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Abstract 

Canopy-forming brown macroalgae provide structural support for a diverse range of rocky shore 

organisms, altering rocky coastline into vibrant coastal macroalgal forests. Intertidal macroalgae 

provide a range of ecosystem services, and macroalgal forest cover is considered an essential ocean 

variable for monitoring the anthropogenic degradation of coastal ecosystems. Advances in remote 

sensing techniques, including machine learning and brown algae index (BAI), could upscale efforts 

to remotely map intertidal macroalgal forests using multispectral satellite imagery. However, previous 

machine learning application is limited to higher resolution images from small aircraft, whereas BAI 

regression techniques lack validation on heterogeneous or diverse intertidal forests and are limited to 

broad taxonomic groups containing multiple spectrally variable species. Random Forests classifiers 

were trained using unmanned aerial vehicle (UAV) data from four shores around the UK. I used this 

to predict functional group cover based on multispectral images from the European Space Agency’s 

Sentinel-2 satellite both i) within the original training shores, and ii) two new sites independent of 

model training. Total cover estimates were compared to those from previously employed BAI 

regression models, and re-parameterised BAI regression models using data from the four training 

shores containing greater heterogeneity and diversity. Random forest models accurately predicted 

functional group cover during within-set cross-validation but require the incorporation of intra-

species variation in reflectivity to predict group cover on novel shores containing different 

environmental conditions and species traits. BAI regression models provided more robust estimates 

of total brown macroalgal cover when fitted to data that reflects the natural range heterogeneity and 

diversity present in intertidal macroalgae habitats. Caution is advised when applying a single BAI 

regression model as factors that impact near-infra-red or green reflectance can weaken predictability, 

such as variations in species reflectivity. Nevertheless, results revealed that multispectral satellite 

imagery can upscale the mapping of intertidal macroalgal coverage around heterogeneous UK shores, 

improving estimations of ecosystem services and monitoring of anthropogenic degradation. 
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Introduction 

Coastal habitats and macroalgal forests 

Canopy-forming brown macroalgae engineer barren rocky coastlines into complex three-dimensional 

habitats, where large brown species provide shelter to a varied community of benthic fauna and flora 

(Lamy et al., 2020; Metzger et al., 2019). Environmental conditions vary greatly within the relatively 

small areas of intertidal zones compared to terrestrial or subtidal aquatic habitats (Underwood, 2000). 

For instance, variation in exposure along local coastlines and desiccation stress within individual 

shores creates pronounced zonation of macroalgal species (Underwood & Jernakoff, 1984), in 

addition to biotic factors including interspecific competition and grazing pressure that can limit spatial 

extents further impacting zonation patterns (Hawkins et al., 2020; Underwood & Jernakoff, 1984). 

The pronounced zonation patterns within relatively small areas provide ideal habitats to evaluate the 

effect of abiotic environmental variables and biotic interactions on community structuring (Hawkins 

et al., 2020). In the North Atlantic, common canopy-forming macroalgae range from fucoid 

rockweeds including Ascophyllum nodosum and Fucus species to larger kelp species such as 

Laminaria digitata and Saccharina latissima (Yesson et al., 2015). This diversity of macroalgal 

species likely contributes to the wide array of ecosystem services they provide, including biodiversity 

enhancement (Lamy et al., 2020; Metzger et al., 2019), coastal defence, nursery habitats, and carbon 

sequestration, although this last service remains poorly understood and previously overlooked due to 

the lack of in-situ sedimentary carbon storage (Bayley et al., 2021; Edgar & Moore, 1986; Krumhansl 

& Scheibling, 2011; Lewis et al., 2023; Teagle et al., 2017; Thornber et al., 2016). Moreover, certain 

macroalgae can indicate coastline health (D’Archino & Piazzi, 2021; Juanes et al., 2008; Pinedo et 

al., 2007), and others are harvested for beneficial compounds like alginates, which can provide 

economic support for local populations in addition to fishery supplementation (Bertocci et al., 2015; 

Edgar & Moore, 1986; Greenhill et al., 2021; Vondolia et al., 2020; Wing et al., 2022).  

Threats to macroalgae forests 

Coastal habitats including macroalgal forests are under threat from loss of available habitat due to 

factors such as coastal development, anthropogenic pollution (Orlando-Bonaca et al., 2021; Yesson 

et al., 2015), and climate change (Hawkins et al., 2008; Norderhaug et al., 2020). Macroalgal forest 

cover is proposed to be an essential ocean variable that can be used to evaluate the impact of 

anthropogenic threats like climate change on coastal habitats (Miloslavich et al., 2018; Yesson et al., 

2015). Consequently, the ability to remotely estimate macroalgal cover would improve the efficiency 

of recording anthropogenic impacts on coastal habitats and enable effective mitigation or 

management (Brodie et al., 2018; Lewis et al., 2023; Rossiter et al., 2020). Furthermore, accurate 



12 
 

mapping of macroalgal species could aid the assessment of biodiversity’s role in maintaining 

functionality and service provision of ecological communities over varying environmental contexts, 

especially over large region-sized scales (Schrofner‐Brunner et al., 2023; Weiskopf et al., 2022). Yet, 

while in situ, manual, sampling of macroalgal habitats is done in developed and easily accessible 

locations, developing spatially explicit remote sensing techniques could expand application and 

reduce the reliance on extensive, costly, and time-prohibitive field surveys. Additionally, using open-

access satellite imagery further increases the scope of application, compared to aerial surveys or 

hyperspectral imagery, which can be limited by the cost and workload associated with capturing larger 

areas. Moreover, researchers can capitalize on time series of satellite imagery, with examples such as 

Sentinel and Landsat capturing images continuously since 2015 and 1972 respectively. 

Remote sensing application in coastal habitats 

Historically, quantitative estimates of macroalgal extents have been predominantly based on labour-

intensive field surveys or broad-scale mapping of forests from aerial photographic surveys (Brodie et 

al., 2018; Burrows, 2012). Spatial extents are then related to environmental conditions that govern 

species distribution models. However, the accuracy of species distribution models can be limited by 

the low resolution of environmental data. Furthermore, a lack of understanding of the rules governing 

ecological assembly at finer-scale variations of environmental gradients, such as substrate rugosity, 

can reduce the accuracy of species distribution models (Dudley & D’Antonio, 1991; Muth, 2012; 

Schrofner‐Brunner et al., 2023; Underwood & Jernakoff, 1984). As an alternative or complement to 

modelling distributions based on limited data, researchers can use remote sensing to directly map 

habitat coverage over large scales. Remote sensing techniques have been successfully applied to 

tropical habitats such as coral reefs, seagrass meadows, and mangrove forests, as well as temperate 

subtidal kelp forests and intertidal fucoid assemblages (Finger et al., 2021; Hamilton et al., 2020; 

Purkis, 2018; Veettil et al., 2020; L. Wang et al., 2019). Remote sensing techniques can identify 

spectral characteristics between regions of interest due to differences in reflectance patterns over 

different electromagnetic wavelengths (Brodie et al., 2018; DeFries & Chan, 2000; Lewis et al., 

2023). Due to their bidaily tidal exposure, intertidal macroalgal forests present model target habitats 

for the application of remote sensing techniques, because of reduced interference from deeper water 

on algae reflectivity (Brodie et al., 2018; Malthus & George, 1997). However, previous mapping of 

macroalgae has been predominantly restricted to broad habitat types or vegetation indices targeted to 

a single broad group of interest (Kotta et al., 2018; Lewis et al., 2023; Rossiter et al., 2020).  
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Vegetation indices and macroalgae 

Vegetation indices can target broad vegetation types within ecosystems such as forests, grasslands, 

and coastal habitats (Hu, 2009; Lewis et al., 2023; Mora-Soto et al., 2020; Siddiqui & Zaidi, 2023). 

