +
c2(p+ 1)

c1K1
(Y (t))

2
q ≤ 0,

which proves the inequality (68). Consequently, the limit (47)
is obtained.

3.2.2. Stability Analysis of Unbounded Solutions
Definition 3.3. Let u be a non-negative solution of the IBVP

(38)-(40) provided that (H(u))t ∈ L2(Ω × (0,∞)) and
F (u)∆u ∈ L2(Ω × (0,∞)), such that (38) holds almost
everywhere.

In this subsection, the unbounded solution in the above
Definition is studied by introducing the following relaxed
version of Assumption 3.2.

Assumption 3.3. Let p ≥ 0 such that [F (s)Hp(s)]′ ≥ 0 for
all s ∈ [0,∞).

Assumption 3.4. Assume u is such that (H(u))pF (u) ∈
W 1,2

0 (Ω), for p in Assumption (3.3).
Next, a primary property of the solution u is established.

Theorem 3.3. Let p ≥ 0 and Assumptions 3.3 and 3.4 hold. Assume u ≥ 0 is a solution of IBVP (38)-(40). Suppose
H(u0(x)) ∈ Lp+1(Ω). Define

Y (t) ,
∫

Ω

(H(u(x, t)))p+1 dx, (60)

for t ≥ t0, and Y0 , Y (t0). Then Y (t) is nonincreasing (monotone), and∫
Ω

(H(u(x, t)))p+1 dx ≤
∫

Ω

[H(u0(x))]p+1 dx, (61)

for all t ≥ t0.
Proof Multiplying the first inequality in (38) by (H(u))p, and integrating over Ω, to find

1

p+ 1

d

dt

∫
Ω

(H(u))p+1 dx+

∫
Ω

∇u · ∇
(
(H(u))pF (u)

)
dx ≤ 0. (62)

By Assumption 3.3, it is computed that

∇u · ∇
(
(H(u))pF (u)

)
= |∇u|2[Hp(s)F (s)]′

∣∣∣∣
s=u

≥ 0. (63)

Using (63) in (62), yields
d

dt

[∫
Ω

(H(u))p+1 dx

]
=

d

dt
Y (t) ≤ 0. (64)

From the above, the monotonicity of Y (t) follows. Consequently

Y (t) ≤ Y (t0) for t ≥ t0.

With the above, the inequality in (61) is concluded.
Moving forward, the analysis will continue with the functions u,H and u0 as stipulated in Theorem 3.3. The following two

structural conditions on the functions H and F will be introduced before delving into the next results.
Assumption 3.5. There exist p1 > 0, q1 > 0 and c3 > 0 such that(

Hp1(s)F (s)
)′ ≥ c3(H(s))q1 , (65)

for all s ∈ [0,∞).
Assumption 3.6. There exist γ1, β > 0 and c4 > 0 such that

(Hγ1+1(s)
)′ ≤ c4(H(s))β ∀ s ∈ [0,∞). (66)

Remark 3.3. Example for Assumptions 3.5 and 3.6
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Given the above assumptions, the following theorem is first stated when β =
q1

2
.

Theorem 3.4. Let Assumption 3.5 and Assumption 3.6 hold for β = q1

/
2. Assume H(u0(x)) ∈ Lp1+1(Ω). Define Y (t) ,∫

Ω

(H(u(x, t)))p1+1 dx, t ≥ t0. Let

δ1 = (p1 + 1)
/

(γ1 + 1). (67)

Assume 1 ≤ δ1 < 2. Then there exists c > 0 such that

d

dt
(Y (t)) + c(Y (t))

2
δ1 ≤ 0, for all t > t0. (68)

If Y0 > 0, then

Y (t) ≤
[
c

(
2− δ1
δ1

)
(t− t0) + Y

−
(

2−δ1
δ1

)
0

]−( δ1
2−δ1

)
, (69)

for t ≥ t0 and consequently,

lim
t→∞

Y (t) = 0. (70)

Proof Note that (H(u))p1F (u)
∣∣
∂Ω

= 0. Multiplying the first inequality in (38) by (H(u))p1 , and using integration by parts,
to obtain

d

dt

∫
Ω

(H(u))p1+1 dx+ (p+ 1)

∫
Ω

∇u · ∇((H(u))p1F (u)) dx ≤ 0. (71)

