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Abstract

In this thesis we investigate explicit numerical approximations for stochastic differ-
ential delay equations (SDDEs) under a local Lipschitz condition by employing the
adaptive Euler-Maruyama (EM) method. Working in both finite and infinite horizons,
we achieve strong convergence results of the adaptive EM solution. We also obtain the
order of convergence in finite horizon. In addition, we show almost sure exponential
stability of the adaptive approximate solution for both SDEs and SDDEs. Further,
we prove strong convergence of the adaptive solution for McKean-Vlasov SDDEs (MV-
SDDEs). In the second part of the thesis, we estimate the variance of two coupled paths
derived with the Multilevel Monte Carlo method combined with the EM discretization
scheme for the simulation of MV-SDEs with small noise first and for MV-SDDEs later.
The result often translates into a more efficient method than the standard Monte Carlo

method combined with algorithms tailored to the small noise setting.

Key Words: Adaptive Euler Maruyama scheme; McKean-Vlasov Stochastic differ-
ential delay equations (MV-SDDEs); Strong convergence; Boundedness of the pth-
moments; Almost sure exponential stability; Multilevel Monte Carlo simulation; Vari-
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Chapter 1

Introduction

In 2020, Wei and Giles [14] obtained the boundedness of the pth moments of the
numerical solution using the adaptive Euler Maruyama (EM) method in a finite horizon
under local Lipschitz and one-sided linear growth conditions for a standard SDE of the
type

X, = f(Xy)dt + g(X)dW,, t>0.

In the adaptive EM scheme, the time step is not a constant, but a function of the
solution at that point in time. They also, under more restrictive conditions, showed
strong convergence in infinite horizon. In Chapter 3] we extend their work to SDDEs
in both, finite and infinite horizons. Following [14], we will show the boundedness of
the pth moments but in our case, this is not enough to prove strong convergence. The
main difficulty is that the delay times might not match the times where the numerical
solution is computed. To solve the issue, we introduced an auxiliary piecewise constant
process on the delay times. This varies from the standard EM method for SDDEs and
requires a new proof of convergence.

In [T4], the almost sure (a.s.) exponential stability of the adaptive-EM solution was
not studied. Here we studied it first for SDEs and later for SDDEs. Moment stability
for numerical solutions of SDDEs has been studied extensively, see for example [3],

[39]. Almost sure exponential stability is usually derived from moment stability by



means of the Borel-Cantelli lemma and Markov’s inequality (see [25]). In Wu et al.
[49], using the EM and the Backward EM (BEM) methods, a.s. exponential stability
was studied for SDDEs without using moment stability. Their approach was based on
the martingale convergence theorem. They required the linear growth condition when
dealing with the standard EM scheme. When they weaken the linear growth to the
one-sided linear growth condition for the drift function, they showed how the standard
EM approximate solution loses the stability of the exact solution. Then they showed
that under the one-sided linear growth condition, the a.s. exponential stablility can
be achieved by using the BEM method. This method is implicit and therefore more
computationally expensive than explicit methods like the adaptive EM. In the last three
sections of Chapter [3| under similar conditions to the ones used in [49], we obtained
a.s. exponential stability using the EM-adaptive method. At the end of the chapter,
in Section [3.7], we present some simulations to ilustrate the ideas discussed in the
stability sections. Chapter|3|is based on the paper “Explicit Numerical Approximations
for SDDEs in Finite and Infinite Horizons using the Adaptive EM Method: Strong
Convergence and Almost Sure Exponential Stability”, which has already been accepted
for publication in the journal of Applied Mathematics and Computation.

In 2021 [46], Reisinger and Stokinger extended the work on the adaptive method
from [14] to MV-SDEs. For two different particles the value of the processes at time ¢,
may differ resulting in two different values (one for each particle) of the random variable
tne1. This, unlike the standard EM method, presents a challenge when computing
ﬁ Zj\il O snt gy I [46], they proposed two different schemes, which both deal with
this issue. In Chapter [d] we extend these two schemes to the delay case and prove the
strong convergence of the adaptive numerical solutions for MV-SDDEs.

An important problem in mathematics is to compute E[W(X7)] where { X }o<i<r i8
the solution to an SDE and ¥ : R? — R. This is a very significant problem in financial
mathematics where financial derivatives are priced by computing the above the expec-
tation. Among all the methods that allow us to compute the previous expectation,

Monte Carlo simulation is arguably the more flexible. Its drawback is the high com-



putational cost. Therefore a lot of effort has been placed to reduce this cost. In 2008,
Giles, in a very relevant paper, [15], proposed the multilevel Monte Carlo (MLMC)
method which greatly reduces the computational cost with respect to the standard
Monte Carlo (MC) method. Since [I5], numerous papers have appeared to customize,
adapt and extend the principles of multilevel Monte Carlo method to specific problems.
One of these papers is [I], where the authors applied the multilevel Monte Carlo frame-
work to standard SDEs with small noise. They compare the computation cost derived
from the standard Monte Carlo method (combined with discretization algorithms tai-
lored to the small noise setting) versus the multilevel Monte Carlo method combined
with the Euler-Maruyama (EM) scheme. In Chapter [5| we extend the work from [I]
to McKean-Vlasov SDEs (MV-SDEs) with small noise and we obtained the same es-
timate for the variance of two coupled paths. This presents some challenges since we
have to deal with the measures approximation ﬁ Zj\il Ogjm (1) The conclusion we ar-
rived at is that the additional McKean-Vlasov component does not add computational
complexity (per equation in the system of particles). Chapter |5|is based on the paper
“Multilevel Monte Carlo EM scheme for MV-SDEs with small noise”, which has been
published in the journal Numerical Algebra, Control and Optimization. In Chapter []
we extend the work from Chapter [5[to MV-SDDEs.



Chapter 2

Preliminaries

In this chapter we review some results from stochastic processes and stochastic differ-

ential equation (SDEs) that will be used later throughout the thesis.

2.1 Notation and basic definitions

For a R™-vector v, we denote the Euclidean norm by [v] := ([v1|2 + ... + |vm[?)? and
the inner product of two R™-vectors v and w by (v, w) := viwy + ... + VyW,. For a

m x d matrix A, we denote the Frobenius matrix norm by ||A|| := /trace(AT A).

Definition 2.1.1. A probability space (2, F, P) is said to be complete, if for all B € F
such that P(B) = 0, we have that if A C B, then A € F.

Definition 2.1.2. A filtration {F;;0 <t < oo} on (Q,F, P) is a collection of sub-o-
algebras of F, such that Fs C JF; for every s <t < oo.

Remark 2.1.1. The time parameter set can also be [0, 00) or a finite set [0, T for some
T > 0. Sometimes, for convenience, we will not specify the time parameter set and we

will just write {F;} to denote the filtration.
Definition 2.1.3. For a filtration {F;}, we define the o-algebras
]:t-i- = NestFs; Fom = U(Us<tfs)'

4



We say that the filtration is right-continuous (left continuous), if Fy = Fiy (Ft = Fi—)
for all t.

Definition 2.1.4. A filtered complete probability space (0, F,{F:}, P), is said to satisfy

the usual conditions if
(i) The filtration {F.} is right-continuous.
(ii) Fo contains all P-null sets of F.

Definition 2.1.5. A stochastic process X = {X;;0 < t < oo}, is a collection of R-
valued random variables. The process is said to be F-adapted if Xy € Fy (i.e. X, is

Fi-measurable) for each t.

Remark 2.1.2 (Notation). When it is important to emphasise the time parameter set,
we denote a stochastic process by {Xy;0 < ¢ < oo} or {X;;0 < ¢t < T}. But when
there is no place for confusion, we will denote the process just by a capital letter, in
this case, X. When we write X; we are referring to a random variable. For example,

we will denote by {W; }o<i<r or just W a standard d-dimensional Brownian motion.

Definition 2.1.6. A stochastic process X is said to be bounded if there exists a constant

K > 0 such that for almost all w € Q and all t € [0,00), | X(w)| < K.

Definition 2.1.7. Two stochastic processes X and Y, are modifications of each other
if
P(X;=Y,) =1 forallt.

We say that X and Y are indistinguishable if
P(X; =Y, forallt)=1.

Definition 2.1.8 (Martingale). A stochastic process M is a martingale with respect to
the filtration {F;} (or a {F:}-martingale) if:

(i) M is adapted to {F;};



(i) E|M;| < oo for allt > 0;
(11i) E[M|Fs| = M a.s., for all0 < s < t.

Definition 2.1.9 (Stopping time). The random variable T, taking values in [0, 0], is

an { % }-stopping time if

for all t < oo.

Definition 2.1.10 (Stopped process). Given a stochastic process X and a stopping
time T, the stopped process X7 is defined by

X7 = Xnr ().

Definition 2.1.11 (Local martingale). Let M be an adapted process null at 0. Then
M is called a local martigale null at 0, and we write M € My o0, if there exists an
increasing sequence {1,} of stopping times with 1, T oo a.s. (i.e. for each T > 0
and each w € ), there exists N(w), so that n > N(w) implies T,(w) > T') such that
each stopped process M™ is a martingale (null at 0). If M is also continuous we write

M € ey oc. The sequence {1, } is referred to as a reducing sequence for M (into ).

Definition 2.1.12 (Cadlag process). A function is said to be cadlag if it is right-
continuous with left limits. We say that a stochastic process is cadlag if for almost

every w € Q, t = X, (w) is a cadlag function.

Definition 2.1.13 (Semimartingale). A process X is called a semimartingale if it is

an adapted process that can be written in the form
X=X+ M+ A, (2.1.1)

where Xg is an Fo-measurable random variable, M is a local martingale null at zero
and A 1s an adapted cadlag process, also null at zero, having paths of finite variation.
We denote by S the space of semimartingales and by ¢S the subspace of continuous

semimartingales.



Theorem 2.1.14. [[/9/[30](Discrete semimartingale convergence theorem)

Let {A;}, {U;} be two sequences of nonnegative random variables such that both A; and
U; are both F;_i-measurable for i = 1,2,... and Ay = Uy = 0 a.s. Let M; be a real-
value local martingale with Mo = 0 a.s. Let { be a nonnegative Fo-measurable random
variable. Assume that {X;} is a nonnegative semimartingale with the Doob-Mayer
decomposition

If lim;_,, A; < 00 a.s., then for almost all w € €,

lim X; < oo andlim U; < oo,
1— 00 1— 00

that is, both X; and U; converge a.s. to finite random variables.

Definition 2.1.15. Let 0 < a < b < oo. Denote by L(|a, b],]RdX‘i),i = 1,2, the space
of all R4 _yalued measurable {F,}-adapted processes f = {f,,a <t < b} such that

b
/ Ifllidt < 00 as.
Denote by M?([a,b], R>?) the space of all processes f € L£2([a,b], R™?) such that

b
E [ / ||ft||2dt] < oo.

Definition 2.1.16. A d-dimensional Ito process is an R¥*-valued continuous adapted

process Ty = (:c,El), s xﬁd))T ont >0 of the form

t t
T = X +/ fsds +/ gsdWs,
0 0

where f; = (ft(l), o ST € LYR;RY) and g = (9i)axa € L2(R ;R we shall say

that x; has stochastic differential dxy on t > 0 given by
dl't = ftdt + gtth.

Theorem 2.1.17. (Ito’s formula)

Let z; be a d-dimensional Ito process on t > 0 with the stochastic differential
dl’t = ftdt + gtth.

7



Let V € C*(R? x Ry ;R). Then V(x4,t) is again an Ito process with the stochastic

differential given by

1
dV (z¢,t) = [Vi(xy, t) + V(g t) fr + §trace(g1?‘/;w(:z:t, t)gy)dt + Vi(xy, t)gedWy a.s.

2.2 Delay McKean Vlasov SDEs (MV-SDDEs) with
small noise

A MV-SDE is a type of SDE where the coefficients depend on the law (or distribution)
of the solution process itself. This is a generalization of classical SDEs where the
dynamics of the system are influenced by the collective behavior of all agents in a
population. The pionering work on MV-SDEs is due to McKean on his work on the
Boltzmann equation in thermodynamics, [42], [43]. Since then, MV-SDEs have been
used extensively in in biological systems, financial engineering and physics, [4],[7], [19],
[13].

A SDE with small noise is a type of SDE where the drift coefficient function is
multiplied by a small positive constant, which in the rest of the thesis will be denoted
by ¢, i.e. (0 < e << 1). In standard SDEs, the noise term (i.e. the diffusion part of
the SDE) can be significant and comparable to the drift term. In the small noise case,
the diffusion term is scaled down by the small parameter . The presence of small noise
affects the behavior of the solution and the methods used for analysis. Some examples
of fields in science where these equations are used are biochemestry, economics and

fluid dynamics, see [I] and references therein.

2.2.1 Wasserstein distance

For any ¢ > 0, let LY = L4({;R?) be the family of R-valued random variables Z
with E[|Z|] < +oco. Let £Z denote the probability law (or distribution) of a random
variable Z. §,(-) denotes the Dirac delta measure concentrated at a point z € R

For ¢ > 1, we denote by P,(R?) the set of probability measures on R? with finite gth

8



moments, and define

W, (1) = </ |x|qu(dx)> L Ve P, (RY. (2.2.1)
R
Lemma 2.2.1. [9/ ( Wasserstein Distance ) Let ¢ > 1. Define
W)=t L[ e yiranan s w e pm), (222)
€D (p,v) Rd

where D(u,v) is the set of all couplings for i and v. Then W, is a distance on P,(RY).

Lemma 2.2.2. [9] For any p € Po(RY), Wy(u,d0) = Wo(p).

2.2.2 MV-SDDEs with small noise

Let W(t) = (Wi(t),...,W4(t))T be an d-dimensional Brownian motion defined on the
probability space and let 7 > 0. The most general type of SDE that we will work with

in this thesis, has the form
dXe(t) = f(XE(t), X(t — 1), LX)dt +eg(X(t), X(t — 7), LX)dW (t),t >0 (2.2.3)
where ¢ € (0,1), £ is the law (or distribution) of X (¢),
FiREX RE x Py(RY) — RY and g : RY x RY x Py(RY) — R4
and the initial data satisfies the following condition: for any p > 2
(X(0): —7<0<0) == € L ([-m.0} B,

that is, = is a Fo-measurable C'([—7, 0]; R?)-valued random variable such that E||Z||P <

Q.

Definition 2.2.3. (Strong solution and uniqueness)
An R-valued stochastic process {Xy; —1 <t < T} is called a strong solution to (2.2.3)

if it satisfies



(i) X is continuous and {F,}-adapted;

(i1) {F(X(1), Xo(t = 7), L)} € LW [0, T RY) and {g(X°(t), X°(t — 7). L)} €
L*(W; [0, T); R™);

(7ii) Equation holds for every t € [0,T] with probability 1.
A solution X is said to be unique, if any other solution X is indistinguishable from X.
Theorem 2.2.4. [33] Assume that the coefficient functions f and g satisfy:
(i) (Lipschitz condition on g) There exists a positive constant L such that
oo,y ) — 9,5 IP < Lz — 3P+ ly — 9P + W ) (2:2)
for all z,7,y,5 € R? and p, i € P(RY).
(ii) (one-sided Lipschitz condition on f) There exists a positive constant L such that
(v =7, f(a,y, 1) — f(2,5, 1)) < L(lx = 7[> + ly — 7°) (2.2.5)
for all z,7,y,5j € R? and p € Py(RY).

(11i) (Lipschitz measure dependence condition on f) There exists a positive constant

L such that

for all x,y € R and p, i € Po(R?).

(iv) polynomial growth Lipschitz condition on f, i.e. there exist constants v, A, q > 0

such that for all x,y, T,y € R™
[f (@, y, 1) = f(Z, 5, )| < (v + [yl + 27+ [91) + M) (|2 = 2+ |y —gl). (2.2.7)

Then the equation (2.2.3) has a unique strong solution and the solution belongs to
M2 ([to, T); R™?) [33].

10



2.2.3 Lions derivative

Now we will give the definition of the Lions derivative (or L-derivative) for a function

u : Py(R?) — R as introduced in [8],[9].

Definition 2.2.5. Given (£, F,P), an atom is a set A € F such that P(A) > 0 and
for any B € F,B C A,P(A) > P(B), we have that P(B) = 0. We say a probability

space is atomless if it does not have any atoms.

Definition 2.2.6. We say that u : Po(R?) — R is L-differentiable at p € Py(RY) if
there is an atomless probability space (Q, F,P) and an X € L*(Q, F,P;RY) such that
w = L% and the lifted function U : L*(Q, F,P;RY) — R given by U(X) := u(LY) is
Frechet differentiable at X.

The following two propositions taken from [9] are key in order to define the L-

derivative later.

Proposition 2.2.7. [9] Let u be a real valued function on Py(R%) and U be its lifting
to L2(Q, F,P;RY). If u is L-differentiable at uy € Po(R?), then the lifting U is dif-
ferentiable at each X € L*(Q2, F,P;RY) such that pg = LX, and the law of the pair
(X, [DU)(X)) does not depend upon the random variable X as long as o = L.

Proposition implies that the distribution of the L-derivative of u at pg, when
viewed as a random variable, depends only upon the law p, an not upon the particular
Xy having distribution py. The Frechet derivative [DU](X)) is called the representation
of the L-derivative of u at p along the variable Xj. Since it is viewed as an element

of L2(Q2, F,P; RY), by definition,
U(X) = U(Xo) + [DU](Xo)(X = Xo) + o(|[X = Xol2),
whenever X and X, are random variables with distributions p and p respectively.

Proposition 2.2.8. [9] Let u be a real valued continuously L-differentiable function

on Po(R?) and U its lifting to L*(Q, F,P;RY). Then for any p € Po(R?), there exists

11



a measurable function h : R? — R? such that for all X € L?(Q, F,P;R?) with LX = u,
it holds that [DU](X) = h(X) almost surely.

Quoting [9], when we say that u is continuously L-differentiable, we mean that the
Fréchet derivative [DU](X) of the lifting u is a continuous function of X from the
space L(Q, F,P;RY) into itself. Proposition implies that, as a random variable,
this Fréchet derivative is of the form h(X,) for some deterministic measurable function
h : R? — R? which is uniquely defined po-almost everywhere on R?. The equivalence
class of h in L*(RY, p1g; RY) is uniquely defined and we denoted by 9,u(uo). We say
that 0,u(f) is the L-derivative of u at ji and identify it with the function d,u(p)(+) :
RY > 2 — d,u(po)(z) € R

By the mean value theorem (see chapter 5 in [9]), for any two d-dimensional random

variables X and X', there exists a 6 € [0, 1] such that

w(LY) = u(LY) = B[(9,u(LXT-9XY (09X + (1 - 0)X"), (X — X'))]. (2.2.8)

2.2.4 Stochastic Particle Method for MV-SDDEs with small

noise

This method, known in the literature as the propagation of chaos result [42], allows us to
approximate the MV-SDDE by a system of particles. Each one of these particles
satisfy a MV-SDDEs and the system is constructed in a way such that the particles
are uncorrelated with each other. In Theorem 2.2.91 we will see that the solution of
the system converges to the solution of . The benefit of this is that the system
is more tractable and facilitates the construction of numerical solutions that will still
converge to the exact solution of . Now we provide the details of the construction
process. For all i € N, let {W(t)},c(0.7) be a d-dimensional Brownian motion. Assume
{Wi(t)},{W?(#)},--- are independent and z', 22, --- are independent and identically
distributed (i.i.d.) L' ([-7,0]; R?) random variables with the same distribution as Z.

Let {X=(t) }+epo,r) be the unique solution to the MV-SDDE
AXE () = F(XE(E), X2 (=), £ )dt g (X5 (), X (=), L)W' (1), (2.2.9)

12



where ¢ € (0,1), £ is the law (or distribution) of X=(¢), X5 = 2 and
FiREX R x Py(RY) — RY and g : R x R? x Py(RY) — R4,

One can see that X=!(t), X*2(t), ... are i.i.d. for t > 0.
Now we define the M-particles systems of MV-SDDEs. Forany M € N, 1 <i < M,
let X% (t) be the solution of the MV-SDDE

AXEM (1) = XM (1), XY (4 — 1) £ )l -+ (X7 (1), X7 (1), L5 )aW (1)
(2.2.10)

) ) M

with the initial condition XJ™" = 27, where £5%Y = = Zléxe,j,M(t). The next
]:

theorem is known in the literature as the propagation of chaos proves the convergence

between X% and XM,
Theorem 2.2.9. [[Z][10] [33] If the assumptions of Theorem hold, then

lim sup E[ sup |X87i(t) _Xa,i,M(t)ﬂ =0.

M—oo1<i<M " 0<t<T

2.3 Some definitions of convergence and stability of
numerical solutions of SDEs

Here we summarize a few general definitions about convergence and stability of nu-
merical solutions to SDEs. Let {¥;,0 <t < T} and {X;,0 <t < T} be the exact and
the numerical solution to a SDE respectively. Let A be the stepsize of the numerical

solution.

Definition 2.3.1. (Strong convergence)
We say that X converges strongly to'Y if

lim E[ sup |Y; — X;|] =0.

A—0 0<t<T

13



Definition 2.3.2. (Order of convergence)
We say that X converges strongly to Y with order p if there exist a constant C' inde-
pendent of A, such that

E[ sup |Y; — X,|] = CAP.

0<t<T
Definition 2.3.3. (Weak convergence)
Let g be a Borel-measurable function. We say that X converges weakly to'Y at time T

with respect to a class C of test functions g if we have

lim |E[g(Yr)] — E[g(X7)][ =0

A—0

for all g € C.

Definition 2.3.4. (Almost sure exponential stability)
We say that the solution to a SDE, X, is almost surely exponentially stable if there is
a A* € (0,1) and a positive constant n such that

1
limsupmlog | Xi| < —n  a.s.

k—oo

for any A < A*.

Definition 2.3.5. (Moment exponential stability) Let p € (0,2].)We say that X is
p-moment exponentially stable if there is a A* € (0,1) and a positive constant n such
that
1
lim — log E[| X, |P] < —
Jim —-log B[|X[?] < —n

for any A < A*.
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Chapter 3

Numerical Approximations for
SDDEs using the Adaptive EM
Method: Strong Convergence and
Almost Sure Exponential Stability

3.1 Introduction

The classical existence-and-uniqueness theorem for SDDEs requires the drift and diffu-
sion functions to satisfy a local Lipschitz condition and a linear growth condition (see
[37]). However, in applications there are many SDDEs which do not satisfy the linear
growth condition on the drift coefficient. The Khasminskii-type theorem (monotone
condition) in [38] enables to prove existence-and-uniquess for a class of SDDEs using
a weaker condition than the linear growth one. Since there is no explicit solutions
for most SDEs, it is desirable, under these weaker conditions, to find numerical ap-
proximate solutions that converge strongly to the exact solution. In 2003, Mao [40]
proved strong convergence using the EM scheme and assuming the boundedness of the

pth moments for both the exact and the numerical solution. It is well-known that the
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linear growth condition implies the boundedness of the pth moments for the EM ap-
proximate solution. But when the drift function grows faster than linear, the standard

EM scheme fails. We provide some examples from [28] with polynomial growth:

e Stochastic Ginzburg-Landau equation
dX; = ((n+20)X; — AX})) dt + 0 X;dWt, X =z € (0,00),
where 7 > 0 and A\, 0 > 0.

e Stochastic Verhulst equation
1
dX, = ((77 + 502)Xt — AXf)) dt + o X dWt, Xy =0 € (0, 00),
where n, A\, 0 > 0.

e Feller diffusion with logistic growth
dXt = )\Xt(K — Xt)dto'\/ Xtth7
where \, K,o0 > 0.

. Therefore, modifications of the EM scheme which provide explicit approximate
solutions, have appeared in the last few years to account for this issue. Examples of
these are the Tamed [29] and the Truncated [21] methods.

In 2020, Wei and Giles [I4] obtained the boundedness of the pth moments of the
numerical solution using the adaptive-EM method in a finite horizon under local Lips-
chitz and one-sided linear growth conditions. This, by the previous work of Higham in
2002 [23], automatically implies strong convergence. In the adaptive EM scheme, the
time step is not a constant, but a function of the solution at that point in time. They
also, under more restrictive conditions, showed strong convergence in infinite horizon.
Here, in the first part of this chapter we extend their work to SDDEs in both, finite
and infinite horizons. Following [I4], we will show the boundedness of the pth moments

but in our case, this is not enough to prove strong convergence. The main difficulty is
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that delay times might not match the times where the numerical solution is computed.
To solve the issue, we introduced an auxiliary piecewise constant process on the delay
times. This varies from the standard EM method for SDDEs and requires a new proof
of convergence.

In [T4], the almost sure (a.s.) exponential stability of the adaptive-EM solution was
not studied. Here we studied it first for SDEs and later for SDDEs. Moment stability
for SDDEs has been studied extensively, see for example [3], [39]. A.s. exponential
stability is usually derived from moment stability by means of the Borel-Cantelli lemma
and Markov’s inequality (see [25]). In Wu et al. [49], using the EM and the Backward
EM (BEM) methods, a.s. exponential stability was studied for SDDEs without using
moment stability. Their approach was based on the martingale convergence theorem.
They required the linear growth condition when dealing with the standard EM scheme.
When they weaken the linear growth to the one-sided linear growth condition for
the drift function, they showed how the standard EM approximate solution loses the
stability of the exact solution. Then they showed that under the one-sided linear
growth condition, the a.s. exponential stablility can be achieved by using the BEM
method. This method is implicit and therefore more computationally expensive than
explicit methods like the adaptive EM. Here, under similar conditions to the ones used
in [49], we obtained a.s. exponential stability using the EM-adaptive method.

The rest of the chapter is structured as follows. Section describes the adaptive
EM method. Section deals with strong convergence and order of convergence in
finite horizon. In Section [3.4 we obtained the boundedness of the pth moments for
the adaptive EM approximate solution in infinite horizon. In Section [3.5| we show a.s.
exponential stability of the adaptive EM solution for SDEs and provide a counterex-
ample in which standard EM fails. Section follows closely to Section [3.5] but this
time we work with SDDEs.
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3.2 Adaptive-EM Method for SDDEs

Let (2, F,{Fi}i>0,P) be a filtered complete probability space where the filtration
{F}i>0 satisfies the usual conditions. Let W(t) = (Wy(t),...,W;(t))T be an d-
dimensional Brownian motion defined with respect to {F;}i>o. Let 7 > 0 and T" > 0 be
constants and denote C([—7,0]; R?) the space of all continuous functions from [—7, 0]
to R with the norm ||@|| = sup_,<y<, [#(#)|. Consider an d-dimensional SDDE of the
form

dY; = f(Y,, Yo, )dt + g(Yi, Yier)dW, (3.2.1)

on t € [0,7], where f : R x R? — R? and ¢ : R* x R? — R%*? are Borel-measurable

functions, and the initial data satisfies the following condition: for any p > 2
{Y(0): -7 <0<0} =¢ e L ([-7. 0 RY),

that is ¢ is a Fo-measurable C([—7, 0]; R%)-valued random variable such that E|[¢||P <
0.

Now we define the numerical solution based on the adaptive method. The time
step is determined by a function h° : R — RT with § € (0, 1). The family of functions
{h%}o<s5<1 is not specifically defined, it just has to satisfy certain conditions that we will

describe later in the next assumption. To see concrete examples where the function h°
is fully specified, see the example (3.6.11]) at the end of this chapter. We now define
the adaptive method for SDDEs. Set

Xo = £(0), hd:=ho(Xy), t1:=hd.
We introduce the continuous-time step (auxiliary) process X. Define
X, =&(t),t € [-7,0), X;:=£(0),te][0,t).

For t; we define the discrete-time approximate solution X as

th = Xo + f(Xo, X—T)hg + g(Xo, X_7) AW,

B = ho(X,,), ta =t + hS,
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Xt = tht S [tl,tg),

where AW, := W;, — Wy. Then for a generic t,, we define

th—Q—I = th + f(Xt'rM th_"—)hi _I_ g(th’ th_T)AWn? (322)
hi—ﬁ-l = hé(thH)v tnye = tnp1 + hfL—Fl?

Xt = th+17t S [tn+17 tn+2)7

where AW,, := W,

until n = N(w) := inf{n € Z* : t,(w) > T}. Note that ¢, and h are random variables.

s — Wi, For every path w € §, we continue the recursion (3.1)

We now introduce a second auxiliary step process. For every w, let r = r(w) be such

t, <71 <t,.1. Then we define the process X as

X, =X_,te [—7,t1 —7), X, = Xy te€ti—Tta—1), .00y
Xt = XtrfT,t c [tr — 7, tr+1 — T),Xt = XtT_HfT,t € [tr+1 — 7, t7'+2 — ’7—), (323)

Xt = Xtr+n—Tat € [tr—l—n — Ty lrgnt1 — T)
forn=1,..., N —r. We now define the continuous approximate solution

X = €(t)7 te [_7—7 O];

t t
X, = X+ / f( X, Xs—r)ds + / 9( X, Xo7)dWs, te[0,T]. (3.2.4)
0 0

Note that th =X, =X, forn=0,1,...,N.

Remark 3.2.1. The reason to introduce the second step process X is that we can not
use the process X't,T,t € [tn,tny1] to construct the continuous approximation. This
is because X;_, may not be constant in the intervals [t,,t,,1] which implies that
the desired equality th = X;,, might not hold. This equality is crucial later to
prove convergence. Unlike the case for SDEs in [I4], the fact that we can not use
Xi_+,t € [tn, tuy1], has the added difficulty that in order to prove convergence is not
not enough to just show the boundedness of the pth moments and then refer to [40)].

In our case a new proof of convergence is required.
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3.3 Convergence of the numerical solutions on fi-
nite time interval

In this section we will work on a finite time interval [—7,T],T > 0, and investigate the

convergence of the numerical solutions to the exact solution on [0, 7).

Assumption 3.3.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant Cr such that

|f(x,y) = f(@,9)| +lg(z,y) — 9(z,9)|| < Cr(lz — 2|+ |y — ) (3.3.1)

for all z,y,z,y € R with ||V |y|V|Z| V|y| < R. Furthermore, there exist two constants

a, 8> 0 such that for all z,y € RY, f satisfies the one-sided linear growth condition:

(z, f(z,y)) < allz]* + |yl*) + 8 (3.3.2)

and g satisfies the linear growth condition:
lg(z, nII* < allzl* +|y*) + B. (3.3.3)

Assumption 3.3.2. The time step function b’ : R? — R*, § € (0,1), is continuous,

strictly positive and bounded by 6T, i.e.
0 < h’(x) < 6T  for all v € RY. (3.3.4)

Furthermore, there exist constants o, f > 0 such that for all z,y € RY,

(2, Fa ) + 50 (@) F ) < allaf + of?) + 5. (335)

Note that condition (3.3.5)) implies condition (3.3.2]) with the same values of o and
B.
Remark 3.3.1. In practice, the theory of this section can be applied in the following
way. Assume we are giving a SDDE which satisfies Assumption [3.3.1] After, knowing
the specific definition of the SDDE we are working with, we define a timestep function
h? that must satisfy Assumption [3.3.2l Then as we will see later in Theorem [3.3.9) we

can assure that the numerical solution converges to the exact solution.
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3.3.1 The boundedness of the pth moments of the exact solu-

tion and the numerical solutions

The next lemma shows the boundedness of the pth moments of the exact solution.

Lemma 3.3.3. If the SDDE (3.2.1)) satisfies Assumption (3.3.1)), then any p > 0 there

exists a positive constant C' such that

E { sup \Yt\p] <C. (3.3.6)
0<t<T
Proof. The proof is given in Lemma 3.2 in [29)]. ]

Now, the pth moments of numerical solution will be investigated. In the standard
Euler-Maruyama method the discretisation times {t,} are built using a constant time
step A and a fixed number of steps N € N, i.e. txy = NA = T. However, in the
adaptive method, {t,} is a sequence of random variables and there is no guarantee

that it reaches T' in a finite number of steps. Thus, we have the following definition.

Definition 3.3.4. We say that the time horizon T is attainable if {t,} reaches T in

a finite number of steps N, i.e. for almost all w € Q, there exists a N(w) such that

tnw) = S hi(X,,) > T

Theorem 3.3.5. If the SDDE (3.2.1]) and the function h® satisfy Assumption m
and respectively, then T is attainable and for all p > 0 there exists a constant
C > 0 dependent on T and p, but independent of h®, such that

n?

E { sup |Xt|p} <C. (3.3.7)

0<t<T

The discrete-time approximate solution defined in (3.2.2) need not be bounded.
In order to show that T is attainable and prove Theorem [3.3.5] we need to work
with a bounded approximate solution. To this end we now introduce the following
auxiliary scheme. Let K > [|€]|. Set X[ := £(0),h8 := h9(Xy),t1 := h$ and XJ =
£(t),t € [-7,0), XE := £(0),t € [0,t;). Consider the function ®x : R — R &(z) =
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min(1, K/|z|)x. Then for every w € © and for n = 0,1,...N(w), we define

XK = 0p(XE 4 (XS XK

tni1 tn—T

Mo, + (X5 XK _)AW,)
By o= BO(XE )t == togr + ROy, (3.3.8)

th( = XK t e [tn+1, tn_;,_g).

tnt+1?

where N(w) :=inf{n € Z* : t,(w) > T}. Define for n =0,...., N —r

XE = XK _telty— 1t — 1), (3.3.9)

tn—T7

where r = r(w) is such that t, < 7 <t,,1. We now define the the continuous approxi-

mate solution

XF =€), tel-1,0]
XK= ok (Xf +FXEXE D —t) + (X XE )W, - WQ) te0,7),
(3.3.10)

where t := max{t, : t, < t}. Note that Xt{f = Xt{f = )_(tls.

