
SIGNN – Star Identification using Graph Neural Networks

Floyd Hepburn-Dickins1, Mark W. Jones1, Mike Edwards1, Jay Paul Morgan1, Steve Bell2

1Swansea University, United Kingdom
2UK Hydrographic Office, Taunton, Somerset, United Kingdom

{880940,m.w.jones,Michael.Edwards,J.P.Morgan}@swansea.ac.uk, Steve.Bell@UKHO.gov.uk

Abstract

As a solution for the lost-in-space star identification
problem we present Star Identification using Graph Neu-
ral Network (SIGNN), a novel approach using Graph At-
tention Networks. By representing the celestial sphere as
a graph data structure, created from the ESA’s Hipparcos
catalogue, we are able to accurately capture the rich in-
formation and relationships within local star fields. Graph
learning techniques allow our model to aggregate infor-
mation and learn the relative importance of the nodes and
structure within each stars local neighbourhood to it’s iden-
tification. This approach, combined with our parametric
data-generation and noise simulation, allows us to train a
highly robust model capable of accurate star identification
even under intensive noise, outperforming existing meth-
ods. Code and generation techniques will be available on
https://github.com/FloydHepburn/SIGNN.

1. Introduction
Celestial navigation is an offline alternative to a reliance

on global positioning systems, which are vulnerable to po-
tential threats such as satellite malfunctions or signal inter-
ference from third parties.

There are two primary problems, star detection, that is to
pinpoint prospective stars within an image, and star recog-
nition, the correct identification of a given star. The former
is a widely solved issue [21, 30], whereas the latter remains
a point of active research [18, 20].

Whilst the focus of modern research is in spacecraft and
attitude determination [18, 23], the techniques and methods
used can be applied to terrestrial navigation. Navigation
requires the accurate pinpointing and recognition of stars.
Modern pattern recognition techniques can vastly improve
both star acquisition and identification and have been shown
to do so when applied to attitude determination. We further
examine their efficacy on systems grounded to the Earth’s
surface alongside the challenges that entails.

Machine learning’s broad use in astronomy is well estab-

lished, with the vast data involved being prime for machine
learning data analysis [19]. Galaxy classification [22], star
cluster classification [16], spectral analysis [1] and pulsar
identification [4] are just a few examples. Recently, deep
learning approaches to star recognition have made use of
convolution neural network (CNNs) [14] and generative ad-
versarial networks (GANs) [6], whilst examining perfor-
mance within noisy environments.

Recent advances in Graph Neural Networks (GNN)
demonstrate their ability to learn complex relationships in
graph structured data [32]. In this paper we present our
novel approach to star identification by applying GNNs to
a graph representation of the celestial sphere. We combine
this with our parametric data-generation and noise simula-
tion to ensure a robust tolerance to noise.

2. Existing Work

Traditional star identification solutions are broadly di-
vided into two sub-categories (sub-graph isomorphism and
star pattern recognition). These classical approaches are
well reviewed by the literature [8, 18, 20]. We also re-
view the latest approaches to star recognition using machine
learning techniques.

2.1. Sub-graph isomorphism

Sub-graph isomorphism techniques aim to match ob-
served star configurations against pre-computed known pat-
terns. The triangle algorithm [10] and it’s variations [13]
represent each star as a star triplet formed from it’s nearest
neighbours, with the intent to later match detected triplet
structures against a pre-computed database. The pyramid
technique [11] builds on this by including an additional star
for more varied and detailed initial patterns. Hash map-
ping [27] is shown to enable faster retrieval and matching
with the known configurations.

2.2. Star pattern recognition

This approach involves creating a star feature that repre-
sents each prospective star based on its spatial and intrinsic



properties. The grid algorithm [15] forms a pattern vector
from the position between a target star and its neighbours
on a pre-defined grid and is further improved [12] to ad-
dress shortfalls with noise tolerance. More recently, [29,31]
represented stars using radial patterns, described via polar
coordinate systems and discretized into a pattern vector for
matching.

