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Abstract

Clustering of multi-view data divides objects into groups by preserving struc-

ture of clusters in all views, requiring simultaneously takes into consideration

diversity and consistency of various views, corresponding to the shared and spe-

cific components of various views. Current algorithms fail to fully characterize

and balance diversity and consistency of various views, resulting in the undesir-

able performance. Here, a novel Multi-View Clustering with Deep non-negative

matrix factorization and Multi-Level Representation (MVC-DMLR) learning is

proposed, which integrates feature learning, multi-level topology representation,

and clustering of multi-view data. Specifically, MVC-DMLR first learns multi-

level representation (also called deep features) of objects with deep nonnegative

matrix factorization (DNMF), facilitating the exploitation of hierarchical struc-

ture of multi-view data. Then, it learns multi-level graphs for each view from

multi-level representation, where relations between diversity and consistency are

addressed at various resolutions. MVC-DMLR integrates multi-level representa-

tion learning, multi-level topology representation learning and clustering, which

is formulated as an optimization problem. Experimental results show the supe-
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riority of MVC-DMLR to baselines in terms of accuracy, F1-score, normalized

mutual information and adjusted rand index.

Keywords: Multi-view clustering, Deep non-negative matrix factorization,

Self-representation learning, multi-layer networks.

1. Introduction

As one of prevalent tasks in machine learning, clustering identifies groups of

objects (clusters, modules, or communities) such that highly similar objects are

assigned into the same groups, and dissimilar ones into different ones. The crit-

ical techniques of clustering are how to define similarity of objects, and how to

perform assignment of objects. For example, K-means [1, 2] employs Euclidean

distance as similarity, and performs assignment the nearest principle, i.e., each

object is assigned to the nearest group. NMF [3] learns representation of ob-

jects in the low-dimensional subspace, where similarity of objects is exploited.

And, spectral clustering [4, 5, 6] obtains closeness of objects in terms of spectral

embedding that is associated with eigenvectors of matrices. However, the tra-

ditional algorithms target to clustering single-view data, i.e., data are observed

from one perspective. Actually, one perspective is insufficient to fully charac-

terize complex systems, resulting in multi-view data [7]. For example, movies

attract audiences with multiple media, such as images, sounds and music, which

maximize the stimulation of the audience’s senses. In social networks, individ-

uals communicate with counterparts with different manners, including emails,

telephones and webchat.

Thus, it is of great significance to clustering of multi-view, which assigns

objects into various groups such that highly similar objects in all views are

assigned into the same groups, and those that are dissimilar for all views into

different clusters. Multi-view clustering provides an insight into mechanisms

of systems because comprehensive and accurate patterns in multi-view data

[8]. Compared to clustering of single view data, multi-view clustering is much

more complicated for two typical reasons. First, heterogeneity of various views
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poses a great challenge, and how to address heterogeneity of various views is

difficult. Second, clustering of multi-view data simultaneously takes into account

similarity of objects within and across views, which are difficult to model and

balance.

Luckily, many approaches are proposed with various strategies to address

these challenges [8]. According to the principles of algorithms, available ap-

proaches are divided into four classes, i.e., co-training-, kernel-, graph-, and

subspace-based ones, where methods in the first category apply single-view

clustering to multi-view data with simply extension to avoid exploiting rela-

tions among various views. Actually, the simplest strategy is transformation,

which converts multi-view data into one view, where clustering analysis is di-

rectly executed on collapsed data. However, it is criticized for performance of

algorithms because intrinsic structure of data may be destroyed during trans-

formation. To avoid destroying structure of data, co-training-based method

[9, 10, 11] first performs clustering for a given view, and clusters are utilized to

guide clustering of other views, which are criticized for the poor performance

and robustness of algorithms. Specifically, performance of algorithms largely

depends on the order of views for clustering, and these methods also fail to

address heterogeneity of various views.

To attack this problem, the kernel-based methods [12, 13, 14, 15, 16] em-

ploy a kernel function function mapping objects onto a high dimensional space,

where clustering is performed by integrating various views with a linear manner.

The underlying assumption is that views are comparable in the kernel space,

i.e., heterogeneity of multi-view data can be addressed with kernel functions.

But, these algorithms are only inapplicable for multi-view data with compli-

cated structure because they fail to maintain inherent structure of the original

views, resulting in the low accuracy. Furthermore, selection of appropriate ker-

nel functions for each view is also very complicated, which are determined by

distribution and structure of views that are difficult to model. The graph-based

methods [17, 18, 19, 20, 21] first construct a network for each view, and the

perform clustering on the constructed networks by exploring topological struc-
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ture of networks. These algorithms significantly improve the performance of

clustering, demonstrating that graphs are promising in multi-view clustering

field. Graph-based methods perfectly address heterogeneity of multi-view da-

ta, but they neglect relations among various views. And, the subspace-based

methods [22, 23, 24, 25] projects all views into a shared subspace, where object-

s in various views are compatibly represented, facilitating the identification of

consistence among various views. These algorithms dramatically enhance per-

formance of multi-view clustering, proving that relations among various views

are of great importance. However, selecting appropriate subspaces to represent

various views is really difficult.

Although many excellent algorithms for multi-view clustering are developed,

some critical and unsolved problems remain. Firstly, current algorithms con-

centrate on learning consistent representation of objects of various views in the

shared algebra space, ignoring the intrinsic structure of representation. For ex-

ample, the kernel-based methods focus on selecting of proper kernel functions

that map objects onto kernel spaces, and subspace-based approaches are devot-

ed to construct the low-rank shared subspace(s). Actually, objects of various

views cannot be precisely represented with one type of space(s) because of the

complexity of multi-view data. Second, available algorithms model consistency

and diversity of various views by ignoring hierarchical structure of features, fail-

ing to fully characterize structure of clusters in multi-view data [26, 27, 18, 28].

Third, current algorithms separate feature learning, diversity and consistency

learning, and clustering, failing to reach a tradeoff between these items. Re-

cently, deep representation learning [29, 30, 31] is popular for the exploration of

structure of complicated data, showing possibility of address relations of various

views with deep features of objects.

To address problems mentioned above, a cohesive multi-view clustering with

DNMF and multi-level representations (called MVC-DMLR) is proposed, which

integrates feature learning, consistency and diversity learning, and clustering of

multi-view data. MVC-DMLR is mainly composed of three components, i.e.,

deep feature learning, topology representation learning, and multi-view clus-

4



tering (Fig. 1). Specifically, MVC-DMLR employs DNMF to learn multi-level

representation of objects, which explores the hierarchical structure of features

of objects, improving capability of representation. To learn consistency and

diversity of various views, MVC-DMLR decomposes multi-level topology rep-

resentation into the consistency and diversity parts, which are characterized

at various levels. In other words, relations of various views are characterized

with different resolutions, significantly enhancing accuracy of relations of views.

