
Novel probe of graviton dispersion relations at nanohertz frequencies

Bill Atkins ,1,* Ameek Malhotra ,1,† and Gianmassimo Tasinato1,2,‡
1Physics Department, Swansea University, Swansea SA2 8PP, United Kingdom

2Dipartimento di Fisica e Astronomia, Università di Bologna, INFN, Sezione di Bologna,
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We generalize Phinney’s “practical theorem” to account for modified graviton dispersion relations
motivated by certain cosmological scenarios. Focusing on specific examples, we show how such
modifications can induce characteristic localized distortions—bumps—in the frequency profile of the
stochastic gravitational wave background emitted from distant binary sources. We concentrate on
gravitational waves at nanohertz frequencies probed by pulsar timing arrays, and we forecast the capabilities
of future experiments to accurately probe parameters controlling modified dispersion relations. Our
predictions are based on properties of gravitational waves emitted in the first inspiral phase of the binary
process and do not rely on assumptions of nonlinear effects occurring during the binary merging phase.
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I. INTRODUCTION

The physics of gravitational waves (GWs) offers new
perspectives for testing our understanding of a multitude of
physical phenomena and their theoretical interpretations—
including providing insights into gravitational interactions,
cosmology, and astrophysics (see, e.g., [1,2] for a peda-
gogical treatment of these subjects). In this work, we
discuss a novel approach for probing the GW dispersion
relations based on a generalization of Phinney’s practical
theorem [3] to allow for GW dispersion relations different
than the case predicted by general relativity. We use
propagation effects of GWs traveling cosmological dis-
tances. We remain (for the most part) agnostic to the source
of the dispersion relations, but take inspiration by applying
this to the case of modified gravity.
The multimessenger event GW170817 [4–6] set very

stringent bounds on any deviations of the speed of gravity
cT from the speed of light cγ: jcT − cγj ≤ 3 × 10−15. This
result ruled out many dark energy models based on non-
minimal couplings of extra degrees of freedom with gravity,
as shown in [7–10], building also on ideas explored in
[11–14] (henceforth, we choose units where the speed of
light cγ ¼ 1). However, it is important to note the

GW170817 constraint holds at the hertz frequencies char-
acteristic of LIGO-Virgo-KAGRA (LVK) detections,
and it is possible that at different scales one finds cT ≠ 1,
due to frequency-dependent modifications of the graviton
dispersion relations. In fact, modified gravity models of dark
energy in the Horndeski class (see, e.g., [15] for a review) or
vector-tensor theories (see, e.g., [16]) predict a cT ≠ 1 at
low energies around spontaneously Lorentz-breaking back-
grounds, caused by derivative interactions with the metric.1

Their Lorentz invariant ultraviolet completions, if they exist,
should recover a GW luminal speed at high frequencies [20],
in particular, in the LVK band suggesting that the dispersion
relations may not yet be directly observable by experimen-
tation. Concrete studies based on applications of advanced
effective field theory techniques to dark energy setups, for
example [21], suggest that a departure from the cT ¼ 1
relation should be expected. Moreover, given our ignorance
of the real nature of dark matter and dark energy, it is
important to keep an open mind over scenarios able to
efficiently scatter GWs traveling over the cosmic medium
(as, for example, solid dark matter [22,23]). Such scenarios
motivate modified GW dispersion relations, a topic well
explored in the past decades (see, e.g., [24–27]).
At the present stage, in addition to the theoretical aspects

of the subject—currently under interesting development—
it is also important to exploit forthcoming experimental
opportunities and explore phenomenological ways to test
modifications of standard GW propagation at different
frequencies with GW experiments. In particular, the afore-
mentioned scenarios might predict rapid changes in the
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1Possible exceptions can be realized in degenerate higher order
scalar-tensor scenarios [17–19].
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values of cT as a function of frequency (see, e.g., [20])
which motivate the search for methods to test them. From
the point of view of observations, apart from the 10-Hz
range of LVK measurements, there are existing or pro-
spective bounds on jcT − cγj at different frequency scales.
At GW frequencies 10−18 ≤ f=Hz ≤ 10−14 there are con-
straints from the cosmic microwave background [28]. At
frequencies f=Hz ≃ 10−5 there are Hulse-Taylor-type
bounds [29]. For the 10−4 ≤ f=Hz ≃ 10−2 range, we will
be able to use the redshift induced waveform dependence
[30] for Laser Interferometer Space Antenna (LISA) [31],
as well as its frequency dependence [32]. For
10−4 ≤ f=Hz ≃ 103, there are ideas based on multiband
detections [32,33]. Also the ringing properties of pertur-
bations of black hole horizons can, in principle, be used to
set constraints on cT , see, e.g., [34,35].
The list above does not include nanohertz frequencies,