Previous studies have established vegetation indices specific to macroalgae and have been employed 

to estimate cover. These indices include the floating algal index, seaweed enhancing index, and brown 

algae index (BAI) (Hu, 2009; Lewis et al., 2023; Mora-Soto et al., 2020; Siddiqui et al., 2019). Some 

of these indices can differentiate between broad habitat classes within macroalgae forests (Lewis et 

al., 2023; Mora-Soto et al., 2020), while others use specific thresholds within more generalised 

vegetation indices, such as the normalised difference vegetation index (NDVI; (Cui et al., 2018), and 

the enhanced vegetation index (EVI; (Siddiqui et al., 2019). The spectral resolution of the imagery 

used significantly impacts the performance of vegetation indices and image resolution is mainly 

dependent on the altitude of the sensor during image capture (Kotta et al., 2018; Lewis et al., 2023; 

Rossiter et al., 2020). Unmanned aerial vehicles (UAV) provide high-resolution imagery of limited 

areas due to restrictions in battery life, access, and weather conditions. On the other hand, satellites 

like the European Space Agency’s Sentinel-2 provide open-access satellite imagery with a resolution 

of approximately 6-10m and a resample time of 2-3 days (European Space Agency, 2015; Phiri et al., 

2020) However, availability is limited by cloud cover, and coordination with low tide for intertidal 

areas. Greater resolution images are available, such as DigitalGlobe’s WorldView-3 satellite 

supplying multispectral imagery with 1.24m resolution (DigitalGlobe, 2014). However, commercial 

imagery such as this is prohibitively costly, especially when covering large areas or along extensive 

coastlines. 

Combining UAV and satellite imagery to improve cover estimates 

By combining high-resolution UAV cover observations with multispectral satellite imagery, research 

has improved the mapping of macroalgal forests using satellite imagery  (Duarte et al., 2022; Kotta 

et al., 2018; Lewis et al., 2023). The utility of UAVs in this context is that they allow accurate 

quantification of macroalgal cover on scales that are impractical to manually survey. Cui et al. (2018) 

applied statistical regression models combining high-resolution cover predictions with those from 

satellite imagery to improve the detection of floating green algal blooms from satellite images. Later, 

this technique was applied to intertidal brown canopy-forming macroalgae. Lewis et al. (2023) 

introduced the brown algae index (BAI), which effectively identified canopy-forming brown 

macroalgae from UAV imagery. Using polynomial regression models they predicted brown canopy-

forming macroalgal cover using BAI values from Sentinal-2 imagery. The use of statistical regression 

models has enabled accurate predictions of brown canopy-forming macroalgal cover from satellite 

imagery, comparable to results from higher-resolution imagery. However, their predictions were 
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limited to dense stands of homogenous forests, dominated by fucoid species including Fucus serratus, 

Fucus vesiculosus and Ascophyllum nodosum. Therefore, the accuracy of their cover estimates is 

untested in areas that contain more diverse and heterogeneous assemblages. This is important because 

assemblages with greater diversity and heterogeneity can have more variability in spectral reflectivity, 

due to the different reflective profiles of individual species, and interactions between species’ traits 

(and reflectance) and the environment (Uhl et al., 2013) 

Variation in the spectral characteristic of macroalgae species 

Different species of macroalgae show variations in trait expression, including accessory pigmentation 

that can cause differences in their reflectivity (Rossiter et al., 2020; Schrofner‐Brunner et al., 2023; 

Uhl et al., 2013). Moreover, larger-scale variations in environmental conditions can lead to greater 

trait variation and spectral reflectivity, making it difficult to accurately predict the total cover of 

macroalgal forests. Incorporating individual species' reflectivity may enhance the accuracy of total 

cover predictions, and possibly enable the mapping of macroalgal species. Previous research has 

outlined the analogous spectral signatures of macroalgal species within the same genus making the 

separation of species difficult (Uhl et al., 2013). However, a combination of remote sensing and 

machine learning techniques could distinguish between reflectance profiles of different functional 

groups (Belgiu & Drăguţ, 2016; DeFries & Chan, 2000; Pham et al., 2023; Rossiter et al., 2020; Uhl 

et al., 2013). Morpho-functional classification has been widely applied to macroalgal communities 

due to the difficulty in attaining species-level identification (Balata et al., 2011). Although their 

effectiveness in assessing spatial-temporal patterns is disputed, previous research has used functional 

groups to effectively monitor abundance patterns of macroalgae in response to environmental stress 

(Balata et al., 2011).  

Enabling cover predictions of macroalgal groups using machine learning  

Rossiter et al. (2020) were able to combine machine learning with UAV imagery to classify areas of 

macroalgal forests into Ascophyllum nodosum, decaying wrack, and mixed Fucoid assemblage 

including Ascophyllum nodosum and Fucus species (Rossiter et al., 2020). Because of similarities in 

their morphological traits and spectral characteristics, functionally grouping certain species can 

improve the predictability of macroalgal spatial extents (Balata et al., 2011; Rossiter et al., 2020; Uhl 

et al., 2013). Machine learning techniques previously applied to remote sensing include maximum 

likelihood and random forest classifiers. Maximum-likelihood classifiers determine the likelihood 

that a pixel belongs to a specific class by using an estimated probability density function, and each 

class is assumed to have a Gaussian distribution (Foody, Campbell, Trodd, & Wood, 1992). On the 

other hand, random forest methods are ensemble classifiers. They combine multiple decision tree 
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classifiers, where each tree is created using a random subset of training data. Individual trees cast unit 

votes for a class and input vectors are assigned to the class with the most votes (Belgiu & Drăguţ, 

2016; Pal, 2005). Random forest classifiers have proven to be effective across a wide range of 

applications and have the potential to utilise a wide range of spectra information when estimating 

vegetation spatial extents (Belgiu & Drăguţ, 2016; Pal, 2005). The incorporation of a wider range of 

spectral information may enable models to predict the cover of specific macroalgal groups with 

potentially subtle differences in spectral signatures. However, the ability of random forest classifiers 

to glean information from a wide range of spectral information and the resulting predictive capacity 

remains poorly tested, especially within intertidal macroalgal habitats. Moreover, although previous 

attempts have outlined the difficulty in distinguishing between macroalgal species, the ability to 

identify groups of spectrally distinct macroalgae to gain more functional information from satellite  

imagery has not been effectively evaluated. 

