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ABSTRACT 

AlN/diamond heterostructures hold tremendous promise for the development of next-generation 

high-power electronic devices due to their ultrawide bandgaps and other exceptional properties. 

However, the poor adhesion at the AlN/diamond interface is a significant challenge, which will lead 

to film delamination and device performance degradation. In this study, the uniaxial tensile failure of 

the AlN/diamond heterogeneous interfaces has been investigated by molecular dynamics simulations 

based on a neuroevolutionary machine learning potential (NEP) model. The interatomic interactions 

can be successfully described by the trained NEP, the reliability of which has been demonstrated by 

the prediction of the cleavage planes of AlN and diamond. It can be revealed that the annealing 

treatment can reduce the total potential energy by enhancing the binding of C and N atoms at 

interfaces. The strain engineering of AlN also has an important impact on the mechanical properties 

of the interface. Furthermore, the influence of the surface roughness and the interfacial nanostructures 

on the AlN/diamond heterostructures has been considered. It can be indicated that the combination 

of surface roughness reduction, AlN strain engineering and annealing treatment can effectively result 

in superior and more stable interfacial mechanical properties, which can provide a promising solution 

to the optimization of mechanical properties of ultrawide bandgap semiconductor heterostructures. 

1. INTRODUCTION 

Emerging ultra-wide bandgap (UWBG) semiconductor materials, represented by aluminum 

nitride (AlN), diamond and gallium oxide (Ga2O3), exhibit excellent properties and have attracted 

significant interest for their exceptional characteristics and the potential applications in electronics,1,2 



optoelectronics,3 thermal management,4,5 and surface acoustic wave (SAW) devices.6 The band gaps 

of AlN and diamond are 6.2 eV and 5.5 eV, respectively, and their ultrawide bandgaps and large 

breakdown electric field can further improve the efficiency and power density of the high-power and 

high-frequency electronic devices.7 AlN has a theoretical thermal conductivity of 319 W·m-1·K-1, 

surpassing that of most semiconductor materials such as Si, GaN, and Ga2O3. Diamond is considered 

the ultimate semiconductor material with a thermal conductivity as high as 2000 W·m-1·K-1.8 Due to 

the excellent physical properties, AlN/diamond heterostructures have been regarded to be one of the 

most promising solutions for the thermal management challenge in high-frequency and high-power 

devices. 

As the buffer layer and thermal management function layer, the AlN/diamond heterostructures 

can optimize the growth quality and the heat dissipation performance of III-nitrides, such as the 

AlGaN/GaN/AlN heterostructures which are widely used for the fabrication of high-electron mobility 

transistors and deep-ultraviolet light-emitting diode devices.9-12 Besides, as for thin film devices, the 

AlN/diamond heterostructures have been developed for light-emitting diodes and field-effect 

transistors.13-16 However, one major challenge for AlN/diamond heterostructures is the poor 

interfacial adhesion,17 which may result in the film delamination and subsequently the performance 

and reliability degradation for thin film devices. During heterogeneous epitaxial growth using 

methods such as microwave plasma chemical vapor deposition and metal organic chemical vapor 

deposition, significant temperature differences occur during deposition, coupled with the mismatch 

of thermal expansion coefficient between the materials, resulting in a large stress. The development 

of surface activated bonding (SAB) technology can offer a promising solution to this challenge, which 

enables room-temperature bonding.18 Additionally, annealing treatment following SAB is also 

beneficial for further optimization of bonded structure.19 Strain, like temperature, is an integral 

component of the material phase diagram and has a crucial influence on the regulation of material 

properties.20 Its impact extends to material stability,21 band structure,22 and ferroelectricity,23 thus 

catalyzing advancements in the field of strain engineering. Although the AlN/diamond 



heterostructures have been extensively studied in the fabrication process as well as the thermal 

properties in the previous research efforts,5, 24-28 the mechanical properties of the heterogeneous 

interfaces between AlN and diamond still remain unexplored, because it is really challenging for the 

direct observation and description of the interfacial failure mechanisms of the heterostructures 

through the experimental methods. Molecular dynamics (MD) simulations can provide a 

methodology for in-depth study of interfacial interactions, and tensile strain simulations can 

furthermore reveal the mechanisms of structural evolution under various influencing factors, 

including crystal structure, thermal transport, tensile and compressive stresses. Previous researchers 

have developed various interatomic potentials to describe AlN and diamond individually.29-34 