Lemma 3.3.6. Let the SDDE satisfy Assumption and the function h°
satisfy Assumption . Then, for the auziliary scheme defined by , T is
attainable and for all p > 0 there exists a constant C' dependent on T and p, but
independent of h® and K such that

E { sup |XtK|p} <C. (3.3.11)

0<t<T
Proof. Let p > 4 and fix 6 € (0,1). Since h° is continuous and strictly positive,
inf|, <k h°(x) > 0. This implies that for every w €

lim inf 2J (w) = lim inf 2% (X[ (w)) > 0,

n—oo n—oo

80 1imy, 00 tn (W) = D oo Bl (w) = oo for all w € Q and T is attainable in the bounded

scheme.

Now we will prove the boundedness of the pth moments and the upper bound will
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be independent of h} and K. Let t € [0,T]. Define t := max{t, : t, < t},
n; := max{n : t, < t}. Using (3.3.§)) and since for any z € R4, |®(z)|* < |z|*, we have
that forn=0ton=mn; — 1,

2 <X+ R X

tn—T

| tn+1 )hn+9(XtK> tn—T)AW |2
= (XIS XY + 20X, FOXE XS hn)

+ (XS Y, F(X XK B

+ 22X+ fXS XS b, g(XE XE ) AW)

+ (X, X

tn—T

)Aang(th(7 tn —T)AW >
= | XA + 2k, (X[ (X XS A+ g L FXS XE )P

+2<XK+f(XtI{7 tn—T)hng(XtI{’XK

tn—T

VAW,) + |g(XE, XS ) AW, |?
< XEP 4 2hna(| XE P + | XE_ )+ 2h,8

+ 2<XK + f(XtI(7 tn— T)hTHg(Xt[i? X£77>AW”> + ‘g(ng?XgifT)AWnP?

where in the last step we have used condition ([3.3.5). Note that, since it is irrelevant
in this proof, we have dropped the symbol “6” in the adaptive time-step “h%” to ease

the notation. Solving the recurrence relation, we get

ng—1
IXEP? < XS + 20 (Z | XK 12, + \Xt{fTPhn) + 26t

n=0
ng—1 R
+ 2 Z XK + f(XtI{7 tn—’r)hn7g(XtK’ tn —T)AW >
n=0
neg—1
+ Z lg(XE XE AW, 2. (3.3.12)

Similarly, the continuous approximate solution verifies

(XS] < [XSP 420t — )a( XS+ (XS P + 20t —1)8
+ 2X LS X (-1, 9(XE X)W = W)
+lg(X[ XE )W = W) (3.3.13)
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Substituting (3.3.12)) into (3.3.13)) yields
IXEP < 1K

TLt—l
+2a <Z X8 P+ X PR+ X P )+ IXE P~ t))

n=0
ng—1
+28t+ 2> (X[ 4 FXS XS ha, g(XE XS ) AW,)
n=0

TLtl

+ Z (X5 XE_)AW, 2 + |g(RE, XE ) (W, — W,

Using the step processes X* and XX defined previously, the second summand on the
RHS of the equation above, can be expressed as a Riemann integral. Similarly the

sixth and the seventh terms can be written as an Ito integral, i.e.
P < IXEP 20 [ (24 X, P + 20
0
+2 [ (X SO I o
+(t = ) g ()], g(X, X5 )W)

ne—1

+ Z (X8 X0 AW, + [g(XE XS )(We = W),
Hence, we have
p/2
X <@+ (20 [ OREP IR Pias) o+ (200
t — — ~ —
o [ RE 4 ORI X (0
0

+ (t = g (u)], g(XE, XK )dw,)

ng—1 p/2
e (S s gamp) siace 5o wor
Taking the expectation of the supremum, one has

E {sup \Xf]?} <62 NI 4+ I + I + 1),

0<s<t
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where

L :=E|IXfP+E + (2Bt

t ~ p/2
(za JRCAE |X£T|2>ds)
0

2 / (XK 4 f(XE X5 )X ()
0

Iy = E[ sup

0<s<t

Y

+ (s — ) jg.q(w)], g(X 5, XK )dw,) pﬂ}

[ -1 p/2
Iy:=E <Z|g<Xf§,X3§T>AWn|2> ;
n=0

1= sup (R )07, - WP

lo<s<t
Now we will establish bounds for each of the four terms above. In the remainder of the

proof, C' is positive constants, independent of K, that may change from line to line.

Using Holder’s inequality, we have
t
L S B+ apgr it [EIXEpP + XK )ds + 57"
0

t
§C’/ E{sup ]Xf\p] ds + C.
0

0<u<s

By the Burkholder-Davis-Gundy (BDG) inequality we obtain
t
L < 22 CE[ ([ 1K + XD o ()
0
o~ p/4
(= ) ()] g (X, X )Pdu) |

An application of the Holder inequality yields that

t
B < BTEICE [ [RE4 FORE X oy ()

0

(¢ = T )] lo(XE X)) B (3314)

Now, we bound the integrand of the integral above. Using condition (3.3.5) we obtain

X0+ FX XD M) o (w) + (t = DIy (w)]]” =

= [ X0+ 20X Tjo (u) + (¢ = D ()] | (X0 FX X0)
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+ 5 [A(XE) o () + (= O] |F (X8, X))

<RSP+ 20X oy () + (¢ — ) ()] [ (1KEP + [ XE ) + 5]

N | =

= (1+2a7)| XS] + 22T | X, "M + 28T.
This implies

X5 (X5 XA )RR o (0) + (¢ = D (]2
< g/t [(1 + 22T X KPR 4 20T X P+ (26T)p/4]
<O (IXEPE 125N 4 1)
Also by condition (3.3.3]) one can see that

K K \||p/2 ok oK 2\ oK |2 SK |2 p/4
g(X, X2 = (Ilg(KE XL < |a (1KEP + XK 12) + 8]

<C (|)‘<;<|p/2 XK g 1) .
Substituting the last two inequalities into (3.3.14)), we obtain

t
I, < CE U (1 XEP 4+ |5(5_T\p) du}
0

¢
§C+C(/ E[sup \Xf]p] ds).
0 0<u<s

Now we will bound I3. Note that ¢, is a stopping time of the filtration {F¥'}. Define
Fi, ={AeF:An{t, <t} e F'}.

By the strong Markov property of the Brownian motion, {B, := W, +, — W, ,u > 0}
is a standard Brownian motion independent of F;, (page 86, Theorem 6.16 in [30]).
Thus

E[ sup [Wi,u — Wi, [P|Fi,] = E[ sup |B,[f] < Cs”2.

0<u<s 0<u<s
This implies
E[ sup |W,— W, [P|F,] < Cht/2 (3.3.15)

tn<u<tp41
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Combining Jensen’s inequality and equation ((3.3.15]), we arrive at

ng—1 p/2
I3<E (Z IIQ(Xfi,XfE_T)IIQIAWnV)
n=0

ng—1 p/2
K< AW, |
—E (Ejhn||g<xf§,xf§_7>||2—h
n=0 n

ng—1
_ - v % EHAWn‘p|Ftn]
<TPPE | hallg(XE XK )P "
n=0 n
nyg—1 5
< CTPPTE Y hallg(X[S XS
n=0

¢ , ¢t
<orie | [l X pas| < o1t | [ 11oCe R P
0 0
Using condition (3.3.3]) and Holder’s inequality, we have
t o p/2
n<ereg| [ (g 2r) " o
0
¢ _ ~ p/2
< OT**'E U (oz(lXSKI2 +IXE ) + 6) ds]
0
t
< e | [ (@IREP + 1) + 7))
0

t
< C+C’/ E { sup |X5|p] ds.
0 0<u<s
For I,, using the linear condition ([3.3.3]), we obtain
< B | sup lgCE X )07, -

0<s<t

<E [ sup {[(a(IXEP + [XE)P) + 6] [(Ws - Ws””ﬂ

0<s<t

<E

ng—1
Z la(|XEP+|XE_P)+ BE [ sup |(W, —W,,)

n=0 tn<s<tp+1

2
t<s<t

+ (| X5+ [ XE ) + FIE [sup [(Ws — Wt)|”/zlft] ]

t
SC’+C’/ E[sup |Xf|p] ds.
0

0<u<s
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Adding all the bounds for I; to I, we have that for all ¢ € [0, 7]
¢
E [SUP |X§(|p] < C'—i—C'/ E { sup |X5|p] ds,
0<s<t 0 0<u<s

and by the Gronwall inequality we obtain

E [ sup |XtK|p} <C.

0<t<T

The result has been proved for p > 4. For 0 < p < 4, note that
E { sup | X[ |p} Houpycper 1XFI<1y < 1

0<t<T
and
K|p K4
E LiggT!Xt | ] Lsupocicr x>y < B LigngXt | } Lsuppcrcr 121y < C
where I4 es the indicator function of the set A. Therefore,

| 7]

0<t<T

=K |: sup ’XtK‘p‘| I{Supogth |XtK\§1} +E { sup ‘XtK|p:| I{SupogzgﬂXthl} S C

0<t<T 0<t<T

]

Remark 3.3.2. Note that assuming that 1" was attainable, we have proved the bound-
edness of the pth moments without using the auxiliary scheme. The only reason why
we needed to work with a bounded scheme was to show that infj,<x h’(z) is strictly

positive and therefore T' is attainable.

Proof of Theorem|3.3.5. By Lemma |3.3.6] and the Markov inequality

E XK 4 C
P(sup |X;| < K)=1—-P(sup |[X[|>K)>1- [Sup0§t§4T| il > N
O<t=T 0<t<T K K

Thus
lim P( sup |X¢| < K) =1,

K—oo 0<t<T
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This means that supy<;<p | X;| < 00 a.s., i.e. for almost all w € € there exist a K, such
that
sup | Xi(w)] < K. (3.3.16)

0<t<T

Since h? is continuous and strictly positive, infj, <, h°(z) > 0. This implies that for

almost every w €

lim inf 7 (w) = liminf h°(X,, (w)) # 0,

n—oo n—oo

80 limy, o0 tn(w) = D07 hd(w) = oo a.s. and T is attainable. Also, for all w and all

0 < Ky < Ky, we have

sup ]XtKl (w)| = min( sup |X;(w)|, K1) < min( sup |X;(w)|, K2)

0<t<T 0<t<T 0<t<T
= sup |X/?(w).| (3.3.17)
0<t<T
Equations (3.3.16)) and (3.3.17)) imply that
lim sup |XX| = sup |X;| as. (3.3.18)
K—o0o<t<r 0<t<T

This together with Lemma [3.3.6 yields

E { sup |Xt]p} = hm E

0<t<T —o0

sup |XK|”] <C.

0<t<T
The proof is complete for p > 4. For 0 < p < 4, The required assertion follows from

the Holder inequality. O

3.3.2 Strong convergence of the numerical solutions

In order to prove the strong convergence of the approximate solution (3.2.4) to the

exact solution of the SDDE (3.2.1]), we need the following lemma and corollary.

Lemma 3.3.7. Let the SDDE and the function h? satisfy Assumption|3.3.1| and
respectively. Assume also that the function f satisfies the (global) linear growth

condition, i.e. there exist a constant Cy > 0 such that for all z,y € RY,
|f(z,y))? < Crllz? + |y)* + 1). (3.3.19)
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Then there ezists a positive constant C' such that for all t € [0,T.
E|X; — Xi|* < COT, (3.3.20)
E|X, — X,|* < CoT. (3.3.21)

Proof. Let t € [0,T]. Let r be such that ¢, < ¢t < ¢,,1. Then by definition we have
Xt,- = Xt7- = Xt' Thus

t t
X, = X, + / F(X X)ds + / g(X., X)dW.,
tr tr

This together with (3.3.19)),(3.3.3)), Assumption and Theorem imply that

2 2

X,)ds| +2E

t
E|X, — X,|? < 2E / 9(X,, X, )dW,
tr

< 2E[Cy(h))*(1 +2 sup [ X[* + [|€]])] + 2E[h)(2 sup [X,|* + [[¢]]) + f]
tr<s<t tr<s<t

40T)*(1 +E[ sup |X,|*] + E[[¢]]) +4adT(E[ sup |X[*] +E[[¢]]) + 8]

tr<s<t tr<s<t

< CoT.

To prove assertion (3.3.21)), we first prove that there is a constant C' such that for all
tel0,T]

E|X, — X,|* < CoT. (3.3.22)
Let t € [0,T]. Let k and n be such that t, <t < tj4q and t, — 7 < ¢t <t — 7

respectively. Let 7,0 < r < k be such that t;_, < ¢, — 7 < tx_,41. From (3.2.2)) and

the definitions of the step processes X and X, one can see that

r—1
th = th—'r + Z[f(th—r+i7 th—r+i—’r)hk—r+i + g(th—r+i7 th—r+i—T)AWk—T+i]
=0
. Tl et i L Tl pteepivn
“X+ 3 [ s+ Y [ g X,
i=0 Y lk—r+i i=0 Y lk—rti
= th_r + f(Xsa XS—T)dS + / g(Xs, Xs—'r)dWs-
tho—r to—r
Note that X; = th and thﬂ = thﬂ = th_T = th_T = Xt, we have that
tr B -
Xt Xt / f dS + / g(XS7 Xs—7'>dWs'
lp— th—r
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Also, we have that
te —thy < (tny1 —7) — (tp —7) + hy_, = hS +hd_ < 2T.

Therefore, by (3.3.19),(3.3.3]), Assumption and Theorem we have that

2

E|X, — X,|> < 2E +2E / 9(Xs, Xo_r)dW,
t

k—r

2
ti B _
/ F(Xo X or)ds
th—r

< 2E[C (ty — ti—r)* (1 +2 sup | X[* + [[€]])]
t

1 <s<
+ 2E[a(ty — ti—r) (2 sup | X|* + [€]]) + 6]
te<s<t
< AT (L +E[ sup | X,°] +E|[¢]]) + 4adT (B[ sup |X,[*] +E||€]]) + 5]
1 <s<t 1 <s<

< COT.

This together with (3.3.20) imply that
E|Xt - Xt’2 - E|Xt - Xt|2 + E|Xt - Xt|2 S 05T
O

In our attempt to prove the strong convergence using the local Lipschitz condition

instead of the global one, we introduce the stopping times
T = 1f{t > 0:|Yy| >m}, o, :=inf{t >0:|X;| >m}

and v, := 7,, A 0. As usual we set inf () = co. In the next corollary, we relax the
global linear condition imposed to f in the previous lemma and use instead the local

Lipschitz condition.

Corollary 3.3.8. Let the SDDE (3.2.1]) and the function h? satisfy Assumption
and respectively. Then there exists a positive constant C,, such that for all t €
[0, T7.

IE‘)(t/\vm - Xt/\va S Cm(ST7 (3323)

E|Xinvm—r = Xinvm—r|” < Crn6 T (3.3.24)
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Proof. The processes vam,vam and vam are bounded by m. Thus, the local
Lipschitz condition (3.3.1)) implies condition (3.3.19). Therefore the corollary follows
directly from Lemma |3.3. O

Theorem 3.3.9. If the SDDE (3.2.1) and the function h® satisfy Assumption m

and respectively, then for all p > 0
lim E [ sup |X;— Yt]p} = 0.
6—0 0<t<T
Proof. One can see that
E[ sup |Y; — Xt]2] =E[sup |Y; — Xt|21'{7m>T and oy >T}) (3.3.25)
0<t<T 0<t<T

+ E[ sup [Y; — Xt|2[{7—m§T or o<t} =0 R1 + Ry,
0<t<T

where 14 es the indicator function of the set A. In order to bound R, we combine the
definitions of the continuous-time approximation (3.2.4) and the exact solution (|3.2.1])

to obtain

‘Y;E/\Um - )(t/\vm‘2
2

A

/0 YY) — F(R X ds + / gV Y — g(X, Ko )dW,

A

tAUm ~
< 2T/ ’f(Y;, Y‘sz) - f(Xmef‘r)’QdS
0
2

tAUm . _
1 / (Yo, Yor) — g(Xo, Ko )]dW,
0

Thus, for any t; < T

E[ Sup |}/;/\'Um - Xt/\'Um|2]

0<t<ty

tAUm, N ~
< 2TE |:/ ‘f(}/;7 Y;f'r) - f(XS7XST)‘2d8:|
0
tAUm “ -
v [ o0 v - o K]
0

where we have used the Doob martingale inequality in the second summand. Using the

local Lipschitz condition ({3.3.1]) in the RHS of the previous equation and then, adding
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and subtracting X; twice yields

]E[ sup |Y;f/\vm - Xt/\vm|2]

0<t<ty

t1 t1
S Cm (/ E‘}{s/\vm - Xs/\vm’2d5 +/ E|Y:9/\vm77' - Xs/\va‘QdS)
0 0

t1 B t1 -
+ CYm (/ IE:|)(s/\vm - Xs/\vm|2d3 _'_/ ]E’Xs/\vmfﬂ' - Xs/\va‘QdS) )
0 0

where (), is a positive constant that depends on 7" and m. By Corollary we

obtain

E[ sup D/t/\vm - Xt/\um‘2]

0<t<ty
t1 t1
S Om (/ ED/S/\'Um - Xs/\vm|2d5 + / IE|Ys/\um—7— - Xs/\vm—7|2d3> + Omfs
0 0

The Gronwall inequality yields

Rl = E[ sup |Y;‘//\Um - Xt/\vm|2] < Cm6

0<t<T

Proceeding in exactly the same way as in [23], one can see that for all «, 5,1, 1 > 0 we

have
2 tinC  2(p—2)C
R, < 2C (5( 2)
p P/ PRmp
where C'is a positive constant. Substituting the estimates of R, and R, into ([3.3.25)),
we obtain
2 tinC  2(p—2)C
E[ sup |V, — X[?] < Cpd + ——" (2/( 2)) .
0<t<T p pn=PTSmb
Now, given any € > 0, we can find an 7 sufficiently small so
20t
ne € ’
P 3
and then m large enough so
2(p—2)C ¢
p'r]Q/(p_Q)mP < g’
and finally 0 small enough such that
€
0C,, < —=.
3
The proof is complete. O
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3.3.3 Order of convergence
Now we investigate the order of convergence of the adaptive EM numerical solutions.

Assumption 3.3.10. There exists a constant L > 0 such that for all x,y,z,y € R™,
f satisfies the one-sided Lipschitz condition

20—, f(z.y) = f(2,9) < Lllz — 2 + Iy — gI*) (3.3.26)

and g satisfies the (global) Lipschitz condition

g(x,y) — g(z, 9)II* < L(lx — 2> + ly — g]?). (3.3.27)

In addition f satisfies the polynomial growth Lipschitz condition: there exist constants

v, \,q > 0 such that for all x,y,z,y € R™
|f(zy) = f@ 9] < (" + [yl + 21" + [91) + M|z — 2|+ [y —g]).  (3.3.28)

Furthermore, for any s,t € [—7,0] and q¢ > 0, there exists a positive constant A such

that
E[|£(t) — &(s)]] < Aft — s]*. (3.3.29)

Theorem 3.3.11. If the SDDE (3.2.1)) satisfies Assumption and the time-step
function h satisfies Assumption|[3.3.9, then for allp > 0, there exists a positive constant
C' independent of 6 such that
E [ sup |X; — Y}|p} < Cor2.
0<t<T

Proof. The proof is similar to that of SDEs given in [I4]. We only give the proof
for p > 4; the result for 0 < p < 4 follows from Holder’s inequality. Define e; :=
Y, — X;,0 <t <T. Hence

o= [0 = FE K lds+ [ (oY) = g(K K b

Applying It6’s formula we obtain

t t
o2 < 2 / (eor F(Yor Yer) — F(Xo Ko 2))ds + / (Y2, Yas) — g( Ko, Xy )[2ds
0 0
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= ew (9Yar o) — 9K, Ko ))dW)

S 2 /t<€sa f(}/;a Y;,.,-) - f(Xsa Xsfr)>d5 + 2/ <€3, f(Xsa Xsz) - f(XsaXsz»ds

0

0
t t
+ / |g(YS’ Y:S—T) - g(X57 Xs—'r)|2d5 + 2/ <€sa (g(YS7 }{S—T) - Q(Xm XS—T))dWS>'
0 0
(3.3.30)
Using condition (3.3.26)) we get
2(65, f(}/s; Y;—T) - f(XS7XS—T)> S L(|Ys - AXVs|2 + |Y;—T - Xs—7'|2)

= L(|es|* + |es—s]?). (3.3.31)
Condition (3.3.28)) implies that

[(ess £(Xos Xomr) = F(Xos X )| < les [( X, Xoor) = (X, X))
S ‘es’Q(XsaXsfr7X87 Xsz)OXs - Xs’ + |Xsf7' - Xsf‘r’)
1 1 _ o~ _ -

S §|65|2 + éQ(XSa XS—T) X57Xs—7>2 2(|Xs - Xs|2 + |XS—7' - Xs—7'|2)7 (3332>
where Q(x,y,Z,9) := v(|z|? + |y|? + |Z|? + |y|?) + A\. In addition, condition ({3.3.27))
implies that

1g(Ys, Ysr) — Q(X&Xs—'r)HQ < L(|Ys — X5|2 + [Ys—r — Xs—'rlz)
= L(D/s — X+ X, — Xs|2 + |Ys—7' - Xs s+ Xoor — XS—T|2)

< 2L(les|® + lesr | + |1 Xy — Xo* + | Xoor — Xoor ). (3.3.33)

Substituting (3.3.31)), (3.3.32)) and ([3.3.33)) in (3.3.30]), we have

t
leg]? < / [(BL + 1)]es|” + 3L|es—,|*] ds
0
t
+ 2/ [Q(Xsa Xsf‘ra XS; Xsff)Q + L](‘Xs - Xs|2 + ‘Xsfr - X377|2)d8
0

t
42 [ en 9V Yimr) = 9o X))V
0
Using Holder’s inequality yields

t
leafP < (6T / (3L + 1)P|e P + (2L)"|e,_.|7)ds
0
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t
(6T 1902 / Q(Xo Xo s Ko Ko )+ LP2( X0 — X+ | X — Koo [P)ds
0

p/2

t
+ 3p/2—12p/2 / <esa (g(}{sa 1/:9—7') - g(Xs’ XS_T))dWS>
0

In the remainder of the proof, C'is positive constant, independent of §, that may change
from line to line.
Taking the supremum on each side of the previous inequality and then the expectation
yields

E [ sup ’€s|p} < Ji+ Jo+ Js,

0<s<t

where

t
Jy = C’/ E [ sup |eu|p] ds;
0 0<u<s

¢

Byim € [ E[IQ0 X X Komr) + LP2(X, = X+ s = Xone])] d
0

p/2]

Jy < C/Ot (E [[Q(XS,XS_T,XS,XS_T) + L]p]

Jy = CE | sup /<eu7(9(Yu,Yu_7)—g(XmXu—T))qu)
0

0<s<t

For J,, by Holder’s inequality one has

_ . 1/2
x E [(|Xs XX, — XS_T|2P)} ) ds. (3.3.34)

By Theorem there exists a constant C' such that

E [[Q(XS, Xor Xy Xoor) + L]P} <cC. (3.3.35)
Let s := max{t, : t, < s}. From (3.2.4)), we can write
Xy — Xy = f(X Xoor) (s — 5) + 9(Xy, Xy ) (Wy = W),
Thus, by Hoélder inequality

E|Xs - Xs|2p = E]f(X§, Xg—T)(S - §) + Q(Xga Xé—T)(WS - Wﬁ)lzp

< 22p_1E|f(X§a X§—T)(S - §)|2p + 22p_1E|9(X§7 Xé—T)(WS - W§)|2p
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< 2 E[f (X, Xor)] PE[(s — 5) )"
+ 2 Elg (X, Xor) PE[(W, = W) 7])2. (3.3.36)
By Assumption |3.3.2| we have
E[(s — 5] < E[(hy)"] < (6T)* < 6*T* (3.3.37)
and by condition (3.3.15)), we get
E[(W, — W,)*] < C(6T)*. (3.3.38)
Also it follows from the global Lipschitz condition that
lo(Ke Ru)| < o KX, +1 %0 )7 4 C (3.3.30)
< O(X " + | Xor [ + 1)
and from the polynomial growth condition that

(K K| < [URLI+ [Za)l) (1Kl + [ Ke)) +£(0,0)] " (3:3.40)

< O 4 %, )0 1),
so by Theorem [3.3.5 there exists a constant C' such that
E[|f<X§7 X§—T)|4p] < C and E[|9(X§: X§—7)|4p] <C.

Substituting these last two expressions together with (3.3.37) and (3.3.38) into
(13.3.36)), we obtain

E|X, — X,|* < C6. (3.3.41)

Using (i3.3.39) and ((3.3.40|), and proceeding in exactly the same way as in Lemma [3.3.7]

yields E|X,_, — X,_.|? < Cé. Using this fact together with (3.3.41)) and (3.3.35) in
(3-3-34)), we obtain that J, < C§?/2.

Now we estimate J3. By the BDG and Holder’s inequalities one can see that

t p/4
J; < CE ( / |es|2|<g<Ys,YS_T>—g(Xs,Xs_T»Fds) ]
0

37



< CE {/t |€S|p/2(|Xs _ Ys|p/2 + |Xs—’r _ }/5—7—|p/2)d8:|
ot 1 ) )

< OB [ [ Jledr + 1% = VP + Kore = Voo

< B[ [ e + (15, = X+ 1, = Yo 4 1Ko~ X

0
[ Xorr = Yo P)ds]

< OB [ [/ led + el + (1 = X e = Xl

By the same argument we used with Jo we know that
E[(1%, = X, + (%, — X, )] < Co.

Thus

t
J3 < C/ E [ sup \eu\p} ds + CoP/2.
0

0<u<s

Collecting the bounds for Ji, J5 and J3, we conclude that there exist a constant C' such

that
t
E { sup |et|p] < C/ E [ sup |eu|p} ds + CoP/2,
0<t<T 0 0<u<s
The required assertion follows from the Gronwall inequality. n

3.4 Convergence of the numerical solutions on infi-
nite time interval

In this section we will study the convergence of the numerical solutions on the time
interval [0,00). The assumptions will be stronger than the ones on the finite time

interval.

Assumption 3.4.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant Cr such that
|f(@,y) = F(Z9)] + llg(z,y) — 9@ DIl < Crllz — Z[ + |y — 7]) (3.4.1)
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for all z,y,z,y € R™ with |x|,|yl|,|z|,|y| < R. Furthermore, there exists constants
ap > ap > 0 and 8> 0, such that for all x,y € R?, f satisfies the dissipative one-sided

linear growth condition:
(, f(z,y)) < —ai|z” + aslyl* + B, (3.4.2)
and g s globally bounded:
lg(z. y)II* < B. (3.4.3)
Assumption 3.4.2. For every 8, the time step function h® : R* — R*, is continuous

and uniformly bounded by h° where hS . € (0,00).

max’ max

Furthermore, there exist constants oy > as > 0 and B > 0, such that for all x,y € R

(z, f(2,y)) + %h‘S(I)If(x,y)l2 < —ay|zf? + asly|® + B. (3.4.4)

3.4.1 The boundedness of the pth moments of the exact and

the numerical solutions

The next lemma shows the boundedness of the pth moments of the exact solution on

a non-bounded time interval.

Lemma 3.4.3. If the SDDE (3.2.1)) satisfies Assumption then for every p > 0
there exists a positive constant C' (which depends on p) such that for allt >0

E[|Y:|P] < C. (3.4.5)
Proof. A proof can be found in [41]. O

Now, we investigate the pth moments of numerical solution. The proof about
attainability given for the finite time interval, is valid for the infinite time interval
[_7-7 OO)

Theorem 3.4.4. If the SDDE (3.2.1) and the function h’ satisfy Assumption [3.4.]]

and respectively, then for all p > 0 there exists a constant C' dependent on
Romaz, B, a1, ao and p, but independent of 6 and t, such that for allt > 0,

E[|X,7] < C. (3.4.6)
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Proof. The proof is given for p > 4. For 0 < p < 4, the result holds from Holder’s
inequality. Fix ¢ and define t := max{t, : t, < t}, £ := max{t, : t, < t— 7} and
ny := max{n : t, < t}. Taking squared norms in (3.2.2)), we have that for n = 0 to

n = Ny,

. . . L 1 L
‘th+1‘2 = ‘th’2 + 2h”(<th7 f(th7th*T)> + §hn|f(th7th*T)|2)

+2X,, + [(Xy, X, 9(Xy,, Xy AW, + g( Xy, Xy ) AW, |2,

Note that, since it is irrelevant in this proof, we have dropped the term “6” in the
adaptive time-step “h2” to ease the notation.Using conditions (3.4.4) and (3.4.3)), we

obtain

|th+1|2 < |th|2 — tha1|th|2 + thOé2|th—r|2 + 2h,

+ 2<th + f(th, D Q(th, Xi,—r)AW,) + BIAW, %,
Multiplying both sides by e2@tn+1 yields

62a1tn+1 |th+1 |2 S €2a1tn+1 |th |2 . tha1€2a1tn+1 |th |2 4 2hna262a1tn+1 Ith—7'|2
+ 2hn562a1tn+1 4 9e2itnt <th + f(th,th_T)hmg(th,th—T)AWn>
+ eatnsi GATY, .

Now, taking into account that ¢,,; = t, + h, and using the fact that for all x € R,

1+ 2 <e® with x = —2h, a1, we obtain

62a1tn+1 |th+1 |2 S 62a1tn |th |2 4 2hna262a1tn+1 |th_7|2 + thﬁeQOQthrl

_|_ 2€2a1tn+1 <th + f(Xtrﬂ thfT)hTH g(th7 thf‘r)AWn> + €2a1tn+l/8|AWn|2.

Solving the recurrence, we have

nt—l nt—l
62a1§|X£|2 < |X0|2 1 20 Z 62a1tn+1|th_T|2hn + 26 Z 62a1tn+1hn

ntfl ntfl

+ 2 Z €2a1tn+1 <th + f(tha th77'>h’n7 g(th7 thfT)AWrJ + B Z €2a1tn+l ’AWTL’2

n=0 n=0

(3.4.7)
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Similarly for the partial time step from ¢ to ¢, we get
2t X2 < 29 X, + 2t — D) ae® | X, |? + 2(t — t)Be’

+ 202X + F(Xy Xy, 9( Xy, Xy o) (W = WY)) + €21 B|(W, — )|

(3.4.8)
Substituting the penultimate inequality into the last one, we obtain
ns—1
X[ < | Xol* + 200 > €2 Xy, Plhy + 200e” Xy, (E - 8)
n=0
ntfl
+28 ) €y, 4 28t — 1)
n=0
ne—1
+2) (X 4 f(Xo Xy, 9(Xe, X—) AW,)
n=0
TLt—l
£ AW, 4 2B (W, — Wy
n=0

+ 2€2a1t<)2'£ + f(Xi? )2277-)(15 — E), g(XE, X}f‘r)(Wt - W§>>

Since tpy1 < tp + Amae and t < t + Rpge, We can take the common factor e?ifimas
out in the equation above. The processes X and X, defined in and
respectively, are a simple processes, so we express the second and the third terms in
the RHS of the previous equation as a Riemann integral. The same for the fourth and
fifth terms. Similarly, the sixth and ninth terms can be written together as a (pathwise)

[to integral,

t t
62a1t|Xt|2 S |X0|2 + 62a1hmw{ / 62a15|XS_T|2d8 + 25/ 62041st
0 0

+ 2/0 €2a13<XS + f(Xsa Xs—T)[h(Xs)][O,t)(S) + (t - E)ﬁt,t](s)]a g(Xsa XS—T)dWS>

ng—1
+ B AW, + 2B (W, — Wt)|2}-
n=0

Now, raising to the power p/2, using Holder’s inequality and taking the expectation of

the supremum, we obtain

ePIURE [ sup |Xt]p] < 6p/2_lep°‘1hm”(H1 + Hy + H3 + Hy), (3.4.9)

0<s<t
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where

H1 = E|X0|P +E

t . p/2 t p/2
(2042/ 62”‘13|X3_T|2ds) + (25/ e2alsd3> ;
0 0

2 / TN, 4 F(Ku K (K ) ()
0
p/2]

Hy, =E| sup

0<s<t

+ (S - §)I[§7S]<u>]7 g(Xm Xu—T>dWU>

ne—1 p/2
Hs :=E (6 Z ezo‘lt”|AWn|2> :
n=0
H, = Bp/2em1tE[ sup |(Ws — Ws)[P].
0<s<t
Now we will establish bounds for each of the four terms above. In the remainder
of the proof, C' is a positive constant that may depend on [, a1, as, hypne, and p, but

independent of ¢, that may change from line to line. We start by bounding H;.

t p/ t p/2
<2a2 sup ]XS\Q/ eZO‘lsds) + (25/ 62a15d8>
—7<s<t 0 0

p/2 p/2
2
< E[Xo|” + (_a2) E { sup \Xs|p1 e™MPt (—B) et
aq

—7<s<t 20

aapt Q2 o p
<e C+|— E | sup | X4 :
(€3] 0<s<t

For H,, the BDG inequality and condition (3.4.3)) yields

2
Hy <E|Xo|" + E

t
H, < 2°128PACE (/ etlen=e2s| (X 4 f( Xy, Xo ) [M(X) T ()
0

+ (t = t)f[t,t](S)])\2d8>p/4] :

—4
Since et(@17a2)s — 62(‘“_a2)p7562(a1_a2)(1+%)57 by Holder’s inequality, we get

p/4

(/0 64(041*012)5’()?8 + f()?s,Xsz)[h(XQI[o@(S) + (t - t)[[t,t](s)]”zds)

p—4

t 1
< </ 62(a1—a2)sd8>
0



t
)Pt S o >
></ el (X f(Xoy Xomr) (X ) o) (8) + (= DI (5)])[*ds.
0
Using Assumption (3.4.2)), we obtain

X F(Xe X)X T () + (= D (3)]
< X + 20X o (5) + (¢ = O (5)) (— Kol + ol Xr ? 4 )

S |X5|2 + 2hmaw <a2|XS—T|2 + B) .