By Assumption 3.5, it implies that

∇u · ∇((H(u))p1F (u)) = [Hp1(u)F (u)]′|∇u|2 ≥ c3 · (H(u))q1 |∇u|2. (72)

Using (72) in (71) becomes

d

dt

[∫
Ω

(H(u))p1+1 dx

]
+ c3(p+ 1)

∫
Ω

(H(u))q1 |∇u|2 dx ≤ 0. (73)

Applying Poincaré-Sobolev inequality for 1 ≤ δ1 < 2, it follows that

[∫
Ω

(
(H(u))γ1+1

)δ1
dx

] 1
δ1

≤ cp

[∫
Ω

∣∣∣∣∇ ((H(u))γ1+1
) ∣∣∣∣2 dx

] 1
2

, (74)

for constant cp > 0, depending on N . Hence,

(Y (t))
2
δ1 ≤ c2p

∫
Ω

∣∣∣∣ dds (H(s)γ1+1
) ∣∣∣∣2
s=u(x,t)

|∇u|2 dx. (75)

By Assumption 3.6, it follows from (75) that

(Y (t))
2
δ1 ≤ c4 · c2p

∫
Ω

(H(s))2β |∇u|2 dx

= c4 · c2p
∫

Ω

(H(s))q1 |∇u|2 dx. (76)

Utilizing inequality (76) in (73) provides

(Y (t))′ + (p1 + 1)
c3

c4 · c2p
(Y (t))

2
δ1 ≤ 0, for all t > 0, (77)
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which implies inequality (68). Here δ1 < 2. Thus, the estimate is obtained by Lemma 3.1, and consequently, the limit (70) is
derived.

The stability result for β > q
2 is established, starting with the next auxiliary result.

Theorem 3.5. Let Assumptions 3.5 and 3.6 hold for β > q1

/
2. Let δ1 be defined as in (67), where 1 ≤ δ1 < 2. Moreover, let

δ2 = 1, if 1 ≤ δ1 ≤
N

N − 1
, (78)

or

δ2 =
δ1N

N + δ1
, if

N

N − 1
< δ1 < 2. (79)

Assume that for any t ≥ t0. Then there exists k > 0 such that

Y ′(t) +
k

(Z(t) + 1)
2−δ2
δ2

(Y (t))
2
δ1 ≤ 0, for all t > t0. (80)

Here Z(t) =

∫
Ω

(H(u))p0dx , and p0 =
(
β − q1

2

)
2δ2

2−δ2 .

Proof The proof of Theorem 3.4 is followed up to (73). Note that 1 ≤ δ2 < N and, for both cases of δ1 in (78)-(79),

δ1 ≤
δ2N

N − δ2
.

Applying Poincaré-Sobolev inequality, to obtain

[∫
Ω

(
(H(u))γ1+1

)δ1
dx

] 1
δ1

≤ cp

[∫
Ω

∣∣∣∣∇ ((H(u))γ1+1
) ∣∣∣∣δ2 dx

] 1
δ2

. (81)

Here, cp > 0 represents a constant that depends on N . Using Assumption 3.6, the estimate (81) implies

(Y (t))
δ2
δ1 ≤ cδ2p c4

∫
Ω

(H(u))βδ2 |∇u|δ2 dx. (82)

By Hölder’s inequality with powers 2/(2 − δ2) and 2/δ2 on the right-hand-side of (82) and from Assumption 3.5, it follows
that ∫

Ω

(H(u))βδ2 |∇u|δ2 dx ≤
[∫

Ω

(H(u))(β−
q1
2 ) 2δ2

2−δ2 dx

] 2−δ2
2
[∫

Ω

(H(u))q1 |∇u|2dx
] δ2

2

.

Hence, (82) becomes

(Y (t))
δ2
δ1 ≤ cδ2p c4(Z(t))

2−δ2
δ2

[∫
Ω

(H(u))q1 |∇u|2dx
] δ2

2

. (83)

Using () in (82), it is obtained that

(Z(t) + 1)−
2−δ2
δ2 c−2

p c
−2/δ2
4 (Y (t))

2
δ1 ≤

∫
Ω

(H(u))q1 |∇u|2 dx. (84)

Combining (73) with (84) gives

(Y (t))′ +
c3(p1 + 1)

c
2/δ2
4 · c2p(Z(t) + 1)