Nonetheless, a specialized interatomic potential that can accurately describe the interaction between 

AlN and diamond is lacking. The introduction of machine learning potentials (MLPs) offers a novel 

approach to develop an interatomic potential. MLPs have demonstrated remarkable accuracy, which 

are comparable to that of the density functional theory (DFT) calculations, and can also significantly 

enhance the simulation efficiency and scalability.35-37 Fan et al. developed a neuroevolution machine 

learning potential (NEP) model.34, 38-40 Compared to other MLPs, the NEP improves efficiency of 

simulation calculations, even approaching the performance of embedded atom method potentials.35, 

41 

In this paper, the NEP model is utilized to investigate the optimization strategies of the interfacial 

adhesion strength between AlN and diamond in heterostructures. In section 2, the NEP training and 

computational methods are briefly introduced. In section 3, the results of NEP training and MD 

simulations are shown and discussed. This part includes the accuracy assessment of NEP, tensile 

simulations, and the effect of annealing, AlN strain engineering and interfacial morphology on 

heterogeneous interface adhesion. The key findings are summarized in the concluding section. 

2. COMPUTATIONAL DETAILS 

2.1. AIMD calculations 



The ab initio molecular dynamics (AIMD) calculations in this study were conducted using the 

Vienna Ab initio Simulation Package (VASP) based on density functional theory.42-43 The electron-

ion interaction and exchange correlation functional were characterized using the projected augmented 

wave (PAW) method and the generalized gradient approximation (GGA) with the Perdew-Burke-

Ernzerhof (PBE) functional.44-45 The single Γ point in the Brillouin zone was sampled and the energy 

cutoff was set as 550 eV. A 1 fs time step was applied, and the electronic self-consistency convergence 

criterion was set to 10-6 eV. The AIMD calculations were performed using the NVT ensemble, which 

allowed the temperature to float within a certain range for rich sampling, and the basic models 

included block, surface, vacancy structures, and AlN/diamond heterostructures. The lattice constants 

of diamond and wurtzite structure AlN were aC = 3.574 Å and aAlN = 3.128 Å, respectively. As shown 

in Figure 2a, the variations of strain (0.90-1.14) and temperature (18 K-2027 K) were imposed on the 

block model, the atomic numbers of AlN and diamond were 128 and 64 (without vacancy), 

respectively. The AlN/diamond heterostructures with different crystal orientation combinations were 

explored, with AlN(0001)/diamond(100) model and AlN(0001)/diamond(110) model containing 512 

atoms and AlN(0001)/diamond(111) model containing 328 atoms. 

2.2. Neuroevolution machine learning potential training 

The AIMD calculations of AlN, diamond, and AlN/diamond heterostructures resulted in 10,710 

structures, which were constructed into the total dataset. The NEP training was conducted in two 

rounds. In the first round, a training dataset and a test dataset were established based on the total 

dataset in a 4:1 ratio, consisting of 8,568 and 2,142 structures, respectively. The fourth version of 

NEP model from the GPUMD package was applied to train the NEP model for AlN/diamond 

heterostructures.34, 39-40 The NEP model employed a single-layer neural network (NN) to compute the 

energy, force, and virial values of the structures. Throughout iterations under hyperparametric control, 

the root mean square error (RMSE) between the NEP-predicted values and the DFT calculation values 

continuously converged, ultimately resulting in a potential with exceptional predictive performance. 

The hyperparameter settings for NEP-AlN/diamond training could be presented in Table 1. In contrast 



to the NEP-Carbon model,34 this work extended the radial and angular cutoffs to 5 Å to enhance 

potential accuracy. The hidden layer contained 50 neurons, and the batch size was set at 1000. 

Different from the default parameters, the force weight in the loss function (𝜆𝑓) was increased from 

1.0 to 2.0, while the virial weight (𝜆𝑣) was raised from 0.1 to 0.5 as previous work had confirmed the 

significance of virial in predicting the elastic properties and heat transport prediction.34 After the 

initial round of NEP training, the obtained potential was utilized to reselect the training and testing 

datasets from the original dataset by PyNEP, an active learning package for NEP. The final training 

dataset consisted of 846 structures, while the test dataset included 9,864 structures, and then the 

second round of NEP training employed the same hyperparameters as the first round. 

Table 1. Hyperparameters for the NEP of AlN/diamond heterostructure. 