which are interesting to investigate given the new possibil-
ities offered by strong hints of detection of a stochastic
gravitational wave background (SGWB) [36–39] at those
frequency scales [see Ref. [40] for a study within the
NANOGrav Collaboration to detect new physics with
recent pulsar timing array (PTA) data]. Recent studies
explore modifications of PTA response functions [41–44]
that occur when cT ≠ 1, while various works (see, e.g.,
[45–50]) study further consequences of modified gravity on
PTA data. Here, instead, we consider a novel effect—a
distortion in the frequency profile of a SGWB produced
by supermassive black hole (SMBH) binaries, which is
induced by a frequency-dependent change in the value of
cT at around the nanohertz scales. This effect exploits
propagation effects when GW dispersion relations are
modified and, if detected, would allow us to experimentally
probe a frequency-dependent cT with PTA experiments. In
particular, it allows us to measure the case of a cT varying
with frequency, a phenomenon that would be difficult to
analyze with the alternative methods devised so far.
Moreover, as an important by-product, it can also provide
independent information about the redshift distribution of
the sources of SGWB.
To develop our understanding of the physics we wish to

explore, we generalize Phinney’s theorem [3] to show that
the aforementioned frequency-dependent value of cT
modifies the frequency profile of the SGWB spectrum—
as discussed in Sec. II. This effect leads to a deformation (a
“bump,”) on an otherwise power-law GW spectrum profile.
The properties of the bump depend both on the frequency
dependence of cT and on the redshift of the SMBH sources.
Interestingly, the aforementioned implications of modified
dispersion relations take place during GW emission occur-
ring in the very first inspiral phase of the SMBH merging
process, at zeroth order in a post-Newtonian approxima-
tion. Hence, it is not influenced by screening effects
(Vainshtein mechanism, etc.) that characterize many modi-
fied gravity models and that, due to nonlinearities, make a

comparison with observations particularly difficult—see,
e.g., [15] for a review. In Sec. III, building on [51,52], we
perform Fisher forecasts on the prospects of future PTA
observations to set bounds on cT when monitoring a large
number of pulsars, examining how the result depends on
the modified dispersion relations and on the source proper-
ties. We conclude in Sec. IV. We set cγ ¼ GN ¼ 1.

II. A GENERALIZATION OF PHINNEY’S
THEOREM

Phinney’s theorem relates the energy density in GWs
with an integral in frequency and redshift of quantities
associated with GW sources and GW propagation. In fact,
in their propagation from source to detection, GWs can
experience modified gravity effects that change the stan-
dard relation between GW frequency at emission and
detection. Precisely such cosmological “redshift” effects,
which are well studied in the different context of mod-
ifications of GW luminosity distance (see, e.g., [53,54]),
are at the basis of our generalization of Phinney’s theorem
in a modified gravity setting.
To start with, let us develop some basic formulas relating

GW frequencies at emission and detection. We assume that
the GW speed cT depends on the GW momentum, and we
restrict the gravitational wave speed to be subluminal, with
a dispersion relation taking the form of

ωðkÞ ¼ cTðkÞk; k ¼ jk⃗j; cTðkÞ ≤ 1: ð2:1Þ

To be precise, we must distinguish between the gravita-
tional wave phase velocity, vph ¼ ωðkÞ=k and the group
velocity vgr ¼ ∂ω=∂k. As wewish to remain agnostic to the
source of the dispersion relations and model using a simple
wave packet, we presently restrict our analysis to only
considering the phase velocity, whereby a complete analy-
sis of the phase and group velocities depends on one’s
choice of cTðkÞ ansatz (further discussion may be found
in [42,55]). See Sec. I for the theoretical motivations
supporting this possibility. Now proceeding along the lines
of the arguments developed in [30,56] (building on [1]), we
can write the comoving distance covered by GWs along
their way to detection as

rðGWÞ
com ðtÞ ¼

Z
r

0

dr̃ ¼
Z

t

te

dt̃
cT ½fðt̃Þ�
aðt̃Þ ; ð2:2Þ

where we notice that the comoving distance depends on the
frequency-dependent GW speed cTðfÞ. From now on, we
interchange the momentum-dependent cTðkÞ with a
frequency-dependent cTðfÞ, making use of the implicit
relation k ¼ 2πf=cTðfÞ between frequency andmomentum.
Let us now consider two wave crests crossing the same
comoving distance, following relation (2.2). The difference
between the times of detection is related to the difference
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among time of emission of the wave crests, by (the suffix d
indicates detection position, while s is the source position)

Δtd ¼
aðtdÞ
aðtsÞ

cT ½fðtsÞ�
cT ½fðtdÞ�

Δts: ð2:3Þ

This implies that the GW frequencies, proportional to the
inverse of the wave crest Δt’s, satisfy

fs ¼
ð1þ zÞ
1 − Δ

fd; ð2:4Þ

with Δ given by

Δ ¼ 1 −
cTðfdÞ
cTðfsÞ

: ð2:5Þ

The quantityΔ controls the frequency-dependent GW speed
and plays an essential role in our arguments. It depends on the
GW speed cT at frequencies measured at the position of the
source and of detection. Differentiating Eq. (2.4), we find

dfs
fs

¼ dfd
fd

�
1 −

d ln ð1 − ΔÞ
d lnðfdÞ

�
: ð2:6Þ

These formulas are at the basis of our generalization of
Phinney’s theorem: we follow [3], instead using (2.4) to
relate frequencies at different redshifts. The total present-day
energy density in GWs, as detected by GWexperiments, can
be expressed as