Therefore,

p—4

T
H, <E 620‘1st>

S~

C (
t pt+4 S v
X / ez {|Xs|p/2 + (2humagc)” | X P + (Qmaax)p/4} ds] :
0

We can write the previous inequality as Ho < Hoy + Hoo + Hog, Where

¢ Tt
Hyy == CE[ sup |X,[P/?] (/ e2a15d3> / e "5 5 s
0<s<t 0 0

p—4

t a t
Hs = C(2hmaz2)P/*E[ sup | X,[/?] </ 620‘18ds) (/ ealﬁ#sds> ;
—7<s<t 0 0

t 7 t 4
Hys = C(thagcaQ)p/4 (/ emlsds) (/ eo‘ll);sds> )
0 0

Since,
¢ B a1(p—a)t a2t
Sans 4 oy A eWP=Ht 1 eyt —1
e“4ds et = —
p—4 +
0 0 (2a1) a1
eoqpt
< Cle™1pt

we arrive at

H, < CE[sup |X,|P/2|e? + CE[ sup |X,|P/?|e®Pt + Ce1?t

0<s<t —7<s5<t

= P (CE[ sup |X,|P/%] + ).

0<s<t
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Using the elementary inequality ab < %aQ + 2b* for all v € R and all a,b € R with
a=C and b = E[sup,,, | X,|"/?, and later Jensen’s inequality, we get

1 1
CE[ sup |X,|"/?] < 5,07+ 2 (E[sup |X,J""2))? < 5O+ JE[sup |X,P)

0<s<t 0<s<t 0<s<t

Therefore,

Hy < ewt(%m sup | X7+ C,), (3.4.10)

0<s<t

W

where the “y” in C, is to emphasise that this constant depends also on 7 and is not
fixed yet.

Now we will estimate Hs. By the discrete Holder’s inequality we obtain

mz_lezalt"]AWnP = ”fz_l (h,?emltnzz) (hgem;'tn—mz/nlz)‘
n=0 n=0 "
et o\
n=0 n=0 n
By we can derive that
O D R = PN T
3 <E |5P (%hne 1") %hne MW

p—2

t 2 t
< ﬂp/z (/ eQalSds) C’/ e215 g < Ce?1t,
0 0

Using ([3.3.15)) again, we have that
Hy < BPRe P Opp/2 < Ce?,
Collecting together the bounds for Hy, Hy Hs and H,, we obtain

p/2
epalt]E[ sup |X,|P] < epalt((j,y + ZE[ sup | X,|P]) + (%) E[ sup |X,[?]).
1

0<s<t 2 o<s<t 0<s<t

Noting that the constant C' is independent of ¢, 0 < (ay/a1)?/? < 1 and taking ~ small

enough such that I <1 — (ag/ a1)P/2, the required assertion follows. ]
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3.5 Almost sure exponential stability for SDEs

In Wei and Giles [14], the almost sure exponential stability of the adaptive EM solution
has not been investigated. In this section we switch momentarily to SDEs to cover this
topic. Let {W;}so be a d-dimensional Brownian motion. Consider the d-dimensional
SDE

4Y; = F(Y)dt + g(V;)dW, (35.1)

for t > 0 where f : RY x R? - R? and ¢ : RY x R? — R%4 are Borel-measurable
functions, and initial data Yy = £ € L% (4 RY), i.e. € is a Fy-measurable R%-valued
random variable with E|¢[* < cc.

It was shown in [24] that among other condtions, if the drift function satisfies
the linear growth condition, then the Euler-Maruyama approximate solution is a.s.
exponentially stable. However, if the drift function satisfies the less restrictive one-
sided linear growth condition, the EM solution is not longer stable. It was proved in
the same paper that the backward EM solution mantains the stability. But it’s well
known that the BEM method is much more computationally expensive than explicit
methods. Therefore, it is deserable to find explicit methods that are exponetially
stable. Our goal in this section is to show that the adaptive EM solution can be a.s.
exponentially stable for some SDEs where the standard EM breaks down.

We will impose the following assumption of the SDE

Assumption 3.5.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant C'r such that

[f (@) = f(»)] + llg(x) = 9@l < Cr(lz -y (3.5.2)

for all z,y € R with |z|,|y| < R. Furthermore, there exists a constant o > 0 such that
for all x € RY, f and g satisfy

(o, F@) + Slo@) < ~alsP, a >0 (3.5.3)

Under the conditions (3.5.2) and (3.5.3), the SDE (3.5.1) has a unique solution
(Theorem 2.3.6 in [36]).
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3.5.1 Example

Consider the following SDE:
dY; = (=2Y; — Y2)dt + V2V, dW, Y, =c € R/{0}. (3.5.4)

Using [25, Theorem 5.1], we can show that the exact solution of the SDE (3.5.4)) is

almost sure exponentially stable, i.e.

1
limsup —log |V;| < =X as., A>0.

t—o0 t

However, the discrete (standard) EM approximate solution
X1 = Xp(1 = 2A — X2ZA +V2AW,), Xo=Y, A€(0,1) (3.5.5)

where A = 1/m, m € N, is not almost sure exponentially stable. This means that it

11m su (0] . .

One the contrary, as we will see in Section [3.5.2, the adaptive EM approximate
solution to Equation (3.5.4) is almost sure exponentially stable. The following lemma
proves a much stronger result that implies the above. It shows that the set in which

the EM solution grows at a geometric rate, has positive probability.

Lemma 3.5.2. Consider the EM aprozimate solution (3.6.5)) to the SDE (3.5.4). Then

2k+3
P([X,>"—, VE>1)>0. 3.5.6

The proof is based on the counterexample’s proof given in [24].

Proof. First we show that if | X;| > 2*/v/A, then

ok-+3
P (]Xk\ > A Vk > 1) > exp (—4672/\/Z) . (3.5.7)
We start by proving the following fact:
ok-+3 ok-+4
| Xe| > Z= and |AWR| <28 imply [ Xp| > ——. (3.5.8)

VA VA
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2k+3

To prove (3.5.8]), assume that | Xj| > —~ - Then

[ Xesa| > [ Xl (AXe* = 1= 24 = V2|AW,)
2k+3

> (220 1 —2A — /22F)
VAN
25+ okts o
> T (225 1 —2A — V22871
RN
2k+4
> —.
VA

Now, from (3.5.8), given that |X;| > 2*/v/A, for any integer K > 0, the event that
{|Xx| > 2"43/v/A,V1 < k < K} contains the event that {|W,| < 2F V1 <k < K}. So

since the {AW}} are independent, we have
(=22 [T E(amil < 2)
P | X 2—,V1§k§K)2 P(|AW,| < 2%).
VA e

In order to prove , the rest of the proof is identical to the one in Lemma 3.1
in [25]. To obtain the final result, Equation (3.6.7)), we need to prove that P(]X;| >
2¢/+v/A) > 0. But this is true since X; is a normal random variable and for a normal
random variable X with density function f, we have that for all « € R, P(X > a) =
[ f(x)dz > 0. O

In constrast to the EM solution, now we will see that the adaptive approximate

solution of the SDE ({3.5.4) preserves the stability of the exact solution.

3.5.2 Adaptive Euler-Maruyama method for SDEs and main

result

We now define the adaptive-EM method for SDEs. In the same way as for SDDEs,
section , the time step is determined by a function h? : R — R* with 6 € (0,1).
Set X, := &, h) := h®(X,) and for n = 0,1,2, ... define

X = X, + f(Xe B+ 9(Xe, ) AW, (3.5.9)

h = ho(X,), tpi1i=t,+he, (3.5.10)
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where AW,, :=W, ., — W,

n*

We now define the the continuous-time approximate solution. For every ¢t > 0, let
X, =X, for t€/[tn tns) (3.5.11)
and define

X, = X0+/ f()_(s)ds+/ g(X,)dW,. (3.5.12)
0 0

Assumption 3.5.3. For every 8, the time step function h® : R* — R*, is continuous

and there exists a constant o > 0 such that for all x € R™,

(z, [(2)) + ;\ (@)I” + h‘s( If @) < —alaf?, (3.5.13)

where d is the dimension of the Brownian motion in the SDEs (3.5.1). Furthermore,

h? is uniformly bounded by the real number k., € (0, 00).

Given SDE ({3.5.4)), we define (as an example) the following timestep function:

1 max(1
h‘s(l-) : (25I{|x<1} + 0. 25I{|x|>1}%) 0, (3514)

which satisfies condition ((3.5.13)). There is not an automatic procedure to find A%, it
must be found manually and customized to the specific SDE we are working with. The
function (3.5.14) is just and example. As we will see in the next theorem, any function
ho that satisfies condition would serve the same purpose.

which satisfies condition ([3.5.13]) and therefore (as it is proved in the next theorem)
ensures the almost sure exponential stability of the numerical solution. There is not
automatic procedure to find A°, it must be found manually and customized to the spe-
cific SDE we are working with.
Under Assumptions|3.5.1/and |3.5.13|the adaptive-EM approximate solution (|3 con-
verges strongly to the exact solution of the SDEs (see [14]). Now we formulate

the main result of the chapter.
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Theorem 3.5.4. Consider the SDEs (3.5.1). If f and g satisfy Assumption m

and h° satisfies Assumptian then the adaptive approzimate solution (3.5.9) (or
(3.5.12) ) is almost sure exponentially stable, i.e. there exists A > 0 such that

log | X
limsupM < =\ a.s.
n—oo n
Before proving Theorem we show that the SDEs ([3.5.4)) satisfies Assumption

B.51
1 1
(x, f(z)) + 5’9(35)‘2 V- R 52352 I R

Thus the adaptive approximate solution of the SDE ([3.5.4)) is almost sure exponentially
stable.

Proof. From (3.5.9)), by using the linearity property of the inner product, we have that
N N ~ N 1 N
[Xowia|” < X0 ” 4 20 (X, (X)) + Shal f(X)P)
+ 2Ky, + F(X ), g(X0)AW,) + (X, ) AW, [,
Adding and subtracting |g(X;,)[>hnd to the RHS of the previous inequality gives
> 2 So2 o o 1 e Gk e
[XeniaI” < X[+ 20 ((Xe, s f(Xe)) + Shal f (X + 519(X,)I)

+ 2(Xe, + (X hns 9(Xe, ) AW,) + 19(Xe, )P (IAW,? = hyd)

Using (13.5.13|), we obtain
|th+1|2 S |‘)2tn|2 - 206]7/77»|‘)A(tn|2 + 2<th + f(th>hn7g<th>AWn>

+ 19Xt ) P AW = had)
Multiplying by e®=+! and using the fact that 1 + z < e® with z = —2h,,« yields

eat”“ |Xt

< Xy, P e |g(X, ) P AW — had)

2
n+1|

+2e° (X, o+ f(X ) hay 9(X, ) AW,).

Solving the recurrence and using the bound A, we have

n—1
% < rf(oe+eahm{zeatwg@tk»%mw ~d)

k=0
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n—1
+2 Z e (X, + fF(Xy,) P, Q(th)AWH}
k=0

_ |XO|2 + eahmax{Mn + Nn}, (3515)
where:

= 30 e g( Xy ) PIAWL[? — hyd);
o N, =230 0 e (X, + f( Xy ), g( X0, ) AWS).

Taking logarithms and dividing by t,,, it follows that

1 _
t—log( M |X, 2) < Lo log (C' + C{M, + N,.}),

where C' and C' are positive constants dependent on w € € and on the constants « and

Pmaz, but not on t,. Since

E[My41|F,] = Ele®|g(X, ) (1AW, — hud) + M| F ]
= " |g( X, ) P (B[ AW’ = hud) + M, = M,

and

E[Nt1|Fe,] = E[2¢* <th + f(th>hm Q(th)AWn> + N, | Fi,,]
= 2e" (X, + f(X1,)hn, 9(Xy, )E[AW,]) + N, = N,

M + N is a local martingale with respect to {F;, }. Thus by the discrete semimartingale
convergence theorem (Theorem [2.1.14)), we obtain

lim (M,, + N,,) < 0o a.s.

n—oo

Therefore,
1 N
lim sup — log(e®™| X, |*) <0 as.
n—oo tn
This is X
log | X o}
lim supM < —— as.

n—oo n 2

and the proof is complete. ]
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3.6 Almost sure exponential stability for SDDEs

Here we extend to work done in section|3.5/to SDDEs. The delay component adds some
difficulty and additional conditions (although not very restrictive) on the coefficient
functions will be needed. It was shown in [49] that among other conditions, when the
drift function satisfy the linear growth condition, the Euler-Maruyama approximate
solution is a.s. exponentially stable. However, when the drift function satisfies the less
restrictive one-sided linear growth condition, the EM solution needs not longer to be
stable. It was proved in the same paper that the BEM solution maintains the stability.
But as we said in the previous section, the BEM method is implicit and therefore,
much more computationally expensive than explicit methods such as the adaptive EM
method. Our goal in this section is to show that the adaptive solution can be a.s.

exponentially stable for some SDDEs where the EM breaks down.

Assumption 3.6.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant C'r such that

|f(x,y) = f(@,9)| +lg(z,y) — 9(z,9)|| < Cr(lx — 2|+ |y —7l) (3.6.1)

for all x,y,z,y € R™ with |x|, |y|, |Z|, |g| < R. Furthermore, there exist constants oy,
and (3 satisfying
a; >2a9 >0 and >0, (3.6.2)

such that for all x,y € R™, f satisfies
1
(o, f(z,9) + Sllg(z, )| < —aala* + asfy” (3.6.3)

Under this assumption, the SDDE ({3.2.1)) has a unique solution.

3.6.1 Counterexample (SDDE)

Consider the following SDDEs
1
dY, = (=2, — Y2 + 5 Yesin(Yi_p))dt + V2Y; cos(Yy_1 )dW, (3.6.4)

o1



with initial data & € C'([-1,0];R),£(0) = ¢ € R/{0}. Using [49, Theorem 1], we can
show that the exact solution of the SDDE ([3.6.4)) is almost sure exponentially stable,
Le.

1
limsup —log |V3] < =X as., A >0.

t—o00 t

However, the discrete (standard) EM approximate solution

Xp=£6(kA) k=—-m,—m+1,..,0, (3.6.5)
1
Xy = X — Xp[(2+ X2 — 5 Xk sin(Xp1))A + V2 cos(Xp_1) AW,

k=01,...

where A = 1/m,m € N, is not almost sure exponentially stable. This means that it
does not exist a constant > 0 and a A* € (0,1) such that for all A € (0, A*)
limsupilog\Xﬂ < —n as. .
koo KA

On the contrary, as we will see later, the adaptive EM approximate solution to
equation is almost sure exponentially stable.

Let X, be defined by The following lemma proves a much stronger result
that X}, is not almost sure exponential stable. It shows that the set in which the EM

solution grows at a geometric rate has positive probability.

Lemma 3.6.2. Consider the EM approximate solution (3.6.5) to the SDE (3.6.4).

Then
k+3

2
P(| Xy >—, VE>1| >0. 3.6.6

The following proof is based on the counterexample’s proof given in [24].

Proof. First we show that if | X;| > 2*/V/A, then

ok+3
P (ka,\ > 2 1) > exp (-46—2/\/5) . (3.6.7)
We start by proving the following fact:
ok+3 ok-+4
| Xe| > Z= and |AWR| <28 imply [ Xpn| > ——. (3.6.8)

VA VA

52



2k+3

To prove (3.6.8]), assume that | Xj| > —~ - Then

Xert| > | Xl ‘|Xk]2A 14+ 28+ 1/2s8in( X)) A + V2 cos(Xg_1 ) AW
> | X ‘|Xk|2A — (1] + [2A] + [1/2A] + [V2AW)

255 ok oL 2R okt oo
> —(2 —6—v22") > —(2 — 3 — V22"
_\/Z( )_\/Z( )

ok+4
7r
Now, from (3.6.8), given that |X;| > 2¢/v/A, for any integer K > 0, the event that
{1X| > 2¥3//A, V1 < k < K} contains the event that {|IW,| < 2¥.V1 < k < K}.

>

Since {AW}} are independent, we have
ok+3 K i
P <\Xk| > T V1<k< K) > gp(\AWk\ < 2k).
In order to prove , the rest of the proof is identical to the one in Lemma 3.1
in [24]. To obtain the final result, Equation (3.6.7)), we need to prove that P(|X;| >
2'/+v/A) > 0. But this is true since X; is a normal random variable and for a normal

random variable X with density function f, we have that for all a € R, P(X > a) =
[ f(z)dz > 0. O

In contrast to the standard EM solution, now we will see that the adaptive EM
solution, maintains the stability of the exact solution of SDDE (3.6.4). We need the

following assumption.

Assumption 3.6.3. For every §, the time step function h : RY — R™, is continuous
and there exist constants a; > as > 0 and 8 > 0, such that for all z,y € R™,

nnn(hﬁ(y),hﬁ(x))||2
(3.6.9)

where d is the dimension of the Brownian motion in the SDDE (3.2.1)). Furthermore,

(@, £(e.)) + R @) + Sl )l < el +

the function h? is uniformly bounded by the real numbers 0 < hd. < ho

min max
hé

max

< 1, where

18 small enough such that

2a1h

e imax oy (3.6.10)
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Note that condition (3.6.9)) implies condition (3.6.3|) with the same values of a; and
as. An example of function h° that satisfies condition (3.6.9)) for the SDDE (3.6.4)) is
|z ) 5
max(1, | f(z,y)[*) )

The following is the main result of this section.

1
h(x) = (- (<1} + 0.251 0> 13

3.6.11

Theorem 3.6.4. Consider the SDDE (3.2.1)) with a d-dimensional Brownian motion.
If f and g satisfy Assumption|3.6.1 and h? satisfies Assumption then the adaptive
approximate solution (3.2.2) is almost sure exponentially stable, i.e. there exists a A > 0

such that R
! log | Xy,
imsup ———

n—o0 n

Before proving Theorem we show that the SDDE (3.6.4)) satisfies Assumption
B.6.1]

< =)\ a.s.

1 1 1
(. f(2,9) + 5ol y)[> = —22" —2* + 3 sin(y)z? + 2° cos®(y) < —5962-

In order to show that A’ satisfies (3.6.9) for the SDDE ([3.6.4)), we substitute ([3.6.11)
into (3.6.9) and differentiate between the cases |z| < 1 and |z| > 1. For |z| < 1 we

have

d
(o1 (@) + @1 )P + Slloley)IP = 202 — ot + Za?sin(y)

11 1 1
+ 52—55(4:102 + 42t — 227 sin(y) + 2° — 2% sin(y) + ZxQ sin(y)) + 52:52 cos*(y)

—3x2
- 10

and for |z| > 1 we have

(2.7, )) + S h @) F )P+ g )]

1 11 1 — 322
=22 — 2 + §x2 sin(y) + 515|x|2 + 521‘2 cos?(y) < ; :

Thus the adaptive approximate solution of the SDDE ([3.6.4) implemented with A°
defined as (3.6.11)) is almost sure exponentially stable.

We will prove the theorem, but first we need the following lemma.
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Lemma 3.6.5. Consider the SDDE (3.2.1) with a d-dimensional Brownian motion.
Suppose [ and g satisfy Assumption and h? satisfies Assumption . Let [ be

a positive integer. Then there exists A € (0, 1) such that

l l
> X Ph, < CHCD " eMmg(Xy,, Xiyr)P(AW,]? = hyd)

n=1 n=1

l
+CY X, + (X Xiy—r ) 9(Xo, Xy —r) AW,) acs.,

n=1

(3.6.12)

where C' is a positive constant dependent on w € €2, the constants ay, o, hpar and X,

but independent of | or t,.

Proof. From and , we have
Ko = 1R 2K, F(Rar, X)) + 5l f (K X))
+2X,, + f(Xe, X, 9(Xe,, X VAW + g( Xy, Xy 2 ) AW, |?
< R+ 2h(Rey F(Key Kay)) 4 5hal (K Ko )P+ 10Ky, X))
+2(X, + (X, Xpme Vs 9( X, X ) AW + [9(Xo, X o) P(IAW, > = Dd)
<Xy, 2 = 2000, | Xy, [+ 20000 (X, )| Xy —r |
+ 2 X+ F( Xy Xy ) s 9Ky Xt ) AW + |9( Xy X )2 AW, 2 = hd).
Multiplying by e**'n+! and using the fact that 1+ z < e* with z = —h,qy, yields

6a1tn+1 ’Xt < 6Oéltn |th|2 + 2042h§(th_7)6&1tn+1 |th—7'|2

2
n+1|

+ e (X, Xy )P (AW = hod)

+ 2 (X, 4 F(Xy, Koo, 9(Xy, Koo ) AWR).

Solving the recurrence and using the bound h,.,, one can see that

-1

e | X, P < X + ealhmax{ e g(Xyy, Xepr) P AWA] = hid)

3

k=0
n—1

+ 20 Z G ‘th*‘rwh&(xtk*T)
k=0
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n—1
+ 2 Z ealtk <th + f(tha thfT)hka g(thv thT>AWk>}

k=0
Thus,
n—1
X0 [P < e Xof* + e"“hm“{e‘a“n > e 9Ky, Ko —r) P(IAWL [ = hyd)

k=0

n—1

+ 200671 Y " e X Ph0 (X, )
k=0

n—1
—+ 26_a1t" Z Galtk <th + f(tha th—’r>hk7 g<th7 th—T)AWk> } :
k=0

So, for any A € (0, 1) we have

l
Ze)\tn‘)ztn ’2hn < e~ (@1 =Ntn ’X(]’th (3.6.13)

n=1

n—1
+ ealhm"{ > el Ny, Zealtkw Xigs Xop-r) (1AW = hyd)

n=0 B
n—1
+2a226 a-Ninp Zeo‘lt’“|X LPRO(X )
n=0 k=0

l n—1
+ 2 Z (@1=2) t"hn Z €a1tk Xt + f(tha th T)hk7 (tha th—T)AWk>}
n=0 k=0
(3.6.14)

Moreover, we can see that

n—1
a1hmax *(al Atn aity 4
2ae E e hn E e X, PR (X, )
n=1 k=0
l l
— 2a2€a1hmax § ealtn|th_7-|2h6(th_7-) E 6_(a1_>\)tkhk.
n=1 k=n

a1—A)s

Now since the function e~ is decreasing on s, we see that

l

!
Z e~ (@ =Ntkp Z elor=Nhi g =(a1=Ntisr py
k=n k=n

aq hmax
— (Oq —/\)tn

t
< e(al—A)hmax/ 6_(a1_>\)sds S ¢ €
ln

- ozl—)\
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Thus

l n—1
a1hmax — (a1 =)t aity | W 2160/ v
2009 E e~ =Ntnp E e Xy, 7R ( Xy, —r)
n=1 k=0

2a1 hmaax

20i9€ A
<— "Xy, PR (X, ) | (3.6.15
<= (Ze X PO, >> (3:6.15)

Let M = M(w) be such that ty; <7 < tpr41. Then we can write

l

Z eAtn |th_7—|2h6 (th_T)

n=1

M l
= MK PR (K )+ D MK PR (X, )

n=1 n=M+1

l
< C 4 MmN "M X Phy, (3.6.16)

n=1

Substituting Equation (3.6.16|) into (3.6.15)), we obtain

l n—1
2a2€a1hmax E 6—(a1—>\)tnhn E ealtk|th_T|2hk

n=1 k=0
2a262a1 hmaz 6)\hmazM ! A\ R
<C X, 1?h, 3.6.17
Similarly we obtain
n—1
e Ze VRS e (X, Xiyr) PUAWR — hyd)
n=0 k=0
2€a1hmax —
<o Ze)‘t"|g X0 Xo 2P (1AW, 2 = h,d). (3.6.18)
and
n—1
m?Ze N, N et (X, + F(Xoy, Xiemr s 9(Xoy, Xypr) AWG)
n=0 k=0
2€2alhmax

= Z (K F Ry Ky 9 (K1, X, ) AW,

(3.6.19)
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We observe that by condition (3.6.10)), Amas is such that 0 < 2ame?®tfmes < o,

2ape201hmaz gAhmaz M

Then by choosing A small enough so 0 < < 1 and by substituting

a1 —A

Equations (3.6.17)), (3.6.18) and (3.6.19)) into (3.6.13)), we obtain the final result.

We are now in the position to give

Proof of Theorem . From and , we have
Ko = 1K 2 (K, F(Kar o)) + 5hal (K X))
+ 2<th + f(thvth—T)hnvg(tha th—r)AWn> + |9(th>th—r)AWn|2
< R4 20K, £ Ke )+ el (K, Ko )+ 510K, Ko
+ 2(Xy, + (X, Xoyr ), (X, X ) AW, + [9(Xe,, Xo—r) P AW, = hid)
< X1, P = 200k | Xy, P + 20000 (X, )| X0, o |?

+ 2<th + f(th7thfT)hn7g<th7 thfT)AWrJ + |9(th7thf‘r)‘2(’AWn’2 - hng)

Now we multiply by e*+1 where X € (0, ay) is the one from Lemma [3.6.5, which makes
equation (3.6.12]) to hold true. Then using the fact that 1 + x < e” with x = —2h, a4,
yields

e)\tn+1 |th+1 |2 < e)\tn |th |2 + 2a26)\tn+1 |th—7|2hn
i e)xtn+1|g(th’ X )P AW, 2 — h,d)
+ 2Pt <th + f(XthtnfT)hm Q(tha X e ) AW,).

Note that in the equation above we have used the fact that e "1 < g=hn?, Solving

the recurrence and using the bound h,., we have
n—1
%, [P < |Xof2 + { S 9Ky, Koy EIAWAL = hid)

k=0
n—1

+ 209 Z eAtk ’th*T‘Qhé(th*T)
k=0

n—1
+ 2 Z eAtk <th + f(th7 thf‘l'>h/k7 .g(th,) th*T)AWk> } .

k=0
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Using ([3.6.16|), we obtain

n—1
N X, [P < X0l + em{ > g(Xy, Ko PIAWR = hyd) + C
k=0
n—1
+ eMmaz M Z eAtk|th|2hk
k=1
n—1
+2) (X, + (X, Xyper ), g(th,th_T)AWk)}. (3.6.20)
k=0

Substituting Equation (3.6.12)) (from Lemma [3.6.5)) into (3.6.20]) yields
n—1
MK [P <Xl + O+ C Y M g(Xey Xor) PUAWR] — i)

k=0

n—1
+ O Z eAtk <th _l_ f(tha th—'r)hka g(tha th—T)AWk‘) }

k=0
< C+ C{M, + N,},
where:
o M, = Zz;é 6Atk|g(th’ th—7)|2<|AWk|2 - th)>

o Nn = Zz;é e/\tk <th + f(tha th—’F)h/m g<th7 th—T)AWIC);

e ('is a positive constant (that changed from the second to the last line) dependent

on w € 2 and on the constants ay, as, hype, and A, but not on t,.

Taking logarithms and dividing by t,, it follows that

1 1
- log(eM| X, ) < -~ log (C + C{M,, + N,}).
We observe that

E[M, 1| F,] = Ele*g(Xy,, Xo, ) P(AWL[* = had) + M| F,]
= A |g( Xy Koy PEIAW, ] = hod) + M, = M,

and
E[Nn+1|ﬂn] - E[Zextn <th + f(th’ th—T)hTL’ g(Xt'rﬂ th—T)AWn> + Nn|En]
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- 26>\tn <th + f(th7 th_T)hn’ g(th7th—T)E[AWTL:|> + NTZ = Nn

Hence M + N is a local martingale with respect to {F;, }. Thus by the discrete semi-
martingale convergence theorem (Theorem [2.1.14]), one can see that

lim (M, + N,,) < oo a.s.

n—oo

Therefore,
1 ~
lim sup — log(e*"| X, [*) < 0 a.s.
n—oo tn
This is .
log | X A
lim sup M < —— as.

n—oo n 2

The proof is therefore complete. 0

3.7 Simulations

In this section we present simulations which illustrate the results discussed in Section
3.6, Consider the SDDE (3.6.4)) with 7 = 1 and initial condition Y (¢) = 100, -1 <
t < 0. We simulated in Matlab paths of the EM solution of the SDDE (3.6.4)) using
different step sizes, A. As we have seen in section there is a positive probability
that the EM solution explodes. In Table we present six different simulations of the
EM solution for A = 2e—3. We observe in simulations 1,3,4 and 5 the EM solution

explodes.

Table 3.1: Six simulations of the EM solution for A = 2e—3

Time 0 2e—3 4e—3 6e—3 8e—3 10e—3 12e—3 14e—3 16e—3 18e—3 20e—3
Sim 1 100 101.1 107.4 -141.1 418.1 —1.4e4 5.7e8 —3.7e22 1.1e64 —2.3e188 Inf
Sim 2 100 -98 88.97 -50.99 -24.51 -21.33 -19.37 -17.29 -16.15 -15.13 -14.87
Sim 3 100 -101.3 109.6 -150.1 525.68 —2.8e4 4.6e9 —2e25 1.6e72 —8.3e212 Inf
Sim 4 100 -101.9 108.5 -143.9 452.6 —1.8e4 1.2e9 —3.3e23 7.3e66 —7.9e196 Inf
Sim 5 100 -101.9 108.5 -143.9 452.6 —1.8e4 1.2e9 —3.3e23 7.3e66 —7.9e196 Inf
Sim 6 100 -99 91.8 -63.44 -11.65 -11.03 -10.87 -10.27 -10.17 -9.91 -10

In Figure [3.1] we graphed the logarithm of EM solution presented in Table
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Figure 3.1: Simulations of the logarithm of the EM solution for A = 2e—3
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Note: From Lemma|3.6.2] we know that as A decreases, the probability of explosion
decreases. Thus, for “very small” A (say less than 10~*) we couldn’t find one explosion
in 100,000 simulations.

In addition, we simulated the adaptive-EM solution of the SDDE using
the function h° defined in (3.6.11)). As we proved in Section the solution is a.s.
exponentially stable. Figure [3.2] shows 10,000 paths of the adaptive-EM solution.
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Figure 3.2: Simulations of adaptive-EM solution
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The next graph shows the first 10 values of h9(X,, ) for two different simulations.
At the start, Xo = 100, so the term —an dominates the equation, making the dif-
fusion term very “big” (in absolute value) in comparison with th. Therefore, the
adaptive step is very “small” at the beginning and increases progressively as the ratio
(X, X’gn) /X, decreases. This ensures all the simulated paths to decay exponentially

in a “small” number of steps.
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Figure 3.3: The first ten adaptive steps for two different simulations
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Chapter 4

Numerical solutions for
McKean-Vlasov SDDEs using the

adaptive method

In 2021 [46], Reisinger and Stokinger extended the work from [I4] to MV-SDEs. In
this chapter we extend [46] to MV-SDDEs.

4.1 The EM-adaptive scheme for McKean-Vlasov
SDDEs

Let 7 and T be positive constants and denote C([—T,0]; R?) the space of all contin-
uous functions from [—7,0] to R? with the norm ||@|| = sup_, <4< |¢(6)]. Let W
be an d-dimensional Brownian motion defined on the a complete probability space

(Q, F,{Fi}+>0,P). Consider the d dimensional MV-SDDE of the form
dY; = f(Vi, Yier, £ )dt + g(Yi, Yier, L3 )dW (2), 2 € [0, T (4.1.1)
where L) is the law (or distribution) of Y,
FiREx RE x Py(RY) — RY and g : RY x RY x Py(RY) — R4
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and the initial data satisfies the following condition: for any p > 2
[Y(): 1 <0< 0} = ¢ € L (-7, 0]; RY,

that is € is a Fy-measurable C'([—7, 0]; R?)-valued random variable such that E||¢||P <

Q.

By the propagation of chaos result, Theorem [2.2.9, the MV-SDDEs (4.1.1) can be
regarded as the limit the M-particle system of d-dimensional MV-SDDEs

YN = MY LY e+ g (VM YR L e [0,T), (41.2)

t—7 t—7

, M
with the initial condition Xg" = ¢ and £ 1= L 3" 8y .
=1

We will imposed the following conditions on the coefficient functions f and g.
Assumption 4.1.1. The functions f and g satisfy:
(i) (Lipschitz condition on g) There exists a positive constant L such that
g(z,y, 1) = 9(2, 7. BI* < Lllz — 2* + |y — §I* + W3(, 1)) (4.1.3)
for all z,%,y,5j € R? and p, i € Pa(RY).
(i) (one-sided Lipschitz condition on f) There exists a positive constant L such that
(@ =z, f(x,y, 1) = [, 5, < Lz — 2>+ |y — 71*) (4.1.4)
for all z,7,y,5j € R? and p € Py(RY).

(#i) (Lipschitz measure dependence condition on f) There exists a positive constant

L such that
|f(x,y,p) — f(z,y, 1) < LWo(p, i) (4.1.5)

for all x,y € R and p, i € Py(R?).

(v) polynomial growth Lipschitz condition on f, i.e. there exist constants vy, \,q > 0

such that for all x,y,z,y € R™

[f (@, y, 1) = F(@, 5, )| < (" + [yl + 2]+ [9]7) + M) (|2 = 2+ |y —gl). (4.1.6)
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Remark 4.1.1. We note that:

e Conditions (4.1.4) and (4.1.6) are uniform on the measure p. These conditions

are standard to guarantee existence and uniqueness of the exact solution, [33],

2.

e The one-sided condition (4.1.4) allows for a larger class of models than the stan-
dard globally Lipschitz drift assumption, [I1]. Some of these models are the
adjusted Ginzburg Landau equation [I1], Kinetic models e.g. in Gomes et al.
(2020) [18] and Self-stabilizing diffusions Bolley et al. (2011) [5], Malrieu (2003)
[34].