 

2.3. Tensile model in molecular dynamics simulations 

Molecular dynamics simulations were carried out by GPUMD,40 using the trained NEP to 

describe the interaction between the atoms. Periodic boundary conditions were applied in all three 

dimensions, and the time step was set as 1 fs. Initially, all models underwent isothermal-isobaric (NPT) 

ensemble simulation at 300 K for 100 ps, employing the Bernetti-Bussi barostats.46 And then, uniaxial 

strain was applied to the model via incrementally increasing the simulation box length in the z-

direction at each time step (Figure 1a-c). After testing, a strain rate of 5 × 107 s-1 was selected for 

subsequent simulations, which can be regarded as quasi-static loading. 

Parameter Value Parameter Value 

𝑟𝐶
𝑅 5 Å 𝑟𝐶

𝐴 5 Å 

𝑛𝑚𝑎𝑥
𝑅  8 𝑛𝑚𝑎𝑥

𝐴  8 

𝑁𝑏𝑎𝑠𝑖𝑠
𝑅  10 𝑁𝑏𝑎𝑠𝑖𝑠

𝐴  10 

𝑙𝑚𝑎𝑥
3𝑏  4 𝑙𝑚𝑎𝑥

4𝑏  2 

𝑙𝑚𝑎𝑥
5𝑏  0 𝜆1 0.05 

𝜆2 0.05 𝜆𝑒 1.0 

𝜆𝑓 2.0 𝜆𝑣 0.5 

𝑁𝑛𝑒𝑢𝑟𝑜𝑛 50 𝑁𝑏𝑎𝑡𝑐ℎ 1000 

𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 60 𝑁𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 300000 



 

Figure 1. Models for calculating the uniaxial tensile stress-strain curves (a) diamond model, (b) AlN-diamond 

heterostructures model, and (c) heterogeneous nanopillar model. 

To investigate the tensile properties of the AlN/diamond heterostructure, a variety of 

AlN/diamond heterogeneous models have been constructed, in which the interfaces contained 

different combinations of crystal orientations, and the dimensions of these models were about 70 × 

70 × 100 Å3. Additionally, the models of diamond nanopillars on AlN bulk have been constructed, 

where the AlN bulk had various tensile-compressive strains (0.95-1.05) in the xy-plane by scaling the 

lattice constant of AlN and controlling the simulation box size. As shown in Figure 1b,c, the vacuum 

layer was introduced to eliminate the influence of non-study object interfaces on tensile simulations. 

After relaxation, the velocity and force of the atoms at the ends of both diamond and AlN were set to 

0. Subsequently, the length of the simulation box was increased to achieve the uniaxial tensile 

simulations of the AlN/diamond heterogeneous models. In the annealing treatment, the models were 

annealed in the temperature range of 500 K to 1900 K. All temperature controls remained in the NPT 

ensemble with the additional processes including heating up to the annealing temperature for 100 ps, 

the relaxation at the specified temperature for 100 ps, and cooling to 300 K for 100 ps. 

3. RESULTS AND DISCUSSION 

3.1.Training and validation of the NEP 

The variation of each loss function with the number of iterations during the second round of 

NEP training has been illustrated in Figure 2a. The loss functions for energy, force, and virial reached 



convergence after approximately 3 × 105 iterations at the end of the training process. The predicted 

values generated by NEP (Figure 2c-e) show good consistency with the calculated values of DFT for 

both the training and test datasets. The final root mean square errors (RMSEs) for energy, force, and 

virial are 1.64 meV/atom, 113.42 meV/Å, and 22.90 meV/atom in the training dataset and are 1.59 

meV/atom, 110.38 meV/Å, and 20.89 meV/atom in the test dataset. After the first round of NEP 

training, the structures selected in the second round of training form a smaller training dataset but a 

more even distribution of coverage across energy, force and virial, which could enhance the accuracy 

and stability of MD simulations with NEP. 

 

Figure 2. (a) Models for ab initio molecular dynamics calculations.(b) Evolution of various loss functions with 

respect to generations. (c) Energy, (d) force and (e) virial calculated by NEP and DFT in the training and test datasets. 

Pair distribution functions (PDFs) are pivotal for assessing the precision of interatomic potentials. 