2.3. Machine Learning within Star Recognition

Machine learning (ML) approaches have enabled a tran-
sition away from hand crafted star patterns, instead leverag-
ing ML methods to autonomously generate and recognise
star patterns using the inherent information in the data. RPN
Net [28] applies a two-fold star pattern generator and classi-
fier approach, utilising an auto-encoder/decoder [3] to gen-
erate a learned representation of each star tolerant to noise.
Initial inputs are created from the discretized distances be-
tween a target star and its neighbours, concatenated with the
discretized inter-neighbour distances, encoding the overall
relationship for the neighbourhood and target star. Stars
can similarly be represented via radial patterns for use in
CNNs [17]. However these discretization processes can
lead to a loss of finer detail between nodes, impacting per-
formance.

Jiang et al. [9] transform star patterns into “spider-
images”. Connections are drawn between stars in a de-
fined neighbourhood radius and colour encoded using their
discretized distances, each bin being assigned a different
colour. This image representation is fed into a two-stage hi-
erarchical CNN for classification. Whilst this method con-
verts spatial relationship into a visual format suitable for
CNNs, it still suffers a loss of detail in the discretization and
the resulting spider images may not fully capture the intri-
cate geometrical relationships between stars. By represent-
ing star-fields as polar coordinates and applying a log-polar
transform before discretization, it is possible to encode both
distances and relative angles [26].

All these techniques result in a degradation of the initial
representation before it is applied to the model. In using
GNNs with graph structured data we are able to utilise the
full information available in each stars neighbourhood.

3. Methodology
Our proposed method for star identification represents

the celestial sphere as a graph data structure, allowing our
GNN to model and learn the complex relationships between
nodes (stars), capturing spatial distances, relational connec-
tions, and topological structure alongside the initial node
features. GNNs are particularly well-suited to this task due
to their ability to effectively process and learn from the in-
tricate relationships within graph-based data, enabling ac-
curate recognition of star configurations under varying de-
grees of noise and interference.

3.1. Graph Construction

We model the celestial sphere as an undirected complete
graph G = (V,E) where each node v ∈ V represents a
star and each edge (u, v) ∈ E represents an angular dis-
tance between u and v. The graph is modified to include
only those edges below a certain angular distance threshold
(pattern radius), simulating FOV limitations in star sensors.
This causes each star to have a neighbourhood N (i) derived
from simulating sensor field of view (FOV) and star magni-
tude sensitivity (section 3.4). Our GNN is trained on noisy
variations of this celestial graph with each prediction being
based on a node’s (star’s) local neighbourhood information.

3.2. Source Detection

When considering an image of the night sky, potential
stars are detected via a process of source detection [21, 30].
This produces the absolute positions of source centroids
(measured in pixel coordinates) and their brightness levels
(measured in pixel values). The angular separation between
sources is calculated by mapping coordinates to a reference
frame using arcseconds per pixel based on camera param-
eters. Brightness data is processed to give each source a
magnitude relative to its local neighbourhood. This pro-
cessed data is used to transform an image into its graph rep-
resentation as in section 3.1. Each source becomes a node
whose feature is its relative magnitude within the defined
pattern radius. Each source connects via an edge to each
other source within its pattern radius with the edge attribute
storing the angular separation between each pair. The re-
sulting image graph would be a subgraph of the celestial
sphere graph and is used as input to our trained GNN to
identify the nodes (stars) within.

3.3. Graph Attention Network

We employ a 2 layer graph attention network (GAT)
[5, 24] to process this graph data. The GAT layers are im-
plemented using PyTorch geometric [7]. By using a 2 layer
GAT, the neighbourhood comprises a star’s closest neigh-
bours as outlined above and also their neighbours’ neigh-
bours similarly defined (section 3.4). The relative bright-
ness of each star within its neighbourhood is assigned to its
initial feature vector x0

v . An initial linear feature transform
expands dimensionality whilst at each GAT layer the feature
vector is updated through the GAT process.

