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ABSTRACT

Aluminum nitride (AIN) is an ultrawide-bandgap semiconductor with excellent potential for high-power
applications. However, the heat dissipation issue remains a huge challenge for the use of AIN in high-power
devices. A promising solution for this problem is to integrate AIN with the diamond heat sink. Therefore,
interfacial thermal transport has become a significant bottleneck in thermal management. In this work, one
neuroevolution potential is developed based on neural networks, which significantly improves the accuracy
of predicting thermal properties compared to traditional potentials and address the issue of inaccurate thermal
performance prediction of AIN/diamond heterostructures using traditional potentials. Molecular dynamics
simulations based on NEP is adopted to investigate the crystal-orientation-dependent and interfacial-atom-

dependent thermal boundary resistance of the AIN/diamond heterostructures after the interfacial bonding.



Compared to bonding with Al and C atoms, the TBR decreases by approximately 50% after bonding with N
and C atoms at the interface. Especially for the AIN (0001)-N-diamond (100) heterostructure, the TBR is 0.95
m?>-K-GW™!, very close to the theoretical limit of 0.8 m?-K-GW~! through the diffuse mismatch model (DMM)
theory. Finally, the insightful optimization strategies are proposed in this work which could pave the way for
better thermal design and management of AIN/diamond heterostructures.

Keywords: Thermal boundary resistance, AIN/diamond interface, Molecular dynamics, Neuroevolution

potential

1. Introduction

Recently, Aluminum nitride (AIN) has received widespread attention due to its excellent mechanical and
electrical properties [1-3]. Due to its outstanding properties such as high breakdown voltage, high electron
mobility, stable high-temperature performance and good UV transmittance, AIN has been widely employed
in high-power devices in communications, medical, industrial manufacturing and other fields [4]. However,
the heat dissipation issue remains a huge challenge for the application of AIN in high-power devices [5]. An
excellent solution is the integration of the high thermal conductivity materials with AIN to enhance the heat
dissipation [6-9]. Diamond is recognized as a promising candidate for heat sinks due to its high thermal
conductivity (over 2000 W-m™-K™") [10-13]. In addition, the lattice match between AIN and diamond is
excellent, and the lower limit of thermal boundary resistance (TBR) for the AIN/diamond interface predicted
by the diffuse mismatch model (DMM) theory is 0.8 m?-K-GW~! [14]. Therefore, AIN and diamond are widely
regarded as promising partners.

Molecular dynamics (MD) simulations have been extensively employed to investigate the interfacial
thermal transport properties of heterostructures [15-17]. However, MD simulations rely heavily on the
accuracy of the interatomic potential [18]. Heterostructures are typically intricate structures composed of
multiple elements, thus making it difficult for traditional potentials to provide an accurate description. This
discrepancy may lead to inaccuracies in the evaluation of the TBR of heterostructures using MD methods. For
instance, in a prior study, the TBR of AIN/diamond was assessed using MD methods with the Tersoff potential.
Despite significant enhancements in interfacial heat transfer achieved through interface engineering, the
evaluated TBR still exceeded the theoretical limit by 2 to 3 times [5].

Recent research has utilized machine learning (ML) for studying thermal transport [19-21]. In this method,



the ab initio potential energy surface is reconstructed using ML to achieve precise interatomic potential
descriptions. Employing ML potential, other researchers have recently explored the thermal properties of
graphene/borophene [22], Ge/GaAs [23], GaN/BAs [24] and so on. Compared with other ML algorithms, the
neuroevolution potential (NEP) acquired via Graphics Processing Units Molecular Dynamics code (GPUMD)
demonstrates superior accuracy and cost-effectiveness in atomistic simulations and heat transport applications
[25-28].

In this work, the TBR of the AIN/diamond interfaces was investigated via ML potential. NEP trained
specifically for AIN/diamond heterostructures were validated to exhibit improved accuracy compared to
traditional potential. Concurrently, the influence of diamond crystal orientations and AIN atomic type at
interfaces on TBR was also investigated. Furthermore, a more accurate potential was provided for MD
simulations of heat transport in AIN/diamond heterostructures. Guided by the crystal orientations of diamond
and the atomic types of AIN at the interface, insightful optimization strategies were proposed, paving the way

for better thermal design and management of AIN/diamond heterostructures.