MVC-DMLR integrates all these procedures into an overall optimization prob-

lem. Experiments demonstrate that MVC-DMLR is better than baselines for

clustering of multi-view data.

In all, contributions of this study are summarized as

- A novel multi-level topology representation is provided to exploit hier-

archical structure of features, which explicitly quantifies consistency and

diversity of various views, improving quality of features of objects.

- A novel integrative framework is proposed, which integrates deep feature

learning, multi-level topology representation, and multi-view clustering.

In this circumstance, representation is learned in accordance with cluster-

ing, which greatly improve performance of clustering.

- Experimental results prove superiority of MVC-DMLR to baselines, pro-

viding an effective model for multi-view clustering.

And, related work and preliminaries are summarized in Section 2 and 3,

respectively. Section 4 and 5 present procedure and performance of MVC-

DMLR, respectively. Section 6 concludes this study.

2. Related work

Clustering effectively analyzes large-scale data that cannot be manipulated

as a whole, which divides objects into compact groups such that objects are

similar inside of clusters, and dissimilar outside of clusters. And, multi-view

clustering simultaneously takes into consideration similarity of objects within

each view, and relations of across views. According to principles of algorithms,
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current approaches belong to one of four typical classes, i.e., co-training-, kernel-

, graph- and subspace-based approaches, where the first two categories focus on

manipulating data, and the latter two ones concentrate on operating features of

objects.

Co-training-based algorithms [9, 10, 11] assume that views are highly relat-

ed, and clusters of one view is useful for guiding clustering of other views. Thus,

these algorithms first perform clustering for a given view with the traditional

single-view clustering, and then execute clustering of another view by setting

clusters of the previous view(s) as prior, where relations among views are ad-

dressed with clusters. For example, Co-SC [9] and Co-Reg [10] first perform

clustering for a given view, and then independently repeat clustering for the

rest views by setting the previous obtained clusters as prior information. In

essence, co-training-based algorithms simply extend single-view clustering and

apply to multi-view scenarios with a sequential manner. These algorithms are

simple and easy to understand, which are unpopular for the low accuracy. First,

performance of algorithms is instable because orders of views for clustering dra-

matically effect performance of clustering because errors of clusters in one view

are very likely be accumulated in other views. Second, relations among views

are degenerated to relation between a pair of views, failing to fully address

correlation among them.

To fully address relations among views, the kernel-based algorithms [12, 13,

14, 15, 16] hypothesize that there exists an space, where all views are compatible

so that the relations among views can be directly modeled. Therefore, these

algorithms employ a kernel function to map objects in each view onto a high

dimensional kernel space, and clustering is performed with a linear manner to

combine all these views. For instance, KSCC [12] employs non-flat manifolds

to hybrid linear model for the construction of kernel functions, and Tzortzis

et al. [13] assume that weights for kernel functions are related to quality of

views. Generally speaking, kernel-based algorithms promote performance of co-

training approaches because relations of views are addressed. However, these

algorithms are unsatisfied because selecting appropriate kernels without deeply
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Table 1: Main symbols and description.

Symbol Definition and description

X Multi-view data {X [1], . . . , X [ν]}
X [v] Profile of the v-th view
mv Number of attributes in X [v].
B[v,i] The i-th level basis matrix of deep NMF for X [v]

F [v,i] The i-th level coefficient matrix of deep NMF for X [v]

C [v] The conserved topology representation for X [v]

U [v,i] The i-th level-specific topology representation for X [v]

Tr(X) Trace of X i.e. tr(X) =
∑

i xii
W Adjacent matrix of affinity graph G

understanding of properties of multi-view data is difficult.

However, these approaches directly manipulate data for clustering, where

the high-order relations among objects are ignored. To avoid this problem,

graph-based methods [17, 18, 19, 20, 21] construct graph(s) for various views,

transforming the original problem into graph clustering. Thus, clusters in multi-

view data is equivalent to communities in network(s). The great difference a-

mong these algorithms lies on the construction and clustering of graph(s). For

instance, GMC [19] constructs an unified graph of various views with the mu-

tual reinforcement learning, where clusters are directly obtained from the uni-

fied graph. CGDD [20] simultaneously and explicitly exploits consistency and

cross-graph diversity of various views, where noise of each view is effectively

removed. Graph-based algorithms dramatically improve performance of clus-

tering of multi-view data, demonstrating that topological structure of graphs of

views is critical for multi-view clustering.

Furthermore, subspace-based algorithms learns the low-dimensional repre-

sentation of objects by projecting all views into subspace(s), where the key tech-

nique is to find appropriate subspace(s) [32]. For example, Convex [32] projects

all views into a shared subspace with convex optimization, whereas MVSC [33]

performs subspace clustering by preserving the consistence of clusters among d-

ifferent views. To further exploit hierarchical representation of multi-view data,

DNMF [34] learn deep features of objects to obtain the multi-level representa-
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tion, where hierarchical structure of features is investigated, thereby providing

a more comprehensive way to model multi-view data. DMVC [35] utilizes deep

features of objects for clustering. awDMVC [11] automatically learns weights

for various views, whereas MVC-DMF-PA [36] employs alignment of partition-

ing of various views for clustering. In addition, DANMF-MRL [31] explores

consistency of views with deep features of objects. Nevertheless, these algo-

rithms only concentrate on the identification of the shared features, ignoring

view-specific features, which is also encouraging for multi-view clustering. For

instance, DiMSC [28] quantifies diversity of features of objects to obtain the

complementary information with Hilbert-Schmidt independence criterion, and

FMR [37] explores diversity of features of various views.

Here, we investigate possibility of exploiting consistency and diversity of

multi-level representation across views to fully characterize multi-view data.

3. Preliminaries

In this study, letters denote variables, where uppercase, lowercase boldface

and lowercase letters represent matrices, vectors and scalars, respectively. Ma-

trix X ∈ Rm×n is profile of n objects with m features, where element xij

denotes value of the i-th feature of the j-th object. Multi-view data is denoted

by X = {X [1], . . . , X [ν]}, where X [v] ∈ Rmv×n is the profile of the v-th view,

and ν is the number of views. ∥X∥ =
√∑

ij x
2
ij is the Frobenious norm of X,

and X
′
is the transpose of matrix X. Let xi.(Xi.) and x.j(X.j) be the i-th row

and j-th column of matrix X. If X is a square matrix, Tr(X)=
∑

i xii is trace

of X. Given feature matrix X, a graph G = (V,E) is constructed (V and E

are the set of vertices and edges respectively), whose adjacent matrix is denoted

by W ∈ Rn×n with element wij as weight on edge connecting the i-th and j-th

vertex. Graph clustering divides vertex set into groups such that vertices with-

in the same groups are well connected, and weakly connected across different

clusters. The major notations are summarized in Table 1.