Aim and hypotheses 

To explore how remote sensing techniques can be most effectively applied to heterogeneous intertidal 

forests around the UK (Figure 1). To do this 1) machine learning techniques were applied to predict 

macroalgal functional group cover using Sentinel-2 multispectral imagery. As this is an ambitious 

and risky undertaking, an alternative approach was tested to estimate the total cover of macroalgae 

Figure 1: Conceptual methodological workflow. BAI = brown algae Index, UAV = Unmanned Aerial Vehicle. 

I will first create training data (images, far left) for both the functional group classes and total BAI cover maps 

based on UAV multispectral imagery, which will be validated using in-situ quadrats. UAV cover estimates will 

then be related to S2A reflectance values per pixel for random forest models, and S2A BAI values for my BAI 

regression model (Grey section). Random forests class and total cover estimates will be compared to BAI total 

cover predictions in two stages, the first using within-set cross-validation (Blue section), and the second using 

data from two novel shores (Green section). The novel shore estimates from both models created here are 

finally compared to predictions from previously created BAI regression models (Regression A& B). 
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on heterogeneous and diverse shores. Specifically,  2) a BAI regression model based on those outlined 

by Lewis et al. (2023) was re-parameterised across highly heterogenous shores and the predictive 

power of this model was tested on novel shores.  

It was hypothesized that 1) the application of machine learning to incorporate variations in reflectivity 

between macroalgae species, and the potential use of a greater number of spectral bands, will allow 

for the classification of key UK macroalgal functional groups from multispectral satellite imagery. 

Furthermore, it was expected that 2) by combining individual functional group covers the random 

forest classifier will improve total brown macroalgae cover estimates in comparison with the BAI 

regression models created using a single vegetation index. Finally, 3) due to the incorporation of 

greater heterogeneity in model fitting and classifier training, the models created here will more 

accurately predict total cover compared to previous BAI regression models applied by Lewis et al. 

(2023). 

Methods 

Figure 2: Sites across the UK and Orkney (top right) where in-situ 

cover data, UAV and satellite imagery were collected and compared. 

BM: Boulmer, CC: Cullercoats, GH: Guardhouse, LH: Long Hope, 

MB: Mumbles, PW: Port Wrinkle. Further site details are outlined in 

Table 1. 
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In-situ macroalgae cover field survey 

Spatial abundances of intertidal macroalgal forests were manually collected for 6 sites, from 4 regions 

across the UK during the spring/summer of 2022/23 (Figure 2). Sites varied in environmental 

conditions and macroalgal community. This range of shores included sheltered sites dominated by 

dense stands of Fucus serratus and Ascophyllum nodosum, to more exposed shores containing greater 

diversity of fucoid and kelp species. The location and conditions of each shore are outlined in Table 

1, along with dates of image capture. Systematic sampling via grid method was employed at spring 

water low tide to the top of the intertidal zone at each shore, recording the percentage cover of all 

species within 0.25m2 quadrats. The number of quadrats per shore depended on the horizontal 

distance between high and low tide. Each shore had between 85 and 100 quadrats, with exception for 

Mumbles with 114, Portwrinkle with 74, and Long Hope with 53. Images of untouched macroalgae 

Figure 3: Visual explanation of in-situ rocky shore sampling, UAV imagery and classifier techniques. A: 

S2A Near Infra-Red reflectance pixels overlaid with BAI > 4 from UAV imagery. B: example UAV 

macroalgal class map. C: Close-up of macroalgal forest showing visual difference in colour and texture 

between functional groups, outlining Ascophyllum nodosum within yellow-highlighted area showing visual 

differences between older basal parts and newly grown tips, D: Method of quadrat (0.5 x 0.5m) picture 

capture, taken from above and perpendicular to the ground.  

A B 

C D 
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canopy (larger individuals covering organisms beneath), and sub-canopy (canopy-forming species 

covered by other species) in quadrats with overlapping species, were taken from above and 

perpendicular to the ground (Figure 3). Percentage cover was calculated from these images using 

Vidana image analysis software, created by John Hedley, Marine Spatial Ecology Laboratory, 

University of Queensland (Version 2, Hedley, 2003). Assemblages encompassed a variety of brown 

canopy-forming species, including kelps (mainly Laminaria digitata), ubiquitous fucoid species 

(including Fucus serratus, Fucus vesiculosus and Ascophyllum nodosum), to higher shore fucoids 

such as Fucus spiralis and Pelvetia canaliculata. Sites were selected for the range of environmental 

conditions, species diversity, heterogeneity, and coverage of a latitudinal gradient.  

 

UAV image collection and processing 

UAV imagery was captured with a 5-band multispectral optical camera (capturing RGB image along 

with Red [R], Green [G], Blue [B], Red edge [RE] and Near-Infrared [NIR] as individual bands) 

mounted on a DJI Phantom 4 Pro UAV (DJI, Shenzhen, China). Flights were at an altitude of ~50m, 

with 80% side overlap, 70% forward overlap, and an image capture interval of 2s, giving a speed of 

~17km/h, producing a ground sampling distance pixel size of ~2.5cm. DJI GS Pro was used to create 

the flight plans, completed at the lowest possible tide mark during mean low water spring tides during 

the spring and summer months of 2022/23. All flight dates and times are shown in Table 1. Digital 

surface models and reflectance-corrected orthomosaics were created using Pix4Dmapper Ground 

Control Points were used for differential-GPS correction, with around 6-9 locations at each site 

recorded using an EMLID reach RS2 GNSS GPS. The final products were sets of reflectance maps, 

Table 1: Dates of multispectral image capture from Sentinel-2 satellite (S2A), and unmanned aerial vehicle 

(UAV) for each shore. Location and description of each site. Quadrat surveys coincided with the UAV 

image capture date for each site. CC: Cullercoats, BM: Boulmer, GH: Guardhouse, LH: Long Hope, MB: 

Mumbles, PW: Portwrinkle. 
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including RGB combined sensor, each spectral band; B [450nm], G [560nm], R [650nm], RE 

[730nm], NIR [840nm], and a digital surface model.  Each pixel within the reflectance maps 

represents a calibrated value of the object’s reflectance or physical information such as shore height. 