2−δ2
δ2

(Y (t))
2
δ1 ≤ 0, (85)

for all t > t0. Hence, (80) is derived.
Assuming all the conditions in Theorem 3.5 hold, the following analogy is presented.
Corollary 3.1. Let Y (t), δ1 and p0 be defined as in Theorem 3.5. Let p∗ ≥ 0 be such that p∗+1 ≥ p0. Assume that Assumption
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3.3 is satisfied for p = p∗, and [H(u0)] ∈ Lp∗+1(Ω). Then Y (t) satisfies the differential inequality

(Y (t))′ + C2(Y (t))
2
δ1 ≤ 0, (86)

for all t > t0, for some constant C2 > 0. If Y0 = 0 then Y (t) = 0 for all t ≥ t0. If Y0 > 0 then

Y (t) ≤

[
C2

(
2− δ1
δ1

)
(t− t0) + Y

−
(

2−δ1
δ1

)
0

]− δ1
2−δ1

, (87)

for t ≥ t0 and consequently,

lim
t→∞

Y (t) = 0. (88)

Proof Applying Hölder’s inequality to Z(t) in Theorem 3.5 and using Theorem 3.3 , gives

Z(t) =

∫
Ω

(H(u(x, t)))p0dx (89)

≤
[∫

Ω

(H(u(x, t)))1+p∗dx

] p0
1+p∗

|Ω|
1+p∗−p0

1+p∗

≤
[∫

Ω

[H(u0(x)]1+p∗dx

] p0
1+p∗

|Ω|
1+p∗−p0

1+p∗

<∞. (90)

The relation (90) is used in (80), leading to the inequality (86). Consequently, leveraging Lemma 3.1, the estimate (87), and
the limit (88) are established.

Remark 3.4. Assume Y (t) > 0 and Z(t) > 0 for any t ∈ [t0,∞). Then the estimate

Y ′(t) +
k

(Z(t))
2−δ2
δ2

(Y (t))
2
δ1 ≤ 0, (91)

holds for all t > t0. Next, if p0 ≥ p1 + 1, then

Y (t0) =

∫
(H(u(x, t0)))p0+1dx,

will be picked, and as a result
lim
t→∞

Y (t) = 0.

If Z(t0) = 0 or Y (t0) = 0 then u(x, t0) = 0 a.e.. Moreover, since Y (t) monotonically nonincreasing, u(x, t) = 0 for all
t ≥ t0 a.e..

The next step involves extending Assumption 3.6 by introducing an additional term (H(s))β2 as follows.
Assumption 3.7. There exist constants γ1, β1, β2 > 0 and c5 > 0 such that

(Hγ1+1(s)
)′ ≤ c5((H(s))β1 + (H(s))β2

)
, (92)

for all s ∈ [0,∞).
Theorem 3.6. Let Assumptions 3.5 and 3.7 hold with β1 > β2 > q1

/
2. Let δ1 and δ2 be defined by Theorem 3.1. Define

Y (t) ,
∫

Ω

(H(u(x, t)))p1+1dx, t ≥ t0.

Then there exists K > 0 such that

(Y (t))′ +
K

[Z1(t) + Z2(t) + 1]
2−δ2
δ2

(Y (t))
2
δ1 ≤ 0, (93)
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for all t > t0. Here,

Z1(t) ,
∫

Ω

(H(u(x, t)))(β1− q12 ) 2δ2
2−δ2 dx, (94)

and

Z2(t) ,
∫

Ω

(H(u(x, t)))(β2− q12 ) 2δ2
2−δ2 dx. (95)

Proof The proof of Theorem 3.1 is followed up to (81). Using Assumptions 3.6 in (81), provides

(Y (t))
δ2
δ1

≤ cδ2p c5
∫

Ω

[
(H(u))β1 + (H(u))β2

]δ2
|∇u|δ2 dx

≤ cδ2p c52δ2
∫

Ω

(H(u))β1δ2 |∇u|δ2 + (H(u))β2δ2 |∇u|δ2 dx. (96)

Applying () for β = β1 and β = β2, to obtain

∫
Ω

(H(u))β1δ2 |∇u|δ2 dx ≤ (Z1(t))
2−δ2

2

[∫
Ω

(H(u))q1 |∇u|2dx
] δ2

2

, (97)

and ∫
Ω

(H(u))β2δ2 |∇u|δ2 dx ≤ (Z2(t))
2−δ2

2

[∫
Ω

(H(u))q1 |∇u|2dx
] δ2

2

. (98)