NMF [3] approximates data X with two low-dimensional and nonnegative
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matrices such that minimization of error is achieved, i.e.,

min
B,F

∥X −BF∥2, s.t. B ≥ 0, F ≥ 0, (1)

where B ∈ Rm×k and F k×n are the basis and coefficient matrix, respectively.

DNMF [38, 34] learns hierarchical representation of the original data X as

min
B[i],F

∥X −B[1]B[2] · · ·B[τ ]F∥2, s.t. B[i] ≥ 0, F ≥ 0, (2)

where B[i] and F denote the i-th basis and coefficient matrix, and τ is the

number of levels. Notice that τ=1 implies that DNMF is degenerated to NMF.

Self-representation learning [39] hypothesizes that objects can be represented

with others with a linear function, i.e.,

xi =
∑
j,j ̸=i

ψjxj , (3)

where ψj is the weight for the j-th object. Graph can be learned from self-

representation is as

min ∥X −XΨ∥2, s.t. diag(Ψ) = 0, (4)

where diagonal elements of Ψ are 0 to avoid trivial solutions.

4. The proposed algorithm

In this section, the model, optimization, and analysis of MVC-DMLR are

presented.

4.1. Objective function

The objective function of MVC-DMLR is composed of three major compo-

nents, where each of them corresponds to one of procedures, i.e., deep feature

learning, multi-level topology representation learning and clustering as shown

in Fig. 1.
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Figure 1: Overview of the MVC-DMLR algorithm, which consists of deep feature learning,
multi-level topology learning and clustering, where the first procedure learns multi-level rep-
resentation with DNMF, multi-level topology representation learning measures consistency
and diversity of various views by manipulating multi-level features of objects, and clustering
procedure identifies clusters, respectively.
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On the deep feature learning issue, the most frequently employed approach is

to obtain low-dimensional features of objects with NMF [3]. Specifically, NMF

approximates profile X [v] of each view with low-rank nonnegative matrices by

minimizing reconstruction error, i.e.,

∥X [v] −B[v]F [v]∥2, s.t. B[v] ≥ 0, F [v] ≥ 0. (5)

To exploit relations of various views, features of objects can be obtained by

summing all views as
ν∑

v=1

∥X [v] −B[v]F [v]∥2. (6)

However, Eq.(6) fails to discriminate intrinsic complicated structure of fea-

tures, since objects in multi-view data cannot be precisely characterized with

features from one level. Therefore, there is a critical need for learning multi-level

representation of objects, where each level characterizes structure at various res-

olution, thereby enhancing comprehensibility of features. DNMF [34] in Eq.(2)

learns multi-level representation of objects, where B[i] · · ·B[τ ]F denotes the i-th

level representation (1 ≤ i ≤ τ). By jointly factorizing profiles of views, Eq.(6)

is reformulated as

LDNMF =

ν∑
v=1

∥X [v] −B[v,1] · · ·B[v,τ ]F [v,τ ]∥2, (7)

where F [v,τ ] feature of objects. In this case, hierarchical structure of features is

learned, which is more precise to model complicated structure of multi-view da-

ta. In other words, feature F [v,i] = B[v,i+1] · · ·B[v,τ ]F [v,τ ] describes the global

structure if i is small, local details otherwise. Furthermore, multi-level repre-

sentation also provides an opportunity to investigate intrinsic and complicated

structure of multi-view at different resolutions, thereby improving the quality

of features.

On multi-level topology representation learning issue, current algorithms

[34, 36] only makes use of the last level feature F [v,τ ] to perform clustering,
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whereas it is insufficient to fully characterize multi-view data since it merely de-

scribes details of data, ignoring meta-structure of objects. Moreover, relations a-

mong various views is also lacking, and MVC-DMLR employs self-representation

learning in Eq.(?? to learn an affinity graph for each level as

∥F [v,i] − F [v,i]W [v,i]∥2, s.t. diag(W [v,i]) = 0, (8)

where constraint diag(W [v,i])=0 requires diagonal elements are 0 to avoids triv-

ial solutions, i.e., samples are expressed by themselves. By summing all levels,

Eq.(8) is re-written as

τ∑
i=1

∥F [v,i] − F [v,i]W [v,i]∥2. (9)

By jointly learning all views, MVC-DMLR obtains multi-level topology repre-

sentation for multi-view data as

LSR =
ν∑

v=1

τ∑
i=1

∥F [v,i] − F [v,i]W [v,i]∥2. (10)

Eq.(10) results in consequent advantage that hierarchical structure is explicitly

learning, thereby facilitating the quantification of consistency and diversity of

various views.

However, directly clustering of the constructed graphs is impractical because

of two reasons. First, our previous studies [40, 41, 42] demonstrate that it is com-

plicated to directly exploit structure of multi-layer networks. Second, diversity

and consistency of various graphs are ignored, hampering the identification of

clusters. To address this problem, MVC-DMLR automatically separates W [v,i]

into the conserved and level-specific parts, where the former part reflects con-

sistency of all levels, and the latter one characterizes diversity of each view.

In details, MVC-DMLR decomposes W [v,i] into the conserved part C [v] and
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level-specific part U [v,i] such that

W [v,i] = C [v] + U [v,i]. (11)

By substituting the above expression into Eq.(10), we reformulate it as

LSR =
∑
v,i

∥F [v,i] − F [v,i](C [v] + U [v,i])∥2. (12)

Furthermore, l2 norm [43] is imposed onto level-specific part as

LREG =
∑
v,i

∥U [v,i]∥2. (13)

The relations among consistency C and diversity U are further addressed,

where orthogonality [44] is employ to ensure separation of them as

C [v](U [v,i])
′
= I, (14)

where I is the identity matrix. And, it can be formulated as trace minimization,

i.e.,

Tr(C [v](U [v,i])
′
). (15)

Furthermore, we also expect diversity across various views is also addressed with

orthogonality as

LDIV =
∑

vp ̸=vq

Tr(C [vp](C [vq])
′
) +

∑
v,i

Tr(C [v](U [v,i])
′
)