The transformation of a node’s feature in our GAT layers
using multiple attention heads is given by:

x′
i =

∥∥h
h=1

σ

 ∑
j∈N (i)∪{i}

αh
i,jW

hxj

 (1)

The attention coefficients αh
i,j for each head h are com-

puted as:



α
h
i,j =

exp
(
(ah)⊤LeakyReLU

(
Wh

s xi + Wh
t xj + Wh

e ei,j

))
∑

k∈N(i)∪{i} exp
(
(ah)⊤LeakyReLU

(
Wh

s xi + Wh
t xk + Wh

e ei,k

))
(2)

Figure 1 shows the neighbourhood representation of Sir-
ius after being passed through two GAT layers and its FOV.
A final linear classification layer utilises this 2-hop repre-
sentation to generate logits for each node within the input
graph, corresponding to the probability distribution over the
catalogued star IDs. These values are then used to deter-
mine the final prediction and confidence scores. Our GNN
architecture is outlined in Figure 2.

Figure 1. Example of the receptive field and messaging passing
for the star Sirius within a two layer GAT network. Sirius is con-
nected to its neighbours within a radius of 3◦ (red edges). Those
neighbours are connected to their neighbours within a radius of 3◦

(orange edges).

3.4. Data Generation

We use the Hippacros star catalogue, which contains ac-
curate RA/DEC coordinates and magnitude for each star,
to create our reference celestial sphere graph. Coordinates
are used to create an adjacency matrix of the angular sep-
aration between each star pair using the Vincenty formula
[25]. Each node stores a star’s data (RA/DEC, Vmag, ID)
and is connected to it’s neighbourhood N (i) with an edge
whose attribute stores the angular separation between the
connected star pair.

Similar to kernel density estimation, we could choose
the neighbourhood to be all stars within a fixed bandwidth
[9, 15, 17] (in our case pattern radius which is angular dis-
tance) or select the K-nearest neighbours as in [10,28]. Both

approaches were tested. We used a fixed bandwidth as this
enables more variation in local neighbourhood representa-
tions due to the varying star densities across the celestial
sphere. This information is in itself a useful characteris-
tic of a star-pattern. Whilst a fixed bandwidth could lead
to star-patterns with few neighbours, the two-hop nature of
our model allows nodes with few direct neighbours to ag-
gregate information from further afield. The multiple atten-
tions heads are able to learn the importance and relationship
between node feature and edge attributes, making it possible
to highlight nodes that are particularly reliable or informa-
tive for a target nodes prediction.

We filter the celestial graph by removing stars with a
magnitude of 6 or higher (6.0 being the magnitude visible
to the naked eye). We use a fixed pattern radius, τ , of 3 de-
grees to connect each star to its neighbours. Stars with less
than 2 direct neighbours are also removed. With a 2-hop
GNN, each star’s receptive field can cover a radius of up to
6 degrees, and a diameter of up to 12 degrees.

The above method results in a graph of 4274 nodes and
20,310 edges spanning the night sky. This represents an
idealised version of the celestial sphere under perfect con-
ditions. In reality we will have to contend with various
noise types that corrupt and diminish the information within
an image, impacting our predictions. To ensure the mod-
els resilience to this noise we develop several functions to
dynamically introduce noise into the celestial graph. Our
GNN training is performed on a mixture of noisy variations,
both in type and severity, to enable the resulting model to
accurately predict star IDs from images captured under dif-
fering atmospheric and physical conditions. Whilst our ce-
lestial graph currently contains information about RA/DEC
coordinates and absolute Vmag, this knowledge is only used
to generate and add noise augmentation to the angular dis-
tance and relative magnitude data used during training and
is not input to the model. This is because any test image, in
a scenario with no apriori information, will be unable to de-
termine this information. Instead angular distance between
sources can be derived alongside a relative neighbourhood
magnitude.

We consider real-world detection causes and effects to
inform our choices for noise generation during training and
tabulate the issue, the effect on output from source detection
algorithms and how it is countered during training (Table
1). Where a problem is due to an algorithm inaccuracy, the
sensor issue entry is left blank.

Positional Noise Positional noise refers to a shift in the
observed position of a star/source. It is typically introduced
during the source centroiding process as a result of atmo-
spheric conditions, sensor noise, or optical aberrations such
as lens distortion. In the context of our graph representation,
it alters a star’s connectivity and edge attributes (which rep-



Figure 2. SIGNN model architecture for star pattern recognition using GAT layers.