All outputs used the coordinate reference system WGS84/UTM zone 30N. The intertidal region of 

each shore was partitioned using normalized difference water index and visual assessments, feasible 

due to the high resolution of UAV images and elevation from the digital surface model. This removed 

the interference on reflectivity from large areas of standing water, particularly in the NIR wavelength 

critical in classification (Bell et al., 2020; Malthus & George, 1997). 

Satellite image collection 

Sentinal-2 level-2A (S2A) imagery was obtained from Copernicus, European Space Agency (ESA). 

Cloud-free images, corresponding with mean spring low water and in-situ sampling between May-

Sep, were selected for each site’s sampling year (Table 1). The time between UAV and satellite image 

capture for each shore was dependent on the availability of cloud-free images captured during a low 

tide. Downloaded S2A images comprise of 12 individual bands (Coastal Aerosol [CA], Blue, Green, 

Red, RE1, RE2, RE3, NIR, narrow-NIR [nNIR], Water Vapour [WV], Shortwave Infra-red 1 

[SWIR1], SWIR2), with resolution ranging from ~36-100m2. ESA imagery is corrected using 

Sen2Cor processor (v2.5.5, European Space Agency).  

UAV classification maps 

The maximum likelihood classifier from the Semi-Automatic Classifier Plugin within QGIS (version 

3.34.0) estimated the spatial extents of specified classes. The final classes were selected based on the 

spectral separateness of the macroalgal species found across all the sites.  Spectral separateness was 

assessed using the Semi-Automatic Classifier. Species of the same genus, which could not be 

separately identified using multispectral imagery, were merged into functional groups (Congedo, 

2021; Rossiter et al., 2020; Uhl et al., 2013). Maximum-likelihood classification is a popular classifier 

based on a probability density function, assuming a Gaussian distribution of each spectral class 

(Foody et al., 1992; Paola & Schowengerdt, 1995; Shivakumar & Rajashekararadhya, 2018). 

Image-derived training data was obtained from the aligned multispectral imagery, using visual 

identification of target features (set macroalgae functional group classes) and the manipulation of 

training polygons over areas of known class cover (Middlekoop and Addink, 2018; Rossiter 2020). 

The number of polygons per class depended on the number of clear homogenous areas identified, 

with a minimum of 100 pixels per class for adequate classification, and classes were chosen due to 

spectral separateness (Middlekoop and Addink, 2018). Edge effects were noted at boundaries between 

classes, often incorrectly identified or unidentified, similar to results found in Rossiter et al. (2020) 
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and were manually re-coded. Ascophyllum nodosum was visually and spectrally distinct, and so 

created an individual class of their own. Pelvetia canaliculata and Himanthalia elongata also 

comprised individual classes, although both had a low number of recorded samples. Kelp species 

including Laminaria digitata, Saccharina latissima and Alaria esculenta were grouped, and Fucus 

species were split into two classes: F. vesiculosus/F. serratus and F. spiralis/F. guiryii because each 

group was spectrally distinct, whereas species within them could not be confidently separated. The 

combination of maximum likelihood classifier and manual identification was highly supervised to 

create the most accurate ‘known’ class covers possible for training the random forest model 

predictions from satellite imagery. 

To validate the mapped class covers, the ‘known’ species cover recorded from in-situ quadrats were 

compared to the estimated classifier cover (Figure 4). The same was performed for the total cover 

estimates using the brown algae index (BAI). A BAI threshold of between 4 and 5 was used depending 

on the shore, as the previous set threshold of 4 required adapting to best reflect the observed cover 

present at each site (Lewis et al., 2023). Equation 1 shows the method of calculating the BAI. 

Brown algae index = NIR/G (1) 

 

Satellite cover estimates 

Four sites were selected to train the random forest models, because they covered a range of species 

diversity and community heterogeneity. The training sites were Cullercoats (CC), Guardhouse (GH), 

Long Hope (LH) and Mumbles (MB) (Figure 2). These shores ranged from habitats containing larger 

monoculture stands of canopy forming macroalgae, such as Long Hope, to more exposed sites like 

Mumbles, which contain mixed stands of multiple species more intermittently spread across the shore. 

Furthermore, the four sites are spread geographically across the UK and range in levels of exposure 

(Table 1, Figure 2). Sentinel-2 (S2A) images were resampled to 100m2 resolution, to match the 

minimum resolution of S2A imagery, then aligned to UAV mosaics. To remove interference on 

reflectance values by standing water, images were clipped to the rocky intertidal area above the low 

tide mark.  Class percentage cover was calculated as the proportion of pixels assigned to each class 

to the total number of pixels within each 100m2 area (corresponding to individual pixels from the 

Sentinel-2 satellite images). This calculation is expressed in Equation 2, where x = the number of 

pixels of a present class and, y = the number of total pixels. 

Percentage cover of each class per quadrat or S2A pixel   = (x / y) x 100 (2) 
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Random forest classifiers were used to predict individual class covers per 100m2 pixel using S2A 

reflectance values from the 12 available bands, and the total brown canopy cover was the sum of all 

the predicted class covers. Predicted total brown macroalgal cover from the random forest classifier 

was compared to estimates from the BAI regression models. The same four shores were also used to 

fit a new polynomial BAI regression model following methods outlined by Lewis et al. (2023). A 

quadratic polynomial regression was applied to the BAI reflectance value per 10 x 10m satellite pixel 

as a function of validated observed total brown macroalgal cover, from UAV imagery. The 

coefficients were then extracted and used to create the quadratic polynomial equation to predict cover 

from using BAI reflectance values (Table 2). 

 

 Because the multiplicative factors within the polynomial model are created from the relationship 

between component variables (BAI reflectance and percentage cover), there is inherent covariance 

within the models, potentially exaggerated by multiplicative terms. BAI reflectance values from S2A 

images were therefore centred (subtracting each value by the mean) to lessen the correlation between 

the multiplicative terms and the component variables being multiplied within the quadratic 

polynomial model. This also eases model interpretation, by avoiding the creation of very large outliers 

created from the multiplication terms. Independent variables (S2A BAI values) lower than those used 

to create each regression model (<-5.4 for my BAI regression, <−3.03 for Regression A and <−4.41 

for Regression B) were assigned 0% total brown algal cover while those higher BAI values (>6 my 

BAI regression, >3.76 for Regression A and >6.01 for Regression B) were assigned 100% total brown 

algal cover. 