+
∑
v

∑
ij ̸=ik

Tr(U [v,ij ](U [v,ik])
′
)

(16)

By combining Eq.(7), (12), (13), and (16), the objective function of MVC-
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DMLR is finalized as

L = LDNMF + LSR + λLREG + γLDIV (17)

=
ν∑

v=1

∥X [v] −B[v,1] · · ·B[v,τ ]F [v,τ ]∥2

+
∑
v,i

∥F [v,i] − F [v,i](C [v] + U [v,i])∥2 + λ
∑
v,i

∥U [v,i]∥2

+ γ
∑

vp ̸=vq

Tr(C [vp](C [vq ])
′
) + γ

∑
v,i

Tr(C [v](U [v,i])
′
)

+ γ
∑
v

∑
ij ̸=ik

Tr(U [v,ij ](Uv,ik])
′
)

s.t. B[v,i] ≥ 0, F [v,i] ≥ 0, C [v] ≥ 0, U [u,i] ≥ 0,

diag(C [v]) = 0, diag(U [v,i]) = 0

where parameter λ and γ control importance of diversity and its relations with

consistency, respectively.

On clustering of multi-view data issue, MVC-DMLR constructs an affinity

graph from various views as

W =
1

ν

∑
v

C [v] + (C [v])
′

2
+

1

ντ

∑
v,i

U [v,i] + (U [v,i])
′

2
. (18)

And, we subsequently employ spectral clustering to obtain clusters with affinity

graph W .

4.2. Optimization

We adopt ADMM [45] to optimize Eq.(17), which alternatively updates a

variable by fixing others.

Optimization of B[v,i]: By removing irrelative items, the objective function

in terms of B[v,i] is reformulated as

L = ∥F [v,i−1] −B[v,i]F [v,i]∥2 s.t. B[v,i] ≥ 0, (19)

14



where

F [v,i−1] =

X
[v], if i= 1,

F [v,i−1], otherwise.

(20)

And, Eq.(19) is standard NMF, which can be effectively solved with the adding

and multiplication strategy as [46]

B[v,i] = B[v,i] ⊙ F [v,i−1](F [v,i])
′

B[v,i]F [v,i](F [v,i])′
, (21)

where ⊙ denotes the Hadamard product.

Optimization of F [v,i]: Eq.(17) is equivalent with the following problem

L = ∥F [v,i−1] −B[v,i]F [v,i]∥2 s.t. F [v,i] ≥ 0 (22)

where

F [v,i−1] =

X
[v], i=1,

F [v,i−1], otherwise.

(23)

Notice that Eq.(22) is convex, where the analytical solution exists. the partial

derivative of L in terms of F [v,i] is formulated as

∂L
∂F [v,i]

= (B[v,i])
′
(F [v,i−1] −B[v,i]F [v,i]) (24)

By setting partial derivative ∂L
∂F [v,i]=0, the update rule is obtained as

F [v,i] = F [v,i] ⊙ (B[v,i])
′
F [v,i−1]

(B[v,i])′B[v,i]F [v,i]
. (25)

Optimization of C [v]: By removing irrelevant item for C [v], objective function
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is transformed into

L =
∑
v,i

∥F [v,i] − F [v,i](C [v] + U [v,i])∥2

+γ
∑

vp ̸=vq

Tr(C [vp](C [vq ])
′
) + γ

∑
v,i

Tr(C [v](U [v,i])
′
)

s.t. diag(C [v]) = 0, C [v] ≥ 0.

(26)

The partial derivative of Eq.(26) in terms of C [v] is deduced as

∂L
∂C [v]

=
∑
i

(F [v,i])
′
F [v,i]C [v] −

∑
i

(F [v,i])
′
F [v,i]

+
∑
i

(F [v,i])
′
F [v,i]U [v,i] + γ(

∑
vp ̸=v

C [vp] +
∑
i

U [v,i]).
(27)

By setting ∂L
∂C[v]=0, the update rule for C [v] is obtained as

C [v] = C [v] ⊙

∑
i

(F [v,i])
′
F [v,i]

ϕ(F [v,i], C [v], U [v,i])
, (28)

where ϕ(F [v,i], C [v], U [v,i]) =
∑
i

(F [v,i])
′
F [v,i](C [v]+U [v,i])+γ(

∑
vp ̸=v

C [vp]+
∑
i

U [v,i]).

Optimization of U [v,i]: Eq.(17) in terms of U [v,i] is equivalent with the

following problem

L =
∑
v,i

∥F [v,i] − F [v,i](C [v] + U [v,i])∥2 + λ
∑
v,i

∥U [v,i]∥2

+ γ
∑
v

∑
ij ̸=ik

Tr(U [v,ij ](Uv,ik])
′
) + γ

∑
v,i

tr((C [v])
′
U [v,i])

s.t. diag(U [v,i]) = 0, U [v,i] ≥ 0.

(29)
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And, the partial derivative of L in terms of U [v,i] is deduced as

∂L
∂U [v,i]

= (F [v,i])
′
F [v,i]U [v,i] − (F [v,i])

′
F [v,i]

+ (F [v,i])
′
F [v,i]C [v] + λU [v,i]

+ γ
∑
ij ̸=i

U [v,ij ] + γC [v].

(30)

By setting the partial derivative ∂L
∂U [v,i] as 0, the update rule for U [v,i] is formu-

lated as

U [v,i] = U [v,i] ⊙ (F [v,i])
′
F [v,i]

φ(F [v,i], C [v], U [v,i])
, (31)

where φ(F [v,i], C [v], U [v,i]) = (F [v,i])
′
F [v,i](C [v]+U [v,i])+λU [v,i]+γ(

∑
ij ̸=i

U [v,ij ]+

C [v]).

Algorithm 1 MVC-DMLR Algorithm

Input:
X : Multi-view data;
λ, γ : Regularization parameters;

Output:
Clusters of X ;

Part I: Deep feature learning
1. Initialize matrix B[v,i] and F [v,i] with Singular Value decomposition as
Ref.[47];
2. Update matrix B[v,i] according to Eq.(21);
3. Update matrix F [v,i] according to Eq.(25);
Part II: Multi-level topology representation
4. Update matrix C [v] according to Eq.(28);
5. Update matrix U [v,i] according to Eq.(31);
6. Go to step 2 until convergence;
Part III: Clustering
7. Construct the affinity matrix W as Eq. (18).
8. Clustering W using spectral clustering.

4.3. Algorithm analysis

On the space complexity of MVC-DMLR, it needs space O(n
∑

vmv) to

store {X(v)}τv=1. For the deep feature learning, space for the basis and coeffi-

cient matrices is O(n
∑

vmv) since NMF is dimension reduction-based method.

