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Abstract

In this thesis we investigate explicit numerical approximations for stochastic differ-

ential delay equations (SDDEs) under a local Lipschitz condition by employing the

adaptive Euler-Maruyama (EM) method. Working in both finite and infinite horizons,

we achieve strong convergence results of the adaptive EM solution. We also obtain the

order of convergence in finite horizon. In addition, we show almost sure exponential

stability of the adaptive approximate solution for both SDEs and SDDEs. Further,

we prove strong convergence of the adaptive solution for McKean-Vlasov SDDEs (MV-

SDDEs). In the second part of the thesis, we estimate the variance of two coupled paths

derived with the Multilevel Monte Carlo method combined with the EM discretization

scheme for the simulation of MV-SDEs with small noise first and for MV-SDDEs later.

The result often translates into a more efficient method than the standard Monte Carlo

method combined with algorithms tailored to the small noise setting.
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ential delay equations (MV-SDDEs); Strong convergence; Boundedness of the pth-
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ance of two coupled paths
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Chapter 1

Introduction

In 2020, Wei and Giles [14] obtained the boundedness of the pth moments of the

numerical solution using the adaptive Euler Maruyama (EM) method in a finite horizon

under local Lipschitz and one-sided linear growth conditions for a standard SDE of the

type

Xt = f(Xt)dt+ g(Xt)dWt, t ≥ 0.

In the adaptive EM scheme, the time step is not a constant, but a function of the

solution at that point in time. They also, under more restrictive conditions, showed

strong convergence in infinite horizon. In Chapter 3, we extend their work to SDDEs

in both, finite and infinite horizons. Following [14], we will show the boundedness of

the pth moments but in our case, this is not enough to prove strong convergence. The

main difficulty is that the delay times might not match the times where the numerical

solution is computed. To solve the issue, we introduced an auxiliary piecewise constant

process on the delay times. This varies from the standard EM method for SDDEs and

requires a new proof of convergence.

In [14], the almost sure (a.s.) exponential stability of the adaptive-EM solution was

not studied. Here we studied it first for SDEs and later for SDDEs. Moment stability

for numerical solutions of SDDEs has been studied extensively, see for example [3],

[39]. Almost sure exponential stability is usually derived from moment stability by
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means of the Borel-Cantelli lemma and Markov’s inequality (see [25]). In Wu et al.

[49], using the EM and the Backward EM (BEM) methods, a.s. exponential stability

was studied for SDDEs without using moment stability. Their approach was based on

the martingale convergence theorem. They required the linear growth condition when

dealing with the standard EM scheme. When they weaken the linear growth to the

one-sided linear growth condition for the drift function, they showed how the standard

EM approximate solution loses the stability of the exact solution. Then they showed

that under the one-sided linear growth condition, the a.s. exponential stablility can

be achieved by using the BEM method. This method is implicit and therefore more

computationally expensive than explicit methods like the adaptive EM. In the last three

sections of Chapter 3, under similar conditions to the ones used in [49], we obtained

a.s. exponential stability using the EM-adaptive method. At the end of the chapter,

in Section 3.7, we present some simulations to ilustrate the ideas discussed in the

stability sections. Chapter 3 is based on the paper “Explicit Numerical Approximations

for SDDEs in Finite and Infinite Horizons using the Adaptive EM Method: Strong

Convergence and Almost Sure Exponential Stability”, which has already been accepted

for publication in the journal of Applied Mathematics and Computation.

In 2021 [46], Reisinger and Stokinger extended the work on the adaptive method

from [14] to MV-SDEs. For two different particles the value of the processes at time tn

may differ resulting in two different values (one for each particle) of the random variable

tn+1. This, unlike the standard EM method, presents a challenge when computing

1
M

∑M
j=1 δX̂j,M (t1)

. In [46], they proposed two different schemes, which both deal with

this issue. In Chapter 4, we extend these two schemes to the delay case and prove the

strong convergence of the adaptive numerical solutions for MV-SDDEs.

An important problem in mathematics is to compute E[Ψ(XT )] where {Xt}0≤t≤T is

the solution to an SDE and Ψ : Rd → R. This is a very significant problem in financial

mathematics where financial derivatives are priced by computing the above the expec-

tation. Among all the methods that allow us to compute the previous expectation,

Monte Carlo simulation is arguably the more flexible. Its drawback is the high com-
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putational cost. Therefore a lot of effort has been placed to reduce this cost. In 2008,

Giles, in a very relevant paper, [15], proposed the multilevel Monte Carlo (MLMC)

method which greatly reduces the computational cost with respect to the standard

Monte Carlo (MC) method. Since [15], numerous papers have appeared to customize,

adapt and extend the principles of multilevel Monte Carlo method to specific problems.

One of these papers is [1], where the authors applied the multilevel Monte Carlo frame-

work to standard SDEs with small noise. They compare the computation cost derived

from the standard Monte Carlo method (combined with discretization algorithms tai-

lored to the small noise setting) versus the multilevel Monte Carlo method combined

with the Euler-Maruyama (EM) scheme. In Chapter 5, we extend the work from [1]

to McKean-Vlasov SDEs (MV-SDEs) with small noise and we obtained the same es-

timate for the variance of two coupled paths. This presents some challenges since we

have to deal with the measures approximation 1
M

∑M
j=1 δX̂j,M (t1)

. The conclusion we ar-

rived at is that the additional McKean-Vlasov component does not add computational

complexity (per equation in the system of particles). Chapter 5 is based on the paper

“Multilevel Monte Carlo EM scheme for MV-SDEs with small noise”, which has been

published in the journal Numerical Algebra, Control and Optimization. In Chapter 6

we extend the work from Chapter 5 to MV-SDDEs.
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Chapter 2

Preliminaries

In this chapter we review some results from stochastic processes and stochastic differ-

ential equation (SDEs) that will be used later throughout the thesis.

2.1 Notation and basic definitions

For a Rm-vector v, we denote the Euclidean norm by |v| := (|v1|2 + ... + |vm|2)
1
2 and

the inner product of two Rm-vectors v and w by ⟨v, w⟩ := v1w1 + ... + vmwm. For a

m× d matrix A, we denote the Frobenius matrix norm by ||A|| :=
√

trace(ATA).

Definition 2.1.1. A probability space (Ω,F , P ) is said to be complete, if for all B ∈ F

such that P (B) = 0, we have that if A ⊂ B, then A ∈ F .

Definition 2.1.2. A filtration {Ft; 0 ≤ t ≤ ∞} on (Ω,F , P ) is a collection of sub-σ-

algebras of F , such that Fs ⊂ Ft for every s ≤ t ≤ ∞.

Remark 2.1.1. The time parameter set can also be [0,∞) or a finite set [0, T ] for some

T > 0. Sometimes, for convenience, we will not specify the time parameter set and we

will just write {Ft} to denote the filtration.

Definition 2.1.3. For a filtration {Ft}, we define the σ-algebras

Ft+ := ∩s>tFs; Ft− := σ(∪s<tFs).

4



We say that the filtration is right-continuous (left continuous), if Ft = Ft+ (Ft = Ft−)

for all t.

Definition 2.1.4. A filtered complete probability space (Ω,F , {Ft}, P ), is said to satisfy

the usual conditions if

(i) The filtration {Ft} is right-continuous.

(ii) F0 contains all P -null sets of F .

Definition 2.1.5. A stochastic process X := {Xt; 0 ≤ t < ∞}, is a collection of Rd-

valued random variables. The process is said to be Ft-adapted if Xt ∈ Ft (i.e. Xt is

Ft-measurable) for each t.

Remark 2.1.2 (Notation). When it is important to emphasise the time parameter set,

we denote a stochastic process by {Xt; 0 ≤ t < ∞} or {Xt; 0 ≤ t ≤ T}. But when

there is no place for confusion, we will denote the process just by a capital letter, in

this case, X. When we write Xt we are referring to a random variable. For example,

we will denote by {Wt}0≤t≤T or just W a standard d-dimensional Brownian motion.

Definition 2.1.6. A stochastic process X is said to be bounded if there exists a constant

K > 0 such that for almost all ω ∈ Ω and all t ∈ [0,∞), |Xt(ω)| ≤ K.

Definition 2.1.7. Two stochastic processes X and Y, are modifications of each other

if

P (Xt = Yt) = 1 for all t.

We say that X and Y are indistinguishable if

P (Xt = Yt, for all t) = 1.

Definition 2.1.8 (Martingale). A stochastic process M is a martingale with respect to

the filtration {Ft} (or a {Ft}-martingale) if:

(i) M is adapted to {Ft};
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(ii) E|Mt| < ∞ for all t ≥ 0;

(iii) E[Mt|Fs] = Ms a.s., for all 0 ≤ s ≤ t.

Definition 2.1.9 (Stopping time). The random variable τ , taking values in [0,∞], is

an {Ft}-stopping time if

{τ ≤ t} = {ω : τ(ω) ≤ t} ∈ Ft

for all t ≤ ∞.

Definition 2.1.10 (Stopped process). Given a stochastic process X and a stopping

time τ , the stopped process Xτ is defined by

Xτ
t := Xt∧τ (ω).

Definition 2.1.11 (Local martingale). Let M be an adapted process null at 0. Then

M is called a local martigale null at 0, and we write M ∈ M0,loc, if there exists an

increasing sequence {τn} of stopping times with τn ↑ ∞ a.s. (i.e. for each T > 0

and each ω ∈ Ω, there exists N(ω), so that n ≥ N(ω) implies τn(ω) ≥ T ) such that

each stopped process M τn is a martingale (null at 0). If M is also continuous we write

M ∈ cM0,loc. The sequence {τn} is referred to as a reducing sequence for M (into M0).

Definition 2.1.12 (Cadlag process). A function is said to be cadlag if it is right-

continuous with left limits. We say that a stochastic process is cadlag if for almost

every ω ∈ Ω, t → Xt(ω) is a cadlag function.

Definition 2.1.13 (Semimartingale). A process X is called a semimartingale if it is

an adapted process that can be written in the form

X = X0 +M + A, (2.1.1)

where X0 is an F0-measurable random variable, M is a local martingale null at zero

and A is an adapted cadlag process, also null at zero, having paths of finite variation.

We denote by S the space of semimartingales and by cS the subspace of continuous

semimartingales.
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Theorem 2.1.14. [49][30](Discrete semimartingale convergence theorem)

Let {Ai}, {Ui} be two sequences of nonnegative random variables such that both Ai and

Ui are both Fi−1-measurable for i = 1, 2, ... and A0 = U0 = 0 a.s. Let Mi be a real-

value local martingale with M0 = 0 a.s. Let ζ be a nonnegative F0-measurable random

variable. Assume that {Xi} is a nonnegative semimartingale with the Doob-Mayer

decomposition

Xi = ζ + Ai − Ui +Mi.

If limi→∞Ai < ∞ a.s., then for almost all ω ∈ Ω,

lim
i→∞

Xi < ∞ and lim
i→∞

Ui < ∞,

that is, both Xi and Ui converge a.s. to finite random variables.

Definition 2.1.15. Let 0 ≤ a < b < ∞. Denote by Li([a, b],Rd×d̄), i = 1, 2, the space

of all Rd×d̄-valued measurable {Ft}-adapted processes f := {ft, a ≤ t ≤ b} such that∫ b

a

||ft||idt < ∞ a.s.

Denote by M2([a, b],Rd×d̄) the space of all processes f ∈ L2([a, b],Rd×d̄) such that

E
[∫ b

a

||ft||2dt
]
< ∞.

Definition 2.1.16. A d-dimensional Ito process is an Rd-valued continuous adapted

process xt = (x
(1)
t , ..., x

(d)
t )T on t ≥ 0 of the form

xt = x0 +

∫ t

0

fsds+

∫ t

0

gsdWs,

where ft = (f
(1)
t , ..., f

(d)
t )T ∈ L1(R+;Rd) and g = (gij)d×d̄ ∈ L2(R+;Rd×d̄). we shall say

that xt has stochastic differential dxt on t ≥ 0 given by

dxt = ftdt+ gtdWt.

Theorem 2.1.17. (Ito’s formula)

Let xt be a d-dimensional Ito process on t ≥ 0 with the stochastic differential

dxt = ftdt+ gtdWt.
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Let V ∈ C2,1(Rd × R+;R). Then V (xt, t) is again an Ito process with the stochastic

differential given by

dV (xt, t) = [Vt(xt, t) + Vx(xt, t)ft +
1

2
trace(gTt Vxx(xt, t)gt)]dt+ Vx(xt, t)gtdWt a.s.

2.2 Delay McKean Vlasov SDEs (MV-SDDEs) with

small noise

A MV-SDE is a type of SDE where the coefficients depend on the law (or distribution)

of the solution process itself. This is a generalization of classical SDEs where the

dynamics of the system are influenced by the collective behavior of all agents in a

population. The pionering work on MV-SDEs is due to McKean on his work on the

Boltzmann equation in thermodynamics, [42], [43]. Since then, MV-SDEs have been

used extensively in in biological systems, financial engineering and physics, [4],[7], [19],

[13].

A SDE with small noise is a type of SDE where the drift coefficient function is

multiplied by a small positive constant, which in the rest of the thesis will be denoted

by ε, i.e. (0 < ε << 1). In standard SDEs, the noise term (i.e. the diffusion part of

the SDE) can be significant and comparable to the drift term. In the small noise case,

the diffusion term is scaled down by the small parameter ε. The presence of small noise

affects the behavior of the solution and the methods used for analysis. Some examples

of fields in science where these equations are used are biochemestry, economics and

fluid dynamics, see [1] and references therein.

2.2.1 Wasserstein distance

For any q > 0, let Lq = Lq(Ω;Rd) be the family of Rd-valued random variables Z

with E[|Z|q] < +∞. Let LZ denote the probability law (or distribution) of a random

variable Z. δx(·) denotes the Dirac delta measure concentrated at a point x ∈ Rd.

For q ≥ 1, we denote by Pq(Rd) the set of probability measures on Rd with finite qth
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moments, and define

Wq(µ) :=

(∫
Rd

|x|qµ(dx)
) 1

q

, ∀µ ∈ Pq(Rd). (2.2.1)

Lemma 2.2.1. [9] ( Wasserstein Distance ) Let q ≥ 1. Define

Wq(µ, ν) := inf
π∈D(µ,ν)

{∫
Rd

|x− y|qπ(dx, dy)
} 1

q

, µ, ν ∈ Pq(Rd), (2.2.2)

where D(µ, ν) is the set of all couplings for µ and ν. Then Wq is a distance on Pq(Rd).

Lemma 2.2.2. [9] For any µ ∈ P2(Rd), W2(µ, δ0) = W2(µ).

2.2.2 MV-SDDEs with small noise

Let W (t) = (W1(t), . . . ,Wd̄(t))
T be an d̄-dimensional Brownian motion defined on the

probability space and let τ > 0. The most general type of SDE that we will work with

in this thesis, has the form

dXε(t) = f(Xε(t), Xε(t− τ),LX
t )dt+ εg(Xε(t), Xε(t− τ),LX

t )dW (t), t ≥ 0 (2.2.3)

where ε ∈ (0, 1), LX
t is the law (or distribution) of X(t),

f : Rd × Rd × P2(Rd) → Rd and g : Rd × Rd × P2(Rd) → Rd×d̄

and the initial data satisfies the following condition: for any p ≥ 2

{X(θ) : −τ ≤ θ ≤ 0} := Ξ ∈ Lp
F0
([−τ, 0];Rd),

that is, Ξ is a F0-measurable C([−τ, 0];Rd)-valued random variable such that E||Ξ||p <

∞.

Definition 2.2.3. (Strong solution and uniqueness)

An Rd-valued stochastic process {Xt;−τ ≤ t ≤ T} is called a strong solution to (2.2.3)

if it satisfies

9



(i) X is continuous and {Ft}-adapted;

(ii) {f(Xε(t), Xε(t − τ),LX
t )} ∈ L1(W ; [0, T ];Rd) and {g(Xε(t), Xε(t − τ),LX

t )} ∈

L2(W ; [0, T ];Rd×d̄);

(iii) Equation (2.2.3) holds for every t ∈ [0, T ] with probability 1.

A solution X is said to be unique, if any other solution X̂ is indistinguishable from X.

Theorem 2.2.4. [33] Assume that the coefficient functions f and g satisfy:

(i) (Lipschitz condition on g) There exists a positive constant L such that

||g(x, y, µ)− g(x̄, ȳ, µ̄)||2 ≤ L(|x− x̄|2 + |y − ȳ|2 +W2
2(µ, µ̄)) (2.2.4)

for all x, x̄, y, ȳ ∈ Rd and µ, µ̄ ∈ P2(Rd).

(ii) (one-sided Lipschitz condition on f) There exists a positive constant L such that

⟨x− x̄, f(x, y, µ)− f(x̄, ȳ, µ)⟩ ≤ L(|x− x̄|2 + |y − ȳ|2) (2.2.5)

for all x, x̄, y, ȳ ∈ Rd and µ ∈ P2(Rd).

(iii) (Lipschitz measure dependence condition on f) There exists a positive constant

L such that

|f(x, y, µ)− f(x, y, µ̄)| ≤ LW2(µ, µ̄) (2.2.6)

for all x, y ∈ Rd and µ, µ̄ ∈ P2(Rd).

(iv) polynomial growth Lipschitz condition on f , i.e. there exist constants γ, λ, q > 0

such that for all x, y, x̄, ȳ ∈ Rm

|f(x, y, µ)−f(x̄, ȳ, µ)| ≤ (γ(|x|q+ |y|q+ |x̄|q+ |ȳ|q)+λ)(|x− x̄|+ |y− ȳ|). (2.2.7)

Then the equation (2.2.3) has a unique strong solution and the solution belongs to

M2([t0, T ];Rd×d̄) [33].
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2.2.3 Lions derivative

Now we will give the definition of the Lions derivative (or L-derivative) for a function

u : P2(Rd) → R as introduced in [8],[9].

Definition 2.2.5. Given (Ω,F ,P), an atom is a set A ∈ F such that P(A) > 0 and

for any B ∈ F , B ⊂ A,P(A) > P(B), we have that P(B) = 0. We say a probability

space is atomless if it does not have any atoms.

Definition 2.2.6. We say that u : P2(Rd) → R is L-differentiable at µ ∈ P2(Rd) if

there is an atomless probability space (Ω,F ,P) and an X ∈ L2(Ω,F ,P;Rd) such that

µ = LX and the lifted function U : L2(Ω,F ,P;Rd) → R given by U(X) := u(LX) is

Frechet differentiable at X.

The following two propositions taken from [9] are key in order to define the L-

derivative later.

Proposition 2.2.7. [9] Let u be a real valued function on P2(Rd) and U be its lifting

to L2(Ω,F ,P;Rd). If u is L-differentiable at µ0 ∈ P2(Rd), then the lifting U is dif-

ferentiable at each X ∈ L2(Ω,F ,P;Rd) such that µ0 = LX , and the law of the pair

(X, [DU ](X)) does not depend upon the random variable X as long as µ0 = LX .

Proposition 2.2.7 implies that the distribution of the L-derivative of u at µ0, when

viewed as a random variable, depends only upon the law µ0, an not upon the particular

X0 having distribution µ0. The Frechet derivative [DU ](X0) is called the representation

of the L-derivative of u at µ0 along the variable X0. Since it is viewed as an element

of L2(Ω,F ,P;Rd), by definition,

U(X) = U(X0) + [DU ](X0)(X −X0) + o(||X −X0||2),

whenever X and X0 are random variables with distributions µ and µ0 respectively.

Proposition 2.2.8. [9] Let u be a real valued continuously L-differentiable function

on P2(Rd) and U its lifting to L2(Ω,F ,P;Rd). Then for any µ ∈ P2(Rd), there exists
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a measurable function h : Rd → Rd such that for all X ∈ L2(Ω,F ,P;Rd) with LX = µ,

it holds that [DU ](X) = h(X) almost surely.

Quoting [9], when we say that u is continuously L-differentiable, we mean that the

Fréchet derivative [DU ](X) of the lifting u is a continuous function of X from the

space L2(Ω,F ,P;Rd) into itself. Proposition 2.2.8 implies that, as a random variable,

this Fréchet derivative is of the form h(X0) for some deterministic measurable function

h : Rd → Rd, which is uniquely defined µ0-almost everywhere on Rd. The equivalence

class of h in L2(Rd, µ0;Rd) is uniquely defined and we denoted by ∂µu(µ0). We say

that ∂µu(µ0) is the L-derivative of u at µ0 and identify it with the function ∂µu(µ0)(·) :

Rd ∋ x → ∂µu(µ0)(x) ∈ Rd.

By the mean value theorem (see chapter 5 in [9]), for any two d-dimensional random

variables X and X ′, there exists a θ ∈ [0, 1] such that

u(LX)− u(LX′
) = E[⟨∂µu(LθX+(1−θ)X′

)(θX + (1− θ)X ′), (X −X ′)⟩]. (2.2.8)

2.2.4 Stochastic Particle Method for MV-SDDEs with small

noise

This method, known in the literature as the propagation of chaos result [42], allows us to

approximate the MV-SDDE (2.2.3) by a system of particles. Each one of these particles

satisfy a MV-SDDEs and the system is constructed in a way such that the particles

are uncorrelated with each other. In Theorem 2.2.9 we will see that the solution of

the system converges to the solution of (2.2.3). The benefit of this is that the system

is more tractable and facilitates the construction of numerical solutions that will still

converge to the exact solution of (2.2.3). Now we provide the details of the construction

process. For all i ∈ N, let {W i(t)}t∈[0,T ] be a d̄-dimensional Brownian motion. Assume

{W 1(t)}, {W 2(t)}, · · · are independent and x1, x2, · · · are independent and identically

distributed (i.i.d.) Lp
F0
([−τ, 0];Rd) random variables with the same distribution as Ξ.

Let {Xε,i(t)}t∈[0,T ] be the unique solution to the MV-SDDE

dXε,i(t) = f(Xε,i(t), Xε,i(t− τ),LXε,i

t )dt+ εg(Xε,i(t), Xε,i(t− τ),LXε,i

t )W i(t), (2.2.9)
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where ε ∈ (0, 1),LXε,i

t is the law (or distribution) of Xε,i(t), Xε,i
0 = xi and

f : Rd × Rd × P2(Rd) → Rd and g : Rd × Rd × P2(Rd) → Rd×d̄.

One can see that Xε,1(t), Xε,2(t), ... are i.i.d. for t ≥ 0.

Now we define theM -particles systems of MV-SDDEs. For anyM ∈ N, 1 ≤ i ≤ M ,

let Xε,i,M(t) be the solution of the MV-SDDE

dXε,i,M(t) = f(Xε,i,M(t), Xε,i,M(t− τ),Lε,X,M
t )dt+ εg(Xε,i,M(t), Xε,i,M(t),Lε,X,M

t )dW i(t)

(2.2.10)

with the initial condition Xε,i,M
0 = xi, where Lε,X,M

t := 1
M

M∑
j=1

δXε,j,M (t). The next

theorem is known in the literature as the propagation of chaos proves the convergence

between Xε,i and Xε,i,M .

Theorem 2.2.9. [42][10] [33] If the assumptions of Theorem 2.2.4 hold, then

lim
M→∞

sup
1≤i≤M

E
[
sup

0≤t≤T
|Xε,i(t)−Xε,i,M(t)|2

]
= 0.

2.3 Some definitions of convergence and stability of

numerical solutions of SDEs

Here we summarize a few general definitions about convergence and stability of nu-

merical solutions to SDEs. Let {Yt, 0 ≤ t ≤ T} and {Xt, 0 ≤ t ≤ T} be the exact and

the numerical solution to a SDE respectively. Let ∆ be the stepsize of the numerical

solution.

Definition 2.3.1. (Strong convergence)

We say that X converges strongly to Y if

lim
∆→0

E[ sup
0≤t≤T

|Yt −Xt|] = 0.

13



Definition 2.3.2. (Order of convergence)

We say that X converges strongly to Y with order p if there exist a constant C inde-

pendent of ∆, such that

E[ sup
0≤t≤T

|Yt −Xt|] = C∆p.

Definition 2.3.3. (Weak convergence)

Let g be a Borel-measurable function. We say that X converges weakly to Y at time T

with respect to a class C of test functions g if we have

lim
∆→0

|E[g(YT )]− E[g(XT )]| = 0

for all g ∈ C.

Definition 2.3.4. (Almost sure exponential stability)

We say that the solution to a SDE, X, is almost surely exponentially stable if there is

a ∆∗ ∈ (0, 1) and a positive constant η such that

lim sup
k→∞

1

k∆
log |Xk| ≤ −η a.s.

for any ∆ ≤ ∆∗.

Definition 2.3.5. (Moment exponential stability) Let p ∈ (0, 2].)We say that X is

p-moment exponentially stable if there is a ∆∗ ∈ (0, 1) and a positive constant η such

that

lim
k→∞

1

k∆
logE[|Xk|p] ≤ −η

for any ∆ ≤ ∆∗.
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Chapter 3

Numerical Approximations for

SDDEs using the Adaptive EM

Method: Strong Convergence and

Almost Sure Exponential Stability

3.1 Introduction

The classical existence-and-uniqueness theorem for SDDEs requires the drift and diffu-

sion functions to satisfy a local Lipschitz condition and a linear growth condition (see

[37]). However, in applications there are many SDDEs which do not satisfy the linear

growth condition on the drift coefficient. The Khasminskii-type theorem (monotone

condition) in [38] enables to prove existence-and-uniquess for a class of SDDEs using

a weaker condition than the linear growth one. Since there is no explicit solutions

for most SDEs, it is desirable, under these weaker conditions, to find numerical ap-

proximate solutions that converge strongly to the exact solution. In 2003, Mao [40]

proved strong convergence using the EM scheme and assuming the boundedness of the

pth moments for both the exact and the numerical solution. It is well-known that the
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linear growth condition implies the boundedness of the pth moments for the EM ap-

proximate solution. But when the drift function grows faster than linear, the standard

EM scheme fails. We provide some examples from [28] with polynomial growth:

• Stochastic Ginzburg-Landau equation

dXt =
(
(η + 2σ2)Xt − λX3

t )
)
dt+ σXtdWt, X0 = x0 ∈ (0,∞),

where η ≥ 0 and λ, σ > 0.

• Stochastic Verhulst equation

dXt =

(
(η +

1

2
σ2)Xt − λX2

t )

)
dt+ σXtdWt, X0 = x0 ∈ (0,∞),

where η, λ, σ > 0.

• Feller diffusion with logistic growth

dXt = λXt(K −Xt)dtσ
√

XtdWt,

where λ,K, σ > 0.

. Therefore, modifications of the EM scheme which provide explicit approximate

solutions, have appeared in the last few years to account for this issue. Examples of

these are the Tamed [29] and the Truncated [21] methods.

In 2020, Wei and Giles [14] obtained the boundedness of the pth moments of the

numerical solution using the adaptive-EM method in a finite horizon under local Lips-

chitz and one-sided linear growth conditions. This, by the previous work of Higham in

2002 [23], automatically implies strong convergence. In the adaptive EM scheme, the

time step is not a constant, but a function of the solution at that point in time. They

also, under more restrictive conditions, showed strong convergence in infinite horizon.

Here, in the first part of this chapter we extend their work to SDDEs in both, finite

and infinite horizons. Following [14], we will show the boundedness of the pth moments

but in our case, this is not enough to prove strong convergence. The main difficulty is
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that delay times might not match the times where the numerical solution is computed.

To solve the issue, we introduced an auxiliary piecewise constant process on the delay

times. This varies from the standard EM method for SDDEs and requires a new proof

of convergence.

In [14], the almost sure (a.s.) exponential stability of the adaptive-EM solution was

not studied. Here we studied it first for SDEs and later for SDDEs. Moment stability

for SDDEs has been studied extensively, see for example [3], [39]. A.s. exponential

stability is usually derived from moment stability by means of the Borel-Cantelli lemma

and Markov’s inequality (see [25]). In Wu et al. [49], using the EM and the Backward

EM (BEM) methods, a.s. exponential stability was studied for SDDEs without using

moment stability. Their approach was based on the martingale convergence theorem.

They required the linear growth condition when dealing with the standard EM scheme.

When they weaken the linear growth to the one-sided linear growth condition for

the drift function, they showed how the standard EM approximate solution loses the

stability of the exact solution. Then they showed that under the one-sided linear

growth condition, the a.s. exponential stablility can be achieved by using the BEM

method. This method is implicit and therefore more computationally expensive than

explicit methods like the adaptive EM. Here, under similar conditions to the ones used

in [49], we obtained a.s. exponential stability using the EM-adaptive method.

The rest of the chapter is structured as follows. Section 3.2 describes the adaptive

EM method. Section 3.3 deals with strong convergence and order of convergence in

finite horizon. In Section 3.4 we obtained the boundedness of the pth moments for

the adaptive EM approximate solution in infinite horizon. In Section 3.5 we show a.s.

exponential stability of the adaptive EM solution for SDEs and provide a counterex-

ample in which standard EM fails. Section 3.6 follows closely to Section 3.5, but this

time we work with SDDEs.
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3.2 Adaptive-EM Method for SDDEs

Let (Ω,F , {Ft}t≥0,P) be a filtered complete probability space where the filtration

{Ft}t≥0 satisfies the usual conditions. Let W (t) = (W1(t), . . . ,Wd̄(t))
T be an d̄-

dimensional Brownian motion defined with respect to {Ft}t≥0. Let τ > 0 and T > 0 be

constants and denote C([−τ, 0];Rd) the space of all continuous functions from [−τ, 0]

to Rd with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|. Consider an d-dimensional SDDE of the

form

dYt = f(Yt, Yt−τ )dt+ g(Yt, Yt−τ )dWt (3.2.1)

on t ∈ [0, T ], where f : Rd × Rd → Rd and g : Rd × Rd → Rd×d̄ are Borel-measurable

functions, and the initial data satisfies the following condition: for any p ≥ 2

{Y (θ) : −τ ≤ θ ≤ 0} = ξ ∈ Lp
F0
([−τ, 0];Rd),

that is ξ is a F0-measurable C([−τ, 0];Rd)-valued random variable such that E||ξ||p <

∞.

Now we define the numerical solution based on the adaptive method. The time

step is determined by a function hδ : Rd → R+ with δ ∈ (0, 1). The family of functions

{hδ}0<δ<1 is not specifically defined, it just has to satisfy certain conditions that we will

describe later in the next assumption. To see concrete examples where the function hδ

is fully specified, see the example (3.6.11) at the end of this chapter. We now define

the adaptive method for SDDEs. Set

X̂0 := ξ(0), hδ
0 := hδ(X̂0), t1 := hδ

0.

We introduce the continuous-time step (auxiliary) process X̄. Define

X̄t := ξ(t), t ∈ [−τ, 0), X̄t := ξ(0), t ∈ [0, t1).

For t1 we define the discrete-time approximate solution X̂ as

X̂t1 := X̂0 + f(X̄0, X̄−τ )h
δ
0 + g(X̄0, X̄−τ )∆W0,

hδ
1 := hδ(X̂t1), t2 = t1 + hδ

1,
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X̄t := X̂t1 , t ∈ [t1, t2),

where ∆W0 := Wt1 −W0. Then for a generic tn we define

X̂tn+1 := X̂tn + f(X̄tn , X̄tn−τ )h
δ
n + g(X̄tn , X̄tn−τ )∆Wn, (3.2.2)

hδ
n+1 := hδ(X̂tn+1), tn+2 = tn+1 + hδ

n+1,

X̄t := X̂tn+1 , t ∈ [tn+1, tn+2),

where ∆Wn := Wtn+1 − Wtn . For every path ω ∈ Ω, we continue the recursion (3.1)

until n = N(ω) := inf{n ∈ Z+ : tn(ω) ≥ T}. Note that tn and hδ
n are random variables.

We now introduce a second auxiliary step process. For every ω, let r = r(ω) be such

tr ≤ τ ≤ tr+1. Then we define the process X̃ as

X̃t := X̄−τ , t ∈ [−τ, t1 − τ), X̃t := X̄t1−τ , t ∈ [t1 − τ, t2 − τ), ....,

X̃t := X̄tr−τ , t ∈ [tr − τ, tr+1 − τ), X̃t := X̄tr+1−τ , t ∈ [tr+1 − τ, tr+2 − τ), (3.2.3)

X̃t := X̄tr+n−τ , t ∈ [tr+n − τ, tr+n+1 − τ)

for n = 1, ..., N − r. We now define the continuous approximate solution

Xt := ξ(t), t ∈ [−τ, 0];

Xt := X0 +

∫ t

0

f(X̄s, X̃s−τ )ds+

∫ t

0

g(X̄s, X̃s−τ )dWs, t ∈ [0, T ]. (3.2.4)

Note that X̂tn = X̄tn = Xtn for n = 0, 1, ..., N.

Remark 3.2.1. The reason to introduce the second step process X̃ is that we can not

use the process X̄t−τ , t ∈ [tn, tn+1] to construct the continuous approximation. This

is because X̄t−τ may not be constant in the intervals [tn, tn+1] which implies that

the desired equality X̂tn = Xtn , might not hold. This equality is crucial later to

prove convergence. Unlike the case for SDEs in [14], the fact that we can not use

X̄t−τ , t ∈ [tn, tn+1], has the added difficulty that in order to prove convergence is not

not enough to just show the boundedness of the pth moments and then refer to [40].

In our case a new proof of convergence is required.
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3.3 Convergence of the numerical solutions on fi-

nite time interval

In this section we will work on a finite time interval [−τ, T ], T > 0, and investigate the

convergence of the numerical solutions to the exact solution on [0, T ].

Assumption 3.3.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant CR such that

|f(x, y)− f(x̄, ȳ)|+ ||g(x, y)− g(x̄, ȳ)|| ≤ CR(|x− x̄|+ |y − ȳ|) (3.3.1)

for all x, y, x̄, ȳ ∈ Rd with |x|∨|y|∨|x̄|∨|ȳ| ≤ R. Furthermore, there exist two constants

α, β ≥ 0 such that for all x, y ∈ Rd, f satisfies the one-sided linear growth condition:

⟨x, f(x, y)⟩ ≤ α(|x|2 + |y|2) + β (3.3.2)

and g satisfies the linear growth condition:

||g(x, y)||2 ≤ α(|x|2 + |y|2) + β. (3.3.3)

Assumption 3.3.2. The time step function hδ : Rd → R+, δ ∈ (0, 1), is continuous,

strictly positive and bounded by δT, i.e.

0 < hδ(x) ≤ δT for all x ∈ Rd. (3.3.4)

Furthermore, there exist constants α, β > 0 such that for all x, y ∈ Rd.

⟨x, f(x, y)⟩+ 1

2
hδ(x)|f(x, y)|2 ≤ α(|x|2 + |y|2) + β. (3.3.5)

Note that condition (3.3.5) implies condition (3.3.2) with the same values of α and

β.

Remark 3.3.1. In practice, the theory of this section can be applied in the following

way. Assume we are giving a SDDE which satisfies Assumption 3.3.1. After, knowing

the specific definition of the SDDE we are working with, we define a timestep function

hδ that must satisfy Assumption 3.3.2. Then as we will see later in Theorem 3.3.9, we

can assure that the numerical solution converges to the exact solution.
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3.3.1 The boundedness of the pth moments of the exact solu-

tion and the numerical solutions

The next lemma shows the boundedness of the pth moments of the exact solution.

Lemma 3.3.3. If the SDDE (3.2.1) satisfies Assumption (3.3.1), then any p > 0 there

exists a positive constant C such that

E
[
sup

0≤t≤T
|Yt|p

]
≤ C. (3.3.6)

Proof. The proof is given in Lemma 3.2 in [29].

Now, the pth moments of numerical solution will be investigated. In the standard

Euler-Maruyama method the discretisation times {tn} are built using a constant time

step ∆ and a fixed number of steps N ∈ N, i.e. tN = N∆ = T. However, in the

adaptive method, {tn} is a sequence of random variables and there is no guarantee

that it reaches T in a finite number of steps. Thus, we have the following definition.

Definition 3.3.4. We say that the time horizon T is attainable if {tn} reaches T in

a finite number of steps N , i.e. for almost all ω ∈ Ω, there exists a N(ω) such that

tN(ω) =
∑N(ω)

n=0 hδ(Xtn) ≥ T.

Theorem 3.3.5. If the SDDE (3.2.1) and the function hδ satisfy Assumption 3.3.1

and 3.3.2 respectively, then T is attainable and for all p > 0 there exists a constant

C > 0 dependent on T and p, but independent of hδ
n, such that

E
[
sup

0≤t≤T
|Xt|p

]
≤ C. (3.3.7)

The discrete-time approximate solution defined in (3.2.2) need not be bounded.

In order to show that T is attainable and prove Theorem 3.3.5, we need to work

with a bounded approximate solution. To this end we now introduce the following

auxiliary scheme. Let K > ||ξ||. Set X̂K
0 := ξ(0), hδ

0 := hδ(X̂0), t1 := hδ
0 and X̄K

t :=

ξ(t), t ∈ [−τ, 0), X̄K
t := ξ(0), t ∈ [0, t1). Consider the function ΦK : Rd → Rd,Φ(x) =
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min(1, K/|x|)x. Then for every ω ∈ Ω and for n = 0, 1, ...N(ω), we define

X̂K
tn+1

:= ΦK(X̂
K
tn + f(X̂K

tn , X̄
K
tn−τ )h

δ
n + g(X̂K

tn , X̄
K
tn−τ )∆Wn)

hδ
n+1 := hδ(XK

tn+1
), tn+2 := tn+1 + hδ

n+1,

X̄K
t := X̂K

tn+1
, t ∈ [tn+1, tn+2).

(3.3.8)

where N(ω) := inf{n ∈ Z+ : tn(ω) ≥ T}. Define for n = 0, ..., N − r

X̃K
t := X̄K

tn−τ , t ∈ [tn − τ, tn+1 − τ), (3.3.9)

where r = r(ω) is such that tr ≤ τ ≤ tr+1. We now define the the continuous approxi-

mate solution

XK
t := ξ(t), t ∈ [−τ, 0];

XK
t := ΦK

(
X̂K

t + f(X̂K
t , X̄K

t−τ )(t− t) + g(X̂K
t , X̄K

t−τ )(Wt −Wt)
)

t ∈ [0, T ],

(3.3.10)

where t := max{tn : tn ≤ t}. Note that XK
tn = X̂K

tn = X̄K
tn .