Sensor issue Source detection Sample noise

Weather conditions (e.g. cloud cover) Missing stars Drop stars
Incorrect magnitude Magnitude noise

Object occlusion (e.g. branch) Missing stars Drop stars
Atmospheric scattering Variation of star magnitude Magnitude noise

Atmospheric scintillation Variation of star position Positional noise
Variation of star magnitude Magnitude noise

Incorrect centroid detection Variation of star position Positional noise
Lights (e.g. passing aircraft) False stars False star noise

Lens distortion Variation of star position Positional noise

Noisy CCD sensor (dark current)
Missing stars Drop stars

Incorrect magnitude Magnitude noise
False stars False star noise

Table 1. Real-world detection issues are considered along with a suggested sample noise type during training.

resent the angular distance between stars). Existing work
usually applies positional noise as a pixel offset on simu-
lated images [28]. We instead apply it as an angular offset,
directly altering the RA/DEC values to provide consistency
with astrophysical data. This yields physically meaningful
results independent of sensor properties. This approach en-
ables objective comparison with known astronomical units,
rather than unknown pixel quantities, ensuring reproducibil-
ity and precision in future error analyses and comparisons
as discussed in the supplementary material.

Parameters detailed in Table 2 determine the range and
intensity of noise. We use a randomly uniform distribution
to determine the direction of each nodes offset (0-360◦) and
apply the angular distance following a Gaussian distribu-
tion. After applying this noise to all stars, we recalculate the
angular distances between each node and rebuild the graph
with the new data. Figure 3 shows an example.

Dropped Star Noise This simulates missing stars due to
atmospheric conditions, occlusion or noisy CCD sensors.
Dropped stars distort real stars patterns as they reduce the
connectivity of the graph and alter the calculated relative
magnitudes. To simulate this, we randomly select a per-
centage of nodes within the graph to be dropped, removing
them and their connections (see Figure 4)

Figure 3. Example of positional noise, green markers show post-
noise positions. Red tails indicate the shift from their original po-
sitions.

False Star Noise This occurs during the source detection
process, resulting in erroneous (false) sources, commonly
caused by aircraft, sensor noise or satellites. False stars dis-



Figure 4. Example of dropped star noise. Stars marked with an x
have been dropped from the graph.

tort real stars patterns by increasing the connectivity of the
graph and altering the calculated relative magnitudes. Ad-
ditionally, confident predictions on false stars and their sub-
sequent use as a guiding star could lead to a breakdown in
navigation. To simulate this noise, we randomly create a
percentage of false nodes and insert them into the graph.
Each false node’s celestial co-ordinates and magnitude are
randomly generated. Once complete we recalculate the an-
gular distance and connectivity of all nodes (see Figure 5).

Figure 5. Example of false star noise, genuine stars are in green.
False noise stars inserted into the graph are red.

Star Magnitude Noise This is a deviation in the per-
ceived brightness of a star, caused by atmospheric condi-
tions, light pollution or sensor noise. We apply magnitude
noise as a randomly determined percentage modifier. Figure
6 shows an example of magnitude noise.

Figure 6. Example of magnitude noise, showing the resulting shift
in each star’s visible magnitude after noise is applied.

3.5. Sample Preparation

In real use cases calculating true magnitude values
within an image is infeasible without calibration using al-
ready known stars. However, the relative magnitude of each
star to their nearby neighbours can be obtained easily from
the raw pixel brightness values. In our method, before a
graph is sent to the model for training we first normalise
(min-max scale) each stars magnitude relative to its directly
connected neighbours. This effectively determines a lo-
cal brightness ranking that is used for each node’s feature
and one that is capable of being calculated in a test image.
This approach allows us to use magnitude and brightness
as a meaningful feature in the identification process and is
demonstrated to be successful in our results. Additional de-
tail on brightness and relative magnitude is available in sup-
plementary material.

3.6. Hyperparameters and Architecture

We used a Bayesian optimization process [2] to establish
the optimal model structure and parameters of our GAT net-
work, testing a variety of layer variations and parameters.