2. Computational methods and models

2.1 NEP method

The NEP model, a machine learning potential (MLP), utilizes a single neural network and is trained
through a separable natural evolution strategy [29]. The NEP model generates the potential energy surface

function Ui for atom 7 by constructing the descriptor vector g, ,which can be computed using the following

formula [28, 30, 31]:

Nneu Nges
U; = Z wp(tl) tanh Z w,ft?,)q,i, - bl(lo) —p® (1)
u=1 v=1

where Nges represents the number of components in the descriptor vector, Mzeudenotes the number of neurons,
tanh(x) stands for the activation function of the hidden layer, w(© represents the weight matrix connecting
the input layer to the hidden layer, w® represents the weight vector connecting the hidden layer to the output
layer node U, b is the bias vector of the hidden layer, and b1 is the bias of the output layer node Ui As
illustrated in Fig. 1 (a), the NEP model comprises three layers: input, hidden, and output layers. In this study,

the hidden layer consists of 60 neurons.
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Fig. 1. (a) Simplified schematic representation of the NEP framework. (b) Evolution of loss functions during the training
process. L1 and L2 are regularizations. (c)—(e) Comparison between the NEP predictions and DFT reference values of energy,

force, and virial for the training and test sets.

2.2 Details of training data and mechanical behavior

For exploring heat transfer at the AIN/diamond interface, a training dataset has been built, comprising
AIN, diamond, and their heterostructures. In order to be more consistent with the situation in the experiment,
primary consideration is given to the (0001) planes of AIN and the (100), (110), and (111) planes of diamond.
Simultaneously, the Al-C and N-C bonding at the interface of AIN/diamond including the reconstructed (100)
surface of diamond have also been taken into account. Therefore, there are 6 types of heterostructures in the
training set. The MD trajectories have been obtained through ab initio MD simulations using the Vienna 45
Initio Simulation Package (VASP) [32, 33], and the creation of the heterostructures in this work has mainly
been conducted based on the VASPKIT [34]. Finally, ab initio configurations of 600 pristine AIN, 600 pristine
diamond, and 2600 heterostructures have been obtained, among which 2500 configurations are included in
the training dataset and 1300 configurations are included in the test dataset.

The loss terms for energy, force, and virial relations in the test and training datasets show very good
convergence after 300000 generations as depicted in Fig. 1 (b). Figure 1 (c-e) display parity plots illustrating
the correlations between the energies, atomic forces, and atomic virial relations predicted by the NEP and DFT,

indicating strong agreement. The root-mean-squared error (RMSE) and R-squared values for the predictions



are provided as well. Typically, the RMSE values of each trained MLP model fall in the range of several
meV/atom in terms of energy and several hundred meV/A in terms of force, and all of the R-squared values
for the training and test dataset are as high as more than 0.985, both indicating satisfactory training [35]. Table

1 illustrates the training hyperparameters.

Table 1. NEP training hyperparameters.

Parameter Value Parameter Value
& §A T2 5A
Tinax 12 Minax 8

N l?asis 8 N l;qasis 8

lgfax 4 lfr?ax 2

15k 0 A 0.05

Ay 0.05 Ao 1.0

As 1.0 Ay 0.1
Nneuron 60 Nbatch 1050
Npopulation 50 Ngeneration 300000

2.3 Equilibrium molecular dynamics (EMD) method and models

EMD simulations are employed to evaluate the thermal conductivity, based on the Green-Kubo approach
[36-38]. The Green-Kubo formula connects fluctuations in heat current to thermal conductivity through the

use of the autocorrelation function, as follows [39]:

ka(t) =

t

o jﬂ "< Je(0)o(®) > dt @
where k, signifies the thermal conductivity in the o direction, kp denotes the Boltzmann
constant, V represents the volume of the model cell, T stands for the temperature, t, indicates the integral
upper limit, J, denotes the component of heat current J in the o direction, and < J,(0)],(t) > represents
the ensemble average.

AIN has a P63mc crystal symmetry, and each conventional unit cell includes 2 aluminum atoms and 2
nitrogen atoms. Diamond has an Fd-3m crystal symmetry, and each conventional unit cell contains 8 carbon
atoms. In EMD simulation, the bulk of the AIN system, consisting of 16 x 9+/3 x 9 conventional unit cells,
includes 10368 atoms, and the bulk of the diamond system, consisting of 10 x 10 x 10 conventional unit cells,
includes 8000 atoms. Convergence tests on the model sizes have been conducted, as shown in Fig. 2. In order
to exclude the size effect, the thermal conductivity at different atomic scales at 300 K has been calculated,
such as the diamond with 4096, 5832 and 8000 atoms and the AIN with 6656, 8424 and 10368 atoms. It can

be found that the differences in thermal conductivities among diamond and AIN structures for different cell

sizes are within 5%. Thus, it can be further considered that the size effect of the thermal conductivity



calculations for diamond and AIN structures in this work can be ignored. In this work, cell structures have
been visualized using VESTA software [40]. Periodic boundary conditions have been applied in all three

directions. To reduce calculation errors, 50 independent MD runs have been performed to obtain the average