EGW ¼
Z

∞

0

ρc ΩGWðfdÞ
dfd
fd

; ð2:7Þ

with ΩGW the GWenergy density for logarithmic frequency
interval, divided by the critical density ρc. On the other hand,
the quantity EGW is a sum of energy densities as radiated at
each redshift, taking into account the differential relation

dEðdÞ
GW ¼ 1 − Δ

1þ z
dEðsÞ

GW: ð2:8Þ

Integrating, we find

EGW ¼
Z

∞

0

Z
∞

0

NðzÞ
1þ z

�
1 − Δ −

dð1 − ΔÞ
d lnðfdÞ

�

×

�
fs

dEðsÞ
GW

dfs

�
dfd
fd

dz; ð2:9Þ

where NðzÞ is the number of events for unit comoving
volume, occurring between z and zþ dz. Then, equating
relations (2.7) and (2.9), we obtain

ρcΩGWðfdÞ ¼
Z

∞

0

dz
NðzÞ
1þ z

�
1 − Δ −

dð1 − ΔÞ
d lnðfdÞ

�

×

�
fs

dEðsÞ
GW

dfs

�
fs¼ð1þzÞ

ð1−ΔÞfd
; ð2:10Þ

which represents our generalization of Phinney’s theorem.
The generalization includes the quantity between paren-
theses inEq. (2.10), aswell as the evaluationof quantity at the
frequency source fs ¼ ð1þ zÞfd=ð1 − ΔÞ, which includes
the effects of Δ as given in Eq. (2.5).
Before proceeding, let us make a concrete toy example to

explore what we can expect from the previous formula. Let
us assume all sources emit at a common redshift z0 and
consist of binaries in circular orbits. At the leading (zeroth
order) post-Newtonian expansion, the emitted GW energy
reads (see, e.g., the textbook [1])

fs
dEðsÞ

GW

dfs
¼ fs

π

3

M5=3

ðπfsÞ1=3
; ð2:11Þ

with M ¼ ðM1M2Þ3=5ðM1 þM2Þ−1=5 being the binary
chirp mass. This is the GW energy density emitted during
the initial, inspiral phase of the merging event. We assume
that this formula is valid also in a modified gravity setup,
being derived in a Newtonian approximation. Plugging into
Eq. (2.10) and making use of Eq. (2.4), we find

ΩGWðfdÞ ¼
8ðπMÞ5=3

9H2
0

f2=3d
Nðz0Þ

ð1þ z0Þ1=3
"ð1 − d ln ð1−ΔÞ

d ln fd
Þ

ð1 − ΔÞ1=3
#
:

ð2:12Þ

We recognize the characteristic, well-known f2=3 power-
law profile of the GWenergy density, although weighted by
the quantity between square brackets, which depends on
the modified GW dispersion relations associated with the
quantity Δ of Eq. (2.5). If measured, this effect also
provides information on the frequency dependence profile
of cT , a feature that is difficult to extract by other means.
The argument of the square brackets in Eq. (2.12) is the
frequency fd at the detector, which depends on the redshift
z of the source [see Eq. (2.4)]; hence the new part in the
square brackets depends both on frequency and redshift.
Suchmodified gravity effects, if detected, can then be used as
cosmic ladders and provide independent information on the
source redshift. To deduce this result, we do not have tomake
any assumption on strong gravity effects, nor on the behavior
of screening mechanisms in specific modified gravity sce-
narios during the nonlinear binary merging process.
While the above formula is obtained for sources at fixed

redshift, it can easily be generalized (at least formally) to a
population of GW sources at different redshifts. We can
write the GW energy density as
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ΩGWðfdÞ ¼
8ðπMÞ5=3

9H2
0

f2=3d KN 0; ð2:13Þ

with N 0 ¼
R
dzNðzÞ and

K ¼ 1

N 0

Z
dz

1

ð1 − Δðfd; zÞÞ1=3

×

�
1 −

d ln ð1 − Δðfd; zÞÞ
d ln fd

�
NðzÞ

ð1þ zÞ1=3 : ð2:14Þ

Details on the source population as a function of redshift
affects the factor K in Eq. (2.13), which depends on the
modifications in the GW dispersion relations through the
quantityΔ. Hence, if detected, the effects ofmodified gravity
can also probe the redshift distribution of the GW source
population.
We proceed by refining and applying the formulas

obtained above to concrete settings. For the remainder of
this section, for simplicity, we focus on sources emitting
at a specific redshift z0. (In the next section, we will go
beyond this approximation.) We make a phenomenological

assumption on the behavior of cT as a function of frequency.
We choose to use the model established in [32], namely,

cTðf; σ; f�Þ ¼ c0 þ ð1 − c0Þ
�
1

2
þ 1

2
tanh

�
σ ln

�
f
f�

���
:

ð2:15Þ

Schematically, this ansatz for cT generates a transition at a
reference frequency f�, from c0 to 1, such that cT ¼ 1 at the
frequencies detectable by Earth-based interferometers. If f⋆
is sufficiently far from the frequency band of LVKdetections
(around 10 Hz), the stringent GW170817 bounds are readily
satisfied. This choice of dispersion model is not exhaustive,
and it is (in part) designed to describe the modified gravity
scenarios proposed in [20]. One may also perform the
following analysis for several different models with differing
frequency-dependent patterns for cT, as discussed, e.g., in
[30]. However, our choice of ansatz is particularly easy to
manipulate, relying only on three parameters: σ, controlling
the “steepness” of the transition from c0 to cγ; f� controlling
the position of the transition; and c0 being the limit of cT at
low frequencies as shown in Fig. 1.
Further to this, one may easily expand upon this ansatz by

introducing additional parameters to precisely describe the
nature of the transition or the nature of cT in the asymptotics.
For this work, it is sufficient to consider the simplest case,
whereby no additional parameters are included. Taking
σ ¼ 1 and placing Eq. (2.15) into Eq. (2.5) yields

Δðfd;fs;c0;f�Þ¼
c0f2�ð1−c0Þðfd−fsÞð2c0f� þfdþfsÞ
ðf2dþ2c0fdf� þc0f2�Þðc0f� þfsÞ2

:

ð2:16Þ

Subsequently, placing Eq. (2.16) into Eq. (2.12) provides
our result for the GWenergy density in the simplest example
of sources emitting at the same redshift z0, as in the toy
example of Eq. (2.12). We find ΩGWðf=f�; c0; z0Þ produces
a deviation from the typical f2=3 scaling around the

FIG. 1. The quantity cT as a function of f=f� for σ ¼ 1, 2, 5,
demonstrating the behavior of the ansatz (2.15) for c0 ¼ 0.9.

FIG. 2. Plot of the quantity ΩGWðx; c0; z0Þ (with x ¼ f=f�) for z0 ¼ 1, 3 with c0 ¼ 0.6, 0.4 (respectively, left and right panels). We
also examine the quality of fit of the model in Eq. (2.17).
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characteristic frequency f� characterizing ansatz (2.15), with
the magnitude and placement of the deviation dependent on
the choice of z0 and c0. The distorted SGWB frequency
profile acquires a characteristic localized bump (see Fig. 2)
which may make it distinguishable from other effects such as
orbital eccentricities or post-Newtonian corrections. We
emphasize that this bump depends on the frequency depend-
ence of cT , which can be captured by the modified gravity
effects we are presenting here.
Increasing the strength of the dispersion (decreasing c0)

results in a more sizable localized distortion from the f2=3

profile, which is magnified at larger redshift, where the
magnitude and position of the deviation increases dramati-
cally. We construct a numerical fit for the frequency profile
of ΩGW, in terms of a combination of Padé approximants to
reduce the full expression of ΩGW to a manageable form.
The fit is chosen to asymptote to f2=3, with deviations
depending on the parameters c0 characterizing our ansatz
(2.15) and the source redshift z0. It reads, defining x ¼
f=f� and omitting for simplicity a constant normalization
factor (which will be included later),

Ω̃GWðx; c0; z0Þ ¼ x
2
3

2
6641þ

30ð1 − c
1
3

0Þx3
ffiffiffiffiffi
z0

p �
3ffiffiffiffiffiffiffiffi

1þc0
p

þ5−5 ffiffiffiz0p
5þz0

− c0

�
3
�
1.7þ 1.5c0x − 4.5xffiffiffiffiffiffiffiffi

1þc0
p

þ5−5 ffiffiffiz0p
5þz0

�

1þ 30c0x5
�

3ffiffiffiffiffiffiffiffi
1þc0

p
þ5−5 ffiffiffiz0p

5þz0

− c0

�
5

3
775: ð2:17Þ

The previous function reduces to the usual x2=3 ∝ f2=3

profile when c0 ¼ 1. Notice that deviations from the usual
profile depend both on c0 and z0, hence they can be
sensitive to redshift. If modified gravity is measured using
this method, its effects can be used as a distance ladder. To
assess the quality of fit, we plot in Fig. 2 a comparison of
the fit model and the originalΩGW with differing choices of
c0. Figure 2 demonstrates a close correspondence between
ΩGW and the fit in Eq. (2.17) at z0 ≤ 2 and c0 ≥ 0.3. It also
shows that, as z0 increases, the model begins to diverge
from the numerical ΩGW. For the purposes of this study, we
may comfortably restrict to lower z, as numerical simu-
lations [57] and experimental results [58] show that the
peak of the contribution (from astrophysical sources) to the
stochastic gravitational wave background is associated with
redshifts z ≤ 1.
Following this theoretical section in which we developed

formulas generalizing Phinney’s theorem to modified
gravity setup at fixed redshift, we proceed to apply our
results to forecast the ability of future pulsar timing array
experiments to detect distortions of the frequency of ΩGW
and further include the redshift dependence of the sources
themselves.