3.7. Training

We create a data-loader that generates variations of the
initial celestial sphere graph each time it is accessed. This
graph is stripped of each node’s RA/DEC information be-
fore being sent to the model. The final graph prior to input
contains nodes (whose feature is their relative magnitude),



an edge index (denoting connectivity), and edge attributes
(angular distance between connected nodes). Each epoch
generates 1024 variations with 20% sampled equally from
each of the noise types and 20% with no noise. We train
across 500 epochs using a batch size of 64 with a LR sched-
uler and early stopping enabled.

4. Results
4.1. Testing Using Simulated FOV Graphs

For testing we instead generate sub-graphs of the celes-
tial sphere graph centred on randomly generated RA/DEC
coordinates across the night sky, simulating all stars and
connections in a 10◦ radius, which simulates a narrow-
angle FOV image (FOV-graphs). Figure 7 shows an exam-
ple FOV-graph generated by centering on Sirius, the bright-
est star in the night sky, illustrating it’s node connectivity.
Nodes beyond the outer ring are not simulated for this im-
age, showing how the limited FOV clips the information
available to the outer nodes. Nodes within the central ring
are guaranteed to have their entire receptive field available
within the image. This graph is passed as input to the model.
We apply softmax to the resulting logits output to obtain
each stars identity probabilities, the argmax of which is each
nodes final prediction.

Figure 7. FOV-graph centered on Sirius with a 10◦ radius. Stars
with an angular separation of less than 3◦ are connected to each
other with an edge.

4.2. Testing Schema

Testing is structured to analyse each noise type at dis-
crete noise levels. We generate randomly positioned FOV-
graphs with specific noise types and intensity applied. We

also test when all noise types are applied. We test 20,000
images at each stratified noise level as outlined in Table 2
resulting in a total testing of 800,000 simulated images en-
compassing a total of ≈ 28 million star predictions.

Noise Type Start End Step

Position (Std Dev in radians) 0.0001 0.001 0.0001

Magnitude (Percentage) 1% 10% 1%

False (Percentage) 5% 50% 5%

Dropped (Percentage) 5% 50% 5%

Table 2. Testing Schema for Noisy Star Pattern Recognition. Each
noise type is tested from the start to the end using the indicated
step size.

4.3. Comparative Analysis

We compare with existing ML approaches [9, 26, 28]
and classical approaches [15] by extracting, where possi-
ble, data from published results as described in the supple-
mentary material. Table 3 outlines the main methodologies
for each approach in their pattern construction and training
process.

The comparator group all make predictions for a single
star which is placed at the centre of the FOV. Our approach
for SIGNN was to solve the more difficult problem of pre-
dicting all stars across the FOV simultaneously using the
output logits for each node’s star-identity. For comparison
we show results for all predictions within 6◦of the FOV cen-
tre. Since SIGNN outperforms the other methods using this
more difficult approach, we did not test single star predic-
tion which is an easier task and would achieve even better
results for SIGNN.

Table 4 and Figure 8 shows each method’s testing per-
formance towards false noise (added stars). SIGNN out-
performs comparative ML and classical approaches at each
noise level, significantly so in the presence of higher per-
centages of false stars.

Whilst SIGNN is trained on drop noise as a percentage,
to provide equivalent comparison we test using the same
process as [9, 28] by dropping N stars.

SIGNN is shown in Table 5 and Figure 9 to outperform
comparative ML and classical approaches at each noise
level for dropped star noise.

As the comparator group use varying experimental se-
tups and apply positional noise as a pixel deviation, which
has a different meaning dependant on the simulated sen-
sor, their results first need to be converted into a common
reference frame of angular distance. SIGNN already trains
and tests using angular distances. Details on the conversion
process are available in supplementary material. Figure 10



Algorithm Training Comparison

Pattern Type Vmag Target Position Noise False Noise Dropped Noise
SIGNN All in radius 6.0 All stars in FOV Degrees Percentage Percentage

RPNet [28] N-Nearest 6.0 Single star Pixels Percentage N Stars
Spider-Image CNN [9] All in radius 6.0 Single star Pixels Percentage N Stars
Grid Algorithm [15] All in radius 6.0 Single star Pixels Percentage N Stars

Table 3. The comparison group: Pattern type indicates whether nearest neighbour or a fixed pattern radius is used to define the neighbour-
hood. All algorithms are tested on starfields up to magnitude 6.0. Apart from our method, the approaches identify a single star at the centre
of the FOV. Noise is added in each dimension as indicated, although we also test N dropped stars for fair comparison. Grid Algorithm
parameters and results based on its use in RPNet [28].