Satellite cover validation 

To validate both the random forest classifiers and regression models, two sets of known spatial 

abundance data were utilised. First, the data from the four shores was split in half and used the first 

50% for model training. Within-set cross-validation was the applied using the remaining 50% of the 

data. This tested the ability of random forest models to accurately predict functional group cover from 

Table 2: Quadratic polynomial regression formulae of each BAI model to predict % cover within each 10 x 

10m Sentinel pixel. X = BAI reflectance value of the pixel. The values shown were extracted from 

polynomial regression of the validated observed total brown macroalgal cover, from UAV imagery, as a 

function of BAI reflectance value per 10 x 10m satellite pixel. 
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S2A images and compare total canopy cover estimates from both models at a range of naturally 

occurring diversity and heterogeneity. For the second validation step, both methods trained on the 

entire dataset from the four training shores were applied to 8600m2 from two novel shores unused in 

model training. This stage assessed model predictions on novel shores with different environmental 

conditions. This is a crucial test of model estimates as researchers and managers are likely to want to 

use satellite data to estimate intertidal forest (and component functional groups) cover at sites that 

lack extensive ground/training data. Similarly to training images, any large areas of standing water 

were removed due to interference in reflectance values. In addition, ~140m2 of rocky shore was 

removed due to the presence of decaying wrack. Both validation stages have been utilised in previous 

remote sensing research on macroalga forests (Kotta et al., 2018b; Lewis et al., 2023). Lastly, total 

cover predictions from both my BAI regression and random forest models were tested against two 

previously used BAI regression models applied by Lewis et al. (2023) (Regression A & B hereafter). 

Regression A and B were fitted and validated using 3 shores in Mid Wales containing similar 

homogenous macroalgal assemblages of Fucus vesiculosus, Fucus serratus and Ascophyllum 

nodosum (Lewis et al., 2023) Site one was situated near Aberystwyth, with a visually estimated 

coverage of >80% canopy, comprised of Fucus vesiculosus, Fucus serratus and Ascophyllum 

nodosum (Lewis et al., 2023) Whereas, sites two and three were around 10km north of Aberystwyth, 

containing a spare to abundant (0-80%) cover of Fucus vesiculosus and Fucus serratus (Lewis et al., 

2023). Comparison of the models created by Lewis et al. (2023) to the BAI models created here 

enabled the evaluation of any increases in predictive power by the inclusion of a greater range of 

natural heterogeneity and diversity within training data. 

Statistical analysis 

The observed percentage cover of random forest functional classes and BAI total canopy cover from 

UAV imagery was combined with S2A imagery and extracted using QGIS (version 3.34.0). BAI 

regression and random forest models were created, and cover estimates analysed, using R (version 

4.3.1; R Core Team, 2023). The predicted cover from S2A imagery was compared to UAV observed 

covers. This was done using R2 values and root mean square error of the difference between the 

estimated satellite cover and observed cover from UAV imagery. Linear model assumptions of the 

BAI regressions were evaluated using residual and histogram plots.  

Results 

Accuracy of UAV cover maps using maximum likelihood classifier or BAI 

UAV-mapped covers using both maximum likelihood classifiers and BAI showed high accuracy when 

validated against observed cover measured from in-situ quadrats at all six sites (Table 1, Figure 4). 
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All cover predictions showed R2 values of > 0.95 and RMSE of < 5.7, for random forests class covers 

and total cover estimated by both the BAI regression and random forest classifier (Figure 4).  Visual 

validation, and low RMSE values, established the UAV classification maps as an accurate 

representation of the functional classes and BAI total spatial extents. These spatial extents were 

therefore used as ‘known’ cover values to compare against satellite estimates. 

 

Functional group classification 

During the first validation step, random forest models were able to accurately predict cover for all 

classes (Figure 5), particularly for those with high levels of collected cover data, including Fucus 

serratus/vesiculosus (RMSE: 10.3, R2: 0.89), Ascophyllum nodosum (RMSE: 7.1, R2: 0.72), Kelps 

(RMSE: 4.7, R2: 0.90), and Fucus spiralis/guiryii (RMSE: 5.7, R2: 0.71). Weaker cover estimates 

were produced for the less abundant classes of Himanthalia elongata (RMSE: 1.6, R2: 0.63) and 

Pelvetia canaliculata (RMSE: 0.1, R2: 0.43). With exception of Long Hope (LH), the Random Forest 

classifier was able to accurately predict the cover of the four most abundant functional groups: Fucus, 

Asco, Kelp and Spirguy (Table 2). As shown in Table 2, RMSE values for these four main functional 

Figure 3: Predicted vs observed cover within in-situ 0.25m2 quadrats. Predictions of A: BAI regression 

total cover, B: random forests classifier total cover. Random forests class cover for C: Fucus 

serratus/vesiculosus, D: Kelp, E: Ascophyllum nodosum, & F: Fucus spiralis/guiryii. RMSE and R2 

values corresponding to each plot represent the overall accuracy of the model’s predictions. Details of 

all six sites can be found in Table 1. 
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group predictions were consistently lower than 10 at three of the four shores used in validation stage 

one. 

 

  

Figure 4: Predicted vs observed percentage cover per 100m2 pixel area, estimated using a combination 

of 12 possible S2A reflectance band values for 50% of the four training shores (Validation stage 1). 

Random forests estimated class covers for A: Fucus vesiculosus/serratus, B: Kelp, C: Ascophyllum 

nodosum, D: Fucus spiralis/guiryii, E: Pelvetia canaliculata, F: Himanthalia elongata. RMSE and R2 

values corresponding to each plot represent the overall accuracy of the model’s predictions. Each pixel 

estimate is colour-coded to individual shores (CC: Cullercoats, GH: Guard House, LH: Long Hope, 

MB: Mumbles). Details of all six sites can be found in Table 1. 

Shore RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

CC 10.013 0.888 6.218 0.499 4.479 0.238 0.024 N/A 0.074 N/A 3.317 0.965 9.373 0.865

GH 9.393 0.919 7.207 0.790 6.004 0.800 0.043 N/A 2.268 0.626 3.950 0.938 8.801 0.901

LH 17.280 0.459 14.166 0.594 13.242 0.440 0.540 0.455 0.241 N/A 11.174 0.648 12.308 0.071

MB 10.404 0.762 4.907 0.429 1.553 0.304 0.031 N/A 0.584 N/A 4.359 N/A 13.516 0.599

BM 23.917 0.170 13.024 0.129 1.368 N/A 0.004 N/A 0.328 N/A 0.764 N/A 15.901 0.236

PW 9.108 0.727 7.907 0.339 2.654 0.191 0.006 N/A 1.812 N/A 3.597 0.714 12.088 0.657

TotalBFucus Asco KelpSpirguy HeloPcan

Table 2: Performance indicators of Random Forest species predictions for individual shores used in 

validation stage one and two. Critically, with exception of Long Hope and Boulmer, the four functional 

groups with enough cover to confidently analyse predictions (Fucus, Asco, Spirguy and Kelp) showed 

RMSE values consistently lower than 10. N/A values represent no cover of a species at the shore. 
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During the second validation stage however, only Fucus serratus/vesiculosus, (RMSE: 15.6, R2: 

0.90) and Kelp (RMSE: 3, R2: 0.71) cover could be accurately predicted on novel shores, with 

weaker estimates of Fucus spiralis/guiryii (RMSE: 2.3, R2: 0.43) (Figure 6). For the remaining 

classes, accurate cover predictions were not produced. However, models were able to identify the 

relative absence of Pelvetia canaliculata and Himanthalia elongata compared to the previously 

mentioned more abundant classes (Figure 6). Himanthalia elongata cover predictions were 

constrained to <7% (with the majority <2.5, RMSE: 1.5), and all Pelvetia canaliculata predictions 

were <0.05%, RMSE: 0.005). Ascophyllum nodosum was the only species that the random forest 

models failed to predict percentage cover on novel shores (Figure 6). When separated by shore, 

species cover predictions showed greater performance at Portwrinkle compared to Boulmer for the 

four most abundant functional classes: Fucus, Asco, Kelp and Spirguy (Table 2). Critically, RMSE 

values for Fucus, Kelp and Spirguy at Portwrinkle were lower than 10, outlining similar levels of 

accuracy shown in validation stage one. 