Moreover, MVC-DMLR takes spaceO(n2τ) to store graphs, and space for graph-
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s in Eq.(18) is O(n2). Therefore, the total space complexity of MVC-DMLR is

O(n2τ).

On the time complexity of MVC-DMLR, it updates matrix B[v,i], F [v,i], C [v]

and U [v,i]. And, time for updating matrices is O(n2lk), where l is the number

of iterations, and k is the number of features. Thus, the time complexity of

MVC-DMLR is O(lkn2ντ)). Even though time complexity of MVC-DMLR is

higher than that of NMF, we demonstrate that MVC-DMLR is also efficient

(Section 5.4).

Table 2: Statistics of multi-view data, where n, ν and mv denote the number of objects, views,
and attributes, respectively.

n ν mv

BBC 685 4 4659/4633/4665/4684
BBCSport 544 2 3183/3203
3sources 169 3 3560/3631/3068
Reuters 1200 5 2000/2000/2000/2000/2000
CiteSeer 3312 2 3312/3703
WebKB 203 3 1703/230/230
NGS 500 3 2000/2000/2000
ORL 400 3 4096/3304/6750
Yale 165 3 4096/3304/6750

100leaves 1600 3 64/64/64

5. Experimental results

Extensive experiments are conducted to testify effectiveness of MVC-DMLR

with seven state-of-the-art baselines and ten benchmark datasets.

5.1. Data

Ten datasets are chosen for experiments, which are depicted as

- BBC [48] involves 685 documents from BBC news, and each of them with

4 views. The number of attributes of views are 4659, 4633, 4665 and 4684,

respectively.

- BBCSport [48] involves 544 documents from BBC Sport column, and

each document is depicted into two views with 3183 and 3203 attributes,

respectively.
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- 3Sources consists of 169 news from 3 news organizations, where samples

are manually labeled as one of seven topical labels.

- Reuters [49] contains 1200 documents, and each document is written

by using five languages, such as Englishi, Italian, French, German, and

Spanish, where each language has 2000 words as features.

- CiteSeer [49] contains 3312 documents over 6 labels, and each one is

associated with the content and citations view, where the content view

has 3703 words, and citation view includes 4732 links, respectively.

- WebKB is composed of 203 web pages, which is gathered from the com-

puter science department of University of California. Each sample is de-

picted by the materials, recording the anchor text on the hyperlink, and

titles as attributes.

- 20NGs is a collection of news documents drawn from 20 distinct news-

groups, each of which has 500 instances that are processed by 3 various

approaches.

- ORL is from the Olivetti Research Laboratory in Cambridge, which con-

sists of 40 distinct objects, and each of them is with 10 diverse images.

Three different attributes are used to depicted an image including 4096

intensity, 3304 LBP, and 6750 Cabor, respectively.

- Yale [50] consists of 165 raw images belonging to 15 subjects, and there are

11 images under various environments for each subject. For each image,

three types of features are generated.

- 100leaves consists of 1600 samples from 100 plant species, where features

include shape descriptor, fine-scale margin, and texture histogram.

All these datasets can be categorized into two classes, i.e., texts and images,

where BBC, BBCSport, 3Sources, Reuters, CiteSeer, WebKB, and 20NGs be-

long to the first class, and ORL, Yale, and 100leaves are the second one. The

statistics of these datasets are summarized in Table 2.
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Figure 2: ACC of MVC-DMLR vs various parameters: (A) log of λ, and (B) log of γ.

5.2. Baselines and metrics

Seven state-of-the-art baselines are chosen for a comparison to fully validate

performance of the proposed algorithm, including as Co-Reg [10], MultiNMF

[51], DMVC [35], CSMSC [22], GMC [19], MVC-DMF-PA [36], and CGDD [20],

which cover all typical multi-view clustering approaches. All these algorithms

are executed on HP Z228 workstation with Intel i5 CPU, 64G memory and

1Tb RAM with the optimal values of parameters. MVC-DMLR is coded with

python.

To evaluate the clustering performance, four popular metrics, such as accu-

racy (ACC), normalized mutual information (NMI) [52], F-score, and adjusted

rand index (ARI) [53], are selected as evaluation criteria. Each algorithm is

executed 50 time, and the mean of accuracy is selected to measure performance

of algorithms. ACC is defined as

ACC =
1

n

n∑
i=1

δ(pi, gi), (32)

where pi and gi denote the predicted and truth label of the i-th object respec-

tively, and δ(pi, gi) is an indicator function that is 1 if pi = gi, 0 otherwise.

Let C∗ and C be the ground truth and predicted clusters, NMI [52] con-

structs a confusion matrix P with the element pij as the number of vertices

overlapped by the i-th true cluster in C∗ and the j-th predicted one, which is
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Table 3: Performance of various algorithms on the multi-view image data in terms of ACC,
NMI, F-Score, and ARI (mean ± sd), where the best performance are shown in bold font, and
- represents no output.

Data Methods ACC(%) NMI(%) F-Score(%) ARI(%)

ORL

Co-Reg 73.80±3.60 88.04±1.30 64.78±5.26 63.90±5.39
MultiNMF 72.00±3.40 88.70±1.09 65.38±3.94 64.46±4.08
DMVC 76.09±1.36 87.44±0.47 67.55±1.38 66.76±1.42
CSMSC 77.63±2.65 90.40±0.98 71.99±2.52 71.28±2.59
GMC 63.25±0.00 85.71±0.00 35.99±0.00 33.67±0.00

MVC-DMF-PA 71.27±3.66 85.81±1.80 62.85±4.30 63.76±4.18
CGDD 62.20±1.33 84.66±0.80 35.11±2.91 32.76±3.07

MVC-DMLR 81.81±2.57 92.49±0.84 76.91±2.49 76.34±2.55

Yale

Co-Reg 58.09±4.20 63.06±2.45 43.78±2.26 39.93±2.43
MultiNMF 56.95±2.89 63.70±1.50 45.06±2.26 41.20±2.50
DMVC 78.20±1.00 74.50±1.10 60.10±0.20 57.90±0.20
CSMSC 64.46±2.80 68.85±1.62 51.72±2.13 48.39±2.31
GMC 65.45±0.00 68.92±0.00 48.01±0.00 44.10±0.00