Performance towards False Noise

10% 20% 30% 40% 50%
SIGNN 0.989 0.963 0.935 0.903 0.866

Spider-Image 0.987 0.883 0.702 0.531 0.267
RPNet 0.986 0.836 0.672 0.492 0.356

Grid Algorithm 0.933 0.837 0.750 0.608 0.303

Table 4. Performance for false stars. Additional stars were added
to the starfield according to the indicated percentage. Results for
RPNet [28], Spider-Image CNN [9] and Grid Algorithm [15] were
obtained from [28], [9] and [28] respectively.

Performance towards N Dropped Stars

1 2 3 4 5
SIGNN 0.993 0.987 0.981 0.975 0.968

Spider-Image 0.946 0.899 0.777 0.600 0.390
RPNet 0.976 0.956 0.922 0.874 0.810

Table 5. Performance for N dropped stars. N stars were removed
from the FOV and compared to results for RPNet [28] and Spider-
Image CNN [9]. Drop results were unavailable in the literature for
Grid Algorithm [15].

shows each model’s performance in terms of angular dis-
tances. Whilst RPNet has a slightly higher initial accuracy,
SIGNN outperforms all comparative methods as noise is in-
creased, and is tested up to a larger positional movement.

Results for magnitude noise are discussed in supplemen-
tary material as its use and implementation varies signifi-
cantly between SIGNN and the comparison group.

Confidence scores and filtering The impact of false stars
on their surrounding predictions is visualized as an exam-
ple in Figure 11. False stars are shown as red dots (•).
Markers are shown for correct (dots) and incorrect (×)
stars. These predicted stars are coloured by their confidence
scores (viridis colour map). We observe incorrect predic-
tions tend to have lower confidence.

Incorrect stars negatively impact navigation. To min-

Figure 8. Graph representation of Table 4. False noise perfor-
mance across noise levels compared with [9, 15, 28]. False noise
from 10% to 50%.

Figure 9. Graph representation of Table 5. Drop noise perfor-
mance across noise levels compared with [9,28]. Drop noise from
1 to 5 stars.

imise this impact we propose using the confidence scores
to filter the identifications and reduce the risk of selecting
an incorrectly identified (or false) guide star. By threshold-



Figure 10. Position noise performance for standard deviation noise
levels compared with [9, 15, 28].

Figure 11. Subgraph showing correct/incorrect identifications
coloured to prediction confidence scores. Markers for false stars
are also visible. False noise of 28%.

Threshold Correct Lost Incorrect Lost

0.80 9.23% 92.11%
0.90 14.06% 97.20%
0.95 29.05% 98.40%
0.99 31.49% 99.68%
0.999 51.19% 99.99%

Table 6. Percentage of correct/incorrect predictions removed at
different confidence thresholds.

ing results based on confidence we can remove the majority
of incorrect results whilst retaining large portions of correct
results as shown in Table 6. By filtering out predictions with
a confidence lower than 0.999 we are left with less than five
hundred incorrect IDs vs 13.6 million correct ones out of
the original 28 million predictions.

All Noise We perform an additional test with all noise
types applied simultaneously. We test 10 levels of noise,
increasing each types intensity by 10% towards maximum
value. Maximum value of positional noise is 0.001 radians,
dropped noise is 20%, false noise is 20% and magnitude
noise is 4%. Figure 12 shows how the model performs in
this combined test.

Figure 12. Accuracy for all noise types applied together.

5. Discussion and Future Work
SIGNN is shown to outperform existing classical and

ML approaches to star identification, even when identify-
ing all stars in an FOV (compared to existing approaches
of identifying a single centrally placed star). We compare
positional noise, commonly reported as pixel deviation, via
angular distance offsets to allow a fair comparison between
methods that are otherwise tied to a simulated sensor setup.
SIGNN is initially trained and tested in this manner, allow-
ing for easy comparison in future works and clearer inter-
pretation of its performance on different sensors. SIGNN is
modelled and evaluated at a threshold of 6.0 (for narrow-
FOV sensors) and 5.0 (for wide-FOV sensors), available
in supplementary material, showing it’s broad applicability
and ability to be trained towards varying use cases. Con-
fidence thresholds are shown to be an effective and simple
method to remove the majority of incorrect predictions.