III. FISHER FORECASTS

In the previous section, we pointed out that a frequency-
dependent GW speed cTðfÞ modifies the predictions of
Phinney’s theorem. The effect is associated with propaga-
tion properties of GWs from source to detection. This effect
consequently causes a localized distortion—a bump—on
the f2=3 frequency profile characterizing the SGWB emit-
ted by binaries in circular orbits, see Fig. 2. In this section,
we investigate whether future experiments can be sensitive

to the quantity c0 of Eq. (2.15) characterizing the deviation
of cT from luminal speed at small frequencies. We also wish
to understand whether modified gravity effects, if present,
can inform us about the nature of the GW source (redshift,
population properties, etc.). Making use of the Fisher
formalism (see, e.g., [59]), we forecast the detectability
of such effects with future PTA observations. Given the
recent strong hint of detection of a SGWB with PTA [36–
39], this topic is very timely. We assume from now on that
the SGWB detected by PTA measurements is sourced by
SMBH binaries in a merging process. We separate the
discussion into two parts, depending on our hypothesis on
the distribution of signal sources.
So far, PTAmeasurements are unable to preciselymeasure

the details of the slope of the SGWB frequency profile. In the
future, measuring more pulsars and/or reducing the corre-
sponding noise sources, the situation should improve. To
address this topic, we adopt an approach motivated by
[51,52], and we consider an idealized situation of Npsr
monitored pulsars (with Npsr a large number) isotropically
located in the sky, all with the same noise properties. This is
certainly an idealized situation, but in first approximation it
mimics what we can achieve in the forthcoming Square
KilometreArray era [60,61], whenwewill be able tomonitor
hundreds of millisecond pulsars.
Instead of ΩGW, we focus on the GW intensity I as a

quantity more commonly studied in PTA data analysis. We
assume the fit Ω̃GW in Eq. (2.17) as a theoretical template for
theGWenergy density, including the effects ofmodifiedGW
dispersion relations. The GW intensity then reads

I ¼ 3H2
0

4π2f3
Ω0Ω̃GW; ð3:1Þ

NOVEL PROBE OF GRAVITON DISPERSION RELATIONS AT … PHYS. REV. D 110, 124018 (2024)

124018-5



where the overall constant factor Ω0 captures the overall
normalization omitted in the fitting template (2.17) for the
SGWB frequency profile. In measuring the intensity of the
GW, we can learn about the amplitude and frequency
dependence of the SGWB, but also set constraints on the
quantities c0 and z characterizing the theoretical fit Ω̃GW of
Eq. (2.17). These are, in fact, the quantities we are interested
in and seek to constrain with future datasets. From now on,
we set Ω0 ¼ 8.1 × 10−9 (such that the spectrum aligns with
the amplitude measured by NANOGrav in [36]), and we
choose a reference frequency f� ¼ 1 × 10−8 (to be in line
with the order of magnitude of the typical frequencies used
for PTA experiments).

A. Sources at common redshift z

To start our analysis, we make the initial simplification
by assuming all SMBH sources occur at a fixed redshift z.
PTA experiments measure time delays on millisecond
pulsar periods. To detect GWs, we correlate measurements
between pulsar pairs, each pulsar in the pair denoted with
(a, b). Correspondingly, we build a Gaussian log-likelihood
in terms of the GW intensity, evaluated at a fixed frequency
f within a band Δf,

Lf ¼ − logðLÞ ¼ 1

2
ðd − μÞC−1ðd − μÞT; ð3:2Þ

where d corresponds to the vector of measured data, Cij is
the covariance matrix, and μ represents the vector of length
Npair ¼ NpsrðNpsr − 1Þ=2, containing the cross-power spec-
trum of the gravitational wave induced time residuals for
distinct pulsar pair. We denote the latter with RGW

ab . To be

explicit, each element of μ contains RGW
ab plus noise,

however, as we shall soon search for the expectation values
of Rab, we anticipate the noise contributions average to
zero (more on this later). We assume that the intensity I is
isotropic and independent from the GW direction. The
quantity RGW

ab , at a given frequency, results

RGW
ab ¼ I ·HðνÞ

ð4πfÞ2 ; ð3:3Þ

with ν ¼ â · b̂ being the angle between the pulsar directions
(with respect to Earth) in a given pulsar pair. We take for the
function HðνÞ the Hellings-Downs formula [62]