Figure 3a,b give the comparison of PDFs using various methods, including DFT, NEP, and the Tersoff 

potential, with simulation conducted at a temperature of 300 K. The g(r) curve of AlN calculated by 

NEP agrees well with the DFT results. In contrast, the g(r) curve calculated by the Tersoff potential 

exhibits a slight leftward shift compared to the DFT calculations, with the difference becoming more 

noticeable at greater pair distances. The g(r) curves for diamond calculated by the three methods are 



all in good agreement. These PDF results indicate that NEP has successfully achieved consistency 

with DFT in characterizing the structural properties of AlN and diamond. Furthermore, the trained 

NEP proves to be more accurate than the conventional Tersoff potential when describing AlN. To 

confirm the reliability of the NEP predictions in strained systems, a series of block structures have 

been generated with strain sizes ranging from 0.9 to 1.1 at intervals of 0.1 by modifying the lattice 

constants. The system energy calculated through the NEP prediction is highly consistent with the DFT 

calculations (Figure 3c,d). In the heterogeneous model system, the potential energies predicted by 

NEP with different interface distances also show good consistency with DFT (Figure S1). 

  

Figure 3. Radial distribution functions for (a) AlN and (b) diamond calculated by DFT (hollow dots), NEP (blue 

lines), and Tersoff (yellow lines). The energy-volume (E-V) curves for (c) AlN and (d) diamond calculated by DFT 

(dark blue dots) and NEP (light blue dots). 

3.2. Uniaxial tensile simulations 

The results of uniaxial tensile simulations for diamond along the [100], [110], and [111] 

directions combined with AlN along the [0001] direction are shown in Figure 4, and the calculation 



of the effect of model size on tensile simulation is provided in Figure S2 of the Supporting 

Information. The results have been visualized and analyzed using the OVITO program, while the 

Identify Diamond Structure method has been employed to identify cubic/hexagonal diamond 

structure atoms and surface atoms.47 The diamond tensile fracture predicted by NEP is predominantly 

along the (111) plane (Figure 4a-c), which is consistent with the experimental diamond cleavage 

plane.48-49 Similarly, the simulated tensile fracture surfaces of AlN correspond to the (0001) plane 

(Figure 4d), in alignment with the cleavage plane of AlN. For diamond, the tensile fracture strength 

in the [100], [110], and [111] directions are 149 GPa, 99 GPa, and 86 GPa, respectively, which are 

close to the experimental results.48 The tensile fracture strength of AlN in [0001] direction is 34 GPa, 

which agrees with the previous reference.50 A strain of 0.01 has been used in the calculation of tensile 

modulus, resulting in the modulus values of 874 GPa for diamond along the (100) direction and 301 

GPa for AlN along the (0001) direction. Comparing these modulus values to the experimental 

results,48, 51 the modulus results predicted by our NEP potential appear relatively small. Nonetheless, 

this NEP potential effectively captures the tensile fracture process and the trends in stress-strain 

curves, particularly in predicting fracture surfaces that align with actual crystal cleavage phenomena, 

which emphasizes the advantages and reliability of this potential. 

 

Figure 4. Uniaxial tensile fracture models for (a) diamond [100], (b) diamond [110], (c) diamond [111], and (d) 

AlN [0001]. 

Figure 5a displays the tensile stress-strain curves for AlN/diamond heterostructure, where the 

(0001) plane of AlN is combined with the (100), (110), and (111) planes of diamond. Among these 

diamond planes combined with AlN, the (100) and (111) planes exhibit higher stress and strain values 



upon fracture, indicating stronger interfacial adhesion compared to the (110) plane. The (111) plane 

demonstrates a slightly larger modulus, while the (100) plane exhibits the most robust interfacial 

performance, with fracture stress and strain values of 15.5 GPa and 0.065, respectively. The strain 

distribution reveals that the fractures of the AlN(0001)/diamond(100) and AlN(0001)/diamond(111) 

heterostructures both initiate from a void defect in AlN near the interface. The void defect leads to 

stress concentration and triggers the cleavage of the AlN(0001) plane in a short time. As a result, the 

heterostructures fracture and leave a layer of AlN on the diamond. However, the heterogeneous 

fracture of the AlN(0001)/diamond(110) has no process of AlN cleavage, but instead direct 

detachment and delamination at the interface, indicating that the binding of AlN and diamond atoms 

at the interface is not as strong as that of the (100) and (111) planes. 

  

Figure 5. (a) Uniaxial stress-strain curves of heterostructures with different crystallographic orientations and the 

tensile fracture surfaces of (b) AlN(0001)/diamond(100), (c) AlN(0001)/diamond(111), and (d) 

AlN(0001)/diamond(110). 