Remark 4.1.2. Condition implies the linear growth condition on g, i.e. there are

positive constants a and [ such that

lg(@,y, I < ozl + |y[*) + B (4.1.7)

for all z,y € R? and p € Po(R?). In addition, condition implies polynomial growth

on f, i.e., there exist constants v, A\, ¢ > 0 such that

[f @@y, )| < (vl + ly[) + A) (] + [y (4.1.8)
for all z,y € R? and p € Po(RY).

Now we define the numerical solution based on the adaptive method. In the same
way as in chapter , the time step is determined by a function h? : R — RT with
§ € (0,1). The family of functions {h’}g<s<1 is not specifically defined, it just has to
satisfy certain conditions that we will describe later in Assumption Note that for
two different particles, the value of the processes at time t; may differ resulting in two
different values (one for each particle) of the random variable to = hy. This, unlike the
standard EM method, presents a challenge when computing - Z]Ail 0 a0t 1)+ I [46],
they proposed two different schemes, which both deal with this issue. Here, using our
ideas from chapter 3] we extend these two schemes to the delay case. Although the times
t,, are different in each scheme, we will use the same notation, t,,, for both. Also given

t > 0, we define for both schemes t := max{t, : t, <t} and n; := max{n : ¢, < t}.
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Scheme 1

Set XM = £(0),h8 = BO(Xy), by = hS and XM = £(t),t € [-7,0), XM =
€(0),t € 10,t1). For every w €  and for n =0, 1,...N(w), we define

XS o R 4 F(RLN KA, LR 4 (R, R 25 AW,

W, = mi <h5 X“M> tovs = tney + RO

n+1 ie{l,.l..I,lM} ( tn+1) y bn+-2 +1 1 n+1- (419)
S1,i,M 1,i,M
X = Xt o o UE [tnt1s trga),

where Efil’M = le 1 Ogrinr, AW, = Wy — Wi, and N(w) := inf{n € Z* :
tn(w) > T}. Define for n = 0, oy N =71

XM= X € [ty — 7 tngs = 7), (4.1.10)

where r = r(w) is such that t, < 7 <t,,1. We now define the the continuous approxi-

mate solution

XM =e), tel-T,0);

X“M _X11M+f( le Xle ﬁX )(t_£)+g(X£1,i,M Xt“TM,ﬁle)(Wt—W;)

t—7

e [0, 7], (4.1.11)
which solve the equation

S—T

t
X g0+ [P R LS sk [
0

for t € [0, 7], where £X"" Ef

Note that X "M = XM = x»M

Scheme 2

For a given 6 € (0,1) let k, be the integer such that ¢, € [k,0T, (k, + 1)0T). Set
XotM = €(0),hg” = 10(Xo) = By and XY= £(t),t € [-7,0), X7 =
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€(0),t €10,t1). For every w €  and for n =0, 1,...N(w), we define

XZ@M X2,Z,M+f(X21M X2nzM LXZM)h“;—Fg(XZZ’M XE;Z,M £i(26¥) Wn

tn41 -7 -7

hyty o= min(h* (X20Y), (kn + 10T — 1), tuys = togr + byl

tna1

2.4,M 2,4,M
XM XEM e [t ).

(4.1.12)
where Ek = MZ XZZ]V[, AW, =W, ,, — W, and N(w) := inf{n € Z* :
tn(w) > T}. Define for n =0,.., N —r

X2,z,M X2,1,M [tn -, tn+1 _ 7—)’ (4113)

thv

where r = r(w) is such that t, < 7 <t,,1. We now define the the continuous approxi-

mate solution.

xXpMi=¢t), tel-T,0];

XM = KP4 R, RPN X (0 — 1) + g (R REM L) W — Ty,
€ (0,77, (4.1.14)
which solves the equation
t
X = / F20M X2EM X5 s 4 / g(X2M XM L X ayy,
0

€ (0,77,
(4.1.15)
where £X7" = Eiigé

Note that ij’M = Xff’M = X't%f’M.
Remark 4.1.3.

e In scheme 1, for each n we compute h5(X 1’Z7M) for every particle, then we choose
the smallest and set it as the common step-size for every particle. This scheme
is theoretically convenient to prove strong convergence but in practice it may be

appropriate only if we are simulating a system with a small number of particles.
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If the system is large, the step-size (being the smallest for every particle) is going
to be quite “small”, which makes this scheme computationally expensive. This

is the reason why in [46], they proposed also a second, less expensive scheme.

e In scheme 2, the measure is kept constant in the intervals [k, 0T, (k,+1)0T). Note
that k, may have the same value for different n. For example we could have for
some n = n that kn = kny1 = kate = kats, SO ta, tay1, tate, tars € [kadT, (kn +
1)0T) = [knyi0T, (knyi + 1)0T),i = 1,2,3. Note also that by definition, the

sequence of times {k,07 },¢cn is a subsequence of the sequence of times {t, },en.

e The reason to introduce the second step process X, is to ensure that the equalities
)A(tlj’M = X;;i’M and Xif’M = ij’M hold true. This is because X,_, may not be

constant in the intervals [t,,t,.1], due to the variability of the adaptive stepsize.

We will impose the following conditions on the time-step function h°.

Assumption 4.1.2. For each 6 € (0,1), the time step function h? : R? — RT is

continuous, strictly positive and bounded by 0T, i.e.
0 < h’(x) < 6T  for all x € RY. (4.1.16)

Furthermore, there exist constants a, f > 0 such that

(o F w9, 0} + 5h° @) Fy )P <alaP +yP) 45, (4117)

for all z,y € R? and p € Po(R?).

4.2 Convergence of the numerical solutions

In this section we will prove the strong convergence of the two numerical schemes which

were defined in the previous section.
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4.2.1 The boundedness of the pth moments of the numerical

solutions

The discrete-time approximate solution defined in (4.1.9) and (4.1.12)) are not necessar-

ily bounded. In order to prove the the boundedness of the p-moments of the numerical
solutions XM j = 1,2, we will construct K-bounded schemes X2"" j = 1,2 such
that for any K > ||¢]|, we have X" j = 1,2 < K. Then we will show that the
p-moments of X }?’M, j = 1,2 are bounded by a constant independent of K. Then the
boundedness of the pth moments yields from letting K go to infinity and using mono-
tone convergence theorem. Now we make the above explanation rigorous. Let K > |[¢]|.
Set X! = €(0), kY = WO (X)), t == Y and X, 2" = £(t),t € [-7,0), X 2" =
£(0),t € [0,t;). Consider the function @ : R? — R¢ ®(x) = min(1, K/|z|)z. Then

for every w € Q and for n =0,1,...N(w), we define

1M LM LM g LiM XM\ s CLiM 1M XM
thH,K = Pp(X tn, K + f(X tn, K tn—TK7£ )hn+g(th,K7 tn—TK7£ JAW,,)

e ()t
thl;(’M =X :]1\,4K7t € [tnt1, tny2).

(4.2.1)
where Lo o= 1M S, AW, == Wi, — Wi, and N(w) := inf{n € Z* :
tn(w) > T}. Define for n =0, ...,N —r

Xyt = XMt € [ty — Tyt — T), (4.2.2)

where r = r(w) is such that t, < 7 <t,,1. We now define the the continuous approxi-

mate solution

X2 =), te[-r,0]
1 , M
thféM = (X" + f(thféM X £ ) (= 1) (4.2.3)
+ (XM XM 25w, — W), e (0,7,
Note that X 1’7”[](” = XY Xjn’f;?. In the same way, we construct the K-bounded

2iM 24 M 2iM 2,i,M
schemesX”’ L Xoh ,XK”’ and X2,
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Lemma 4.2.1. Let p > 4, the MV-SDDE satisfy Assumption and the
function h® satisfy Assumption . Then, for the K-bounded schemes, T is attainable
and for all p > 0 there exists a constant C' dependent on T and p, but independent of
he and K such that

n

B | sw X5 VE | s x| < c (424

0<t<T

Proof. We prove first attainability. Since h° is continuous and strictly positive,

inf, < h°(x) > 0. This implies that for every w € Q

liminf A% (w) = lim inf hé(f(t[j(w)) >0,

n—oo n—oo

80 iy, 00 tn (W) = D07 B (w) = oo for all w € Q and T is attainable in the bounded
scheme.

Now we will prove the boundedness of the pth moments for scheme 1, where the upper
bound will be a positive constant independent of 2® and K. Since it is irrelevant in this
proof, we shall drop the symbol “4” in the adaptive time-step “h2” to ease the notation.
Let p > 4 and let ¢t € [0,T]. Define t := max{t, : t, <t}, and n; := max{n : t, < t}.
Using and since for any z € R™, |®(x)[* < |z|?, we have that for n = 0 to
n=mn;—1,

M

LM 12 g LiM LM pliM pXE LM gliM X 2
’Xt":'l’K’ < ’Xt"l’K +f<th27K ’thZ*T,K’EtnK )hn +g(thl,K 7thlfT,K>£tnK )AWn‘

LM i M LM gL M LM XY
= <thZ,K vthZ,K > + 2<thZ,K ) (thZ,K >thZ—T,Kv£tnK )hn>
1AM oliM LM 1AM LM LM
+ <f(thZ,K 7thZ—T,K7 ‘CtnK )hna f(Xt:,K ’Xt»(:Z—T,K7 'CtnK )hn>
1.0, M CLiM LM Xt CLiM pliM Xt
+ 2<thZ,K + f(thfK 7thz—-r,K7 EtnK )hna g(thl,K 7thl—r,K7 LtnK )AWH>
M M

~ . .. -1, N . . 1,
+ (XM R LY AW,, (XM XM LY A,

tn—7,K>
_(XLeM 2 o liraM e g1iM 1iM LX}gM
= | X |74 20 (X FOX s X0 £05))
1 S1iM eliM x1,M
+ Ehn|f(th»,;Z,’K ’XL}»,«;Z;T,K7£tnK )|2:|
N ,‘,M ~ ,‘,M _ ,‘,M XI,M ~ 7.7M _ ,',M Xl,M
+2<Xt1nZ,K +f(Xt1nZ,K 7Xt1n2—7',K7‘CtnK )hnmg(thnéK 7thnz—7',K7£tnK )AWR>
~ ,',M _ ,',M XI,M
+ |g(Xt1n7:K 7Xt1nl—7',K7£tnK )AWn|2
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<X+ 2o X P+ 1K) + 208

Xl M Xl M
) )

+ 2<Xt17l7lj<\'4 + f(XtLZ,I]g[? th,izi]\-;[Kv E hn? (thﬂ’ljyv thj’ﬂrdlﬁ L AWH)

+ ‘g(th ll](wathnl ]7\'4[(7‘6 )AWn|27

where in the last step we have used condition (4.1.17)). Solving the recurrence relation,

we get
ng—1
uggm%gmfp+2a<§ythph44nyKwM>+2m
n=0
ng—1 1 M .
£ 2 3R (X XN (X X AW
ntnlo
+Zm3¥,ﬂ%éwww2 (4.2.5)

Similarly, the continuous approximate solution verifies

|X1,Z,M|2< |X11M|2+2( ) (|X11M|2+|X11M )+2<t—t)6
+ AR+ XX ﬁ%w )= 0, g (R R £ W - W)

+ ‘ (thll(M th lT]\f(a ﬁ; i )(Wt - W§)|2~ (4.2.6)

Substituting (4.2.5)) into (4.2.6) yields

| 1,1,M|2 < |X1,1,M|

ng—1
+ 20 (Z X0 Pl | X P+ | XY P = 1) + 1 X (t—t)> + 26t

1
ng— M . . 1 M

i, M i, M i, M 1 -1,0,M ~-1,4,M
+2 Z Xl K +f(th K 7thn TK’L )hnvg<Xt1n,K 7Xt1n77—,K7£tn )AWn>
n=0

1,M 1,M
RN RSN XS L5 ) g(REM X 25 (W — W)

ng—1 1M
X7

lz ) XM i, v 1,2,
+Z|t¥,H%@me%u1%@ﬁﬁfxmwm?

Using the step processes X* and XX defined previously, the second summand on the

RHS of the equation above, can be expressed as a Riemann integral. Similarly the
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sixth and the seventh terms can be written as an Ito integral, i.e.

XM < XM |+ 2a/ (X P+ X5 P)ds + 2t

t o1, M
7 K K X 1.2
+2/ (XEM 4 FXEM XM 2R (XM 1o (u)
0

Xl ,M
)

+ (t = g (w)], (XM X PN, L35 )dW)

ng—1 XLM

J, 7, XM ), 1,0
+Z| X X L )AL + [g(X ™, X, L5 ) (W — W)

Hence, we have

p/2
|X;feM|pS6p/21{|X§;;;M|p+< o [ ORGP+ R )+ ot

o>1,M 4
b2 [ ORI R R )

1]%

4 (t— ) g ()], (XM, XM LK )W)

p/2

Tlt—l p/2
i i Xl,]\l i i Xl ,M
+ (Z l9(Xe 0 X L0, )AWn\2> + (X X L5 ) (W, — Wt)lp}-
=0
Taking the expectation of the supremum, one has
E [ sup |X1’1’M|p} < 6PN+ L+ I3+ 1),
0<s<t
where

L =KX, P+ E + (2802,

t p/2
(20 [+ 1R s
0
s o s G1,M .
2 [+ PR R LR o )
0

p/2} .

ne—l Xl M p/2
L 2 : 1zM 1zM K 2 .
I3 =K |g tn,K tn TKa‘Ctn )AWn| )

Iy = E[ sup

0<s<t

LM

+ (s — ) (w)], g(X, 3 Xy, Lu™ 0 )dW,)

I:=E [sup (X LM, XLM X - Ws)lp} :

0<s<t
Now we will establish bounds for each of the four terms above. In the remainder of the

proof, C'is positive constants, independent of K, that may change from line to line.
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Using Holder’s inequality, we have
t
B < B + Qa1 gt [BIREp 4 | R s + (297"
0
t
< C/ E [ sup |X1’M|p] ds + C.
0 0<u<s
By the Burkholder-Davis-Gundy (BDG) inequality we obtain
1,M _ .
o< 2R [( [ IR + R R £ R )
— 14 ~ 13 o1,M p/4
(= Ol ()5, XM, 207 ) Pdu) |
An application of the Holder inequality yields that
S1,M
I, <25 Tz—lcE / ‘X“M + fXGEX i’%(,ﬁffff )X ) o (u)
(= Dlg )] (R KL 25 5] (4.27)
Now, we bound the integrand of the integral above. Using condition (4.1.17)) we obtain
o1 GLi M i XM o1
X+ FXE X L )X ) op () + (8= D (W) =
— 1 4. 1 M
= XL 4 2lh (X Do () + (0 — 1) g )] [ (KLY, FXERY, R 255y
1 ), ) ) XM
LI o) + (¢~ DT PR, K1 25K
<X 4 2R o () + (8 = O (w)] [ (IR E + [X522) + 5]

= (142a7)| X5 PP + 20T | XN [P + 28T

This implies

), 7 7 xXLM 1,7
X 4 A X e L ) (X3 D o (w) + (8= ) g ()] P
< g/t [(1 + 20TV XM PP 4 (20T X PP+ (28T

< C <|X11M|p/2 + |Xi’LM |p/2 + 1) .
Also by condition (4.1.7]) one can see that
S1i M o1 M S1i M oliM XM p/4
lg(y3, KMol = (1lg(XuR, Xt £07)1P)
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[ <|X11M|2+|X11M 2>+5}p/

<O<|X11M|p/2+|X,iZM|p/2 1)
Substituting the last two inequalities into (4.2.7), we obtain

t
Igg(JE[/ <1+\X1 Mp | XLiM |P>du]
0

t
SC’—l—C(/ [sup ]Xlé(M]pl ds)
0 0<u<s

Now we will bound I3. Note that ¢, is a stopping time of the filtration {FV'}. Define
Fi, ={AecF:An{t, <ty e F'}.

By the strong Markov property of the Brownian motion, {B, := W, 1, — W, ,u > 0}
is a standard Brownian motion independent of F; (page 86, Theorem 6.16 in [30]).
Thus

E[ sup |Wi,4u — Wi, [P|F.] = E[ sup |B,[F] < Cs?/2

0<u<s 0<u<s
This implies
E[ sup |W,— W, [P|F,] < Che/2 (4.2.8)

tn<u<tp41

Combining Jensen’s inequality and equation (4.2.8)), we arrive at

ng—1 p/2
I3<E (Z lg(Xo s X AfK, < Pjaw, |2>

ng—1 p/
2 ? |AVVH|2
-5 (zhn R R Y

nt— 1
E[|AW,,|P|F,
S Tp/2_1E Z hn“ th Zl]é/[’thnz_];/[K7£ )||p H hp/|2 | tn]]
n=0 n
ne—1 M
< CTYE |3 bl lg(XL 0 K0, 23K
n=0

<CT2_1E[/ lg(R1iM, g pXk >r|pds}
< oTh- E{/ lg(R1iM, Zid pXk >||pds]
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Using condition (4.1.7)) and Holder’s inequality, we have
t iy o ¢1,M p/2
I; < CTP*'E [/ (Hg(Xsl,’}éM,Xiﬁ%,EfK )HQ) dS}
0
p/2—1 ! v 1,6,M |2 v 1,9,M |2 p/2
<CTPE | | (X P+ XN +8) " ds
0

t
< g | [ (POXIP ¢ R+ 57) i
0

t
<C+ C’/ E [ sup ]Xi:}’(M]p] ds.
0

0<u<s

For 14, using the linear condition (3.3.3)), we obtain

1 ~q v1,M
< B | sup (X X L0 - wp]
0<s<t
< | s {{(@lIXEP + IXEHOP) + 81 10, ~ W)
nzfl
<E| S (XS + ) 0B | s (W~ WP
n=0 n>83tn41

+ (X" P+ (X2 + BIE [sup (W, = Wt)!”/zlft} ]

t<s<t

t
< C+C/ E { sup ]Xllt:}’(M]p] ds.
0

0<u<s

Adding all the bounds for I; to I, we have that for all ¢t € [0, 7]
t
E [sup |X51’IZ;M|”] <C+ C'/ E [ sup |Xi’;’(M|p}
0<s<t 0 0<u<s ’
and by the Gronwall inequality we obtain

E { sup \Xt{’;;’M\p] <C.

0<t<T

Similarly we can show that E [SUpogth | X7 ’i’M|p} < C. Thus, the result is proved for
p > 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of the

proof of Lemma [3.3.6] [

Theorem 4.2.2. If the SDDE (4.1.2)) satisfies Assumption and the function h?
satisfies Assumption[4.1.2, then T is attainable and for all p > 0 there exists a constant
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C > 0 dependent on T and p, but independent of h®, such that

n’

E [ sup |X§ﬂ"M|p} \/E [ sup |Xf’i’M|p] <C. (4.2.9)
0<t<T 0<t<T
Proof. Since the proof is similar to that of Theorem [3.3.5] we omit here. O]

4.2.2 Strong convergence of the numerical solutions

Now we will prove the strong convergence for both schemes.

Convergence of scheme 1

We will need the following lemma.

Lemma 4.2.3. Let p > 1. Let the MV-SDDE ([4.1.2) and the function h® satisfy

Assumption |4.1.1 and |4.1.2 respectively. Then there exists a positive constant C' such

that for all t € [0,T].

ElXxLAM _ LM 2p < C6, 4.2.10
¢ t

E’th,i,M B th,i,MPp < CoP. (4.2.11)

Proof. Let t € [0,T]. Let r be the integer such that ¢, <t < ¢.,;. Then by definition

we have thr’i’M = thf’M = X'tl’i’M. Thus
t B t o o _
XM gL / FXEM XL L5 ds 4+ / g(X M XM L aw,
tr tr
which by the Holder and BDG inequalities yields

E|X’t71, _ S(tﬂ, |2p < 921

t _
[ A R
28

2p

+ 2% 1R

/ tgv?i’“M,ffi’i’M,ﬁfl‘M)dWs
tr
t
<o g [t [ AR, X 25 |
tr

+22p—1E ! X LM Xl,i,M EXLM 21s . .
g S Y S ? S
tr
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From the polynomial growth condition [4.1.8| we have that

1 — . ~ . — . ~ . 2p
ORI, M X < (| XM 4| REM o) 4 A XEM 4 X151

(4.2.12)
< C(RIM PO 4 |R1M) e 1),
and from the linear growth condition we have that
lg(R2M, KM L2 < af| REVE 4 RN 45 (4.2.13)

Hence, by Theorem and Assumption [4.1.2] we obtain

BIX Y — P < CRIT)? sup [ X2 4 [[g] 7 + O)

tr<s<t

+ CE[(hT)P( sup. | X LM €]17P) + O

tr<s<

< CoP.

To prove assertion (4.2.11)), we first prove that there is a constant C' such that for all
te[0,T]
E| X, — X,|*? < CoP. (4.2.14)

Let t € [0,T]. Let k and n be integers such that t;, <t <ty and t, —7 <t <t,41—7,

respectively. Let 7,0 < r < k be such that t;,_, < ¢, — 7 < tx_,41. From (4.1.9) and

the definitions of the step processes X and X, one can see that

oL, M _ 1,Z,M Z XLeM 1M XM
X -+ E )hk—r+i

tk tk r4i? tk: r4i—T) tk7r+i

(R R LR AW

te—rai? tp—rai—T) Tl r+i

th—r S§—T

-1 to—ryit1
1,M
= X,"M + § : / FXEM XM LX) ds
tx r41

S—T

r—1 )
te—rtit1 Xl,z,M XL%M £X1 M
+ Z 9l )dW,
t— r41

S—T

B Xl’Z’M / f Xl’z’M Xl’z’M EXI M)d + /tk <X1’I’M X;’I;MJEXIM) Ws-
27 t

k—r
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. 1,0, M o1,i,M CLiM _ wliM _ wliaM _ w1iM _ 51i,M
Note that since X, = X" and X, = X; """ = X;"7 = X;"7 = X;"", we
k k—r k—r n—T n—T ’

have that

§—T s—T

_ . ~ . tk _ . ~ . S v tk _ . ~ . S
XM = XMy / FIXERM XM LX) s + / g(XEM XM £ aw.
tk—r

k t—r

Also, we have that

th —ther < (tny1 —7) — (bp —7) + ho_, = hS + h_ < 20T.

Therefore, by (4.2.12),(4.2.13]), Assumption and Theorem we have that

2p

E|XM XM < o

S

2% o L _
[ R R, £ s
te—r

2p
tg o . _
o / g(XPM XM X aw,
ti—r
< OE[(te — tg—y)?( sup | XIPMPP 4 ||€]]* + 1)]
t<s<t
+ CE[(ty — tr—r)"( sup [ XM 4 ||€][* + 1))
tp<s<t

< CoP.

This together with (4.2.10) imply that

]E’th,i,M o thﬂ;’M’Zp S CE‘th’i’M . th,i,M‘Zp + CElth,i,M . th,i,M|2p S C's.

Now we show the convergence of the scheme 1.

Theorem 4.2.4. If the SDDE (4.1.2) satisfies Assumption and the time-step
function h satisfies Assumption[4.1.3, then for allp > 0, there exists a positive constant
C' independent of & such that

E | sup |V — XM P < oov2.
0<t<T
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Proof. Let p > 4; the result for 0 < p < 4 follows from Holder’s inequality. Define
e =Y "M - XM 0 <t <T. Hence

t ; i M S1 1 1M

o= [ LY L) - FR R, L5 ds
0
¢ el
+/0 gV Y £) = (XM XM £ aw,.

Applying Ito’s formula we obtain

t .
e <2 / (g, FOYIM Y EM g™y p(XLOM XM LX)y g

S—T
0
t
+/|
0

+2 / (es, (g(YIM YIM £Y™My = g(XLaM XM pXEYNapy o (4.2.15)
0

S—T

GOV VI £ — (R, XM £ s
t
Note that

S—T S

t x 1
2/ <€S,f(}/si,M7)/sz,_]\f’£;/M) . f(Xsl,i,M7Xl,z,M EX ,M)>d8
0
t
=2 [ e FOGYLYIYL ) Y ) ds
0

t —
—I—Q/ <es’f(ysi7M’Y;zL]\;[’£SXl,M) . f(Y?M?YSZLA;[aEfLM»dS
0

S—T

t o1 ) . o1
*2/ (e, FYIM YA pX0My  p(x M LM X0 g
0

LM
S

t . o o
+2/<es,f(X§’i’M,X§f;M,£§ ) = P XM L)) ds.
0

By condition (4.1.5) we have

2eq, FYIM YVIM LYY = p(yiM YEM £XMM)) < ole [ LW,(£, £ s)
< Jeof? + L2WR(LY LX) ;
and
2e,, FOVIM YD LX) — M YN LX) < 2le LWL (X LX)
< ed? + LWL, 25,
(4.2.17)
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Using condition (4.1.4]) we get

2es, fOVPM VI LX) — p(XM XM L)

S—T

< LY = XM 4 VT = X5 P) = Liles + les— ). (4.2.18)
Condition (4.1.6|) implies that

2<es7f(X81,i,M7X1,i,M £§'1,M) B f(X;’i’M,Xl’i’M Lf’l,]w)>

S—=T s—T

< leg| [F(XEM X 10M Efl’M) _ (XM LM Efl,]v{)’

§—T s—T

< 2e,JQUXLIM, XM KLM FLEM (X LM _ gLV 4 x 1M K LM))

s—T T s—T

< el + QXM X XM XE? o(|X P — XM P X = XORY ),

S—T

(4.2.19)
where Q(z,y,Z,y) := y(|z|?+|y|?+|Z|?+]|y|?) + A. In addition, condition (4.1.3]) implies
that

g(YEM VM w(er™) — g(X LM XM o X2

S—T

< L(YSM - XEMP2 YR XM g oY e X))

T

_ i M 14,M LM w1,i,M|2 iM 1,i,M LM 1M 2
_L<|Y; _Xs +Xs _Xs ’ +‘Y;—T - X T +Xs—7- _Xs— ’

FWRLYT, LY WX cE)
< 2L(Jeg|? + |esr |2+ | XIOM — XLEMP2 | x LM 1M 12)

S—T S—T

+ LOW2(LY™, 2™y s WR(e X e X)), (4.2.20)

Substituting (#.2.16), [@.2.17), [@.2.18), @.2.19) and (£.2.20) in [@.2.15), we have

t
leaf? < / (3L + D)les|> + 3Le,_, [2]ds
0
t
b [ QURE, X M REMP 4 DX X X
0

t Y 1, M
0 [ (WL L) W L) ds
0

t e
+ 2/ (oo, (gOVIM YN L) — g(X0M X5 £ ))aw,).
0
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Using Holder’s inequality yields

t
e < (ST [(GL+ )P+ LY PlenrP)is
0

S—T

t
T (8T 120 / QXM XM XLAM KLY | /2
0

(XM S XU XM s

S—T T

! v1,M
+ (8T) e / (WL, 22X + WLl 25 ds
0

¢ ) p/2
4 / (es, (g(VM YN £YY) — g(XPM X IEM LX) )aw,)

0

Taking the supremum on each side of the previous inequality and then the expectation,

we obtain

t
E {sup |es|p} < C’/ E [ sup |eu|p} ds
0

0<s<t 0<u<s

t _
1+ / (E[Wh(LY", £ + B[Wo (X, X)) ds
0
t
+ 0/ E[[Q(X 1M, x oM XLeM X 0MY 4 []p/?
0

X (XM - LMy XM L) s

yM

[ e a0, V2,21 — g 5228
0

XM
S

+CE ))dW.)

sup
0<s<t

p/2]

Applying the definition of Wasserstein distance yields

t
E {sup \es|p] < C’/ E [ sup ]eu]p} ds + J1 + Jo + J3,
0

0<s<t 0<u<s
where
t ) .
Ji —C J/‘ H§[|)(;”%A4 . )(;J%A4|phis;
0
t
Jy:=C / E[[Q(XHM, XM X PN X0 4+ L/
0
X (X2 = XIRM [P [N LM g,

J3 :=CE | sup

0<s<t

u—T )

/ (eus (g(YIM VM LYY — g(XL0M X LM e X))
0

p/2]
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By Equation (4.2.10]), we obtain .J; < C§?/2. For J,, by Hélder’s inequality one has
hschHWM#MJﬁ%X%WX£%+Mﬂ
0
xENXyM—XyW%+mﬁ¥—XﬁWWﬂf@w (4.2.21)
By Theorem there exists a constant C' such that
Eh@@jﬁﬂxﬁﬂpQM%Xﬁ¥y+mﬂgcr (4.2.22)

and by Lemma [4.2.3

E| XM _ XLaM1Z < 0§p and  BIXDEM - XBEMZ < osP. (4.2.23)

Subtituting (4.2.23) and (#.2.22)) in ([#.2.21]), we obtain that J, < C6P/2.

Now we estimate J3. By the definition of Wasserstein distance and the BDG and

Holder’s inequalities, one can see that

t ~ p/4
5o €8 ([ e oty i 2) = gt R 8 s ]
0

t -
< OB | [ el - Y R YA w5 s
0

t1 _ 4 o .
<C [ [ (GElleap) + ZBX - Y3 4 B - v m)ds]
0

S—T T

t
< CE[ [ Bllesf] + (B — X1MP] 4 BN — YiMP] 4 BRI - X))
0

s—T T

(X - Y s
t
< CE | [ Blle] + Bles ] + (BIRE = X1P)+ BIZE — X2V Phas).
0
By Lemma [4.2.3| we have that

¢
J3 < C/ E [ sup |eu|p] ds + CoP/2,
0 0<u<s

Collecting the bounds for .J;, Jo and J3, we conclude that for all 0 <t < T, there exists

a constant C such that

t
E {sup |et|p] < C’/ E l sup |eu|p} ds + CoP/2,
0

0<t<t 0<u<s

The required assertion follows from the Gronwall inequality. O
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Convergence of scheme 2

Lemma 4.2.5. Let the MV-SDDE ([4.1.2) and the function h° satisfy Assumption
and respectively. Let t € [0,T] and k, be the integer such that t € [k, 0T, (k, +
1)0T). Then for every p > 0, there exists a positive constant C such that

E|X2M — X202 < o, (4.2.24)
B X2 X20M 2 < 0, (4.2.25)
B[ X2HM _ X26M2 < g, (4.2.26)

Proof. By the definition of scheme 2, we can write

¢ t
XE’Z’M X]z 5T—|—/§Tf XQZM XSQZTM,EXZIM)dS—i—/I; (XZZM Xs22TM7£X2M)dWS.

6T
Since t € [k, 0T, (k, +1)dT) we have that t — K,0T < (K, +1)0T — K,,0T < 0T. Thus,
by the Holder and BDG inequalities, conditions (4.1.7) and (4.1.8) and Theorem [4.2.2]

we obtain
2p]

t

E[|X§=ivM_ i;zé¥|2p] < 2%-1R f(X2zM Xs2 zTM,Ei‘@,M)dS

fen ST
t ot 2p
_|_22p—1E / (X22M ngTMa‘CX )dW
fen ST
26 2p— 1/ X27,M XSQZTM,,CX2M)|]dS
p
+22p o) [( i 6T XzzM X?TM’ X2M)| d) ]
< @) | s {4 |RE) 4 (] 4 122 )
v e | (s XEVE 1))
kndT<s<t
< CéP.
Since the proof for claims (4.2.25) and (4.2.26)) is similar to that of Lemma [4.2.3] we

omit it here. O
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Theorem 4.2.6. If the SDDE (4.1.2) satisfies Assumption and the time-step
function h satisfies Assumption[f.1.9, then for all p > 0, there exists a positive constant
C' independent of & such that

E [ sup v M — th’i’M\p] < O,

0<t<T

Proof. Using the same arguments as in the proof of Theorem [4.2.4] we obtain

t
E [sup |es|p} < C’/ E [ sup |eu|p] ds+ Ji + Jo + Ja,
0

0<s<t Osuss
where
t _
Jii=0C / (B[W(Cy™, £57)] + E[WH(LX", £577)] )ds;
t
Jy = C / E[[Q(X2M X25M X20M X20M) 4 [/
0

x (|X20M - X2Mp g XM X20M P ] gs;

Jg = CE

sup
0<s<t

/ <6U7 (g(Yuz’Ma Yiﬁ\fw E}ZM) - g(XZ’LM? XQ’LM £§27M))dWU>
0

p/2]

For any s € [0, 7] there is a k, such that s € [k,0T, (k, + 1)0T"). Hence, by (4.2.24))

E[Wh(LY", X)) < E[VAM — Xpal7)
i M i, M i, M
= EHYSM - X?@&T - (st M Xlz(nzST) + (XSZ M XIZ(,L(ST)‘I)]
< PIE[YIN - XPMP] 4 RN — X2

< CE[ sup |e,|F] + CoP/2,

0<u<s
Also, since the sequence of times {k,d0T },en is contained in the sequence of times

tn}nen, we have that X26M 20 M Thus,
€ 1) é

X2’M
S

x2.M
S

E[W5 (L, 5] <E[Xzhr — Xpbs?] = 0.