MVC-DMF-PA 60.08±5.90 64.52±4.66 43.59±6.44 47.24±5.97
CGDD 66.55±0.27 70.35±1.06 49.53±1.48 45.88±1.60

MVC-DMLR 73.16±1.09 75.11±0.88 60.58±1.18 57.96±1.25

100leaves

Co-Reg 71.89±1.77 88.16±0.75 61.88±8.06 61.49±8.14
MultiNMF 66.95±1.86 85.69±0.56 58.52±1.83 58.08±1.86
DMVC 25.99±0.44 56.56±0.25 11.87±0.29 10.96±0.30
CSMSC 75.74±1.43 89.11±0.48 68.41±1.30 68.09±1.31
GMC 82.38±0.00 92.92±0.00 50.42±0.00 49.74±0.00

MVC-DMF-PA - - - -
CGDD 80.34±0.96 92.08±0.75 46.63±10.37 45.88±10.57

MVC-DMLR 83.38±1.68 92.98±0.52 77.87±1.66 77.65±1.68

defined as

NMI(C,C∗) =
−2

∑|C|
i=1

∑|C∗|
j=1 pij log

(
pijP
Pi.P.j

)
∑|C|

i=1 Pi. log
(
Pi.

P

)
+
∑|C∗|

j=1 P.j log
(

Pj ,j
P

) .
ARI [53] is defined as

ARI =

∑
ij

(
pij

2

)
−
[∑

i

(
pi.

2

)∑
j

(
p.j

2

)]
/
(
n
2

)
1
2

[∑
i

(
pi.

2

)
+

∑
j

(
p.j

2

)]
−

[∑
i

(
pi.

2

)∑
j

(
p.j

2

)]
/
(
n
2

) , (33)

where pi. and p.j is the sum of the i-th row and j-column, respectively. F-score

is variant of mean of precision and recall as

F-score =
2× precision× recall

precision+ recall
. (34)
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5.3. Parameter analysis

Two parameters λ and γ are involved in MVC-DMLR, where parameter λ

and γ determine importance of diversity and consistency of features, respective-

ly. Parameter effect is analyzed by fixing the others on six datasets.

How ACC of MVC-DMLR alters by varying values of parameters is displayed

in Fig. 2, where panel A is for parameter λ, and B for γ, respectively. Fig.

2 A depicts how ACC of MVC-DMLR changes as parameter λ ranges from

10−4 to 102 on various datasets. We can draw conclusions naturally that ACC

significantly improves as λ increases from 10−4 to 1. Furthermore, ACC of

MVC-DMLR is quite steady when λ > 1. When λ is small, diversity is subtle

in the objective function, failing to balance diversity and consistency, which

enforces MVC-DMLR to maximize consistency of various views. In this case,

MVC-DMLR fails to separate diversity from consistency of each view, thereby

reducing quality of features of objects. As parameter λ increases from 1 to 102,

ACC of MVC-DMLR significantly improves because diversity and consistency

reach a good balance.

Moreover, Fig. 2 B tracks how ACC of MVC-DMLR alters as parameter

γ ranges from 10−4 to 102 on various datasets. Performance of MVC-DMLR

improves as parameter λ increases from 10−4 to 10−2, and keeps stable as λ ∈

[10−2, 1]. However, performance of MVC-DMLR decreases ACC if γ >1. When

parameter γ is small, contribution of relations between diversity and consistency

of various views is subtle, and MVC-DMLR is devoted to learn features of

objects for each views, deviating from the conserved features of various views.

When γ is large, objective function is dominated by relations between diversity

and consistency, reducing importance of multi-level representation of objects.

MVC-DMLR achieves the best performance when γ ∈ [0.01, 1].

Finally, it is natural to ask how many levels is a good choice, i.e., how to select

value for parameter τ for multi-level representation. How ACC of MVC-DMLR

changes by increases parameter τ from 1 to 5 is shown in Fig. 3. ACC of MVC-

DMLR increases as parameter τ increases from 1 to 3, while it decreases as τ

keeps increasing. When parameter τ is small, multi-level representation cannot
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Figure 3: Performance of MVC-DMLR with various values of parameter τ .

fully characterize and model intrinsic structure of multi-view data. Furthermore,

large value of parameter τ results in over-fitting, thereby reducing performance

of MVC-DMLR. And, the proposed algorithm reaches a good tradeoff as τ=3.

By replacing ACC with NMI and ARI, we have the similar tendency for each

parameter, which are missed to remove redundancy. Therefore, we set λ=1,

γ=0.1, τ=3 for all experiments.

5.4. Convergence analysis

MVC-DMLR adopts ADMM to optimize objective function, where conver-

gence is ensured [45]. Here, by using the relative error of objective function,

we investigate convergence of the suggested approach, i.e., (Oi-Omin)/(Omax-

Omin), where Omin, Omax, and Omin denotes the i-th iteration, maximal and

minimal value of objective function, respectively.

Fig. 4 depicts convergence of MVC-DMLR relative error of objective func-

tion and the number of iterations for all datasets, where panel A is for BBC, B

for Yale, C for ORL, and D for 3Source, respectively. Notice that the tendency is

similar in other datasets, which is absent for removing redundancy. From these

panels, it is easy to assert that MVC-DMLR only takes about 50 iterations to

converge, whereas Multi-NMF requires more than 300 iterations to converge,
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Figure 4: Convergence analysis of MVC-DMLR on various datasets: (A) BBC, (B) Yale, (C)
ORL, and (D) 3Sources, respectively.

implying that the suggested approach is efficient. Three reasons explain why

the proposed algorithm converges quickly. First, MVC-DMLR takes DNMF

to learn multi-level representation of objects, i.e., in essence dimension reduc-

tion is performed for each level, which dramatically reduces complexity of the

proposed algorithm. Second, MVC-DMLR joins feature learning, graph learn-

ing and clustering of multi-view data, where the topological structure serves as

partial information to accelerate speed of convergence [40, 41, 42]. Third, MVC-

DMLR simultaneously measures relations consistency and diversity of various

views with orthogonality, enforcing sparsity of diversity of various views, which

also accelerates speed of the proposed algorithm.

5.5. Performance of multi-view clustering

To validate performance of MVC-DMLR, seven state-of-the-art algorithm-

s, such as Co-Reg [10], MultiNMF [51], DMVC [35], CSMSC [22], GMC [19],
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MVC-DMF-PA [36], and CGDD [20], are chosen as baselines. Furthermore, ten

benchmark multi-view data are selected for experiments, which are divided into

two classes, i.e., image and text, as shown in Table 2. To remove bias of mea-

surements, four indexes, including ACC, ARI, NMI and F-score, are employed

to quantify performance of various algorithms. To remove randomness of algo-

rithms, each methods are executed 50 time and mean ± standard deviation is

chosen as performance.