 

 

Figure 5: Predicted vs observed percentage cover per 100m2 pixel area, estimated using a 

combination of 12 possible S2A reflectance band values from two novel shores (Validation stage 2). 

Random forests estimated class covers for A: Fucus.vesiculosus/serratus, B: Kelp, C: Ascophyllum 

nodosum, D: F.spiralis/guiryii, E: Pelvetia canaliculata, F: Himanthalia elongata. RMSE and R2 

values corresponding to each plot represent the overall accuracy of the model’s predictions. Each 

pixel estimate is colour-coded to individual shores (BM: Boulmer, PW: Port Wrinkle). Details of all 

six sites can be found in Table 1. 
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Functional group classification error 

Ascophyllum nodosum predictions were the main source of inaccuracies from the random forest 

classifier (Figure 6, C). This was thought to be due to intra-species variation in reflective signatures 

within Ascophyllum nodosum individuals (from lower to upper portions of their long fronds; Figure 

3). Thus, reflectance profiles were assessed from a subset of 129 Ascophyllum nodosum samples from 

all the shores and related to individual lengths. Figure 7 shows the difference in reflectance of 

Ascophyllum nodosum individuals at the 2 novel validation shores compared to the 4 training shores. 

A lower mean reflectance of red edge can be seen at PW, along with a greater mean reflectance and 

variation in the near-infrared at BM (Figure 7). Moreover, the increased spectral variability expressed 

by Ascophyllum nodosum corresponds to older and larger individuals (Table 3). 

 

Figure 6: Variation in reflectance of Ascophyllum nodosum individuals across the 4 

training shores: Cullercoats (CC), Guardhouse (GH), Long Hope (LH) and Mumbles 

(MB), and 2 novel validation shores: Boulmer (BM) and Port Wrinkle (PW). 

Highlighting the greater variation within the absolute reflectance of Red-edge (REDGE) 

and Near Infrared (NIR) bands at BM, and lower average Red-edge at PW. Details of all 

six sites can be found in Table 1. 
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Table 4: The relationship between individual length of Ascophyllum 

nodosum (mm), and variation in spectral reflectance values of the 

Near-Infrared (NIR) and Red-Edge (RE) band represented by standard 

deviation (SD) at each site. 

Figure 7: Predicted vs observed total canopy cover per 100m2 pixel area, estimated using a combination of 12 possible 

S2A reflectance band values. First for 50% of the four training shores (Validation stage 1) from A: BAI regression model 

made here, B: Random Forest classifier, C: Lewis et al. (2023) regression A, D: Lewis et al. (2023) regression B. The same 

applied to the novel shore data (Validation stage 2) from E: BAI regression model made here, F: Random Forest classifier, 

G: Lewis et al. (2023) regression A, H: Lewis et al. (2023) regression B. With RMSE and R2 values representing the 

overall accuracy of each model’s predictions. Each pixel estimate is colour-coded to individual shores (CC: Cullercoats, 

GH: Guard House, LH: Long Hope, MB: Mumbles) and (BM: Boulmer, PW: Port Wrinkle). Details of all six sites can be 

found in Table 1. 
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Total canopy cover estimates 

The first validation stage, using the remaining half of the data from the training shores, found both 

random forest and regression models had similar accuracy in the estimation of total brown canopy-

forming macroalgae, with a slight improvement in the random forest predictions (RMSE: 10.6, R2: 

0.90) compared to the BAI regression model (RMSE: 11.9, R2: 0.86) (Figure 8). From these results, 

it can be concluded that mapping individual reflectance profiles of functional groups slightly 

improved brown canopy estimates compared to BAI regression. However, this is limited to ‘similar’ 

shores (shores with comparable characteristics including community compositions and 

environmental conditions etc) as when both models were applied to novel shores BAI regression 

predictions performed better than those from the random forest (RF) classifier, with improved R2 and 

RMSE  

values (BAI: RMSE: 9.3, R2: 0.94; RF: RMSE: 12, R2: 0.89).  

Both BAI regression and random forest models created here estimated total cover more accurately 

than previously used BAI regression models applied by Lewis et al. (2023). Figure 8 shows 

Regression A from Lewis et al. (2023) greatly overpredicted total cover (RMSE: 63.8, R2: 0.94), 

whereas Regression B from Lewis et al. (2023) performed comparatively better (RMSE: 17.1, R2: 

0.92) though still consistently underpredicting total cover. Moreover, the better-performing 

Regression B showed aggregations of predictions around 0% with corresponding observed cover 

values up to 25%. Similar aggregation is shown around 100% for Regression A, although less 

pronounced. This clustering is because BAI regression models are unable to predict pixels with BAI 

values outside fitted model limits, which are automatically bounded at 0% but contain higher 

observed percentage covers. Overall, the BAI regression model re-parameterised here was the best 

technique for estimating total brown macroalgae cover on novel shores.  

Discussion 

Functional group cover estimates 

Here, machine learning models could identify the community composition of intertidal macroalgal 

forests at the functional group level from satellite imagery, by using random forest classifiers to select 

important cover predictors from a wide range of spectral information. Similar methods have 

previously been employed to map macroalgae to lower taxonomic distinctions, such as to the Family 

or Genus level (Brodie et al., 2018; Rossiter et al., 2020). However, this was achieved with higher 

resolution aerial or UAV imagery, whereas the separation of multiple functional groups (or 

“unmixing”) has not been previously attained from multispectral satellite imagery. This contrasts 
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previous work using multispectral satellite imagery to map intertidal macroalgae, in which cover 

predictions have been limited to the identification of a single broad vegetation class per pixel  (Lewis 

et al., 2023; M. Wang & Hu, 2021). These efforts have been predominantly limited to separating 

macroalgal phyla (green, brown, and red algae) due to evidence highlighting the pronounced spectral 

differences between them (Kotta et al., 2018; Lewis et al., 2023; Uhl et al., 2013). Although random 

forest models could not consistently provide accurate cover estimates on novel shores for all classes, 

they could provide information on the community composition of functional groups within each shore 

from satellite multispectral images, except for Ascophyllum nodosum.  