Thus,
¢
Jp < C/ E [ sup |eu|p] ds + CoP/2.
0

0<u<s

The terms Jy and J3 are bounded in identical way as in Theorem [4.2.4l An application

of the Gronwall inequality yields the result. O]
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Chapter 5

Multilevel Monte Carlo EM scheme
for MV-SDEs with small noise

5.1 Introduction

An important problem in science is to compute E[U(X7)|] where {X;}o<i<r is the
solution to an SDE and ¥ : R? — R. Among all the methods that allow us to compute
the previous expectation, Monte Carlo simulation is arguably the more flexible. Its
drawback is the high computational cost. Therefore a lot of effort has been placed to
reduce this cost. In 2008, Giles, in a very relevant paper, [15], proposed the multilevel
Monte Carlo (MLMC) method which greatly reduces the computational cost with
respect to the standard Monte Carlo (MC) method. In the standard MC method, if §
is the accuracy in terms of confidence intervals, the computation of E[W(Xr)], where
Xr is simulated using the Euler-Maruyama (EM) method, has a computation cost
(measured as the number of times that the random number generator is called) that
scales as 6 3. However, following [15], we can see the MLMC method combined with the
EM scheme, scales like §2(log §)? (see next section for an overview explanation). Since
[15], numerous papers have appeared to customize, adapt and extend the principles of

multilevel Monte Carlo method to specific problems. One of these papers is [I], where
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the authors applied the multilevel Monte Carlo framework to SDEs with small noise.
They compare the computation cost derived from the standard Monte Carlo method
(combined with discretization algorithms tailored to the small noise setting) versus
the multilevel Monte Carlo method combined with the Euler-Maruyama (EM) scheme.
They found that when 6 < €2, there is not benefit from using discretization methods
customized for the small noise case. Moreover, if § > e_%, the EM scheme combined
with the MLMC method leads to a cost O(1). This is the same cost we would have
with the standard MC method if we had X7 as a formula of Wr, so no discretization
method was required. Here, we extend the work from [I] to McKean-Vlasov SDEs
(MV-SDEs) with small noise and we obtained the same estimate for the variance of
two coupled paths. This means that the additional McKean-Vlasov component does
not add computational complexity (per equation in the system of particles) and the
conclusion we mentioned above about the computational cost of the method remains

valid in our case.

5.2 Computational complexity of the standard Monte
Carlo and the Multilevel Monte Carlo methods

In this section, we will discuss the computational complexity of the Monte Carlo and
the multilevel Monte Carlo methods in the context of solving the following problem.

We want to obtain and approximation for
E[W(X7)], (5.2.1)

where {X;}o<i<7 is the solution to an SDE and ¥ : R? — R is a globally Lipschitz
function. The problem is very relevant in financial mathematics, since this is
one of the ways used to price financial options. In this case ¥ is the payoff function
and Xr is the underlying asset price at time 7. But it is also a common/important
problem in other areas of science. The problem can be solved applying finite
differences methods to the PDE resulting from applying Feynman-Kac theorem to the
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SDE (for which X is the solution). A drawback of this method is that the cost of the
computation depends on dimension of the PDE. In practice this method becomes too
expensive for equations of higher order than three. One of the advantages of the Monte
Carlo method is that its computational cost does not depend on the dimension of the
SDE. Another advantage is its flexibility and robusticity to handle all types of SDEs
and ¥ functions. However, Monte Carlo simulation is an expensive method. Therefore,
a lot of research have been conducted to try to reduce this cost. In 2008, Giles, in a very
relevant paper, [15], proposed the multilevel Monte Carlo method which greatly reduces
the computational cost with respect to the standard Monte Carlo method. Now, we
analyze the computational complexity of the MLMC method versus the MC method
when solving , where X7 is discretized using the Euler-Maruyama method. In
the rest of this section, we will use the simplest example of SDE to ilustrate in a clear

way the usefulness of the next section. Let A € (0,1) and K a positive integer such

that A = T/K. Consider an SDE of the type
Xt = f(Xt)dt =+ g(Xt)th7 t e [07T], XO = X € R, (522)

where W is a one-dimensional Brownian motion. The EM approximate solution of the

previous SDE is defined as
Yro = Xy, Yk = f(kal)A + Q(qu)AWk, k= 1, ceey K (523)

where AW, = W, ., — W;,. We want to generate M samples of Y. In order to
do that, we generate M - K independent and identically distributed (i.i.d.) standard
normal random variables Z!, k =1,..,K,i = 1, ..., M. Define AW} := \/ZZIQ Then for
i =1,..., M, using Equation (5.2.3) we generate the paths Y,k =1, ..., K of the EM
approximate solution. We define the standard MC approximation, (),;, of problem

(5.2.1) as the sample mean
M
1 i

Let 0 be defined as the accuracy of the approximation in terms of confidence intervals,

i.e. the total error, e := E[U(X7)] — Qur, will be within the interval (—d,d) with a
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confidence level of o (usually in practice @ = 0.99 or a = 0.95). We also define the

mean square error, MSFE, as
MSE = E[e?] = E[(Qy — E[¥(X7)])?.
Now, by adding and subtracting E[¥(Yy)] to @y in the expression above, we obtain

El(Qur — E[U(X0)])?] = E[(Qur — E[¥(Yi)] + E[U(Yi)] — E[U(X7)])
< 2E[(Qur — E[W(Yi))?] + 2E[¥(Yx)] ~ E[¥(X7)))”. (5.2.4)

We note that
E[(Qar — E[¥(Yi)])?] = Var(Qu) = Var (% > \P(YI@)) = M WVar(B(Yy)).

Since Var(¥(Yx)) is a constant that does not depend of A nor M, we have E[(Qn —
E[U(Yx)])?] = O(M™1). To estimate (E[¥(Yx)] — E[¥(X7)])* we realize that the EM

method has weak order one, i.e.
E[W(X7)] — E[¥(Yi)] = O(4).
Hence, (E[¥(X7)] — E[¥(Yx)])?> = O(A?). Thus,
MSE = E[(Q — E[¥(X7)?] = O(M~") + O(A?).
By definition 62 scales like the M SE, so in order to achieve accuracy of § we must have
8§ =+/O(M™) +/O(A?),

and this holds true if M = O(672) and A = O(9).
We define the computational complexity, CCy;¢, of solving problem ([5.2.1)) as the
number of times the random number generator is called in order to compute @y, i.e.

CCye = MK = M(T/A). Therefore,
CCrc = O(M/A) = O(67?).

Now we estimate the computational complexity of the MLMC method. We will

consider samples of the EM approximate solution at different discretization levels [ =
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0,1,...,L. At level [, the stepsize is defined as A, := K~'T, where K > 1 is a constant,
so for level [ we have steps 1,2, ..., K~! =: K,. This means that for level I, we reach
T at step K. Let Y] g, denote the EM approximation at time A;K; for level I. Then
E[U(YL k,)] can be written as

B[V (Yrx,)] = B[ (Your,)] + Y E[W(Yik) — ¥(Yiorm )l

=1

We define the MLMC approximation of problem (/5.2.1)) as

No L N,
1 i 1 i i
Qumr = Ny E U(Yok,) + E N E (U(Yik,) = ¥(Viik, ) (5.2.5)
i=1 =1 =1

where Y}, is the sample 7 of the EM approximate solution Y; g, and N is the number of
simulations for the paths generated at level . The samples Y}’ and Y}" | ;. are built
using the same discretized Brownian paths with the different stepsizes A; and A;_;
respectively. We say that the paths Y}fk,?kl =1,..,K; and Ygi—l,kz_p k=1,.,K_, are
coupled. The next level coupled paths Yll-'fl,km’ k=1,., Ky and Y, k=1,., K are
generated using new Brownian paths (so new i.i.d. standard normal random variables
will be required). We shall decompose the M SE in the same way as we did before for
the standard MC method. We have that

E[(Qur — E[W(X1)])*] = (Qur — E[¥(Yy i,)] + E[¥(Y k, )] — E[¥(X7)])?
< 2E[(Qumr — E[U(Ye,x,)])?] + 2(B[¥ (YL k)] — E[¥(X7)])%.
(5.2.6)
We want to find out the values of L and N;,l = 1,..., L, that will provide the target

accuracy 9. Set

-1
L (5.2.7)
log K
Then
T T
Ap = =T =0O(9). (5.2.8)

o KL €L log K

Since the EM method has a weak convergence order of one, we obtain
(E[¥(Ye.x,)] — EW(X7)))? = O(), (5.2.9)
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which is in line with the required target accuracy. Now we estimate the term E[(Q sz, —

E[¥ (Y7 i, )])?]. Using the definition of Qy/r., we have that
E[(Qur — E[¥(Yx,)])*] = Var(Qur)
= Var < Z W( YgKO + Z Z lKl Yzil,KH»)

1
— Fovar(‘lf(yo,Ko)) + ZZ ﬁlvar(‘l’(yi,m) — V(i1 k,):

We will see in Lemma that Var(¥ (Y, k) —V(Yi—1.k,_,)) = O(A). We also know
that Var(Yj g,) is a constant that does not depend of A nor Ny. Hence,

E[(Qur — E[¥ (YL k,)])?] = NOC+ Z NZO A).

Setting N; = 6~2LA,;, we obtain

L

E(Qur — E[¥(Yx,)])’] = O0%) + Y _O(°L™") = 0(6%),

=1
which is the accuracy required. Therefore, the mathematical complexity of the MLMC

method, CCyryce, 18

L L
CCyrmc = Z NA = 25_2LA1AZ_1 =522

1=0 1=0
Substituting Equation ((5.2.7)) into the last one, we obtain
CCMLMC’ = (’)(5_2(10g (5)2)
Lemma 5.2.1. Consider the EM aprozimate solutions Yk, and Y;_1 g, ,. Then

Var(W(Yix) = (Vi1 ) = O(A).

Proof. The EM method has a strong convergence order of 1/2 and the function ¥

satisfies de global Lipstitz conditions, we have
Var(¥(Y, ) — U(Xr)) < E[[¥(Y,x,) — U(Xr)[]
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< CE[|Y,x, — Xr|’]
O(A).

Using the above inequality and (B.0.2)) yields

Va’r(qj(}/ll(l) - \IJ(YE—LKL_J) = Var(\ll()/l,Kz) - \II(XT) + \IJ(XT) - \IJ(Yl—LKz_J)
< 2Var(U(Yx,) — U(X7)) 4 2Var(¥(X7) — U (Vi1 x, ,))

]

Note that in the computational complexity analysis, in the standard Monte Carlo
method is not required the strong convergence order of the discretization scheme, it
only uses the weak convergence order. However in the MLMC methods, both weak and
strong convergence orders are used. The Milstein scheme has weak order of converge
of 1, the same as the EM scheme, but it has a strong order of convergence of 1. This
implies that using the Milstein scheme does not affect the computational cost of the
standard MC method. However, if we use the Milstein scheme combined with the
MLMC method, we can obtain a computational complexity of O(6~2), [16]. This is the
same computational complexity that we would obtain with the standard MC method
if we did not have any discretization error at all, i.e. if we could compute the solution
Yk as function of Wy, so no discretization scheme was needed. The MLMC method
represent a huge improvement in computation cost with respect to the standard MC
method. For example for an accuracy of 6 = 0.01, the MLMC method is 100 times
faster than the standard MC method. The prior anaylsis can be done with other types
of SDEs. Note that the key differential component in the computational complexity
analysis of the MLMC method for different SDEs is to estimate the variance between
two coupled paths (Lemma [5.2.1)). The aim of this chapter is to estimate the variance

between two couple paths for MV-SDEs with small noise.
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5.3 The EM Scheme for MV-SDEs with small noise

Let W be a d-dimensional Brownian motion. The MV-SDE with small noise that we

will be working on in this chapter, has the form
dXe(t) = f(XE(t), LN)dt + eg(XE(t), L5)dW (L), t>0 (5.3.1)

with initial data X¢(0) = zo € L% (Q,R?), where € € (0,1), £ is the law (or distri-
bution) of X*(t), and

iR x Py(RY) — RY and g : R? x Py(RY) — R

We assume that (Q, F, {F; }1>0, P) is atomless so that, for any p € Py(R?), there exists
a random variable X € L%(Q, F,P; RY) such that u = £*. Let f; be the i component
of f. Then for x € R? and p € Po(R?), we denote

Vi = (i) | Ofia )
1 ) . (9361 PR aId ’
02 fi(w,p) 9 fi(x,p)
Ox? Ozr114
vzfi (Z', M) =
02 fi(w,pn) 0% fi(w,p)
Dz 421 8IZ

As we have seen in the preliminaries, due to the propagation of chaos result [2.2.9]
Equation ([5.3.1)) can be regarded as the limit of the following interacting particle system

AX=WM (1) = (XM (), £55MVdt + eg(XFWM (1), £75MVaWw'i(t),  t e [0,T).
(5.3.2)

where Li’X’M = % ]ZV[: dx=im (). Our main task in the rest of the chapter is to discretize
(5.3.2) using the Efi\7l1 scheme and estimate the variance of two coupled paths in the
Multilevel Monte Carlo setting. This directly translate into the computational cost of
solving E[W((X=“M(T)], see the previous section and [I] for details.

By solving the expectation E[W¥ (X (T')] by MC simulation, where X is the solution

to an MV-SDEs, we can solve nonlinear PDEs for the function ¥ numerically, see [50]
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and [51]. This can be quite useful when we are dealing with a high order PDE for
which specific numerical methods for PDEs become too expensive.
We shall impose the following hypothesis on the functions f and g:
Assumption 5.3.1. There exists a positive constant K > 0 such that
(@, 1) = Fly )PV g (1) — gy, v) P < K (Jo =yl + W5, v)), (5.3.3)

hold for any x, y € R, p, v € Po(R%). Furthermore there exists a positive constant
K such that

IV f (@, m)* VIV (@, )PV 10uf (2, ) W) VOGS (@, ) ) V10,V f (, p)* < K
forallz, y € RY, € Py(RY). In addition, there exists a positive constant K such that
100 f (2, 1) (y) = 0, f (@, V) (@) < K|z —2* + |y — I + W3(u, v)). (5.3.4)
for all z,y,Z,5 € R, p,v € Py(RY).

Remark 5.3.1. Assumption [5.3.1] implies the existence and uniqueness of equation

, Theorem . Moreover, if Assumption , then
[, )PV g, )] < B+ [ + W3 (),
where 3 = 2max{1,|f(0, )|, |g(0,d)|}, and for any z € R and u € Py(R?).
(@ =y, fla, 1) = fy,v)) < allz — z]* + Wy(p,v)),
where @ = (1 + K).
Lemma 5.3.2. Let Assumption hold. Then, for any T > 0 and p > 0, we have
E [ sup ]Xg(t)d < C.

0<t<T
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Proof. Let p > 4. From [5.3.1| we have that

p

t t
XA = foo+ [ SO L5 e [ 07 (s), £5)aW (o
0 0
By the Hélder and the BDG inequalities we have that for every t < T

t
Elsup [XEP7] < 3 aol? + (3T 'E / FX(s), £X)Pds
0

0<t<{
7 p/2
4 310K (/1MLX%5L£§M%B>
0

By Remark [5.3.1] one can see that for every ¢t < T

t
EthﬁM§C+C/EHw\ﬁmw

0<t<t 0 0 <s<t
The required assertion follows from the Gronwall inequality. Thus, the result is proved

for p > 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of
the proof of Lemma |3.3.6] n

. We now introduce the EM scheme for (5.3.1). Given any time 7" > 0, assume
that there exists a positive integer such that h = %, where h € (0,1) is the step size.

Let t, = nh for n > 0. Compute the discrete approximations Y,i :IM =Y, ’i’M(tn) by

setting Y, (0) = z0 and forming

Yitt = Yoo p (v £ eg (VM £ AW (t,), (5.3.5)
Y, M i
where £, = 4 3 6Yhs,j,M and AW (t,) = W(tpy1) — W(t,).
j=1
Let
Yhs,i,M(t) _ Y}i’l:"Ma t e [tka tk+1)~ (536)

M
For convenience, we define E;’f’M = &> 5Yhe,i,M(t) and n,(t) := [t/h|h for t > 0.
j=1

Then one observes £2’§M = E;’;h]‘é) = EZ’Y’“M, for t € [ty,try1). We now define the EM

continuous approximate solution as follows:

t t
VR0 = b [ SO 60 e [ g0 6, £ ), 12 0
0 0
(5.3.7)
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Lemma 5.3.3. Let Assumption hold. Then, for any T > 0 and p > 2, we have

E [ sup |Y,f’i’M(t)|p} < C.

0<t<T

Proof. The proof is the same as the one in Lemma [5.3.2] [

Lemma 5.3.4. Let Assumption hold. Then, for any p > 2, we have

sup B[V () — VM ()P] < ChP + CPhv/?,

0<t<T

Proof. Let n be such that t, <t <t,,;. From we have
V) i) = [0, 62 s+ e [ 9070, 6w
tn tn
By Remark and the BDG inequality, one has
mxﬁM@—df“%wwgﬂ1M1E/ﬂﬂx?M@)5§MW¢
tn
+ iR [l ), 6 s
tn
<Ch? + CePht.
The proof is therefore complete. O

We now reveal the error between the numerical solution (5.3.7) and the exact solu-
tion (j5.3.1)).

Theorem 5.3.5. Let Assumption hold, assume that U : R? — R has continuous

second order derivative and there exists a constant C such that

ov

<

foranyi=1,2,--- ,d. Then we have

sup E|U(X=M (1)) — (Yo M (1))]2 = Ch? 4 Che?.

0<t<T
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Proof. By Assumption and Lemma [5.3.4] one can see that

sup E[X*M (1) - Y (1)
0<t<T

T
<27 [ FOX (), ) — (), £ s
0
T
SVTE [ g0e (), L5 — gV s), £ P
0
T
< TKE [ (P (s) VR W, L)
0
T
SSRVTLE [ (X(6) = Vi () + WHE, £20)
0
ro . _ T '
< ATKE / | XM (5) = Yot M () ds + AT KE / YoM (s) = Yt (s)ds
0 0
T ) _ . T o '
+ 16K\/T€2E/ |XE’Z’M(S) _ Y;’Z’M(S)‘zds + 16K\/T€2]E/ ’YE’Z’M(S) _ Y}f’l’M(S)‘zdS

0 0

T
< Oh? 4+ Ce*h + C&? / sup E|X=M (s) — Y7 M (5)2ds + Ce®h? + Ce*h.
0

0<t<s
(5.3.8)
The Gronwall inequality implies that
sup E| XM (1) — Y,f’i’M(t)|2 < OR* + &2h.
0<t<T
Since ¥ has continuous bounded first order derivative, we immediately get
sup E[W (XY () — WV Y ()] < C sup E[XWM(2) - Vit (1)
0<t<T 0<t<T
The desired result then follows. 0J

In the next corollary, we are going to use different stepsize to define the numerical

solutions.

Corollary 5.3.6. Assume that the conditions of Theorem[5.3.5 hold. Let M > 2,1 > 1,
h=T-M"Yh_y=T MV Then

max Var(\Il(Y,fl’i’M(tn)) - \I/(Y,fliy(tn)) < Ch? |+ Cehyy.

0<n<M!i-1
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Proof. For 0 < n < M'~! — 1, by Theorem m,

Var (W(V " (1) = UV (1)) < 2B[0 (Y () — O (Y ()
<AE|W(Vi Y (8)) — WX () + 2B (XY (1)) = U (Yt ()
<Chi_, +Cehy_y.

OJ

The following lemma is presented here because it applies to any EM scheme but

it will only be use later when estimating the variance of coupled processes in the
Multilevel Monte Carlo setting.

Define n(s) := |s/h] where |-] is the integer-part function. Let z;, be the deter-

ministic solution to

2ult) = X(0) + / £ (5)), 620, (5.3.9)

which is the Euler approximation to the ODE obtained from ([5.3.1) when ¢ is set to

Zero.

Lemma 5.3.7. For any T > 0 we have

E[ sup |V (s) — z1(s)]?] < Ce2. (5.3.10)

0<s<T

Proof. Using (5.3.7) and (5.3.10)), using the fact that |a + b|* < a® + b* and the
Cauchy-Schwarz inequality we have that for every ¢t <T

Vi M () — a0
2

/0 (PO (8), L35 = Fan (), 8oy ))))ds + 2 / GO (5), L0 (s)

<21 / P (), L5 = Fan(m(9)), 6un) P

t
12 / g(YERM (5), £27 M) QY (s)

By the BDG inequality we have that

E | sup

0<s<t

t
/ g (VM (5), L5 M) AW (s)
0

2 t
] = 4/0 Ellg(Yy ™" (s), L3y ™) [Plds.
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Thus by Assumption [5.3.1 one can see that

E[sup |V () — zn(t)]’] < 2TK/0 (E[sup [¥;7""(s) — 2n(s)]]

0<s<t 0<s<r

t .
+ sup WL, 0, 9))dr + 8T€25/ E[(1+ [V (s)]” + W (L50")]ds.
0

0<s<r
Using (2.2.1)), (2.2.2) and Lemma we have that for all 0 <¢ <T
t
E[sup [V (1) — (1) < Ce? + C/ E[ sup |V (s) — z(s) ] dr.
0<s<t 0 0<s<r

The final result is obtained by applying the Gronwall inequality. 0

5.4 The Multilevel Monte Carlo-EM Scheme

We now define the multilevel Monte Carlo EM scheme. Given any 7" > 0, let N >
2,1 € {0,...,L}, where L is a positive integer that will be determined later. Let
hy=1T- N_l, hy_1=1T- N1,
For step sizes h; and h;_; the EM continuous approximate solutions are respectively
t t
e i, M i i, M Y,M i, M Y,M i
Vo) = ap [0 £ s+ [ g0 ), £ AW ), (.4
and
t
¥ ,i,M K M Y,M 4,M Y, M 7
Yoi () = ap + / FOY0 7 (s), L) 1S)d5+/0 g(Yy, " (s), L7 ) AW (s).  (5.4.2)
We now construct the discrete version of the previous approximate solutions using the

same Brownian motion for both processes. We say that the two processes are coupled.

Forn € {0,1,..., Nt —1} and k € {0,..., N}, let
tn = nhi_y and t¥ = nhy_, + kh;.

This means we divide the interval [t,,?,1] into N equal parts by h; with t2 = ¢,,, tf:[ =

tni1- Forn € {0,1,...,N"1 -1} and k € {0,..., N — 1}, let

Yhsl,i,M(tZJrl) YEZM(tk)_'_f(YEZM(tk) ,CEY M hl"‘g\/—g YEZM(tk‘> £6YkM>A§k

n’

(5.4.3)
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. _
where £Z’ZY"’M = ﬁ Zj\il 5Y;l,j,M(tm, the random vector AE® € R? has independent

components, and each component is distributed as N(0,1). Therefore, to simulate

M
Yoh, we use

=

&, &t g = S
Y, Mt) = Yy, M(ta) + fFYy, M), ﬁhly M)hl
; (5.4.4)
e ), £,

i

To simulate Y, ;M, we use
7i7M 7i7M 7i7M 7Yn7M
Y () = Y300 (80) + (Y00 (), EZ, D)

| (5.4.5)
+ev/Iug (V"M (), 257 ZAS

£57Yn7M _ 1

where = 37 D=1 5Yf{i’fl(tn)'

The following theorem is the main result of this section.

Theorem 5.4.1. Let Assumption hold. Then it holds that

max  E[|Y; " (t,) — Vit M(t,)]7) < ON?hi + Ce*Nhy.

0<n<M!-1

In order to prove Theorem [5.4.1] we need a few lemmas.

Lemma 5.4.2. Let p > 2. Then

max  B[|[Y; Y (#8) — Vi M (£,)[7] < CLNPHY + CoNP/2hj/er
0<n<N
1<k<N

where C' and C' are positive constants that only depend on 5,T,m and X¢(0) (B from

Remark :
Proof. From (j5.4.3) we have that

Yt ) =Yt () = Y ), L D here i Y (Y (#), £ AL

E
—_

<.
I
o

(5.4.6)
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Hence, we obtain

B[V M (tn) = Yo () 7] (5.4.7)
k—1 ' . p k—1 ' ) P
< 27 Y0 M ), O+ 27 eV Y gV (), £ M) A
J=0 §=0

By Remark and Lemma [5.3.3| one can see that
p k-1 . ; »
< NUSTE | ) £

=0

k—
Z YhEZZM t] EEY M)hl
7=0

< NP Z E [(5 (1+ V)2 + Wf(ﬁilyg’M)»p/Q}
=0

k—1
, , /2
<CNTRES (1 v 21E[|Y,3%M(t;)|2]>p < CNPR?. (5.4.8)

J=0

Using the BDG inequality, Remark and Lemma [5.3.3 we obtain

k-1 , p k— _ p/2
Eled g0yt (), £ ) ViAg) < CeE |3 1g(Vi ™ (), £ M) Phy
=0 =0
k—1 .
< Cgpr/%lhfﬂ Z |g Y}::llM tJ EZ,lYn,M>|2)p/2]
j:O
— ) . j p/2
< CeP NP ZE [(ﬁ (1 + Ve )2 + Wf(EZ’ZY"’M)» ] < ONPPRRY2ep
=0
(5.4.9)
The result follows from substituting (5.4.8)) and (5.4.9)) into (5.4.7)). O

Lemma 5.4.3. Let f,, be the m'™ component of f. Then there exist s,r € [0,1] such
that

7 e Yk £,1 g, /57
FOEM @k, LMy — fvetM (), £31M) = Ay + By + Ex,

where
A= (A}, ..., AY B, = (B},...BY E, = (E, ... EY

£,i £,i e, Yk €,1, j &Y/,
AR = (V (Y M (8) + (1= )Y M (80)), L3770, b0 F M (), £37M)),
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k—1

.4 £, Ti“, €,1, j €, ,{, j
= <vfm(yh[ ’M(tn%ﬁhly M),g\/h_lZg(th M(t%)’ﬁle M>Af$z>a
7=0
€,1, €,t, £,1, g, T{“, £,1, €,1,
k—1 ]
eV Y gV M (), £ Ag)
7=0

-HH@NM@L?”WW%M?W%—%#Wmmk@wmy

5\/_Zg Y“M t) £Z;Y’{’M)A££),m e{1,...,d}.

Proof. By the mean value theorem (Lemma } with y = Y,fl’i’M(t’fL),x =
Yhsl’i’M(tn) and ¢g(2) = f(z, £Z’ZY’$’M), there exists a s € [0, 1] such that

P M), L7 = fn (Y™ (), £57)
€,1, €, g, ,f, £,1, £,1,
= (V (VM (t0) + (1= )Vt M (t), £37), (VM (1) = Y M (1),

Substituting ([5.4.6]) in the equation above yields

&4, e, Y.k M e, e Yk M
Fn (VM (@), £57M) = fn (V™M (80), £30) (5.4.10)
k-1 '
= <vfm(SY]Z77/,M(tZ) + (1 _ S)YIZ717M( EY M ’Z f YhEl’L M t] £Z,ZY7‘Z,M)hl>
7=0

k—1 ,
+ (VY M (85) + (1= o)Vt (1)), £37Y), e/l Y gVt (1), £517) AG).
0

j=
Let V,fm denote the ¢ component of the vector function V f,,. Applying the mean
value theorem again with y = SY}Z’i’M(tﬁ) +(1— S)Y,fl’i’M(tn), T = Y,fl’i’M(tn) and g(z) =
Vofm(z, E;’ZYTI‘S’M) ensures that there exists a r € [0, 1] such that

€1, £,1, a,Y,’f,M €8, E,Y,’f,M
V(Y M @) + (1 — )Y M (1)), £ = Vo (Y M (), £

£,1, €,, £,1, g, ,’f, €,, £,1,
+ (V (Vo fun) (rs (VM () = Y M (8) + Vit (1), £37), (VM (1) = Vit (8,)) s).

An application of Equation (2.2.8)) to u(L£%) = qum(Y}fl’i’M, EZ’f’M)

with X =Y, Mk X = Yy, “M (¢ ) implies that there exists a random variable w :
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2 — [0, 1] such that

£,1 g, f, £,1, &,Yn,
Vb (VM (4), 57N = Vo fon (VM (1), £577) (5.4.11)

&YW M s €,1, €,1,
+ B0V o fm(Z, L3 )Y 0), (Ve M (th) — Vi M(tn))ﬂzzy;lw(tn),

where Y := wY,fl’i’M(t’fL) +(1— w)Y,fl’i’M(tn). Thus
e, &, ER R &,i, &,Yn,
V(Y M () + (1= )Yt (1)), £7) = Y fu (Vi M (), £57M)

€7Y7;‘)7M S E,i, E,Z',
+ EKaﬂvfm(Z’ ‘Chl )(Yw>7 (th M(tl:L) - th M(tn)»]Z:Y}fI’i’M(tn)
€1, £,1, €1, a,YéﬂM £,1, €%,

Substituting the last equation into the second summand of the RHS of (}5.4.10))
completes the proof. O

Lemma 5.4.4. There exist random variables s, : Q — [0,1] such that
£,1 e, Y., €,1, €,Yn, A n
PO ), 370 = FOG M (k) £37Y) = Aw+ B,
where

Ak = (121]16, ...,Az)l,Ek = (Eliv 7E”C€l>/

k-1
= &Y. M s i, ; &Yy,
A = B (2700 PO ), L7 ) i,
=0

Ey = B0 fu(Z, L3 MYV M (#8) = Vi M (t)s,

k-1 _

VD BT R CAN RGN PR
§=0

Y= sVt M (th) 4+ (1= s) Y M (L),

n

Yo o= sr(YietM (k) — Vot M (t,) + Yt (t).

Proof. Let f,, be the m' component of f. A direct application of Equation
228) with X = YooY (t5), X' = YooY (8,) and a(L£(€)) = fu (V"™ £55™) implies

that there exists a random variable s :  — [0, 1] such that
€,1, &Yk M €,1, &,Yn,
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tn)

= E[(Qp (2. L7 )07, (V5 (85) = Y™ (1)) gy
= B[, f(Z, L7 M)(Y, ,Zf (VM (), £ M)

.]:

g, €%, g, r{, j
E[(9, fn(Z. ﬁhly M 75\/h_lzg (v M () Ele M)Afgl)]zzy}fl,i,M(tn).

Jj=0

2=Y,;"M (tn)

Let 0, 4fm be the ¢'" component of the vector function 9, f,,,. Applying Equation
again with X = sV"M (th) + (1 — s)Y; "M (t,) = V5, X' = Yi*Y(t,) and a(L(€)) =
8N7qu(Y}fl’i’M(tn), E‘;’f’M)(f), we find that there exists a random variable r : Q — [0, 1]
such that

O fm(Z, L3N (YE) = Oug i (VM (1), L7 ) (VoM (80))

+ B0 Dy frn) (2, L7 MY (VM) (Y M () — Yhi”"M(tn>)s>]zzy;lw(tn>-
Thus

Oufn( Z, L3V YE) = Ouf(Z, £57M) (Vi M (20))

+ B2 f(Z, L5 M (), (Gt M (1) = Vi (1)) 8 2=V M (1)

Substituting the last equation into the second summand of the RHS of Equation

(5.4.12)) yields
€1, &Yk M €1, &,Yn,
F (VM (), L3 — fm(th M(tn), L3

k—
:]EKaufm(Z’ ACZZYT?,M ,Zf YhEl’L M(tj) EEY M)hl>]Z YEZM(tn)
7=0

E[(Oufn(Z, L3 (VM (80)), 3/ T Zg (Y™ (), LM Ag)] Ve ()
7=0
E{(0) fn(Z, L3, )Y (VY () = Y (£a))s,
k—1 _
eVl Z Q(YQ’Z’M(%), E;’lyn’M)Af%”z:y;lﬂ*”f(tn)'
=0

By independence the second expectation above is zero, therefore the proof is complete.

O
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Proof of Theorem 1| From and (5.4.5) we have that for n < N*=! —1

Vi M (tss) = Vi ) = Vi () = Vi 1)

N-1

iy >0 (PG ), £ — Y (k) 257
o

+h Y (PO ) M) = P ), 251
kZON—l

eV Y (g M ) £ = g (vt M k), £51M)) Ak

v
ey (g(Y,Z’i’M(tn),EZ;Y"’M) — g(Yi" M (tn), EilylM)> ALk

By using the linearity property of the inner product, we obtain

|Yhel’i’M(tn+1) - Yhalilj‘/[ (tns1) |

= (VM (t) = Vi M () + R, Vit (ta) = Vi M () + Ruv)

= Vi "M (1) = Vi ()P B+ 200 (8) = Vit Y (ta), Riv).
Applying the elementary inequality |a + b+ c+ d|? < 4|a|? + 4|b|*> + 4|c|* + 4|d|? to the

term |Ry|? above, we derive that

|Yh€l’i’M(tn+1) - YIZif\/[(tn—l—l)F < |Yhel’i’M(tn) - YfiiHM(tn)P

N-1 2
B |37 (PG (), L) = £ ) 57 )
k=0
N-1 2
T an? |3 (SO ), £ = FOGEM k), 55
k=0
N-1 2
e |37 (M ), 57 = g ), £ ) VA
k=0
N—-1 2
e |3 (VM ), £ = g (VM k), £ ) ViAE
k=0
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N-1

£,1, £,1, £,1, g, f, €,1, &,Yn,
+ 2hy Z<th Mt) — th_lM(tn% fYy, Mk, £le My — Y, M(t,), Ehly )

k=0
N-—1
+ 20 Y (VM () = Vit M (), F G (), £37M) = FOG (8), £57M))
k=0
.1, e, .1, &Yk M €,1, &,Yn,
+25\/_Z Y M th 1M(tn)a (Q(th M(tZ)VChZ )_g(th M(tn)a‘chly M))A€7’;>
+2ev/Iy Z Vit M () = Yt (t,), (9 (ta), £37M) = g (VM (), £ ALE).