Lemma 3.3.6. Let the SDDE (3.2.1) satisfy Assumption 3.3.1 and the function hδ

satisfy Assumption 3.3.2. Then, for the auxiliary scheme defined by (3.3.10), T is

attainable and for all p > 0 there exists a constant C dependent on T and p, but

independent of hδ
n and K such that

E
[
sup

0≤t≤T
|XK

t |p
]
≤ C. (3.3.11)

Proof. Let p ≥ 4 and fix δ ∈ (0, 1). Since hδ is continuous and strictly positive,

inf |x|≤K hδ(x) > 0. This implies that for every ω ∈ Ω

lim inf
n→∞

hδ
n(ω) = lim inf

n→∞
hδ(X̂K

tn (ω)) > 0,

so limn→∞ tn(ω) =
∑∞

n=0 h
δ
n(ω) = ∞ for all ω ∈ Ω and T is attainable in the bounded

scheme.

Now we will prove the boundedness of the pth moments and the upper bound will
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be independent of hδ
n and K. Let t ∈ [0, T ]. Define t := max{tn : tn ≤ t}, and

nt := max{n : tn ≤ t}. Using (3.3.8) and since for any x ∈ Rd, |Φ(x)|2 ≤ |x|2, we have

that for n = 0 to n = nt − 1,

|X̂K
tn+1

|2 ≤ |X̂K
tn + f(X̂K

tn , X̄
K
tn−τ )hn + g(X̂K

tn , X̄
K
tn−τ )∆Wn|2

= ⟨X̂K
tn , X̂

K
tn ⟩+ 2⟨X̂K

tn , f(X̂
K
tn , X̄

K
tn−τ )hn⟩

+ ⟨f(X̂K
tn , X̄

K
tn−τ )hn, f(X̂

K
tn , X̄

K
tn−τ )hn⟩

+ 2⟨X̂K
tn + f(X̂K

tn , X̄
K
tn−τ )hn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩

+ ⟨g(X̂K
tn , X̄

K
tn−τ )∆Wn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩

= |X̂K
tn |

2 + 2hn

[
⟨X̂K

tn , f(X̂
K
tn , X̄

K
tn−τ )⟩+

1

2
hn|f(X̂K

tn , X̄
K
tn−τ )|2

]
+ 2⟨X̂K

tn + f(X̂K
tn , X̄

K
tn−τ )hn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩+ |g(X̂K

tn , X̄
K
tn−τ )∆Wn|2

≤ |X̂K
tn |

2 + 2hnα(|X̂K
tn |

2 + |X̄K
tn−τ |2) + 2hnβ

+ 2⟨X̂K
tn + f(X̂K

tn , X̄
K
tn−τ )hn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩+ |g(X̂K

tn , X̄
K
tn−τ )∆Wn|2,

where in the last step we have used condition (3.3.5). Note that, since it is irrelevant

in this proof, we have dropped the symbol “δ” in the adaptive time-step “hδ
n” to ease

the notation. Solving the recurrence relation, we get

|X̂K
t |2 ≤ |X̂K

0 |2 + 2α

(
nt−1∑
n=0

|X̂K
tn |

2hn + |X̄K
tn−τ |2hn

)
+ 2βt

+ 2
nt−1∑
n=0

⟨X̂K
tn + f(X̂K

tn , X̄
K
tn−τ )hn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩

+
nt−1∑
n=0

|g(X̂K
tn , X̄

K
tn−τ )∆Wn|2. (3.3.12)

Similarly, the continuous approximate solution verifies

|XK
t |2 ≤ |X̂K

t |2 + 2(t− t)α(|X̂K
t |2 + |X̄K

t−τ |2) + 2(t− t)β

+ 2⟨X̂K
t + f(X̂K

t , X̄K
t−τ )(t− t), g(X̂K

t , X̄K
t−τ )(Wt −Wt)⟩

+ |g(X̂K
t , X̄K

t−τ )(Wt −Wt)|2. (3.3.13)
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Substituting (3.3.12) into (3.3.13) yields

|XK
t |2 ≤ |X̂K

0 |2

+ 2α

(
nt−1∑
n=0

|X̂K
tn |

2hn + |X̄K
tn−τ |2hn + |X̂K

t |2(t− t) + |X̄K
t−τ |2(t− t)

)

+ 2βt+ 2
nt−1∑
n=0

⟨X̂K
tn + f(X̂K

tn , X̄
K
tn−τ )hn, g(X̂

K
tn , X̄

K
tn−τ )∆Wn⟩

+ 2⟨X̂K
t + f(X̂K

t , X̄K
t−τ )(t− t), g(X̂K

t , X̄K
t−τ )(Wt −Wt)⟩

+
nt−1∑
n=0

|g(X̂K
tn , X̄

K
tn−τ )∆Wn|2 + |g(X̂K

t , X̄K
t−τ )(Wt −Wt)|2.

Using the step processes X̄K and X̃K defined previously, the second summand on the

RHS of the equation above, can be expressed as a Riemann integral. Similarly the

sixth and the seventh terms can be written as an Itô integral, i.e.

|XK
t |2 ≤ |XK

0 |2 + 2α

∫ t

0

(|X̄K
s |2 + |X̃K

s−τ |2)ds+ 2βt

+ 2

∫ t

0

⟨X̄K
s + f(X̄K

s , X̃K
s−τ )[h(X̄

K
u )I[0,t)(u)

+ (t− t)I[t,t](u)], g(X̄
K
s , X̃K

s−τ )dWs⟩

+
nt−1∑
n=0

|g(X̄K
tn , X̃

K
tn−τ )∆Wn|2 + |g(X̄K

t , X̃K
t−τ )(Wt −Wt)|2.

Hence, we have

|XK
t |p ≤ 6p/2−1

{
|XK

0 |p +
(
2α

∫ t

0

(|X̄K
s |2 + |X̃K

s−τ |2)ds
)p/2

+ (2βt)p/2

+
∣∣∣2 ∫ t

0

⟨X̄K
s + f(X̄K

s , X̃K
s−τ )[h(X̄

K
u )I[0,t)(u)

+ (t− t)I[t,t](u)], g(X̄
K
s , X̃K

s−τ )dWs⟩
∣∣∣p/2

+

(
nt−1∑
n=0

|g(X̄K
tn , X̃

K
tn−τ )∆Wn|2

)p/2

+ |g(X̄K
t , X̃K

t−τ )(Wt −Wt)|p
}
.

Taking the expectation of the supremum, one has

E
[
sup
0≤s≤t

|XK
s |p
]
≤ 6p/2−1(I1 + I2 + I3 + I4),
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where

I1 := E|XK
0 |p + E

[(
2α

∫ t

0

(|X̄K
s |2 + |X̃K

s−τ |2)ds
)p/2

]
+ (2βt)p/2;

I2 := E
[
sup
0≤s≤t

∣∣∣2∫ s

0

⟨X̄K
u + f(X̄K

u , X̃K
u−τ )[h(X̄

K
u )I[0,s)(u)

+ (s− s)I[s,s](u)], g(X̄
K
u , X̃K

u−τ )dWu⟩
∣∣∣p/2];

I3 := E

(nt−1∑
n=0

|g(X̄K
tn , X̃

K
tn−τ )∆Wn|2

)p/2
 ;

I4 := E
[
sup
0≤s≤t

|g(X̄K
s , X̃K

s−τ )(Ws −Ws)|p
]
.

Now we will establish bounds for each of the four terms above. In the remainder of the

proof, C is positive constants, independent of K, that may change from line to line.

Using Hölder’s inequality, we have

I1 ≤ E|XK
0 |p + (2α)p/2T p/2−12p/2−1

∫ t

0

E[|X̄K
s |p + |X̃K

s−τ |p]ds+ (2βT )p/2

≤ C

∫ t

0

E
[
sup

0≤u≤s
|XK

u |p
]
ds+ C.

By the Burkholder-Davis-Gundy (BDG) inequality we obtain

I2 ≤ 2p/2CE
[( ∫ t

0

|(X̄K
u + f(X̄K

u , X̃K
u−τ )[h(X̄

K
u )I[0,t)(u)

+ (t− t)I[t,t](u)])g(X̄
K
u , X̃K

u−τ )|2du
)p/4]

An application of the Hölder inequality yields that

I2 ≤ 2
p
2T

p
4
−1CE

[ ∫ t

0

∣∣∣X̄K
u + f(X̄K

u , X̃K
u−τ )[h(X̄

K
u )I[0,t)(u)

+ (t− t)I[t,t](u)]
∣∣∣ p2 ||g(X̄K

u , X̃K
u−τ )||

p
2du
]

(3.3.14)

Now, we bound the integrand of the integral above. Using condition (3.3.5) we obtain

|X̄K
u + f(X̄K

u , X̃K
u−τ )[h(X̄

K
u )I[0,t)(u) + (t− t)I[t,t](u)]|2 =

= |X̄K
u |2 + 2[h(X̄K

u )I[0,t)(u) + (t− t)I[t,t](u)]
[
⟨X̄K

u , f(X̄K
u , X̃K

u−τ )⟩
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+
1

2
[h(X̄K

u )I[0,t)(u) + (t− t)I[t,t](u)]|f(X̄K
u , X̃K

u−τ )|2
]

≤ |X̄K
u |2 + 2[h(X̄K

u )I[0,t)(u) + (t− t)I[t,t](u)]
[
α
(
|X̄K

u |2 + |X̃K
u−τ |2

)
+ β

]
= (1 + 2αT )|X̄K

u |2 + 2αT |X̃1,i,M
u−τ,K |

2 + 2βT.

This implies

|X̄K
u + f(X̄K

u , X̃K
u−τ )[h(X̄

K
u )I[0,t)(u) + (t− t)I[t,t](u)]|p/2

≤ 3p/4−1
[
(1 + 2αT )p/4|X̄K

u |p/2 + (2αT )p/4|X̃1,i,M
u−τ,K |

p/2 + (2βT )p/4
]

≤ C
(
|X̄K

u |p/2 + |X̃1,i,M
u−τ,K |

p/2 + 1
)
.

Also by condition (3.3.3) one can see that

||g(X̄K
u , X̃K

u−τ )||p/2 =
(
||g(X̄K

u , X̃K
u−τ )||2

)p/4
≤
[
α
(
|X̄K

u |2 + |X̃K
u−τ |2

)
+ β

]p/4
≤ C

(
|X̄K

u |p/2 + |X̃K
u−τ |p/2 + 1

)
.

Substituting the last two inequalities into (3.3.14), we obtain

I2 ≤ CE
[∫ t

0

(
1 + |X̄K

u |p + |X̃K
u−τ |p

)
du

]
≤ C + C

(∫ t

0

E
[
sup

0≤u≤s
|XK

u |p
]
ds

)
.

Now we will bound I3. Note that tn is a stopping time of the filtration {FW
t }. Define

Ftn := {A ∈ F : A ∩ {tn ≤ t} ∈ FW
t }.

By the strong Markov property of the Brownian motion, {Bu := Wtn+u −Wtn , u ≥ 0}

is a standard Brownian motion independent of Ftn (page 86, Theorem 6.16 in [30]).

Thus

E[ sup
0≤u≤s

|Wtn+u −Wtn|p|Ftn ] = E[ sup
0≤u≤s

|Bu|p] ≤ Csp/2.

This implies

E[ sup
tn≤u≤tn+1

|Wu −Wtn|p|Ftn ] ≤ Chp/2
n . (3.3.15)
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Combining Jensen’s inequality and equation (3.3.15), we arrive at

I3 ≤ E

(nt−1∑
n=0

||g(X̄K
tn , X̃

K
tn−τ )||2|∆Wn|2

)p/2


= E

(nt−1∑
n=0

hn||g(X̄K
tn , X̃

K
tn−τ )||2

|∆Wn|2

hn

)p/2


≤ T p/2−1E

[
nt−1∑
n=0

hn||g(X̄K
tn , X̃

K
tn−τ )||p

E[|∆Wn|p|Ftn ]

h
p/2
n

]

≤ CT p/2−1E

[
nt−1∑
n=0

hn||g(X̄K
tn , X̃

K
tn−τ )||p

]

≤ CT
p
2
−1E

[∫ t

0

||g(X̄K
s , X̃K

s−τ )||pds
]
≤ CT

p
2
−1E

[∫ t

0

||g(X̄K
s , X̃K

s−τ )||pds
]
.

Using condition (3.3.3) and Hölder’s inequality, we have

I3 ≤ CT p/2−1E
[∫ t

0

(
||g(X̄K

s , X̃K
s−τ )||2

)p/2
ds

]
≤ CT p/2−1E

[∫ t

0

(
α(|X̄K

s |2 + |X̃K
s−τ |2) + β

)p/2
ds

]
≤ T p/2−12p−2CE

[∫ t

0

(
αp/2(|X̄K

s |p + |X̄K
s−τ |p) + βp/2

)
ds

]
≤ C + C

∫ t

0

E
[
sup

0≤u≤s
|XK

u |p
]
ds.

For I4, using the linear condition (3.3.3), we obtain

I4 ≤ E
[
sup
0≤s≤t

|g(X̄K
s , X̃K

s−τ )(Ws −Ws)|p
]

≤ E
[
sup
0≤s≤t

{
[(α(|X̄K

s |p + |X̃K
s−τ )|p) + β] |(Ws −Ws)|p

}]
≤ E

[
nt−1∑
n=0

[α(|X̄K
tn |

p + |X̃K
tn−τ |p) + β]E

[
sup

tn≤s≤tn+1

|(Ws −Wtn)|p/2|Ftn

]

+ [α(|X̄K
t |p + |X̃K

t−τ |p) + β]E
[
sup
t≤s≤t

|(Ws −Wt)|p/2|Ft

] ]

≤ C + C

∫ t

0

E

[
sup

0≤u≤s
|XK

u |p
]
ds.
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Adding all the bounds for I1 to I4, we have that for all t ∈ [0, T ]

E
[
sup
0≤s≤t

|XK
s |p
]
≤ C + C

∫ t

0

E

[
sup

0≤u≤s
|XK

u |p
]
ds,

and by the Gronwall inequality we obtain

E
[
sup

0≤t≤T
|XK

t |p
]
≤ C.

The result has been proved for p ≥ 4. For 0 < p < 4, note that

E
[
sup

0≤t≤T
|XK

t |p
]
I{sup0≤t≤T |XK

t |≤1} ≤ 1

and

E
[
sup

0≤t≤T
|XK

t |p
]
I{sup0≤t≤T |XK

t |>1} ≤ E
[
sup

0≤t≤T
|XK

t |4
]
I{sup0≤t≤T |XK

t |>1} ≤ C,

where IA es the indicator function of the set A. Therefore,

E
[
sup

0≤t≤T
|XK

t |p
]

= E
[
sup

0≤t≤T
|XK

t |p
]
I{sup0≤t≤T |XK

t |≤1} + E
[
sup

0≤t≤T
|XK

t |p
]
I{sup0≤t≤T |XK

t |>1} ≤ C.

Remark 3.3.2. Note that assuming that T was attainable, we have proved the bound-

edness of the pth moments without using the auxiliary scheme. The only reason why

we needed to work with a bounded scheme was to show that inf |x|≤K hδ(x) is strictly

positive and therefore T is attainable.

Proof of Theorem 3.3.5. By Lemma 3.3.6 and the Markov inequality

P( sup
0≤t≤T

|Xt| < K) = 1− P( sup
0≤t≤T

|XK
t | ≥ K) ≥ 1−

E[sup0≤t≤T |XK
t |4

K4
≥ 1− C

K4
.

Thus

lim
K→∞

P( sup
0≤t≤T

|Xt| < K) = 1,
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This means that sup0≤t≤T |Xt| < ∞ a.s., i.e. for almost all ω ∈ Ω there exist a Kω such

that

sup
0≤t≤T

|Xt(ω)| ≤ Kω. (3.3.16)

Since hδ is continuous and strictly positive, inf |x|≤Kω h
δ(x) > 0. This implies that for

almost every ω ∈ Ω

lim inf
n→∞

hδ
n(ω) = lim inf

n→∞
hδ(Xtn(ω)) ̸= 0,

so limn→∞ tn(ω) =
∑∞

n=0 h
δ
n(ω) = ∞ a.s. and T is attainable. Also, for all ω and all

0 < K1 ≤ K2, we have

sup
0≤t≤T

|XK1
t (ω)| = min( sup

0≤t≤T
|Xt(ω)|, K1) ≤ min( sup

0≤t≤T
|Xt(ω)|, K2)

= sup
0≤t≤T

|XK2
t (ω).| (3.3.17)

Equations (3.3.16) and (3.3.17) imply that

lim
K→∞

sup
0≤t≤T

|XK
t | = sup

0≤t≤T
|Xt| a.s. (3.3.18)

This together with Lemma 3.3.6, yields

E
[
sup

0≤t≤T
|Xt|p

]
= lim

K→∞
E
[
sup

0≤t≤T
|XK

t |p
]
≤ C.

The proof is complete for p ≥ 4. For 0 ≤ p < 4, The required assertion follows from

the Hölder inequality.

3.3.2 Strong convergence of the numerical solutions

In order to prove the strong convergence of the approximate solution (3.2.4) to the

exact solution of the SDDE (3.2.1), we need the following lemma and corollary.

Lemma 3.3.7. Let the SDDE (3.2.1) and the function hδ satisfy Assumption 3.3.1 and

3.3.2 respectively. Assume also that the function f satisfies the (global) linear growth

condition, i.e. there exist a constant C1 ≥ 0 such that for all x, y ∈ Rd,

|f(x, y)|2 ≤ C1(|x|2 + |y|2 + 1). (3.3.19)
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Then there exists a positive constant C such that for all t ∈ [0, T ].

E|Xt − X̄t|2 ≤ CδT, (3.3.20)

E|Xt − X̃t|2 ≤ CδT. (3.3.21)

Proof. Let t ∈ [0, T ]. Let r be such that tr ≤ t ≤ tr+1. Then by definition we have

Xtr = X̄tr = X̄t. Thus

Xt = X̄t +

∫ t

tr

f(X̄s, X̃s)ds+

∫ t

tr

g(X̄s, X̃s)dWs.

This together with (3.3.19),(3.3.3), Assumption 3.3.2 and Theorem 3.3.5 imply that

E|Xt − X̄t|2 ≤ 2E
∣∣∣∣∫ t

tr

f(X̄s, X̃s)ds

∣∣∣∣2 + 2E
∣∣∣∣∫ t

tr

g(X̄s, X̃s)dWs

∣∣∣∣2
≤ 2E[C1(h

δ
r)

2(1 + 2 sup
tr≤s≤t

|Xs|2 + ||ξ||)] + 2E[αhδ
r(2 sup

tr≤s≤t
|Xs|2 + ||ξ||) + β]

≤ 4(δT )2(1 + E[ sup
tr≤s≤t

|Xs|2] + E||ξ||) + 4αδT (E[ sup
tr≤s≤t

|Xs|2] + E||ξ||) + β]

≤ CδT.

To prove assertion (3.3.21), we first prove that there is a constant C such that for all

t ∈ [0, T ]

E|X̃t − X̄t|2 ≤ CδT. (3.3.22)

Let t ∈ [0, T ]. Let k and n be such that tk ≤ t < tk+1 and tn − τ ≤ t ≤ tn+1 − τ

respectively. Let r, 0 ≤ r ≤ k be such that tk−r ≤ tn − τ ≤ tk−r+1. From (3.2.2) and

the definitions of the step processes X̄ and X̃, one can see that

X̂tk = X̂tk−r
+

r−1∑
i=0

[f(X̄tk−r+i
, X̄tk−r+i−τ )hk−r+i + g(X̄tk−r+i

, X̄tk−r+i−τ )∆Wk−r+i]

= X̂tk−r
+

r−1∑
i=0

∫ tk−r+i+1

tk−r+i

f(X̄s, X̃s−τ )ds+
r−1∑
i=0

∫ tk−r+i+1

tk−r+i

g(X̄s, X̃s−τ )dWs

= X̂tk−r
+

∫ tk

tk−r

f(X̄s, X̃s−τ )ds+

∫ tk

tk−r

g(X̄s, X̃s−τ )dWs.

Note that X̄t = X̂tk and X̂tk−r
= X̄tk−r

= X̄tn−τ = X̃tn−τ = X̃t, we have that

X̄t = X̃t +

∫ tk

tk−r

f(X̄s, X̃s−τ )ds+

∫ tk

tk−r

g(X̄s, X̃s−τ )dWs.
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Also, we have that

tk − tk−r ≤ (tn+1 − τ)− (tn − τ) + hδ
k−r = hδ

n + hδ
k−r ≤ 2δT.

Therefore, by (3.3.19),(3.3.3), Assumption 3.3.2 and Theorem 3.3.5 we have that

E|X̄t − X̃t|2 ≤ 2E

∣∣∣∣∣
∫ tk

tk−r

f(X̄s, X̃s−τ )ds

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
∫ tk

tk−r

g(X̄s, X̃s−τ )dWs

∣∣∣∣∣
2

≤ 2E[C1(tk − tk−r)
2(1 + 2 sup

tk≤s≤t
|Xs|2 + ||ξ||)]

+ 2E[α(tk − tk−r)(2 sup
tk≤s≤t

|Xs|2 + ||ξ||) + β]

≤ 4(δT )2(1 + E[ sup
tk≤s≤t

|Xs|2] + E||ξ||) + 4αδT (E[ sup
tk≤s≤t

|Xs|2] + E||ξ||) + β]

≤ CδT.

This together with (3.3.20) imply that

E|Xt − X̃t|2 = E|Xt − X̄t|2 + E|X̄t − X̃t|2 ≤ CδT.

In our attempt to prove the strong convergence using the local Lipschitz condition

instead of the global one, we introduce the stopping times

τm := inf{t ≥ 0 : |Yt| ≥ m}, σm := inf{t ≥ 0 : |Xt| ≥ m}

and υm := τm ∧ σm. As usual we set inf ∅ = ∞. In the next corollary, we relax the

global linear condition imposed to f in the previous lemma and use instead the local

Lipschitz condition.

Corollary 3.3.8. Let the SDDE (3.2.1) and the function hδ satisfy Assumption 3.3.1

and 3.3.2 respectively. Then there exists a positive constant Cm such that for all t ∈

[0, T ].

E|Xt∧υm − X̄t∧υm |2 ≤ CmδT, (3.3.23)

E|Xt∧υm−τ − X̃t∧υm−τ |2 ≤ CmδT. (3.3.24)

31



Proof. The processes Xt∧υm , X̄t∧υm and X̃t∧υm are bounded by m. Thus, the local

Lipschitz condition (3.3.1) implies condition (3.3.19). Therefore the corollary follows

directly from Lemma 3.3.7.

Theorem 3.3.9. If the SDDE (3.2.1) and the function hδ satisfy Assumption 3.3.1

and 3.3.2 respectively, then for all p > 0

lim
δ→0

E
[
sup

0≤t≤T
|Xt − Yt|p

]
= 0.

Proof. One can see that

E[ sup
0≤t≤T

|Yt −Xt|2] = E[ sup
0≤t≤T

|Yt −Xt|2I{τm>T and σm>T}] (3.3.25)

+ E[ sup
0≤t≤T

|Yt −Xt|2I{τm≤T or σm≤T}] =: R1 +R2,

where IA es the indicator function of the set A. In order to bound R1, we combine the

definitions of the continuous-time approximation (3.2.4) and the exact solution (3.2.1)

to obtain

|Yt∧υm −Xt∧υm|2

=

∣∣∣∣∫ t∧υm

0

[f(Ys, Ys−τ )− f(X̂s, X̃s−τ )]ds+

∫ t∧υm

0

[g(Ys, Ys−τ )− g(X̂s, X̃s−τ )]dWs

∣∣∣∣2
≤ 2T

∫ t∧υm

0

|f(Ys, Ys−τ )− f(X̂s, X̃s−τ )|2ds

+ 2

∣∣∣∣∫ t∧υm

0

[g(Ys, Ys−τ )− g(X̂s, X̃s−τ )]dWs

∣∣∣∣2
Thus, for any t1 ≤ T,

E[ sup
0≤t≤t1

|Yt∧υm −Xt∧υm|2]

≤ 2TE
[∫ t∧υm

0

|f(Ys, Ys−τ )− f(X̂s, X̃s−τ )|2ds
]

+ 8E
[∫ t∧υm

0

|g(Ys, Ys−τ )− g(X̂s, X̃s−τ )|2ds
]
,

where we have used the Doob martingale inequality in the second summand. Using the

local Lipschitz condition (3.3.1) in the RHS of the previous equation and then, adding
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and subtracting Xt twice yields

E[ sup
0≤t≤t1

|Yt∧υm −Xt∧υm|2]

≤ Cm

(∫ t1

0

E|Ys∧υm −Xs∧υm|2ds+
∫ t1

0

E|Ys∧υm−τ −Xs∧υm−τ |2ds
)

+ Cm

(∫ t1

0

E|Xs∧υm − X̄s∧υm|2ds+
∫ t1

0

E|Xs∧υm−τ − X̃s∧υm−τ |2ds
)
,

where Cm is a positive constant that depends on T and m. By Corollary 3.3.8, we

obtain

E[ sup
0≤t≤t1

|Yt∧υm −Xt∧υm |2]

≤ Cm

(∫ t1

0

E|Ys∧υm −Xs∧υm |2ds+
∫ t1

0

E|Ys∧υm−τ −Xs∧υm−τ |2ds
)
+ Cmδ.

The Gronwall inequality yields

R1 = E[ sup
0≤t≤T

|Yt∧υm −Xt∧υm |2] ≤ Cmδ.

Proceeding in exactly the same way as in [23], one can see that for all α, β, η, µ > 0 we

have

R2 ≤
2p+1ηC

p
+

2(p− 2)C

pη2/(p−2)mp

where C̄ is a positive constant. Substituting the estimates of R1 and R2 into (3.3.25),

we obtain

E[ sup
0≤t≤T

|Yt −Xt|2] ≤ Cmδ +
2p+1ηC

p
+

2(p− 2)C

pη2/(p−2)mp
.

Now, given any ϵ > 0, we can find an η sufficiently small so

2p+1ηC

p
<

ϵ

3
,

and then m large enough so
2(p− 2)C

pη2/(p−2)mp
<

ϵ

3
,

and finally δ small enough such that

δCm <
ϵ

3
.

The proof is complete.
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3.3.3 Order of convergence

Now we investigate the order of convergence of the adaptive EM numerical solutions.

Assumption 3.3.10. There exists a constant L > 0 such that for all x, y, x̄, ȳ ∈ Rm,

f satisfies the one-sided Lipschitz condition

2⟨x− x̄, f(x, y)− f(x̄, ȳ)⟩ ≤ L(|x− x̄|2 + |y − ȳ|2) (3.3.26)

and g satisfies the (global) Lipschitz condition

||g(x, y)− g(x̄, ȳ)||2 ≤ L(|x− x̄|2 + |y − ȳ|2). (3.3.27)

In addition f satisfies the polynomial growth Lipschitz condition: there exist constants

γ, λ, q > 0 such that for all x, y, x̄, ȳ ∈ Rm

|f(x, y)− f(x̄, ȳ)| ≤ (γ(|x|q + |y|q + |x̄|q + |ȳ|q) + λ)(|x− x̄|+ |y − ȳ|). (3.3.28)

Furthermore, for any s, t ∈ [−τ, 0] and q > 0, there exists a positive constant Λ such

that

E||ξ(t)− ξ(s)|| ≤ Λ|t− s|q. (3.3.29)

Theorem 3.3.11. If the SDDE (3.2.1) satisfies Assumption 3.3.10 and the time-step

function h satisfies Assumption 3.3.2, then for all p > 0, there exists a positive constant

C independent of δ such that

E
[
sup

0≤t≤T
|Xt − Yt|p

]
≤ Cδp/2.

Proof. The proof is similar to that of SDEs given in [14]. We only give the proof

for p ≥ 4; the result for 0 ≤ p < 4 follows from Hölder’s inequality. Define et :=

Yt −Xt, 0 ≤ t ≤ T. Hence

et =

∫ t

0

[f(Ys, Ys−τ )− f(X̄s, X̃s−τ )]ds+

∫ t

0

[g(Ys, Ys−τ )− g(X̄s, X̃s−τ )]dWs.

Applying Itô’s formula we obtain

|et|2 ≤ 2

∫ t

0

⟨es, f(Ys, Ys−τ )− f(X̄s, X̃s−τ )⟩ds+
∫ t

0

|g(Ys, Ys−τ )− g(X̄s, X̃s−τ )|2ds

34



+ 2

∫ t

0

⟨es, (g(Ys, Ys−τ )− g(X̄s, X̃s−τ ))dWs⟩

≤ 2

∫ t

0

⟨es, f(Ys, Ys−τ )− f(Xs, Xs−τ )⟩ds+ 2

∫ t

0

⟨es, f(Xs, Xs−τ )− f(X̄s, X̃s−τ )⟩ds

+

∫ t

0

|g(Ys, Ys−τ )− g(X̄s, X̃s−τ )|2ds+ 2

∫ t

0

⟨es, (g(Ys, Ys−τ )− g(X̄s, X̃s−τ ))dWs⟩.

(3.3.30)

Using condition (3.3.26) we get

2⟨es, f(Ys, Ys−τ )− f(Xs, Xs−τ )⟩ ≤ L(|Ys −Xs|2 + |Ys−τ −Xs−τ |2)

= L(|es|2 + |es−τ |2). (3.3.31)

Condition (3.3.28) implies that

|⟨es, f(Xs, Xs−τ )− f(X̄s, X̃s−τ )⟩| ≤ |es| |f(Xs, Xs−τ )− f(X̄s, X̃s−τ )|

≤ |es|Q(Xs, Xs−τ , X̄s, X̃s−τ )(|Xs − X̄s|+ |Xs−τ − X̃s−τ |)

≤ 1

2
|es|2 +

1

2
Q(Xs, Xs−τ , X̄s, X̃s−τ )

2 2(|Xs − X̄s|2 + |Xs−τ − X̃s−τ |2), (3.3.32)

where Q(x, y, x̄, ȳ) := γ(|x|q + |y|q + |x̄|q + |ȳ|q) + λ. In addition, condition (3.3.27)

implies that

||g(Ys, Ys−τ )− g(X̄s, X̃s−τ )||2 ≤ L(|Ys − X̄s|2 + |Ys−τ − X̃s−τ |2)

= L(|Ys −Xs +Xs − X̄s|2 + |Ys−τ −Xs−τ +Xs−τ − X̃s−τ |2)

≤ 2L(|es|2 + |es−τ |2 + |Xs − X̄s|2 + |Xs−τ − X̃s−τ |2). (3.3.33)

Substituting (3.3.31), (3.3.32) and (3.3.33) in (3.3.30), we have

|et|2 ≤
∫ t

0

[
(3L+ 1)|es|2 + 3L|es−τ |2

]
ds

+ 2

∫ t

0

[Q(Xs, Xs−τ , X̄s, X̃s−τ )
2 + L](|Xs − X̄s|2 + |Xs−τ − X̃s−τ |2)ds

+ 2

∫ t

0

⟨es, (g(Ys, Ys−τ )− g(X̄s, X̃s−τ ))dWs⟩.

Using Hölder’s inequality yields

|et|p ≤ (6T )p/2−1

∫ t

0

((3L+ 1)p/2|es|p + (2L)p/2|es−τ |p)ds
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+ (6T )p/2−12p/2
∫ t

0

[Q(Xs, Xs−τ , X̄s, X̃s−τ ) + L]p/2(|Xs − X̄s|p + |Xs−τ − X̃s−τ |p)ds

+ 3p/2−12p/2
∣∣∣∣∫ t

0

⟨es, (g(Ys, Ys−τ )− g(X̄s, X̃s−τ ))dWs⟩
∣∣∣∣p/2 .

In the remainder of the proof, C is positive constant, independent of δ, that may change

from line to line.

Taking the supremum on each side of the previous inequality and then the expectation

yields

E
[
sup
0≤s≤t

|es|p
]
≤ J1 + J2 + J3,

where

J1 := C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds;

J2 := C

∫ t

0

E
[
[Q(Xs, Xs−τ , X̄s, X̃s−τ ) + L]p/2(|Xs − X̄s|p + |Xs−τ − X̃s−τ |p)

]
ds;

J3 := CE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

⟨eu, (g(Yu, Yu−τ )− g(X̄u, X̃u−τ ))dWu⟩
∣∣∣∣p/2
]
.

For J2, by Hölder’s inequality one has

J2 ≤ C

∫ t

0

(
E
[
[Q(Xs, Xs−τ , X̄s, X̃s−τ ) + L]p

]
× E

[
(|Xs − X̄s|2p + |Xs−τ − X̃s−τ |2p)

] )1/2
ds. (3.3.34)

By Theorem 3.3.5 there exists a constant C such that

E
[
[Q(Xs, Xs−τ , X̄s, X̃s−τ ) + L]p

]
≤ C. (3.3.35)

Let s := max{tn : tn ≤ s}. From (3.2.4), we can write

Xs − X̄s = f(X̄s, X̃s−τ )(s− s) + g(X̄s, X̃s−τ )(Ws −Ws).

Thus, by Hölder inequality

E|Xs − X̄s|2p = E|f(X̄s, X̃s−τ )(s− s) + g(X̄s, X̃s−τ )(Ws −Ws)|2p

≤ 22p−1E|f(X̄s, X̃s−τ )(s− s)|2p + 22p−1E|g(X̄s, X̃s−τ )(Ws −Ws)|2p
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≤ 22p−1(E[f(X̄s, X̃s−τ )]
4pE[(s− s)4p)1/2

+ 22p−1(E[g(X̄s, X̃s−τ )]
4pE[(Ws −Ws)

4p])1/2. (3.3.36)

By Assumption 3.3.2 we have

E[(s− s)4p] ≤ E[(hδ
s)

4p] ≤ (δT )4p ≤ δ2pT 4p (3.3.37)

and by condition (3.3.15), we get

E[(Ws −Ws)
4p] ≤ C(δT )2p. (3.3.38)

Also it follows from the global Lipschitz condition 3.3.27 that

||g(X̄s, X̃s−τ )||4p ≤
1

22p
K2p(|X̄s|2 + |X̃s−τ |2)2p + C (3.3.39)

≤ C(|X̄s|4p + |X̃s−τ |4p + 1)

and from the polynomial growth condition that

|f(X̄s, X̃s−τ )|4p ≤
[
(γ(|X̄s|q + |X̃s−τ )|q) + µ)(|X̄s|+ |X̃s−τ )|) + f(0, 0)

]4p
(3.3.40)

≤ C(|X̄s|4p(q+1) + |X̃s−τ )|4p(q+1) + 1),

so by Theorem 3.3.5, there exists a constant C such that

E[|f(X̄s, X̃s−τ )|4p] ≤ C and E[|g(X̄s, X̃s−τ )|4p] ≤ C.

Substituting these last two expressions together with (3.3.37) and (3.3.38) into

(3.3.36), we obtain

E|Xs − X̄s|2p ≤ Cδp. (3.3.41)

Using (3.3.39) and (3.3.40), and proceeding in exactly the same way as in Lemma 3.3.7,

yields E|Xs−τ − X̃s−τ |2p ≤ Cδp. Using this fact together with (3.3.41) and (3.3.35) in

(3.3.34), we obtain that J2 ≤ Cδp/2.

Now we estimate J3. By the BDG and Hölder’s inequalities one can see that

J3 ≤ CE

[(∫ t

0

|es|2 |(g(Ys, Ys−τ )− g(X̄s, X̃s−τ ))|2ds
)p/4

]
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≤ CE
[∫ t

0

|es|p/2(|X̄s − Ys|p/2 + |X̃s−τ − Ys−τ |p/2)ds
]

≤ CE
[∫ t

0

1

2
|es|p + |X̄s − Ys|p + |X̃s−τ − Ys−τ |pds

]
≤ CE

[ ∫ t

0

|es|p + (|X̄s −Xs|p + |Xs − Ys|p + |X̃s−τ −Xs−τ |p

+ |Xs−τ − Ys−τ |p)ds
]

≤ CE
[∫ t

0

|es|p + |es−τ |p + (|X̄s −Xs|p + |X̃s−τ −Xs−τ |p)ds
]
.

By the same argument we used with J2 we know that

E
[
(|X̄s −Xs|p + |X̃s−τ −Xs−τ |p)

]
≤ Cδp/2.

Thus

J3 ≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ Cδp/2.

Collecting the bounds for J1, J2 and J3, we conclude that there exist a constant C such

that

E
[
sup

0≤t≤T
|et|p

]
≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ Cδp/2.

The required assertion follows from the Gronwall inequality.

3.4 Convergence of the numerical solutions on infi-

nite time interval

In this section we will study the convergence of the numerical solutions on the time

interval [0,∞). The assumptions will be stronger than the ones on the finite time

interval.

Assumption 3.4.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant CR such that

|f(x, y)− f(x̄, ȳ)|+ ||g(x, y)− g(x̄, ȳ)|| ≤ CR(|x− x̄|+ |y − ȳ|) (3.4.1)
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for all x, y, x̄, ȳ ∈ Rm with |x|, |y|, |x̄|, |ȳ| ≤ R. Furthermore, there exists constants

α1 > α2 ≥ 0 and β > 0, such that for all x, y ∈ Rd, f satisfies the dissipative one-sided

linear growth condition:

⟨x, f(x, y)⟩ ≤ −α1|x|2 + α2|y|2 + β, (3.4.2)

and g is globally bounded:

||g(x, y)||2 ≤ β. (3.4.3)

Assumption 3.4.2. For every δ, the time step function hδ : Rd → R+, is continuous

and uniformly bounded by hδ
max, where hδ

max ∈ (0,∞).

Furthermore, there exist constants α1 > α2 ≥ 0 and β > 0, such that for all x, y ∈ Rd.

⟨x, f(x, y)⟩+ 1

2
hδ(x)|f(x, y)|2 ≤ −α1|x|2 + α2|y|2 + β. (3.4.4)

3.4.1 The boundedness of the pth moments of the exact and

the numerical solutions

The next lemma shows the boundedness of the pth moments of the exact solution on

a non-bounded time interval.

Lemma 3.4.3. If the SDDE (3.2.1) satisfies Assumption 3.4.1, then for every p > 0

there exists a positive constant C (which depends on p) such that for all t ≥ 0

E [|Yt|p] ≤ C. (3.4.5)

Proof. A proof can be found in [41].