Future work will explore using these scores to weight
predictions, enabling cross-validation. Validated high confi-
dence stars can be used to re-assess low confidence sources
using the known catalogue. We aim to address the edge-
of-image problem, where stars lose information when posi-
tioned towards the edge of an image. This would be achiev-
able via a modified dataset and generation technique, able
to represent this edge-of-image noise.

Acknowledgment Funded by EPSRC grant number
EP/S021892/1. For the purpose of Open Access, the au-
thor has applied a CC BY license to any Author Accepted
Manuscript (AAM) version arising from this submission.



References
[1] Coryn A. L. Bailer-Jones, Mike Irwin, and Ted von Hip-

pel. Automated classification of stellar spectra - II. Two-
dimensional classification with neural networks and princi-
pal components analysis. MNRAS, 298(2):361–377, Aug.
1998. 1

[2] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel
Daulton, Benjamin Letham, Andrew Gordon Wilson, and
Eytan Bakshy. BoTorch: A Framework for Efficient Monte-
Carlo Bayesian Optimization. In Advances in Neural Infor-
mation Processing Systems 33, 2020. 5

[3] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoen-
coders, Apr. 2021. arXiv:2003.05991. 2

[4] Zelun Bao, Guiru Liu, Yefan Li, Yanxi Xie, Yang Xu, Zifeng
Zhang, Qian Yin, and Xin Zheng. Pulsar identification
based on generative adversarial network and residual net-
work. Complex Engineering Systems, 2(4), 2022. 1

[5] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are
Graph Attention Networks?, Jan. 2022. arXiv:2105.14491.
2

[6] Antonia Creswell, Tom White, Vincent Dumoulin, Kai
Arulkumaran, Biswa Sengupta, and Anil A. Bharath. Gener-
ative adversarial networks: An overview. IEEE Signal Pro-
cessing Magazine, 35(1):53–65, Jan. 2018. 1

[7] Matthias Fey and Jan Eric Lenssen. Fast graph representation
learning with pytorch geometric. CoRR, abs/1903.02428,
2019. 2

[8] Zhang Guangjun. Star Identification : Methods, Techniques
and Algorithms. Springer, 2017. 1

[9] Jie Jiang, Lei Liu, and Guangjun Zhang. Star identifi-
cation based on spider-web image and hierarchical cnn.
IEEE Transactions on Aerospace and Electronic Systems,
56(4):3055–3062, 2020. 2, 3, 6, 7, 8

[10] C.C. Liebe. Star trackers for attitude determination. IEEE
Aerospace and Electronic Systems Magazine, 10(6):10–16,
1995. 1, 3

[11] Daniele Mortari, Malak A. Samaan, Christian Bruccoleri,
and John L. Junkins. The pyramid star identification tech-
nique. NAVIGATION, 51(3):171–183, 2004. 1

[12] Meng Na, Danian Zheng, and Peifa Jia. Modified grid
algorithm for noisy all-sky autonomous star identification.
IEEE Transactions on Aerospace and Electronic Systems,
45(2):516–522, 2009. 2

[13] Abderrahim Nabi, Zoubir Ahmed-Foitih, and Mohammed
El-Amine Cheriet. Improved triangular-based star pattern
recognition algorithm for low-cost star trackers. Journal of
King Saud University - Computer and Information Sciences,
33(3):258–267, 2021. 1

[14] Keiron O’Shea and Ryan Nash. An Introduction to Convo-
lutional Neural Networks, Dec. 2015. arXiv:1511.08458. 1

[15] C. Padgett and K. Kreutz-Delgado. A grid algorithm
for autonomous star identification. IEEE Transactions on
Aerospace and Electronic Systems, 33(1):202–213, 1997. 2,
3, 6, 7, 8

[16] Gustavo Pérez, Matteo Messa, Daniela Calzetti, Subhransu
Maji, Dooseok E. Jung, Angela Adamo, and Mattia Sirressi.