HðνÞ ¼ 3þ ν

3
þ 2ð1 − νÞ ln

�
1 − ν

2

�
: ð3:4Þ

In fact, we might expect corrections to this formula for
modified dispersion relations, which have been computed
in the limit of frequency-independent, constant cT (see,
e.g., [41–44]). However, we take the Hellings-Downs result
as first approximation in our setup where cT has a
pronounced frequency dependence in the PTA band. If
the induced effects from modified gravity corrections are
small, this remains a reasonable first order approximation;
however, it is also important to note that if corrections are
prominent at characteristic frequencies, they may help
break the degeneracies similarly to those seen in Fig. 3.
We now proceed to label each pair of distinct pulsars

with capital indices, I ¼ ða; bÞ, as in [51]. As mentioned
above, we make the hypothesis that all pulsars have
identical noise properties. We assume a weak-signal limit

FIG. 3. Left: the relative error in c0 as a function of Npsr for 1 − c0 ¼ 10−1 to 1 − c0 ¼ 10−2 marginalized over redshift. Right: the
relative error ellipses for log10ð1 − c0Þ against z for Npsr ¼ 500, 2000 and 1 − c0 ¼ 5 × 10−2 with all sources located at the benchmark
value z ¼ 1. The quoted errors refer to the Npsr ¼ 500 case.
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where the background signal is subdominant to the intrinsic
common pulsar noise, which we define as σp; namely,2

I ≪ ð4πfÞ2σ2p: ð3:5Þ

We select for our analysis a time of observation

Tobs ¼ 15 yr; ð3:6Þ

as in the current NANOGrav dataset. We are then able to
work with a diagonal covariance matrix of the form [51]

CIJ ≈
σ2aσ

2
b

2TobsΔf
: ð3:7Þ

We then generate our noise curve from the HASASIA package
[63] withNpsr uniformly generated pulsars, choosing (for the
white noise parameters) a cadence Tcad ¼ yr=15, and select-
ing Δtrms ¼ 100 ns to be the rms error of the timing
residuals. For the red noise parameters, we select
ARN ¼ 2 × 10−15, and αRN ¼ −2=3 in line with [64] such
that we remain within the weak-signal limit. After these
considerations, we continue our discussion. We choose the
size of the frequency bands Δf ¼ 1=Tobs. Hence, our
covariance matrix becomes proportional to the identity

C−1
IJ ≈

2

σ4p
δIJ; ð3:8Þ

and the log-likelihood reduces to a simple expression at a
given frequency

Lf ¼
2

ð4πfσ2pÞ2
δIJHðνÞIðf=f⋆; c0; zÞ: ð3:9Þ

The full likelihood requires a sum over all frequency bands:
L ¼ P

bandðfÞ Lf. We choose these bands ranging from
1=Tobs to 20=Tobs. The Fisher matrix is obtained by
computing second derivatives of the log-likelihood over
the components θα of the vector θ⃗ of parameters of interest
and taking the expectation value

Fαβ ¼
�

∂
2L

∂θα∂θβ

�
: ð3:10Þ

We restrict the vector of parameters to constrain to the
quantities c0 and z (recall that we are assuming that all
sources are located at the same redshift). The Fisher matrix
evaluates to

Fαβ ¼
1

2

X
bandðf=f�Þ

TrðC−1
IJ ∂αCIJC−1

IJ ∂βCIJ þ C−1
IJ ð∂αμ∂βμT þ ∂βμ∂αμ

TÞÞ;

¼ 1

σ4p

X
bandðf=f�Þ

ð∂αμ∂βμT þ ∂βμ∂αμ
TÞ;

¼ 1

ð4πfÞ2σ4p
X

bandðf=f�Þ

0
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2 ∂Rab
∂z

	
∂Rab
∂z



T

1
CA: ð3:11Þ

The marginal error in the parameter θα we wish to
constrain is given by

Δθα ≥
ffiffiffiffiffiffiffiffiffiffiffiffi
ðFÞ−1αα

q
: ð3:12Þ

From these formulas, focusing on the quantity c0 we wish
to constrain [see Eq. (2.15)], we determine its error Δc0, as
a function of the number of pulsars Npsr, marginalized over
the redshift. We represent the result in the left panel of
Fig. 3, plotting the relative error of the deviation 1 − c0
(again, marginalized over the redshift). For generating the
plots in the Fisher analysis, we make use of the GETDIST

package [65].
The plot exhibits a linear scaling of the error with the

pulsar number Npsr, such that a deviation of the order (for
example) 10−1 may be discerniblewithin a 10% relative error
for Npsr ∼ 1000. We may consider this case more carefully
and explorewhether data, besides c0, can also independently