Now, we investigate the pth moments of numerical solution. The proof about

attainability given for the finite time interval, is valid for the infinite time interval

[−τ,∞).

Theorem 3.4.4. If the SDDE (3.2.1) and the function hδ satisfy Assumption 3.4.1

and 3.4.2 respectively, then for all p > 0 there exists a constant C dependent on

hmax, β, α1, α2 and p, but independent of δ and t, such that for all t ≥ 0,

E [|Xt|p] ≤ C. (3.4.6)
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Proof. The proof is given for p ≥ 4. For 0 < p < 4, the result holds from Hölder’s

inequality. Fix t and define t := max{tn : tn ≤ t}, t̂ := max{tn : tn ≤ t − τ} and

nt := max{n : tn ≤ t}. Taking squared norms in (3.2.2), we have that for n = 0 to

n = nt,

|X̂tn+1|2 = |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn , X̄tn−τ )⟩+
1

2
hn|f(X̂tn , X̄tn−τ )|2)

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )∆Wn|2.

Note that, since it is irrelevant in this proof, we have dropped the term “δ” in the

adaptive time-step “hδ
n” to ease the notation.Using conditions (3.4.4) and (3.4.3), we

obtain

|X̂tn+1 |2 ≤ |X̂tn|2 − 2hnα1|X̂tn|2 + 2hnα2|X̄tn−τ |2 + 2hnβ

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ β|∆Wn|2.

Multiplying both sides by e2α1tn+1 yields

e2α1tn+1 |X̂tn+1|2 ≤ e2α1tn+1|X̂tn|2 − 2hnα1e
2α1tn+1 |X̂tn|2 + 2hnα2e

2α1tn+1|X̄tn−τ |2

+ 2hnβe
2α1tn+1 + 2e2α1tn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩

+ e2α1tn+1β|∆Wn|2.

Now, taking into account that tn+1 = tn + hn and using the fact that for all x ∈ R,

1 + x ≤ ex with x = −2hnα1, we obtain

e2α1tn+1 |X̂tn+1 |2 ≤ e2α1tn|X̂tn|2 + 2hnα2e
2α1tn+1 |X̄tn−τ |2 + 2hnβe

2α1tn+1

+ 2e2α1tn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ e2α1tn+1β|∆Wn|2.

Solving the recurrence, we have

e2α1t|X̂t|2 ≤ |X̂0|2 + 2α2

nt−1∑
n=0

e2α1tn+1|X̄tn−τ |2hn + 2β
nt−1∑
n=0

e2α1tn+1hn

+ 2
nt−1∑
n=0

e2α1tn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ β

nt−1∑
n=0

e2α1tn+1 |∆Wn|2.

(3.4.7)
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Similarly for the partial time step from t to t, we get

e2α1t|Xt|2 ≤ e2α1t|X̂t|2 + 2(t− t)α2e
2α1t|X̄t−τ |2 + 2(t− t)βe2α1t

+ 2e2α1t⟨X̂t + f(X̂t, X̄t−τ )hn, g(X̂t, X̄t−τ )(Wt −Wt)⟩+ e2α1tβ|(Wt −Wt)|2.

(3.4.8)

Substituting the penultimate inequality into the last one, we obtain

e2α1t|Xt|2 ≤ |X0|2 + 2α2

nt−1∑
n=0

e2α1tn+1|X̄tn−τ |2|hn + 2α2e
2α1t|X̄tn−τ |2(t− t)

+ 2β
nt−1∑
n=0

e2α1tn+1hn + 2βe2α1t(t− t)

+ 2
nt−1∑
n=0

e2α1tn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩

+β
nt−1∑
n=0

e2α1tn+1|∆Wn|2 + e2α1tβ|(Wt −Wt)|2

+ 2e2α1t⟨X̂t + f(X̂t, X̄t−τ )(t− t), g(X̂t, X̄t−τ )(Wt −Wt)⟩.

Since tn+1 ≤ tn + hmax and t ≤ t + hmax, we can take the common factor e2α1hmax

out in the equation above. The processes X̄ and X̃, defined in (3.2.2) and (3.2.3)

respectively, are a simple processes, so we express the second and the third terms in

the RHS of the previous equation as a Riemann integral. The same for the fourth and

fifth terms. Similarly, the sixth and ninth terms can be written together as a (pathwise)

Itô integral,

e2α1t|Xt|2 ≤ |X0|2 + e2α1hmax

{∫ t

0

e2α1s|X̃s−τ |2ds+ 2β

∫ t

0

e2α1sds

+ 2

∫ t

0

e2α1s⟨X̄s + f(X̄s, X̃s−τ )[h(X̄s)I[0,t)(s) + (t− t)I[t,t](s)], g(X̄s, X̃s−τ )dWs⟩

+ β
nt−1∑
n=0

e2α1tn|∆Wn|2 + e2α1tβ|(Wt −Wt)|2
}
.

Now, raising to the power p/2, using Hölder’s inequality and taking the expectation of

the supremum, we obtain

epα1tE
[
sup
0≤s≤t

|Xt|p
]
≤ 6p/2−1epα1hmax(H1 +H2 +H3 +H4), (3.4.9)
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where

H1 := E|X0|p + E

[(
2α2

∫ t

0

e2α1s|X̃s−τ |2ds
)p/2

]
+

(
2β

∫ t

0

e2α1sds

)p/2

;

H2 := E

[
sup
0≤s≤t

∣∣∣∣∣2
∫ s

0

e2α1u⟨X̄u + f(X̄u, X̃u−τ )[h(X̄u)I[0,s)(u)

+ (s− s)I[s,s](u)], g(X̄s, X̃u−τ )dWu⟩

∣∣∣∣∣
p/2]

;

H3 := E

(β nt−1∑
n=0

e2α1tn|∆Wn|2
)p/2

 ;

H4 := βp/2epα1tE[ sup
0≤s≤t

|(Ws −Ws)|p].

Now we will establish bounds for each of the four terms above. In the remainder

of the proof, C is a positive constant that may depend on β, α1, α2, hmax and p, but

independent of t, that may change from line to line. We start by bounding H1.

H1 ≤ E|X0|p + E

[(
2α2 sup

−τ≤s≤t
|Xs|2

∫ t

0

e2α1sds

)p/2
]
+

(
2β

∫ t

0

e2α1sds

)p/2

≤ E|X0|p +
(
α2

α1

)p/2

E
[

sup
−τ≤s≤t

|Xs|p
]
eα1pt +

(
2β

2α1

)p/2

eα1pt

≤ eα1pt

(
C +

(
α2

α1

)p/2

E
[
sup
0≤s≤t

|Xs|p
])

.

For H2, the BDG inequality and condition (3.4.3) yields

H2 ≤ 2p/2βp/4CE

[(∫ t

0

e4(α1−α2)s|(X̄s + f(X̄s, X̃s−τ )[h(X̄s)I[0,t)(s)

+ (t− t)I[t,t](s)])|2ds
)p/4]

.

Since e4(α1−α2)s = e2(α1−α2)
p−4
p

se2(α1−α2)(1+
4
p
)s, by Hölder’s inequality, we get(∫ t

0

e4(α1−α2)s|(X̄s + f(X̄s, X̃s−τ )[h(X̄s)I[0,t)(s) + (t− t)I[t,t](s)])|2ds
)p/4

≤
(∫ t

0

e2(α1−α2)sds

) p−4
4
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×
∫ t

0

e(α1−α2)
p+4
2

s|(X̄s + f(X̄s, X̃s−τ )[h(X̄s)I[0,t)(s) + (t− t)I[t,t](s)])|p/2ds.

Using Assumption (3.4.2), we obtain

|X̄s + f(X̄s, X̃s−τ )[h(X̄s)I[0,t)(s) + (t− t)I[t,t](s)]|2

≤ |X̄s|2 + 2[h(X̄s)I[0,t)(s) + (t− t)I[t,t](s)]
(
−α1|X̄s|2 + α2|X̃s−τ |2 + β

)
≤ |X̄s|2 + 2hmax

(
α2|X̃s−τ |2 + β

)
.

Therefore,

H2 ≤ E

[
C

(∫ t

0

e2α1sds

) p−4
4

×
∫ t

0

eα1
p+4
2

s
{
|X̄s|p/2 + (2hmaxα2)

p/4|X̃s−τ |p/2 + (2βhmax)
p/4
}
ds

]
.

We can write the previous inequality as H2 ≤ H21 +H22 +H23, where

H21 := CE[ sup
0≤s≤t

|Xs|p/2]
(∫ t

0

e2α1sds

) p−4
4
∫ t

0

eα1
p+4
2

sds;

H22 := C(2hmaxα2)
p/4E[ sup

−τ≤s≤t
|Xs|p/2]

(∫ t

0

e2α1sds

) p−4
4
(∫ t

0

eα1
p+4
2

sds

)
;

H23 := C(2hmaxα2)
p/4

(∫ t

0

e2α1sds

) p−4
4
(∫ t

0

eα1
p+4
2

sds

)
.

Since, (∫ t

0

e2α1sds

) p−4
4
∫ t

0

eα1
p+4
2

s =
eα1(p−4)t − 1

(2α1)
p−4
4

· eα1
p+4
2 t− 1

α1
p+4
2

≤ eα1pt

α1
p+4
2
(2α1)

p−4
4

≤ Ceα1pt,

we arrive at

H2 ≤ CE[ sup
0≤s≤t

|Xs|p/2]eα1pt + CE[ sup
−τ≤s≤t

|Xs|p/2]eα1pt + Ceα1pt

= eα1pt(CE[ sup
0≤s≤t

|Xs|p/2] + C).
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Using the elementary inequality ab ≤ 1
2γ
a2 + γ

2
b2 for all γ ∈ R+ and all a, b ∈ R with

a = C and b = E[sup0≤s≤t |Xs|p/2, and later Jensen’s inequality, we get

CE[ sup
0≤s≤t

|Xs|p/2] ≤
1

2γ
C2 +

γ

2
(E[ sup

0≤s≤t
|Xs|p/2])2 ≤

1

2γ
C2 +

γ

2
E[ sup

0≤s≤t
|Xs|p].

Therefore,

H2 ≤ eα1pt(
γ

2
E[ sup

0≤s≤t
|Xs|p] + Cγ), (3.4.10)

where the “γ” in Cγ is to emphasise that this constant depends also on γ and is not

fixed yet.

Now we will estimate H3. By the discrete Hölder’s inequality we obtain∣∣∣∣∣
nt−1∑
n=0

e2α1tn|∆Wn|2
∣∣∣∣∣ =

∣∣∣∣∣
nt−1∑
n=0

(
h

p−2
p

n e2α1tn
p−2
p

)(
h

2
p
ne

4α1tn
p

|∆Wn|2

hn

)∣∣∣∣∣
≤

(
nt−1∑
n=0

hne
2α1tn

) p−2
p
(

nt−1∑
n=0

hne
2α1tn

p
|∆Wn|p

h
p/2
n

) 2
p

.

By (3.3.15) we can derive that

H3 ≤ E

βp/2

(
nt−1∑
n=0

hne
2α1tn

) p−2
2 nt−1∑

n=0

hne
2α1tn

|∆Wn|p

h
p/2
n


≤ βp/2

(∫ t

0

e2α1sds

) p−2
2

C

∫ t

0

e2α1sds ≤ Ce2α1t.

Using (3.3.15) again, we have that

H4 ≤ βp/2eα1ptChp/2
max ≤ Ceα1pt.

Collecting together the bounds for H1, H2 H3 and H4, we obtain

epα1tE[ sup
0≤s≤t

|Xs|p] ≤ epα1t(Cγ +
γ

2
E[ sup

0≤s≤t
|Xs|p]) +

(
α2

α1

)p/2

E[ sup
0≤s≤t

|Xs|p]).

Noting that the constant C is independent of t, 0 ≤ (α2/α1)
p/2 < 1 and taking γ small

enough such that γ
2
< 1− (α2/α1)

p/2, the required assertion follows.

44



3.5 Almost sure exponential stability for SDEs

In Wei and Giles [14], the almost sure exponential stability of the adaptive EM solution

has not been investigated. In this section we switch momentarily to SDEs to cover this

topic. Let {Wt}t≥0 be a d̄-dimensional Brownian motion. Consider the d-dimensional

SDE

dYt = f(Yt)dt+ g(Yt)dWt (3.5.1)

for t ≥ 0 where f : Rd × Rd → Rd and g : Rd × Rd → Rd×d̄ are Borel-measurable

functions, and initial data Y0 = ξ ∈ L2
F0
(Ω;Rd), i.e. ξ is a F0-measurable Rd-valued

random variable with E|ξ|2 < ∞.

It was shown in [24] that among other condtions, if the drift function satisfies

the linear growth condition, then the Euler-Maruyama approximate solution is a.s.

exponentially stable. However, if the drift function satisfies the less restrictive one-

sided linear growth condition, the EM solution is not longer stable. It was proved in

the same paper that the backward EM solution mantains the stability. But it’s well

known that the BEM method is much more computationally expensive than explicit

methods. Therefore, it is deserable to find explicit methods that are exponetially

stable. Our goal in this section is to show that the adaptive EM solution can be a.s.

exponentially stable for some SDEs where the standard EM breaks down.

We will impose the following assumption of the SDE (3.5.1)

Assumption 3.5.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant CR such that

|f(x)− f(y)|+ ||g(x)− g(y)|| ≤ CR(|x− y| (3.5.2)

for all x, y ∈ Rd with |x|, |y| ≤ R. Furthermore, there exists a constant α ≥ 0 such that

for all x ∈ Rd, f and g satisfy

⟨x, f(x)⟩+ 1

2
|g(x)|2 ≤ −α|x|2, α > 0. (3.5.3)

Under the conditions (3.5.2) and (3.5.3), the SDE (3.5.1) has a unique solution

(Theorem 2.3.6 in [36]).
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3.5.1 Example

Consider the following SDE:

dYt = (−2Yt − Y 3
t )dt+

√
2YtdWt Y0 = c ∈ R/{0}. (3.5.4)

Using [25, Theorem 5.1], we can show that the exact solution of the SDE (3.5.4) is

almost sure exponentially stable, i.e.

lim sup
t→∞

1

t
log |Yt| ≤ −λ a.s., λ > 0.

However, the discrete (standard) EM approximate solution

Xk+1 = Xk(1− 2∆−X2
k∆+

√
2∆Wk), X0 = Y0, ∆ ∈ (0, 1) (3.5.5)

where ∆ = 1/m,m ∈ N, is not almost sure exponentially stable. This means that it

does not exist a constant η > 0 and a ∆∗ ∈ (0, 1) such that for all ∆ ∈ (0,∆∗)

lim sup
k→∞

1

k∆
log |Xk| ≤ −η a.s. .

One the contrary, as we will see in Section 3.5.2, the adaptive EM approximate

solution to Equation (3.5.4) is almost sure exponentially stable. The following lemma

proves a much stronger result that implies the above. It shows that the set in which

the EM solution grows at a geometric rate, has positive probability.

Lemma 3.5.2. Consider the EM aproximate solution (3.6.5) to the SDE (3.5.4). Then

P
(
|Xk| ≥

2k+3

√
∆

, ∀k ≥ 1

)
> 0. (3.5.6)

The proof is based on the counterexample’s proof given in [24].

Proof. First we show that if |X1| ≥ 24/
√
∆, then

P
(
|Xk| ≥

2k+3

√
∆

, ∀k ≥ 1

)
≥ exp

(
−4e−2/

√
∆
)
. (3.5.7)

We start by proving the following fact:

|Xk| ≥
2k+3

√
∆

and |∆Wk| ≤ 2k imply |Xk+1| ≥
2k+4

√
∆

. (3.5.8)
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To prove (3.5.8), assume that |Xk| ≥ 2k+3
√
∆
. Then

|Xk+1| ≥ |Xk|(∆|Xk|2 − 1− 2∆−
√
2|∆Wk|)

≥ 2k+3

√
∆

(22k+6 − 1− 2∆−
√
22k)

≥ 2k+4

√
∆

(22k+5 − 1− 2∆−
√
22k−1)

≥ 2k+4

√
∆

.

Now, from (3.5.8), given that |X1| ≥ 24/
√
∆, for any integer K ≥ 0, the event that

{|Xk| ≥ 2k+3/
√
∆,∀1 ≤ k ≤ K} contains the event that {|Wk| ≤ 2k,∀1 ≤ k ≤ K}. So

since the {∆Wk} are independent, we have

P
(
|Xk| ≥

2k+3

√
∆

, ∀1 ≤ k ≤ K

)
≥

K∏
k=1

P(|∆Wk| ≤ 2k).

In order to prove (3.5.7), the rest of the proof is identical to the one in Lemma 3.1

in [25]. To obtain the final result, Equation (3.6.7), we need to prove that P(|X1| ≥

24/
√
∆) > 0. But this is true since X1 is a normal random variable and for a normal

random variable X with density function f , we have that for all a ∈ R, P(X ≥ a) =∫∞
a

f(x)dx > 0.

In constrast to the EM solution, now we will see that the adaptive approximate

solution of the SDE (3.5.4) preserves the stability of the exact solution.

3.5.2 Adaptive Euler-Maruyama method for SDEs and main

result

We now define the adaptive-EM method for SDEs. In the same way as for SDDEs,

section 3.2, the time step is determined by a function hδ : Rd → R+ with δ ∈ (0, 1).

Set X̂0 := ξ, hδ
0 := hδ(X̂0) and for n = 0, 1, 2, ... define

X̂tn+1 := X̂tn + f(X̂tn)h
δ
n + g(X̂tn)∆Wn, (3.5.9)

hδ
n := hδ(X̂tn), tn+1 := tn + hδ

n, (3.5.10)
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where ∆Wn := Wtn+1 −Wtn .

We now define the the continuous-time approximate solution. For every t ≥ 0, let

X̄t := X̂tn for t ∈ [tn, tn+1) (3.5.11)

and define

Xt := X0 +

∫ t

0

f(X̄s)ds+

∫ t

0

g(X̄s)dWs. (3.5.12)

Assumption 3.5.3. For every δ, the time step function hδ : Rd → R+, is continuous

and there exists a constant α > 0 such that for all x ∈ Rm,

⟨x, f(x)⟩+ 1

2
|g(x)|2 + d

2
hδ(x)|f(x)|2 ≤ −α|x|2, (3.5.13)

where d̄ is the dimension of the Brownian motion in the SDEs (3.5.1). Furthermore,

hδ is uniformly bounded by the real number hδ
max ∈ (0,∞).

Given SDE (3.5.4), we define (as an example) the following timestep function:

hδ(x) :=

(
1

25
I{|x|<1} + 0.25I{|x|≥1}

max(1, |x|)
max(1, |f(x)|)

)
δ, (3.5.14)

which satisfies condition (3.5.13). There is not an automatic procedure to find hδ, it

must be found manually and customized to the specific SDE we are working with. The

function (3.5.14) is just and example. As we will see in the next theorem, any function

hδ that satisfies condition (3.5.13) would serve the same purpose.

which satisfies condition (3.5.13) and therefore (as it is proved in the next theorem)

ensures the almost sure exponential stability of the numerical solution. There is not

automatic procedure to find hδ, it must be found manually and customized to the spe-

cific SDE we are working with.

Under Assumptions 3.5.1 and 3.5.13 the adaptive-EM approximate solution (3.2.4) con-

verges strongly to the exact solution of the SDEs (3.5.1) (see [14]). Now we formulate

the main result of the chapter.
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Theorem 3.5.4. Consider the SDEs (3.5.1). If f and g satisfy Assumption 3.5.1

and hδ satisfies Assumption 3.5.3, then the adaptive approximate solution (3.5.9) (or

(3.5.12)) is almost sure exponentially stable, i.e. there exists λ > 0 such that

lim sup
n→∞

log |X̂tn|
tn

≤ −λ a.s.

Before proving Theorem 3.5.4, we show that the SDEs (3.5.4) satisfies Assumption

3.5.1

⟨x, f(x)⟩+ 1

2
|g(x)|2 = −2x2 − x4 +

1

2
2x2 = −x2 − x4 ≤ −x2.

Thus the adaptive approximate solution of the SDE (3.5.4) is almost sure exponentially

stable.

Proof. From (3.5.9), by using the linearity property of the inner product, we have that

|X̂tn+1|2 ≤ |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn)⟩+
1

2
hn|f(X̂tn)|2)

+ 2⟨X̂tn + f(X̂tn)hn, g(X̂tn)∆Wn⟩+ |g(X̂tn)∆Wn|2.

Adding and subtracting |g(X̂tn)|2hnd̄ to the RHS of the previous inequality gives

|X̂tn+1 |2 ≤ |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn)⟩+
1

2
hn|f(X̂tn)|2 +

d̄

2
|g(X̂tn)|2)

+ 2⟨X̂tn + f(X̂tn)hn, g(X̂tn)∆Wn⟩+ |g(X̂tn)|2(|∆Wn|2 − hnd̄)

Using (3.5.13), we obtain

|X̂tn+1 |2 ≤ |X̂tn|2 − 2αhn|X̂tn|2 + 2⟨X̂tn + f(X̂tn)hn, g(X̂tn)∆Wn⟩

+ |g(X̂tn)|2(|∆Wn|2 − hnd̄)

Multiplying by eαtn+1 and using the fact that 1 + x ≤ ex with x = −2hnα yields

eαtn+1 |X̂tn+1|2 ≤ eαtn|X̂tn|2 + eαtn+1 |g(X̂tn)|2(|∆Wn|2 − hnd̄)

+ 2eαtn+1⟨X̂tn + f(X̂tn)hn, g(X̂tn)∆Wn⟩.

Solving the recurrence and using the bound hmax we have

eαtn|X̂tn|2 ≤ |X̂0|2 + eαhmax

{
n−1∑
k=0

eαtk |g(X̂tk)|2(|∆Wk|2 − hkd̄)
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+ 2
n−1∑
k=0

eαtk⟨X̂tk + f(X̂tk)hn, g(X̂tk)∆Wk⟩

}
= |X̂0|2 + eαhmax{Mn +Nn}, (3.5.15)

where:

• Mn :=
∑n−1

k=0 e
αtk |g(X̂tk)|2(|∆Wk|2 − hkd̄);

• Nn := 2
∑n−1

k=0 e
αtk⟨X̂tk + f(X̂tk)hk, g(X̂tk)∆Wk⟩.

Taking logarithms and dividing by tn, it follows that

1

tn
log(eλtn |X̂tn|2) ≤

1

tn
log
(
C + C̄{Mn +Nn}

)
,

where C and C̄ are positive constants dependent on ω ∈ Ω and on the constants α and

hmax, but not on tn. Since

E[Mn+1|Ftn ] = E[eαtn|g(X̂tn)|2(|∆Wn|2 − hnd̄) +Mn|Ftn ]

= eαtn|g(X̂tn)|2(E[|∆Wn|2]− hnd̄) +Mn = Mn

and

E[Nn+1|Ftn ] = E[2eαtn⟨X̂tn + f(X̂tn)hn, g(X̂tn)∆Wn⟩+Nn|Ftn ]

= 2eαtn⟨X̂tn + f(X̂tn)hn, g(X̂tn)E[∆Wn]⟩+Nn = Nn,

M+N is a local martingale with respect to {Ftn}. Thus by the discrete semimartingale

convergence theorem (Theorem 2.1.14), we obtain

lim
n→∞

(Mn +Nn) < ∞ a.s.

Therefore,

lim sup
n→∞

1

tn
log(eαtn|X̂tn|2) ≤ 0 a.s.

This is

lim sup
n→∞

log |X̂tn|
tn

≤ −α

2
a.s.

and the proof is complete.

50



3.6 Almost sure exponential stability for SDDEs

Here we extend to work done in section 3.5 to SDDEs. The delay component adds some

difficulty and additional conditions (although not very restrictive) on the coefficient

functions will be needed. It was shown in [49] that among other conditions, when the

drift function satisfy the linear growth condition, the Euler-Maruyama approximate

solution is a.s. exponentially stable. However, when the drift function satisfies the less

restrictive one-sided linear growth condition, the EM solution needs not longer to be

stable. It was proved in the same paper that the BEM solution maintains the stability.

But as we said in the previous section, the BEM method is implicit and therefore,

much more computationally expensive than explicit methods such as the adaptive EM

method. Our goal in this section is to show that the adaptive solution can be a.s.

exponentially stable for some SDDEs where the EM breaks down.

Assumption 3.6.1. The functions f and g satisfy the local Lipschitz condition: for

every R > 0 there exists a positive constant CR such that

|f(x, y)− f(x̄, ȳ)|+ ||g(x, y)− g(x̄, ȳ)|| ≤ CR(|x− x̄|+ |y − ȳ|) (3.6.1)

for all x, y, x̄, ȳ ∈ Rm with |x|, |y|, |x̄|, |ȳ| ≤ R. Furthermore, there exist constants α1, α2

and β satisfying

α1 > 2α2 ≥ 0 and β > 0, (3.6.2)

such that for all x, y ∈ Rm, f satisfies

⟨x, f(x, y)⟩+ 1

2
||g(x, y)||2 ≤ −α1|x|2 + α2|y|2. (3.6.3)

Under this assumption, the SDDE (3.2.1) has a unique solution.

3.6.1 Counterexample (SDDE)

Consider the following SDDEs

dYt = (−2Yt − Y 3
t +

1

2
Yt sin(Yt−1))dt+

√
2Yt cos(Yt−1)dWt (3.6.4)
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with initial data ξ ∈ C([−1, 0];R), ξ(0) = c ∈ R/{0}. Using [49, Theorem 1], we can

show that the exact solution of the SDDE (3.6.4) is almost sure exponentially stable,

i.e.

lim sup
t→∞

1

t
log |Yt| ≤ −λ a.s., λ > 0.

However, the discrete (standard) EM approximate solution

Xk = ξ(k∆) k = −m,−m+ 1, ..., 0, (3.6.5)

Xk+1 = Xk −Xk[(2 +X2
k −

1

2
Xk sin(Xk−1))∆ +

√
2 cos(Xk−1)∆Wk],

k = 0, 1, . . .

where ∆ = 1/m,m ∈ N, is not almost sure exponentially stable. This means that it

does not exist a constant η > 0 and a ∆∗ ∈ (0, 1) such that for all ∆ ∈ (0,∆∗)

lim sup
k→∞

1

k∆
log |Xk| ≤ −η a.s. .

On the contrary, as we will see later, the adaptive EM approximate solution to

equation (3.6.4) is almost sure exponentially stable.

Let Xk be defined by (3.6.5) The following lemma proves a much stronger result

that Xk is not almost sure exponential stable. It shows that the set in which the EM

solution grows at a geometric rate has positive probability.

Lemma 3.6.2. Consider the EM approximate solution (3.6.5) to the SDE (3.6.4).

Then

P
(
|Xk| ≥

2k+3

√
∆

, ∀k ≥ 1

)
> 0. (3.6.6)

The following proof is based on the counterexample’s proof given in [24].

Proof. First we show that if |X1| ≥ 24/
√
∆, then

P
(
|Xk| ≥

2k+3

√
∆

, ∀k ≥ 1

)
≥ exp

(
−4e−2/

√
∆
)
. (3.6.7)

We start by proving the following fact:

|Xk| ≥
2k+3

√
∆

and |∆Wk| ≤ 2k imply |Xk+1| ≥
2k+4

√
∆

. (3.6.8)
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To prove (3.6.8), assume that |Xk| ≥ 2k+3
√
∆
. Then

|Xk+1| ≥ |Xk|
∣∣∣|Xk|2∆− |1 + 2∆ + 1/2 sin(Xk−1)∆ +

√
2 cos(Xk−1)∆Wk|

∣∣∣
≥ |Xk|

∣∣∣|Xk|2∆− (|1|+ |2∆|+ |1/2∆|+ |
√
2∆Wk|)

∣∣∣
≥ 2k+3

√
∆

(22k+6 − 6−
√
22k) ≥ 2k+4

√
∆

(22k+5 − 3−
√
22k−1)

≥ 2k+4

√
∆

.

Now, from (3.6.8), given that |X1| ≥ 24/
√
∆, for any integer K ≥ 0, the event that

{|Xk| ≥ 2k+3/
√
∆,∀1 ≤ k ≤ K} contains the event that {|Wk| ≤ 2k,∀1 ≤ k ≤ K}.

Since {∆Wk} are independent, we have

P
(
|Xk| ≥

2k+3

√
∆

, ∀1 ≤ k ≤ K

)
≥

K∏
k=1

P(|∆Wk| ≤ 2k).

In order to prove (3.6.7), the rest of the proof is identical to the one in Lemma 3.1

in [24]. To obtain the final result, Equation (3.6.7), we need to prove that P(|X1| ≥

24/
√
∆) > 0. But this is true since X1 is a normal random variable and for a normal

random variable X with density function f , we have that for all a ∈ R, P(X ≥ a) =∫∞
a

f(x)dx > 0.

In contrast to the standard EM solution, now we will see that the adaptive EM

solution, maintains the stability of the exact solution of SDDE (3.6.4). We need the

following assumption.

Assumption 3.6.3. For every δ, the time step function hδ : Rd̄ → R+, is continuous

and there exist constants α1 > α2 ≥ 0 and β > 0, such that for all x, y ∈ Rm,

⟨x, f(x, y)⟩+ 1

2
hδ(x)|f(x, y)|2 + d

2
||g(x, y)||2 ≤ −α1|x|2 + α2

min(hδ(y), hδ(x))

hδ(x)
|y|2,

(3.6.9)

where d̄ is the dimension of the Brownian motion in the SDDE (3.2.1). Furthermore,

the function hδ is uniformly bounded by the real numbers 0 < hδ
min < hδ

max < 1, where

hδ
max is small enough such that

2α2e
2α1hmax < α1. (3.6.10)
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Note that condition (3.6.9) implies condition (3.6.3) with the same values of α1 and

α2. An example of function hδ that satisfies condition (3.6.9) for the SDDE (3.6.4) is

hδ(x) :=

(
1

25
I{|x|<1} + 0.25I{|x|≥1}

|x|2

max(1, |f(x, y)|2)

)
δ. (3.6.11)

The following is the main result of this section.

Theorem 3.6.4. Consider the SDDE (3.2.1) with a d-dimensional Brownian motion.

If f and g satisfy Assumption 3.6.1 and hδ satisfies Assumption 3.6.3, then the adaptive

approximate solution (3.2.2) is almost sure exponentially stable, i.e. there exists a λ > 0

such that

lim sup
n→∞

log |X̂tn|
tn

≤ −λ a.s.

Before proving Theorem 3.6.4, we show that the SDDE (3.6.4) satisfies Assumption

3.6.1

⟨x, f(x, y)⟩+ 1

2
|g(x, y)|2 = −2x2 − x4 +

1

2
sin(y)x2 + x2 cos2(y) ≤ −1

2
x2.

In order to show that hδ satisfies (3.6.9) for the SDDE (3.6.4), we substitute (3.6.11)

into (3.6.9) and differentiate between the cases |x| < 1 and |x| ≥ 1. For |x| < 1 we

have

⟨x,f(x, y)⟩+ 1

2
hδ(x)|f(x, y)|2 + d

2
||g(x, y)||2 = −2x2 − x4 +

1

2
x2 sin(y)

+
1

2

1

25
δ(4x2 + 4x4 − 2x2 sin(y) + x6 − x4 sin(y) +

1

4
x2 sin(y)) +

1

2
2x2 cos2(y)

≤ −3x2

10

and for |x| ≥ 1 we have

⟨x,f(x, y)⟩+ 1

2
hδ(x)|f(x, y)|2 + d

2
||g(x, y)||2

= −2x2 − x4 +
1

2
x2 sin(y) +

1

2

1

4
δ|x|2 + 1

2
2x2 cos2(y) ≤ −3x2

8
.

Thus the adaptive approximate solution of the SDDE (3.6.4) implemented with hδ

defined as (3.6.11) is almost sure exponentially stable.

We will prove the theorem, but first we need the following lemma.
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Lemma 3.6.5. Consider the SDDE (3.2.1) with a d̄-dimensional Brownian motion.

Suppose f and g satisfy Assumption 3.6.1 and hδ satisfies Assumption 3.6.3. Let l be

a positive integer. Then there exists λ ∈ (0, α1) such that

l∑
n=1

eλtn|X̂tn|2hn ≤ C + C
l∑

n=1

eλtn|g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄)

+ C

l∑
n=1

eλtn⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩ a.s.,

(3.6.12)

where C is a positive constant dependent on ω ∈ Ω, the constants α1, α2, hmax and λ,

but independent of l or tn.

Proof. From (3.2.2) and (3.6.9), we have

|X̂tn+1|2 = |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn , X̄tn−τ )⟩+
1

2
hn|f(X̂tn , X̄tn−τ )|2)

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )∆Wn|2

≤ |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn , X̄tn−τ )⟩+
1

2
hn|f(X̂tn , X̄tn−τ )|2 +

d̄

2
|g(X̂tn , X̄tn−τ )|2)

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄)

≤ |X̂tn|2 − 2α1hn|X̂tn|2 + 2α2h
δ(X̄tn−τ )|X̄tn−τ |2

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄).

Multiplying by eα1tn+1 and using the fact that 1 + x ≤ ex with x = −hnα1, yields

eα1tn+1 |X̂tn+1|2 ≤ eα1tn|X̂tn|2 + 2α2h
δ(X̄tn−τ )e

α1tn+1|X̄tn−τ |2

+ eα1tn+1 |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄)

+ 2eα1tn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩.

Solving the recurrence and using the bound hmax, one can see that

eα1tn|X̂tn|2 ≤ |X0|2 + eα1hmax

{
n−1∑
k=0

eα1tk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

+ 2α2

n−1∑
k=0

eα1tk |X̄tk−τ |2hδ(X̄tk−τ )
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+ 2
n−1∑
k=0

eα1tk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
.

Thus,

|X̂tn|2 ≤ e−α1tn|X0|2 + eα1hmax

{
e−α1tn

n−1∑
k=0

eα1tk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

+ 2α2e
−α1tn

n−1∑
k=0

eα1tk |X̄tk−τ |2hδ(X̄tk−τ )

+ 2e−α1tn

n−1∑
k=0

eα1tk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
.

So, for any λ ∈ (0, α1) we have

l∑
n=1

eλtn|X̂tn|2hn ≤ e−(α1−λ)tn |X0|2hn (3.6.13)

+ eα1hmax

{
l∑

n=0

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

+ 2α2

l∑
n=0

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |X̄tk−τ |2hδ(X̄tk−τ )

+ 2
l∑

n=0

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
.

(3.6.14)

Moreover, we can see that

2α2e
α1hmax

l∑
n=1

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |X̄tk−τ |2hδ(X̄tk−τ )

= 2α2e
α1hmax

l∑
n=1

eα1tn|X̄tn−τ |2hδ(X̄tn−τ )
l∑

k=n

e−(α1−λ)tkhk.

Now since the function e−(α1−λ)s is decreasing on s, we see that

l∑
k=n

e−(α1−λ)tkhk =
l∑

k=n

e(α1−λ)hke−(α1−λ)tk+1hk

≤ e(α1−λ)hmax

∫ tl

tn

e−(α1−λ)sds ≤ eα1hmax

α1 − λ
e−(α1−λ)tn .
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Thus

2α2e
α1hmax

l∑
n=1

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |X̄tk−τ |2hδ(X̄tk−τ )

≤ 2α2e
2α1hmax

α1 − λ

(
l∑

n=1

eλtn|X̄tn−τ |2hδ(X̄tn−τ )

)
. (3.6.15)

Let M = M(ω) be such that tM ≤ τ < tM+1. Then we can write

l∑
n=1

eλtn|X̄tn−τ |2hδ(X̄tn−τ )

=
M∑
n=1

eλtn|X̄tn−τ |2hδ(X̄tn−τ ) +
l∑

n=M+1

eλtn|X̄tn−τ |2hδ(X̄tn−τ )

≤ C + eλhmaxM

l∑
n=1

eλtn|X̂tn|2hn, (3.6.16)

Substituting Equation (3.6.16) into (3.6.15), we obtain

2α2e
α1hmax

l∑
n=1

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |X̄tk−τ |2hk

≤ C +
2α2e

2α1hmaxeλhmaxM

α1 − λ

l∑
n=1

eλtn|X̂tn|2hn, (3.6.17)

Similarly we obtain

eα1hmax

l∑
n=0

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

≤ 2eα1hmax

α1 − λ

l∑
n=1

eλtn|g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄). (3.6.18)

and

eα1hmax2
l∑

n=0

e−(α1−λ)tnhn

n−1∑
k=0

eα1tk⟨X̂tk + f(X̂tk , X̄tk−τ )hn, g(X̂tk , X̄tk−τ )∆Wk⟩

≤ 2e2α1hmax

α1 − λ

l∑
n=1

eλtn⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩.

(3.6.19)
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We observe that by condition (3.6.10), hmax is such that 0 < 2α2e
2α1hmax < α1.

Then by choosing λ small enough so 0 < 2α2e2α1hmaxeλhmaxM

α1−λ
< 1 and by substituting

Equations (3.6.17), (3.6.18) and (3.6.19) into (3.6.13), we obtain the final result.

We are now in the position to give

Proof of Theorem 3.6.4. From (3.2.2) and (3.6.9), we have

|X̂tn+1|2 = |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn , X̄tn−τ )⟩+
1

2
hn|f(X̂tn , X̄tn−τ )|2)

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )∆Wn|2

≤ |X̂tn|2 + 2hn(⟨X̂tn , f(X̂tn , X̄tn−τ )⟩+
1

2
hn|f(X̂tn , X̄tn−τ )|2 +

d̄

2
|g(X̂tn , X̄tn−τ )|2)

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄)

≤ |X̂tn|2 − 2α1hn|X̂tn|2 + 2α2h
δ(X̄tn−τ )|X̄tn−τ |2

+ 2⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+ |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄).

Now we multiply by eλtn+1 , where λ ∈ (0, α1) is the one from Lemma 3.6.5, which makes

equation (3.6.12) to hold true. Then using the fact that 1 + x ≤ ex with x = −2hnα1,

yields

eλtn+1 |X̂tn+1|2 ≤ eλtn|X̂tn|2 + 2α2e
λtn+1|X̄tn−τ |2hn

+ eλtn+1|g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄)

+ 2eλtn+1⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩.