K values with time steps of 1 fs at 300 K.
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Fig. 2. The thermal conductivities of (a) diamond and (b) AIN with the increase of the cell size

2.4 Non-equilibrium molecular dynamics (NEMD) method and models

The Non-equilibrium Molecular Dynamics (NEMD) method, based on Fourier’s law, divides the system
into three distinct regions: a heat source continually supplying energy, a heat sink continuously releasing
energy, and a measurement component for evaluating thermal conductivity. Strict adherence to the principle
of energy conservation is essential in NEMD simulations. If the interatomic potential lacks sufficient accuracy,
it will be very challenging to maintain a consistent energy flow from the heat source to the heat sink, the
system will also collapse during the NEMD simulation [41]. Thus, NEMD simulations serve as a measure of
stability for NEP. Fig. 3(b) indicates that the energy values of the heat source entering the system and the heat
sink leaving the system are distributed symmetrically around E = 0, satistying the law of energy conservation.
This symmetry also confirms the sufficient accuracy of our NEP. The heat flux Jp generated in the NEMD

process can be defined as:

|dQ/dt|
L 3)
where |dQ/dt| and 4 signify the energy exchange rate and the area of the simulation box perpendicular to
the heat fluent, respectively. In order to mitigate the influence of interface area variation, the interface area of

the model is set to a uniform size. The temperature difference AT is obtained from the temperature distribution

in the abovementioned interface region. The thermal boundary resistance (TBR) can be considered analogous



to the thermal conductivity and be calculated as the formula [14]:

TBR = o (4)
Jo

A time step of 0.5 fs has been employed. Initially, a 0.1 ns heat bath has been utilized to stabilize the
system temperature at 300 K, followed by a 0.5 ns equilibration period to stabilize the heat flow using the
Langevin thermostat. Subsequently, the temperature profile has been acquired by running the system for 2 ns.
The pertinent data are sampled every 1000 time steps and averaged every 50 data points before recording.
This process has been iterated 80 times, and the ultimate temperature profile has been derived through
averaging. Considering the real-world industrial scenarios, a heat source (Tsource = 325 K) and a heat sink (Tsink
= 275 K) are positioned at the ends of AIN and diamond, respectively. The heat flux proceeds from AIN to
diamond. Throughout the simulation, the outermost layers in the z direction on both sides have been kept fixed
to ensure contact with each other. Periodic boundary conditions have been applied in the x and y directions.
The model size surpasses 5 x 5 x 30 nm?, encompassing over 100000 atoms (with slight variations depending
on crystal orientation), as depicted in Fig. 3 (a). In heterogeneous structures composed of different crystal

orientations, the mismatch between AIN and diamond in the x-y plane are all less than 1%.
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Fig. 3. (a) Schematic diagram of NEMD simulation. (b) The cumulative energy of the heat source domain and heat sink
domain varying as a function of the simulation time.

3. Results and discussion

3.1 Bulk thermal properties

Phonon dispersion is regarded as one of the most important thermal properties, which is also commonly

used for evaluating the interatomic potentials. As depicted in Fig. 4 (a, b), the phonon dispersion of AIN and



diamond calculated by NEP exhibits strong agreement with the results calculated by DFT (density functional
theory) method. It is demonstrated that NEP can relatively accurately predict the thermal properties of AIN
and diamond. The thermal conductivity values of diamond and AIN predicted by NEP at 300 K are shown in
Fig. 4 (¢). From Fig. 4 (d, e), it can be observed that while the thermal conductivity values of AIN and diamond
predicted by NEP are lower than those predicted by DFT, they both exhibit better performance compared to
the predictions by Tersoff. The predicted thermal conductivity based on DFT serves as the standard level, the
increase predicted by NEP is 4.33% for AIN and 40.65% for diamond compared to the predictions by Tersoff.
Furthermore, the thermal conductivity values predicted by NEP demonstrate excellent agreement with the
reported experimental results [11, 42]. In conclusion, the NEP trained through ML will have a better

performance than the traditional Tersoff potential in predicting the interfacial heat transfer in AIN/diamond

heterostructures.
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Fig. 4. Phonon dispersion of (a) diamond, (b) AIN. (¢) Thermal conductivity of diamond and AIN at 300 K as a function of
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A comparison between the thermal conductivity values of AIN predicted by NEP, Tersoff [5], DFT [43, 44], and experimental
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3.2 Heat transfer in AIN/diamond interfaces