3.3. The interfacial mechanical properties of AlN/diamond heterostructures 

To clarify the effect of annealing temperature on the interfacial mechanical properties, Figure 6a 

presents the tensile stress-strain curves for the AlN(0001)/diamond(100) heterostructures after 

annealing at temperatures ranging from 500 K to 1900 K. At an annealing temperature of 500 K, both 

the fracture strain and fracture stress increase by 5.0% and 7.6%, respectively. As the annealing 

temperature gradually increases, the optimization effect on the heterogeneous interfaces stabilizes. 



When the annealing temperature exceeds 1300 K, the fracture strain and fracture stress remain stable 

at around 0.072 and 18.60 GPa, respectively. Figure 6b illustrates the average atomic potential energy 

of the total heterogeneous system (48744 atoms) under annealing conditions at 900 K, 1500 K, and 

without annealing. Notably, the average atomic potential energy decreases by 0.00202 eV/atom (after 

annealing at 900 K) and 0.00272 eV/atom (after annealing at 1500 K). The decrease in system 

potential energy means an increase in stability. In Figure 6c, distinguished by the black dotted line, it 

is evident that a part of atoms initially in a high-energy state (range from -7.9 eV to -7.0 eV) 

experiences a reduction in potential energy, falling below -7.9 eV due to the annealing treatment. By 

analyzing the distribution of potential energy among distinct atomic types (Figure 6d), it can be found 

that these atoms with decreased potential energy primarily consist of C and N atoms, and the 

distribution of potential energy among Al atoms demonstrates minimal variation before and after the 

annealing. Consequently, the annealing treatment leads to the reduction of the total potential energy 

by facilitating the bonding of C and N atoms at the interface and ultimately promotes the enhancement 

of interfacial adhesion. 



 

Figure 6. (a) Uniaxial stress-strain curves of AlN(0001)/diamond(100) after annealing treatments (temperature 

range from 500 K to 1900 K). (b) Average atomic potential energy of heterogeneous systems during the annealing 

simulation. (c) Potential energy distribution of atoms at the heterogeneous interface after annealing treatments, and 

(d) the potential energy distribution of N, Al, and C atoms within the interface. 

The strain state of the heterostructure material has an important effect on the interfacial 

properties, whereas, in AlN/diamond heterostructures, AlN has a smaller modulus and is more prone 

to strain. To investigate the effect of AlN strain on the mechanical properties of the interface, the 

heterogeneous models consisting of an AlN substrate and a diamond nanopillar have been constructed 

(Figure 3c), and a fixed strain was applied to the AlN substrate in the xy-plane by modifying the lattice 

constant of AlN and controlling the boundaries of the simulation box. As shown in Figure 7a, the 

strains have been introduced to the AlN substrate along three different directions: the x-axis 

(AlN[1010]), the y-axis (AlN[1120]), and the biaxial xy-plane, with strain varying from 0.95 to 1.05. 

The size of the diamond nanopillar remains constant and the position is always in the center of the xy 

plane of the model. 



 

Figure 7. (a) Aerial view of the diamond nanopillar model on an AlN substrate with strain applied to the AlN 

substrate within the xy plane. (b-d) Uniaxial stress-strain curves of diamond(100)/AlN(0001) with AlN substrates 

under various strain conditions. The substrate strain orientations include the (b) y-axis (AlN[1120]), (c) x-axis 

(AlN[1010]), and (d) xy-plane, with a strain magnitude range of 0.95-1.05. 

The tensile stress-strain curves for the heterogeneous nanopillar model are shown in Figure 7b-

c. The blue lines represent AlN in a compressed state and the red lines represent AlN in a tensile state. 

When the substrate strain is in the x-axis direction (Figure 7c), whether under compression or tension, 

the fracture strain and fracture stress at the interface do not improve significantly, but instead both 

exhibit a certain decrease. When the strain of AlN substrate is along the y-axis (Figure 7b), compared 

to the unstrained state, the fracture stress increases by 10.8% at a y-axis strain of 0.95 (9.66 GPa), 

while it decreases by 8.8% at a y-axis strain of 1.05 (7.95 GPa). Furthermore, based on the potential 

energy calculation of the system before and after fracture (Figure S3), it can be found that strain 

engineering has an impact on the adhesion energy of the heterostructure, which is an important 



influencing factor of fracture stress. As the substrate strain transitions from tensile to compressive 

state, a noticeable enhancement trend is observed in tensile fracture stress. Among the strains of AlN 

substrate along the x-axis or y-axis, compressive strain leads to a higher modulus at the heterogeneous 