Note that in the equation above we have used the fact that e−hnα1 ≤ e−hnλ. Solving

the recurrence and using the bound hmax we have

eλtn|X̂tn|2 ≤ |X0|2 + eλhmax

{
n−1∑
k=0

eλtk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

+ 2α2

n−1∑
k=0

eλtk |X̄tk−τ |2hδ(X̄tk−τ )

+ 2
n−1∑
k=0

eλtk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
.

58



Using (3.6.16), we obtain

eλtn|X̂tn|2 ≤ |X0|2 + eλhmax

{
n−1∑
k=0

eλtk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄) + C

+ eλhmaxM

n−1∑
k=1

eλtk |X̂tk |2hk

+ 2
n−1∑
k=0

eλtk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
. (3.6.20)

Substituting Equation (3.6.12) (from Lemma 3.6.5) into (3.6.20) yields

eλtn|X̂tn|2 ≤ |X0|2 + C + C

n−1∑
k=0

eλtk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄)

+ C
n−1∑
k=0

eλtk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩

}
≤ C + C{Mn +Nn},

where:

• Mn :=
∑n−1

k=0 e
λtk |g(X̂tk , X̄tk−τ )|2(|∆Wk|2 − hkd̄);

• Nn :=
∑n−1

k=0 e
λtk⟨X̂tk + f(X̂tk , X̄tk−τ )hk, g(X̂tk , X̄tk−τ )∆Wk⟩;

• C is a positive constant (that changed from the second to the last line) dependent

on ω ∈ Ω and on the constants α1, α2, hmax and λ, but not on tn.

Taking logarithms and dividing by tn, it follows that

1

tn
log(eλtn|Xtn|2) ≤

1

tn
log (C + C{Mn +Nn}) .

We observe that

E[Mn+1|Ftn ] = E[eλtn |g(X̂tn , X̄tn−τ )|2(|∆Wn|2 − hnd̄) +Mn|Ftn ]

= eλtn|g(X̂tn , X̄tn−τ )|2(E[|∆Wn|2]− hnd̄) +Mn = Mn

and

E[Nn+1|Ftn ] = E[2eλtn⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )∆Wn⟩+Nn|Ftn ]
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= 2eλtn⟨X̂tn + f(X̂tn , X̄tn−τ )hn, g(X̂tn , X̄tn−τ )E[∆Wn]⟩+Nn = Nn.

Hence M +N is a local martingale with respect to {Ftn}. Thus by the discrete semi-

martingale convergence theorem (Theorem 2.1.14), one can see that

lim
n→∞

(Mn +Nn) < ∞ a.s.

Therefore,

lim sup
n→∞

1

tn
log(eλtn|X̂tn|2) ≤ 0 a.s.

This is

lim sup
n→∞

log |X̂tn|
tn

≤ −λ

2
a.s.

The proof is therefore complete. □

3.7 Simulations

In this section we present simulations which illustrate the results discussed in Section

3.6. Consider the SDDE (3.6.4) with τ = 1 and initial condition Y (t) = 100,−1 ≤

t ≤ 0. We simulated in Matlab paths of the EM solution of the SDDE (3.6.4) using

different step sizes, ∆. As we have seen in section 3.6 there is a positive probability

that the EM solution explodes. In Table 3.1 we present six different simulations of the

EM solution for ∆ = 2e−3. We observe in simulations 1,3,4 and 5 the EM solution

explodes.

Table 3.1: Six simulations of the EM solution for ∆ = 2e−3

Time 0 2e−3 4e−3 6e−3 8e−3 10e−3 12e−3 14e−3 16e−3 18e−3 20e−3

Sim 1 100 101.1 107.4 -141.1 418.1 −1.4e4 5.7e8 −3.7e22 1.1e64 −2.3e188 Inf

Sim 2 100 -98 88.97 -50.99 -24.51 -21.33 -19.37 -17.29 -16.15 -15.13 -14.87

Sim 3 100 -101.3 109.6 -150.1 525.68 −2.8e4 4.6e9 −2e25 1.6e72 −8.3e212 Inf

Sim 4 100 -101.9 108.5 -143.9 452.6 −1.8e4 1.2e9 −3.3e23 7.3e66 −7.9e196 Inf

Sim 5 100 -101.9 108.5 -143.9 452.6 −1.8e4 1.2e9 −3.3e23 7.3e66 −7.9e196 Inf

Sim 6 100 -99 91.8 -63.44 -11.65 -11.03 -10.87 -10.27 -10.17 -9.91 -10

In Figure 3.1, we graphed the logarithm of EM solution presented in Table 3.1.
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Figure 3.1: Simulations of the logarithm of the EM solution for ∆ = 2e−3
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Note: From Lemma 3.6.2 we know that as ∆ decreases, the probability of explosion

decreases. Thus, for “very small” ∆ (say less than 10−4) we couldn’t find one explosion

in 100,000 simulations.

In addition, we simulated the adaptive-EM solution of the SDDE (3.6.4) using

the function hδ defined in (3.6.11). As we proved in Section 3.6, the solution is a.s.

exponentially stable. Figure 3.2 shows 10,000 paths of the adaptive-EM solution.
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Figure 3.2: Simulations of adaptive-EM solution

The next graph shows the first 10 values of hδ(X̂tn) for two different simulations.

At the start, X̂0 = 100, so the term −X̂3
tn dominates the equation, making the dif-

fusion term very “big” (in absolute value) in comparison with X̂tn . Therefore, the

adaptive step is very “small” at the beginning and increases progressively as the ratio

f(X̂tn , X̂t̂n)/X̂tn decreases. This ensures all the simulated paths to decay exponentially

in a “small” number of steps.
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Figure 3.3: The first ten adaptive steps for two different simulations
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Chapter 4

Numerical solutions for

McKean-Vlasov SDDEs using the

adaptive method

In 2021 [46], Reisinger and Stokinger extended the work from [14] to MV-SDEs. In

this chapter we extend [46] to MV-SDDEs.

4.1 The EM-adaptive scheme for McKean-Vlasov

SDDEs

Let τ and T be positive constants and denote C([−τ, 0];Rd) the space of all contin-

uous functions from [−τ, 0] to Rd with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|. Let W

be an d̄-dimensional Brownian motion defined on the a complete probability space

(Ω,F , {Ft}t≥0,P). Consider the d dimensional MV-SDDE of the form

dYt = f(Yt, Yt−τ ,LY
t )dt+ g(Yt, Yt−τ ,LY

t )dW (t), t ∈ [0, T ] (4.1.1)

where LY
t is the law (or distribution) of Yt,

f : Rd × Rd × P2(Rd) → Rd and g : Rd × Rd × P2(Rd) → Rd×d̄
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and the initial data satisfies the following condition: for any p ≥ 2

{Y (θ) : −τ ≤ θ ≤ 0} := ξ ∈ Lp
F0
([−τ, 0];Rd),

that is ξ is a F0-measurable C([−τ, 0];Rd)-valued random variable such that E||ξ||p <

∞.

By the propagation of chaos result, Theorem 2.2.9, the MV-SDDEs (4.1.1) can be

regarded as the limit the M -particle system of d-dimensional MV-SDDEs

dY i,M
t = f(Y i,M

t , Y i,M
t−τ ,LY M

t )dt+ g(Y i,M
t , Y i,M

t−τ ,LY M

t )dW i
t , t ∈ [0, T ], (4.1.2)

with the initial condition X i,M
0 = ξ and LY M

t := 1
M

M∑
j=1

δY j,M (t).

We will imposed the following conditions on the coefficient functions f and g.

Assumption 4.1.1. The functions f and g satisfy:

(i) (Lipschitz condition on g) There exists a positive constant L such that

||g(x, y, µ)− g(x̄, ȳ, µ̄)||2 ≤ L(|x− x̄|2 + |y − ȳ|2 +W2
2(µ, µ̄)) (4.1.3)

for all x, x̄, y, ȳ ∈ Rd and µ, µ̄ ∈ P2(Rd).

(ii) (one-sided Lipschitz condition on f) There exists a positive constant L such that

⟨x− x̄, f(x, y, µ)− f(x̄, ȳ, µ)|| ≤ L(|x− x̄|2 + |y − ȳ|2) (4.1.4)

for all x, x̄, y, ȳ ∈ Rd and µ ∈ P2(Rd).

(iii) (Lipschitz measure dependence condition on f) There exists a positive constant

L such that

|f(x, y, µ)− f(x, y, µ̄)| ≤ LW2(µ, µ̄) (4.1.5)

for all x, y ∈ Rd and µ, µ̄ ∈ P2(Rd).

(iv) polynomial growth Lipschitz condition on f , i.e. there exist constants γ, λ, q > 0

such that for all x, y, x̄, ȳ ∈ Rm

|f(x, y, µ)−f(x̄, ȳ, µ)| ≤ (γ(|x|q+ |y|q+ |x̄|q+ |ȳ|q)+λ)(|x− x̄|+ |y− ȳ|). (4.1.6)
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Remark 4.1.1. We note that:

• Conditions (4.1.4) and (4.1.6) are uniform on the measure µ. These conditions

are standard to guarantee existence and uniqueness of the exact solution, [33],

[12].

• The one-sided condition (4.1.4) allows for a larger class of models than the stan-

dard globally Lipschitz drift assumption, [11]. Some of these models are the

adjusted Ginzburg Landau equation [11], Kinetic models e.g. in Gomes et al.

(2020) [18] and Self-stabilizing diffusions Bolley et al. (2011) [5], Malrieu (2003)

[34].

Remark 4.1.2. Condition 4.1.3 implies the linear growth condition on g, i.e. there are

positive constants α and β such that

||g(x, y, µ)||2 ≤ α(|x|2 + |y|2) + β (4.1.7)

for all x, y ∈ Rd and µ ∈ P2(Rd). In addition, condition 4.1.6 implies polynomial growth

on f , i.e., there exist constants γ, λ, q > 0 such that

|f(x, y, µ)| ≤ (γ(|x|q + |y|q) + λ)(|x|+ |y|) (4.1.8)

for all x, y ∈ Rd and µ ∈ P2(Rd).

Now we define the numerical solution based on the adaptive method. In the same

way as in chapter 3, the time step is determined by a function hδ : Rd → R+ with

δ ∈ (0, 1). The family of functions {hδ}0<δ<1 is not specifically defined, it just has to

satisfy certain conditions that we will describe later in Assumption 4.1.2. Note that for

two different particles, the value of the processes at time t1 may differ resulting in two

different values (one for each particle) of the random variable t2 = h1. This, unlike the

standard EM method, presents a challenge when computing 1
M

∑M
j=1 δX̂j,M (t1)

. In [46],

they proposed two different schemes, which both deal with this issue. Here, using our

ideas from chapter 3, we extend these two schemes to the delay case. Although the times

tn are different in each scheme, we will use the same notation, tn, for both. Also given

t > 0, we define for both schemes t := max{tn : tn ≤ t} and nt := max{n : tn ≤ t}.
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Scheme 1

Set X̂1,i,M
0 := ξ(0), hδ

0 := hδ(X̂0), t1 := hδ
0 and X̄1,i,M

t := ξ(t), t ∈ [−τ, 0), X̄1,i,M
t :=

ξ(0), t ∈ [0, t1). For every ω ∈ Ω and for n = 0, 1, ...N(ω), we define

X̂1,i,M
tn+1

:= X̂1,i,M
tn + f(X̂1,i,M

tn , X̄1,i,M
tn−τ ,LX̂1,M

tn )hδ
n + g(X̂1,i,M

tn , X̄1,i,M
tn−τ ,LX̂1,M

tn )∆Wn

hδ
n+1 := min

i∈{1,...,M}

(
hδ(X̂1,i,M

tn+1
)
)
, tn+2 := tn+1 + hδ

n+1,

X̄1,i,M
t := X̂1,i,M

tn+1
, t ∈ [tn+1, tn+2),

(4.1.9)

where LX̂1,M

tn := 1
M

∑M
i=1 δX̂1,i,M

tn
, ∆Wn := Wtn+1 − Wtn and N(ω) := inf{n ∈ Z+ :

tn(ω) ≥ T}. Define for n = 0, ..., N − r

X̃1,i,M
t := X̄1,i,M

tn−τ , t ∈ [tn − τ, tn+1 − τ), (4.1.10)

where r = r(ω) is such that tr ≤ τ ≤ tr+1. We now define the the continuous approxi-

mate solution

X1,i,M
t := ξ(t), t ∈ [−τ, 0];

X1,i,M
t := X̂1,i,M

t + f(X̂1,i,M
t , X̄1,i,M

t−τ ,LX̂1,M

t )(t− t) + g(X̂1,i,M
t , X̄1,i,M

t−τ ,LX̂1,M

t )(Wt −Wt)

t ∈ [0, T ], (4.1.11)

which solve the equation

X1,i,M
t = ξ(0) +

∫ t

0

f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )ds+

∫ t

0

g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )dWs,

for t ∈ [0, T ], where LX̄1,M

t := LX̂1,M

t .

Note that X1,i,M
tn = X̂1,i,M

tn = X̄1,i,M
tn .

Scheme 2

For a given δ ∈ (0, 1) let kn be the integer such that tn ∈ [knδT, (kn + 1)δT ). Set

X̂2,i,M
0 := ξ(0), hi,δ

0 := hδ(X̂0), t1 := hδ
0 and X̄2,i,M

t := ξ(t), t ∈ [−τ, 0), X̄2,i,M
t :=
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ξ(0), t ∈ [0, t1). For every ω ∈ Ω and for n = 0, 1, ...N(ω), we define

X̂2,i,M
tn+1

:= X̂2,i,M
tn + f(X̂2,i,M

tn , X̄2,i,M
tn−τ ,LX̂2,M

knδT )hi,δ
n + g(X̂2,i,M

tn , X̄2,i,M
tn−τ ,LX̂2,M

knδT )∆Wn

hi,δ
n+1 := min(hδ(X̂2,i,M

tn+1
), (kn + 1)δT − tn), tn+2 := tn+1 + hi,δ

n+1,

X̄2,i,M
t := X̂2,i,M

tn+1
, t ∈ [tn+1, tn+2).

(4.1.12)

where LX̂2,M

knδT
:= 1

M

∑M
i=1 δX̂2,i,M

knδT
, ∆Wn := Wtn+1 − Wtn and N(ω) := inf{n ∈ Z+ :

tn(ω) ≥ T}. Define for n = 0, ..., N − r

X̃2,i,M
t := X̄2,i,M

tn−τ , t ∈ [tn − τ, tn+1 − τ), (4.1.13)

where r = r(ω) is such that tr ≤ τ ≤ tr+1. We now define the the continuous approxi-

mate solution.

X2,i,M
t := ξ(t), t ∈ [−τ, 0];

X2,i,M
t := X̂2,i,M

t + f(X̂2,i,M
t , X̄2,i,M

t−τ ,LX̂2,M

kntδT
)(t− t) + g(X̂2,i,M

t , X̄2,i,M
t−τ ,LX̂2,M

kntδT
)(Wt −Wt),

t ∈ [0, T ], (4.1.14)

which solves the equation

X2,i,M
t = ξ(0) +

∫ t

0

f(X̂2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )ds+

∫ t

0

g(X̂2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )dWs,

t ∈ [0, T ],

(4.1.15)

where LX̄2,M

t := LX̂2,M

kntδT
.

Note that X2,i,M
tn = X̂2,i,M

tn = X̄2,i,M
tn .

Remark 4.1.3.

• In scheme 1, for each n we compute hδ(X̂1,i,M
tn ) for every particle, then we choose

the smallest and set it as the common step-size for every particle. This scheme

is theoretically convenient to prove strong convergence but in practice it may be

appropriate only if we are simulating a system with a small number of particles.
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If the system is large, the step-size (being the smallest for every particle) is going

to be quite “small”, which makes this scheme computationally expensive. This

is the reason why in [46], they proposed also a second, less expensive scheme.

• In scheme 2, the measure is kept constant in the intervals [knδT, (kn+1)δT ). Note

that kn may have the same value for different n. For example we could have for

some n = n̄ that kn̄ = kn̄+1 = kn̄+2 = kn̄+3, so tn̄, tn̄+1, tn̄+2, tn̄+3 ∈ [kn̄δT, (kn̄ +

1)δT ) = [kn̄+iδT, (kn̄+i + 1)δT ), i = 1, 2, 3. Note also that by definition, the

sequence of times {knδT}n∈N is a subsequence of the sequence of times {tn}n∈N.

• The reason to introduce the second step process X̃, is to ensure that the equalities

X̂1,i,M
tn = X1,i,M

tn and X̂2,i,M
tn = X2,i,M

tn hold true. This is because X̄t−τ may not be

constant in the intervals [tn, tn+1], due to the variability of the adaptive stepsize.

We will impose the following conditions on the time-step function hδ.

Assumption 4.1.2. For each δ ∈ (0, 1), the time step function hδ : Rd → R+ is

continuous, strictly positive and bounded by δT, i.e.

0 < hδ(x) ≤ δT for all x ∈ Rd. (4.1.16)

Furthermore, there exist constants α, β > 0 such that

⟨x, f(x, y, µ)⟩+ 1

2
hδ(x)|f(x, y, µ)|2 ≤ α(|x|2 + |y|2) + β, (4.1.17)

for all x, y ∈ Rd and µ ∈ P2(Rd).

4.2 Convergence of the numerical solutions

In this section we will prove the strong convergence of the two numerical schemes which

were defined in the previous section.
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4.2.1 The boundedness of the pth moments of the numerical

solutions

The discrete-time approximate solution defined in (4.1.9) and (4.1.12) are not necessar-

ily bounded. In order to prove the the boundedness of the p-moments of the numerical

solutions Xj,i,M , j = 1, 2, we will construct K-bounded schemes Xj,i,M
K , j = 1, 2 such

that for any K > ||ξ||, we have Xj,i,M
K , j = 1, 2 < K. Then we will show that the

p-moments of Xj,i,M
K , j = 1, 2 are bounded by a constant independent of K. Then the

boundedness of the pth moments yields from letting K go to infinity and using mono-

tone convergence theorem. Now we make the above explanation rigorous. LetK > ||ξ||.

Set X̂1,i,M
0,K := ξ(0), hδ

0 := hδ(X̂1,i,M
0,K ), t1 := hδ

0 and X̄1,i,M
t,K := ξ(t), t ∈ [−τ, 0), X̄1,i,M

t,K :=

ξ(0), t ∈ [0, t1). Consider the function ΦK : Rd → Rd,Φ(x) = min(1, K/|x|)x. Then

for every ω ∈ Ω and for n = 0, 1, ...N(ω), we define

X̂1,i,M
tn+1,K

:= ΦK(X̂
1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hδ
n + g(X̂1,i,M

tn,K
, X̄1,i,M

tn−τ,K ,L
X̂1,M

K
tn )∆Wn)

hδ
n+1 := min

i∈{1,...,M}

(
hδ(X̂1,i,M

tn+1,K
)
)
, tn+2 := tn+1 + hδ

n+1,

X̄1,i,M
t,K := X̂1,i,M

tn+1,K
, t ∈ [tn+1, tn+2).

(4.2.1)

where LX̂1,i,M
K

tn := 1
M

∑M
i=1 δX̂1,i,M

tn,K
, ∆Wn := Wtn+1 − Wtn and N(ω) := inf{n ∈ Z+ :

tn(ω) ≥ T}. Define for n = 0, ..., N − r

X̃1,i,M
t,K := X̄1,i,M

tn−τ,K , t ∈ [tn − τ, tn+1 − τ), (4.2.2)

where r = r(ω) is such that tr ≤ τ ≤ tr+1. We now define the the continuous approxi-

mate solution

X1,i,M
t,K := ξ(t), t ∈ [−τ, 0];

X1,i,M
t,K := ΦK

(
X̂1,i,M

t,K + f(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
t )(t− t) (4.2.3)

+ g(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
t )(Wt −Wt)

)
, t ∈ [0, T ],

Note that X1,i,M
tn,K

= X̂1,i,M
tn,K

= X̄1,i,M
tn,K

. In the same way, we construct the K-bounded

schemes X̂2,i,M
K , X̄2,i,M

K , X̃2,i,M
K and X2,i,M

K .
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Lemma 4.2.1. Let p ≥ 4, the MV-SDDE (4.1.2) satisfy Assumption 4.1.1 and the

function hδ satisfy Assumption 4.1.2. Then, for the K-bounded schemes, T is attainable

and for all p > 0 there exists a constant C dependent on T and p, but independent of

hδ
n and K such that

E
[
sup

0≤t≤T
|X1,i,M

t,K |p
]∨

E
[
sup

0≤t≤T
|X2,i,M

t,K |p
]
≤ C. (4.2.4)

Proof. We prove first attainability. Since hδ is continuous and strictly positive,

inf |x|≤K hδ(x) > 0. This implies that for every ω ∈ Ω

lim inf
n→∞

hδ
n(ω) = lim inf

n→∞
hδ(X̂K

tn (ω)) > 0,

so limn→∞ tn(ω) =
∑∞

n=0 h
δ
n(ω) = ∞ for all ω ∈ Ω and T is attainable in the bounded

scheme.

Now we will prove the boundedness of the pth moments for scheme 1, where the upper

bound will be a positive constant independent of hδ
n and K. Since it is irrelevant in this

proof, we shall drop the symbol “δ” in the adaptive time-step “hδ
n” to ease the notation.

Let p ≥ 4 and let t ∈ [0, T ]. Define t := max{tn : tn ≤ t}, and nt := max{n : tn ≤ t}.

Using (4.2.1) and since for any x ∈ Rm, |Φ(x)|2 ≤ |x|2, we have that for n = 0 to

n = nt − 1,

|X̂1,i,M
tn+1,K

|2 ≤ |X̂1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn + g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2

= ⟨X̂1,i,M
tn,K

, X̂1,i,M
tn,K

⟩+ 2⟨X̂1,i,M
tn,K

, f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn⟩

+ ⟨f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn, f(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn⟩

+ 2⟨X̂1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn, g(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

+ ⟨g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn, g(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

= |X̂1,i,M
tn,K

|2 + 2hn

[
⟨X̂1,i,M

tn,K
, f(X̂1,i,M

tn,K
, X̄1,i,M

tn−τ,K ,L
X̂1,M

K
tn )⟩

+
1

2
hn|f(X̂1,i,M

tn,K
, X̄1,i,M

tn−τ,K ,L
X̂1,M

K
tn )|2

]
+ 2⟨X̂1,i,M

tn,K
+ f(X̂1,i,M

tn,K
, X̄1,i,M

tn−τ,K ,L
X̂1,M

K
tn )hn, g(X̂

1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

+ |g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2
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≤ |X̂1,i,M
tn,K

|2 + 2hnα(|X̂1,i,M
tn,K

|2 + |X̄1,i,M
tn−τ,K |

2) + 2hnβ

+ 2⟨X̂1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn, g(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

+ |g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2,

where in the last step we have used condition (4.1.17). Solving the recurrence relation,

we get

|X̂1,i,M
t,K |2 ≤ |X̂K

0 |2 + 2α

(
nt−1∑
n=0

|X̂1,i,M
tn,K

|2hn + |X̄1,i,M
tn−τ,K |

2hn

)
+ 2βt

+ 2
nt−1∑
n=0

⟨X̂1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn, g(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

+
nt−1∑
n=0

|g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2. (4.2.5)

Similarly, the continuous approximate solution verifies

|X1,i,M
t,K |2 ≤ |X̂1,i,M

t,K |2 + 2(t− t)α(|X̂1,i,M
t,K |2 + |X̄1,i,M

t−τ,K |
2) + 2(t− t)β

+ 2⟨X̂1,i,M
t,K + f(X̂1,i,M

t,K , X̄1,i,M
t−τ,K ,L

X̂1,M
K

t )(t− t), g(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
t )(Wt −Wt)⟩

+ |g(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
t )(Wt −Wt)|2. (4.2.6)

Substituting (4.2.5) into (4.2.6) yields

|X1,i,M
t,K |2 ≤ |X̂1,i,M

0,K |2

+ 2α

(
nt−1∑
n=0

|X̂1,i,M
tn,K

|2hn + |X̄1,i,M
tn−τ,K |

2hn + |X̂1,i,M
t,K |2(t− t) + |X̄1,i,M

t−τ,K |
2(t− t)

)
+ 2βt

+ 2
nt−1∑
n=0

⟨X̂1,i,M
tn,K

+ f(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )hn, g(X̂
1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn⟩

+ 2⟨X̂1,i,M
t,K + f(X̂1,i,M

t,K , X̄1,i,M
t−τ,K ,L

X̂1,M
K

t )(t− t), g(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
t )(Wt −Wt)⟩

+
nt−1∑
n=0

|g(X̂1,i,M
tn,K

, X̄1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2 + |g(X̂1,i,M
t,K , X̄1,i,M

t−τ,K ,L
X̂1,M

K
tn )(Wt −Wt)|2.

Using the step processes X̄K and X̃K defined previously, the second summand on the

RHS of the equation above, can be expressed as a Riemann integral. Similarly the
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sixth and the seventh terms can be written as an Itô integral, i.e.

|X1,i,M
t,K |2 ≤ |X1,i,M

0,K |+ 2α

∫ t

0

(|X̄1,i,M
s,K |2 + |X̃1,i,M

s−τ,K |
2)ds+ 2βt

+ 2

∫ t

0

⟨X̄1,i,M
s,K + f(X̄1,i,M

s,K , X̃1,i,M
s−τ,K ,L

X̄1,M
K

s )[h(X̄1,i,M
u,K )I[0,t)(u)

+ (t− t)I[t,t](u)], g(X̄
1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̄1,M

K
s )dWs⟩

+
nt−1∑
n=0

|g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2 + |g(X̄1,i,M
t,K , X̃1,i,M

t−τ,K ,L
X̄1,M

K
t )(Wt −Wt)|2.

Hence, we have

|X1,i,M
t,K |p ≤ 6p/2−1

{
|X1,i,M

0,K |p +
(
2α

∫ t

0

(|X̄1,i,M
s,K |2 + |X̃1,i,M

s−τ,K |
2)ds

)p/2

+ (2βt)p/2

+
∣∣∣2 ∫ t

0

⟨X̄1,i,M
s,K + f(X̄1,i,M

s,K , X̃1,i,M
s−τ,K ,L

X̂1,M
K

tn )[h(X̄1,i,M
u,K )I[0,t)(u)

+ (t− t)I[t,t](u)], g(X̄
1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̂1,M

K
tn )dWs⟩

∣∣∣p/2
+

(
nt−1∑
n=0

|g(X̄1,i,M
tn,K

, X̃1,i,M
s−τ,K ,L

X̂1,M
K

tn )∆Wn|2
)p/2

+ |g(X̄1,i,M
t,K , X̃1,i,M

t−τ,K ,L
X̄1,M

K
t )(Wt −Wt)|p

}
.

Taking the expectation of the supremum, one has

E
[
sup
0≤s≤t

|X1,i,M
s,K |p

]
≤ 6p/2−1(I1 + I2 + I3 + I4),

where

I1 := E|X1,i,M
0,K |p + E

[(
2α

∫ t

0

(|X̄1,i,M
s,K |2 + |X̃1,i,M

s−τ,K |
2)ds

)p/2
]
+ (2βt)p/2;

I2 := E
[
sup
0≤s≤t

∣∣∣2 ∫ s

0

⟨X̄1,i,M
u,K + f(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )[h(X̄1,i,M
u,K )I[0,s)(u)

+ (s− s)I[s,s](u)], g(X̄
1,i,M
u,K , X̃1,i,M

u−τ,K ,L
X̄1,M

K
u )dWu⟩

∣∣∣p/2];
I3 := E

(nt−1∑
n=0

|g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )∆Wn|2
)p/2

 ;

I4 := E
[
sup
0≤s≤t

|g(X̄1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̄1,M

K
s )(Ws −Ws)|p

]
.

Now we will establish bounds for each of the four terms above. In the remainder of the

proof, C is positive constants, independent of K, that may change from line to line.
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Using Hölder’s inequality, we have

I1 ≤ E|X1,i,M
0,K |p + (2α)p/2T p/2−12p/2−1

∫ t

0

E[|X̄1,i,M
s,K |p + |X̃1,i,M

s−τ,K |
p]ds+ (2βT )p/2

≤ C

∫ t

0

E
[
sup

0≤u≤s
|X1,i,M

u,K |p
]
ds+ C.

By the Burkholder-Davis-Gundy (BDG) inequality we obtain

I2 ≤ 2p/2CE
[( ∫ t

0

|(X̄1,i,M
u,K + f(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )[h(X̄1,i,M
u,K )I[0,t)(u)

+ (t− t)I[t,t](u)])g(X̄
1,i,M
u,K , X̃1,i,M

u−τ,K ,L
X̄1,M

K
u )|2du

)p/4]
An application of the Hölder inequality yields that

I2 ≤ 2
p
2T

p
4
−1CE

[ ∫ t

0

∣∣∣X̄1,i,M
u,K + f(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )[h(X̄1,i,M
u,K )I[0,t)(u)

+ (t− t)I[t,t](u)]
∣∣∣ p2 ||g(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )||
p
2du
]

(4.2.7)

Now, we bound the integrand of the integral above. Using condition (4.1.17) we obtain

|X̄1,i,M
u,K + f(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )[h(X̄1,i,M
u,K )I[0,t)(u) + (t− t)I[t,t](u)]|2 =

= |X̄1,i,M
u,K |2 + 2[h(X̄1,i,M

u,K )I[0,t)(u) + (t− t)I[t,t](u)]
[
⟨X̄1,i,M

u,K , f(X̄1,i,M
u,K , X̃1,i,M

u−τ,K ,L
X̄1,M

K
u )⟩

+
1

2
[h(X̄1,i,M

u,K )I[0,t)(u) + (t− t)I[t,t](u)]|f(X̄1,i,M
u,K , X̃1,i,M

u−τ,K ,L
X̄1,M

K
u )|2

]
≤ |X̄1,i,M

u,K |2 + 2[h(X̄1,i,M
u,K )I[0,t)(u) + (t− t)I[t,t](u)]

[
α
(
|X̄1,i,M

u,K |2 + |X̃1,i,M
u−τ,K |

2
)
+ β

]
= (1 + 2αT )|X̄1,i,M

u,K |2 + 2αT |X̃1,i,M
u−τ,K |

2 + 2βT.

This implies

|X̄1,i,M
u,K + f(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )[h(X̄1,i,M
u,K )I[0,t)(u) + (t− t)I[t,t](u)]|p/2

≤ 3p/4−1
[
(1 + 2αT )p/4|X̄1,i,M

u,K |p/2 + (2αT )p/4|X̃1,i,M
u−τ,K |

p/2 + (2βT )p/4
]

≤ C
(
|X̄1,i,M

u,K |p/2 + |X̃1,i,M
u−τ,K |

p/2 + 1
)
.

Also by condition (4.1.7) one can see that

||g(X̄1,i,M
u,K , X̃1,i,M

u−τ,K)||
p/2 =

(
||g(X̄1,i,M

u,K , X̃1,i,M
u−τ,K ,L

X̄1,M
K

u )||2
)p/4
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≤
[
α
(
|X̄1,i,M

u,K |2 + |X̃1,i,M
u−τ,K |

2
)
+ β

]p/4
≤ C

(
|X̄1,i,M

u,K |p/2 + |X̃1,i,M
u−τ,K |

p/2 + 1
)
.

Substituting the last two inequalities into (4.2.7), we obtain

I2 ≤ CE
[∫ t

0

(
1 + |X̄1,i,M

u,K |p + |X̃1,i,M
u−τ,K |

p
)
du

]
≤ C + C

(∫ t

0

E
[
sup

0≤u≤s
|X1,i,M

u,K |p
]
ds

)
.

Now we will bound I3. Note that tn is a stopping time of the filtration {FW
t }. Define

Ftn := {A ∈ F : A ∩ {tn ≤ t} ∈ FW
t }.

By the strong Markov property of the Brownian motion, {Bu := Wtn+u −Wtn , u ≥ 0}

is a standard Brownian motion independent of Ftn (page 86, Theorem 6.16 in [30]).

Thus

E[ sup
0≤u≤s

|Wtn+u −Wtn|p|Ftn ] = E[ sup
0≤u≤s

|Bu|p] ≤ Csp/2.

This implies

E[ sup
tn≤u≤tn+1

|Wu −Wtn|p|Ftn ] ≤ Chp/2
n . (4.2.8)

Combining Jensen’s inequality and equation (4.2.8), we arrive at

I3 ≤ E

(nt−1∑
n=0

||g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )||2|∆Wn|2
)p/2


= E

(nt−1∑
n=0

hn||g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )||2 |∆Wn|2

hn

)p/2


≤ T p/2−1E

[
nt−1∑
n=0

hn||g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )||pE[|∆Wn|p|Ftn ]

h
p/2
n

]

≤ CT p/2−1E

[
nt−1∑
n=0

hn||g(X̄1,i,M
tn,K

, X̃1,i,M
tn−τ,K ,L

X̂1,M
K

tn )||p
]

≤ CT
p
2
−1E

[∫ t

0

||g(X̄1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̄1,M

K
s )||pds

]
≤ CT

p
2
−1E

[∫ t

0

||g(X̄1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̄1,M

K
s )||pds

]
.
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Using condition (4.1.7) and Hölder’s inequality, we have

I3 ≤ CT p/2−1E
[∫ t

0

(
||g(X̄1,i,M

s,K , X̃1,i,M
s−τ,K ,L

X̄1,M
K

s )||2
)p/2

ds

]
≤ CT p/2−1E

[∫ t

0

(
α(|X̄1,i,M

s,K |2 + |X̃1,i,M
s−τ,K |

2) + β
)p/2

ds

]
≤ T p/2−12p−2CE

[∫ t

0

(
αp/2(|X̄1,i,M

s,K |p + |X̃1,i,M
s−τ,K |

p) + βp/2
)
ds

]
≤ C + C

∫ t

0

E
[
sup

0≤u≤s
|X1,i,M

u,K |p
]
ds.

For I4, using the linear condition (3.3.3), we obtain

I4 ≤ E
[
sup
0≤s≤t

|g(X̄1,i,M
s,K , X̃1,i,M

s−τ,K ,L
X̄1,M

K
s )(Ws −Ws)|p

]
≤ E

[
sup
0≤s≤t

{
[(α(|X̄1,i,M

s,K |p + |X̃1,i,M
s−τ,K)|

p) + β] |(Ws −Ws)|p
}]

≤ E

[
nt−1∑
n=0

[α(|X̄1,i,M
tn,K

|p + |X̃1,i,M
s−τ,K |

p) + β]E
[

sup
tn≤s≤tn+1

|(Ws −Wtn)|p/2|Ftn

]

+ [α(|X̄1,i,M
t,K |p + |X̃1,i,M

t−τ,K |
p) + β]E

[
sup
t≤s≤t

|(Ws −Wt)|p/2|Ft

]]

≤ C + C

∫ t

0

E

[
sup

0≤u≤s
|X1,i,M

u,K |p
]
ds.

Adding all the bounds for I1 to I4, we have that for all t ∈ [0, T ]

E
[
sup
0≤s≤t

|X1,i,M
s,K |p

]
≤ C + C

∫ t

0

E

[
sup

0≤u≤s
|X1,i,M

u,K |p
]

and by the Gronwall inequality we obtain

E
[
sup

0≤t≤T
|X1,i,M

t,K |p
]
≤ C.

Similarly we can show that E
[
sup0≤t≤T |X2,i,M

t |p
]
≤ C. Thus, the result is proved for

p ≥ 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of the

proof of Lemma 3.3.6.

Theorem 4.2.2. If the SDDE (4.1.2) satisfies Assumption 4.1.1 and the function hδ

satisfies Assumption 4.1.2, then T is attainable and for all p > 0 there exists a constant
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C > 0 dependent on T and p, but independent of hδ
n, such that

E
[
sup

0≤t≤T
|X1,i,M

t |p
]∨

E
[
sup

0≤t≤T
|X2,i,M

t |p
]
≤ C. (4.2.9)

Proof. Since the proof is similar to that of Theorem 3.3.5, we omit here.

4.2.2 Strong convergence of the numerical solutions

Now we will prove the strong convergence for both schemes.

Convergence of scheme 1

We will need the following lemma.

Lemma 4.2.3. Let p ≥ 1. Let the MV-SDDE (4.1.2) and the function hδ satisfy

Assumption 4.1.1 and 4.1.2 respectively. Then there exists a positive constant C such

that for all t ∈ [0, T ].

E|X1,i,M
t − X̄1,i,M

t |2p ≤ Cδp, (4.2.10)

E|X1,i,M
t − X̃1,i,M

t |2p ≤ Cδp. (4.2.11)

Proof. Let t ∈ [0, T ]. Let r be the integer such that tr ≤ t ≤ tr+1. Then by definition

we have X1,i,M
tr = X̄1,i,M

tr = X̄1,i,M
t . Thus

X1,i,M
t = X̄1,i,M

t +

∫ t

tr

f(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )ds+

∫ t

tr

g(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )dWs,

which by the Hölder and BDG inequalities yields

E|X1,i,M
t − X̄1,i,M

t |2p ≤ 22p−1E
∣∣∣∣∫ t

tr

f(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )ds

∣∣∣∣2p
+ 22p−1E

∣∣∣∣∫ t

tr

g(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )dWs

∣∣∣∣2p
≤ 22p−1E

[
(hδ

r)
2p−1

∫ t

tr

|f(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )|2pds
]

+ 22p−1E
[(∫ t

tr

|g(X̄1,i,M
s , X̃1,i,M

s ,LX̄1,M

s )|2ds
)p]

.
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From the polynomial growth condition 4.1.8 we have that

|f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )|2p ≤
[
(γ(|X̄1,i,M

s |q + |X̃1,i,M
s−τ )|q) + λ)(|X̄1,i,M

s + |X̃1,i,M
s−τ )|)

]2p
(4.2.12)

≤ C(|X̄1,i,M
s |2p(q+1) + |X̃1,i,M

s−τ )|2p(q+1) + 1),

and from the linear growth condition 4.1.7 we have that

||g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s ))||2 ≤ α(|X̄1,i,M
s |2 + |X̃1,i,M

s−τ |2) + β. (4.2.13)

Hence, by Theorem 4.2.2 and Assumption 4.1.2, we obtain

E|X1,i,M
t − X̄1,i,M

t |2p ≤ CE[(hδ
rT )

2p( sup
tr≤s≤t

|X1,i,M
s |2p + ||ξ||2p + C)]

+ CE[(hδ
rT )

p( sup
tr≤s≤t

|X1,i,M
s |2p + ||ξ||2p) + C]

≤ Cδp.