Further investigation into the interfacial heat transfer in AIN/diamond heterostructures is conducted
through NEMD simulations using NEP. The stable temperature distributions of AIN/diamond heterostructures,
which consist of various interfaces between AIN and diamond, are displayed in Fig. 5 (a—f). An evident
temperature jump (AT) is observed at the AIN/diamond interface, implying the presence of a finite TBR
between AIN and diamond. The TBR of the AIN (0001)-Al-diamond (100/110/111) heterostructures by
interfacial bonding are all approximately 1.8 m>-K-GW™'. Compared to previous studies using traditional
potentials, the TBR increases by approximately 17%, mainly attributed to NEP's more accurate prediction of
the thermal properties of AIN and diamond [5]. The TBR of the AIN (0001)-N-diamond (100/110/111)
heterostructures by interfacial bonding are all approximately 1.0 m?-K-GW™!. Especially for the AIN (0001)-
N-diamond (100) heterostructure, the TBR is 0.95 m*>-K-GW™!, very close to the theoretical limit of 0.8
m2-K-GW™!. We can observe that the crystal orientation of diamond has a relatively minor impact on TBR,
whereas the bond atom types of AIN at the interface has a significant influence on TBR. The TBR of N-C
bonding is nearly 50% lower than that of Al-C bonding. To further explore the reasons behind this phenomenon,
the vibrational density of states (VDOS) is calculated, as shown in Fig. 6. The overlap of VDOS between N
atoms and C atoms is higher compared to Al atoms and C atoms. In the AIN/diamond heterostructure, heat
transfer primarily relies on lattice vibrations. The higher overlap of VDOS between N and C atoms indicates
that the vibrational frequencies of N and C atoms are closer, leading to a more effective lattice vibration
transmission. It is indicated to be the key reason for the lower TBR of N-C bonding compared to Al-C bonding

at the interface in the AIN/diamond heterostructures.
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4. Conclusion

In summary, an NEP has been trained using GPUMD to predict the thermal transfer properties at the
AlIN/diamond interface, based on machine learning method. The NEP has been used to predict the phonon
dispersions of diamond and AIN, as well as the thermal conductivity at 300 K. The phonon dispersions
predicted by NEP are in excellent agreement with the results predicted by DFT. Moreover, the thermal
conductivity predicted by NEP at 300 K is in excellent agreement with previously reported experimental
measurements. Although the thermal conductivity values predicted by NEP may not reach the level of DFT
predictions, there is still a significant improvement compared to traditional potential.

On this basis, the TBR of the six interfaces in the AIN/diamond heterostructures have been predicted. The
TBR of the AIN (0001)-Al-diamond (100/110/111) heterostructures by interfacial bonding are all
approximately 1.8 m?>-K-GW~!. Compared to previous studies using traditional potentials, the TBR increases
by approximately 17%. The TBR of the AIN (0001)-N-diamond (100/110/111) heterostructures by interfacial
bonding are all approximately 1.0 m?-K-GW~!. Especially for the AIN (0001)-N-diamond (100)
heterostructure, the TBR is 0.95 m?>-K-GW™!, very close to the theoretical limit of 0.8 m>-K-GW™". It can be
observed that the crystal orientation of diamond has a minimal effect on TBR, while the atomic types of AIN
at the interface has a significant impact on TBR. The TBR of N-C bonding at initial interface is nearly 50%
lower than that of Al-C bonding. The VDOS has been calculated to elucidate the mechanism behind this
phenomenon. The main reason is that the overlap of VDOS between N and C atoms is higher compared to
that between Al and C atoms. Therefore, when the interface is bonded by N atoms and C atoms, heat transfer

is more efficient, resulting in a lower TBR.
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ABSTRACT

Aluminum nitride (AIN) is an ultrawide-bandgap semiconductor with excellent potential for high-power
applications. However, the heat dissipation issue remains a huge challenge for the use of AIN in high-power
devices. A promising solution for this problem is to integrate AIN with the diamond heat sink. Therefore,
interfacial thermal transport has become a significant bottleneck in thermal management. In this work, one
neuroevolution potential is developed based on neural networks, which significantly improves the accuracy
of predicting thermal properties compared to traditional potentials and address the issue of inaccurate thermal
performance prediction of AIN/diamond heterostructures using traditional potentials. Molecular dynamics
simulations based on NEP is adopted to investigate the crystal-orientation-dependent and interfacial-atom-

dependent thermal boundary resistance of the AIN/diamond heterostructures after the interfacial bonding.



Compared to bonding with Al and C atoms, the TBR decreases by approximately 50% after bonding with N
and C atoms at the interface. Especially for the AIN (0001)-N-diamond (100) heterostructure, the TBR is 0.95
m?>-K-GW™!, very close to the theoretical limit of 0.8 m?-K-GW~! through the diffuse mismatch model (DMM)
theory. Finally, the insightful optimization strategies are proposed in this work which could pave the way for
better thermal design and management of AIN/diamond heterostructures.