Functional group validation 

During the first validation stage, random forest classifiers simultaneously predicted the cover of 

multiple functional groups on within-set shore data, with root mean squared errors (RMSE) of 10 or 

below (Figure 5), outlining the ability of random forest models to predict the cover of multiple 

functional groups from satellite imagery on shores with similar environmental conditions and 

macroalgal species to those used during model training. However, the second validation stage is the 

more credible evaluation of model predictability for widespread application to satellite imagery, as it 

used images from novel shores independent from the training data. Here the random forests classifiers 

only produced accurate cover predictions for Fucus serratus/vesiculosus (RMSE 15.6, R2 0.95) and 

Kelp (RMSE 3, R2 0.84) as shown in Figure 6. Weaker predictions were observed for Fucus 

spiralis/guiryii (RMSE 2.3, R2 0.43), predominantly due to this class’s observed patchiness of cover 

(Figure 6). Both Himanthalia elongata and Pelvetia canaliculata were absent at the novel shores used 

for the second validation stage, thus the ability of random forests models to accurately predict the 

cover of these classes cannot be fully validated. However, cover predictions for both were consistently 

below 7.4% and 0.04% for Himanthalia elongata and Pelvetia canaliculata respectively, therefore 

random forest models consistently predicted low abundances for these absent classes (Figure 6). 

These results highlight the necessity for improvements to random forest classifiers required to 

increase the robustness of their predictions of functional group cover when expanding efforts to novel 

shorelines that may contain variations in reflectivity not captured within training data. This increased 

error at the functional group level translated further into a lower accuracy of total cover estimates 

during the second validation stage from the random forest classifier compared to BAI regression 

outputs. 

Total cover estimates from random forest classifiers 

Overall, the random forest classifier showed lower robustness when estimating total brown 

macroalgal cover compared to the BAI regression model created here. Random forest predictions 
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showed greater accuracy during within-set validation (RMSE: 10.6) compared to the BAI regression 

created using the same training data (RMSE: 11.9) (Figure 8). This may be due to the iterative nature 

of random forest models which allows for the potential inclusion of a greater range of spectral 

information during model training compared with index-linked approaches (Belgiu & Drăguţ, 2016; 

Pal, 2005). For instance, Blue and Red Edge bands can correspond to peaks in the reflectance profiles 

of certain macroalgal species (Uhl et al., 2013). The model can then account for the relationship 

between reflectivity and level of cover differently for each algal class. However, the random forest 

classifier showed reduced consistency during predictions on novel shore data (RMSE: 13.4) in 

comparison with BAI regression predictions (RMSE: 9.5; Figure 8). The reduced accuracy of the 

random forests model identifies the possible errors in predictions using machine learning algorithms 

to tailor cover estimates to specific functional groups using a greater number of spectral bands while 

outlining the robustness of BAI regression estimates. 

Random forest classifier error and improvement 

The reduced accuracy of random forest predictions on the novel shore data could be evidence of the 

model's overfitting to the training data, which can be reduced by increasing the amount and quality 

of training data (DeFries & Chan, 2000; Pal, 2005). Improving the quality of known cover data could 

be accomplished by employing other classifiers at the UAV level that are better suited to the multi-

modality of multispectral data compared to maximum likelihood techniques. In addition to random 

forest classifiers, methods such as Support Vector Machines and Artificial Neural Networks do not 

make assumptions on data distribution, which increases their applicability to remote sensing data 

(Belgiu & Drăguţ, 2016). Alternative methods such as these could remove errors apparent in the 

distributions of the created UAV class maps (Figure 4), which may have introduced further errors in 

the random forest predictions from satellite imagery. Evidence of this could be found in the RMSE 

values separated by shore, as Long Hope and Boulmer showed consistently higher error in all 

predicted classes (Table 2). Both Boulmer and Long Hope had overcast and rainy conditions during 

the drone image capture, in comparison to clear sunny days at the remaining sites. The poor conditions 

may have introduced differences in reflectivity of all macroalgae present, leading to errors in the 

‘known cover’ maps. Further application of the Random Forest model to more sites with clearer 

conditions during drone flight may allow for greater validation the models spatial transferability. 

Alternatively, Belgiu & Drăguţ (2016) outlined the reduced variance and bias of random forest 

classifiers using boosting methods such as AdaBoost or JointBoost, compared to the bagging methods 

utilised here. These general techniques can be employed to improve the classifier predictability on 

novel data and reduce potential model overfitting. However, a main attribute of ensemble classifiers 

is the ability to reduce the likelihood of overfitting (Belgiu & Drăguţ, 2016; DeFries & Chan, 2000; 
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Pal, 2005). Therefore, the main source of reduced accuracy on novel imagery most likely came from 

the variation of reflectivity within species due to trait differences between individuals in varying 

environmental conditions. 

Reflectivity and intra-species trait variation 

During validation on independent novel shore data, Ascophyllum nodosum was the only class in which 

predictions showed no relation to those observed from UAV imagery. This is predominantly due to 

intra-species variation of spectral responses between individuals of Ascophyllum nodosum not 

accounted for by the random forest model. Ascophyllum nodosum is a long-lived and slow-growing 

fucoid species, and Figure 3 shows the visible difference between darker basal frond areas compared 

to the lighter-growing tips of large individuals. This translates to a greater variation in reflectivity in 

larger Ascophyllum nodosum individuals (Table 3), especially in Near Infra-Red (NIR) and Red Edge 

(RE) wavelengths (Figure 7). Previous work has identified both the visual difference in colouration 

and spectral variation within and between individuals of the same species of brown macroalgae (Uhl 

et al., 2013). Furthermore, Timmer et al. (2024) found similar variations of reflectivity within RE and 

NIR bands of kelps containing large buoyancy structures (airbladders) within their fronds, which are 

also present in Ascophyllum nodosum (Timmer et al., 2024). Although more pronounced in 

Ascophyllum nodosum, seasonal differences and expansion to new regions may reduce the predictive 

power of random forest models due to trait differences altering reflectance characteristics of all brown 

canopy-forming macroalgae (Schrofner‐Brunner et al., 2023; Uhl et al., 2013). In addition to 

differences in reflectivity, the greater size of macroalgae individuals can decrease the accuracy of 

predictions due to differences in where the algae lay after tidal inundation. An impact that would be 

exacerbated by the time elapsed between the dates of capture of the UAV and satellite images, due to 

the variation in weather conditions or tidal cycle. This may also explain the reduced accuracy at 