To prove assertion (4.2.11), we first prove that there is a constant C such that for all

t ∈ [0, T ]

E|X̃t − X̄t|2p ≤ Cδp. (4.2.14)

Let t ∈ [0, T ]. Let k and n be integers such that tk ≤ t < tk+1 and tn−τ ≤ t ≤ tn+1−τ,

respectively. Let r, 0 ≤ r ≤ k be such that tk−r ≤ tn − τ ≤ tk−r+1. From (4.1.9) and

the definitions of the step processes X̄ and X̃, one can see that

X̂1,i,M
tk

= X̂1,i,M
tk−r

+
r−1∑
i=0

[f(X̄1,i,M
tk−r+i

, X̄1,i,M
tk−r+i−τ ,LX̂1,M

tk−r+i
)hk−r+i

+ g(X̄1,i,M
tk−r+i

, X̄1,i,M
tk−r+i−τ ,LX̂1,M

tk−r+i
)∆Wk−r+i]

= X̂1,i,M
tk−r

+
r−1∑
i=0

∫ tk−r+i+1

tk−r+i

f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )ds

+
r−1∑
i=0

∫ tk−r+i+1

tk−r+i

g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )dWs

= X̂1,i,M
tk−r

+

∫ tk

tk−r

f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )ds+

∫ tk

tk−r

g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )dWs.
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Note that since X̄1,i,M
t = X̂1,i,M

tk
and X̂1,i,M

tk−r
= X̄1,i,M

tk−r
= X̄1,i,M

tn−τ = X̃1,i,M
tn−τ = X̃1,i,M

t , we

have that

X̄1,i,M
t = X̃1,i,M

t +

∫ tk

tk−r

f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )ds+

∫ tk

tk−r

g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )dWs.

Also, we have that

tk − tk−r ≤ (tn+1 − τ)− (tn − τ) + hδ
k−r = hδ

n + hδ
k−r ≤ 2δT.

Therefore, by (4.2.12),(4.2.13), Assumption 4.1.2 and Theorem 4.2.2 we have that

E|X̄1,i,M
t − X̃1,i,M

t |2p ≤ 2E

∣∣∣∣∣
∫ tk

tk−r

f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )ds

∣∣∣∣∣
2p

+ 2E

∣∣∣∣∣
∫ tk

tk−r

g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )dWs

∣∣∣∣∣
2p

≤ CE[(tk − tk−r)
2p( sup

tk≤s≤t
|X1,i,M

s |2p + ||ξ||2p + 1)]

+ CE[(tk − tk−r)
p( sup

tk≤s≤t
|X1,i,M

s |2p + ||ξ||2p + 1)]

≤ Cδp.

This together with (4.2.10) imply that

E|X1,i,M
t − X̃1,i,M

t |2p ≤ CE|X1,i,M
t − X̄1,i,M

t |2p + CE|X̄1,i,M
t − X̃1,i,M

t |2p ≤ Cδ.

Now we show the convergence of the scheme 1.

Theorem 4.2.4. If the SDDE (4.1.2) satisfies Assumption 4.1.1 and the time-step

function h satisfies Assumption 4.1.2, then for all p > 0, there exists a positive constant

C independent of δ such that

E
[
sup

0≤t≤T
|Y i,M

t −X1,i,M
t |p

]
≤ Cδp/2.
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Proof. Let p ≥ 4; the result for 0 ≤ p < 4 follows from Hölder’s inequality. Define

et := Y i,M
t −X1,i,M

t , 0 ≤ t ≤ T. Hence

et =

∫ t

0

[f(Y i,M
s , Y i,M

s−τ ,LY M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )]ds

+

∫ t

0

[g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )]dWs.

Applying Itô’s formula we obtain

|et|2 ≤ 2

∫ t

0

⟨es, f(Y i,M
s , Y i,M

s−τ ,LY M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )⟩ds

+

∫ t

0

|g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )|2ds

+ 2

∫ t

0

⟨es, (g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s ))dWs⟩. (4.2.15)

Note that

2

∫ t

0

⟨es, f(Y i,M
s , Y i,M

s−τ ,LY M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )⟩ds

= 2

∫ t

0

⟨es, f(Y i,M
s , Y i,M

s−τ ,LY M

s )− f(Y i,M
s , Y i,M

s−τ ,LX1,M

s )⟩ds

+ 2

∫ t

0

⟨es, f(Y i,M
s , Y i,M

s−τ ,LX1,M

s )− f(Y i,M
s , Y i,M

s−τ ,LX̄1,M

s )⟩ds

+ 2

∫ t

0

⟨es, f(Y i,M
s , Y i,M

s−τ ,LX̄1,M

s )− f(X1,i,M
s , X1,i,M

s−τ ,LX̄1,M

s )⟩ds

+ 2

∫ t

0

⟨es, f(X1,i,M
s , X1,i,M

s−τ ,LX̄1,M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )⟩ds.

By condition (4.1.5) we have

2⟨es, f(Y i,M
s , Y i,M

s−τ ,LY M

s )− f(Y i,M
s , Y i,M

s−τ ,LX1,M

s )⟩ ≤ 2|es|LW2(LY M

s ,LX1,M

s )

≤ |es|2 + L2W2
2(LY M

s ,LX1,M

s )
(4.2.16)

and

2⟨es, f(Y i,M
s , Y i,M

s−τ ,LX1,M

s )− f(Y i,M
s , Y i,M

s−τ ,LX̄1,M

s )⟩ ≤ 2|es|LW2(LX1,M

s ,LX̄1,M

s )

≤ |es|2 + L2W2
2(LX1,M

s ,LX̄1,M

s ).

(4.2.17)
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Using condition (4.1.4) we get

2⟨es,f(Y i,M
s , Y i,M

s−τ ,LX̄1,M

s )− f(X1,i,M
s , X1,i,M

s−τ ,LX̄1,M

s )⟩

≤ L(|Y i,M
s −X1,i,M

s |2 + |Y i,M
s−τ −X1,i,M

s−τ |2) = L(|es|2 + |es−τ |2). (4.2.18)

Condition (4.1.6) implies that

2⟨es,f(X1,i,M
s , X1,i,M

s−τ ,LX̄1,M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )⟩

≤ |es| |f(X1,i,M
s , X1,i,M

s−τ ,LX̄1,M

s )− f(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )|

≤ 2|es|Q(X1,i,M
s , X1,i,M

s−τ , X̄1,i,M
s , X̃1,i,M

s−τ )(|X1,i,M
s − X̄1,i,M

s |+ |X1,i,M
s−τ − X̃1,i,M

s−τ |)

≤ |es|2 +Q(X1,i,M
s , X1,i,M

s−τ , X̄1,i,M
s , X̃1,i,M

s−τ )2 2(|X1,i,M
s − X̄1,i,M

s |2 + |X1,i,M
s−τ − X̃1,i,M

s−τ |2),

(4.2.19)

where Q(x, y, x̄, ȳ) := γ(|x|q+|y|q+|x̄|q+|ȳ|q)+λ. In addition, condition (4.1.3) implies

that

||g(Y i,M
s , Y i,M

s−τ ,W(LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s )||2

≤ L(|Y i,M
s − X̄1,i,M

s |2 + |Y i,M
s−τ − X̃1,i,M

s−τ |2 +W2
2(LY M

s ,LX̄1,M

s ))

= L(|Y i,M
s −X1,i,M

s +X1,i,M
s − X̄1,i,M

s |2 + |Y i,M
s−τ −X1,i,M

s−τ +X1,i,M
s−τ − X̃1,i,M

s−τ |2

+W2
2(LY M

s ,LX1,M

s ) +W2
2(LX1,M

s ,LX̄1,M

s ))

≤ 2L(|es|2 + |es−τ |2 + |X1,i,M
s − X̄1,i,M

s |2 + |X1,i,M
s−τ − X̃1,i,M

s−τ |2)

+ L(W2
2(LY M

s ,LX1,M

s ) +W2
2(LX1,M

s ,LX̄1,M

s )). (4.2.20)

Substituting (4.2.16), (4.2.17), (4.2.18), (4.2.19) and (4.2.20) in (4.2.15), we have

|et|2 ≤
∫ t

0

[
(3L+ 1)|es|2 + 3L|es−τ |2

]
ds

+ 2

∫ t

0

[Q(X1,i,M
s , X1,i,M

s−τ , X̄1,i,M
s , X̃1,i,M

s−τ )2 + L](|X1,i,M
s − X̄1,i,M

s |2 + |X1,i,M
s−τ − X̃1,i,M

s−τ |2)ds

+ C

∫ t

0

(
W2

2(LY M

s ,LX1,M

s ) +W2
2(LX1,M

s ,LX̄1,M

s )
)
ds

+ 2

∫ t

0

⟨es, (g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s ))dWs⟩.
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Using Hölder’s inequality yields

|et|p ≤ (8T )p/2−1

∫ t

0

((3L+ 1)p/2|es|p + (2L)p/2|es−τ |p)ds

+ (8T )p/2−12p/2
∫ t

0

[Q(X1,i,M
s , X1,i,M

s−τ , X̄1,i,M
s , X̃1,i,M

s−τ ) + L]p/2

× (|X1,i,M
s − X̄1,i,M

s |p + |X1,i,M
s−τ − X̃1,i,M

s−τ |p)ds

+ (8T )p/2−1Cp/2

∫ t

0

(
Wp

2(LY M

s ,LX1,M

s ) +Wp
2(LX1,M

s ,LX̄1,M

s )
)
ds

+ 4p/2−12p/2
∣∣∣∣∫ t

0

⟨es, (g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s ))dWs⟩
∣∣∣∣p/2 .

Taking the supremum on each side of the previous inequality and then the expectation,

we obtain

E
[
sup
0≤s≤t

|es|p
]
≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds

+ C

∫ t

0

(
E
[
Wp

2(LY M

s ,LX1,M

s )
]
+ E

[
Wp

2(LX1,M

s ,LX̄1,M

s )
])
ds

+ C

∫ t

0

E
[
[Q(X1,i,M

s , X1,i,M
s−τ , X̄1,i,M

s , X̃1,i,M
s−τ ) + L]p/2

× (|X1,i,M
s − X̄1,i,M

s |p + |X1,i,M
s−τ − X̃1,i,M

s−τ |p)
]
ds

+ CE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

⟨eu, (g(Y i,M
u , Y i,M

u−τ ,LY M

u )− g(X̄1,i,M
u , X̃1,i,M

u−τ ,LX̄1,M

s ))dWu⟩
∣∣∣∣p/2
]
.

Applying the definition of Wasserstein distance yields

E
[
sup
0≤s≤t

|es|p
]
≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ J1 + J2 + J3,

where

J1 := C

∫ t

0

E[|X1,i,M
s − X̄1,i,M

s |p]ds;

J2 := C

∫ t

0

E
[
[Q(X1,i,M

s , X1,i,M
s−τ , X̄1,i,M

s , X̃1,i,M
s−τ ) + L]p/2

× (|X1,i,M
s − X̄1,i,M

s |p + |X1,i,M
s−τ − X̃1,i,M

s−τ |p)
]
ds;

J3 := CE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

⟨eu, (g(Y i,M
u , Y i,M

u−τ ,LY M

u )− g(X̄1,i,M
u , X̃1,i,M

u−τ ,LX̄1,M

s ))dWu⟩
∣∣∣∣p/2
]
.
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By Equation (4.2.10), we obtain J1 ≤ Cδp/2. For J2, by Hölder’s inequality one has

J2 ≤ C

∫ t

0

(
E
[
[Q(X1,i,M

s , X1,i,M
s−τ , X̄1,i,M

s , X̃1,i,M
s−τ ) + L]p

]
× E

[
(|X1,i,M

s − X̄1,i,M
s |2p + |X1,i,M

s−τ − X̃1,i,M
s−τ |2p)

] )1/2
ds. (4.2.21)

By Theorem 4.2.2 there exists a constant C such that

E
[
[Q(X1,i,M

s , X1,i,M
s−τ , X̄1,i,M

s , X̃1,i,M
s−τ ) + L]p

]
≤ C (4.2.22)

and by Lemma 4.2.3

E|X1,i,M
s − X̄1,i,M

s |2p ≤ Cδp and E|X1,i,M
s−τ − X̃1,i,M

s−τ |2p ≤ Cδp. (4.2.23)

Subtituting (4.2.23) and (4.2.22) in (4.2.21), we obtain that J2 ≤ Cδp/2.

Now we estimate J3. By the definition of Wasserstein distance and the BDG and

Hölder’s inequalities, one can see that

J3 ≤ CE

[(∫ t

0

|es|2 |(g(Y i,M
s , Y i,M

s−τ ,LY M

s )− g(X̄1,i,M
s , X̃1,i,M

s−τ ,LX̄1,M

s ))|2ds
)p/4

]

≤ CE
[∫ t

0

|es|p/2(|X̄1,i,M
s − Y i,M

s |p/2 + |X̃1,i,M
s−τ − Y i,M

s−τ |p/2 +Wp/2
2 (LY M

s ,LX̄1,M

s ))ds

]
≤ C

[∫ t

0

(
1

2
E[|es|p] + 2E[|X̄1,i,M

s − Y i,M
s |p] + E[|X̃1,i,M

s−τ − Y i,M
s−τ |p])ds

]
≤ CE

[ ∫ t

0

E[|es|p] + (E[|X̄1,i,M
s −X1,i,M

s |p] + E[|X1,i,M
s − Y i,M

s |p] + E[|X̃1,i,M
s−τ −X1,i,M

s−τ |p]

+ E[|X1,i,M
s−τ − Y i,M

s−τ |p])ds
]

≤ CE
[∫ t

0

E[|es|p] + E[|es−τ |p] + (E[|X̄1,i,M
s −X1,i,M

s |p] + E[X̃1,i,M
s−τ −X1,i,M

s−τ |p])ds
]
.

By Lemma 4.2.3 we have that

J3 ≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ Cδp/2.

Collecting the bounds for J1, J2 and J3, we conclude that for all 0 ≤ t̄ ≤ T , there exists

a constant C such that

E
[
sup
0≤t≤t̄

|et|p
]
≤ C

∫ t̄

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ Cδp/2.

The required assertion follows from the Gronwall inequality.

83



Convergence of scheme 2

Lemma 4.2.5. Let the MV-SDDE (4.1.2) and the function hδ satisfy Assumption 4.1.1

and 4.1.2 respectively. Let t ∈ [0, T ] and kn be the integer such that t ∈ [knδT, (kn +

1)δT ). Then for every p > 0, there exists a positive constant C such that

E|X2,i,M
t −X2,i,M

knδT
|2p ≤ Cδ, (4.2.24)

E|X2,i,M
t − X̄2,i,M

t |2p ≤ Cδ, (4.2.25)

E|X2,i,M
t − X̃2,i,M

t |2p ≤ Cδ. (4.2.26)

Proof. By the definition of scheme 2, we can write

X2,i,M
t = X2,i,M

knδT
+

∫ t

knδT

f(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )ds+

∫ t

knδT

g(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )dWs.

Since t ∈ [knδT, (kn+1)δT ) we have that t−KnδT ≤ (Kn+1)δT −KnδT ≤ δT. Thus,

by the Hölder and BDG inequalities, conditions (4.1.7) and (4.1.8) and Theorem 4.2.2,

we obtain

E[|X2,i,M
t −X2,i,M

knδT
|2p] ≤ 22p−1E

[∣∣∣∣∫ t

knδT

f(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )ds

∣∣∣∣2p
]

+ 22p−1E

[∣∣∣∣∫ t

knδT

g(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )dWs

∣∣∣∣2p
]

≤ (2δ)2p−1

∫ t

knδT

E[|f(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )|2]ds

+ 22p−1E
[(∫ t

knδT

|g(X̄2,i,M
s , X̃2,i,M

s−τ ,LX̄2,M

s )|2ds
)p]

≤ (2δ)2pE
[

sup
knδT≤s≤t

{
(γ(|X̄2,i,M

s |q + |X̃2,i,M
s−τ |q) + λ)(|X̄2,i,M

s |+ |X̃2,i,M
s−τ |)2p

}]
+ CδpE

[(
sup

knδT≤s≤t
|X̄2,i,M

s |2p + ||ξ||2p + 1

)]
≤ Cδp.

Since the proof for claims (4.2.25) and (4.2.26) is similar to that of Lemma 4.2.3, we

omit it here.
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Theorem 4.2.6. If the SDDE (4.1.2) satisfies Assumption 4.1.1 and the time-step

function h satisfies Assumption 4.1.2, then for all p > 0, there exists a positive constant

C independent of δ such that

E
[
sup

0≤t≤T
|Y i,M

t −X2,i,M
t |p

]
≤ Cδp/2.

Proof. Using the same arguments as in the proof of Theorem 4.2.4, we obtain

E
[
sup
0≤s≤t

|es|p
]
≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ J1 + J2 + J3,

where

J1 := C

∫ t

0

(
E
[
Wp

2(LY M

s ,LX2,M

s )
]
+ E

[
Wp

2(LX2,M

s ,LX̄2,M

s )
])
ds;

J2 := C

∫ t

0

E
[
[Q(X2,i,M

s , X2,i,M
s−τ , X̄2,i,M

s , X̃2,i,M
s−τ ) + L]p/2

× (|X2,i,M
s − X̄2,i,M

s |p + |X2,i,M
s−τ − X̃2,i,M

s−τ |p)
]
ds;

J3 := CE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

⟨eu, (g(Y i,M
u , Y i,M

u−τ ,LY M

u )− g(X̄2,i,M
u , X̃2,i,M

u−τ ,LX̄2,M

s ))dWu⟩
∣∣∣∣p/2
]
.

For any s ∈ [0, T ] there is a kn such that s ∈ [knδT, (kn + 1)δT ). Hence, by (4.2.24)

E[Wp
2(LY M

s ,LX2,i,M

s )] ≤ E[|Y i,M
s −X2,i,M

KnδT
|p]

= E[|Y i,M
s −X2,i,M

KnδT
− (X2,i,M

s −X2,i,M
KnδT

) + (X2,i,M
s −X2,i,M

KnδT
)|p]

≤ 2p−1E[|Y i,M
s −X2,i,M

s |p] + 2p−1E[|X2,i,M
s −X2,i,M

KnδT
|p]

≤ CE[ sup
0≤u≤s

|eu|p] + Cδp/2.

Also, since the sequence of times {knδT}n∈N is contained in the sequence of times

{tn}n∈N, we have that X2,i,M
δ = X̄2,i,M

δ . Thus,

E
[
Wp

2(LX2,M

s ,LX̄2,M

s )
]
≤ E[|X2,i,M

KnδT
− X̄2,i,M

KnδT
|2] = 0.

Thus,

J1 ≤ C

∫ t

0

E
[
sup

0≤u≤s
|eu|p

]
ds+ Cδp/2.

The terms J2 and J3 are bounded in identical way as in Theorem 4.2.4. An application

of the Gronwall inequality yields the result.
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Chapter 5

Multilevel Monte Carlo EM scheme

for MV-SDEs with small noise

5.1 Introduction

An important problem in science is to compute E[Ψ(XT )] where {Xt}0≤t≤T is the

solution to an SDE and Ψ : Rd → R. Among all the methods that allow us to compute

the previous expectation, Monte Carlo simulation is arguably the more flexible. Its

drawback is the high computational cost. Therefore a lot of effort has been placed to

reduce this cost. In 2008, Giles, in a very relevant paper, [15], proposed the multilevel

Monte Carlo (MLMC) method which greatly reduces the computational cost with

respect to the standard Monte Carlo (MC) method. In the standard MC method, if δ

is the accuracy in terms of confidence intervals, the computation of E[Ψ(XT )], where

XT is simulated using the Euler-Maruyama (EM) method, has a computation cost

(measured as the number of times that the random number generator is called) that

scales as δ−3. However, following [15], we can see the MLMCmethod combined with the

EM scheme, scales like δ−2(log δ)2 (see next section for an overview explanation). Since

[15], numerous papers have appeared to customize, adapt and extend the principles of

multilevel Monte Carlo method to specific problems. One of these papers is [1], where
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the authors applied the multilevel Monte Carlo framework to SDEs with small noise.

They compare the computation cost derived from the standard Monte Carlo method

(combined with discretization algorithms tailored to the small noise setting) versus

the multilevel Monte Carlo method combined with the Euler-Maruyama (EM) scheme.

They found that when δ ≤ ε2, there is not benefit from using discretization methods

customized for the small noise case. Moreover, if δ ≥ e−
1
ε , the EM scheme combined

with the MLMC method leads to a cost O(1). This is the same cost we would have

with the standard MC method if we had XT as a formula of WT , so no discretization

method was required. Here, we extend the work from [1] to McKean-Vlasov SDEs

(MV-SDEs) with small noise and we obtained the same estimate for the variance of

two coupled paths. This means that the additional McKean-Vlasov component does

not add computational complexity (per equation in the system of particles) and the

conclusion we mentioned above about the computational cost of the method remains

valid in our case.

5.2 Computational complexity of the standard Monte

Carlo and the Multilevel Monte Carlo methods

In this section, we will discuss the computational complexity of the Monte Carlo and

the multilevel Monte Carlo methods in the context of solving the following problem.

We want to obtain and approximation for

E[Ψ(XT )], (5.2.1)

where {Xt}0≤t≤T is the solution to an SDE and Ψ : Rd → R is a globally Lipschitz

function. The problem (5.2.1) is very relevant in financial mathematics, since this is

one of the ways used to price financial options. In this case Ψ is the payoff function

and XT is the underlying asset price at time T . But it is also a common/important

problem in other areas of science. The problem 5.2.1 can be solved applying finite

differences methods to the PDE resulting from applying Feynman-Kac theorem to the
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SDE (for which X is the solution). A drawback of this method is that the cost of the

computation depends on dimension of the PDE. In practice this method becomes too

expensive for equations of higher order than three. One of the advantages of the Monte

Carlo method is that its computational cost does not depend on the dimension of the

SDE. Another advantage is its flexibility and robusticity to handle all types of SDEs

and Ψ functions. However, Monte Carlo simulation is an expensive method. Therefore,

a lot of research have been conducted to try to reduce this cost. In 2008, Giles, in a very

relevant paper, [15], proposed the multilevel Monte Carlo method which greatly reduces

the computational cost with respect to the standard Monte Carlo method. Now, we

analyze the computational complexity of the MLMC method versus the MC method

when solving (5.2.1), where XT is discretized using the Euler-Maruyama method. In

the rest of this section, we will use the simplest example of SDE to ilustrate in a clear

way the usefulness of the next section. Let ∆ ∈ (0, 1) and K a positive integer such

that ∆ = T/K. Consider an SDE of the type

Xt = f(Xt)dt+ g(Xt)dWt, t ∈ [0, T ], X0 = x0 ∈ R, (5.2.2)

where W is a one-dimensional Brownian motion. The EM approximate solution of the

previous SDE is defined as

Y0 := x0, Yk := f(Yk−1)∆ + g(Yk−1)∆Wk, k = 1, ..., K (5.2.3)

where ∆Wk = Wtk+1
− Wtk . We want to generate M samples of YK . In order to

do that, we generate M · K independent and identically distributed (i.i.d.) standard

normal random variables Zi
k, k = 1, .., K, i = 1, ...,M. Define ∆W i

k :=
√
∆Zi

k. Then for

i = 1, ...,M , using Equation (5.2.3) we generate the paths Y i
k , k = 1, ..., K of the EM

approximate solution. We define the standard MC approximation, QM , of problem

(5.2.1) as the sample mean

QM :=
1

M

M∑
i=1

Ψ(Y i
K).

Let δ be defined as the accuracy of the approximation in terms of confidence intervals,

i.e. the total error, e := E[Ψ(XT )] − QM , will be within the interval (−δ, δ) with a
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confidence level of α (usually in practice α = 0.99 or α = 0.95). We also define the

mean square error, MSE, as

MSE := E[e2] = E[(QM − E[Ψ(XT )])
2].

Now, by adding and subtracting E[Ψ(YK)] to QM in the expression above, we obtain

E[(QM − E[Ψ(XT )])
2] = E[(QM − E[Ψ(YK)] + E[Ψ(YK)]− E[Ψ(XT )])

2]

≤ 2E[(QM − E[Ψ(YK)])
2] + 2(E[Ψ(YK)]− E[Ψ(XT )])

2. (5.2.4)

We note that

E[(QM − E[Ψ(YK)])
2] = Var(QM) = Var

(
1

M

M∑
i=1

Ψ(Y i
K)

)
= M−1Var(Ψ(YK)).

Since Var(Ψ(YK)) is a constant that does not depend of ∆ nor M , we have E[(QM −

E[Ψ(YK)])
2] = O(M−1). To estimate (E[Ψ(YK)]− E[Ψ(XT )])

2 we realize that the EM

method has weak order one, i.e.

E[Ψ(XT )]− E[Ψ(YK)] = O(∆).

Hence, (E[Ψ(XT )]− E[Ψ(YK)])
2 = O(∆2). Thus,

MSE = E[(QM − E[Ψ(XT )
2] = O(M−1) +O(∆2).

By definition δ2 scales like the MSE, so in order to achieve accuracy of δ we must have

δ =
√

O(M−1) +
√

O(∆2),

and this holds true if M = O(δ−2) and ∆ = O(δ).

We define the computational complexity, CCMC , of solving problem (5.2.1) as the

number of times the random number generator is called in order to compute QM , i.e.

CCMC = MK = M(T/∆). Therefore,

CCMC = O(M/∆) = O(δ−3).

Now we estimate the computational complexity of the MLMC method. We will

consider samples of the EM approximate solution at different discretization levels l =
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0, 1, ..., L. At level l, the stepsize is defined as ∆l := K̃−lT , where K̃ > 1 is a constant,

so for level l we have steps 1, 2, ..., K̃−l =: Kl. This means that for level l, we reach

T at step Kl. Let Yl,Kl
denote the EM approximation at time ∆lKl for level l. Then

E[Ψ(YL,KL
)] can be written as

E[Ψ(YL,KL
)] = E[Ψ(Y0,K0)] +

L∑
l=1

E[Ψ(Yl,Kl
)−Ψ(Yl−1,Kl−1

)].

We define the MLMC approximation of problem (5.2.1) as

QML :=
1

N0

N0∑
i=1

Ψ(Y i
0,K0

) +
L∑
l=1

1

Nl

Nl∑
i=1

(Ψ(Y i
l,Kl

)−Ψ(Y i
l−1,Kl−1

)) (5.2.5)

where Y i
l,Kl

is the sample i of the EM approximate solution Yl,Kl
and Nl is the number of

simulations for the paths generated at level l. The samples Y i
l,Kl

and Y i
l−1,Kl−1

are built

using the same discretized Brownian paths with the different stepsizes ∆l and ∆l−1

respectively. We say that the paths Y i
l,kl

, kl = 1, .., Kl and Y i
l−1,kl−1

, k = 1, .., Kl−1 are

coupled. The next level coupled paths Y i
l+1,kl+1

, k = 1, .., Kl+1 and Y i
l,kl

, k = 1, .., Kl are

generated using new Brownian paths (so new i.i.d. standard normal random variables

will be required). We shall decompose the MSE in the same way as we did before for

the standard MC method. We have that

E[(QML − E[Ψ(XT )])
2] = (QML − E[Ψ(YL,KL

)] + E[Ψ(YL,KL
)]− E[Ψ(XT )])

2

≤ 2E[(QML − E[Ψ(YL,KL
)])2] + 2(E[Ψ(YL,KL

)]− E[Ψ(XT )])
2.

(5.2.6)

We want to find out the values of L and Nl, l = 1, ..., L, that will provide the target

accuracy δ. Set

L =
log δ−1

log K̃
. (5.2.7)

Then

∆L =
T

K̃L
=

T

eL log K̃
= Tδ = O(δ). (5.2.8)

Since the EM method has a weak convergence order of one, we obtain

(E[Ψ(YL,KL
)]− E[Ψ(XT )])

2 = O(δ2), (5.2.9)
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which is in line with the required target accuracy. Now we estimate the term E[(QML−

E[Ψ(YL,KL
)])2]. Using the definition of QML, we have that

E[(QML − E[Ψ(YL,KL
)])2] = Var(QML)

= Var

(
1

N0

N0∑
i=1

Ψ(Y i
0,K0

) +
L∑
l=1

1

Nl

Nl∑
i=1

(Ψ(Y i
l,Kl

)−Ψ(Y i
l−1,Kl−1

))

)

=
1

N0

Var(Ψ(Y0,K0)) +
L∑
l=1

1

Nl

Var(Ψ(Yl,Kl
)−Ψ(Yl−1,Kl−1

)).

We will see in Lemma 5.2.1 that Var(Ψ(Yl,K)−Ψ(Yl−1,Kl−1
)) = O(∆). We also know

that Var(Y0,K0) is a constant that does not depend of ∆ nor N0. Hence,

E[(QML − E[Ψ(YL,KL
)])2] =

1

N0

C +
L∑
l=1

1

Nl

O(∆l).

Setting Nl = δ−2L∆l, we obtain

E[(QML − E[Ψ(YL,KL
)])2] = O(δ2) +

L∑
l=1

O(δ2L−1) = O(δ2),

which is the accuracy required. Therefore, the mathematical complexity of the MLMC

method, CCMLMC , is

CCMLMC =
L∑
l=0

Nl∆
−1
l =

L∑
l=0

δ−2L∆l∆
−1
l = δ−2L2.

Substituting Equation (5.2.7) into the last one, we obtain

CCMLMC = O(δ−2(log δ)2).

Lemma 5.2.1. Consider the EM aproximate solutions Yl,Kl
and Yl−1,Kl−1

. Then

Var(Ψ(Yl,K)−Ψ(Yl−1,Kl−1
)) = O(∆).

Proof. The EM method has a strong convergence order of 1/2 and the function Ψ

satisfies de global Lipstitz conditions, we have

Var(Ψ(Yl,Kl
)−Ψ(XT )) ≤ E[|Ψ(Yl,Kl

)−Ψ(XT )|2]
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≤ CE[|Yl,Kl
−XT |2]

≤ O(∆l).

Using the above inequality and (B.0.2) yields

Var(Ψ(Yl,Kl
)−Ψ(Yl−1,Kl−1

)) = Var(Ψ(Yl,Kl
)−Ψ(XT ) + Ψ(XT )−Ψ(Yl−1,Kl−1

))

≤ 2Var(Ψ(Yl,Kl
)−Ψ(XT )) + 2Var(Ψ(XT )−Ψ(Yl−1,Kl−1

))

≤ O(∆l).

Note that in the computational complexity analysis, in the standard Monte Carlo

method is not required the strong convergence order of the discretization scheme, it

only uses the weak convergence order. However in the MLMC methods, both weak and

strong convergence orders are used. The Milstein scheme has weak order of converge

of 1, the same as the EM scheme, but it has a strong order of convergence of 1. This

implies that using the Milstein scheme does not affect the computational cost of the

standard MC method. However, if we use the Milstein scheme combined with the

MLMC method, we can obtain a computational complexity of O(δ−2), [16]. This is the

same computational complexity that we would obtain with the standard MC method

if we did not have any discretization error at all, i.e. if we could compute the solution

YK as function of WT , so no discretization scheme was needed. The MLMC method

represent a huge improvement in computation cost with respect to the standard MC

method. For example for an accuracy of δ = 0.01, the MLMC method is 100 times

faster than the standard MC method. The prior anaylsis can be done with other types

of SDEs. Note that the key differential component in the computational complexity

analysis of the MLMC method for different SDEs is to estimate the variance between

two coupled paths (Lemma 5.2.1). The aim of this chapter is to estimate the variance

between two couple paths for MV-SDEs with small noise.
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5.3 The EM Scheme for MV-SDEs with small noise

Let W be a d̄-dimensional Brownian motion. The MV-SDE with small noise that we

will be working on in this chapter, has the form

dXε(t) = f(Xε(t),LX
t )dt+ εg(Xε(t),LX

t )dW (t), t ≥ 0 (5.3.1)

with initial data Xε(0) = x0 ∈ L2
F0
(Ω,Rd), where ε ∈ (0, 1), LX

t is the law (or distri-

bution) of Xε(t), and

f : Rd × P2(Rd) → Rd and g : Rd × P2(Rd) → Rd×d̄.

We assume that (Ω,F , {Ft}t≥0,P) is atomless so that, for any µ ∈ P2(Rd), there exists

a random variable X ∈ L2(Ω,F ,P;Rd) such that µ = LX . Let fi be the i
th component

of f . Then for x ∈ Rd and µ ∈ P2(Rd), we denote

∇fi(x, µ) :=

(
∂fi(x, µ)

∂x1

, ...,
∂fi(x, µ)

∂xd

)
,

∇2fi(x, µ) :=


∂2fi(x,µ)

∂x2
1

... ∂2fi(x,µ)
∂x1xd

...
...

...

∂2fi(x,µ)
∂xdx1

... ∂2fi(x,µ)

∂x2
d

 .

As we have seen in the preliminaries, due to the propagation of chaos result 2.2.9,

Equation (5.3.1) can be regarded as the limit of the following interacting particle system

dXε,i,M(t) = f(Xε,i,M(t),Lε,X,M
t )dt+ εg(Xε,i,M(t),Lε,X,M

t )dW i(t), t ∈ [0, T ].

(5.3.2)

where Lε,X,M
t := 1

M

M∑
i=1

δXε,i,M (t). Our main task in the rest of the chapter is to discretize

(5.3.2) using the EM scheme and estimate the variance of two coupled paths in the

Multilevel Monte Carlo setting. This directly translate into the computational cost of

solving E[Ψ((Xε,i,M(T )], see the previous section and [1] for details.

By solving the expectation E[Ψ((Xε,i,M(T )] by MC simulation, where X is the solution

to an MV-SDEs, we can solve nonlinear PDEs for the function Ψ numerically, see [50]
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and [51]. This can be quite useful when we are dealing with a high order PDE for

which specific numerical methods for PDEs become too expensive.

We shall impose the following hypothesis on the functions f and g:

Assumption 5.3.1. There exists a positive constant K > 0 such that

|f(x, µ)− f(y, ν)|2 ∨ |g(x, µ)− g(y, ν)|2 ≤ K
(
|x− y|2 +W2

2(µ, ν)
)
, (5.3.3)

hold for any x, y ∈ Rd, µ, ν ∈ P2(Rd). Furthermore there exists a positive constant

K̄ such that

|∇f(x, µ)|2 ∨ |∇2f(x, µ)|2 ∨ |∂µf(x, µ)(y)|2 ∨ |∂2
µf(x, µ)(y)|2 ∨ |∂µ∇f(x, µ)|2 ≤ K̄

for all x, y ∈ Rd, µ ∈ P2(Rd). In addition, there exists a positive constant K such that

|∂µf(x, µ)(y)− ∂µf(x̄, ν)(ȳ)|2 ≤ K
(
|x− x̄|2 + |y − ȳ|2 +W2

2(µ, ν)
)
. (5.3.4)

for all x, y, x̄, ȳ ∈ Rd, µ, ν ∈ P2(Rd).

Remark 5.3.1. Assumption 5.3.1 implies the existence and uniqueness of equation

(5.3.1), Theorem 2.2.4. Moreover, if Assumption 5.3.1, then

|f(x, µ)|2 ∨ |g(x, µ)|2 ≤ β(1 + |x|2 +W 2
2 (µ)),

where β = 2max{1, |f(0, δ0)|, |g(0, δ0)|}, and for any x ∈ Rd and µ ∈ P2(Rd).

⟨x− y, f(x, µ)− f(y, ν)⟩ ≤ α(|x− x̄|2 +W2
2(µ, ν)),

where ᾱ = 1
2
(1 +K).

Lemma 5.3.2. Let Assumption 5.3.1 hold. Then, for any T > 0 and p > 0, we have

E
[
sup

0≤t≤T
|Xε(t)|p

]
≤ C.
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Proof. Let p ≥ 4. From 5.3.1 we have that

|Xε(t)|p =
∣∣∣x0 +

∫ t

0

f(Xε(s),LX
s )ds+ ε

∫ t

0

g(Xε(s),LX
s )dW (s)

∣∣∣p.
By the Hölder and the BDG inequalities we have that for every t̂ ≤ T

E[ sup
0≤t≤t̂

|Xε
t |p] ≤ 3p−1|x0|p + (3T )p−1E

∫ t̄

0

|f(Xε(s),LX
s )|pds

+ ε3p−1CE

(∫ t̄

0

|g(Xε(s),LX
s )|2ds

)p/2
 .

By Remark 5.3.1, one can see that for every t̂ ≤ T

E[ sup
0≤t≤t̂

|Xε
t |p] ≤ C + C

∫ t̄

0

E[ sup
0 ≤s≤t

|Xε
s |p]dt.

The required assertion follows from the Gronwall inequality. Thus, the result is proved

for p ≥ 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of

the proof of Lemma 3.3.6.

. We now introduce the EM scheme for (5.3.1). Given any time T > 0, assume

that there exists a positive integer such that h = T
m
, where h ∈ (0, 1) is the step size.

Let tn = nh for n ≥ 0. Compute the discrete approximations Y ε,i,M
h,n = Y ε,i,M

h (tn) by

setting Y ε,i,M
h (0) = x0 and forming

Y ε,i,M
h,n+1 = Y ε,i,M

h,n + f(Y ε,i,M
h,n ,Lε,Yn,M

h )h+ εg(Y ε,i,M
h,n ,Lε,Yn,M

h )∆W i(tn), (5.3.5)

where Lε,Yn,M
h = 1

M

M∑
j=1

δY ε,j,M
h,n

and ∆W (tn) = W (tn+1)−W (tn).

Let

Y ε,i,M
h (t) = Y ε,i,M

h,k , t ∈ [tk, tk+1). (5.3.6)

For convenience, we define Lε,Y,M
h,t = 1

M

M∑
j=1

δY ε,i,M
h (t) and ηh(t) := ⌊t/h⌋h for t ≥ 0.

Then one observes Lε,Y,M
h,t = Lε,Y,M

h,ηh(t)
= Lε,Yk,M

h , for t ∈ [tk, tk+1). We now define the EM

continuous approximate solution as follows:

Ȳ ε,i,M
h (t) = xi

0 +

∫ t

0

f(Y ε,i,M
h (s),Lε,Y,M

h,s )ds+ ε

∫ t

0

g(Y ε,i,M
h (s),Lε,Y,M

h,s )dW i(s), t ≥ 0.