Keywords: Thermal boundary resistance, AIN/diamond interface, Molecular dynamics, Neuroevolution

potential

1. Introduction

Recently, Aluminum nitride (AIN) has received widespread attention due to its excellent mechanical and
electrical properties [1-3]. Due to its outstanding properties such as high breakdown voltage, high electron
mobility, stable high-temperature performance and good UV transmittance, AIN has been widely employed
in high-power devices in communications, medical, industrial manufacturing and other fields [4]. However,
the heat dissipation issue remains a huge challenge for the application of AIN in high-power devices [5]. An
excellent solution is the integration of the high thermal conductivity materials with AIN to enhance the heat
dissipation [6-9]. Diamond is recognized as a promising candidate for heat sinks due to its high thermal
conductivity (over 2000 W-m™-K™") [10-13]. In addition, the lattice match between AIN and diamond is
excellent, and the lower limit of thermal boundary resistance (TBR) for the AIN/diamond interface predicted
by the diffuse mismatch model (DMM) theory is 0.8 m?-K-GW~! [14]. Therefore, AIN and diamond are widely
regarded as promising partners.

Molecular dynamics (MD) simulations have been extensively employed to investigate the interfacial
thermal transport properties of heterostructures [15-17]. However, MD simulations rely heavily on the
accuracy of the interatomic potential [18]. Heterostructures are typically intricate structures composed of
multiple elements, thus making it difficult for traditional potentials to provide an accurate description. This
discrepancy may lead to inaccuracies in the evaluation of the TBR of heterostructures using MD methods. For
instance, in a prior study, the TBR of AIN/diamond was assessed using MD methods with the Tersoff potential.
Despite significant enhancements in interfacial heat transfer achieved through interface engineering, the
evaluated TBR still exceeded the theoretical limit by 2 to 3 times [5].

Recent research has utilized machine learning (ML) for studying thermal transport [19-21]. In this method,



the ab initio potential energy surface is reconstructed using ML to achieve precise interatomic potential
descriptions. Employing ML potential, other researchers have recently explored the thermal properties of
graphene/borophene [22], Ge/GaAs [23], GaN/BAs [24] and so on. Compared with other ML algorithms, the
neuroevolution potential (NEP) acquired via Graphics Processing Units Molecular Dynamics code (GPUMD)
demonstrates superior accuracy and cost-effectiveness in atomistic simulations and heat transport applications
[25-28].

In this work, the TBR of the AIN/diamond interfaces was investigated via ML potential. NEP trained
specifically for AIN/diamond heterostructures were validated to exhibit improved accuracy compared to
traditional potential. Concurrently, the influence of diamond crystal orientations and AIN atomic type at
interfaces on TBR was also investigated. Furthermore, a more accurate potential was provided for MD
simulations of heat transport in AIN/diamond heterostructures. Guided by the crystal orientations of diamond
and the atomic types of AIN at the interface, insightful optimization strategies were proposed, paving the way

for better thermal design and management of AIN/diamond heterostructures.

2. Computational methods and models

2.1 NEP method

The NEP model, a machine learning potential (MLP), utilizes a single neural network and is trained
through a separable natural evolution strategy [29]. The NEP model generates the potential energy surface

function Ui for atom 7 by constructing the descriptor vector g, ,which can be computed using the following

formula [28, 30, 31]:

Nneu Nges
U; = Z wp(tl) tanh Z w,ft?,)q,i, - bl(lo) —p® (1)
u=1 v=1

where Nges represents the number of components in the descriptor vector, Mzeudenotes the number of neurons,
tanh(x) stands for the activation function of the hidden layer, w(© represents the weight matrix connecting
the input layer to the hidden layer, w® represents the weight vector connecting the hidden layer to the output
layer node U, b is the bias vector of the hidden layer, and b1 is the bias of the output layer node Ui As
illustrated in Fig. 1 (a), the NEP model comprises three layers: input, hidden, and output layers. In this study,

the hidden layer consists of 60 neurons.



(b)10* e . .