Performance of various algorithms for clustering of multi-view image data,

such as ORL, Yale and 100leaves, is shown in Table 3, where the proposed al-

gorithm achieves the best performance. Specifically, ACC of MVC-DMLR is

81.81% for ORL, 73.16% for Yale, and 83.38% for 100leaves, whereas that of

CGDD is 62.20%, 66.55%, and 80.34%, respectively. CSMSC and GMC are

inferior to MVC-DMLR, but are superior to others. These results demonstrate

that topological structure of graphs facilitates the identification of clusters. Fur-

thermore, ACC of DMVC is 76.09% for ORL, whereas it is 25.99% for 100leaves,

indicating that DMVC is very sensitive to datasets. The reason is that DMVC

solely learns the multi-level representation of objects, which is insufficient to

characterize the intrinsic structure of multi-view data. By replacing ACC with

ARI, NMI and F-score, MVC-DMLR still achieves the best performance, demon-

strating that the proposed algorithm is not co-factored by measurements. How-

ever, CGDD and GMC are very sensitive to measurements. For example, ACC

of GMC and CGDD is 63.25% and 62.20% for ORL, whereas ARI is 33.67%

and 32.76%, respectively. This tendency repeats in other datasets, showing

these algorithms fail to identify the truth clusters in multi-view data. These

results demonstrate that MVC-DMLR is promising for clustering of multi-view

datasets for images.

Then, we apply these algorithms to multi-view data for documents, and

performance of them with various measurements is shown in Table 5. Notice

that even though MVC-DMLR is inferior to CGDD and GMC in terms ACC

and NMI on WebKB, but it achieves the best performance for other datasets.

Performance of MVC-DMLR is still acceptable for two reasons. First, difference
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between MVC-DMLR and CGDD is subtle, i.e., 74.88% vs 76.22%. Second,

MVC-DMLR is also superior to CGDD and GMC in terms of F-score and ARI.

In all, the proposed algorithm significantly outperforms these baselines. In

details, ACC of MVC-DMLR is 91.82% for BBC, 92.29% for BBCSport, 79.88%

for 3sources, 57.25% for Reuters, 59.69% for CiteSeer, and 98.40% for NGs,

whereas that of MVC-DMF-PA is 75.48 % for BBC, 68.54% for BBCSport,

54.89% for 3sources, 49.85% for Reuters, 26.87% for CiteSeer, and 45.66% for

NGs, respectively. Furthermore, the proposed algorithm is superior to baselines

in terms of F-score and ARI for all datasets, implying that MVC-DMLR avoids

identifying clusters with large sizes. The reason why MultiNMF and GMC are

inferior to others is that they only explore consistency of different views, failing

to discover relations of various views. In contrast, MVC-DMLR, CSMSC and

CGDD takes both consistency and diversity into consideration, which improves

performance of clustering. Although CSMSC and CGDD learn diversity and

consistency of various views, they fail to exploit multi-level representation of

multi-view data, resulting in undesirable performance.

Several reasons accounts for superiority of the proposed algorithm. First,

MVC-DMLR learns multi-level representation of objects with matrix factoriza-

tion, where the hierarchical representation is exploited, providing a comprehen-

sive and precise way to characterize the intrinsic structure of multi-view data.

Second, MVC-DMLR learns multi-layer graphs of each view, where the indirect-

ed topological information is explored, thereby replenishing the original features

of objects. Third, MVC-DMLR separates diversity and consistency of various

views, thereby improving performance of multi-view clustering. These results

demonstrate that the proposed multi-level topology representation is promising

for multi-view clustering.

5.6. Ablation Study

Since MVC-DMLR simultaneously learns multi-level topology representa-

tion, and diversity and consistency learning, which are integrated with regular-

ization. Thus, it is necessary to conduct an ablation study, where importance
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Table 4: Performance of variants of MVC-DMRL on various datasets in terms of ACC.
Data λ=0 γ=0 MVC-DMLR
BBC 83.18±0.08 75.13±0.07 91.82±0.00

BBCSport 79.60±0.00 77.38±0.05 92.31±0.07
ORL 55.53±1.60 75.83±1.69 82.14±2.75
Yale 64.07±2.18 66.51±1.11 72.61±0.75

Reuters 46.97±0.23 27.61±0.26 57.25±0.00
webkb 50.25±0.00 66.02±0.75 75.37±0.00
NGs 76.25±0.13 93.22±0.06 98.40±0.00

of these items are investigated.

Two variants of MVC-DMLR are generated by setting either λ=0 or γ=0,

where the first variant removes diversity of each view, and the second one deletes

relations of diversity and consistency. Performance of MVC-DMLR and its

variants on all datasets in terms of ACC is shown in Table 4, where ACC of

MVC-DMLR dramatically decreases by removing either of them. For example,

ACC of MVC-DMLR is 91.82% for BBC, 92.31% for BBCSport, 82.14% for

ORL, 72.61% for Yale, 57.25% for Reuters, 75.37% for WebKB, and 98.40% for

NGs, respectively. However, it significantly drops to 83.18% for BBC, 79.16%

for BBCSport, 55.53% for ORL, 64.07% for Yale, 46.97% for Reuters, 50.25%

for WebKB, and 76.25% for NGs if λ=0. These results demonstrate diversity is

critical for the characterization of structure of clusters in multi-view data.

Furthermore, ACC of MVC-DMLR incredibly descends to 75.13% for BBC,

77.38% for BBCSport, 75.83% for ORL, 66.51% for Yale, 27.61% for Reuters,

66.02% for WebKB, and 93.22% for NGs if relations between diversity and

consistency of various views is deleted, i.e., γ=0. These results prove that

relations between diversity and consistency is also critical for MVC-DMLR,

indicating that diversity and consistency are complementary information for the

characterization of multi-view data. And, MVC-DMLR seamlessly integrates

these two issues with regularization.

6. Conclusion

Complex systems are more precisely characterized with multiple views, and

the resulted in multi-view data provide an opportunity to exploit structure and
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functions of systems. However, state-of-the-art methods are criticized for fail-

ing to capture intrinsic structure of features. In this study, we propose a novel

multi-view clustering method, which learns the multi-level topology represen-

tation, and exploits relations among views by exploring structure consistency

and diversity. Experimental results demonstrate that the proposed algorith-

m outperforms state-of-the-art baselines, indicating that multi-level topology

structure is promising for characterizing multi-view data.

There are some possible directions for further study, which are listed as

- MVC-DMLR implicitly assumes that all views of data and levels of rep-

resentation are equal. Actually, this hypothesis deviates from the expec-

tation. How to automatically learn weights for each view and each repre-

sentation level is critical for further improve performance of clustering.