2We note that the strength of the signal observed by various
PTA collaborations means that currently PTAs operate in the
intermediate, rather than the weak-signal regime. To keep our
Fisher analysis simple, we have deliberately chosen noise
parameters such that the weak-signal limit applies for our
hypothetical future PTA. A more realistic analysis would use
the lower noise levels of current PTAs or the expected noise levels
of future PTAs and account for the full covariance matrix.
Lowering the noise levels will lead to smaller error bars on
the parameters of interest, but only up to a point. Once we reach
the intermediate-/strong-signal limit, the signal variance takes
over as the limiting factor in the measurement of the parameters
of interest, preventing us from measuring these parameters with
arbitrary precision.
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constrain the common source redshift z (whose benchmark
value is here z ¼ 1). We represent error ellipses in the right
panel of Fig. 3, showing that, in fact, we can obtain a good
precision (of order 10%–20%) in the determination of zwith
c0, if we monitor a sufficient number of pulsars. One may
find that, for log10ð1 − c0Þ ¼ −1.3, a 1-σ result may be
totally visible at Npsr ¼ 500, and a 2-σ result may be visible
for Npsr ¼ 2000. Deviations from standard dispersion rela-
tions, then, can also be used as a ladder to determine the
distance from the source. It would be interesting to further
develop this topic, also studying possible ways to resolve
degeneracies with 1 − c0 that are present in the right panel of
Fig. 3. Intuitively, one possible source of degeneracy for this
model may simply occur through the strength of the signal,
with sources at lower z0 increasing the magnitude of the
bump characteristically associated with the strength of the
deviation, c0. Upon further analysis, this may be resolvable
by closer inspection of the source distribution model over a
variety of choices of z0. We then choose to proceed along the
lines of improving the source model in the proceeding
section.

B. Refining the model: Integrating over redshift

In the analysis so far, we hypothesized that all sources
appear at a common redshift. We now relax this assumption
and work with the SMBH population model developed in
[66], as used in [67]. See also [68] and references therein
for a recent study with refinements on SMBH population
scenarios. We already briefly commented around Eq. (2.14)
about the mechanism by which our generalization of
Phinney’s theorem can accommodate integration over
sources at distinct redshifts. The integration primarily
depends on the dependence of the pulsar number over
redshift. Distortions of the SGWB profile induced by
modified dispersion relations can be used to probe the
redshift dependence of the SMBH population. Concretely,
we extend our previous analysis and wish to integrate the
fitting formula (2.17) over redshift. We may then define

ΩGWðx; c0; zÞ ¼
1

N0

Z
z

0

Ω̃GWðx; c0; z̃ÞNðz̃Þdz̃; ð3:13Þ

where NðzÞ is the population at a given redshift, and
N0 ¼

R
dzNðzÞ. The number density of sources emitting

per redshift, per logarithmic chirp mass is obtained as

dn
dzdlog10M

¼ ṅ0

�
M

107M⊙

�
−α
e−M=M�ð1þ zÞβe−z=z0 dtr

dz
:

ð3:14Þ

The quantity tr represents the coordinate time in the source
frame, and the parameters α and M� govern the chirp mass
distribution,while theparameters z0 andβ govern the redshift
distribution (see Ref. [66] for more details). The normalized
merger rate ṅ0 is fixed such that the overall amplitude

matches the profile in Eq. (3.1)—this may be fixed more
rigorously with a treatment such as in [69], however, our
simple fixing remainswithin the same bounds.Onemay then
rewrite this in terms of the number of binaries in a spherical
shell of thickness dz emitting at a frequency fr such that

dn
dzd log10M

¼ dN
dzd log10Md log10 fr

d log10 fr
dtr

dtr
dz

dz
dVc

;

ð3:15Þ

with Vc representing the comoving volume where

dtr
dz

dz
dVc

¼ 1

4πð1þ zÞD2
A
; ð3:16Þ

and DA is the luminosity distance [1]. Further assuming the
only change in fr occurs due to energy loss from gravita-
tional radiation yields

d log10 fr
dtr

¼ 96

5
π8=3M5=3f8=3r : ð3:17Þ

Explicitly, we work with population models (1)–(3) exam-
ined in [67] (and originally in [66]).We report the benchmark
values for the corresponding parameters in Table I. The
population as a function of redshift is then

NðzÞ ¼ 5ṅ0
24π5=3

Z
1

M8=3

�
M

107M⊙

�
−α
e−

M
M�dM

×
Z

1

f11=3r

dfr

Z
D2

Að1þ z̃Þβþ1e−
z̃
z0dz̃: ð3:18Þ

Working such that M ¼ 3.2 × 107M⊙ appears as the
upper limit of the integration over mass and again taking
the reference frequency f� ¼ 1 × 10−8, we can numerically
integrate to find a population structure shown in Fig. 4. This
population model counts the number of contributing
sources out to a given redshift z̃, whose contribution to
the background is observed in Eq. (3.13). For this analysis,
we assume H0 ¼ 70 km s−1Mpc−1, ΩM ¼ 0.3, ΩΛ ¼ 0.7,
and Ωk ¼ 0.
By performing the same kind of Fisher analysis as

described in the previous subsection—always with the
log-likelihood (3.10)—we can place constraints on the

TABLE I. The benchmark population model parameters we
consider.