3
:

——u1
e—12

Loss Function

102k Energy-train <
Force-train
Virial-train
Energy-test
= e - Force-test
107 F - — - Virial-test . . y i
£ 10° 10° . 10°
Generation
(©) 65 — . d) — : (e)7 " x ,
RMSE=0.98 meV/atom (train) 100} RMSE=104.61 meV/A (train) /] RMSE=18.32 meV/atom (train)
RMSE=1.10 meV/atom (test) - RMSE=98.93 meV/A (test) o 6 RMSE=19.98 meV/atom (test) 3
_— M ." " 5 -
E / P .o'° ] E P
£5 4 o " o 4
k& S i S
- > > 4
A 2 = 3 /S
: -8 8 0 4 :
o0 - <
5 & £ 2
g = >
a -85 = A 1 1
? Z .50 5 4,5# 4 Z
/ ' ' ‘
-9 " 4
* Train ”* : -1 * Train
" §°T
95 9 85 8 ,'7'5 1 65 -100 50 0 50 100 2 0 2 4 6
DFT energy (eV/atom) DFT force (eV/A) DFT virial (eV/atom)
(a) e
b =
= Qn .% S0k
= ~:S,o ag e @ S
= BN : ——Ll1
L o F—L2
‘x@;;&(\ 4 102 b Energy-train |
i S 8 - Force-train
N-diamon Virial-train
Energy-test
5. Force-test
107 F | — - Virjal-test E
R 10° 1Io’ . 1:1‘ l:?’
Generation
(¢) 6 (d) (e)7 y X T
RMSE=0.98 meV/atom (train) 100} RMSE=104.61 meV/A (train) 4l RMSE=18.32 meV/atom (train)
RMSE=1.10 meV/atom (test) o RMSE=98.93 meV/A (test) o 6 RMSE=19.98 meV/atom (test)
7| R-squared > 0.9999 (train) s R-squared=0.9860 (train) g R-squared=0.9992 (train) Z
R-squared > 0.9999 (test) /° R-squared=0.9885 (test) " 7| R-squared=0.9992 (test) i
- o 50 A 4 o’
78 ; /

/

; ; ,
9r o
o} g " -

9.5 2
95 9 85 8 15 T 65 100 50 0 50 100 £ 0 2 4 6

DFT energy (eV/atom) DFT force (eV/A) DFT virial (eV/atom)

NEP force (eV/A)
=

=
n
NEP virial (eV/atom)

NEP energy (eV/atom)
ES

'
U
=
%Q

Fig. 1. (a) Simplified schematic representation of the NEP framework. (b) Evolution of loss functions during the training
process. L1 and L2 are regularizations. (c)—(e) Comparison between the NEP predictions and DFT reference values of energy,

force, and virial for the training and test sets.

2.2 Details of training data and mechanical behavior

For exploring heat transfer at the AIN/diamond interface, a training dataset has been built, comprising

AIN, diamond, and their heterostructures. In order to be more consistent with the situation in the experiment,



primary consideration is given to the (0001) planes of AIN and the (100), (110), and (111) planes of diamond.

Simultaneously, the Al-C e+-and N-C bonding at the interface of AIN/diamond including the reconstructed

(100) surface of diamond haves also been alse—taken into account. Therefore, there are 6 types of

heterostructures in the training set. The MD trajectories have been obtained through ab initio MD simulations

using the Vienna Ab Initio Simulation Package (VASP) [32, 33],_and the creation of the heterostructures in

this work has mainly been conducted based on the VASPKIT [34]. Finally, ab initio configurations of 600

pristine AIN, 600 pristine diamond, and 2600 heterostructures have been obtained, among which 2500
configurations are included in the training dataset and 1300 configurations are included in the test dataset.
The loss terms for energy, force, and virial relations in the test and training datasets show very good
convergence after 300000 generations as depicted in Fig. 1 (b). Figure 1 (c-e) display parity plots illustrating
the correlations between the energies, atomic forces, and atomic virial relations predicted by the NEP and DFT,

indicating strong agreement. The root-mean-squared error (RMSE) and R-squared values for the predictions

areis provided as well. Typically, the RMSE values of each trained MLP model fall in the range of several

meV/atom in terms of energy and several hundred meV/A in terms of force, and all of the R-squared values

for the training and test dataset are as high as more than 0.985. both indicating satisfactory training [35]. Table

1 illustrates the training hyperparameters.

Table 1. NEP training hyperparameters.

Parameter Value Parameter Value
& §A 2 5A
nﬁmx 12 n#zax 8

N lfasis 8 N 54asis 8

l?r?ax 4 lf;?ax 2

150, 0 A 0.05
Ay 0.05 Ao 1.0

As 1.0 Ay 0.1
Nneuron 60 Nbatch 1050
Npopulation 50 Ngeneration 300000

2.3 Equilibrium molecular dynamics (EMD) method and models

EMD simulations are employed to evaluate the thermal conductivity, based on the Green-Kubo approach
[36-38]. The Green-Kubo formula connects fluctuations in heat current to thermal conductivity through the

use of the autocorrelation function, as follows [39]:

k() =

to
|, <00 > de @

where k, signifies the thermal conductivity in the o direction, kp denotes the Boltzmann



constant, V' represents the volume of the model cell, T stands for the temperature, t, indicates the integral
upper limit, J, denotes the component of heat current J in the a direction, and < J,(0)/,(t) > represents
the ensemble average.