Starcnet: Machine learning for star cluster identification*.
The Astrophysical Journal, 907(2):100, Feb. 2021. 1

[17] David Rijlaarsdam, Hamza Yous, Jonathan Byrne, Davide
Oddenino, Gianluca Furano, and David Moloney. Efficient
star identification using a neural network. Sensors, 20(13),
2020. 2, 3

[18] David Rijlaarsdam, Hamza Yous, Jonathan Byrne, Davide
Oddenino, Gianluca Furano, and David Moloney. A sur-
vey of lost-in-space star identification algorithms since 2009.
Sensors, 20(9), 2020. 1

[19] Snigdha Sen, Sonali Agarwal, Pavan Chakraborty, and Kr-
ishna Pratap Singh. Astronomical big data processing using
machine learning: A comprehensive review. Experimental
Astronomy, 53(1):1–43, Feb. 2022. 1

[20] Benjamin B. Spratling and Daniele Mortari. A survey on star
identification algorithms. Algorithms, 2(1):93–107, 2009. 1

[21] Peter B. Stetson. DAOPHOT: A Computer Program for
Crowded-Field Stellar Photometry. Publications of the As-
tronomical Society of the Pacific, 99:191, Mar. 1987. 1, 2

[22] M. C. Storrie-Lombardi, O. Lahav, Jr Sodré, L., and L. J.
Storrie-Lombardi. Morphological Classification of galaxies
by Artificial Neural Networks. Monthly Notices of the Royal
Astronomical Society, 259(1):8P–12P, 11 1992. 1

[23] R.W.H. van Bezooijen. A star pattern recognition algorithm
for autonomous attitude determination. IFAC Proceedings
Volumes, 22(7):51–58, 1989. IFAC Symposium on Auto-
matic Control in Aerospace, Tsukuba, Japan, 17-21 July
1989. 1

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. International Conference on Learning
Representations, 2018. accepted as poster. 2

[25] T. Vincenty. Direct and Inverse Solutions of Geodesics on
the Ellipsoid with Application of Nested Equations. Survey
Review, 23(176):88–93, Apr. 1975. 3

[26] Bendong Wang, Hao Wang, and Zhonghe Jin. An efficient
and robust star identification algorithm based on neural net-
works. Sensors, 21(22), 2021. 2, 6

[27] Gangyi Wang, Jian Li, and Xinguo Wei. Star identification
based on hash map. IEEE Sensors Journal, 18(4):1591–
1599, 2018. 1

[28] Likai Xu, Jie Jiang, and Lei Liu. Rpnet: A representation
learning-based star identification algorithm. IEEE Access,
7:92193–92202, 2019. 2, 3, 4, 6, 7, 8

[29] Guangjun Zhang, Xinguo Wei, and Jie Jiang. Full-sky
autonomous star identification based on radial and cyclic
features of star pattern. Image and Vision Computing,
26(7):891–897, 2008. 2

[30] Hongrui Zhao, Michael F. Lembeck, Adrian Zhuang, Riya
Shah, and Jesse Wei. Real-time convolutional neural
network-based star detection and centroiding method for
cubesat star tracker. CoRR, abs/2404.19108, 2024. 1, 2

[31] Weiwei Zhao, Baoqiang Li, and Xiuyi Li. A star pat-
tern recognition algorithm based on the radial companion-
circumferential feature. Mathematical Problems in Engi-
neering, 2022:1–10, 09 2022. 2



[32] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of
methods and applications. AI Open, 1:57–81, 2020. 1


	. Introduction
	. Existing Work
	. Sub-graph isomorphism
	. Star pattern recognition
	. Machine Learning within Star Recognition

	. Methodology
	. Graph Construction
	. Source Detection
	. Graph Attention Network
	. Data Generation
	. Sample Preparation
	. Hyperparameters and Architecture
	. Training

	. Results
	. Testing Using Simulated FOV Graphs
	. Testing Schema
	. Comparative Analysis

	. Discussion and Future Work