Boulmer (Figure 6), as this shore had the largest individuals of Ascophyllum nodosum in areas mixed 

with other Fucoid species (Table 3). Furthermore, both Boulmer and Long Hope were the only two 

shores dominated by Ascophyllum nodosum, Fucus vesiculosus and Fucus serratus from the upper 

middle shore to the low tide mark. This community structure is due to the different environmental 

conditions at these sites, compared to the other four used here, specifically the low exposure. In turn, 

the traits of the individuals at Boulmer and Long Hope may have significant differences in reflectivity 

not properly integrated into the model, leading to increased error at these sites (Table 2). Future work 

should attempt to incorporate intra-species trait variation, such as the impact of frond length on 

accessory pigment concentration, to improve model predictions in novel regions and temporal 

datasets.  
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Total cover estimates from BAI regression models - incorporating greater diversity and 

heterogeneity 

BAI regression models provided robust total brown macroalgal cover estimates, showing greater 

accuracy on novel shores compared to the random forest classifiers (Figure 8), outlining the 

proficiency of the index-based approaches in estimating brown algal cover from satellite imagery 

created by Lewis et al. (2023). Furthermore, my BAI regression model created here showed improved 

accuracy of total cover predictions in both validation stages compared to those previously created by 

Lewis et al. (2023; Regression A & B), which were fitted and validated to cover data from shores 

containing lower diversity and more homogenous cover (Figure 8). This was expected for validation 

stage 1, as this was within-set validation for my BAI model (Figure 8, panels A-D). Critically, my 

BAI model produced an RMSE of 9.5 when predicting cover using novel shore data, compared to 

RMSE values of 14.1 and 12.5 from Regressions A & B respectively (Figure 8, panels E-H). This 

improvement is most likely due to the inclusion of a greater range of naturally occurring diversity 

and heterogeneity of macroalgal forests within the high-resolution UAV data used to fit the model. 

The BAI regression model’s ability to predict canopy-forming brown macroalgae within +/-10% from 

satellite imagery is a major step in increasing the scale of macroalgae surveys, where previous efforts 

to utilise satellite imagery for surveying intertidal macroalgae were precluded by the coarse resolution 

of open-access multispectral satellite imagery (Brodie et al., 2007; Kotta et al., 2018; Rossiter et al., 

2020).  

Error in BAI regression techniques 

Of the two previously created models’ Regression B performed better compared to Regression A, 

with Regression B producing RMSE values closer to those from my BAI model (Figure 8). However, 

Lewis et al. (2023) found Regression A produced more accurate cover estimates when applied to their 

validation data containing more homogenous macroalgae cover. Moreover, during novel shore 

validation, Port Wrinkle contained pixels with up to 25% total cover misidentified by Regression B 

as containing 0% macroalgal cover. These pixels with up to 25% cover, but lower BAI values relative 

to pixels in training data were identified to be caused by the presence of low albedo rock decreasing 

NIR reflectance and therefore producing BAI values outside the model’s fitted range (Figure 8 H). A 

similar effect was also observed at the upper limit of Regression A which is likely due to the high 

NIR reflectance of large Ascophyllum nodosum individuals at Boulmer (Figure 8 G). Variables such 

as rock albedo and variation of individual macroalgal species reflectivity may weaken the relationship 

between S2A BAI values and total macroalgal cover. This could again be a symptom of model 

overfitting to training data, especially in the upper and lower limits of the BAI regression models as 

BAI values outside of the range of fitted data could not be confidently converted to cover predictions. 
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Therefore, caution is required during the wholesale application of a single BAI regression model, as 

the performance of regression techniques may not be as consistent on shorelines containing greater 

variation in environmental variables and macroalgal species compared to those used here, or shores 

containing novel macroalgal species, rock types or under-canopy communities, that could affect the 

relationship between BAI values and percentage cover. Further validation imagery from shores 

containing such differences in characteristics compared to the model’s training data is required to test 

the applicability of BAI regression methods when expanding the application spatially or temporally, 

where such increased variation of spectral characteristics is likely to be more pronounced. 

Application of techniques 

The success of using open-access satellite imagery, despite its relatively coarse resolution compared 

to commercial alternatives, increases the scope of the remote sensing of macroalgal forests to larger 

spatial scales. The ability to measure macroalgal extents over greater areas could enable the upscaling 

of efforts to identify the environmental drivers underpinning macroalgal forest abundances and the 

ecosystem functioning of these habitats across local coastlines or entire regions. Moreover, open-

access repositories hold years of captured images for temporal analysis of macroalgae forest spatial 

extents. Such extensive datasets could be used to monitor long-term fluctuations of ecosystem 

functionality, such as creating a time series of macroalgal forest's carbon sequestration rather than 

analysing single points in time (Lewis et al., 2023). Furthermore, temporal imagery could be used to 

monitor responses to anthropogenic degradation of coastal habitats, from small-scale pollution events 

to species range shifts in response to climate change (Yesson et al., 2015). While BAI regressions can 

confidently provide total cover estimates for brown canopy-forming macroalgae, the performance of 

random forest classifiers here provides cautious optimism for the ability of machine learning 

techniques to map more specific functional groups within brown macroalgae from satellite imagery. 

Future efforts to incorporate intra-species variation in reflectivity and increase the quality of training 

imagery, by capturing more areas of known homogenous class cover, may allow random forests or 

other machine learning classifiers to create a more universally applicable model to predict macroalgae 

forest spatial extents. If successful, remotely mapping functional groups could upscale the assessment 

of relationships between species distributions and environmental conditions to larger areas containing 

greater levels of environmental variability. By assessing entire regions of coastline, future research 

could avoid generalisations from patterns observed in small-scale plots. These techniques could then 

be used to enhance the evaluation of biodiversity's role in maintaining ecosystem functionality in the 

context of intertidal macroalgal forests, which could then be applied to other important habitats for 

restoration. Understanding and integrating biodiversity, in addition to simple abundance measures, 
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could improve the effectiveness of various projects, such as habitat restoration and potential nature-

based solutions to climate change. 

Conclusion 

Random forest classifiers were able to predict intertidal macroalgae functional group cover from 

open-source satellite multispectral imagery but require the incorporation of intra-species variability 

in reflectance to improve the accuracy of novel shore estimates. However, if random forest models 

can be improved, they could better incorporate factors causing variations in spectral reflectance, like 

individual species reflectivity, and provide a reliable predictive model with greater detail regarding 

macroalgae community composition. Currently, because of the reduced accuracy of random forest 

predictions of functional group cover on novel shores, BAI models provided comparatively more 

robust estimates of total brown canopy cover when fitted to data containing a range of heterogeneity 

and diversity found naturally occurring within intertidal macroalgal forests. However, the application 

of a single BAI regression model requires caution as estimates are susceptible to variables that affect 

green or near-infra-red reflectance such as rock albedo or differences in macroalgae species 

reflectivity.  
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