AIN has a P63mc crystal symmetry, and each conventional unit cell includes 2 aluminum atoms and 2
nitrogen atoms. Diamond has an Fd-3m crystal symmetry, and each conventional unit cell contains 8 carbon
atoms. In EMD simulation, the bulk of the AIN system, consisting of 16 x 9v/3 x 9 conventional unit cells,
includes 10368 atoms, and the bulk of the diamond system, consisting of 10 x 10 x 10 conventional unit cells,
includes 8000 atoms. Convergence tests on the model sizes have been conducted, as shown in Fig. 2. In order
to exclude the size effect, the thermal conductivity at different atomic scales at 300 K has been calculated,
such as the diamond with 4096, 5832 and 8000 atoms and the AIN with 6656, 8424 and 10368 atoms. It can
be found that the differences in thermal conductivities among diamond and AIN structures for different cell
sizes are within 5%. Thus, it can be further considered that the size effect of the thermal conductivity
calculations for diamond and AIN structures in this work can be ignored. In this work, cell structures have
been visualized using VESTA software [40]. Periodic boundary conditions have been applied in all three
directions. To reduce calculation errors, 50 independent MD runs have been performed to obtain the average

k values with time steps of 1 fs at 300 K.
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Fig. 2. The thermal conductivities of (a) diamond and (b) AIN with the increase of the cell size

2.4 Non-equilibrium molecular dynamics (NEMD) method and models

The Non-equilibrium Molecular Dynamics (NEMD) method, based on Fourier’s law, divides the system
into three distinct regions: a heat source continually supplying energy, a heat sink continuously releasing

energy, and a measurement component for evaluating thermal conductivity. Strict adherence to the principle



of energy conservation is essential in NEMD simulations. If the interatomic potential lacks sufficient accuracy,
it will be very challenging to maintain a consistent energy flow from the heat source to the heat sink, the
system will also collapse during the NEMD simulation [41]. Thus, NEMD simulations serve as a measure of
stability for NEP. Fig. 3(b) indicates that the energy values of the heat source entering the system and the heat
sink leaving the system are distributed symmetrically around E = 0, satisfying the law of energy conservation.
This symmetry also confirms the sufficient accuracy of our NEP. The heat flux Jp generated in the NEMD

process can be defined as:

_ |dQ/dt| 3)
T4
where |dQ/dt| and A signify the energy exchange rate and the area of the simulation box perpendicular to
the heat fluent, respectively. In order to mitigate the influence of interface area variation, the interface area of
the model is set to a uniform size. The temperature difference AT is obtained from the temperature distribution

in the abovementioned interface region. The thermal boundary resistance (TBR) can be considered analogous

to the thermal conductivity and be calculated as the formula [14]:

TBR = oF 4)
Jo

A time step of 0.5 fs has been employed. Initially, a 0.1 ns heat bath has been utilized to stabilize the
system temperature at 300 K, followed by a 0.5 ns equilibration period to stabilize the heat flow using the
Langevin thermostat. Subsequently, the temperature profile has been acquired by running the system for 2 ns.
The pertinent data are sampled every 1000 time steps and averaged every 50 data points before recording.
This process has been iterated 80 times, and the ultimate temperature profile has been derived through
averaging. Considering the real-world industrial scenarios, a heat source (Tsource = 325 K) and a heat sink (Tsink
= 275 K) are positioned at the ends of AIN and diamond, respectively. The heat flux proceeds from AIN to
diamond. Throughout the simulation, the outermost layers in the z direction on both sides have been kept fixed
to ensure contact with each other. Periodic boundary conditions have been applied in the x and y directions.
The model size surpasses 5 x 5 x 30 nm?, encompassing over 100000 atoms (with slight variations depending
on crystal orientation), as depicted in Fig. 3 (a). In heterogeneous structures composed of different crystal

orientations, the mismatch between AIN and diamond in the x-y plane are all less than 1%.
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domain varying as a function of the simulation time.