Now, we take expectations on both sides of the previous inequality. Since AEF is
independent of Y}, M (kY and Y, ilM(tn), the expectation of the last two summands in

the equation above is zero. Thus,

BV (bri) — Yo (t0)?) < BV (1) = Vi (1)) (5.4.13)
N-1
+ANR? Z B[ ), £ = PO (), £57)

2

, A 2
+ANh; Z B[ FG M (), £ = PO (k) 2550
k=0
[ N-1 ' 2
1 4e’F Z (g(YezM<tk) ﬁsY M) g(thl,z,M( £5Yn )\/_Afk
k=0
= ' . 2
4B || (g0 M (), £ = g (Y (), £ ) VA
k=0
e k
€%, €%, €%, &, Yy, M £,1, &,Yn,
k=0
N-1 . '
+ 20y Y BV () = Vit (), F O (), £ = F O (), £57))
k=0
= B[V (t) = V"Mt + T+ L+ I+ 1o+ I + I, (5.4.14)
By Assumption and Lemma [5.4.2, one can see that
N-1 . ' .
L SAKNR Y (Bt (@h) = Vit (1)) + Wi Lg Y, i)
k=0
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N-1
<8KNK Y E[Y Y (th) — Vit M (t,) P < 8KN?h (CN*h} + CNehy).
k=0
Also, by Assumption [5.3.1
N-1 ' .
I <4KNE Y (B, (1) = YVt M ()P + Wa(L5 ™Y, L5 M))
k=0

e,i,M e, i,M
By the BDG inequality, Assumption and Lemma [5.4.2, we obtain

Iy < C&? ZIE (VM (th), £57) — g (VM (), 257 Pl

N-1
= Ol Y (BIYE Y (85) — Yo (1) 2] + Wiy, o)

k=0

< CN®*hje* + CN?hjet.

Similarly to I3,
I, < N B[V (1) — VoM ()]

For I5 note that

N-1
€,i, €,1, €,1, E,Yff,M €,i, &,Yn,
Is = 2h Yy BLY Y (1) = Vit M (), FOGY (), £ M) = FOG Y (8), £57M)
k=0
N-—1 . .
€,1, £,1, £,1, &, Y ,M €,1, &Y, M
= 2hy Y B[V M () = Vi (), FOG ), £ = F O (), 25 )]
N:1 .
£, e, £,1, &Yy, M €%, &,Yn,
k=0

=: I5a + I5p.

Applying Lemma [5.4.3| we have

N-1 N-1
s <2 Y B[V (t) = YVt (t), A] + 2k Yy BLY Y (8,) = Y (8,), B
k=0 k=0
N-1 ' '
+2h Y B[V Y () = Vit M (), Br)).
k=0
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By independence, the second summand above is zero. We note that

k—1 2
Z e, M j\ peYd,

J=0

(8 (1+ ot 2 + waces 7M)>)2}

E[| A2 Z]E |A™]2 < dKE

[\
L
=

=
™

=

Also, using the Cauchy-Schwarz and the BDG inequalities, Assumption and

Lemma [5.4.2] we obtain

d
=Y'E [{<v? Fn(rs (VoM (#F) — YoM (1)) + VoM (8,), £57) (5.4.15)

k—1 ,
x (VM) = Vit M ()s, e/ Y g(Vit M (), £37 M AG)
=0

+ (B0 fin(Z, L5 M) (YV0), (VM (8h) — YIZ%M(tn)mZszl""M(tn)7

k=1 . . j Y 2
Vi Y o ). £ 88 ) |
7=0

2

k—
<AdKEE ||V M (k) = vttt Z (YEM (1), L7 /Al
7=0
k— a7\ /2
S 4&K82(E[|Y}Z,1,M(tlz) _Y}Z,i,M(t 1/2 Z Y}:‘le t] EeY M \/_Afj
=0
K?CN°h} + Ke*CN°hj. (5.4.16)

Therefore, applying the Cauchy-Schwarz inequality first and the elementary inequality
2ab < a® + b? later yields

N-1 N-1
Lia < 20y B[V Y (t) = Vi ()l AR] + 2k Y EIY Y (t) = Y Y (ta) | Bl
k=0 k=0
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N-1 N-1 N-1

<2 Y CR[YE M () = Vet ()P 4 b Y DR AGP 4 Y E[|E P
k=0 k=0
< 2 NE[|Y; "M (t,) = Vit M (t,)]? + KhiN*C + KCON*he® + KCN*hje*

Similarly, using Lemma one can see that

N—-1 N—-1
To < 20y S0 BV ™ (6) = Vi (1), A)] + 2 3 BV (1) = Vi (1), B
k=0 k=0

Also, we have E[|A4;]?] < h2N2C and
E[|Ey|?] € Ke2CN3h} + Ke*CN*h}. (5.4.17)

Thus,

N-1
Isp < 20 Y [V M () — YV (6 [E[| Ag ]
k=0
N-1

+ 20 Y B[V M () — Vit (8,) B[ B l]
k=0
N-1 N-1 N-1

< 2 3BV (t) = Vi M ) o b 3 BIAP) + Y Bl
k=0 k=0 k=0

< 2 NE[|Y; "M (t,) = Vit M (t,)]? + KhiN*C + KCN*hje® + KON®hje*
Additionally, we have
Is < MNE[Y M (t,) = Vit M () + W NE[YE Y (8,) — Vi M (2,) P
+ h NW3(LE M ey
< BWNE[Y M (t,) — Yt M ()

Substituting the bounds for the terms I; to Is into Equation ([5.4.13) yields that for

n<N-1_-1
B[ (taen) = Vi (tas) P < BIYY (8) = Vi (8) )
+ CE[|Y; "M (ta) — V"M (t,)]%] + CN®h} + CN?hie?,
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which implies that that for n < N1 —1

E[Y,," (tn1) = Vi, (b)) [P] < C D B[V (1) = Y35 (1))
k=1
+ CN?hi + ONhe*.

An application of the discrete Gronwall inequality yields the result.

5.5 Variance estimate of two coupled paths of the

MLMC-EM scheme

In this section we provide an estimate for the variance of two coupled paths which is
the main result of the paper and will be presented in Theorem [5.5.4L We will need the

following lemma taken from [1]. Proof of this theorem can be found in [2].

Lemma 5.5.1. Suppose that AS" and BS" are families of random variables determined
by scaling parameters € and h. Further, suppose that there are C; > 0,Cy > 0 and
C3 > 0 such that for all € € (0,1) the following three conditions hold:

(i) Var(A®") < C1e? uniformly in h,
(ii) |A="| < Cy uniformly in h,
(iii) |E[B="]| < Csh.

Then
Var(A®" B=") < 3C20,h%e? + 15C3Var(B=").

The following two lemmas that will be needed to prove Theorem [5.5.4]

Lemma 5.5.2. Assume that v : R? — R satisfies the Lipschitz condition, i.e. for all
x,y € R? there exists a positive constant L, such that |y(x) —~(y)|> < Llz —y|?>. Then
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for s € [0,1] one has

max  Var(y(sYo"M (#5) + (1 — s)(Yo"M(t,)))) < Ce?; (5.5.1)
0<n<N!-1 ! !

1<k<N

max  Var(y(sYy " (t,) + (1 — s)(Yi "M (¢,)))) < Ce. (5.5.2)
0<n<N!-1

Proof. We will only prove (5.5.1)), the prove for (5.5.2)) is very similar. Let z,, and
zn,_, be defined by (5.3.9)). Using the fact that for a random variable X and a constant
a, Var(X + a) = Var(X) and the fact that + is Lipschitz, we have that

max Var(fy(sY,fl’i’M(tﬁ) +(1- s)(Y,fl’M(tn))))
0<n<N
1<k<N

= max Var(y(sY, ™" () + (1= 8) (V" (8))) = (520, (8) + (1 = ) (zn, (1))

< | Jnax E[|(y(sY; " (t7) + (1= 8) (V"™ (2))) = (520, (85) + (1 = ) (zn ()]

= max LE[|sY,? "M (t5) + (1= 8) (Y™™ () — szm, (th) — (1 = 8)(2n, (t)) ]
1<k<N

< max SLE[|(Y "M (88) — 2, (t5) "] + (1 — ) LE[ (Y™™ (tn) — (20, () [P].
1<k<N

The required assertion follows by Lemma [5.3.7} U
Lemma 5.5.3. Let Assumption hold. Then there exists a positive constant C
such that

max [E[Y;"M () — Vot M(t,)]| < CNh.

0<n<Ni-1
1<k<N

Proof. From (j5.4.3) we have that

B[ (1) = Yo (t)]]

k—1 ) k—1 )
= DB ), £+ eI Y Blg(vie M 1), £, Ag|
j=0 Jj=0

By independence the second summand of RHS in above is zero. Thus using Jensen’s

inequality and Remark yields

k—1 ,
B, () = Vi M )] < B[ @), £
§=0
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k—1
e,, i €, ,{, 1/2
< > EWBQ A+ [V )+ WRL M)

§=0
— g4, M 1,5\12 1/2

< VB (1 2BV E)E])
§=0

An application of Lemma [5.3.3] and the fact that & < N, completes the proof. 0

Now, we can formulate the main result of the paper.

Theorem 5.5.4. Let Assumption hold, assume that U : R* — R has continuous

second order derivative and there exists a constant C such that

0?W
&Uiﬁxj

<C

< C and

(9@

foranyi,j=1,2,---  a. Then, we have

max Var(\Il(Y,fl’i’M(th)) — \I/(Y,flilM(th)) < Ce*hi |+ Ce'hyy.

0<n<M!-1

Proof. From (5.4.4) and (5.4.5)) we have that for n < N'=1 —1

Vi () = i )]y = [V () = Yt (8);
N-1

b Y (H M) ) = LG k), 25 )
k=0
N-1 ' |

S (B 0, £ = O ), £55)
k=0

,_.

¥ 5\/E (gj Vit M), L) — g (0 (), £ ) A€
(gj Vi ), £57M) = gy (VM (8), £570)) Ag
k
=2 (VY (t) = Vi ()] 4+ BTy 4 T+ o3/ e/

where f; is the jth component of f and g, is the jth row of g. Taking variances on both
sides of the previous inequality and using the fact that a finite sequence of random vari-

ables X;,i = 1,...,n, satisfies that Var(3_", X;) = >, Var(X;)+2 3, Cov(X;, Xj),
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we obtain

Var([V ™M (1) = Y'Y (tng)];) = Var (V™Y (t,) = Vit (t,)];) + b Var(Th)
+ hiVar(Ty) + e*hyVar(Ty) + el Var(Ty) + 2Cov([Ve ™™ (tar1) — VM (tara)]y, 1)
+2Cov([Ve "™ (i) = Vi M (tasn)]j, i)
+2Cov (V"M (tngr) = Vi "M ()] )i, e/ hiTs)
+ 2Cov([Y "M (tygn) = Vi M (tain)]j v/ HiTy) + 2Cov (W1, M Ty) + 2Cov (T, e/ IT)
+ 2Cov(l Ty, e/ lTy) + 2Cov(h Ty, e7/hT3) + 2Cov(hTs, e/ Ty)
+ 2Cov(e/ T3, e/ Ty).
(5.5.3)
By the independence of AEF with respect to
Vit M (tngr) = YoM (), 05 (VM (85), EZ;Y*’M) — g; (VM (1), £37M) and
g (VM (), £37M) = g5 (Ve m Y (), £3,7M), we have that

2Cov (Vi (1) = Vi M (tn)j e /i Ts)

Ny i (5.5.4)
= 2Cov([Y;," (tasr) = Y32 (tasn)lj, e/ i) =
Also note that
QCOV([YIZ’i’M(tM—l) - YhalﬁM (tnt1)lj, T)
= 2Nthov([Yffl’i’M(tn+1) — Y M (), (5 (Ve (ta), £ (5.5.5)

— LGN ), £
Substituting ((5.5.4)) and ( into and using the fact that for two random
variables X,Y’, we have that 2COV(X, Y) < Var(X) 4 Var(Y), yields

Var([V™ (1) = V" (tasn)];) < (14 Nhy)Var ([ (8,) — ViV (¢0)]))
N-1
RPN Y Var (VM (1), 257N = [0 k), 257
k=0

+ (4Nh; + 1)NhVar ( G (), £ = (VM (t), L‘Z’K’;’M)>

i 3 Var (s (1), G — gy (¥ 1), 650 Ak
k=0
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N-1
ey Y Var (g (G (0, £7M) = g5 (Vi (), £ ) Ak

k=0
+ QCOV<[Y;Z’i’M(tn) YhelllM( n)]j’

N— k
5@ E,Yn ,M E,’i, E,Xn,
h ij Vit M k), £ = £ k), 2570
=0

,_\

:Ifl+12+13+f4+l5+16.

In order to complete the proof of the theorem, we give estimates for I;,7 = 2,...,6,

which will be shown in the following lemmas.
Lemma 5.5.5. There exists a positive constant C' such that
I, < CN°Rhje*.

Proof. Using (B , we have that
51, g, Y M E,’L', EyXn,
Var(f (Vi (8), £ =[0G (), £571)
€,1, €, €yt &Y.y,

< oVar(f; (V"M (#6), £ = Y (), £57)

+ Var(f (V5 (1), cz;yn M) = B (1), £57M)) = B + Do
First we estimate l4. By the mean value theorem there exists an s € [0, 1] such that

s i, 5 Y, M €1, e, Yr M
€8, €8, &Yk M €8, £,1,
= <ij(Sth M) + (1= )Y M (), L), (VP () = Y ().

e e e Yk, e, e,
Let Vg f;(sY), ’M(tlﬁ)‘k(l_s)yh[ M(ta)), £le ) and (Y, M(tﬁ,)_ym *(tn))]q be the g
components of V f;(sY ™M (5) 4+ (1—s) Y M (t,)), £ M) and (V™ (#5) ~ VoM (¢,,))

respectively. We want to apply Lemma with Ash = ¥, fi(sY), lM(tfj) + (1 —
SYEM (1)), £77 M) and Bk = (VM (#6) — VM (£,))], so we check that the three

hy
conditions are satisfied. By Assumption [5.3.1} the function V7 f; is bounded, so V,f;
is Lipschitz on the first argument. Applying Lemma [5.5.2| with v = V,f;(-, £ EY M)
and hy, = hy, = h;, we obtain
Var(V, f;(sY M (t5) + (1 — s)Vie™™ (1)), £ M) < Gy, (5.5.6)
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so the first condition of Lemma [5.5.1| is satisfied. Conditions 2 and 3 are satisfied by
Assumption and Lemma [5.5.3| respectively. Thus by Lemma we have that

£,1, €,%, g, ,f, €,1, €%,
Var(quj(sth M(tﬁ) +(1— S)th M(tn))a ﬁhly M)[(th M(ta]i) - th M(tn))]q)
< 3C3CIN?hie® + 15C3 Var([(Yi "M (8) — VoM (£4))]q)-

In order to estimate Var([(Y,Z’i’M(t’,j) — Y,Z’i’M(tn))]q) we use Equation ((5.4.3) to obtain

Var([(V M (18) = Y™™ (t))]g)
k—1 ) — . . ’ .
< oVar(y £ (Vi M (t0), £ M V) + 2Var(e /Ry Y g, (VM (8), £ AG).
=0

J=0

By Asumption and Lemma [5.3.7| we have that

k—1 k—1
£,1, j €, T{, €,1, 1 g, ,{,
Var(Y fo (V"M (#), £ he) = Var(hy Y fo(VetM (), £375M) = fo(zn(8),6., )
7=0 7=0

k-1 ,
< IR (M), L3N = fo(zn(t), 6., 0))))7) < CNhie™.
=0

From (5.4.9) we have that

k—1 A
Var(ev/h Y go(Vi "M (), £ )AEL) < ONIye,

7=0
Thus
Var([(Y; "M (t5) — VoM (t,))],) < ON?hie? + CNRye®.

Using the formula Var(3>7, X;) < dY¢, Var(X,) with i = ¢, X; = [V (1) —
Y,fl’i’M(tn)]q yields

Var([(Yi "M (t8) = Yiet M (t,))]g) < d*CNhje® + d*CNIye® < CNhe®.
Thus,

[QA < CNhl€2.
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Next, we estimate Ir5. By Equation (2.2.8)) there exists a random variable s :  — [0, 1]
such that

€7i7 87 7167 Eviu 87 nsy
F M (), £ ) = (VoM (t), £
= E[0,f;(Z, £ M) (V) (VoM (k) — Y,;”’M@n)>>]Z:y;lw(tn>-

where Y2 i= sV "M (t5) + (1 - 8) Yo "M (1), Let 8,0 f5(Z, L3 M) (V) and [vio"M (k) —
Y,fl’i’M(tn)]q be the g-components of 0,f;(Z, £2’ly’f’M)(Y,f) and Y}Z’i’M(tfl) - Y,fl’i’M(tn)
respectively. Then

Var(B[0,.q/;(Z, £, ) (V) [V (8) — O Y PRV

= Var(Bfohafy(Z L) MO (1) = Vi ™ (el ey
= B[00z (t0), 0z 60) (o (G ) [V (1) = Vi (80)])
= Var(E[(9q i (Z, €3, ")) = O3z (t), 8y (6)) (2 (80))
X (Y M (8) = Y )l o)
< E[(E[(90fi(Z, L3,V (Y2) = O i (2 (£0), 24, 0)) (21, (£))
X [V () = Vi (el oy,
< E[B0u0 (2, L5V (Y) = iz (tn)s 8ap 0) (21 ) PR

< E[|[y " (1) = Y ()l ]),

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

(:34) and Lemma
&Y, My 1 rs
EE(00f5(Z: L3, )Y) = Ouafi Gz (tn)s 02, 0)) G (G )] pyzinrgy,y < €
and by Lemma [5.4.2
e,4,M /1 k e,1,M 2 212 2
E[|th (t;)) — Y, (tn)|7] < CN<h; + CNhie*.

Therefore
L < ON?h?e? + CNhet,
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and the proof is complete. 0]

Lemma 5.5.6. There exists positive constants C' and C such that

d
Iy < ONIy Y Var([(V"M (t,) = Vi M (t,)]g + CNhife.

q=1
Proof. Note that

Var(£ (VM (1), £5M) = £ (), £570)

< 2Var(f (V" (8), L3 = (G0 (), £37)

VAR (Y (1), £ — (VG (1), £52)) = Toa + Dy,
First, we estimate I35. By the mean value theorem there exists an s € [0, 1] such that

M (), L3 = (Y (), L5
= (VY Y () + (1= )Y (8)), L3, (Ve M (8) = Vi M ().

Let quj(SY,Z’i’M(tn)—|—(1—3)Y}fl’j’fw(tn)), ,C‘,EI’ZY"’M) and [(Y}Z’i’M(tn)—Y}fl’f’lj\/[(tn))]q be the ¢
components of ij(sY,fl’i’M(tn)—i— (1 —S)Y,fl’f’lM(tn)), E‘Z’ZY”’M) and (Y,fl’i’M(tn) —Yéiy(tn))
respectively. We want to apply Lemma with A5h = quj(sY,fl’i’M(tn) + (1 —
s)Y}ZflM(tn)), E‘Z’ly"’M) and Bo" = [(Y,Z’M(tn) — Y,fl’f’y(tn))]q so we check that the three
conditions are satisfied. Applying Lemma with v = V f;,k = 0,hy;, = hy—1 and
hi, = h;, we obtain

Var(Vof (Y, M () + (1= )Y, (8)), L) < Cre?,
so the first condition of Lemma [5.5.1] is satisfied. Conditions 2 and 3 are satisfied by
Assumption [5.3.1] and Lemma [5.5.3] respectively. Thus by Lemma [5.5.1] we have that

Var(V, f(sY ™ (tn) + (1 = )Y (4), £ D[V (8) = Y (ta)]g)
< 3C3CIN?hie® + 15C3 Var([(Yi ™M (t,) — Vi M (ta))]q)-
Using the formula Var(32¢ | X;) < dY.L, Var(X;) with i = ¢, X; = [Yfi’i’M(tn) —
Vit M (t,)]q vields
. . d . .
Var((Vi "™ (tn) = Vi (8))) < ) Var([(Vi ™ (1) = Y "V (8))]g + ON?hife?,
q=1
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Therefore,

d
Iia < CN?hie* + O Var([(VetM (ta) = Vi M(ta)],)-

q=1
Next we estimate I35. By Equation ([2.2.8)) there exists a random variable s :  — [0, 1]
such that

Yt (), L3 ) = (VY (), £377)
&Y, M s £,1, €%,
= Bl (2, £ (), (5 (1) = i () ]y
where Y2 := sV M () + (1= s) Y M (t,). Let 8,0 f5(Z, £ (V) and [Y; "M (17) -
Y,fl’f’y(tn)]q be the g-components of 9, f;(Z, EZ’ZY:’M)(YTf) and Y,fl’i’M(tn) — Y,flilM(tn)

respectively. Then

Var(E[amqu(Zv CZ’ZY;’M) (Yns) [Yhs,’i’M (tn> - YhE;ZM (tN)]q]Z:YSvi’M(tn))

hi_q

&Y, M s €,1, €,1,
= Var(E[gu,qu(Z7 ‘Ch,Y )(Yn)[th M@Z) - th M(tn)]q]zzyelivM

hyy (tn)

— El0pqfi(zn (B)s 2 0) (Fry (G Y3 (80) = Y3 (8)]g))

= Var(B[(Duq (7, L3,V V3) = O f5 iy (t), 2 ) (i, ()
x [V () — Vit (E)lall 7oy,

< BUB[Onali(Z, L5 ") V) = Opafi (Zniy (80)5 82 1) (2, ()
< [Vt M (t,) — vt (tn)]q]]zzy;l@f/f(tn))Q]

< E[Euallﬂfj(Z? ‘CQZYTf’M)(Y;) - aﬂ#}fj (Zhl—l (tn)7 5zhl_1(tn))(zhz_1 (tn)) |2]Z:Y5*i’M(tn)

hi_q

< E[|[Yi" Y (8) = Vi ()]l

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

£34) and Lemma
E[EHaMQfJ(Z, /CZY;M)(YP;) - 8M7ij (Zhl_l (tn)v 5Zhl—1 (tn)) (Zhl_l (tn)) |2]Z:Yh€[ii\/[(tn) S 052
and by Theorem [5.4.1

B[V M () = V"M (t,)]?] < CN?h} + Ce*Ny.
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Therefore,

Iyg < CN?*hie? + CONhy,

and the proof is complete.

Lemma 5.5.7. There exists a positive constant C' such that
I, < Ce®h} | + Ce*hi ;.

Proof. By Lemma [5.4.2) and Assumption [5.3.1] one can see that

N-1
&,i, e Y,F M &,i, &,Yn,
I <4hy Y CE[g; (VM (), £ M) = gi (VM (ta), £37 M) P)
k=0

< 8*mNK(Chi | + Ce*hy_y) = Ce?h; | + Ce*h? .

Lemma 5.5.8. There exists a positive constant C' such that
Is < Ce*h} | + Ce°h} .

Proof. By Assumption and Theorem we have that

N-1
e,0,M e, Yn,M e,i,M &,Yn,M
I5 < 4’y Z EHQ]'(YhZ (tn), £hl ) — gj(th_l (tn), Ehl_l )‘2]
k=0

<4 NK(Ch} | + Ce*hy_y) = C*h} | + C°h7 .

Lemma 5.5.9. There exists a positive constant C' such that
Is < 2Ny Var (Y Y (t,) — Vi M (t,)];) + CNhie.

Proof. Since the covariance is a linear function, by subtracting and adding

e, &Yk i, e, Y.k, &,i, &,Yn,
FOEM (), L) to [V M k), £ M) — (Y M (L), £77™M) we have that
Is = 2Cov [V (tn) = Y2 (k).
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=

€,, €, ,’f, £,1, €, 7’;,
b YL M ), 251 = 0 ), £57))

il
o

—~

o+ 2Cov [V ™ (1) = Vi M (ta);.
1

=

B YU O M (), £57M) = (M (1), £57))

o
[e=]

= I(;A + IﬁB.

By Lemma [5.4.3] we obtain
Ios = 2Cov <[Y,Z”’M(tn) = Vit M ()] b > (AL + B+ E@)
k=0

Using property (B.0.4) from the appendix we have

N-1
Ioa=2hy Cov([Y}Z’Z’M(tn) — VM (1,5, A@
k=0

N-1

20 Y Cov (VY (ta) = Y M (8))5, BY)
k=0
N—-1 ] ' )
2 Y Cov [V ) = Vi (1) ).
k=0

Using the definition of covariance and since the increments & in By are independent,

we find that

Cov([¥ ™ (ta) = i ()]s, BY)

= E[[y;;"" (ta) = Y ()] Bl — B[, (8) = Vi (8 JELB]] = 0.

Then using (B.0.3)) yields

N-1 N-1
Ioa < 2NhVar (V"™ (t,) = Vit (t,)];) + > Var(A]) + kY Var(E]). (5.5.7)
k=0 k=0

Recall from Lemma [5.4.3] that

k—1
] £,1 £,1 &, ricv 87i7 T €, 7?7
AL = (VY ™M (t5) 4+ (1= )Y (), £ M), e Y p e ), 57,

r=0
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In order to estimate Var(A]) we use Lemma with A" =V fj(sY,fl’i’M(tﬁ) +(1—
S)Y,fl’i’M(tn)), E;:”Y My and Boh = (b SR éf(Yhelz M, an M), so we check that the
three conditions are satisfied. The first and second conditions are satisfied by
and Assumption [5.3.1] respectively. By Lemma [5.3.3| and Assumption [5.3.1] we have
that

k—1
[Ellh Y fOG M (), £ ]l < ONy,

r=0

so the third condition is also satisfied. Thus Lemma [5.5.1| implies that

k—1
Var(A]) < CN?h%* + CVar([hy Y f(Vi M (#0), £ )],).
r=0
Lemma yields
k—1
Var([hy > f(ve M (8, £37M)],)
r=0
= Var([ hzZ{f Vet M (), £37M) = f (2, (£), 0 1)) Ha)
k—1

hlz{f Vet (), £ = o (8), 0, ) H) P < CN?hite?.

Therefore
Var(A7) < CN?h*e? + CN?hie. (5.5.8)
From ([5.4.15)) we have
Var(E]) < E[|EL?] < ON3h}e? + CN2h2e. (5.5.9)

Substituting ((5.5.8]) and ( - ) into we obtain

Isa < 2NhVar ([Y; "M (t,) = Vit M (8,)];) + CNhie®.
Using Lemma [5.4.4} (B.0.3) and (B.0.4), yields
Ies = 2Cov <[Y}Z”’M(tn) = Vit ()] b > (AL + E;))
k=0
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N-1

< 20y Cov (1% (k) = Vi M (1), AL)

k=0
N_1 . . .
+ 2 Y Cov (V™ (1) = Vi ()], )
k=0
4 ' N-1 . N-1 .
< 2N Var ([V Y (tn) = Vi "M (ta)];) + b Y Var(AL) + by Y Var(E}).
k=0 k=0
Recall from Lemma [5.4.4] that
k—1
AL =E[(0, (2, L3700 b D FOG M (), £ ) i,
r=0

Let 0, ,f;(Z, ,C;’ZY;’M)(Y;) and fq(Y,fl’i’M(t;), EZ’IYJ’M) be the the g-components of
.12, E;’ZY’S’M)(Yj) and f(Y}fl’i’M(t;), E‘;’ZY"T’M) respectively. Then
k—1

&Y, M s &5t r &Y .M
Var(E[0,,qf;(Z, L, ) (Y qu(th M(tn),/ihl >]Z=Yh8l’i’M(tn))
r=0
k—1 ‘
= Val"(E[anfj(Z, *C;;YWM)(Y:)}LZ Z fq(Y}Z,Z,M(t;)7 ,C;’lY"’M
r=0
k—1

o E[aM7QfJ(th (tn)a 5th (tn))(Zhl (tn))hl Z fq(YfZ’i’M(t;)’ EZ;YLM)])

r=0

)] Z:Y}fl’i’M (tn)

= Var(B[(0,,0./5(Z, £, ") (V;3) = Oug 5 (2 (b)), 021 1)) (2 (1))
k—1

X hy Z fq(Y}Z’i’M(t;), EZZYJ’M)]]Z:Y,jZ’i’M (tn))
r=0

< B[R f5 (2, L3 " )Y) = O (zn (tn), 824, (1) (2 ()
k—1

X hy Z fq(Yfi’LM(t;)a EZZYJ’M)]z:Y,fl“M(tn))2]

r=0

< BIE(00i (2, L3 ) Y:3) = Ouafi (zn(t), 82y 0) (21 (B D) 2oy,
k—1

< E[lh Y fo (VM ), L3,
r=0

where we have used the Cauchy-Schwarz inequality in the last step. By condition

(5.3.4) and Lemma m
EE 00 f5(Z, L3 0D = O (o (), Gy 1) (o (b)) poyginn, ) < CE°
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and by Lemma [5.3.3| and Remark

k—1

Ellh Y (VM (), £3 )P < ON2h.
r=0

Thus,
Var(A]) < CN?h}e?,

From ([5.4.17)) we have
Var(E]) < E[|EL?] < Ke?CiN3h} + Ke*CN*h}.
Therefore,
Isp < 2NWVar([Yi"Y () — Vo' M (t,)];) + CN?hie?

and the proof is complete. O
Continuation of the proof of Theorem [5.5.4] By Lemmas [5.5.5 we have

Var([Yy " (toy1) = V" (taga)]) < Var(Yie™Y (t,) = Y (82)]5)
d
+CONI Y - Var([VtM () = Vit M(t,)],) + CN®Bije® + CN?hiet.

q=1

Taking the maximum in both sides yields that for n < N'=! —1

e,i,M e,4,M o e,i,M e,4,M
max Var([Y, ™" (tni1) = Y3, 07 (b)) = max Var([Y, "7 (tn) — Y377 (1))

+ CNh; max Var([Y,fl’i’M(tn) — Y,flilM(tn)]J) + CN?h}e® + ON?hic".

1<j<d

An application of the Grownwall inequality produces

max _ Var([Vy Y (t,) = ViV (t,)];) < ON*hie® + ONhye'. (5.5.10)
0<n<N!-1 -1
1<Gj<N

In order to estimate Var(¥ (Y, R () U(Y, ilM(tn)) we apply the mean value theo-

rem, so there exists s € [0, 1] such that

WY M () =W (Y (8) = V(Y M (0) 4+ (1=) Y 1 (8)) (V" (8) =Y (1))
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We shall apply Lemma [5.5.1] with A%" = Vq\I!(sY,fl’i’M(tn) + (1 - S)Y,fliy(tn)) and
Bl = [(Yhsl’i’M(tn) — Y,flffw(tn))]q Applying Lemma [5.5.2{ with v = V, U, k = 0, b, =

hi—1 and h;, = h;, we obtain
e,i,M e,i,M 2
Var(Vq\If(sth (t,) + (1 — S)YhH (tn))) < Ce*,

so the first condition of Lemma [5.5.1]is satisfied. Conditions 2 and 3 are satisfied by

Assumption [5.3.1] and Lemma [5.5.3] respectively. Thus by Lemma [5.5.1| we have that

Var(V, U (Y™ (1) + (1= )Yt () (V™ () = Yt (ta)]o)
< ON?R2E + OVar([(VE M (1) — YoM (8,))],).

Thus

Var(\lf(y,;’m(tn)) — @(Y};’j%(tn)) < CN?h2e? + CVar((Y,fl’i’M(tn) — Y,fl’f’f”(tn)).

(5.5.11)
Sustituting (5.5.10|) into (5.5.11f) we obtain the desire result. O

5.6 Simulations

In this section we provide an example (based on [23]) to ilustrate the main result of

the previous section, Theorem [5.5.4. Consider the following MV-SDE with small noise
1
dX(t) = (—=X(t) — EE[X(t)])dt +eX(t)dW(t), X(0)=1, te][0,1/2]. (5.6.1)

As we have seen in section 5.3, SDE ([5.6.1)) can be regarded as the limit of the following

interacting particle system
€,4,M &,5,M 11 €,4,M €,4,M 7
dX=PM() = (= XM (1) — o= " XM (1) dt + e XM (0)dW (1) (5.6.2)

Assume M = 50 and ¥(z) = x. We simulated two coupled paths of SDE (5.6.2))
with timesteps h; and h;_; by the MLMC method. We computed the simulated paths
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following section 5.3, by forming

N-—1

X}EL;Z’M(tn—H) — XZ;z,M + ( X;‘le tk ZXezM tk )

- (5.6.3)
+evh Z XM Ak
k=0
and
. , | Y

XM () = X5 () + (=X () = 527 Z XM Vhis

- (5.6.4)

N-1
+ 5\/h_leEL;Z,7]1W (tn) Afﬁ,
0

k=

where £¢ samples of the standard normal random variable. We simulated in Matlab
samples of the Equations (5.6.3) and (5.6.4]) to test numerically the sharpness of the

bound obtained in Theorem [5.5.4] i.e.,

Var(X; " (to 1) = XM (taga)) < O(Eh7 ) +e*hiy). (5.6.5)

Note that

h} &% is the dominant term in e?h? | + &*h;_; if and only if h;_; > 2. (5.6.6)

In (5.6.5)) we see that the variance is O(e?h? | +&'h;_;). We formed the following 4 cases
by choosing the parameters h;_; and € in a way that allows to study the dependency

of the bound with respect to the terms €2, h? |, e* and h; individually.

e The exponent of h;_; in e*h;_;: we fix e = 27 and let

hy_y € {2713 2714 2715 916 9=17 9=18% "With this choice of parameters we have

that hy_; < €2, so by we know that e*h;_; is likely to be the dominant term
of the bound. We simulated the two coupled paths (5.6.2)) and ( six times,
where ¢ is fixed and h;_; is changing as described above. We plot the results
in a ‘log —log graph’ where log(h;—;) and log(Var(ij’M(th) - X,i;i’y(tnﬂ)))

are represented in the x and y-axis respectively, Figure The black dots are

125



the values of the variance obtained in the simulations for each h;_;. The red
line is the function f(x) = 1.02x — 13.50, which is the best fit curve (linear
regression) computed with the data (black dots). We observe that the slope is

close to 1 in agreement with the exponent of h;_; in *h;_;.