(5.3.7)
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Lemma 5.3.3. Let Assumption 5.3.1 hold. Then, for any T > 0 and p ≥ 2, we have

E
[
sup

0≤t≤T
|Ȳ ε,i,M

h (t)|p
]
≤ C.

Proof. The proof is the same as the one in Lemma 5.3.2.

Lemma 5.3.4. Let Assumption 5.3.1 hold. Then, for any p ≥ 2, we have

sup
0≤t≤T

E[|Ȳ ε,i,M
h (t)− Y ε,i,M

h (t)|p] ≤ Chp + Cεphp/2.

Proof. Let n be such that tn ≤ t ≤ tn+1. From (5.3.7) we have

Ȳ ε,i,M
h (t)− Y ε,i,M

h (t) =

∫ t

tn

f(Y ε,i,M
h (s),Lε,Y,M

h,s )ds+ ε

∫ t

tn

g(Y ε,i,M
h (s),Lε,Y,M

h,s )dW i(s)

By Remark 5.3.1 and the BDG inequality, one has

E|Ȳ ε,i,M
h (t)− Y ε,i,M

h (t)|p ≤2p−1hp−1E
∫ t

tn

|f(Y ε,i,M
h (s),Lε,Y,M

h,s )|pds

+ εph
p
2
−1E

∫ t

tn

|g(Y ε,i,M
h (s),Lε,Y,M

h,s )|pds

≤Chp + Cεph
p
2 .

The proof is therefore complete.

We now reveal the error between the numerical solution (5.3.7) and the exact solu-

tion (5.3.1).

Theorem 5.3.5. Let Assumption 5.3.1 hold, assume that Ψ : Rd → R has continuous

second order derivative and there exists a constant C such that∣∣∣∣∂Ψ∂xi

∣∣∣∣ ≤ C

for any i = 1, 2, · · · , d. Then we have

sup
0≤t≤T

E|Ψ(Xε,i,M(t))−Ψ(Ȳ ε,i,M
h (t))|2 = Ch2 + Chε2.
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Proof. By Assumption 5.3.1 and Lemma 5.3.4, one can see that

sup
0≤t≤T

E|Xε,i,M(t)− Ȳ ε,i,M
h (t)|2

≤ 2TE
∫ T

0

|f(Xε,i,M(s),Lε,X,M
s )− f(Y ε,i,M

h (s),Lε,Y,M
h,s )|2ds

+ 8
√
Tε2E

∫ T

0

|g(Xε,i,M(s),Lε,X,M
s )− g(Y ε,i,M

h (s),Lε,Y,M
h,s )|2ds

≤ 2TKE
∫ T

0

(
|Xε,i,M(s)− Y ε,i,M

h (s)|2 +W 2
2 (Lε,X,M

s ,Lε,Y,M
h,s

)
+ 8K

√
Tε2E

∫ T

0

(
|Xε,i,M(s)− Y ε,i,M

h (s)|2 +W 2
2 (Lε,X,M

s ,Lε,Y,M
h,s

)
≤ 4TKE

∫ T

0

|Xε,i,M(s)− Ȳ ε,i,M
h (s)|2ds+ 4TKE

∫ T

0

|Ȳ ε,i,M(s)− Y ε,i,M
h (s)|2ds

+ 16K
√
Tε2E

∫ T

0

|Xε,i,M(s)− Ȳ ε,i,M
h (s)|2ds+ 16K

√
Tε2E

∫ T

0

|Ȳ ε,i,M(s)− Y ε,i,M
h (s)|2ds

≤ Ch2 + Cε2h+ Cε2
∫ T

0

sup
0≤t≤s

E|Xε,i,M(s)− Ȳ ε,i,M
h (s)|2ds+ Cε2h2 + Cε4h.

(5.3.8)

The Gronwall inequality implies that

sup
0≤t≤T

E|Xε,i,M(t)− Ȳ ε,i,M
h (t)|2 ≤ Ch2 + ε2h.

Since Ψ has continuous bounded first order derivative, we immediately get

sup
0≤t≤T

E|Ψ(Xε,i,M(t))−Ψ(Ȳ ε,i,M
h (t))|2 ≤ C sup

0≤t≤T
E|Xε,i,M(t)− Ȳ ε,i,M

h (t)|2.

The desired result then follows. □

In the next corollary, we are going to use different stepsize to define the numerical

solutions.

Corollary 5.3.6. Assume that the conditions of Theorem 5.3.5 hold. Let M ≥ 2, l ≥ 1,

hl = T ·M−l, hl−1 = T ·M−(l−1). Then

max
0≤n<M l−1

Var(Ψ(Ȳ ε,i,M
hl

(tn))−Ψ(Ȳ ε,i,M
hl−1

(tn)) ≤ Ch2
l−1 + Cε2hl−1.
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Proof. For 0 ≤ n ≤ M l−1 − 1, by Theorem 5.3.5,

Var(Ψ(Ȳ ε,i,M
hl

(tn))−Ψ(Ȳ ε,i,M
hl−1

(tn)) ≤ 2E|Ψ(Ȳ ε,i,M
hl

(tn))−Ψ(Ȳ ε,i,M
hl−1

(tn))|2

≤4E|Ψ(Ȳ ε,i,M
hl

(tn))−Ψ(Xε,i,M(t))|2 + 2E|Ψ(Xε,i,M(t))−Ψ(Ȳ ε,i,M
hl−1

(tn))|2

≤Ch2
l−1 + Cε2hl−1.

□

The following lemma is presented here because it applies to any EM scheme but

it will only be use later when estimating the variance of coupled processes in the

Multilevel Monte Carlo setting.

Define ηh(s) := ⌊s/h⌋ where ⌊·⌋ is the integer-part function. Let zh be the deter-

ministic solution to

zh(t) = X(0) +

∫ t

0

f(zh(ηh(s)), δzh(s))ds, (5.3.9)

which is the Euler approximation to the ODE obtained from (5.3.1) when ε is set to

zero.

Lemma 5.3.7. For any T > 0 we have

E[ sup
0≤s≤T

|Ȳ ε,i,M
h (s)− zh(s)|2] ≤ Cε2. (5.3.10)

Proof. Using (5.3.7) and (5.3.10), using the fact that |a + b|2 ≤ a2 + b2 and the

Cauchy-Schwarz inequality we have that for every t ≤ T

|Ȳ ε,i,M
h (t)− zh(t)|2

=

∣∣∣∣∫ t

0

(f(Y ε,i,M
h (s),Lε,Y,M

h,s )− f(zh(ηh(s)), δzh(s))))ds+ ε

∫ t

0

g(Y ε,i,M
h (s),Lε,Y,M

h,s )dW i(s)

∣∣∣∣2
≤ 2T

∫ t

0

|f(Y ε,i,M
h (s),Lε,Y,M

h,s )− f(zh(ηh(s)), δzh(s)))|
2ds

+ 2ε2
∣∣∣∣∫ t

0

g(Y ε,i,M
h (s),Lε,Y,M

h,s )dW i(s)

∣∣∣∣2 .
By the BDG inequality we have that

E

[
sup
0≤s≤t

∣∣∣∣∫ t

0

g(Y ε,i,M
h (s),Lε,Y,M

h,s )dW i(s)

∣∣∣∣2
]
≤ 4

∫ t

0

E[|g(Y ε,i,M
h (s),Lε,Y,M

h,s )|2]ds.
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Thus by Assumption 5.3.1 one can see that

E[ sup
0≤s≤t

|Ȳ ε,i,M
h (t)− zh(t)|2] ≤ 2TK

∫ t

0

(E[ sup
0≤s≤r

|Ȳ ε,i,M
h (s)− zh(s)|2]

+ sup
0≤s≤r

W2
2(L

ε,Y,M
h,s , δzh(s)))dr + 8Tε2β

∫ t

0

E[(1 + |Ȳ ε,i,M
h (s)|2 +W 2

2 (L
ε,Y,M
h,s )]ds.

Using (2.2.1), (2.2.2) and Lemma 5.3.3 we have that for all 0 ≤ t ≤ T

E[ sup
0≤s≤t

|Ȳ ε,i,M
h (t)− zh(t)|2] ≤ Cε2 + C

∫ t

0

E[ sup
0≤s≤r

|Ȳ ε,i,M
h (s)− zh(s)|2]dr.

The final result is obtained by applying the Gronwall inequality. □

5.4 The Multilevel Monte Carlo-EM Scheme

We now define the multilevel Monte Carlo EM scheme. Given any T > 0, let N ≥

2, l ∈ {0, ..., L}, where L is a positive integer that will be determined later. Let

hl = T ·N−l, hl−1 = T ·N−(l−1).

For step sizes hl and hl−1 the EM continuous approximate solutions are respectively

Ȳ ε,i,M
hl

(t) = xi
0 +

∫ t

0

f(Y ε,i,M
hl

(s),Lε,Y,M
hl,s

)ds+

∫ t

0

g(Y ε,i,M
hl

(s),Lε,Y,M
hl,s

)dW i(s), (5.4.1)

and

Ȳ ε,i,M
hl−1

(t) = xi
0 +

∫ t

0

f(Y ε,i,M
hl−1

(s),Lε,Y,M
hl−1,s

)ds+

∫ t

0

g(Y ε,i,M
hl−1

(s),Lε,Y,M
hl−1,s

)dW i(s). (5.4.2)

We now construct the discrete version of the previous approximate solutions using the

same Brownian motion for both processes. We say that the two processes are coupled.

For n ∈ {0, 1, . . . , N l−1 − 1} and k ∈ {0, . . . , N}, let

tn = nhl−1 and tkn = nhl−1 + khl.

This means we divide the interval [tn, tn+1] into N equal parts by hl with t0n = tn, t
N
n =

tn+1. For n ∈ {0, 1, . . . , N l−1 − 1} and k ∈ {0, . . . , N − 1}, let

Y ε,i,M
hl

(tk+1
n ) = Y ε,i,M

hl
(tkn) + f(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)hl + ε

√
hlg(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)∆ξkn,

(5.4.3)
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where Lε,Y k
n ,M

hl
= 1

M

∑M
j=1 δY ε,j,M

hl
(tkn)

, the random vector ∆ξkn ∈ Rd̄ has independent

components, and each component is distributed as N (0, 1). Therefore, to simulate

Y ε,i,M
hl

, we use

Y ε,i,M
hl

(tn+1) = Y ε,i,M
hl

(tn) +
N−1∑
k=0

f(Y ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)hl

+ ε
√
hl

N−1∑
k=0

g(Y ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)∆ξkn.

(5.4.4)

To simulate Y ε,i,M
hl−1

, we use

Y ε,i,M
hl−1

(tn+1) = Y ε,i,M
hl−1

(tn) + f(Y ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)hl−1

+ ε
√

hlg(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)
N−1∑
k=0

∆ξkn,
(5.4.5)

where Lε,Yn,M
hl−1

= 1
M

∑M
j=1 δY ε,j,M

hl−1
(tn)

.

The following theorem is the main result of this section.

Theorem 5.4.1. Let Assumption 5.3.1 hold. Then it holds that

max
0≤n<M l−1

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] ≤ CN2h2
l + C̄ε4Nhl.

In order to prove Theorem 5.4.1, we need a few lemmas.

Lemma 5.4.2. Let p ≥ 2. Then

max
0≤n≤N l−1

1≤k≤N

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|p] ≤ C1N
php

l + C2N
p/2h

p/2
l εp,

where C and C are positive constants that only depend on β, T,m and Xε(0) (β from

Remark 5.3.1).

Proof. From (5.4.3) we have that

Y ε,i,M
hl

(tkn)−Y ε,i,M
hl

(tn) =
k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl+ε
√

hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn.

(5.4.6)
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Hence, we obtain

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|p] (5.4.7)

≤ 2p−1E

∣∣∣∣∣
k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl

∣∣∣∣∣
p

+ 2p−1E

∣∣∣∣∣ε√hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn

∣∣∣∣∣
p

.

By Remark 5.3.1 and Lemma 5.3.3 one can see that

E

∣∣∣∣∣
k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl

∣∣∣∣∣
p

≤ Np−1

k−1∑
j=0

E
∣∣∣f(Y ε,i,M

hl
(tjn),L

ε,Y j
n ,M

hl
)hl

∣∣∣p
≤ Np−1

k−1∑
j=0

E
[(

β
(
1 + |Y ε,i,M

hl
(tjn)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
))p/2]

≤ CNp−1hp
l

k−1∑
j=0

(
1 + 2E[|Y ε,i,M

hl
(tjn)|2]

)p/2
≤ CNphp

l . (5.4.8)

Using the BDG inequality, Remark 5.3.1 and Lemma 5.3.3, we obtain

E

∣∣∣∣∣ε
k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)
√
hl∆ξjn

∣∣∣∣∣
p

≤ CεpE

∣∣∣∣∣
k−1∑
j=0

|g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)|2hl

∣∣∣∣∣
p/2


≤ CεpNp/2−1h
p/2
l E

[
k−1∑
j=0

(|g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)|2)p/2
]

≤ CεpNp/2−1h
p/2
l

k−1∑
j=0

E
[(

β
(
1 + |Y ε,i,M

hl
(tjn)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
))p/2]

≤ CNp/2h
p/2
l εp

(5.4.9)

The result follows from substituting (5.4.8) and (5.4.9) into (5.4.7). □

Lemma 5.4.3. Let fm be the mth component of f . Then there exist s, r ∈ [0, 1] such

that

f(Y ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− f(Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
) = Ak +Bk + Ek,

where

Ak = (A1
k, ..., A

d
k)

′, Bk = (B1
k, ..., B

d
k)

′, Ek = (E1
k , ..., E

d
k)

′

Am
k := ⟨∇fm(sY

ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
), hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)⟩,
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Bm
k := ⟨∇fm(Y

ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
), ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩,

Em
k := ⟨∇2fm(rs(Y

ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)) + Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)(Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))s,

ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩

+ ⟨E[⟨∂µ∇fm(Z,Lε,Y w
n ,M

hl
)(Y s

w), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)
,

ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩,m ∈ {1, ..., d}.

Proof. By the mean value theorem (Lemma C.0.1) with y = Y ε,i,M
hl

(tkn), x =

Y ε,i,M
hl

(tn) and g(z) = fm(z,Lε,Y k
n ,M

hl
), there exists a s ∈ [0, 1] such that

fm(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fm(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)

= ⟨∇fm(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
), (Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))⟩.

Substituting (5.4.6) in the equation above yields

fm(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fm(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
) (5.4.10)

= ⟨∇fm(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
),

k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl⟩

+ ⟨∇fm(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
), ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩.

Let ∇qfm denote the qth component of the vector function ∇fm. Applying the mean

value theorem again with y = sY ε,i,M
hl

(tkn)+(1−s)Y ε,i,M
hl

(tn), x = Y ε,i,M
hl

(tn) and g(z) =

∇qfm(z,Lε,Y k
n ,M

hl
) ensures that there exists a r ∈ [0, 1] such that

∇qfm(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) = ∇qfm(Y

ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)

+ ⟨∇(∇qfm)(rs(Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)) + Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
), (Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))s⟩.

An application of Equation (2.2.8) to u(Lξ) = ∇qfm(Y
ε,i,M
hl

,Lε,ξ,M
hl

)

with X = Y ε,i,M
hl

(tkn), X
′ = Y ε,i,M

hl
(tn) implies that there exists a random variable w :
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Ω → [0, 1] such that

∇qfm(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
) = ∇qfm(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

) (5.4.11)

+ E[⟨∂µ∇qfm(Z,Lε,Y w
n ,M

hl
)(Y s

w), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)
,

where Y w
n := wY ε,i,M

hl
(tkn) + (1− w)Y ε,i,M

hl
(tn). Thus

∇fm(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) = ∇fm(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)

+ E[⟨∂µ∇fm(Z,Lε,Y w
n ,M

hl
)(Y s

w), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)

+∇2fm(rs(Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)) + Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)(Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))s.

Substituting the last equation into the second summand of the RHS of (5.4.10)

completes the proof. □

Lemma 5.4.4. There exist random variables s, r : Ω → [0, 1] such that

f(Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
) = Āk + Ēk,

where

Āk = (Ā1
k, ..., Ā

d
k)

′, Ēk = (Ē1
k , ..., Ē

d
k)

′

Ām
k := E[⟨∂µfm(Z,Lε,Y s

n ,M
hl

)(Y s
n ), hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)⟩]Z=Y ε,i,M
hl

(tn)

Ēm
k := E[⟨∂2

µfm(Z,L
ε,Y s,r

n ,M
hl

)(Y s,r
n )(((Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))s,

ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩]Z=Y ε,i,M
hl

(tn)
,

Y s
n := sY ε,i,M

hl
(tkn) + (1− s)Y ε,i,M

hl
(tn),

Y s,r
n := sr(Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn)) + Y ε,i,M

hl
(tn).

Proof. Let fm be the mth component of f . A direct application of Equation

(2.2.8) with X = Y ε,i,M
hl

(tkn), X
′ = Y ε,i,M

hl
(tn) and ū(L(ξ)) = fm(Y

ε,i,M
hl

,Lε,ξ,M
hl

) implies

that there exists a random variable s : Ω → [0, 1] such that

fm(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− fm(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

) (5.4.12)
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= E[⟨∂µfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)

= E[⟨∂µfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ),
k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl⟩]Z=Y ε,i,M
hl

(tn)

+ E[⟨∂µfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ), ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩]Z=Y ε,i,M
hl

(tn)
.

Let ∂µ,qfm be the qth component of the vector function ∂µfm. Applying Equation (2.2.8)

again with X = sY ε,i,M
hl

(tkn) + (1 − s)Y ε,i,M
hl

(tn) =: Y s
n , X

′ = Y ε,i,M
hl

(tn) and ū(L(ξ)) =

∂µ,qfm(Y
ε,i,M
hl

(tn),Lε,ξ,M
hl

)(ξ), we find that there exists a random variable r : Ω → [0, 1]

such that

∂µ,qfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ) = ∂µ,qfm(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)(Y ε,i,M
hl

(tn))

+ E[⟨∂µ(∂µ,qfm)(Z,Lε,Y s,r
n ,M

hl
)(Y s,r

n ), (Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))s⟩]Z=Y ε,i,M
hl

(tn)
.

Thus

∂µfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ) = ∂µfm(Z,Lε,Yn,M
hl

)(Y ε,i,M
hl

(tn))

+ E[∂2
µfm(Z,L

ε,Y s,r
n ,M

hl
)(Y s,r

n ), (Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))s]Z=Y ε,i,M
hl

(tn)
.

Substituting the last equation into the second summand of the RHS of Equation

(5.4.12) yields

fm(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− fm(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)

= E[⟨∂µfm(Z,Lε,Y s
n ,M

hl
)(Y s

n ),
k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl⟩]Z=Y ε,i,M
hl

(tn)

+ E[⟨∂µfm(Z,Lε,Yn,M
hl

)(Y ε,i,M
hl

(tn)), ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩]Z=Y ε,i,M
hl

(tn)

+ E[⟨∂2
µfm(Z,L

ε,Y s,r
n ,M

hl
)(Y s,r

n )(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))s,

ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn⟩]Z=Y ε,i,M
hl

(tn)
.

By independence the second expectation above is zero, therefore the proof is complete.

□
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Proof of Theorem 5.4.1 From (5.4.4) and (5.4.5) we have that for n ≤ N l−1 − 1

Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1) = Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)

+ hl

N−1∑
k=0

(
f(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)

+ hl

N−1∑
k=0

(
f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− f(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)

+ ε
√

hl

N−1∑
k=0

(
g(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)
∆ξkn

+ ε
√

hl

N−1∑
k=0

(
g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− g(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)
∆ξkn

=: Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) +RN .

By using the linearity property of the inner product, we obtain

|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2

= ⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) +RN , Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) +RN⟩

= |Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + |RN |2 + 2⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), RN⟩.

Applying the elementary inequality |a+ b+ c+ d|2 ≤ 4|a|2 +4|b|2 +4|c|2 +4|d|2 to the

term |RN |2 above, we derive that

|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2 ≤ |Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2

+ 4h2
l

∣∣∣∣∣
N−1∑
k=0

(
f(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)∣∣∣∣∣

2

+ 4h2
l

∣∣∣∣∣
N−1∑
k=0

(
f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− f(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)∣∣∣∣∣

2

+ 4ε2

∣∣∣∣∣
N−1∑
k=0

(
g(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)√

hl∆ξkn

∣∣∣∣∣
2

+ 4ε2

∣∣∣∣∣
N−1∑
k=0

(
g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− g(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)√

hl∆ξkn

∣∣∣∣∣
2
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+ 2hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− f(Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)⟩

+ 2hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− f(Y ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)⟩

+ 2ε
√

hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),
(
g(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)
∆ξkn⟩

+ 2ε
√
hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),
(
g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− g(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)
∆ξkn⟩.

Now, we take expectations on both sides of the previous inequality. Since ∆ξkn is

independent of Y ε,i,M
hl

(tkn) and Y ε,i,M
hl−1

(tn), the expectation of the last two summands in

the equation above is zero. Thus,

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] (5.4.13)

+ 4Nh2
l

N−1∑
k=0

E
∣∣∣f(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
∣∣∣2

+ 4Nh2
l

N−1∑
k=0

E
∣∣∣f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− f(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
∣∣∣2

+ 4ε2E

∣∣∣∣∣
N−1∑
k=0

(
g(Y ε,i,M

hl
(tkn),L

ε,Y k
n ,M

hl
)− g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)
)√

hl∆ξkn

∣∣∣∣∣
2


+ 4ε2E

∣∣∣∣∣
N−1∑
k=0

(
g(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)− g(Y ε,i,M

hl−1
(tn),Lε,Yn,M

hl−1
)
)√

hl∆ξkn

∣∣∣∣∣
2


+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− f(Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)⟩]

+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− f(Y ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)⟩].

=: E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] + I1 + I2 + I3 + I4 + I5 + I6. (5.4.14)

By Assumption 5.3.1 and Lemma 5.4.2, one can see that

I1 ≤ 4KNh2
l

N−1∑
k=0

(E|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2 +W2
2(L

ε,Y k
n ,M

hl
,Lε,Yn,M

hl
))
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≤ 8KNh2
l

N−1∑
k=0

E|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2 ≤ 8KN2h2
l (CN2h2

l + CNε2hl).

Also, by Assumption 5.3.1

I2 ≤ 4KNh2
l

N−1∑
k=0

(E|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 +W2
2(L

ε,Yn,M
hl

,Lε,Yn,M
hl−1

))

≤ 8KN2h2
lE[|Y

ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2].

By the BDG inequality, Assumption 5.3.1 and Lemma 5.4.2, we obtain

I3 ≤ Cε2
N−1∑
k=0

E[|g(Y ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− g(Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)|2]hl

= Chlε
2

N−1∑
k=0

(E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2] +W2
2(L

ε,Y k
n ,M

hl
,Lε,Yn,M

hl
))

≤ CN3h3
l ε

2 + CN2h2
l ε

4.

Similarly to I3,

I4 ≤ CNhlε
2E[|Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)|2].

For I5 note that

I5 = 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− f(Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)⟩]

= 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− f(Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)⟩]

+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn),Lε,Yn,M

hl
)⟩]

=: I5A + I5B.

Applying Lemma 5.4.3 we have

I5A ≤ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ak⟩] + 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Bk⟩]

+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ek⟩].
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By independence, the second summand above is zero. We note that

E[|Ak|2] =
d̄∑

m=1

E[|Am
k |]2 ≤ d̄K̄E

∣∣∣∣∣hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)

∣∣∣∣∣
2

≤ d̄K̄h2
jN

k−1∑
j=0

E
[(

β
(
1 + |Y ε,i,M

hl
(tjn)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
))2]

≤ K̄h2
lN

2C

Also, using the Cauchy-Schwarz and the BDG inequalities, Assumption 5.3.1 and

Lemma 5.4.2, we obtain

E[|Ek|2] =
d̄∑

m=1

E[(Em
k )2]

=
d̄∑

m=1

E
[{〈

∇2fm(rs(Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)) + Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
) (5.4.15)

× (Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))s, ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn
〉

+
〈
E[⟨∂µ∇fm(Z,Lε,Y w

n ,M
hl

)(Y s
w), (Y

ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)
,

ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn
〉}2
]

≤ 4d̄K̄ε2E

|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2
∣∣∣∣∣
k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)
√
hl∆ξjn

∣∣∣∣∣
2


≤ 4d̄K̄ε2(E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|4])1/2
E

∣∣∣∣∣
k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)
√
hl∆ξjn

∣∣∣∣∣
4
1/2

≤ K̄ε2CN3h3
l + K̄ε4CN2h2

l . (5.4.16)

Therefore, applying the Cauchy-Schwarz inequality first and the elementary inequality

2ab ≤ a2 + b2 later yields

I5A ≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)||Ak|] + 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)||Ek|]
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≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hl

N−1∑
k=0

E[|Ak|2] + hl

N−1∑
k=0

E[|Ek|2]

≤ 2hlNE[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + K̄h3
lN

3C + K̄CN4h4
l ε

2 + K̄CN3h3
l ε

4

Similarly, using Lemma 5.4.4 one can see that

I5B ≤ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Āk⟩] + 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ēk⟩]

Also, we have E[|Āk|2] ≤ h2
lN

2C and

E[|Ēk|2] ≤ K̄ε2CN3h3
l + K̄ε4CN2h2

l . (5.4.17)

Thus,

I5B ≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|E[|Āk|]]

+ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|E[|Ēk|]]

≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hl

N−1∑
k=0

E[|Āk|2] + hl

N−1∑
k=0

E[|Ēk|2]

≤ 2hlNE[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + K̄h3
lN

3C + K̄CN4h4
l ε

2 + K̄CN3h3
l ε

4

Additionally, we have

I6 ≤ hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2

+ hlNW2
2(L

ε,Y k
n ,M

hl
,Lε,Y k

n ,M
hl−1

)

≤ 3hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2.

Substituting the bounds for the terms I1 to I6 into Equation (5.4.13) yields that for

n ≤ N l−1 − 1

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2]

+ ĈE[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] + CN3h3
l + CN2h2

l ε
4,
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which implies that that for n ≤ N l−1 − 1

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ Ĉ

n∑
k=1

E[|Y ε,i,M
hl

(tk)− Y ε,i,M
hl−1

(tk)|2]

+ CN2h2
l + CNhlε

4.

An application of the discrete Gronwall inequality yields the result.

□

5.5 Variance estimate of two coupled paths of the

MLMC-EM scheme

In this section we provide an estimate for the variance of two coupled paths which is

the main result of the paper and will be presented in Theorem 5.5.4. We will need the

following lemma taken from [1]. Proof of this theorem can be found in [2].

Lemma 5.5.1. Suppose that Aε,h and Bε,h are families of random variables determined

by scaling parameters ε and h. Further, suppose that there are C1 > 0, C2 > 0 and

C3 > 0 such that for all ε ∈ (0, 1) the following three conditions hold:

(i) Var(Aε,h) ≤ C1ε
2 uniformly in h,

(ii) |Aε,h| ≤ C2 uniformly in h,

(iii) |E[Bε,h]| ≤ C3h.

Then

Var(Aε,hBε,h) ≤ 3C2
3C1h

2ε2 + 15C2
2Var(B

ε,h).

The following two lemmas that will be needed to prove Theorem 5.5.4.

Lemma 5.5.2. Assume that γ : Rd → R satisfies the Lipschitz condition, i.e. for all

x, y ∈ Rd there exists a positive constant L, such that |γ(x)− γ(y)|2 ≤ L|x− y|2. Then
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for s ∈ [0, 1] one has

max
0≤n≤N l−1

1≤k≤N

Var(γ(sY ε,i,M
hl

(tkn) + (1− s)(Y ε,i,M
hl

(tn)))) ≤ Cε2; (5.5.1)

max
0≤n≤N l−1

Var(γ(sY ε,i,M
hl

(tn) + (1− s)(Y ε,i,M
hl−1

(tn)))) ≤ Cε2. (5.5.2)

Proof. We will only prove (5.5.1), the prove for (5.5.2) is very similar. Let zhl
and

zhl−1
be defined by (5.3.9). Using the fact that for a random variable X and a constant

a, Var(X + a) = Var(X) and the fact that γ is Lipschitz, we have that

max
0≤n≤N l−1

1≤k≤N

Var(γ(sY ε,i,M
hl

(tkn) + (1− s)(Y ε,i,M
hl

(tn))))

= max
0≤n≤N l−1

1≤k≤N

Var(γ(sY ε,i,M
hl

(tkn) + (1− s)(Y ε,i,M
hl

(tn)))− γ(szhl
(tkn) + (1− s)(zhl

(tn))))

≤ max
0≤n≤N l−1

1≤k≤N

E[|(γ(sY ε,i,M
hl

(tkn) + (1− s)(Y ε,i,M
hl

(tn)))− γ(szhl
(tkn) + (1− s)(zhl

(tn)))|2]

= max
0≤n≤N l−1

1≤k≤N

LE[|sY ε,i,M
hl

(tkn) + (1− s)(Y ε,i,M
hl

(tn))− szhl
(tkn)− (1− s)(zhl

(tn))|2]

≤ max
0≤n≤N l−1

1≤k≤N

sLE[|(Y ε,i,M
hl

(tkn)− zhl
(tkn)|2] + (1− s)LE[|(Y ε,i,M

hl
(tn)− (zhl

(tn)|2].

The required assertion follows by Lemma 5.3.7. □

Lemma 5.5.3. Let Assumption 5.3.1 hold. Then there exists a positive constant C

such that

max
0≤n≤N l−1

1≤k≤N

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]| ≤ CNhl.

Proof. From (5.4.3) we have that

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]|

=

∣∣∣∣∣
k−1∑
j=0

E[f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)]hl + ε
√

hl

k−1∑
j=0

E[g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn]

∣∣∣∣∣ .
By independence the second summand of RHS in above is zero. Thus using Jensen’s

inequality and Remark 5.3.1 yields

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]| ≤
k−1∑
j=0

E[|f(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)|]hl
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≤ hl

k−1∑
j=0

E[
√

β
(
1 + |Y ε,i,M

hl
(tjn)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
)1/2

]

≤
√
βhl

k−1∑
j=0

(
1 + 2E[|Y ε,i,M

hl
(tjn)|2]

)1/2
.

An application of Lemma 5.3.3 and the fact that k ≤ N, completes the proof. □

Now, we can formulate the main result of the paper.

Theorem 5.5.4. Let Assumption 5.3.1 hold, assume that Ψ : Rd → R has continuous

second order derivative and there exists a constant C such that∣∣∣∣∂Ψ∂xi

∣∣∣∣ ≤ C and

∣∣∣∣ ∂2Ψ

∂xi∂xj

∣∣∣∣ ≤ C

for any i, j = 1, 2, · · · , a. Then, we have

max
0≤n<M l−1

Var(Ψ(Y ε,i,M
hl

(tn+1))−Ψ(Y ε,i,M
hl−1

(tn+1)) ≤ Cε2h2
l−1 + Cε4hl−1.

Proof. From (5.4.4) and (5.4.5) we have that for n ≤ N l−1 − 1

[Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j = [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j

+ hl

N−1∑
k=0

(
fj(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)
)

+ hl

N−1∑
k=0

(
fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)
)

+ ε
√

hl

N−1∑
k=0

(
gj(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− gj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)
)
∆ξkn

+ ε
√

hl

N−1∑
k=0

(
gj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)− gj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)
)
∆ξkn

=: [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j + hlT1 + hlT2 + ε
√

hlT3 + ε
√

hlT4,

where fj is the jth component of f and gj is the jth row of g. Taking variances on both

sides of the previous inequality and using the fact that a finite sequence of random vari-

ables Xi, i = 1, ..., n, satisfies that Var(
∑n

i=1 Xi) =
∑n

i=1 Var(Xi)+2
∑

i<j Cov(Xi, Xj),
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we obtain

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) = Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j) + h2
lVar(T1)

+ h2
lVar(T2) + ε2hlVar(T3) + ε2hlVar(T4) + 2Cov([Y ε,i,M

hl
(tn+1)− Y ε,i,M

hl−1
(tn+1)]j, hlT1)

+ 2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, hlT2)

+ 2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, ε
√

hlT3)

+ 2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, ε
√
hlT4) + 2Cov(hlT1, hlT2) + 2Cov(hlT1, ε

√
hlT3)

+ 2Cov(hlT1, ε
√

hlT4) + 2Cov(hlT2, ε
√

hlT3) + 2Cov(hlT2, ε
√
hlT4)

+ 2Cov(ε
√

hlT3, ε
√
hlT4).

(5.5.3)

By the independence of ∆ξkn with respect to

[Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, gj(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− gj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

) and

gj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− gj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

), we have that

2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, ε
√

hlT3)

= 2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, ε
√

hlT4) = 0.
(5.5.4)

Also note that

2Cov([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j, hlT2)

= 2NhlCov
(
[Y ε,i,M

hl
(tn+1)− Y ε,i,M

hl−1
(tn+1)]j, (fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)

− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

))
)
.

(5.5.5)

Substituting (5.5.4) and (5.5.5) into (5.5.3) and using the fact that for two random

variables X, Y , we have that 2Cov(X, Y ) ≤ Var(X) + Var(Y ), yields

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) ≤ (1 +Nhl)Var([Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)

+ 4h2
lN

N−1∑
k=0

Var
(
fj(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)
)

+ (4Nhl + 1)NhlVar
(
fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)
)

+ 4ε2hl

N−1∑
k=0

Var
(
gj(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− gj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)
)
∆ξkn
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+ 4ε2hl

N−1∑
k=0

Var
(
gj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)− gj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)
)
∆ξkn

+ 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j,

hl

N−1∑
k=0

fj(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)
)

=: I1 + I2 + I3 + I4 + I5 + I6.

In order to complete the proof of the theorem, we give estimates for Ii, i = 2, ..., 6,

which will be shown in the following lemmas.

Lemma 5.5.5. There exists a positive constant C such that

I2 ≤ CN3h3
l ε

2.

Proof. Using (B.0.2), we have that

Var(fj(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

))

≤ 2Var(fj(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
))

+ 2Var(fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)) =: I2A + I2B.

First we estimate I2A. By the mean value theorem there exists an s ∈ [0, 1] such that

fm(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)

= ⟨∇fj(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
), (Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))⟩.

Let∇qfj(sY
ε,i,M
hl

(tkn)+(1−s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) and [(Y ε,i,M

hl
(tkn)−Y ε,i,M

hl
(tn))]q be the q

components of∇fj(sY
ε,i,M
hl

(tkn)+(1−s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) and (Y ε,i,M

hl
(tkn)−Y ε,i,M

hl
(tn))

respectively. We want to apply Lemma 5.5.1 with Aε,h = ∇qfj(sY
ε,i,M
hl

(tkn) + (1 −

s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) and Bε,h = [(Y ε,i,M

hl
(tkn)−Y ε,i,M

hl
(tn))]q so we check that the three

conditions are satisfied. By Assumption 5.3.1, the function ∇2
qfj is bounded, so ∇qfj

is Lipschitz on the first argument. Applying Lemma 5.5.2 with γ = ∇qfj(·,Lε,Y k
n ,M

hl
)

and hl1 = hl2 = hl, we obtain

Var(∇qfj(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
)) ≤ C1ε

2, (5.5.6)
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so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 5.3.1 and Lemma 5.5.3 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qfj(sY
ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
)[(Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn))]q)

≤ 3C2
3C1N

2h2
l ε

2 + 15C2
2Var([(Y

ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q).

In order to estimate Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q) we use Equation (5.4.3) to obtain

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q)

≤ 2Var(
k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl) + 2Var(ε
√
hl

k−1∑
j=0

gq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn).

By Asumption 5.3.1 and Lemma 5.3.7 we have that

Var(
k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)hl) = Var(hl

k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)− fq(zh(t
j
n), δzh(tjn)))

≤ h2
lE[|(

k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)− fq(zh(t
j
n), δzh(tjn)))|

2] ≤ CN2h2
l ε

2.

From (5.4.9) we have that

Var(ε
√

hl

k−1∑
j=0

gq(Y
ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn) ≤ CNhlε
2.

Thus

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q) ≤ CN2h2
l ε

2 + CNhlε
2.

Using the formula Var(
∑d

i=1Xi) ≤ d
∑d

i=1Var(Xi) with i = q,Xi = [Y ε,i,M
hl

(tkn) −

Y ε,i,M
hl

(tn)]q yields

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q) ≤ d2CN2h2
l ε

2 + d2CNhlε
2 ≤ CNhlε

2.

Thus,

I2A ≤ CNhlε
2.
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Next, we estimate I2B. By Equation (2.2.8) there exists a random variable s : Ω → [0, 1]

such that

fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)−fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)

= E[⟨∂µfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z=Y ε,i,M
hl

(tn)
.

where Y s
n := sY ε,i,M

hl
(tkn)+(1−s)Y ε,i,M

hl
(tn). Let ∂µ,qfj(Z,Lε,Y s

n ,M
hl

)(Y s
n ) and [Y ε,i,M

hl
(tkn)−

Y ε,i,M
hl

(tn)]q be the q-components of ∂µfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ) and Y ε,i,M
hl

(tkn) − Y ε,i,M
hl

(tn)

respectively. Then

Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z=Y ε,i,M
hl

(tn)
)

= Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z=Y ε,i,M
hl

(tn)

− E[∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q])

= Var(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn)))

× [Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]]Z=Y ε,i,M
hl

(tn)
)

≤ E[(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn)))

× [Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]]Z=Y ε,i,M
hl

(tn)
)2]

≤ E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))|2]Z=Y ε,i,M
hl

(tn)

× E[|[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q|2]],

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

(5.3.4) and Lemma 5.3.7

E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))|2]Z=Y ε,i,M
hl

(tn)
≤ Cε2

and by Lemma 5.4.2

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2] ≤ CN2h2
l + CNhlε

2.

Therefore

I2B ≤ CN2h2
l ε

2 + CNhlε
4,

116



and the proof is complete. □

Lemma 5.5.6. There exists positive constants C and C̄ such that

I3 ≤ CNhl

d∑
q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q + CN3h3
l ε

2.

Proof. Note that

Var(fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

))

≤ 2Var(fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl

))

+ 2Var(fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)) =: I3A + I3B.

First, we estimate I3B. By the mean value theorem there exists an s ∈ [0, 1] such that

fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl

)

= ⟨∇fj(sY
ε,i,M
hl

(tn) + (1− s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

), (Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))⟩.