interfaces, while tensile strain decreases the modulus. This trend becomes more pronounced under 

biaxial strain. When the AlN substrate is subjected to biaxial strain, the stress-strain curves exhibit 

significant variations (Figure 7d). As the strain state of AlN substrate changes from compression to 

tension, both the modulus and fracture stress of the heterostructures decrease. The maximum fracture 

stress at a strain of 0.95 is lower than that in the y-axis uniaxial strain of 0.95, and it is worth noting 

that the fracture stress decreases at the x-axis uniaxial strain of 0.95. It can be speculated that these 

trends in the stress-strain curves under biaxial strain are consistent with the superposition of x-axis 

and y-axis uniaxial strains. 

The morphology and nanostructure engineering of interfaces can also play a crucial role in 

determining interface properties. Figure 8a shows the stress-strain curves of the models with different 

interface morphologies, including AlN nanopillar interface, diamond nanopillar interface and 1.5 nm 

roughness interface (Figure 8b-d). The model pre-processing includes annealing group (at 1500 K) 

and room temperature group. It can be observed that the failure mode with nanostructures is also the 

cleavage of AlN caused by AlN defects near the interface during the tensile process, while the rough 

interface exhibits smaller failure stresses. The results indicate that the fracture stress of the interface 

with nanostructures is greater than that of the 1.5nm roughness interface. The fracture stress of the 

interface with diamond nanopillar nanostructures after annealing is 14.7 GPa, which is close to the 

fracture stress of the flat AlN(0001)/diamond(100) interface (15.5 GPa). The fracture strains of the 

nanostructure interfaces are related to the volume ratio of AlN and diamond at the fracture site, so 

that a comparison of fracture strains is not made here. The results show that undulating surface 

morphology increases the contact area of the material to improve the interaction between atoms, but 

also makes it more prone to defects. Under both effects, the interfacial adhesion of the nanostructure 

interface and the roughness interface is lower than that of the ideal flat interface. 



  

Figure 8. (a) Uniaxial stress-strain curves of AlN(0001)/diamond(100) with nanopillar and rough interface. The 

diamond surface appearance in the heterostructures and the model cross sections before and after tensile of (b) AlN 

nanopillar interface, (c) diamond nanopillar interface and (d) interface with a roughness of 1.5 nm. 

Based on the above investigations on the effects of annealing treatment, AlN strain engineering, 

and interface morphology on interfacial adhesion in AlN/diamond heterostructures, the tensile 

fracture processes after adopting different optimization strategies have been summarized and 

calculated, and the tensile fracture stress is shown in Figure 9. The adhesion of rough interfaces can 

be improved by reducing roughness or introducing interfacial nanostructures. The flat interface has 

the largest fracture stress, which is 72.8% higher than that of the 1.5 nm roughness interface. 

Annealing treatment at 1500 K has a significant effect on improving the fracture stress of various 

interfaces. Applying a strain (0.95) to AlN along [1120] can increase the interface fracture stress 

with or without annealing treatment. Combining annealing treatment and AlN strain engineering can 

increase the flat interface fracture strength by 17.7%. 



 

Figure 9. Fracture stress of AlN/diamond heterostructures with different interface morphologies. Gray represents 

the heterostructure without annealing treatment, and purple represents the heterostructure with annealing treatment 

at 1500 K. 

4. CONCLUSIONS 

In summary, based on the AlN and diamond datasets calculated by DFT, the trained NEP can 

effectively describe the crystal structure, tensile fracture, and crystal cleavage. By simulating and 

analyzing the heterogeneous tensile fracture of diamond (100), (110), (111) planes with AlN (0001), 

it can be found that the AlN(0001)/diamond(100) heterostructures have relatively high interfacial 

adhesion. The annealing treatment promotes the bonding of C and N atoms at the interface, thereby 

reducing the total potential energy. In addition, the strain state of AlN has an effect on the fracture 

strength of the interface, and appropriate strain engineering can improve the interfacial strength. 

Simulations of the heterostructures with rough interface and interfacial nanostructure show that the 

introduction of interfacial nanostructures and the reduction of roughness are effective methods to 

improve interfacial adhesion. The combination of roughness reduction, AlN strain engineering, and 

annealing treatment ultimately results in AlN/diamond heterostructures with superior and more stable 

interfacial mechanical properties, which may provide a promising way to address the poor adhesion 

at heterogeneous interfaces within the UWBG semiconductor materials. 
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