Figure 5.1: Log of variance of two simulated coupled paths where ¢ = 27% and h;_; €

—13 9—14 9—15 9—16 9—17 9—18
{2718, 2714 271e 2710 =17 918

log(variance)

225

-23

-23.5

-24

-24.5

-25

-25.5

-26

-26.5 I I I I I I ]
-12.5 -12 -11.5 -11 -10.5 -10 -9.5 -9

log(h, ;)

The exponent of h;_y in €2k} ;: we fix e = 271 and let

hy_y € {278,279 2710 9=11 9=12 9=131 * With this choice of parameters we have
that hy_; > €2, so by we know that e2h? | is likely to be the dominant term
of the bound. We simulated the two coupled paths and six times,
where ¢ is fixed and h;_; is changing as described above. We plot the results

in a ‘log —log graph’ where log(¢) and log(Var(XZ;i’M(th) - bell_i‘/[(tnﬂ))) are
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represented in the x and y-axis respectively, Figure [5.2] The black dots are the
values of the variance obtained in the simulations for each h;_;. The red line is
the function f(x) = 2.00x—15.67, which is the best fit curve (linear regression)
computed with the data (black dots). We observe that the slope is close to 2 in

agreement with the exponent of hy_; in e?h} ;.

Figure 5.2: Log of variance of two simulated coupled paths where ¢ = 27 and h;_; €

{2787 279’ 2710’ 27117 27127 2713}
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-28
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©
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-30

log(variance)

31

-32

-33

_34 | | | | | | | |
-9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5

log(h, ;)

e The exponent of € in e*h;_;: we fix hi_; = 27!% and let

e € {273,271275 276 27T} With this choice of parameters we have that hy_; <
g2, so by (5.6.6) we know that e*h;_; is likely to be the dominant term of the
bound. We simulated the two coupled paths (5.6.2) and (5.6.3) five times, where

h;_1 is fixed and ¢ is changing as described above. We plot the results in a
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‘log — log graph’ where log(e) and log(Var(Xfl;i’M(th) - Xfllz_]lw(tnﬂ))) are rep-
resented in the x and y-axis respectively, Figure [5.3 The black dots are the
values of the variance obtained in the simulations for each h;_;. The red line is
the function f(x) = 3.96x — 15.19, which is the best fit curve (linear regres-
sion) computed with the data (black dots). We observe that the slope is close to

4 in agreement with the exponent of h;_; in e*h;_;.

Figure 5.3: Log of variance of two simulated coupled paths where h;_; = 278 and

ee {278,274 275 276 -7}
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e The exponent of € in £2h? |: we fix hy_y =277 and let

e € {276,277 278 279 2710 9=} With this choice of parameters we have that
hi—1 > €%, so by (5.6.6) we know that £2h? , is likely to be the dominant term
of the bound. We simulated the two coupled paths (5.6.2) and (5.6.3) five times,
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where h;_; is fixed and ¢ is changing as described above. We plot the results
in a ‘log —log graph’ where log(h;—;) and log(Var(Xflf’M(th) - X;‘;;i_’y(tnﬂ)))
are represented in the x and y-axis respectively, Figure The black dots are
the values of the variance obtained in the simulations for each h;_;. The red
line is the function f(x) = 2.00x — 11.50, which is the best fit curve (linear
regression) computed with the data (black dots). We observe that the slope is

close to 2 in agreement with the exponent of € in £2h? ;.

Figure 5.4: Log of variance of two simulated coupled paths where h;_; = 277 and

e {276,277,278 279 210 -1}
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Chapter 6

Multilevel Monte Carlo EM scheme
for MV-SDDEs with small noise

Here we extend the previous chapter to MV-SDDEs with small noise.

6.1 The EM Scheme for delay MV-SDDEs with
small noise

Let W be d-dimensional Brownian motion defined on a complete probability space and

let 7 > 0. Consider the MV-SDDE with small noise of the form
dXe(t) = f(X°(t), Xo(t—7), LX) dt+eg(XE(t), X (t—7), L5)dW (t),t € [0,T] (6.1.1)
where ¢ € (0,1), £ is the law (or distribution) of X (t),
FiRYx R x Po(RY) — R? and g : R? x R? x Py(R%) — R
and the initial data satisfies the following condition: for any p > 2
[X(0): 7 <6< 0} = E € Ly ([—r. 0 Y,

that is = is a Fy-measurable C'([—7, 0]; R?)-valued random variable such that E||Z||P <

.

130



As we explained in the prelimiaries, by the propagation of chaos result, Theorem [2.2.9]
Equation (6.1.1)) can be regarded as the limit of the following interacting M-particle
system of R%valued MV-SDDEs
AxX=M () = FXEOM (), XM (¢ — 1), £ dt
+eg(XSWM (1), XM (t — 1), £25Mawi (), telo,T], (6.1.2)
with the initial condition X=*M(0) = zi, where £ .= = % O XM (1)

Our main task in this chapter is to discretize uslizlg the EM scheme and
estimate the variance of two coupled paths in the Multilevel Monte Carlo setting. As
we discussed in the previous chapter, this directly translates into the computational
cost of solving E[U((X=4M(T)].

We shall impose the following hypothesis on the functions f and g:

Assumption 6.1.1. There exists a positive constant K > 0 such that

|f<x7y7u) - f(‘fag?V)P N ’g(‘rvzﬁu) —g(f,g’ V)|2 < [((|3j - y|2 + ’1_: - g’2 +W§(,LL, V))v
(6.1.3)

holds for any xz,y,Z,§ € RY, u, v € Po(R%). Furthermore there exists a positive
constant K such that

IV f oy, )P VIV f (g, )P V10 (2,y, 1) (2)1* V1O f (2,9, 1) (2) [PV 18 f (2, y, 1) ()]
V00V [y, m? < K

forallz, y € RY, € Po(RY). In addition, there exists a positive constant K such that
10 f (2,9, 1)(2) = 0uf (2,5, 0)(2)]* < K (|l =2+ |y —g[* +[2— 2"+ W3(u, ). (6.1.4)

for all z,y,2,7,9,2 € R, u,v € Po(RY).

Remark 6.1.1. Assumption [6.1.1] implies the existence and uniqueness of the solution

to equation ([6.1.1]), see Theorem [2.2.4. Moreover, under Assumption [6.1.1} we have
[f @y, w)P Vgl y, w)[* < BOL+ [ + [y[* + W3 (u),
where 8 = 2max{1,|f(0,0,d)[,]9(0,0,d0)|}, and for any z,y € R? and u € Py(R?).
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We now introduce the EM scheme for (6.1.1). Given any time 7" > 0, assume that
there exists a positive integer h € (0, 1) such that h = % = . Let ¢, = nh for n > 0.

For n = —m, ..., 0, we compute the discrete approximations by setting Y (t,,) = Z(t,).

For n =1,..., N we define

Ye,z’,M _ Y}if;M + f(Y}i;zL,M’ Ye,i,M Lz,Yn,M)h + 5Q(Y;i’7i’M7 Ys,i,M ,CZ’Yn’M>AWi(tn),

hn+1 h,n—m? h,n—m?
(6.1.5)
M
where £ M = L $° Oy and AW (t,) = Wity1) — Wit,).
j=1
Let
Vit ) = vieM, € [tastas). (6.1.6)

M
For convenience, we define ﬁ;’f’M = 5> 5Yhs,i,M(t) and n,(t) = [t/h|h for t > 0.
=1

Then one observes 52{’]\/[ = E;Xh]\é) = E‘;’Y"’M, for t € [ty,t,11). We now define the

EM continuous approximate solution as follows:
t
Vo) =+ [ RO, Y s = ), £ s
0
t
+ e/ gV, M (s), VoM (s — T),ﬁ;’;/’M)dWi(S), t€[0,7]. (6.1.7)
0

The next lemma show the boundedness of the pth-moments of the EM approximate

solution.

Lemma 6.1.2. Let Assumption hold. Gien T > 0 and p > 0, we have that
E [ sup |Yh€’i’M(t)|p} < C.
0<t<T

Proof. Let p > 4. From ((6.1.7) we have that

M =

t
zh+ / FOVE (5) YR (5 ) L2V g
0

t
e / GV (), YEM (5 — 1), L5 )awi(s)]”
0
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Using the Holder and the BDG inequalities we obtain that for every ¢t < T

t
E [ sup |Y§’Z’M(t)|p] < 37 zo|P + (3T)p_1E/ |f(Y,f’Z’M(s), th”’M(s —7), CZ’;/’M)Pds
0

0<t<T
i p/2
ey (/ g(YVEM (5), VM (s — 7), ﬁz’,’;’MMQdS)
0

By Remark and the Wasserstein distance definition [2.2.2] one can see that for

every t <T

. t .
E [ sup |}7,f’Z’M(t)|p] <C+ C’/ E[sup [V (s)|P]dt.
0

0<t<T 0<s<t

The required assertion follows from the Gronwall inequality. Thus, the result is proved
for p > 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of
the proof of Lemma [3.3.6] O

The following lemma will be used later when estimating the variance of two coupled
processes in the MLMC setting. Let z,(t) := Z(t) for ¢ € [—7,0] and for ¢t € [0,T], let
zp(t) be the solution to

zn(t) = X(0) + /0 fCn(nn(s)), zn(mn(s = 7)), 0z(5) ) ds, (6.1.8)

Lemma 6.1.3. For any T' > 0 we have

E[ sup |V, (s) = zu(s)]?] < Ce2. (6.1.9)

0<s<T

Proof. Using ((6.1.7) and (6.1.9)), using the fact that |a + b|*> < 2a* 4 2b* and the

Cauchy-Schwarz inequality we have that for every ¢t <T
Vi (1) = an())?
= | Y7 s = ), £5) = Fonom)) s — 7)) 6o
e [ g0 ), 1 s ), 2w
0

< 2T/0 QM (), Y (s = 7), L™ = flan(mn(s)), 20 (s — 7)), 02,.9)) Pds
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2

t
w02 | [ g () ¥ s = ), £ )
0

By the BDG inequality we have that
2}

t
<4 /0 Elg(Y;™M (s), YoM (s — 7), £ 2 ds.

E[ sup / g(Y,f’Z’M(s), Y}f”’M(s — T),EZ’Z’M)dW’(s)
0

0<s<t

Thus by Assumption [6.1.1] one can see that

E[sup [V () — zn(8)]2] < 2TK/ (2E[ sup [V (s) — ()P

0<s<t 0<s<r

+ sup WQ(L";Z/M Oz(s)) dr+8T€2B/ (1+ 2E[ sup ]Y”M( )] —|—W22(,C2’§’M)ds.

0<s<r 0<s<r

Using (2.2.1)), (2.2.2) and Lemma we have that for all 0 <¢ <T
t
E[sup |Y"M(t) — 2,(1)*] < Ce* + C/ E[sup |V (s) — zu(s)|}]dr.
0<s<t 0 0<s<r

The final result is obtained by applying the Gronwall inequality. 0

6.1.1 The Multilevel Monte Carlo-EM Scheme

We now define the multilevel Monte Carlo EM scheme. Given any 7" > 0, let N >
2,1 € {0,...,L}, where L is a positive integer that will be determined later. Let
hy=T-N7' h_y =T -N-U=D Assume there exist positive integers m; and m;_; such
that hy = 7/m; and hy_y = 7/m;_; respectively.

For step sizes h; and h;_; the EM continuous approximate solutions are respectively
e = ot [ SO s = ). s
[0, Y s ), £ ),
and
Yt M) = o +/ FEM(s), Yt M (s — 1), L350 )ds
[V Y s = ) £ ).
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We now construct the discrete version of the previous approximate solutions using the
same Brownian motion for both processes. We say that the two processes are coupled.

Forn € {0,1,..., Nt —1}and k € {0,..., N}, let
t, = nh;_; and tfl =nh;_1 + kh;.

This means we divide the interval [t,,t,.1] by h; into N equal parts with t2 = ¢, t) =

tpy1. Forn€{0,1,...,N"1 —1} and k € {0,..., N — 1}, let

Yhal,i,M (tZ—H) — Ya,i,M(tk) + f(Y}Z’i’M(tk), Ye’i’M(tk . mlhl) ﬁa Y M)hl

k . o (6.1.10)
+ e/ Tug (Vi M (t8), Vi Mtk — myhy), £57 M) Ak,

X ,
where L‘Z’ZY"’M = ﬁ Zj]\il (5Y;l,j,1\1(t;é), the random vector AE® € R? has independent
components, and each component is distributed as N(0,1). Therefore, to simulate

i M
Yot we use

N-1
i i i i Yr
Vit Mt ) = Vit M () + > FOG M (5), Vit M (th — mghy), 237y
k=0

(6.1.11)
+s\/_zg YoM (), VM (8 — ), 257 M) ALk,
: €,4,M
To simulate Y, ™", we use
Vi () = Y () + FOG0 (0), Y3 (b — il ﬁi’lYZ’M)hzfl
(6.1.12)

i, M i, M o
+ e/ hug (Ve M (), Y M (t, — my by, £ Z AgE,
&Y, M _ 1 M .
where £, " = 7> 00 5Yil,i,iu(tn).
The following theorem is the main result of this section.

Theorem 6.1.4. Let Assumption hold. Then it holds that

max [V (t,) — Vit M(t,)]7]) < ON?hi + Ce*Nhy.

0<n<M!-1

In order to prove Theorem [6.1.4, we need a few lemmas.
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Lemma 6.1.5. Let p > 2. Then

max  B[|Y; Y (#h) = Vi M (£,)[7) < CNPAY + CNP2hy/%er
0<n<N!-1
1<k<N

where C' is a positive constant that only depend on B, T, m and X<(0) (5 from Remark
0.1.1)).

Proof. Let p =4. From (6.1.10)) we have that

k—1
Y}fl,z,M(tI:L> _Yhsl,z,M Zf Y}fllM(tJ) YhizM( _mlhl) EsY M)hl

7=0
—1—5\/_29 YoM @), Vet (t — mhy), £ M AEL
(6.1.13)

Hence, we obtain

fo— p

B[V M (#h) — vt M(t,)P] < 207 'R Z FEGEM ), Y M () — myhy), ﬁ” Mhy
7=0

k—1 p

eVl Y gV M), Vit M (1 — il £ AL

7=0

+ 2P|

(6.1.14)

By Remark and Lemma [6.1.2 one can see that

k— _ p
Z Yhalz M tj Ygl M(t — mlhl) ﬁ;’lYn’M)hl
j=0
k—1 ' ' _ )
NPUS TR £ (1), Y 8 = ), £5, )y
j=0

< NP~ 121@:{( (1+ VM) 4 (VM (1) — muhy) 2+ W2(LET M)))p/z}

N
—

< ONP'E Y (1 2BV ()] + BV (8, — mih)|7]) < ONTH.

<.
Il
o

(6.1.15)
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Using the BDG inequality, Remark and Lemma [6.1.2 we obtain

p

gz (Vi M (), Vi M () — ), L” My AE

7=0
k—1 p/2
< CePB | Y 19V M (), it M (], — muh), EEY] )P 7y
=0
k-1
< Cgpr/Qflh?ﬂ Z Yz—:zM t] Yz—:zM( mlhl) £EY M)‘Q)p/Q]
7=0
L J p/2
chpr/Q1h§7/2ZE|:<(1+|Y81M(tj>|2+|yslM< _mlhl)’2+w2(£€Y ))) :|
=0
< ONPPRYPer
(6.1.16)
The result follows from substituting (6.1.15) and (6.1.16]) into (6.1.14]). OJ

Lemma 6.1.6. Let f,, be the m'™ component of f. Then there exist s,r € [0,1] such
that

f(Y}Zyl,M(th>7Y}Z’Z7M( k _mlhl) EEY M) f(Y}::l,z,M( ) Y51M<t _mlhl> EEY M)

= Ay + By + E,
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where
A= (A;, ..., AY B, = (B},..,.BY E, = (E}, ..., B}
AR = (Y (s (VM (85), Vi M (b — muh))
(1= 8)(YEM (1), Y (b, — muha)), £, (P HE?)),
By = (V f (Vo M (£0), Vi M (, — muly), z” My (H2 H?)),
Ef o= (V2 fon (rs (VM (80), YWY (8 = muha)) = (V™Y (), Vi M (b — i)
+ (Y,Z”’M(tn), Vit M (i, — mghy)), L)
< (VM k), vt M (th = myhg)) — (Vi ™M (ta), Vi M (4 — muly))) s,
(HE', Hy™))
+ (ELOLY (2, Zo, L3 ) (Y0),
(VM (), Y (s — muhy)
_ (y;l,i,M(tn), Y]Zi’M(tn - mlhl)))>] D=V (1), Za =Y, (b —mah)’
(HF H?)),m e {1,....d}.
k—1

H' =Y M), YoM — ), £,

7=0

12 _hlZf Yhsle —mlhl) YhleM( —lehl) ,CEY" M),
HY = 5\/_29 Vit M), Yt Mt — myhy), c” MYAE

HIEQ = 8\/_29 Y}ZZM - mlhl) YaZM( - 2mlhl) CsY M)A§]

Proof. The proof is similar to the one in Lemma [5.4.3] we omit it here.

Remark 6.1.2. Y,fl’i’M(tﬁ) is a d-dimensional vector. (Y,fl’i’M(tﬁ), Y,fl’i’M(tf;‘ —mhy)) is a

2d-dimensional vector. H}! is a d-dimensional vector. (H}', H}?) is a 2d-dimensional

vector. V2 f, (rs((Yi "M (¢5), YoM (8 — muhy)) — (Ve (), VM (8, — muly))) s a
2d x 2d-matrix.
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Lemma 6.1.7. There exist random variables s,r : Q — [0, 1] such that
PO ), Y i), L5 = FOGEM (80), Vi (t ) £57) = At
where

A= (A;, ..., AY E, = (EL,....E}Y
AP = B[O, fun(Z1, Zo, L3N (Y0), Iy
k—1

i, M M Y M
x Y F ), Yt M (W — muh), £, )>]leYfl’i’M(tn),ZnghEl’i’M(tn—mlhl)

<.
Il
=)

B o= B0 (21, Zo, £57M)(Y,2)
(VM (9, YEM (5 — ) — (V™™ (8), Yo (1, — muha)))s, ex/Tu

k—1
AM g M YiM ;
X Z g(YhEl (t??l)’ Yhi (t"zl - mlhl)? ’C;l )A§7J’L>]leyhsl’i’lw(tn),ZQZY;l’i’Ai(tn—mlhl)’
j=0
V= sVt M k), vt M (th — muhy)) + (1= s) (V"™ (), Vi ™™ (t, — muhy)),

Ynsa”’ = ST((YIZ,LM (dj), YhEl,i,M (tI:L . mlhl>> _ (Y}Z%M(tn)y Y}:‘l,z,M(tn . mlhl)))
+ (VM (), Vi M (b — muln)).

Proof. The proof is the same as the one in Lemma [5.4.4] 0

Proof of Theorem 4| Recall that h; = 7/my, so for notational convenience we
will write Y}fl;M(tn — 7) instead of Y}flflM(tn — myhy). From and (6.1.12) we
have that for n < N*=1 — 1

e,4,M €,8,M e,4,M &,1,M
Yy (fnr) = Y30 () = Y3, () = Y0 ()
N-1
€,1, €,1, €,t, E,Yf,M
he Y (PO ) Y (), Y e — ), £ )
k=0
e,i,M e, i, M &, Yn,M
= FOGM ), Yt M (1 = 7), £
N-1

3 (O (), Vi (= ), £52)
k=0

e, M e,i,M &,Yn,M
- f(th,1 (tn)7 Y}'Ll,I (tn - 7—)7 Ehl,I ))
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+£\/—Z ( (VM (k) it (e — T),ﬁzlyf’M)
- g(Y}Z,z,M (tn)7 YE’Z’M(tn _ 7_)7 ‘CZQYMM))A&]?L
+E\/_Z ( Y]ZZM Y87,M( T),,C;;YTL’M)
i, M M Yo, M
= g () Y (= 7, £ ) Al
= Vi M(t,) — Vit (t,) + Ry.
By using the linearity property of the inner product, we obtain
Vet tr) = Vi ) = O (1) = Vi 1)
+ Ry, Y™ (t,) = Vi M (t,) + Ru)

= [N () = Y () 1” + | R + 2(v M (1) = Vit (t), B

Applying the elementary inequality |a+ b+ c+d|? < 4|al* + 4]|b]* + 4|c|> + 4|d|?* to the

term |Ry|? above, we derive that

Vi () = Y (b)) < 1YY (1) = Y (1) P

N-1 2
£,i,M e,i,M &Y M ,i,M e,i,M e,Yn,M
+ 4hl2 (f(yhl (tfi)? th (tfz - T)? Ehl ) - f(th (tn)a th (tn - T), Ehl ))
k=0
N-1 2
e,0,M e,i,M &, Yn,M e,0,M e,i,M &,Yn,M
B2 | ST (PO k), Vi = ), 257 = FOGEM (), Vi (b = 7), 257 )
k=0
N—-1 .
.1, £,i, e, Y, .M
22| 3 (g0 ), it el = ) 5
k=0
e,i,M E,i,M £ Yn
— g M (k) Y M (= 1), L5 ) Vi
N-1
e,i,M e,0,M e, Yn,M
22| 3 (g0 (), Vit (b = 1), £5M)
k=0
GO0, Vi (1 — 1), 5 ) g
N-1 .
e,i,M e,0,M e,0,M &g, Y M
+2h Y (VM (ty) = Vit M (5, FOGERM (), 1 — 1), £
k=0
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— O 00), Y (= ), 25
+ 2hl Z <Y}Z,1,M( ) Yhslzll\/l( )7 f(Yhsl,z,M(tn)’ Yhsl,'L,M<tn . 7_>7 Y}Zﬂ’M(tn)’ E;:L,ZYn,M)
k=0

- f(Y,;’ZM (ta), Yo (6 — 7). L50))
+2ey/Iu Z VM () = VM (k). (g (VM (1), i M (¢ — o), 277
- g(Y;Z’Z’M(t ), Y "M (b — 1), L5 M) AGE)
+ 2y Z (Vi M) = Y M (), (g(Vi M (), YoM (t, — 1), L5
— gV (1), it (b — 1), L7 AR).
Now, we take expectations on both sides of the previous inequality. Since AEF is

independent of Y}, M (kY and Y, ;M(tn), the expectation of the last two summands in

the equation above is zero. Thus,
E[Y " (tn1) = Vi, () [P] S E[Y,"Y (1) = Vi M () ] (6.1.17)

N-1
+4NR2 S E ‘ FOGERM (th) vt (¢h

YoM Yooy |2
=) LM = PG ), Vi M (b = ), 25|

k=0
N-1
. . . . 2
FANBE S B | ), Vi = 1), £ = PO (), Vi Y (b = 7). 2570
k=0
N-1 . ' .
AR D (g0 ek, Vi e = 1), £
k=0
— gV (1), Vi (0 = )£ ) gl |
N-1 '
+ 4[| 3 (g0 (b), Vi (b = 1), 5
k=0
GO (00, Vi 1 — 1), 52 ) A
N-1 i
€,1, £,1, €,1, e,i, &Y M
+ 20 Y B[V () = Vit M (), fOG M (), Yt (- 1), £ )
k=0

— FOGM ), i (b — 7). £57 )

141



N-1
+2h Y B[V () = Vit M (), FOG Y (), Vit (b, — 1), L5
k=0

= FOG () Y (b — 1), L))

—. E[|Y,fl’i’M(tn) — Y,f;j*%(tn)ﬁ] + L+ L+ I+ I+ I+ I (6.1.18)

By Assumption [6.1.1] and Lemma [6.1.5] one can see that

N—-1
I, <AKNR? ( Z(Em;i’Muﬁ) — y,;i’M(tn)P + JE|Y,;’Z¥M<15§ —7)— Y,fl’i’M(tn —7))?
k=0

+ WAL, .c;’lYmM))) < ON'hf + CN**h.

Also, by Assumption [6.1.1

N—-1
I, <AKNh? ( S CEY M () = Vit ()P + BV (8, — 1) = Vit (4, — 1)
k=0

VB £))
< ONB (B (1) — Y (0] 4 BV (b — ) — Vi (1, — 7)),

By the BDG inequality, Assumption and Lemma [6.1.5, we obtain

N-1
€, &, e Y,F.M
k=0
— gV M (), Yt Mt — 1), L3Py
N_l . . . .
= Chie? Y (B (05) = Vit (k) 2]+ BV (8 = 7) = Yt (b = 7))
k=0

+ WL L)) < ONPhje 4+ CNPRE!,
Similarly to I3,
I < ONhe? (B[ (k) = Vit (1) ) + B[ Y™ (b = 7) = Y (0 = 7))

An application of the Cauchy-Schwarz inequality and Assumption [6.1.1] gives

N-1
Iy =2h y BV M (L) = Vit (),

k=0
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€,1, £,1, anylva e, - Y,
f(th M(t:‘)7 th M(tﬁ - T)’ th ) - f(YhL M(tn)7 th M(tn - 7_)7 £le M)>]
N-1 '
= 2 Y BV (1) = Vi (1),
k=0

e, ., e YF.M ., e, e, Y,k M
f(th M(tﬁ)v th M(tk - 7_)7 'Chl ) - f(th M(tn)> th M(tn - 7-)7 'Chl )>]

N-1
+2h Y BV () = Vit (),
k=0

€,1, £,1, E:Yn]va e, e, Y,
f(th M(tn)’ th M(tn - 7—)7 ‘Chl ) - f(th M(tn)7 th M(tn - 7_)7 ‘Cle M)>]

=: Isa + I5p.

Applying Lemma we have

N-1 N-1
Isa < 2h Y B[V (6) = Vit (), An)] + 200 Y B[V (6) = Vit (8), Bo)]
k=0 k=0
N-1 ‘ ‘
+2h Y B[V () = Vit M (), B
k=0

By independence, the second summand above is zero. Also, we note that

k—1 . 2
B[] 4[] ZE AR < dRE|h Yy FV (), Vi (8, = ), £51)
m=1 j=0
k—1 . . , 2
FARE Iy fOG (8, = ), Vi (6, = 27), £
7=0

< aRRN Y B[(5(1+ V)
=0

2
+2¥t M, = )+ Y (8 - 20+ 2w e ) )|

< KhIN*C.
and

E[|Ex|?] ZIE (Em)?

< 2dKe*hyE [|Y}fl’i’M(t,’j) - Y,fl’i’M(tn)F
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2

X

k—1 )
VIS gV (), YoM (8, — 1), £V A
j=0

|

+ 2dKe*hE [|Y}Z’i’M(tﬁ) — Yt M ()

2

|

k—1 .
eV gVttt — 1), Vit (e — 27), L7 AL
§=0

X
. 47N\ 1/2
< 2dK(B[Y"M (t5) — Vit M (¢,)[1]) /2 Z (YoM () L‘EY MyAg
7=0
+ 2d K hy (B Y, (8h) = Vit M () ') /2
. 47N\ 1/2
Z (VM (= ), VM (8, = 27), £ M) Agg
=0
< 2CN°h} + 'CN?h}, (6.1.19)

where Lemma [6.1.5] is used in the last inequality. Therefore, applying the Cauchy-

Schwartz inequality first and the elementary inequality 2ab < a? + b? later yields

N-1 N—-1
Isa < 20y B[V M (6) = Y M )l ARl] + 200 Y B (1) = Vi (t) ]| Bl]
k=0 k=0
N-1 ' ' N-1 N-1
< 20 YD ROV (ta) = i (6 a3 BIAP + a3 BB
k:O = =

< 2mNE[[Y M () — Vi M (t,)[* + hiN°C + ON*hje® + CN°hje*
Similarly, using Lemma one can see that
N-1 N-1

s <20 Y BLY " (8,) = YV (8), Ae)] + 20 Y B[V Y (t,) = ViV (), Ey)]
) -1 l -1

Also, we have E[|A;]?] < hN%C and

E[|EL|?] < 2CN?h} + *CN?h]. (6.1.20)
Thus,
N—-1 ) '
Lip < 2 )y B[V (1) = Yt (t) B[ AL ]
k=0
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N-1

+ 2k ) B[V Y () — Y (t) [E[| Bel]]

k=0
N-1 ' ‘ N-1 N-1

<2 Y RV (k) = Vit )P 4 b Y DR AP] 4 Y E[|E
k=0 k=0 k=0

< 2mNE(Y; " (t,) = Vit M (t,)]* + hiN*C + CN*hje® + CN3hje*
Additionally, we have

Is < MNE[Y M (t,) = Vi M (8,) 2 + W NE[YE Y (t,) — YoM (8,) 2

+ WNE[YE M (1, — 1) = YoM (1, — 1) 2 4+ g NW3(L5 ™M govnM)

< B NE[Y; " (1) = Vi " ()P + R NEY Y (1, — 1) = Vit (b, — 7).
Substituting the bounds for the terms I; to Is into Equation (6.1.17) yields that for
n<N-1 -1

B[V (tns1) = Vi (b)) [P S B[V (8) = Vit (£0) ]

+ € (B (1) — Vi M (1)) + BV (1 — ) — Y3 (0 — 7))

+ CN?*h} + ON?hie",

which implies that that for all 0 < ng < N'=! —1

su E Ys i, M . YE KR M n su Ys,i,M Ys 0, M . 2
o I (b)) = Y30 (tns) kzo@lzk () = Y ()]
+ CN?hi + CNhe',
An application of the discrete Gronwall inequality yields the result. O

6.1.2 Variance estimate of two coupled paths of the MLMC-
EM scheme

In this section we provide an estimate for the variance of two coupled paths which is
the main result of the paper and will be presented in Theorem [6.1.10]

The following two lemmas that will be needed to prove Theorem [6.1.10}
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Lemma 6.1.8. Assume that v : R? — R satisfies the Lipschitz condition, i.e. for all
z,y € R there exists a positive constant L, such that |y(x) —y(y)|> < Llz —y|?. Then
for s €10,1] one has

mase Varly{s(Ve ™ (1), Vi (85— )+ (1= ) (Ve (), Yo (6 — 1)) < Cs2

0<n<Ni-1
1<k<N

Proof. The proof is similar to that of Lemma |5.5.2, we omit here. 0

Lemma 6.1.9. Let Assumption hold. Then there exists a positive constant C
such that

max |E[YS M (5) — Vi (t,)]| < ONhy.
0<n<Ni-1 ! !
1<k<N

Proof. From (6.1.10) we have that

B[ (1) = Yo (t)]]
k—1

Y B @), Y M =), L5

n

j=0
k—1 ' ' ]

eV Y Elg(ytM @), it - 1), £ A .
j=0

By independence the second summand of RHS in above is zero. Thus using Jensen’s

inequality and Remark yields

S
—_

B[ () = VM ()] < DB, Y (- 1), £ )

n

€, j €, j € ,{, 1/2
<Y BB+ Y Y @)+ Y @ = )P+ WEL ) )

£,1 1 £,1 j 1/2
< VB Y (L 2BV )] + Y (- 7))
j=0
An application of Lemma [6.1.2] and the fact that & < N, completes the proof. O

Now, we can formulate the main result of the paper.
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Theorem 6.1.10. Let Assumption hold, assume that ¥ : R* — R has continuous

second order derivative and there exists a constant C such that

oV 0*v
<C and <C
8!)%‘ - an ﬁxﬁx] -
foranyi,j =1,2,---,a. Then, we have

max Var(\IJ(Y}Z’i’M(th)) - \II(Y,ZifW(th)) < Ce*hi |+ Ce'hyy.

0<n<M!—1

Proof. From (6.1.11]) and (6.1.12)) we have that for n < N'=1 — 1

Y3 M (ben) = Y (tan)]y = [V (8) = Vi (80));

hi—1
N-1 .
€%, €%, &, Yy, M €,1, €%, &,Yn,
k=0

e,i,M e,i,M &,Yn,M ey, M e,i,M &,Yn,M
i Y (FOG M (1), Y M = 1), LM = Y (k) Vi b = 7). £
k=0

N-1
£,1, £,1, e,Y/f,M
ev/h Y (g ), Yt (th = 1), £ )

k=0
= i (G M () Y M (b = 1), £77) ) Al
- 5\/_2 <g] (YoM (), YoM (= 1), £
e, i, M e,i,M e, Yn,M
= g M () Y (= 1), L5 ) A,

where f; is the jth component of f and g; is the jth row of ¢g. Taking variances on

both sides of the previous inequality and using (B.0.1)), (B.0.3) and (B.0.4)) from the
Appendix, we obtain

Var([Vir o () = Vit (tae)]y) < (14 N Var(VE Y (t) = Y5 M ()]5)
N-1

+4h}N )~ Var ( LM () YEM (1 — ), LM
k=0

= G (1), Y (= 7)), EZ’ZY”’M))

+ (4Nhl + 1)NhlVar <fj (Y}Z»i’M(tn)7 thl,i,M (tn B T), EZ’ZY"’M)
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Ji,M S5, M 3Yn,M
— [V (), Yy o (b — ), L ))

N-1

. . e k

422y Y Var (g5 (VM (8), Vi (8 — ), £

k=0

e,i,M e,0,M e,Yn,M
— g (VM (), Vi M (b — 7). L5 ) A

Nil . .
ey Y Var (g (VM (8), Vi (b = 1), £52)

k=0

i, M M Yo, M
= g (G (k) Y (b = 1), £ ) Al

o+ 2C0v [V ™ (1) = Y M (1),
N-1 .
e,i,M e,1,M &Y, .M €,i,M e,4,M &e,Yn,M
by S M), Y = ), £ = (M (), Y (= 1), 257

k=0

::[1+[2+[3+[4+[5+16-

In order to complete the proof of the theorem, we give estimates for I;,i = 2,...,6,

which will be shown in the following lemmas.
Lemma 6.1.11. There exists a positive constant C' such that
I, < CN3Rhje?.