Let∇qfj(sY
ε,i,M
hl

(tn)+(1−s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

) and [(Y ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn))]q be the q

components of∇fj(sY
ε,i,M
hl

(tn)+(1−s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

) and (Y ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn))

respectively. We want to apply Lemma 5.5.1 with Aε,h = ∇qfj(sY
ε,i,M
hl

(tn) + (1 −

s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

) and Bε,h = [(Y ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn))]q so we check that the three

conditions are satisfied. Applying Lemma 5.5.2 with γ = ∇qfj, k = 0, hl1 = hl−1 and

hl2 = hl, we obtain

Var(∇qfj(sY
ε,i,M
hl

(tn) + (1− s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

)) ≤ C1ε
2,

so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 5.3.1 and Lemma 5.5.3 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qfj(sY
ε,i,M
hl

(tn) + (1− s)Y ε,i,M
hl−1

(tn)),Lε,Yn,M
hl

)[(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q)

≤ 3C2
3C1N

2h2
l ε

2 + 15C2
2Var([(Y

ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q).

Using the formula Var(
∑d

i=1Xi) ≤ d
∑d

i=1 Var(Xi) with i = q,Xi = [Y ε,i,M
hl

(tn) −

Y ε,i,M
hl−1

(tn)]q yields

Var((Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))) ≤ C
d∑

q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q + CN2h2
l ε

2.

117



Therefore,

I3A ≤ CN2h2
l ε

2 + C

d∑
q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q).

Next we estimate I3B. By Equation (2.2.8) there exists a random variable s : Ω → [0, 1]

such that

fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl

)−fj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)

= E[⟨∂µfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ), (Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))⟩]Z=Y ε,i,M
hl−1

(tn)
.

where Y s
n := sY ε,i,M

hl
(tn)+(1−s)Y ε,i,M

hl−1
(tn). Let ∂µ,qfj(Z,Lε,Y s

n ,M
hl

)(Y s
n ) and [Y ε,i,M

hl
(tn)−

Y ε,i,M
hl−1

(tn)]q be the q-components of ∂µfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ) and Y ε,i,M
hl

(tn) − Y ε,i,M
hl−1

(tn)

respectively. Then

Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]Z=Y ε,i,M
hl−1

(tn)
)

= Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z=Y ε,i,M
hl−1

(tn)

− E[∂µ,qfj(zhl−1
(tn), δzhl−1

(tn))(zhl−1
(tn))[Y

ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q])

= Var(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), δzhl−1

(tn))(zhl−1
(tn)))

× [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]]Z=Y ε,i,M
hl−1

(tn)
)

≤ E[(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), δzhl−1

(tn))(zhl−1
(tn)))

× [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]]Z=Y ε,i,M
hl−1

(tn)
)2]

≤ E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), δzhl−1

(tn))(zhl−1
(tn))|2]Z=Y ε,i,M

hl−1
(tn)

× E[|[Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q|2]],

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

(5.3.4) and Lemma 5.3.7

E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), δzhl−1

(tn))(zhl−1
(tn))|2]Z=Y ε,i,M

hl−1
(tn)

≤ Cε2

and by Theorem 5.4.1

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] ≤ CN2h2
l + Cε4Nhl.
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Therefore,

I3B ≤ CN2h2
l ε

2 + Cε6Nhl,

and the proof is complete.

□

Lemma 5.5.7. There exists a positive constant C such that

I4 ≤ Cε2h3
l−1 + Cε4h2

l−1.

Proof. By Lemma 5.4.2 and Assumption 5.3.1 one can see that

I4 ≤ 4ε2hl

N−1∑
k=0

E[|gj(Y ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− gj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

)|2]

≤ 8ε2hlNK(Ch2
l−1 + Cε2hl−1) = Cε2h3

l−1 + Cε4h2
l−1.

□

Lemma 5.5.8. There exists a positive constant C such that

I5 ≤ Cε2h3
l−1 + Cε6h2

l−1.

Proof. By Assumption 5.3.1 and Theorem 5.4.1 we have that

I5 ≤ 4ε2hl

N−1∑
k=0

E[|gj(Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)− gj(Y
ε,i,M
hl−1

(tn),Lε,Yn,M
hl−1

)|2]

≤ 4ε2hlNK(Ch2
l−1 + Cε4hl−1) = Cε2h3

l−1 + Cε6h2
l−1.

□

Lemma 5.5.9. There exists a positive constant C such that

I6 ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2.

Proof. Since the covariance is a linear function, by subtracting and adding

f(Y ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
) to fj(Y

ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Yn,M
hl

) we have that

I6 = 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j,
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hl

N−1∑
k=0

[fj(Y
ε,i,M
hl

(tkn),L
ε,Y k

n ,M
hl

)− fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)]
)

+ 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j,

hl

N−1∑
k=0

[fj(Y
ε,i,M
hl

(tn),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn),Lε,Yn,M
hl

)]
)

=: I6A + I6B.

By Lemma 5.4.3, we obtain

I6A = 2Cov

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

(Aj
k +Bj

k + Ej
k)

)

Using property (B.0.4) from the appendix we have

I6A = 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, A

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, B

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, E

j
k

)
.

Using the definition of covariance and since the increments ξjn in Bj
k are independent,

we find that

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, B

j
k

)
= E[[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]jB

j
k]− E[[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j]E[Bj

k] = 0.

Then using (B.0.3) yields

I6A ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ hl

N−1∑
k=0

Var(Aj
k) + hl

N−1∑
k=0

Var(Ej
k). (5.5.7)

Recall from Lemma 5.4.3 that

Aj
k = ⟨∇fj(sY

ε,i,M
hl

(tkn) + (1− s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
), hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)⟩.
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In order to estimate Var(Aj
k) we use Lemma 5.5.1 with Aε,h = ∇qfj(sY

ε,i,M
hl

(tkn) + (1−

s)Y ε,i,M
hl

(tn)),Lε,Y k
n ,M

hl
) and Bε,h = [hl

∑k−1
r=0 f(Y

ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]q so we check that the

three conditions are satisfied. The first and second conditions are satisfied by (5.5.6)

and Assumption 5.3.1 respectively. By Lemma 5.3.3 and Assumption 5.3.1 we have

that

|E[[hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]q]| ≤ CNhl,

so the third condition is also satisfied. Thus Lemma 5.5.1 implies that

Var(Aj
k) ≤ CN2h2ε2 + CVar([hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]q).

Lemma 5.3.7 yields

Var([hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]q)

= Var([hl

k−1∑
r=0

{f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)− f(zhl
(trn), δzhl (trn))}]q)

≤ E[|([hl

k−1∑
r=0

{f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)− f(zhl
(trn), δzhl (trn))}]q)|

2] ≤ CN2h2
l ε

2.

Therefore

Var(Aj
k) ≤ CN2h2ε2 + CN2h2

l ε
2. (5.5.8)

From (5.4.15) we have

Var(Ej
k) ≤ E[|Ej

k|
2] ≤ CN3h3

l ε
2 + CN2h2

l ε
4. (5.5.9)

Substituting (5.5.8) and (5.5.9) into (5.5.7) we obtain

I6A ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2.

Using Lemma 5.4.4, (B.0.3) and (B.0.4), yields

I6B = 2Cov

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

(Āj
k + Ēj

k)

)
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≤ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, Ā

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, Ē

j
k

)
≤ 2NhlVar

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ hl

N−1∑
k=0

Var(Āj
k) + hl

N−1∑
k=0

Var(Ēj
k).

Recall from Lemma 5.4.4 that

Āj
k = E[⟨∂µfj(Z,Lε,Y s

n ,M
hl

)(Y s
n ), hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)⟩]Z=Y ε,i,M
hl

(tn)
.

Let ∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ) and fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

) be the the q-components of

∂µfj(Z,Lε,Y s
n ,M

hl
)(Y s

n ) and f(Y ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

) respectively. Then

Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]Z=Y ε,i,M
hl

(tn)
)

= Var(E[∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]Z=Y ε,i,M
hl

(tn)

− E[∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)])

= Var(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn)))

× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]]Z=Y ε,i,M
hl

(tn)
)

≤ E[(E[(∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn)))

× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)]Z=Y ε,i,M
hl

(tn)
)2]

≤ E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))|2]Z=Y ε,i,M
hl

(tn)

× E[|hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)|2]],

where we have used the Cauchy-Schwarz inequality in the last step. By condition

(5.3.4) and Lemma 5.3.7

E[E[|∂µ,qfj(Z,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), δzhl (tn))(zhl

(tn))|2]Z=Y ε,i,M
hl

(tn)
≤ Cε2
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and by Lemma 5.3.3 and Remark 5.3.1

E[|hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn),L
ε,Y r

n ,M
hl

)|2]] ≤ CN2h2
l .

Thus,

Var(Āj
k) ≤ CN2h2

l ε
2.

From (5.4.17) we have

Var(Ēj
k) ≤ E[|Ēj

k|
2] ≤ K̄ε2C1N

3h3
l + K̄ε4CN2h2

l .

Therefore,

I6B ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2

and the proof is complete. □

Continuation of the proof of Theorem 5.5.4 By Lemmas 5.5.5-5.5.9, we have

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) ≤ Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)

+ CNhl

d∑
q=1

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q) + CN3h3
l ε

2 + CN2h2
l ε

4.

Taking the maximum in both sides yields that for n ≤ N l−1 − 1

max
1≤j≤d

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) = max
1≤j≤d

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)

+ CNhl max
1≤j≤d

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j) + CN3h3
l ε

2 + CN2h2
l ε

4.

An application of the Grownwall inequality produces

max
0≤n≤N l−1

1≤j≤N

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j) ≤ CN2h2
l ε

2 + CNhlε
4. (5.5.10)

In order to estimate Var(Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn)) we apply the mean value theo-

rem, so there exists s ∈ [0, 1] such that

Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn) = ∇Ψ(sY ε,i,M
hl

(tn)+(1−s)Y ε,i,M
hl−1

(tn))(Y
ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn)).
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We shall apply Lemma 5.5.1 with Aε,h = ∇qΨ(sY ε,i,M
hl

(tn) + (1 − s)Y ε,i,M
hl−1

(tn)) and

Bε,h = [(Y ε,i,M
hl

(tn) − Y ε,i,M
hl−1

(tn))]q. Applying Lemma 5.5.2 with γ = ∇qΨ, k = 0, hl1 =

hl−1 and hl2 = hl, we obtain

Var(∇qΨ(sY ε,i,M
hl

(tn) + (1− s)Y ε,i,M
hl−1

(tn))) ≤ Cε2,

so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 5.3.1 and Lemma 5.5.3 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qΨ(sY ε,i,M
hl

(tn) + (1− s)Y ε,i,M
hl−1

(tn)))[(Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q)

≤ CN2h2
l ε

2 + CVar([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q).

Thus

Var(Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn)) ≤ CN2h2
l ε

2 + CVar((Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)).

(5.5.11)

Sustituting (5.5.10) into (5.5.11) we obtain the desire result. □

5.6 Simulations

In this section we provide an example (based on [23]) to ilustrate the main result of

the previous section, Theorem 5.5.4. Consider the following MV-SDE with small noise

dX(t) = (−X(t)− 1

2
E[X(t)])dt+ εX(t)dW (t), X(0) = 1, t ∈ [0, 1/2]. (5.6.1)

As we have seen in section 5.3, SDE (5.6.1) can be regarded as the limit of the following

interacting particle system

dXε,i,M(t) = (−Xε,i,M(t)− 1

2

1

M

M∑
i=1

Xε,i,M(t))dt+ εXε,i,M(t)dW i(t). (5.6.2)

Assume M = 50 and Ψ(x) = x. We simulated two coupled paths of SDE (5.6.2)

with timesteps hl and hl−1 by the MLMC method. We computed the simulated paths
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following section 5.3, by forming

Xε,i,M
hl

(tn+1) = Xε,i,M
hl

(tn) +
N−1∑
k=0

(
−Xε,i,M

hl
(tkn)−

1

2

1

M

M∑
i=1

Xε,i,M(tkn)

)
hl

+ ε
√

hl

N−1∑
k=0

Xε,i,M
hl

∆ξkn

(5.6.3)

and

Xε,i,M
hl−1

(tn+1) = Xε,i,M
hl−1

(tn) + (−Xε,i,M
hl−1

(tn)−
1

2

1

M

M∑
i=1

Xε,i,M(tn))hl−1

+ ε
√

hlX
ε,i,M
hl−1

(tn)
N−1∑
k=0

∆ξkn,

(5.6.4)

where ξkn samples of the standard normal random variable. We simulated in Matlab

samples of the Equations (5.6.3) and (5.6.4) to test numerically the sharpness of the

bound obtained in Theorem 5.5.4, i.e.,

Var(Xε,i,M
hl

(tn+1)−Xε,i,M
hl−1

(tn+1)) ≤ O(ε2h2
l−1 + ε4hl−1). (5.6.5)

Note that

h2
l−1ε

2 is the dominant term in ε2h2
l−1 + ε4hl−1 if and only if hl−1 ≥ ε2. (5.6.6)

In (5.6.5) we see that the variance isO(ε2h2
l−1+ε4hl−1). We formed the following 4 cases

by choosing the parameters hl−1 and ε in a way that allows to study the dependency

of the bound with respect to the terms ε2, h2
l−1, ε

4 and hl individually.

• The exponent of hl−1 in ε4hl−1: we fix ε = 2−4 and let

hl−1 ∈ {2−13, 2−14, 2−15, 2−16, 2−17, 2−18}. With this choice of parameters we have

that hl−1 < ε2, so by (5.6.6) we know that ε4hl−1 is likely to be the dominant term

of the bound. We simulated the two coupled paths (5.6.2) and (5.6.3) six times,

where ε is fixed and hl−1 is changing as described above. We plot the results

in a ‘log− log graph’ where log(hl−1) and log(Var(Xε,i,M
hl

(tn+1) − Xε,i,M
hl−1

(tn+1)))

are represented in the x and y-axis respectively, Figure 5.1. The black dots are
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the values of the variance obtained in the simulations for each hl−1. The red

line is the function f(x) = 1.02x − 13.50, which is the best fit curve (linear

regression) computed with the data (black dots). We observe that the slope is

close to 1 in agreement with the exponent of hl−1 in ε4hl−1.

Figure 5.1: Log of variance of two simulated coupled paths where ε = 2−4 and hl−1 ∈

{2−13, 2−14, 2−15, 2−16, 2−17, 2−18}
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• The exponent of hl−1 in ε2h2
l−1: we fix ε = 2−10 and let

hl−1 ∈ {2−8, 2−9, 2−10, 2−11, 2−12, 2−13}. With this choice of parameters we have

that hl−1 > ε2, so by (5.6.6) we know that ε2h2
l−1 is likely to be the dominant term

of the bound. We simulated the two coupled paths (5.6.2) and (5.6.3) six times,

where ε is fixed and hl−1 is changing as described above. We plot the results

in a ‘log− log graph’ where log(ε) and log(Var(Xε,i,M
hl

(tn+1)−Xε,i,M
hl−1

(tn+1))) are
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represented in the x and y-axis respectively, Figure 5.2. The black dots are the

values of the variance obtained in the simulations for each hl−1. The red line is

the function f(x) = 2.00x−15.67, which is the best fit curve (linear regression)

computed with the data (black dots). We observe that the slope is close to 2 in

agreement with the exponent of hl−1 in ε2h2
l−1.

Figure 5.2: Log of variance of two simulated coupled paths where ε = 2−10 and hl−1 ∈

{2−8, 2−9, 2−10, 2−11, 2−12, 2−13}
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• The exponent of ε in ε4hl−1: we fix hl−1 = 2−18 and let

ε ∈ {2−3, 2−4, 2−5, 2−6, 2−7}. With this choice of parameters we have that hl−1 <

ε2, so by (5.6.6) we know that ε4hl−1 is likely to be the dominant term of the

bound. We simulated the two coupled paths (5.6.2) and (5.6.3) five times, where

hl−1 is fixed and ε is changing as described above. We plot the results in a

127



‘log− log graph’ where log(ε) and log(Var(Xε,i,M
hl

(tn+1)−Xε,i,M
hl−1

(tn+1))) are rep-

resented in the x and y-axis respectively, Figure 5.3. The black dots are the

values of the variance obtained in the simulations for each hl−1. The red line is

the function f(x) = 3.96x − 15.19, which is the best fit curve (linear regres-

sion) computed with the data (black dots). We observe that the slope is close to

4 in agreement with the exponent of hl−1 in ε4hl−1.

Figure 5.3: Log of variance of two simulated coupled paths where hl−1 = 2−18 and

ε ∈ {2−3, 2−4, 2−5, 2−6, 2−7}
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• The exponent of ε in ε2h2
l−1: we fix hl−1 = 2−7 and let

ε ∈ {2−6, 2−7, 2−8, 2−9, 2−10, 2−11}. With this choice of parameters we have that

hl−1 > ε2, so by (5.6.6) we know that ε2h2
l−1 is likely to be the dominant term

of the bound. We simulated the two coupled paths (5.6.2) and (5.6.3) five times,
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where hl−1 is fixed and ε is changing as described above. We plot the results

in a ‘log− log graph’ where log(hl−1) and log(Var(Xε,i,M
hl

(tn+1) − Xε,i,M
hl−1

(tn+1)))

are represented in the x and y-axis respectively, Figure 5.4. The black dots are

the values of the variance obtained in the simulations for each hl−1. The red

line is the function f(x) = 2.00x − 11.50, which is the best fit curve (linear

regression) computed with the data (black dots). We observe that the slope is

close to 2 in agreement with the exponent of ε in ε2h2
l−1.

Figure 5.4: Log of variance of two simulated coupled paths where hl−1 = 2−7 and

ε ∈ {2−6, 2−7, 2−8, 2−9, 2−10, 2−11}
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Chapter 6

Multilevel Monte Carlo EM scheme

for MV-SDDEs with small noise

Here we extend the previous chapter to MV-SDDEs with small noise.

6.1 The EM Scheme for delay MV-SDDEs with

small noise

Let W be d̄-dimensional Brownian motion defined on a complete probability space and

let τ > 0. Consider the MV-SDDE with small noise of the form

dXε(t) = f(Xε(t), Xε(t−τ),LX
t )dt+εg(Xε(t), Xε(t−τ),LX

t )dW (t), t ∈ [0, T ] (6.1.1)

where ε ∈ (0, 1), LX
t is the law (or distribution) of X(t),

f : Rd × Rd × P2(Rd) → Rd and g : Rd × Rd × P2(Rd) → Rd×d̄

and the initial data satisfies the following condition: for any p ≥ 2

{X(θ) : −τ ≤ θ ≤ 0} := Ξ ∈ Lp
F0
([−τ, 0];Rd),

that is Ξ is a F0-measurable C([−τ, 0];Rd)-valued random variable such that E||Ξ||p <

∞.
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As we explained in the prelimiaries, by the propagation of chaos result, Theorem 2.2.9,

Equation (6.1.1) can be regarded as the limit of the following interacting M -particle

system of Rd-valued MV-SDDEs

dXε,i,M(t) = f(Xε,i,M(t), Xε,i,M(t− τ),Lε,X,M
t )dt

+ εg(Xε,i,M(t), Xε,i,M(t− τ),Lε,X,M
t )dW i(t), t ∈ [0, T ], (6.1.2)

with the initial condition Xε,i,M(0) = xi
0, where Lε,X,M

t := 1
M

M∑
i=1

δXε,i,M (t).

Our main task in this chapter is to discretize (6.1.2) using the EM scheme and

estimate the variance of two coupled paths in the Multilevel Monte Carlo setting. As

we discussed in the previous chapter, this directly translates into the computational

cost of solving E[Ψ((Xε,i,M(T )].

We shall impose the following hypothesis on the functions f and g:

Assumption 6.1.1. There exists a positive constant K > 0 such that

|f(x, y, µ)− f(x̄, ȳ, ν)|2 ∨ |g(x, y, µ)− g(x̄, ȳ, ν)|2 ≤ K
(
|x− y|2 + |x̄− ȳ|2 +W2

2(µ, ν)
)
,

(6.1.3)

holds for any x, y, x̄, ȳ ∈ Rd, µ, ν ∈ P2(Rd). Furthermore there exists a positive

constant K̄ such that

|∇f(x, y, µ)|2 ∨ |∇2f(x, y, µ)|2 ∨ |∂µf(x, y, µ)(z)|2 ∨ |∂2
µf(x, y, µ)(z)|2 ∨ |∂2

µf(x, y, µ)(z)|2

∨ |∂µ∇f(x, y, µ)|2 ≤ K̄

for all x, y ∈ Rd, µ ∈ P2(Rd). In addition, there exists a positive constant K such that

|∂µf(x, y, µ)(z)−∂µf(x̄, ȳ, ν)(z̄)|2 ≤ K
(
|x− x̄|2+ |y− ȳ|2+ |z− z̄|2+W2

2(µ, ν)
)
. (6.1.4)

for all x, y, z, x̄, ȳ, z̄ ∈ Rd, µ, ν ∈ P2(Rd).

Remark 6.1.1. Assumption 6.1.1 implies the existence and uniqueness of the solution

to equation (6.1.1), see Theorem 2.2.4. Moreover, under Assumption 6.1.1, we have

|f(x, y, µ)|2 ∨ |g(x, y, µ)|2 ≤ β(1 + |x|2 + |y|2 +W 2
2 (µ)),

where β = 2max{1, |f(0, 0, δ0)|, |g(0, 0, δ0)|}, and for any x, y ∈ Rd and µ ∈ P2(Rd).
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We now introduce the EM scheme for (6.1.1). Given any time T > 0, assume that

there exists a positive integer h ∈ (0, 1) such that h = T
N

= τ
m
. Let tn = nh for n ≥ 0.

For n = −m, ..., 0, we compute the discrete approximations by setting Y ε
h (tn) = Ξ(tn).

For n = 1, ..., N we define

Y ε,i,M
h,n+1 = Y ε,i,M

h,n + f(Y ε,i,M
h,n , Y ε,i,M

h,n−m,L
ε,Yn,M
h )h+ εg(Y ε,i,M

h,n , Y ε,i,M
h,n−m,L

ε,Yn,M
h )∆W i(tn),

(6.1.5)

where Lε,Yn,M
h = 1

M

M∑
j=1

δY ε,j,M
h,n

and ∆W i(tn) = W i(tn+1)−W i(tn).

Let

Y ε,i,M
h (t) = Y ε,i,M

h,n , t ∈ [tn, tn+1). (6.1.6)

For convenience, we define Lε,Y,M
h,t = 1

M

M∑
j=1

δY ε,i,M
h (t) and ηh(t) := ⌊t/h⌋h for t ≥ 0.

Then one observes Lε,Y,M
h,t = Lε,Y,M

h,ηh(t)
= Lε,Yn,M

h , for t ∈ [tn, tn+1). We now define the

EM continuous approximate solution as follows:

Ȳ ε,i,M
h (t) = xi

0 +

∫ t

0

f(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )ds

+ ε

∫ t

0

g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )dW i(s), t ∈ [0, T ]. (6.1.7)

The next lemma show the boundedness of the pth-moments of the EM approximate

solution.

Lemma 6.1.2. Let Assumption 6.1.1 hold. Given T > 0 and p > 0, we have that

E
[
sup

0≤t≤T
|Ȳ ε,i,M

h (t)|p
]
≤ C.

Proof. Let p ≥ 4. From (6.1.7) we have that

|Ȳ ε,i,M
h (t)|p =

∣∣∣xi
0 +

∫ t

0

f(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )ds

+ ε

∫ t

0

g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )dW i(s)

∣∣∣p.
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Using the Hölder and the BDG inequalities we obtain that for every t̂ ≤ T

E
[
sup

0≤t≤T
|Ȳ ε,i,M

h (t)|p
]
≤ 3p−1|x0|p + (3T )p−1E

∫ t̄

0

|f(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )|pds

+ ε3p−1CE

(∫ t̄

0

|g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )|2ds

)p/2
 .

By Remark 6.1.1 and the Wasserstein distance definition 2.2.2, one can see that for

every t̂ ≤ T

E
[
sup

0≤t≤T
|Ȳ ε,i,M

h (t)|p
]
≤ C + C

∫ t̄

0

E[ sup
0≤s≤t

|Ȳ ε,i,M
h (s)|p]dt.

The required assertion follows from the Gronwall inequality. Thus, the result is proved

for p ≥ 4. For 0 < p < 4, the result follows proceeding similarly as in the last part of

the proof of Lemma 3.3.6.

The following lemma will be used later when estimating the variance of two coupled

processes in the MLMC setting. Let zh(t) := Ξ(t) for t ∈ [−τ, 0] and for t ∈ [0, T ], let

zh(t) be the solution to

zh(t) = X(0) +

∫ t

0

f(zh(ηh(s)), zh(ηh(s− τ)), δzh(s))ds, (6.1.8)

Lemma 6.1.3. For any T > 0 we have

E[ sup
0≤s≤T

|Ȳ ε,i,M
h (s)− zh(s)|2] ≤ Cε2. (6.1.9)

Proof. Using (6.1.7) and (6.1.9), using the fact that |a + b|2 ≤ 2a2 + 2b2 and the

Cauchy-Schwarz inequality we have that for every t ≤ T

|Ȳ ε,i,M
h (t)− zh(t)|2

=
∣∣∣ ∫ t

0

(f(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )− f(zh(ηh(s)), zh(ηh(s− τ)), δzh(s))))ds

+ ε

∫ t

0

g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )dW i(s)

∣∣∣2
≤ 2T

∫ t

0

|f(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )− f(zh(ηh(s)), zh(ηh(s− τ)), δzh(s)))|

2ds
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+ 2ε2
∣∣∣∣∫ t

0

g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )dW i(s)

∣∣∣∣2 .
By the BDG inequality we have that

E
[
sup
0≤s≤t

∣∣∣∣ ∫ t

0

g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )dW i(s)

∣∣∣∣2]
≤ 4

∫ t

0

E[|g(Y ε,i,M
h (s), Y ε,i,M

h (s− τ),Lε,Y,M
h,s )|2]ds.

Thus by Assumption 6.1.1 one can see that

E[ sup
0≤s≤t

|Ȳ ε,i,M
h (t)− zh(t)|2] ≤ 2TK

∫ t

0

(2E[ sup
0≤s≤r

|Ȳ ε,i,M
h (s)− zh(s)|2]

+ sup
0≤s≤r

W2
2(L

ε,Y,M
h,s , δzh(s)))dr + 8Tε2β

∫ t

0

(1 + 2E[ sup
0≤s≤r

|Ȳ ε,i,M
h (s)|2] +W 2

2 (L
ε,Y,M
h,s )ds.

Using (2.2.1), (2.2.2) and Lemma 6.1.2 we have that for all 0 ≤ t ≤ T

E[ sup
0≤s≤t

|Ȳ ε,i,M
h (t)− zh(t)|2] ≤ Cε2 + C

∫ t

0

E[ sup
0≤s≤r

|Ȳ ε,i,M
h (s)− zh(s)|2]dr.

The final result is obtained by applying the Gronwall inequality. □

6.1.1 The Multilevel Monte Carlo-EM Scheme

We now define the multilevel Monte Carlo EM scheme. Given any T > 0, let N ≥

2, l ∈ {0, ..., L}, where L is a positive integer that will be determined later. Let

hl = T ·N−l, hl−1 = T ·N−(l−1). Assume there exist positive integers ml and ml−1 such

that hl = τ/ml and hl−1 = τ/ml−1 respectively.

For step sizes hl and hl−1 the EM continuous approximate solutions are respectively

Ȳ ε,i,M
hl

(t) = xi +

∫ t

0

f(Y ε,i,M
hl

(s), Y ε,i,M
hl

(s− τ),Lε,Y,M
hl,s

)ds

+

∫ t

0

g(Y ε,i,M
hl

(s), Y ε,i,M
hl

(s− τ),Lε,Y,M
hl,s

)dW i(s),

and

Ȳ ε,i,M
hl−1

(t) = xi +

∫ t

0

f(Y ε,i,M
hl−1

(s), Y ε,i,M
hl−1

(s− τ),Lε,Y,M
hl−1,s

)ds

+

∫ t

0

g(Y ε,i,M
hl−1

(s), Y ε,i,M
hl−1

(s− τ),Lε,Y,M
hl−1,s

)dW i(s).
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We now construct the discrete version of the previous approximate solutions using the

same Brownian motion for both processes. We say that the two processes are coupled.

For n ∈ {0, 1, . . . , N l−1 − 1} and k ∈ {0, . . . , N}, let

tn = nhl−1 and tkn = nhl−1 + khl.

This means we divide the interval [tn, tn+1] by hl into N equal parts with t0n = tn, t
N
n =

tn+1. For n ∈ {0, 1, . . . , N l−1 − 1} and k ∈ {0, . . . , N − 1}, let

Y ε,i,M
hl

(tk+1
n ) = Y ε,i,M

hl
(tkn) + f(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl),Lε,Y k
n ,M

hl
)hl

+ ε
√

hlg(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl),Lε,Y k
n ,M

hl
)∆ξkn,

(6.1.10)

where Lε,Y k
n ,M

hl
= 1

M

∑M
j=1 δY ε,j,M

hl
(tkn)

, the random vector ∆ξkn ∈ Rd̄ has independent

components, and each component is distributed as N (0, 1). Therefore, to simulate

Y ε,i,M
hl

, we use

Y ε,i,M
hl

(tn+1) = Y ε,i,M
hl

(tn) +
N−1∑
k=0

f(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl),Lε,Y k
n ,M

hl
)hl

+ ε
√

hl

N−1∑
k=0

g(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl),Lε,Y k
n ,M

hl
)∆ξkn.

(6.1.11)

To simulate Y ε,i,M
hl−1

, we use

Y ε,i,M
hl−1

(tn+1) = Y ε,i,M
hl−1

(tn) + f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn −ml−1hl−1),Lε,Yn,M
hl−1

)hl−1

+ ε
√
hlg(Y

ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn −ml−1hl−1),Lε,Yn,M
hl−1

)
N−1∑
k=0

∆ξkn,
(6.1.12)

where Lε,Yn,M
hl−1

= 1
M

∑M
j=1 δY ε,j,M

hl−1
(tn)

.

The following theorem is the main result of this section.

Theorem 6.1.4. Let Assumption 6.1.1 hold. Then it holds that

max
0≤n<M l−1

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] ≤ CN2h2
l + C̄ε4Nhl.

In order to prove Theorem 6.1.4, we need a few lemmas.
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Lemma 6.1.5. Let p ≥ 2. Then

max
0≤n≤N l−1

1≤k≤N

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|p] ≤ CNphp
l + CNp/2h

p/2
l εp,

where C is a positive constant that only depend on β, T,m and Xε(0) (β from Remark

6.1.1).

Proof. Let p = 4. From (6.1.10) we have that

Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn) =
k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)hl

+ ε
√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)∆ξjn.

(6.1.13)

Hence, we obtain

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|p] ≤ 2p−1E

∣∣∣∣∣
k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)hl

∣∣∣∣∣
p

+ 2p−1E

∣∣∣∣∣ε√hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)∆ξjn

∣∣∣∣∣
p

.

(6.1.14)

By Remark 6.1.1 and Lemma 6.1.2 one can see that

E

∣∣∣∣∣
k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)hl

∣∣∣∣∣
p

≤ Np−1

k−1∑
j=0

E
∣∣∣f(Y ε,i,M

hl
(tjn), Y

ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)hl

∣∣∣p
≤ Np−1

k−1∑
j=0

E
[(

β
(
1 + |Y ε,i,M

hl
(tjn)|2 + |Y ε,i,M

hl
(tjn −mlhl)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
))p/2]

≤ CNp−1hp
l

k−1∑
j=0

(
1 + 2E[|Y ε,i,M

hl
(tjn)|p] + E[|Y ε,i,M

hl
(tjn −mlhl)|p]

)
≤ CNphp

l .

(6.1.15)
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Using the BDG inequality, Remark 6.1.1 and Lemma 6.1.2, we obtain

E

∣∣∣∣∣ε
k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)
√
hl∆ξjn

∣∣∣∣∣
p

≤ CεpE

∣∣∣∣∣
k−1∑
j=0

|g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)|2hl

∣∣∣∣∣
p/2


≤ CεpNp/2−1h
p/2
l E

[
k−1∑
j=0

(|g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)|2)p/2

]

≤ CεpNp/2−1h
p/2
l

k−1∑
j=0

E
[((

1 + |Y ε,i,M
hl

(tjn)|2 + |Y ε,i,M
hl

(tjn −mlhl)|2 +W 2
2 (L

ε,Y j
n ,M

hl
)
))p/2]

≤ CNp/2h
p/2
l εp.

(6.1.16)

The result follows from substituting (6.1.15) and (6.1.16) into (6.1.14). □

Lemma 6.1.6. Let fm be the mth component of f . Then there exist s, r ∈ [0, 1] such

that

f(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn −mlhl),Lε,Y k
n ,M

hl
)

= Ak +Bk + Ek,
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where

Ak = (A1
k, ..., A

d
k)

′, Bk = (B1
k, ..., B

d
k)

′, Ek = (E1
k , ..., E

d
k)

′

Am
k := ⟨∇fm(s(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl))

+ (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)),Lε,Y k
n ,M

hl
), (H11

k , H1,2
k )⟩,

Bm
k := ⟨∇fm(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl),Lε,Y k
n ,M

hl
), (H21

k , H2,2
k )⟩,

Em
k := ⟨∇2fm

(
rs((Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl))− (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)))

+ (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)),Lε,Yn,M
hl

)
×
(
(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl))− (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl))
)
s,

(H21
k , H2,2

k )⟩

+ ⟨E[⟨∂µ∇fm(Z1, Z2,Lε,Y w
n ,M

hl
)(Y s

w),

×
(
(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl))

− (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl))
)
⟩]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−mlhl)

,

(H21
k , H2,2

k )⟩,m ∈ {1, ..., d}.

H11
k := hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
),

H1,2
k := hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn −mlhl), Y
ε,i,M
hl

(tjn − 2mlhl),Lε,Y j
n ,M

hl
),

H21
k := ε

√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)∆ξjn,

H22
k := ε

√
hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn −mlhl), Y
ε,i,M
hl

(tjn − 2mlhl),Lε,Y j
n ,M

hl
)∆ξjn.

Proof. The proof is similar to the one in Lemma 5.4.3, we omit it here. □

Remark 6.1.2. Y ε,i,M
hl

(tkn) is a d-dimensional vector. (Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl)) is a

2d-dimensional vector. H11
k is a d-dimensional vector. (H11

k , H12
k ) is a 2d-dimensional

vector. ∇2fm
(
rs((Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − mlhl)) − (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − mlhl))) is a

2d× 2d-matrix.
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Lemma 6.1.7. There exist random variables s, r : Ω → [0, 1] such that

f(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn−mlhl),Lε,Y k
n ,M

hl
)−f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn−mlhl).Lε,Yn,M
hl

) = Āk+Ēk,

where

Āk = (Ā1
k, ..., Ā

d
k)

′, Ēk = (Ē1
k , ..., Ē

d
k)

′

Ām
k := E[⟨∂µfm(Z1, Z2,Lε,Y s

n ,M
hl

)(Y s
n ), hl

×
k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)⟩]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−mlhl)

Ēm
k := E[⟨∂2

µfm(Z1, Z2,Lε,Y s,r
n ,M

hl
)(Y s,r

n )

× ((Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn −mlhl))− (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)))s, ε
√
hl

×
k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn −mlhl),Lε,Y j
n ,M

hl
)∆ξjn⟩]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−mlhl)

,

Y s
n := s(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)),

Y s,r
n := sr

(
(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn −mlhl))− (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl))
)

+ (Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn −mlhl)).

Proof. The proof is the same as the one in Lemma 5.4.4. □

Proof of Theorem 6.1.4 Recall that hl = τ/ml, so for notational convenience we

will write Y ε,i,M
hl−1

(tn − τ) instead of Y ε,i,M
hl−1

(tn − mlhl). From (6.1.11) and (6.1.12) we

have that for n ≤ N l−1 − 1

Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1) = Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)

+ hl

N−1∑
k=0

(
f(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− f(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)

+ hl

N−1∑
k=0

(
f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)
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+ ε
√

hl

N−1∑
k=0

(
g(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− g(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)
∆ξkn

+ ε
√

hl

N−1∑
k=0

(
g(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− g(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)
∆ξkn

=: Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) +RN .

By using the linearity property of the inner product, we obtain

|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2 = ⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)

+RN , Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) +RN⟩

= |Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + |RN |2 + 2⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), RN⟩.

Applying the elementary inequality |a+ b+ c+ d|2 ≤ 4|a|2 +4|b|2 +4|c|2 +4|d|2 to the

term |RN |2 above, we derive that

|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2 ≤ |Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2

+ 4h2
l

∣∣∣∣∣
N−1∑
k=0

(
f(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)∣∣∣∣∣

2

+ 4h2
l

∣∣∣∣∣
N−1∑
k=0

(
f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)∣∣∣∣∣

2

+ 4ε2
∣∣∣N−1∑
k=0

(
g(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− g(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)√

hl∆ξkn

∣∣∣2
+ 4ε2

∣∣∣N−1∑
k=0

(
g(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− g(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)√

hl∆ξkn

∣∣∣2
+ 2hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn), t
k
n − τ),Lε,Y k

n ,M
hl

)
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− f(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)⟩

+ 2hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ), Y ε,i,M
hl

(tn),Lε,Yn,M
hl

)

− f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)⟩

+ 2ε
√
hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),
(
g(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− g(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)
∆ξkn⟩

+ 2ε
√
hl

N−1∑
k=0

⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),
(
g(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− g(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)
∆ξkn⟩.

Now, we take expectations on both sides of the previous inequality. Since ∆ξkn is

independent of Y ε,i,M
hl

(tkn) and Y ε,i,M
hl−1

(tn), the expectation of the last two summands in

the equation above is zero. Thus,

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] (6.1.17)

+ 4Nh2
l

N−1∑
k=0

E
∣∣∣f(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
∣∣∣2

+ 4Nh2
l

N−1∑
k=0

E
∣∣∣f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
∣∣∣2

+ 4ε2E
[∣∣∣N−1∑

k=0

(
g(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− g(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)Lε,Yn,M
hl

)
)√

hl∆ξkn

∣∣∣2]
+ 4ε2E

[∣∣∣N−1∑
k=0

(
g(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− g(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)√

hl∆ξkn

∣∣∣2]
+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl−1

(tn − τ),Lε,Y k
n ,M

hl
)

− f(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)⟩]

141



+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), f(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− f(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl−1

)⟩].