Combining (96) with (97) and (98) yields

(Y (t))
δ2
δ1 ≤ cδ2p c52δ2+1 [Z1(t) + Z2(t) + 1]

2−δ2
2 ·

[∫
Ω

(H(u))q1 |∇u|2dx
] δ2

2

. (99)

Raising both sides of (99) to the power 2
δ2

, gives

(Y (t))
2
δ1 ≤ c6 [Z1(t) + Z2(t) + 1]

2−δ2
δ2

∫
Ω

(H(u))q1 |∇u|2dx, (100)

where c6 = 22+2/δ2c2pc
2/δ2
5 . Then, combining (73) with (100) to obtain

(Y (t))′ +
c3(p+ 1)

c6 [Z1(t) + Z2(t) + 1]
2−δ2
δ2

(Y (t))
2
δ1 ≤ 0,

for all t > t0.
Assuming all the conditions in Theorem 3.6 hold, the following result is obtained.
Corollary 3.2. Let Y (t), δ1, and p2 be defined as in Theorem 3.6. Let p′ ≥ 0 be such that p′ + 1 ≥ p2. Assume that the

Assumption 3.3 is satisfied for p = p′, and [H(u0)] ∈ Lp′+1(Ω). Then Y (t) satisfies the differential inequality

(Y (t))′ + C1(Y (t))
2
δ1 ≤ 0, for all t > t0,

for some constant C1 > 0. If Y0 = 0 then Y (t) = 0 for all t ≥ t0. If Y0 > 0 then

Y (t) ≤

[
C1

(
2− δ1
δ1

)
(t− t0) + Y

−
(

2−δ1
δ1

)
0

]− δ1
2−δ1

, (101)
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for t ≥ t0 and consequently,

lim
t→∞

Y (t) = 0. (102)

Proof Recalling (94) and (95), note that p2 > p3 due to
β1 > β2. Similarly, by applying Hölder’s inequality and
utilizing Theorem 3.3, one can show that

Z1(t), Z2(t) <∞, for all t > t0. (103)

Hence, for some constant C1 > 0, the differential inequality
(93) yields the form

(Y (t))′ + C0(Y (t))
2
δ1 ≤ 0, for all t > t0.

Leveraging the insights from Lemma 3.1, the estimate (101)
is derived, and the limit (102) is established.

Remark 3.5. One can consider the generalization of
Assumption 3.7, by assuming

(H(s)γ1+1)′ ≤
∑

ci(H(s))βi , (104)

for βi > 0, and obtain the ODI of the form similar to (93), and
corresponding corollary. Moreover, in analogous to Remark
(3.4), one can obtain conclusions for u(x, t) for t ≥ t0 under
Assumption 3.7.

4. Conclusions

This paper presents significant advancements in the
understanding of the degenerate Einstein-Brownian model
with a diffusion matrix depending on the concentration of
particles u, addressing the paradox in the classical Einstein
framework of Brownian motion. By introducing Hypothesis
1.1, the paradox was resolved, and the necessity of two
critical conditions for the model’s validity was demonstrated.
Additionally, a counterexample was provided that illustrates
the infinite propagation speed of the solution when these
conditions are violated. The analogs obtained in this study
hold substantial potential for applications across various fields
of mathematics and science, particularly within physics and
mathematical sciences. These findings offer new insights
that could refine and enhance the behavior of related models,
paving the way for more accurate physical solutions to
numerous natural phenomena.

Furthermore, this paper delves into the stability of the
degenerate model via the central quantity

Y (t) =

∫
Ω

(H(u(x, t)))λdx, for λ ≥ 1.

It was established that the above quantity remains bounded
relative to the initial data under different scenarios. This
boundedness forms the foundation for introducing the concept
of asymptotic stability for the solutions to the initial-boundary
value problem (38)-(40), applicable to both bounded and
unbounded cases of u, with more generic H and F functions.

In addition to establishing fundamental and generic stability
theorems, Assumption 3.6 was expanded by incorporating
additional parameters β1 and β2, thus enhancing the
flexibility and comprehensiveness of the results on asymptotic
stability. The stability analysis is anticipated to be extended
to the model incorporating nonlinear force terms and in
homogeneous boundary conditions for both bounded and
unbounded domains. These developments advance the
theoretical framework of the degenerate Einstein-Brownian
model and open new avenues for practical applications in
various scientific and mathematical contexts.
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