Proof. Using the fact that for two random variables X, Y, Var(X +Y") < 2Var(X)+
2Var(Y'), we have that
€,1, €,1, e, YF M €,1, €,1, &,Yn,
€., €., e Y,F M e, i, e Yk M
e,i,M e,i,M &Yk M e,i,M e,i,M e,Yn,M
+ 2Var(fj(th (), th (tn — 1), Ehl ) — fj<Yh, (tn), th (tn — 1), ‘Chl )
=: Ipa + I5p.
First we estimate I54. By the mean value theorem there exists an s € [0, 1] such that
e4,M e,i,M e, Y M e,i,M i, M &Y M
e,i,M e, i, M €5, M e, i, M &Yk M
= (VA (), Y3, (= 7)) + (L= ) (V0 (), Vi (6 — 7)), L3,
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Let Vo f; (s(YomM (85), YoM (5 — 7)) + (1= ) (VM (80), YoM (8, — 7)), £577 M) and
[(Y,ZZM(tfl) — Y,Z’i’M(tn))]q be the ¢ component of ij(s(Y,fl’i’M(tfl), Y,fl’i’M(th - 7))+
(1= ) (VM (1), YoM (¢, — 7)), £ M) and (VM () — Vit (1)) respectively.
We want to apply Lemma [5.5.1] with

AP = V£ (VM (15, YoM (1 =)+ (1) (Ve (), Yo (b —7)), £ and
Bsh = [(Y,;ZM(tfj) - Y}Z’i’M(tn))]q so we check that the three conditions are satisfied.
By Assumption , the function Vg f;j is bounded, so V,f; is Lipschitz on the first

and second arguments. Applying Lemma [6.1.8 with v = V, f;(-, -, E;’IY’?’M) and h;, =

hi, = h;, we obtain

e,i, ., ., e,i, e Y,F M
Var(V f(s(V " (#5), Y "M (=) +(1=s) (VM (1), Y M (ta—7)), L5770 )) < Chre?,
(6.1.21)
so the first condition of Lemma is satisfied. Conditions 2 and 3 are satisfied by

Assumption [6.1.1] and Lemma [6.1.9] respectively. Thus by Lemma [5.5.1] we have that

€,, £,1, £,1, £,1, £, T’f,
Var(V, fi(s(Vi M (), Vit (1 — 7)) + (1= o) (VM (), Vit (8 — 7)), £577)
< [ (1) = Vit M ()],)

< 3C3CIN?hie” + 15C Var ([(Y M (t) — YoM (£,))],)-
In order to estimate Var([(Y,fl’i’M(tfl) - thl’i’M(tn))]q) we use Equation ((6.1.10)) to obtain

Var([(VE M (8) — Y™ (1))

k—1 .
< WVar(D_ f (VM (), Y M — ), £ ) hy)
j=0
k—1 ‘ . )
+2Var(e/h Y g (VM (8), Vit M (] — ), £77 M) AG).
j=0

By Asumption [6.1.1] and Lemma [6.1.3| we have that

k—1 )
Var(Y_ f (VM (), YoM (@ — 1), £ )y)

j=0
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k—1

= Vax(ln 3 fo(¥ M0, Vi (8 = 1), 57 = folan (8, n(t = 7,0, 0)

J=0
k—1

< REE(QY So(¥ M (), Y "M (0, =), £ M) = fy(an(8h), (8 = 7), 0., (0 ))I]

J=0

< CN?R2E2.

From (|6.1.16)) we have that

n

k-1 ,
Var(ey/l Y gV (), Yo M (1 — 7), £ AE)) < CNIye®.
=0
Thus
Var([(Vi "™ (t5) — VietM (t,))]g) < CN?hie? + CNhie®.
Using the formula Var(3X" | X;) < dY20, Var(X;) with i = ¢, X; = [Y}ZZM(tZ) -
Y}fl’i’M(tn)]q yields
Var([(Y M (85) = Vet M (£,)]g) < AP CN?hie® + dPCNhe® < CNhye®.
Thus,

Iy < ONRhie*

Next, we estimate Iop. By Equation (2.2.8)) there exists a random variable s : @ — [0, 1]
such that

e, i, M €5, M e, Yk M e,i,M e,i,M e,Yn,M
fj(th (tn), th (tn — 1), ‘Chl ) — fj(th (tn), th (tn —7), ‘Chl )
g,Y, .M s e,5,M e,8,M
= E[(Qufj(zh Za, ﬁhl )(Yn )7 (th (ti) - th (tn)>>]Zl:yslvivM(tn),ZQZY}flvivM(tn_T)-
where Y5 := s(Y}Z’i’M(tﬁ), Y,fl’i’M(th —7)+ (1 - s)(Yhal’i’M(tn), Y}Z’i’M(tn —7)).

Let 0,.4fi(Z1, Za, EZ’IY*f’M)(Yj) and [Y,fllM(tfl) — Y,fl’i’M(tn)]q be the g-components of
Oufi(Zv, Zs, EZ’ZY’f’M)(Y;) and Y,fl’i’M(th) - Y,fl’i’M(tn) respectively. Then

Y .M 4, M i, M
Var(E[0,,of5(Z1, Zo, L) ") YOV () — Y (tn)]q]Zl:Y;l,i,M(tnLZFY;l,Z-,M(tH))

= Var(E[0,0i (21, Zo, £ (V)Y (1) = Vi (1))

2= (10252 ()
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= BB (2 (tn) 2h (b = T), 02y 0) (o (8)) V3" () — Vi " (8)]a])
= Var(E[(9uq i (Z1, Zo, £, )Y2) = O fi (2 (ta), 2 (b = 7), 62 00 (21 (£))
x [V M () = i M ()]

leY}fl’i’M(tn),ZQ:thl’i’M(tn))
e Y5, MN (v rs
S E[(B[(Oqfi(Z1, Za, L3 )Y) = Ouafi(zn (tn), 20, (tn — T), 02 (1)) (20, (80)))
X [Yé’i’M(tﬁ) — Y;Z’LM(tn)]q]]leyfl’i’M(tn),zzzy}fl’i’M(tnﬂ-))2]
&Y,5, M\ /15
< E[Euau,qu(Zl?Z?VChl )(Yn)

— Opq fi(om, (tn), 20, (tn — 7), 0, (tn))(zhl(tn))|2]ZI:Yhsl‘i’M(tn),ZQ:Y}fl’i‘A{(tnfr)
e,i,M e,0,M
< E[|[Y;, " (tn) = Y™ (ta)la 1),
where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition
(1) and Lemma
E[E(0,.0f5(Z1, Zo, L3 ) (Y;3)
- au,qu(zhl (tn)a Zh, (tn - 7-)7 5zhl (tn))(zhl (tn)) |2]Zl:Yfl’i‘M(tn),ZQ:Y}fl’i’M(tn—r)

< e

and by Lemma [6.1.5
e,4,M 4k e,1,M 2 2712 2
E[]th () — Y, (tn)]] < CN<h;y + CNRhe*.

Therefore

Ig < CN?*hie? + CNhi?,

and the proof is complete. 0

Lemma 6.1.12. There exists positive constants C' and C' such that

d
I < CNhy Y Var([(Y () = Vi M (t,)]g + CNhe.

g=1

Proof. Note that
Var(f; (Ve M (ta), YoM (t, — ), £57M) = FG0M (), Vet M (b, — 1), £37M)

151



€,1, €,1, &,Yn, €1, &,1,M e, Yn,M
S 2var(f.7 (th M(tn)7 th M(tn - 7—)7 Ele M) - f] (th,fw(tn)7 th*l (tn - T)’ Ehl ))

&ty 2 &,Yn, &1, &, &,Yn,M
+ 2Var(fj(th_1M(tn), th_IM(tn - 7), Eh,Y M) - fj(th_lM(tn)v th_IM(tn - 7), Ehzl )

=: I34 + I3p.
First, we estimate I3p. By the mean value theorem there exists an s € [0, 1] such that

fj(Yhsl,i,M(tn), Y}Z’i’M(tn —7), ﬁZ,ZYn,M) _ fj(Y,fl’f’f”(tn), Yé’f’y(tn — 1), ﬁz,lYn,M)
= (VA5 (0, Y™ (6= ) 4 (0= 90 1) Y (b = ), 257,

(V"M () = Y (ta)-

Let quj(s(Y,Z’i’M(tn), thl’i’M(tn -7)+(1- 3)(Y}Zilj‘4(tn), YflilM(tn - 7)), EZ’ZY"’M) and
[(Y,fl’i’M(tn) - Y,flilM(tn))]q be the ¢ components of ij(s(Y,fl’i’M(tn), Y,fl’i’M(tn — 7))+
(1— s)(Y,flifVI(tn), Y,flflM (t,—T1)), EZ’lY"’M) and (Yhsl’i’M(tn) — Y,flflM (t,)) respectively. We
want to apply Lemma [5.5.1f with

AS = 7, sV (40, Y (=) (1= ) (2 (), YoM (=), 257 and
Bt = (Y Mgy — Y, ilM(tn))]q so we check that the three conditions are satisfied.
Applying Lemma with v =V, f;,k =0,y = Ily_1 and hy, = h;, we obtain

Var (Vo f(s (V"™ (8), V" (=) +(1=) (Y (1), Vi o (8 =7)), £57Y) < i,

so the first condition of Lemma [5.5.1]is satisfied. Conditions 2 and 3 are satisfied by
Assumption [6.1.1] and Lemma |6.1.9] respectively. Thus by Lemma [5.5.1| we have that

Var(V f(s(V " (), Y™ (b — 7)) + (1= ) (V"M (8), Vi (1 — 7)), £571)
X [(Y}Zi,M(tn) - Yfiyfljv[(tn))]q)
< 3C3CIN?hie® + 15C3 Var ([(Yi ™M (t,) — Vi M (ta))]q)-

Using the formula Var(Z?zl X;) < dezl Var(X;) with i = ¢, X; = [Y,Z’i’M(tn) —
Y, fIM (tn)], vields

d
Var((Ve M (t,) = Yt (t,)) < €Y Var([(Vi (t,) — Vi ()] + CN2hie”.

g=1
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Therefore,

d
Lis < CN*RZ + O Var([(Vi Y (1) = Vi M (t,)],).
q=1

Next we estimate I35. By Equation ([2.2.8) there exists a random variable s :  — [0, 1]
such that
e, i,M e,i,M e,Yn,M e, i,M e,i,M e,Yn,
F M ), Yo (= 1), L300 = (V5 (), Y (b — ), £30)
e Y5 M\ v rs e, M e,

= E[(a,ufj(zla Z27 ﬁhl )(Yn )7 (th (tn) - thflz\/[(tn))>]Zl:Y};’Ei\A(tn)sz:Y;fl’i’iw(tn—T)'
where V¥ 1= (Y "M (£,), Vi ™M (ta — 7)) + (1 = $) (V"M (8), Vi "M (8, — 7).
Let 0,.4fi(Z1, ZQEZ’ZY;’M)(YTLS) and [Y,fl’i’M(t”) — Y,fl’f’y(tn)]q be the g-components of
Oufi(Zy, Zs, EZ’IYTf’M)(YTf) and Yhsl’i’M(tn) - Y}Z;M(tn) respectively. Then

Var(El0,qf5(Z1, Za, £, ) (V)Y (8a) = Vi (t0)]g)

1 :YhSlyi, i‘/f (t”)’Z2:YiZ’i‘f{ (tn—7) )

Y5 M s 4, M i, M
= Var(E[@H,qu(Zl, 23, ['21 )(Yn ) [Yhel (tfz) - Y}Z (tn)]q]zlzy}f;i‘/f (tn),@:y;l’fi”(tnff)

= B0 fi (2 (tn)s 2y (= )62 0) (s (8 Y (80) = Y (8)]])

= Var(B[(0p.0/5(Z1, Za, £3, ") (V) = O fi 2y (bn)s 2ny (b = 7)5 02 00) (2 (1))
X [Yffji’M(tn) - YhalflM (tn)]q“zl:Y,fl’ji” (tn), Z2=Y; M (tn_T))

< BUE((Opafi(Z1, Z2, £ ") (V) = O fi(my () 20y (b = 7). 62 (1) By (t)))
X [YfZi’M(t") B YhelilM (tn)]q” zlzy;lvfi” (tn),ZQ:Yfl’iiV[ (tnfT))2]
< EE(0uofi(Z1, Zo, L3 ) (VE)
— Oafi(zn (tn)s 20y, (b — 7), 5zhl,1(tn))(2hlfl(fn))|2]zlzyva(tn),sz;l’jf(tnff)

hi—1
e, i,M e,i,M
< B[|[Y;" () — Vi (ta)lal 1),
where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition
(6.1.4) and Lemmal6.1.3
&Y., My v rs
B(E(|00.q.f5(21, Za, L) )(Yy)

— auaqu(zhz_l (tn)a Zhi_1 (tn — 7—)7 5Zhl—1 (tn)) (Zhl_l (tn)) |2]leY’fl’if/[(tn),ZQ:Yil’i’iw(tn)

< Ce?
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and by Theorem [6.1.4
E[|Y; "M (t,) — Vit M (t,)]?) < ON?hf + C*Nh
Ry n h_y \In > 1 € l-

Therefore,

Iip < CN?h}e® + CNhy,

and the proof is complete.

Lemma 6.1.13. There exists a positive constant C such that
I, < Ce*h} |+ Ceh} .

Proof. By Lemma [6.1.5] and Assumption [6.1.1] one can see that

N-1
e, £,1 ) 7]:7
Iy < 4y Ellg; (Y (e0), Vi (8 — ), 237
k=0

4M AM Yo, M
— g (VM (), Y (b — 1), L3 )P

< 8*MNK(Chi | + Ce’hy_y) = Ch} | + Ce*hi .

Lemma 6.1.14. There exists a positive constant C such that
Is < Ceh} | + Ce%h7 4.

Proof. By Assumption [6.1.1| and Theorem [6.1.4] we have that

N-1
I <4y Y Ellgi (Ve (), Vi (t — 1), £57)
k=0

= g (VM (), Y (6 — 1), L5 ]
<4’ NK(Ch} | + Ce*hy_y)

= Ce’h}_| + CeOhi,.
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Lemma 6.1.15. There exists a positive constant C such that
Is < 2N Var (Y (t,) — Vi M (,)];) + CNhje.

Proof. Since the covariance is a linear function, we have that

N-1
&, &, &4, &, &Y M
k=0
E,’L', E,’L', €7Y7{€7M
— LG (1), Y = 1), £57))
N-1 .
€,1, €,i, €,i, €,1, &Yy, M
o+ 2Cov (VM (0n) = Vit (talgs b U0 (), Vi (= 1), 257

k
= FOG Y ), Y (b = 1), £57)]
== [GA + I()’B-

By Lemma |6.1.6] we obtain

N-—1
Isa = 2Cov ([Y,fl’i’M(tn) = Vit ()] e > (AL + B+ Ei))
k=0

Using property (B.0.4) from the appendix we have
N-1

Toa =2l Cov([¥i ™ (k) = Vi M (b)), AL
k=0

N-1

2 Y Cov (Y™ (6) = Vi (1), BY)
k=0
N-1

2 Y Cov (V™ (1) = Vi ()] B )

k=0
Using the definition of covariance and since the increments & in By are independent,

we find that
Cov [V ™ (ta) = Vi M (8], BY)

= B[V (ta) — Vi M (ta));B1] — IV () — Vi M () ;JE[BL] = 0.
Then using (B.0.3) yields

N—-1 N-1
Ioa < 2N Var [V M (t,) = Vi (£,)];) + h > Var(A}) +hy > Var(E]). (6.1.22)
k=0

k=0

155



Recall from Lemma [6.1.6] that

1 €,, £,1, €,, £,1, €, ,’f,
AL = (Vf(s(V "M h), VoM (th — 7)) + (1= o) (V"M (), YoM (b, — 1), £,
k—1
> PN ), YoM (- 1), £,

r=0
In order to estimate Var(A7) we use Lemma with
e ,i,M e,i,M e,i,M e,i,M &Y M
and B! = [h, 320 f(Y,fl’i’M(t;), Y}Z’i’M(t; — T),EZ;YLM)]q so we check that the three
conditions are satisfied. The first and second conditions are satisfied by (6.1.21]) and
Assumption [6.1.1] respectively. By Lemma [6.1.2] and Assumption we have that

k-1
[E{lh Y O (), Y (6, = ), £ ]| < ON,

r=0

so the third condition is also satisfied. Thus Lemma [5.5.1 implies that

k—1
J E,i, r E,’L', r E,YJ,M
Var(A}) < CN?We” + CVar([hy Y f(" M (t7), Vi (1, — 1), £ )]g).-
r=0
Lemma yields
k—1
£,1 r €,1, r &Y,y M
Var([hy Z f(Y, ,M(tn)7 Yy M(tn -7),L )Na)
r=0
k—1
E,i, T E,i, T E,YTT,M r r
= Var([h Y _{fOGM ), Y M (= 1), L3 = FCn (8, 2 (t, = ), 6200 o)
r=0
k—1
E,i, T E,’L', r E,Y;;,M r r
SB[ Y OG0, VM e, = 1), £57M) = FGn (), 2 (t, = ), 620 00 o) ]
r=0
< ON?hie*.
Therefore
Var(A]) < CN?h*e? + ON?hie. (6.1.23)
From (6.1.19)) we have
Var(E]) < E[|EL?] < CN3hie® + CN?hiet, (6.1.24)
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Substituting (6.1.23)) and (6.1.24]) into (6.1.22]) we obtain

Isa < 2NhVar([Y; "M (t,) = V"M (8,)];) + CNhie®.
Using Lemma [6.1.7, (B.0.3) and (B.0.4), yields

N-1
Isp = 2Cov ([Y;fM(tn) = Vit M ()] b > (AL + E;))
k=0
N—-1

<20y Cov (¥ (k) = Vi M (k) AL)
k=0

N-1

+2h) COV([Y;Z’i’M(tn) — Yo M (t)];, Ezi)
k=0
4 ' N-1 ' N-1 '
< 2N Var ([V, Y (tn) = Vi "M (tn));) + b Y Var(AL) + by Y Var(E}).
k=0 k=0
Recall from Lemma that
A‘]]i‘ - EKa#fj(Zl? ZQ? £2’1Y57M)<Y1f)7
k—1
E,’L',M r E,i,M 'd €,Y,"£,M
hl Z f(th (tn)7 th (tn - T)7 Ehl )>]Zl:Y;fl’i’M(tn),Zng,fl’i*M(tnf‘r)'
r=0

Let 0,0 fi(Z1, Zo, L3 (Yy3) and f, (V"M (), Vit (¢ — ), £7M) be the the g-
components of

Oufi(Zy, Zs, EZZY”S’M)(Y;) and f(Y}Z’i’M(t;), Y}Z’i’M(t’" —7), £Z7ZY”T’M) respectively. Then

n

Var(E[0,q fi(Z1, Zo, L) (V)

k-1
a,M /gy M o gr 7Y7:’M
x Ry Z fq(Y,fl (tr), Y,fl (t, —7), EZZ )]zlzy,flﬂ"M(tn),ZFY,fl’“M(tnff))
r=0
= Var(E[a“’qu(Zla ZQ; LZerf’M)(YnS)
k-1
a,M /r M (g7 7YJ’M
X Iy qu(yhi (tn),Y,fl (tr — T),EZ, )]leYfl’i’M(tn),Zzthsl’i’M(tnfT)
r=0
k-1
a,M /7 M g Yo M
— ElOu0 s (ta), 2 (b — 7). 6 00) (b S SV (80, Vi M (87, — 1), L5,
r=0

= Var(E[(Duqfi(Z1, Za, £3 ) (V) = Oug f5 (2, (bn) 20 (b = 7), 0 1)) (2, (E))
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k—1
0, M 4, M YO M
X 3 LM ), Y (= ), £ ) )

r=0
g,Y, M s
< E[(E[(Ouqfi(Z1, Za, L) )(Y) = Ougfi(zny () s 20, (tn — 7)), 02, 0)) (20, (E0)))
k—1
e, M /41 e 0, M /41 &Y,y M
X Iy Z fq(th (th), th (t, —71), ‘Chl )]leYfl’i’M(tn),ZQ:Y,fl’i’M(tn))2]
r=0

E[E[|8M,qu(zl> 2, 'CZ;Y;7M)(YS)

n

— Ouafilzn, (tn), 2z, (tn — 7), 6zhl (tn))(zhz (tn))|2]Z1:Y;l’i’M(tn),ZQZYhsl’i’M(tnfT)
M/ r M /r Yo, M
’hlqu Y, t hsl (tn_7—>7£;l )|2H7

where we have used the Cauchy-Schwarz inequality in the last step. By condition

and Lemma m

E[E(|0,,qf;(Z1, Zo, L3 (V,7)

n

— aﬂ:ij (Zhl (tn)7 Zhl (tn - 7—)7 5Zhl (tn)) (Zhl (tn)) ‘2]Zl:y;l»ialw(tn)722zy}~l€l,i,1\/f (tn) S 082

and by Lemma and Remark
k—1
€%, r £,1, r &Y,y M
E(lh Y fo(V ™ (1), Yt (6, = ), £ )] < ONH.

r=0
Thus,
Var(/_li) < CNthez.
From ([6.1.20)) we have
Var(E]) < E[|EL]?] < Ke?C\N3h} + Ke*CN*h?.
Therefore,
Isp < 2NWVar [V (t,) — Vo' M (t,)];) + CN?hie?

and the proof is complete. O
Continuation of the proof of Theorem [6.1.10| By Lemmas [6.1.1156.1.15| we

have
Var([Y ™™ (tus1) — Vi M (tara));) < Var([Y ™Y (t,) — V"M (t)]5)
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d
+CONIy Y - Var([V M (t,) = Vit M(t,)],) + CN®Bije® + CN?hiet.

q=1

Taking the maximum in both sides yields that for n < N'=! —1

max Var([Yy ™" (tosr) = Vi (tea)];) = max Var([Vi™ (1) — Y'Y (ta));)

1<j<d ! 1<j<d

+CONhy max Var([Y; " (t,) = i M (t)];) + CN®hie® + ON?hie,
An application of the Grownwall inequality produces

max  Var([Y"Y (t,) — YoM (t,)];) < CN?hie? 4+ CNhyet. (6.1.25)
OSnSNl,:l 1 -1
1<j<N

In order to estimate Var(W(Y) DM () — (Y, ;M(tn)) we apply the mean value theo-
rem, so there exists s € [0, 1] such that

WG (1)) — WY (1) = V(s (1), Y (1~ 7))

(L= (M (), Y2 (1, = D) (1) — Y (1))
We shall apply Lemma with
A =V U (s(YVi M (t,), Vi M (b — 7)) + (1= ) (VM (), Vi "M (t, — 7)) and B! =
[(Y,fl’i’M(tn) —Y,fl’f’fw(tn))]q. Applying Lemma |6.1.8 with v = V ¥, k = 0, hj;, = hy_; and

hi, = h;, we obtain
Var(V, U(s(V; Y (1), Vi (b — 1) + (1= ) (VY (0, Vi (1, — 7)) < 02,

so the first condition of Lemma [5.5.1] is satisfied. Conditions 2 and 3 are satisfied by

Assumption and Lemma respectively. Thus by Lemma we have that
Var(Vo W (s(Yi ™Y (8), Vi ™ (80 = 7)) + (1= ) (V" (), Y (80 — 7))

< [V () = Yo (a)]o)

< ON2h2e? + CVar([(YE ™M () — Vi M (t))],)-
Thus

Var(\IJ(Y,fl’i’M(tn)) - W(Y,;’j’y(tn)) < CN%h2e? + CVar((Y,fl’i’M(tn) - Y,fl’f’f”(tn)).
(6.1.26)
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Sustituting (6.1.25]) into (6.1.26]) we obtain the desire result.
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Appendix A

Some inequalities

Theorem A.0.1. (Burkholder—Davis-Gundy’s (BDG) inequality)
Let g € L2(R,;R™™). Define fort >0,

t t
Ty = / g, dWy and A; = / lgs|ds.
0 0
Then for every p > 0, there exist positive constants (depending only on p), such that
B[ A < Elsup |,[7] < GE[|A["?]
0<s<t
for allt > 0.

Theorem A.0.2. (Gronwall’s inequality)
LetT'"> 0 and C' > 0. Let u be a Borel measurable bounded nonnegative function on

[0, T, and let v be a nonnegative integrable function on [0,T). If
t
u(t) < C —i—/ v(s)u(s)ds forall 0<t<T,
0

then
t
u(t) < C'exp (/ v(s)ds) forall 0<t<T.
0

Proposition A.0.3. Letp > 1,6 >0 and a,b € R. Then

L 7p-1 blP
la+ bJP < [1+gﬁr <|a|p+u>.
g
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Appendix B

Basic variance and covariance

properties

Here, we summary a few useful properties and inequalities regarding the variance and

covariance functions. Let X, Y, V, W be random variables and a, b, c,d € R.
Definition B.0.1. (Variance)
Var(X) = E[(X — E[X])?.
Definition B.0.2. (Covariance)
Cov(X,Y) =E[(X —E[X]))(Y —E[Y])].
By definition of variance and covariance we have the following identity
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y). (B.0.1)

Lemma B.0.3.

Var (i XZ) < miVar(Xi). (B.0.2)

Proof Using the definition of variance, linearity of expectation and Cauchy-Schwartz

inequality, we obtain

Var (i X,») =K (i Xi— E[i Xz]) =E <2m: Xi— E[Xz]>

=

2
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<E mi(xz - E[Xi])Ql =m in:Var(XZ)
i1 i=1
O
Lemma B.0.4.
Cov(X,Y) < %Var(X) + %Var(Y). (B.0.3)
Proof Substituting into while setting m equal to 2.
O

Lemma B.0.5. The covariance function is bilinear, i.e.

Cov(aX + bY,cW 4+ dV) = acCov(X, W) + adCov(X, V) 4+ becCov(Y, W) + bdCov(Y, V).

(B.0.4)
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Appendix C

Mean value theorem

Lemma C.0.1. (Mean value theorem for a function of several variables)
Let G be an open subset of R™ and let g : G — R be a differentiable function. Then
there exists a t € [0,1] such that

9(y) — g(x) = (Vg((1 = t)x + ty), (y — z)).
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Appendix D

MATLAB code

MATLAB code that implements the simulation tests described in section

1 $macro that simulates the numerical adaptive-EM solution of

the SDDE (1)

2 clear

3

4 rng ('default");

5 rng (1) ;

6 s_.0 = 100;

7 T = 0.5;

8

9 dt = 0.000001;

10 nSims = 10000;

11

12 times = (0:dt:T);

13 times = [times T];

14 times = transpose (times);

15 numSaltos = length(times)-1;
16 dW = zeros (nSims,1l);

17

18 S = s_.0 + zeros(nSims,1);

19 %$Mpaths = zeros (nSims,numSaltos);

166




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

T_adap = 0;

hs=zeros (nSims, 1);

values = zeros (nSims,1);
Sprev = S;

values(:,1) = S;

tic

while min(T_adap) < T

Sprev = S;

h_adap = 1/25 * (abs(Sprev)<l)...

+ 0.25« (abs (Sprev) >1) .*max (1, abs (Sprev)) ./...

max (1, abs (-2xSprev-Sprev. 3+0.5xSprevxsin (100)));

dW= sqgrt (h_adap) .+ randn (nSims, 1) ;
S=Sprev+ (-2xSprev-Sprev. 3+0.5xSprevxsin (100)) .x. ..

h_adap+sqgrt (2) xcos (100) *Sprev. «dW;

T_adap = T.adap + h_-adap;

hs = [hs h_adap];
values = [values S];
end

toc

$macro that simulates the numerical (standard) EM solution of the
SDDE (1)

clear

rng ('default');
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

rng (1) ;
s_.0 = 100;
T = 0.0022;

dt = 0.0002;

nSims = 10;

times = (0:dt:T);

times = [times T];

times = transpose (times);

numSaltos = length(times)-1;

dW = zeros (nSims,1);

S = s_.0 + zeros(nSims,1);
values = zeros (nSims,1);
values(:,1) = S;

Sprev = S;

tic

for i=1:numSaltos

Sprev S;

dW= sqgrt (dt) *randn (nSims, 1) ;

S=Sprev+t (-2xSprev-Sprev. 3+0.5xSprev*sin (100) ) xdt+sqgrt (2) xcos (100) xSpre

values = [values S];

end

toc

values (6:9,:)=[1;
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40

41

42

43

44

values(:,11:13)=[];

values = log(abs(values));
values = values';

x = (0.0:0.0002:0.0018);

plot (x,values)

MATLAB code that implements the simulation tests described in section 5.6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

clear

rng ('default");
rng (1) ;
s_.0 =

epsilon = 2°-11;
hl = 2"-7;
nSims = 2000;

numParticles = 50;

times = (0:h_1:T+h_1);

times = [times T+h_1];

times = transpose (times);

numSaltos = length(times)-1;

dW = zeros (nSims, numParticles);

S = s_0 + zeros(nSims,numParticles);
S_minus = s_0 + zeros (nSims,numParticles);
Sprev = S;

Sprev_.minus = S_minus;
expected_Sprev = s_0;
expected_Sprev.minus = s._.0;
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27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

tic

[

for i=l:numSaltos % numSaltos HAS TO BE an even number

expected.S = zeros (nSims,1);

expected_S_.minus = zeros (nSims,1);

for j=l:numParticles

Sprev(:,3) = S(:,3);
dW(:,3) = sgrt(h_1)+*randn(nSims,1);
S(:,J)=Sprev(:,3j) + (-Sprev(:,]J)-0.5xexpected_Sprev)xh_1 +

epsilonx (Sprev(:,J)) .xdW(:, J);

if mod(i,2) == 0
Sprev.minus(:,j) = Sminus(:,J);

S_minus (:, j)=Sprev.minus(:, j)+(-Sprev_minus (:, j)-0.5+xexpected_Sprev) x (h

+ epsilon * (Sprev_minus(:,J)) .x(dW(:,J) + dW_prev(:,73));
%$values_minus = [values_minus S];
end
dW_prev (:,3) = dW(:,3);

expected.S = expected.S + S(:,]);

expected_S.minus = expected.S_.minus + S_minus(:, J);

end
expected_Sprev = expected.S / numParticles;

expected_Sprev_.minus = expected_-S_.minus / numParticles;

end
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60

61

62

63

64

toc
diff = S - S_minus;
V = var (diff);

variance = mean (V) ;

o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

h = zeros(6,0);

h(l) = 27-13; h(2) = 27°-14; h(3) = 2°-15; h(4) = 27-16;

h(5) = 2°-17; h(6) = 27-18;

clear

var = zeros(6,0);

var(l) = 1.44924236792382E-10; var(2) = 7.00796703487318E-11;
var(3) = 3.44170640135815E-11;

var(4) = 1.70202378303428E-11; var(5) = 8.47381928597234E-12;
var (6) = 4.24656270332934E-12;

h = log(h);

var = log(var);

scatter (h,var, 'black"')

function res =f (x)

a = 1.01782587505298;
b = -13.4987407417417;
res = axx + b;

end

hold on

fplot (@ (x)f(x), [h(6),h(1)], 'red");
hold on

xlabel ("log(h_{1-1})")
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ylabel ('log(variance) ')

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

clear

h = zeros(6,0);

h(l) = 2°-8; h(2) = 27-9; h(3) = 27-10;
h(5) = 2°-12; h(6) = 2°-13;
var = zeros(6,0);

var(l) = 2.34889611913546E-12; var(2)
var(3) = 1.45746201473501E-13;

var(4) = 3.64562088338735E-14; wvar (5)
var (6) = 2.26812526205551E-15;

h = log(h);

var = log(var);

hold off

scatter (h,var, '"black")

function res =f (x)

a = 2.003492929;

b = -15.6671214234075;
res = a*x + Db;

end

hold on

fplot (@ (x)f(x), [h(6),h(1)], 'red");
hold on
xlabel ("log(h_{1-1})")

ylabel ('log (variance) ")

h(4) = 2°-11;

5.87202344934886E-13;

9.08706974096245E-15;
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

clear

e = zeros(5,0);

e(l) = 2°-3; e(2) = 2"-4; e(3) = 27-5;
e(b) = 27-7;

var = zeros(5,0);

var(l) = 6.82952513950179E-11; var(2)
var(3) = 2.66599756200494E-13;

var(4) = 1.70743520978924E-14; wvar (5)

e = log(e);
var = log(var);
hold off

scatter (e, var, 'black")

function res =f (x)

a = 3.96174602457879;
b = -15.1947788474293;
res = a*x + Db;

end

hold on

fplot (@ (x) £ (x), [e(5),e(1)], 'red");
hold on
xlabel ('log (epsilon) ")

ylabel ('log(variance) ")

e (4)

= 27-6;

4.24656270332934E-12;

1.1727764029295E-15;

clear

e = zeros(6,0);

e(l) = 27-6; e(2) = 27-7; e(3) = 27-8;
e(5) = 27-10; e(6) = 2"-11;
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

var = zeros(6,0);

var(l) = 2.46028511616704E-09; var(2)
var(3) = 1.51689746473825E-10;

var(4) = 3.78964401334516E-11; wvar (5)
var (6) = 2.36801884749758E-12;

e = log(e);

var = log(var);

hold off

scatter (e, var, 'black")

function res =f (x)

a = 2.00346260244457;

b = -11.496111583537;
res = a*x + Db;

end

hold on

fplot (@ (x)f(x),[e(6),e(l)], 'red");
hold on
xlabel ('log(epsilon) ')

ylabel ('log(variance) ")

6.08421725877772E-10;

9.47248315902495E-12;
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