3. Results and discussion

3.1 Bulk thermal properties

Phonon dispersion is regarded as one of the most important thermal properties, which is also commonly
used for evaluating the interatomic potentials. As depicted in Fig. 4 (a, b), the phonon dispersion of AIN and
diamond calculated by NEP exhibits strong agreement with the results calculated by DFT (density functional
theory) method. It is demonstrated that NEP can relatively accurately predict the thermal properties of AIN
and diamond. The thermal conductivity values of diamond and AIN predicted by NEP at 300 K are shown in
Fig. 4 (¢). From Fig. 4 (d, e), it can be observed that while the thermal conductivity values of AIN and diamond
predicted by NEP are lower than those predicted by DFT, they both exhibit better performance compared to
the predictions by Tersoff. The predicted thermal conductivity based on DFT serves as the standard level, the
increase predicted by NEP is 4.33% for AIN and 40.65% for diamond compared to the predictions by Tersoff.
Furthermore, the thermal conductivity values predicted by NEP demonstrate excellent agreement with the
reported experimental results [11, 42]. In conclusion, the NEP trained through ML will have a better
performance than the traditional Tersoff potential in predicting the interfacial heat transfer in AIN/diamond

heterostructures.
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3.2 Heat transfer in AIN/diamond interfaces

Further investigation into the interfacial heat transfer in AIN/diamond heterostructures is conducted
through NEMD simulations using NEP. The stable temperature distributions of AIN/diamond heterostructures,
which consist of various interfaces between AIN and diamond, are displayed in Fig. 5 (a—f). An evident
temperature jump (AT) is observed at the AIN/diamond interface, implying the presence of a finite TBR
between AIN and diamond. The TBR of the AIN (0001)-Al-diamond (100/110/111) heterostructures by
interfacial bonding are all approximately 1.8 m>-K-GW™'. Compared to previous studies using traditional
potentials, the TBR increases by approximately 17%, mainly attributed to NEP's more accurate prediction of
the thermal properties of AIN and diamond [5]. The TBR of the AIN (0001)-N-diamond (100/110/111)
heterostructures by interfacial bonding are all approximately 1.0 m?-K-GW™!. Especially for the AIN (0001)-

N-diamond (100) heterostructure, the TBR is 0.95 m*>-K-GW™!, very close to the theoretical limit of 0.8



m?>-K-GW~!. We can observe that the crystal orientation of diamond has a relatively minor impact on TBR,
whereas the bond atom types of AIN at the interface has a significant influence on TBR. The TBR of N-C
bonding is nearly 50% lower than that of Al-C bonding. To further explore the reasons behind this phenomenon,
the vibrational density of states (VDOS) is calculated, as shown in Fig. 6. The overlap of VDOS between N
atoms and C atoms is higher compared to Al atoms and C atoms. In the AIN/diamond heterostructure, heat
transfer primarily relies on lattice vibrations. The higher overlap of VDOS between N and C atoms indicates
that the vibrational frequencies of N and C atoms are closer, leading to a more effective lattice vibration
transmission. It is indicated to be the key reason for the lower TBR of N-C bonding compared to Al-C bonding

at the interface in the AIN/diamond heterostructures.
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(0001)-Al-diamond (111), (d) AIN (0001)-N-diamond (100), (e) AIN (0001)-N-diamond (110), and (f) AIN (0001)-N-diamond

(111). The bonding at the interface in the figure is in the state before relaxation. Only the structure of the initial state is shown.
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Fig. 6. The vibration density of states (VDOS) of AIN-AI/N and diamond-C.

4. Conclusion

In summary, an NEP has been trained using GPUMD to predict the thermal transfer properties at the
AlIN/diamond interface, based on machine learning method. The NEP has been used to predict the phonon
dispersions of diamond and AIN, as well as the thermal conductivity at 300 K. The phonon dispersions
predicted by NEP are in excellent agreement with the results predicted by DFT. Moreover, the thermal
conductivity predicted by NEP at 300 K is in excellent agreement with previously reported experimental
measurements. Although the thermal conductivity values predicted by NEP may not reach the level of DFT
predictions, there is still a significant improvement compared to traditional potential.

On this basis, the TBR of the six interfaces in the AIN/diamond heterostructures have been predicted. The
TBR of the AIN (0001)-Al-diamond (100/110/111) heterostructures by interfacial bonding are all
approximately 1.8 m?>-K-GW~!. Compared to previous studies using traditional potentials, the TBR increases
by approximately 17%. The TBR of the AIN (0001)-N-diamond (100/110/111) heterostructures by interfacial
bonding are all approximately 1.0 m?-K-GW~!. Especially for the AIN (0001)-N-diamond (100)
heterostructure, the TBR is 0.95 m?>-K-GW™!, very close to the theoretical limit of 0.8 m>-K-GW™". It can be
observed that the crystal orientation of diamond has a minimal effect on TBR, while the atomic types of AIN
at the interface has a significant impact on TBR. The TBR of N-C bonding at initial interface is nearly 50%
lower than that of Al-C bonding. The VDOS has been calculated to elucidate the mechanism behind this
phenomenon. The main reason is that the overlap of VDOS between N and C atoms is higher compared to
that between Al and C atoms. Therefore, when the interface is bonded by N atoms and C atoms, heat transfer

is more efficient, resulting in a lower TBR.
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