- Even though the proposed method learns multi-level topology representa-

tion of multi-view data, MVC-DMLR addresses consistency and diversity

of views at the graph level, ignoring roles of vertices. Actually, roles of

vertices is also promising for clustering. Thus, how to exploit additional

roles of vertices for multi-level topology representation of multi-view data

is also interesting.

- MVC-DMLR employs NMF for feature learning of multi-view data, which

is time consuming. How to accelerate the proposed algorithm for large-

scale datasets is also promising. Furthermore, relations between diversity

and consistency are critical to model structure of multi-view data.

- MVC-DMLR adopts self-representation learning to construct graphs for

various views, which only characterizes linear relations among objects.

How to model and measure non-linear relations among objects is very

interesting.
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Table 5: Performance of various algorithms in terms of various measurements, where the best
performance are shown in bold font (mean ± sd).

Data Methods ACC(%) NMI(%) F-Score(%) ARI(%)

BBC

Co-Reg 42.98±4.70 15.86±7.36 40.63±2.13 8.41±4.45
MultiNMF 45.57±0.35 24.86±0.15 37.22±0.24 11.43±0.21
DMVC 37.50±0.25 11.73±0.10 28.64±0.03 7.70±0.07
CSMSC 91.81±0.04 77.29±0.03 85.52±0.08 81.05±0.11
GMC 69.34±0.00 56.28±0.00 63.33±0.00 47.89±0.00

MVC-DMF-PA 75.84±7.85 59.98±2.06 58.78±6.20 67.94±4.92
CGDD 88.06±0.07 75.47±0.14 82.67±0.16 76.81±0.22

MVC-DMLR 91.82±0.00 77.18±0.00 86.00±0.00 81.74±0.00

BBCSport

Co-Reg 36.27±2.75 13.93±0.45 32.98±0.59 11.66±0.81
MultiNMF 46.63±0.86 33.10±1.83 40.18±1.45 19.14±2.84
DMVC 33.49±0.26 6.12±0.02 26.77±0.04 3.73±0.01
CSMSC 84.93±0.00 73.57±0.00 79.10±0.00 72.87±0.00
GMC 80.70±0.00 76.00±0.00 79.43±0.00 72.18±0.00

MVC-DMF-PA 68.54±4.49 49.48±3.45 46.25±4.07 58.06±3.19
CGDD 79.96±0.64 73.12±1.79 74.00±1.40 64.01±2.01

MVC-DMLR 92.29±0.04 80.66±0.16 86.58±0.07 82.57±0.09

3sources

Co-Reg 57.51±3.53 50.65±3.30 47.17±3.42 32.16±4.99
MultiNMF 50.22±2.12 45.68±1.01 45.66±2.55 30.37±3.22
DMVC 41.51±0.30 24.69±0.14 32.28±0.17 14.90±0.20
CSMSC 63.43±1.02 47.28±1.77 63.02±0.69 50.69±0.95
GMC 69.23±0.00 62.16±0.00 60.47±0.00 44.31±0.00

MVC-DMF-PA 54.89±4.46 56.86±3.68 41.73±4.76 53.49±3.65
CGDD 76.21±0.26 68.74±0.95 67.68±0.63 55.31±0.90

MVC-DMLR 79.88±0.00 74.17±0.00 76.51±0.00 69.37±0.00

Reuters

Co-Reg 45.78±1.03 27.17±0.79 34.61±0.10 20.12±0.27
MultiNMF 20.74±1.85 9.37±1.12 28.34±0.07 0.55±0.68
DMVC 27.57±0.31 12.76±0.16 28.72±0.06 5.95±0.09
CSMSC 44.51±0.06 23.59±0.04 32.41±0.03 16.84±0.05
GMC 19.92±0.00 13.51±0.00 28.76±0.00 1.33±0.00

MVC-DMF-PA 49.85±1.90 30.28±1.45 23.40±1.56 37.71±0.95
CGDD 23.70±0.05 20.22±0.36 29.29±0.07 3.03±0.13

MVC-DMLR 57.25±0.00 38.14±0.00 43.39±0.00 30.85±0.00

CiteSeer

Co-Reg 40.42±1.01 18.76±0.35 32.64±2.21 15.05±7.84
MultiNMF 22.34±0.00 2.90±0.03 30.20±0.00 0.12±0.00
DMVC 20.92±0.00 2.20±0.00 30.03±0.00 -0.14±0.00
CSMSC 59.45±0.03 31.33±0.03 43.13±0.03 31.06±0.04
GMC 21.44±0.00 1.41±0.00 30.31±0.00 0.11±0.00

MVC-DMF-PA 26.87±1.59 7.33±1.38 0.99±1.55 29.28±0.43
CGDD 21.04±0.00 2.34±0.00 30.16±0.00 -0.03±0.00

MVC-DMLR 59.69±0.01 32.15±0.01 43.56±0.00 31.31±0.01

WebKB

Co-Reg 63.30±1.63 33.31±2.41 57.80±1.72 36.03±2.26
MultiNMF 74.88±0.00 34.66±0.00 68.38±0.00 44.65±0.00
DMVC 46.31±0.00 12.28±0.00 42.99±0.00 11.34±0.00
CSMSC 67.98±0.00 32.55±0.00 61.38±0.00 36.91±0.00
GMC 75.86±0.00 42.19±0.00 68.57±0.00 41.13±0.00

MVC-DMF-PA 55.04±0.88 11.37±1.83 15.54±3.35 49.05±0.77
CGDD 76.26±0.41 38.06±1.85 69.00±0.49 45.44±0.73

MVC-DMLR 74.88±0.00 40.47±0.00 70.88±0.00 49.23±0.00

NGs

Co-Reg 24.83±2.89 4.63±2.27 32.68±0.36 0.30±0.49
MultiNMF 30.80±0.00 15.09±0.00 32.99±0.00 2.99±0.00
DMVC 39.56±0.11 15.52±0.09 34.22±0.07 12.65±0.05
CSMSC 98.20±0.00 93.92±0.00 96.43±0.00 95.54±0.00
GMC 98.20±0.00 93.92±0.00 96.43±0.00 95.54±0.00

MVC-DMF-PA 45.66±2.43 23.94±3.15 14.90±1.67 34.72±1.60
CGDD 97.68±0.11 92.41±0.25 95.38±0.21 94.23±0.27

MVC-DMLR 98.40±0.00 94.61±0.00 96.81±0.00 96.02±0.00
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