=: E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] + I1 + I2 + I3 + I4 + I5 + I6. (6.1.18)

By Assumption 6.1.1 and Lemma 6.1.5, one can see that

I1 ≤ 4KNh2
l

(N−1∑
k=0

(E|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2 + E|Y ε,i,M
hl

(tkn − τ)− Y ε,i,M
hl

(tn − τ)|2

+W2
2(L

ε,Y k
n ,M

hl
,Lε,Yn,M

hl
))

)
≤ CN4h4

l + CN3ε2h3
l .

Also, by Assumption 6.1.1

I2 ≤ 4KNh2
l

(N−1∑
k=0

(E|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + E|Y ε,i,M
hl

(tn − τ)− Y ε,i,M
hl−1

(tn − τ)|2

+W2
2(L

ε,Yn,M
hl

,Lε,Yn,M
hl−1

))

)
≤ CN2h2

l

(
E[|Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)|2] + E[|Y ε,i,M

hl
(tn − τ)− Y ε,i,M

hl−1
(tn − τ)|2]

)
.

By the BDG inequality, Assumption 6.1.1 and Lemma 6.1.5, we obtain

I3 ≤ Cε2
N−1∑
k=0

E[|g(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− g(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)|2]hl

= Chlε
2

N−1∑
k=0

(
E[|Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn)|2] + E[|Y ε,i,M

hl
(tkn − τ)− Y ε,i,M

hl
(tn − τ)|2]

+W2
2(L

ε,Y k
n ,M

hl
,Lε,Yn,M

hl
)
)
≤ CN3h3

l ε
2 + CN2h2

l ε
4.

Similarly to I3,

I4 ≤ CNhlε
2
(
E[|Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)|2] + E[|Y ε,i,M

hl
(tn − τ)− Y ε,i,M

hl−1
(tn − τ)|2]

)
.

An application of the Cauchy-Schwarz inequality and Assumption 6.1.1 gives

I5 = 2hl

N−1∑
k=0

E[
〈
Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),
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f(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
〉
]

= 2hl

N−1∑
k=0

E[
〈
Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),

f(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)
〉
]

+ 2hl

N−1∑
k=0

E[
〈
Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn),

f(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)− f(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
〉
]

=: I5A + I5B.

Applying Lemma 6.1.6 we have

I5A ≤ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ak⟩] + 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Bk⟩]

+ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ek⟩].

By independence, the second summand above is zero. Also, we note that

E[|Ak|2] =
d∑

m=1

E[|Am
k |]2 ≤ dK̄E

∣∣∣∣∣hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)

∣∣∣∣∣
2

+ dK̄E

∣∣∣∣∣hl

k−1∑
j=0

f(Y ε,i,M
hl

(tjn − τ), Y ε,i,M
hl

(tjn − 2τ),Lε,Y j
n ,M

hl
)

∣∣∣∣∣
2

≤ dK̄h2
jN

k−1∑
j=0

E
[(

β
(
1 + |Y ε,i,M

hl
(tjn)|2

+ 2|Y ε,i,M
hl

(tjn − τ)|2 + |Y ε,i,M
hl

(tjn − 2τ)|2 + 2W 2
2 (L

ε,Y j
n ,M

hl
)
))2]

≤ K̄h2
lN

2C.

and

E[|Ek|2] =
d∑

m=1

E[(Em
k )2]

≤ 2dK̄ε2hlE
[
|Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn)|2
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×

∣∣∣∣∣ε√hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)∆ξjn

∣∣∣∣∣
2 ]

+ 2dK̄ε2hlE
[
|Y ε,i,M

hl
(tkn)− Y ε,i,M

hl
(tn)|2

×

∣∣∣∣∣ε√hl

k−1∑
j=0

g(Y ε,i,M
hl

(tjn − τ), Y ε,i,M
hl

(tjn − 2τ),Lε,Y j
n ,M

hl
)∆ξjn

∣∣∣∣∣
2 ]

≤ 2dK̄ε2hl(E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|4])1/2
E

∣∣∣∣∣
k−1∑
j=0

g(Y ε,i,M
hl

(tjn),L
ε,Y j

n ,M
hl

)∆ξjn

∣∣∣∣∣
4
1/2

+ 2dK̄ε2hl(E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|4])1/2

×

E

∣∣∣∣∣
k−1∑
j=0

g(Y ε,i,M
hl

(tjn − τ), Y ε,i,M
hl

(tjn − 2τ),Lε,Y j
n ,M

hl
)∆ξjn

∣∣∣∣∣
4
1/2

≤ ε2CN3h3
l + ε4CN2h2

l , (6.1.19)

where Lemma 6.1.5 is used in the last inequality. Therefore, applying the Cauchy-

Schwartz inequality first and the elementary inequality 2ab ≤ a2 + b2 later yields

I5A ≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)||Ak|] + 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)||Ek|]

≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hl

N−1∑
k=0

E[|Ak|2] + hl

N−1∑
k=0

E[|Ek|2]

≤ 2hlNE[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + h3
lN

3C + CN4h4
l ε

2 + CN3h3
l ε

4

Similarly, using Lemma 6.1.7 one can see that

I5B ≤ 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Āk⟩] + 2hl

N−1∑
k=0

E[⟨Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn), Ēk⟩]

Also, we have E[|Āk|2] ≤ h2
lN

2C and

E[|Ēk|2] ≤ ε2CN3h3
l + ε4CN2h2

l . (6.1.20)

Thus,

I5B ≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|E[|Āk|]]
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+ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|E[|Ēk|]]

≤ 2hl

N−1∑
k=0

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hl

N−1∑
k=0

E[|Āk|2] + hl

N−1∑
k=0

E[|Ēk|2]

≤ 2hlNE[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + h3
lN

3C + CN4h4
l ε

2 + CN3h3
l ε

4

Additionally, we have

I6 ≤ hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2

+ hlNE|Y ε,i,M
hl

(tn − τ)− Y ε,i,M
hl−1

(tn − τ)|2 + hlNW2
2(L

ε,Y k
n ,M

hl
,Lε,Y k

n ,M
hl−1

)

≤ 3hlNE|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2 + hlNE|Y ε,i,M
hl

(tn − τ)− Y ε,i,M
hl−1

(tn − τ)|2.

Substituting the bounds for the terms I1 to I6 into Equation (6.1.17) yields that for

n ≤ N l−1 − 1

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2]

+ Ĉ
(
E[|Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)|2] + E[|Y ε,i,M

hl
(tn − τ)− Y ε,i,M

hl−1
(tn − τ)|2]

)
+ CN3h3

l + CN2h2
l ε

4,

which implies that that for all 0 ≤ n0 ≤ N l−1 − 1

sup
0≤n≤n0

E[|Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)|2] ≤ Ĉ

n0∑
k=1

sup
0≤n≤k

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2]

+ CN2h2
l + CNhlε

4.

An application of the discrete Gronwall inequality yields the result. □

6.1.2 Variance estimate of two coupled paths of the MLMC-

EM scheme

In this section we provide an estimate for the variance of two coupled paths which is

the main result of the paper and will be presented in Theorem 6.1.10.

The following two lemmas that will be needed to prove Theorem 6.1.10.
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Lemma 6.1.8. Assume that γ : Rd → R satisfies the Lipschitz condition, i.e. for all

x, y ∈ Rd there exists a positive constant L, such that |γ(x)− γ(y)|2 ≤ L|x− y|2. Then

for s ∈ [0, 1] one has

max
0≤n≤N l−1

1≤k≤N

Var[γ{s(Y ε,i,M
hl2

(tkn), Y
ε,i,M
hl2

(tkn−τ))+(1−s)(Y ε,i,M
hl1

(tn), Y
ε,i,M
hl1

(tn−τ)))}] ≤ Cε2.

Proof. The proof is similar to that of Lemma 5.5.2, we omit here. □

Lemma 6.1.9. Let Assumption 6.1.1 hold. Then there exists a positive constant C

such that

max
0≤n≤N l−1

1≤k≤N

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]| ≤ CNhl.

Proof. From (6.1.10) we have that

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]|

=

∣∣∣∣ k−1∑
j=0

E[f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)]hl

+ ε
√

hl

k−1∑
j=0

E[g(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)∆ξjn]

∣∣∣∣.
By independence the second summand of RHS in above is zero. Thus using Jensen’s

inequality and Remark 6.1.1 yields

|E[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]| ≤
k−1∑
j=0

E[|f(Y ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)|]hl

≤ hl

k−1∑
j=0

E[
√
β
(
1 + |Y ε,i,M

hl
(tjn)|2 + |Y ε,i,M

hl
(tjn − τ)|2 +W 2

2 (L
ε,Y j

n ,M
hl

)
)1/2

]

≤
√
βhl

k−1∑
j=0

(
1 + 2E[|Y ε,i,M

hl
(tjn)|2] + E[|Y ε,i,M

hl
(tjn − τ)|2]

)1/2
.

An application of Lemma 6.1.2 and the fact that k ≤ N, completes the proof. □

Now, we can formulate the main result of the paper.
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Theorem 6.1.10. Let Assumption 6.1.1 hold, assume that Ψ : Rd → R has continuous

second order derivative and there exists a constant C such that∣∣∣∣∂Ψ∂xi

∣∣∣∣ ≤ C and

∣∣∣∣ ∂2Ψ

∂xi∂xj

∣∣∣∣ ≤ C

for any i, j = 1, 2, · · · , a. Then, we have

max
0≤n<M l−1

Var(Ψ(Y ε,i,M
hl

(tn+1))−Ψ(Y ε,i,M
hl−1

(tn+1)) ≤ Cε2h2
l−1 + Cε4hl−1.

Proof. From (6.1.11) and (6.1.12) we have that for n ≤ N l−1 − 1

[Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j = [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j

+ hl

N−1∑
k=0

(
fj(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)

+ hl

N−1∑
k=0

(
fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)

+ ε
√
hl

N−1∑
k=0

(
gj(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− gj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)
∆ξkn

+ ε
√
hl

N−1∑
k=0

(
gj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− gj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)
∆ξkn,

where fj is the jth component of f and gj is the jth row of g. Taking variances on

both sides of the previous inequality and using (B.0.1), (B.0.3) and (B.0.4) from the

Appendix, we obtain

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) ≤ (1 +Nhl)Var([Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)

+ 4h2
lN

N−1∑
k=0

Var
(
fj(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)

+ (4Nhl + 1)NhlVar
(
fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
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− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)

+ 4ε2hl

N−1∑
k=0

Var
(
gj(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− gj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)
∆ξkn

+ 4ε2hl

N−1∑
k=0

Var
(
gj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− gj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)
)
∆ξkn

+ 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j,

hl

N−1∑
k=0

fj(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)
)

=: I1 + I2 + I3 + I4 + I5 + I6.

In order to complete the proof of the theorem, we give estimates for Ii, i = 2, ..., 6,

which will be shown in the following lemmas.

Lemma 6.1.11. There exists a positive constant C such that

I2 ≤ CN3h3
l ε

2.

Proof. Using the fact that for two random variables X, Y,Var(X+Y ) ≤ 2Var(X)+

2Var(Y ), we have that

Var(fj(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

))

≤ 2Var(fj(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
))

+ 2Var(fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

))

=: I2A + I2B.

First we estimate I2A. By the mean value theorem there exists an s ∈ [0, 1] such that

fj(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)

=
〈
∇fj(s(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
),
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(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))
〉
.

Let ∇qfj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
) and

[(Y ε,i,M
hl

(tkn) − Y ε,i,M
hl

(tn))]q be the q component of ∇fj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) +

(1 − s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
) and (Y ε,i,M

hl
(tkn) − Y ε,i,M

hl
(tn)) respectively.

We want to apply Lemma 5.5.1 with

Aε,h = ∇qfj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn−τ))+(1−s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn−τ)),Lε,Y k
n ,M

hl
) and

Bε,h = [(Y ε,i,M
hl

(tkn) − Y ε,i,M
hl

(tn))]q so we check that the three conditions are satisfied.

By Assumption 6.1.1, the function ∇2
qfj is bounded, so ∇qfj is Lipschitz on the first

and second arguments. Applying Lemma 6.1.8 with γ = ∇qfj(·, ·,Lε,Y k
n ,M

hl
) and hl1 =

hl2 = hl, we obtain

Var(∇qfj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn−τ))+(1−s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn−τ)),Lε,Y k
n ,M

hl
)) ≤ C1ε

2,

(6.1.21)

so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 6.1.1 and Lemma 6.1.9 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qfj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
)

× [(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q)

≤ 3C2
3C1N

2h2
l ε

2 + 15C2
2Var([(Y

ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q).

In order to estimate Var([(Y ε,i,M
hl

(tkn)−Y ε,i,M
hl

(tn))]q) we use Equation (6.1.10) to obtain

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q)

≤ 2Var(
k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)hl)

+ 2Var(ε
√
hl

k−1∑
j=0

gq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)∆ξjn).

By Asumption 6.1.1 and Lemma 6.1.3 we have that

Var(
k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)hl)
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= Var(hl

k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)− fq(zh(t

j
n), zh(t

j
n − τ), δzh(tjn)))

≤ h2
lE[|(

k−1∑
j=0

fq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)− fq(zh(t

j
n), zh(t

j
n − τ), δzh(tjn)))|

2]

≤ CN2h2
l ε

2.

From (6.1.16) we have that

Var(ε
√

hl

k−1∑
j=0

gq(Y
ε,i,M
hl

(tjn), Y
ε,i,M
hl

(tjn − τ),Lε,Y j
n ,M

hl
)∆ξjn) ≤ CNhlε

2.

Thus

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q) ≤ CN2h2
l ε

2 + CNhlε
2.

Using the formula Var(
∑d

i=1Xi) ≤ d
∑d

i=1Var(Xi) with i = q,Xi = [Y ε,i,M
hl

(tkn) −

Y ε,i,M
hl

(tn)]q yields

Var([(Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))]q) ≤ d2CN2h2
l ε

2 + d2CNhlε
2 ≤ CNhlε

2.

Thus,

I2A ≤ CNhlε
2.

Next, we estimate I2B. By Equation (2.2.8) there exists a random variable s : Ω → [0, 1]

such that

fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)− fj(Y

ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

= E[⟨∂µfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ), (Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn))⟩]Z1=Y ε,i,M
hl

(tn),Z2=Y ε,i,M
hl

(tn−τ).

where Y s
n := s(Y ε,i,M

hl
(tkn), Y

ε,i,M
hl

(tkn − τ)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)).

Let ∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ) and [Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q be the q-components of

∂µfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ) and Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn) respectively. Then

Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z1=Y ε,i,M
hl

(tn),Z2=Y ε,i,M
hl

(tn−τ))

= Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z1=Y ε,i,M
hl

(tn),Z2=Y ε,i,M
hl

(tn−τ)
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− E[∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))[Y

ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q])

= Var(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn)))

× [Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]]Z1=Y ε,i,M
hl

(tn),Z2=Y ε,i,M
hl

(tn)
)

≤ E[(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn)))

× [Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]]Z1=Y ε,i,M
hl

(tn),Z2=Y ε,i,M
hl

(tn−τ))
2]

≤ E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))|2]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ)

× E[|[Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q|2]],

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

(6.1.4) and Lemma 6.1.3

E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))|2]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ)

≤ Cε2.

and by Lemma 6.1.5

E[|Y ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)|2] ≤ CN2h2
l + CNhlε

2.

Therefore

I2B ≤ CN2h2
l ε

2 + CNhlε
4,

and the proof is complete. □

Lemma 6.1.12. There exists positive constants C and C̄ such that

I3 ≤ CNhl

d∑
q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q + CN3h3
l ε

2.

Proof. Note that

Var(fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

))
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≤ 2Var(fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl

))

+ 2Var(fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

))

=: I3A + I3B.

First, we estimate I3B. By the mean value theorem there exists an s ∈ [0, 1] such that

fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl

)

= ⟨∇fj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)),Lε,Yn,M
hl

),

(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))⟩.

Let ∇qfj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)),Lε,Yn,M
hl

) and

[(Y ε,i,M
hl

(tn) − Y ε,i,M
hl−1

(tn))]q be the q components of ∇fj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) +

(1−s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn−τ)),Lε,Yn,M
hl

) and (Y ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn)) respectively. We

want to apply Lemma 5.5.1 with

Aε,h = ∇qfj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn−τ))+(1−s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn−τ)),Lε,Yn,M
hl

) and

Bε,h = [(Y ε,i,M
hl

(tn) − Y ε,i,M
hl−1

(tn))]q so we check that the three conditions are satisfied.

Applying Lemma 6.1.8 with γ = ∇qfj, k = 0, hl1 = hl−1 and hl2 = hl, we obtain

Var(∇qfj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn−τ))+(1−s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn−τ)),Lε,Yn,M
hl

) ≤ C1ε
2,

so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 6.1.1 and Lemma 6.1.9 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qfj(s(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)),Lε,Yn,M
hl

)

× [(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q)

≤ 3C2
3C1N

2h2
l ε

2 + 15C2
2Var([(Y

ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q).

Using the formula Var(
∑d

i=1Xi) ≤ d
∑d

i=1Var(Xi) with i = q,Xi = [Y ε,i,M
hl

(tn) −

Y ε,i,M
hl−1

(tn)]q yields

Var((Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))) ≤ C
d∑

q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q + CN2h2
l ε

2.
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Therefore,

I3A ≤ CN2h2
l ε

2 + C

d∑
q=1

Var([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q).

Next we estimate I3B. By Equation (2.2.8) there exists a random variable s : Ω → [0, 1]

such that

fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl

)− fj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)

= E[⟨∂µfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ), (Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))⟩]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ).

where Y s
n := s(Y ε,i,M

hl
(tn), Y

ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)).

Let ∂µ,qfj(Z1, Z2Lε,Y s
n ,M

hl
)(Y s

n ) and [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q be the q-components of

∂µfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ) and Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn) respectively. Then

Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ))

= Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )[Y
ε,i,M
hl

(tkn)− Y ε,i,M
hl

(tn)]q]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ)

− E[∂µ,qfj(zhl−1
(tn), zhl−1

(tn − τ), δzhl−1
(tn))(zhl−1

(tn))[Y
ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q])

= Var(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), zhl−1

(tn − τ), δzhl−1
(tn))(zhl−1

(tn)))

× [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ))

≤ E[(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl−1
(tn), zhl−1

(tn − τ), δzhl−1
(tn))(zhl−1

(tn)))

× [Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q]]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ))
2]

≤ E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl−1
(tn), zhl−1

(tn − τ), δzhl−1
(tn))(zhl−1

(tn))|2]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn−τ)

× E[|[Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q|2]],

where we have use the Cauchy-Schwarz inequality in the penultimate step. By condition

(6.1.4) and Lemma 6.1.3

E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl−1
(tn), zhl−1

(tn − τ), δzhl−1
(tn))(zhl−1

(tn))|2]Z1=Y ε,i,M
hl−1

(tn),Z2=Y ε,i,M
hl−1

(tn)

≤ Cε2
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and by Theorem 6.1.4

E[|Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)|2] ≤ CN2h2
l + Cε4Nhl.

Therefore,

I3B ≤ CN2h2
l ε

2 + Cε6Nhl,

and the proof is complete.

□

Lemma 6.1.13. There exists a positive constant C such that

I4 ≤ Cε2h3
l−1 + Cε4h2

l−1.

Proof. By Lemma 6.1.5 and Assumption 6.1.1 one can see that

I4 ≤ 4ε2hl

N−1∑
k=0

E[|gj(Y ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− gj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)|2]

≤ 8ε2hlNK(Ch2
l−1 + Cε2hl−1) = Cε2h3

l−1 + Cε4h2
l−1.

□

Lemma 6.1.14. There exists a positive constant C such that

I5 ≤ Cε2h3
l−1 + Cε6h2

l−1.

Proof. By Assumption 6.1.1 and Theorem 6.1.4 we have that

I5 ≤ 4ε2hl

N−1∑
k=0

E[|gj(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)

− gj(Y
ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ),Lε,Yn,M
hl−1

)|2]

≤ 4ε2hlNK(Ch2
l−1 + Cε4hl−1)

= Cε2h3
l−1 + Cε6h2

l−1.

□
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Lemma 6.1.15. There exists a positive constant C such that

I6 ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2.

Proof. Since the covariance is a linear function, we have that

I6 = 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

[fj(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ),Lε,Y k
n ,M

hl
)

− fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)]
)

+ 2Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

[fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Y k
n ,M

hl
)

− fj(Y
ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ),Lε,Yn,M
hl

)]
)

=: I6A + I6B.

By Lemma 6.1.6, we obtain

I6A = 2Cov

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

(Aj
k +Bj

k + Ej
k)

)
Using property (B.0.4) from the appendix we have

I6A = 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, A

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, B

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, E

j
k

)
.

Using the definition of covariance and since the increments ξjn in Bj
k are independent,

we find that

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, B

j
k

)
= E[[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]jB

j
k]− E[[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j]E[Bj

k] = 0.

Then using (B.0.3) yields

I6A ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ hl

N−1∑
k=0

Var(Aj
k) + hl

N−1∑
k=0

Var(Ej
k). (6.1.22)
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Recall from Lemma 6.1.6 that

Aj
k = ⟨∇fj(s(Y

ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) + (1− s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
),

hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)⟩.

In order to estimate Var(Aj
k) we use Lemma 5.5.1 with

Aε,h = ∇qfj(s(Y
ε,i,M
hl

(tkn), Y
ε,i,M
hl

(tkn − τ)) + (1 − s)(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)),Lε,Y k
n ,M

hl
)

and Bε,h = [hl

∑k−1
r=0 f(Y

ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]q so we check that the three

conditions are satisfied. The first and second conditions are satisfied by (6.1.21) and

Assumption 6.1.1 respectively. By Lemma 6.1.2 and Assumption 6.1.1 we have that

|E[[hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]q]| ≤ CNhl,

so the third condition is also satisfied. Thus Lemma 5.5.1 implies that

Var(Aj
k) ≤ CN2h2ε2 + CVar([hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]q).

Lemma 6.1.3 yields

Var([hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]q)

= Var([hl

k−1∑
r=0

{f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)− f(zhl

(trn), zhl
(trn − τ), δzhl (trn))}]q)

≤ E[|([hl

k−1∑
r=0

{f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)− f(zhl

(trn), zhl
(trn − τ), δzhl (trn))}]q)|

2]

≤ CN2h2
l ε

2.

Therefore

Var(Aj
k) ≤ CN2h2ε2 + CN2h2

l ε
2. (6.1.23)

From (6.1.19) we have

Var(Ej
k) ≤ E[|Ej

k|
2] ≤ CN3h3

l ε
2 + CN2h2

l ε
4. (6.1.24)
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Substituting (6.1.23) and (6.1.24) into (6.1.22) we obtain

I6A ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2.

Using Lemma 6.1.7, (B.0.3) and (B.0.4), yields

I6B = 2Cov

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, hl

N−1∑
k=0

(Āj
k + Ēj

k)

)

≤ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, Ā

j
k

)
+ 2hl

N−1∑
k=0

Cov
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j, Ē

j
k

)
≤ 2NhlVar

(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ hl

N−1∑
k=0

Var(Āj
k) + hl

N−1∑
k=0

Var(Ēj
k).

Recall from Lemma 6.1.7 that

Āj
k = E[⟨∂µfj(Z1, Z2,Lε,Y s

n ,M
hl

)(Y s
n ),

hl

k−1∑
r=0

f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)⟩]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ).

Let ∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ) and fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
) be the the q-

components of

∂µfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n ) and f(Y ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
) respectively. Then

Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ))

= Var(E[∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ)

− E[∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)])

= Var(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn)))
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× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ))

≤ E[(E[(∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn)))

× hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn)

)2]

≤ E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))|2]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn−τ)

× E[|hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)|2]],

where we have used the Cauchy-Schwarz inequality in the last step. By condition

(6.1.4) and Lemma 6.1.3

E[E[|∂µ,qfj(Z1, Z2,Lε,Y s
n ,M

hl
)(Y s

n )

− ∂µ,qfj(zhl
(tn), zhl

(tn − τ), δzhl (tn))(zhl
(tn))|2]Z1=Y ε,i,M

hl
(tn),Z2=Y ε,i,M

hl
(tn)

≤ Cε2

and by Lemma 6.1.2 and Remark 6.1.1

E[|hl

k−1∑
r=0

fq(Y
ε,i,M
hl

(trn), Y
ε,i,M
hl

(trn − τ),Lε,Y r
n ,M

hl
)|2]] ≤ CN2h2

l .

Thus,

Var(Āj
k) ≤ CN2h2

l ε
2.

From (6.1.20) we have

Var(Ēj
k) ≤ E[|Ēj

k|
2] ≤ K̄ε2C1N

3h3
l + K̄ε4CN2h2

l .

Therefore,

I6B ≤ 2NhlVar
(
[Y ε,i,M

hl
(tn)− Y ε,i,M

hl−1
(tn)]j

)
+ CN3h3

l ε
2

and the proof is complete. □

Continuation of the proof of Theorem 6.1.10 By Lemmas 6.1.11-6.1.15, we

have

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) ≤ Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)
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+ CNhl

d∑
q=1

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]q) + CN3h3
l ε

2 + CN2h2
l ε

4.

Taking the maximum in both sides yields that for n ≤ N l−1 − 1

max
1≤j≤d

Var([Y ε,i,M
hl

(tn+1)− Y ε,i,M
hl−1

(tn+1)]j) = max
1≤j≤d

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j)

+ CNhl max
1≤j≤d

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j) + CN3h3
l ε

2 + CN2h2
l ε

4.

An application of the Grownwall inequality produces

max
0≤n≤N l−1

1≤j≤N

Var([Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)]j) ≤ CN2h2
l ε

2 + CNhlε
4. (6.1.25)

In order to estimate Var(Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn)) we apply the mean value theo-

rem, so there exists s ∈ [0, 1] such that

Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn) = ∇Ψ(s(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ))

+ (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ))(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)).

We shall apply Lemma 5.5.1 with

Aε,h = ∇qΨ(s(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn− τ))+ (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn− τ)) and Bε,h =

[(Y ε,i,M
hl

(tn)−Y ε,i,M
hl−1

(tn))]q. Applying Lemma 6.1.8 with γ = ∇qΨ, k = 0, hl1 = hl−1 and

hl2 = hl, we obtain

Var(∇qΨ(s(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)))) ≤ Cε2,

so the first condition of Lemma 5.5.1 is satisfied. Conditions 2 and 3 are satisfied by

Assumption 6.1.1 and Lemma 6.1.9 respectively. Thus by Lemma 5.5.1 we have that

Var(∇qΨ(s(Y ε,i,M
hl

(tn), Y
ε,i,M
hl

(tn − τ)) + (1− s)(Y ε,i,M
hl−1

(tn), Y
ε,i,M
hl−1

(tn − τ)))

× [(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q)

≤ CN2h2
l ε

2 + CVar([(Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn))]q).

Thus

Var(Ψ(Y ε,i,M
hl

(tn))−Ψ(Y ε,i,M
hl−1

(tn)) ≤ CN2h2
l ε

2 + CVar((Y ε,i,M
hl

(tn)− Y ε,i,M
hl−1

(tn)).

(6.1.26)
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Sustituting (6.1.25) into (6.1.26) we obtain the desire result.

□

160



Appendices

161



Appendix A

Some inequalities

Theorem A.0.1. (Burkholder–Davis–Gundy’s (BDG) inequality)

Let g ∈ L2(R+;Rd×m). Define for t ≥ 0,

xt =

∫ t

0

gsdWs and At =

∫ t

0

|gs|2ds.

Then for every p > 0, there exist positive constants (depending only on p), such that

cpE[|At|p/2] ≤ E[ sup
0≤s≤t

|xs|p] ≤ CpE[|At|p/2]

for all t ≥ 0.

Theorem A.0.2. (Gronwall’s inequality)

Let T > 0 and C ≥ 0. Let u be a Borel measurable bounded nonnegative function on

[0, T ], and let v be a nonnegative integrable function on [0, T ]. If

u(t) ≤ C +

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ C exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.

Proposition A.0.3. Let p > 1, ε > 0 and a, b ∈ R. Then

|a+ b|p ≤
[
1 + ε

1
p−1

]p−1
(
|a|p + |b|p

ε

)
.
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Appendix B

Basic variance and covariance

properties

Here, we summary a few useful properties and inequalities regarding the variance and

covariance functions. Let X, Y, V,W be random variables and a, b, c, d ∈ R.

Definition B.0.1. (Variance)

Var(X) = E[(X − E[X])2].

Definition B.0.2. (Covariance)

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

By definition of variance and covariance we have the following identity

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ). (B.0.1)

Lemma B.0.3.

Var

(
m∑
i=1

Xi

)
≤ m

m∑
i=1

Var(Xi). (B.0.2)

ProofUsing the definition of variance, linearity of expectation and Cauchy-Schwartz

inequality, we obtain

Var

(
m∑
i=1

Xi

)
= E

( m∑
i=1

Xi − E[
m∑
i=1

Xi]

)2
 = E

( m∑
i=1

Xi − E[Xi]

)2

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≤ E

[
m

m∑
i=1

(Xi − E[Xi])
2

]
= m

m∑
i=1

Var(Xi).

□

Lemma B.0.4.

Cov(X, Y ) ≤ 1

2
Var(X) +

1

2
Var(Y ). (B.0.3)

Proof Substituting (B.0.1) into (B.0.2) while setting m equal to 2.

□

Lemma B.0.5. The covariance function is bilinear, i.e.

Cov(aX + bY, cW + dV ) = acCov(X,W ) + adCov(X, V ) + bcCov(Y,W ) + bdCov(Y, V ).

(B.0.4)
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Appendix C

Mean value theorem

Lemma C.0.1. (Mean value theorem for a function of several variables)

Let G be an open subset of Rn and let g : G → R be a differentiable function. Then

there exists a t ∈ [0, 1] such that

g(y)− g(x) = ⟨∇g((1− t)x+ ty), (y − x)⟩.
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Appendix D

MATLAB code

MATLAB code that implements the simulation tests described in section 3.7.

1 %macro that simulates the numerical adaptive-EM solution of ...

the SDDE (1)

2 clear

3

4 rng('default');

5 rng(1);

6 s 0 = 100;

7 T = 0.5;

8

9 dt = 0.000001;

10 nSims = 10000;

11

12 times = (0:dt:T);

13 times = [times T];

14 times = transpose(times);

15 numSaltos = length(times)-1;

16 dW = zeros(nSims,1);

17

18 S = s 0 + zeros(nSims,1);

19 %Mpaths = zeros(nSims,numSaltos);
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20 T adap = 0;

21 hs=zeros(nSims,1);

22 values = zeros(nSims,1);

23 Sprev = S;

24 values(:,1) = S;

25

26 tic

27

28 while min(T adap) < T

29

30 Sprev = S;

31 h adap = 1/25 * (abs(Sprev)<1)...

32 + 0.25*(abs(Sprev)≥1).*max(1,abs(Sprev))./...

33 max(1,abs(-2*Sprev-Sprev.ˆ3+0.5*Sprev*sin(100)));

34

35 dW= sqrt(h adap).*randn(nSims,1);

36 S=Sprev+(-2*Sprev-Sprev.ˆ3+0.5*Sprev*sin(100)).*...

37 h adap+sqrt(2)*cos(100)*Sprev.*dW;

38

39 T adap = T adap + h adap;

40

41 hs = [hs h adap];

42 values = [values S];

43

44 end

45

46 toc

1 %macro that simulates the numerical (standard) EM solution of the ...

SDDE (1)

2 clear

3

4 rng('default');
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5 rng(1);

6 s 0 = 100;

7 T = 0.0022;

8

9 dt = 0.0002;

10 nSims = 10;

11

12 times = (0:dt:T);

13 times = [times T];

14 times = transpose(times);

15 numSaltos = length(times)-1;

16 dW = zeros(nSims,1);

17

18 S = s 0 + zeros(nSims,1);

19 values = zeros(nSims,1);

20 values(:,1) = S;

21 Sprev = S;

22

23 tic

24

25 for i=1:numSaltos

26

27 Sprev = S;

28

29 dW= sqrt(dt)*randn(nSims,1);

30 S=Sprev+(-2*Sprev-Sprev.ˆ3+0.5*Sprev*sin(100))*dt+sqrt(2)*cos(100)*Sprev.*dW;

31

32 values = [values S];

33

34 end

35

36

37 toc

38

39 values(6:9,:)=[];
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40 values(:,11:13)=[];

41 values = log(abs(values));

42 values = values';

43 x = (0.0:0.0002:0.0018);

44 plot(x,values)

MATLAB code that implements the simulation tests described in section 5.6.

1 clear

2

3 rng('default');

4 rng(1);

5 s 0 = 1;

6 T = 0.5;

7

8 epsilon = 2ˆ-11;

9 h l = 2ˆ-7;

10 nSims = 2000;

11 numParticles = 50;

12

13 times = (0:h l:T+h l);

14 times = [times T+h l];

15 times = transpose(times);

16 numSaltos = length(times)-1;

17 dW = zeros(nSims,numParticles);

18

19 S = s 0 + zeros(nSims,numParticles);

20 S minus = s 0 + zeros(nSims,numParticles);

21

22

23 Sprev = S;

24 Sprev minus = S minus;

25 expected Sprev = s 0;

26 expected Sprev minus = s 0;
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27

28 tic

29

30 for i=1:numSaltos % numSaltos HAS TO BE an even number

31

32 expected S = zeros(nSims,1);

33 expected S minus = zeros(nSims,1);

34

35 for j=1:numParticles

36

37 Sprev(:,j) = S(:,j);

38 dW(:,j) = sqrt(h l)*randn(nSims,1);

39 S(:,j)=Sprev(:,j) + (-Sprev(:,j)-0.5*expected Sprev)*h l + ...

epsilon*(Sprev(:,j)).*dW(:,j);

40

41

42 if mod(i,2) == 0

43 Sprev minus(:,j) = S minus(:,j);

44 S minus(:,j)=Sprev minus(:,j)+(-Sprev minus(:,j)-0.5*expected Sprev)*(h l+h l) ...

+ epsilon * (Sprev minus(:,j)).*(dW(:,j) + dW prev(:,j));

45 %values minus = [values minus S];

46 end

47 dW prev(:,j) = dW(:,j);

48

49 expected S = expected S + S(:,j);

50 expected S minus = expected S minus + S minus(:,j);

51

52 end

53 expected Sprev = expected S / numParticles;

54 expected Sprev minus = expected S minus / numParticles;

55

56

57 end

58

59
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60 toc

61

62 diff = S - S minus;

63 V = var(diff);

64 variance = mean(V);

1 h = zeros(6,0);

2 h(1) = 2ˆ-13; h(2) = 2ˆ-14; h(3) = 2ˆ-15; h(4) = 2ˆ-16;

3 h(5) = 2ˆ-17; h(6) = 2ˆ-18;

4 clear

5 var = zeros(6,0);

6 var(1) = 1.44924236792382E-10; var(2) = 7.00796703487318E-11; ...

var(3) = 3.44170640135815E-11;

7 var(4) = 1.70202378303428E-11; var(5) = 8.47381928597234E-12; ...

var(6) = 4.24656270332934E-12;

8

9 h = log(h);

10 var = log(var);

11

12 scatter(h,var,'black')

13

14 function res =f(x)

15

16 a = 1.01782587505298;

17 b = -13.4987407417417;

18

19 res = a*x + b;

20 end

21

22 hold on

23 fplot(@(x)f(x),[h(6),h(1)],'red');

24 hold on

25 xlabel('log(h {l-1})')
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26 ylabel('log(variance)')

1 clear

2 h = zeros(6,0);

3 h(1) = 2ˆ-8; h(2) = 2ˆ-9; h(3) = 2ˆ-10; h(4) = 2ˆ-11;

4 h(5) = 2ˆ-12; h(6) = 2ˆ-13;

5

6 var = zeros(6,0);

7 var(1) = 2.34889611913546E-12; var(2) = 5.87202344934886E-13; ...

var(3) = 1.45746201473501E-13;

8 var(4) = 3.64562088338735E-14; var(5) = 9.08706974096245E-15; ...

var(6) = 2.26812526205551E-15;

9

10 h = log(h);

11 var = log(var);

12 hold off

13 scatter(h,var,'black')

14

15 function res =f(x)

16

17 a = 2.003492929;

18 b = -15.6671214234075;

19

20 res = a*x + b;

21 end

22

23 hold on

24 fplot(@(x)f(x),[h(6),h(1)],'red');

25 hold on

26 xlabel('log(h {l-1})')

27 ylabel('log(variance)')
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1 clear

2 e = zeros(5,0);

3 e(1) = 2ˆ-3; e(2) = 2ˆ-4; e(3) = 2ˆ-5; e(4) = 2ˆ-6;

4 e(5) = 2ˆ-7;

5

6 var = zeros(5,0);

7 var(1) = 6.82952513950179E-11; var(2) = 4.24656270332934E-12; ...

var(3) = 2.66599756200494E-13;

8 var(4) = 1.70743520978924E-14; var(5) = 1.1727764029295E-15;

9

10 e = log(e);

11 var = log(var);

12 hold off

13 scatter(e,var,'black')

14

15 function res =f(x)

16

17 a = 3.96174602457879;

18 b = -15.1947788474293;

19

20 res = a*x + b;

21 end

22

23 hold on

24 fplot(@(x)f(x),[e(5),e(1)],'red');

25 hold on

26 xlabel('log(epsilon)')

27 ylabel('log(variance)')

1 clear

2 e = zeros(6,0);

3 e(1) = 2ˆ-6; e(2) = 2ˆ-7; e(3) = 2ˆ-8; e(4) = 2ˆ-9;

4 e(5) = 2ˆ-10; e(6) = 2ˆ-11;
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5

6 var = zeros(6,0);

7 var(1) = 2.46028511616704E-09; var(2) = 6.08421725877772E-10; ...

var(3) = 1.51689746473825E-10;

8 var(4) = 3.78964401334516E-11; var(5) = 9.47248315902495E-12; ...

var(6) = 2.36801884749758E-12;

9

10 e = log(e);

11 var = log(var);

12 hold off

13 scatter(e,var,'black')

14

15 function res =f(x)

16

17 a = 2.00346260244457;

18 b = -11.496111583537;

19

20 res = a*x + b;

21 end

22

23 hold on

24 fplot(@(x)f(x),[e(6),e(1)],'red');

25 hold on

26 xlabel('log(epsilon)')

27 ylabel('log(variance)')
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