Model α M�½M⊙� β z0

(1) 1 3.2 × 107 3 3
(2) 0.5 7.5 × 107 2.5 2.4
(3) 0 1.8 × 108 2 1.8
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quantity c0, by integrating sources up to a given redshift
value. Figure 5 (and Table II) demonstrates the error
bounds for c0 for population model (1) (first row) and
(3) (second row). Model (2) is an intermediate case among
these (as can be guessed by Fig. 4) and we do not represent
the results explicitly. We restrict the integration of sources
up to z ¼ 1 for both source population models, highlighting
the increased precision of 1 − c0 for different values of
monitored pulsar number Npsr and population model
choices. Binaries at low redshift (or sources inducing large
dispersion) will produce the dominant signal and amplify

the magnitude of the deviation due to modified gravity.
This effect appears particularly prominent when comparing
across population models—population model (1) reprodu-
ces a more homogeneous population of low-mass black
hole binaries distributed relatively broadly across redshift.
In comparison, population model (3) is more inhomo-
geneous and contains fewer, but more massive (and thus,
louder) binaries distributed in a more concentrated nearby
region. It would, therefore, be expected that this distribu-
tion provides a lower error in 1 − c0, as the signal sources
will be more clearly resolved.
The results indicate that, within the hypothesis behind

our analysis, values of 1 − c0 of order 10−2 can be tested
around the level of 10% accuracy by monitoring many
pulsars; however, the accuracy rapidly degrades as we
reduce the values of 1 − c0. Including the population model
appears to reduce the relative error by approximately 1
order of magnitude—which would be anticipated due to a
more precise source-modeling scheme (as the results
demonstrated in Fig. 5 are found by marginalizing over
redshift, with the upper limit of the integration in z
appearing as a Fisher parameter). We can interpret this
upper limit as the redshift to the furthest source, and it
characterizes the spread of the source distribution. For this
model, we cannot take the redshift to be too large, as at
large redshift, the fit model Ω̃GW begins to diverge. We also
see from Table II that for population model (3), it may be
possible to observe deviations on the order of 1 − c0 ¼
10−3 with higher pulsar numbers. It would be very

FIG. 5. The relative error bounds for log10ð1 − c0Þ ¼ −1;−2;−3 benchmark values, integrating over redshift Eq. (3.18) to z ¼ 1. First
row: population model (1). Second row: population model (3). We select Npsr ¼ 200 and Npsr ¼ 500. In all plots, the darker bands
represent a 1-σ deviation, and the lighter bands represent a 2-σ deviation. The quoted errors refer to the Npsr ¼ 200 case with all errors
tabulated in Table II.

FIG. 4. The SMBH binary population models (1)–(3) of Table I,
as a function of z for binaries with chirp mass M ¼ 3.2 ×
107M⊙ emitting at the frequency f�.
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interesting to refine our discussion and consider more
realistic modeling for the pulsar noise or explore further
source population models, for instance, (4) and (5) in [67]
or phenomenological models as in [70], to discover their
ability to constrain deviations from c0 ¼ 1, further pushing
the boundaries of smaller detectable deviations.

IV. CONCLUSIONS

Several well-motivated scenarios of modified gravity,
when applied to cosmological settings, predict that the
speed of GWs is different from that of light. We generalized
Phinney’s practical theorem to scenarios with modified GW
dispersion relations. The generalization is particularly
interesting to consider in models predicting a frequency-
dependent GW speed, which changes in a sizable way
within the frequency band of a given detector. Adopting a
well-motivated ansatz for modified GW dispersion rela-
tions, we pointed out that they can lead to a localized
distortion on the SGWB frequency profile, potentially
detectable by future experiments. We focused on the

SGWB produced in the initial inspiral phase by super-
massive black hole binaries in circular orbits. By means of a
dedicated Fisher analysis, we forecasted opportunities to
detect modified gravity effects with PTA experiments,
monitoring a large number of pulsars. We pointed out that
these effects, in addition to modified gravity, also depend
on the details of the source population, alongside redshift
position of the GW sources. If detected, the effects we have
highlighted can be used as cosmic ladders to infer cosmic
distances. It would be interesting to further explore these
ideas, which require careful discussion and analysis of
intrinsic noise pulsar properties and further considerations
of possible degeneracies with astrophysical effects. While
we focused on applications to pulsar timing arrays working
at nanohertz GW frequencies, our generalization of
Phinney’s theorem may readily be applied to other fre-
quency bands and to ground- or space-based detectors; for
example, to study possible modifications of the frequency
profile of the SGWB caused by stellar origin binary black
holes in the LISA band [71], which might be detected, for
example, using the techniques proposed in [72]. We hope to
return to investigate these possibilities in separate studies.
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