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ABSTRACT

Deep learning based medical segmentation still presents a great challenge due to the lack of large-scale datasets in
the medical domain. The existing publicly available datasets vary significantly in terms of imaging modalities and
target anatomies. This paper presents a novel guided latent diffusion model for universal medical segmentation,
capable of segmenting diverse anatomical structures using a single and unified architecture. Given a Contrastive
Language-Image Pretraining (CLIP) embedding specifying the target anatomical structure, the proposed model
leverages a collection of datasets covering the diverse structures which can segment any anatomical targets that
are presented in the aggregated data. By performing diffusion fully in latent space, we achieve comparable
results to pixel-space diffusion with significantly lower computational cost. The proposed methods demonstrates
competitive performance against existing deep learning-based discriminative approaches on several benchmarks.
Furthermore, it shows strong generalization capabilities on unseen datasets.

Keywords: Medical Image Segmentation, Denoising Diffusion Probabilistic Models, Contrastive Language-
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1. INTRODUCTION

Medical image segmentation is a technique used to automatically partition biomedical images into meaningful
sub-structures such as organs, lesions, or pathologies. This process aids clinicians in identifying and delineating
abnormalities, playing a crucial role in various medical applications, including radiotherapy. Current state-of-the-
art models can be categorised into two variations: fully-convolutional networks (FCNs), and hybrid transformer-
convolutional approaches. The most notable FCN architecture is the U-Net1 which utilise a encoder-decoder
structure to extract and transform feature maps from the input into a segmentation mask. The most successful
of these approaches is nnU-Net,2 a self-configuring U-Net framework that automatically adapts its architecture
based on the training data-set fingerprint. Transformer based models introduce a Vision Transformer (ViT)
backbone3 into the architecture, employing self-attention to capture long-term dependencies that are neglected
by convolutional layers. The most notable of these techniques is Swin-UNETR,4 which replaces the encoder path
of the traditional U-Net with Swin Transformers.

Challenges persist in training these models for the medical domain, primarily due to limited labeled datasets
and high data variance. As a result, the research landscape has largely focused on specialist few-class segmen-
tation models, with generalist multi-class models occupying a smaller representation. This practice conflicts
with the established principle in deep learning that increasing the quantity and diversity of training data is key
to improving model performance and generalization capabilities. Recent works investigating universal medical
segmentation models5,6 have found that generalist models consistently outperform their specialist counterparts,
aligning with these expectations. Recently, there has been an increased focus on modifying these approaches
towards universal architectures, capable of segmenting a comprehensive number of anatomical structures. Liu
et al. presented CLIP-Driven Universal Model,5 combining Swin-UNETR for volumetric feature extraction to-
gether with CLIP,7 a joint vision-language model that combines an image encoder and text encoder to produce
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a combined embedded representation of an image. The universal model generates class-specific decoding pa-
rameters using the CLIP text embeddings which specify the target anatomical structure, which are then used
by the convolutional decoder to produce binary segmentation masks. Their approach currently ranks highest
in both the MSD8 and BTCV9 benchmarks, highlighting the potential of universal models for medical image
segmentation.

Parallel yet diverging evolution has taken place in the broader computer vision field, where diffusion models
have established themselves as state-of-the-art solutions for various applications.10 Diffusion Models11 are a fam-
ily of generative models that have achieved state-of-the-art performance in various computer vision tasks such
as image and video synthesis.10 However, their application to discriminative tasks, such as medical image seg-
mentation, is still at an early stage, where these works largely focus on binary or few-class segmentation. Wolleb
et al.12 introduced the first model for brain tumor segmentation, highlighting their ability for ensemble genera-
tion and uncertainty visualisation as desirable properties for increasing model interpretability and encouraging
clinical use. Subsequent works by Wu et al.13 refined this approach, introducing architectural improvements
such as separate image encoders and transformer-based feature aggregation. Further works have explored 3D
architectures14 and operating in latent space.15 While these methods have shown promising results, they fo-
cus on training on individual datasets with single/few-class segmentation targets, and no ability for conditional
sampling. Recent advancements in semi-supervised segmentation, such as IPixMatch,16 have highlighted the
importance of capturing inter-pixel dependencies to improve model performance, particularly in situations with
limited labeled data. Inspired by these methods, our work aims to leverage latent space diffusion to achieve
generalization across diverse anatomical structures while ensuring computational efficiency.

Motivated by the trend towards universal models and their state-of-the-art performance, this paper presents
a guided latent diffusion model for universal medical segmentation via integrating a class-aware image encoder
into the U-Net architecture. By performing diffusion entirely in latent space and leveraging autoencoders for
segmentation masks and conditional images, we effectively reduce computational costs while maintaining com-
petitive accuracy. We have collated and standardized multiple datasets, training a model capable of segmenting
any anatomical structure covered in the aggregated data given user prompting. Finally, we provide a com-
parative evaluation against existing deep learning-based discriminative segmentation approaches across several
benchmarks, underscoring the advantages of our proposed method.

2. THE PROPOSED METHOD

Figure 1 shows the overview of the proposed method. Given a collection of datasets D = {D0, . . . , DM},
each dataset Di consists of image-label pairs {(y1,x1), . . . , (yN ,xN )}, where Ni is the number of cases and
Ki = {k0, . . . , kn} denotes the segmentation targets covered by dataset Di. The goal is to learn the function
Fθ(y, k) = x. The model effectively treats multi-class segmentation as separate instances of binary segmentation,
where xijk

n = 1 only if yijk
n belongs to class k, and 0 otherwise. Two separate auto-encoders, (Ey, Dy) and (Ex,

Dx) are used to map images y and segmentation masks x to a lower-dimensional latent space using the encoder
E : RH×W → RCz×Hz×Wz , where Cz is the channel dimensionality of the latent space and Hz = H

fz
, Wz = W

fz
are

the spatial dimensions of the latent space after a down-scaling factor fz. The decoder is then used to reconstruct
the original input ŷ = Dy(z

(y)) and x̂ = Dx(z
(x)).

2.1 Mask and Image Encoder

The mask auto-encoder (Ex, Dx) is a vanilla auto-encoder,18 trained by minimising a reconstruction loss that
quantifies the fidelity of the reconstructed segmentation mask x̂ with respect to the original x. The reconstruction
loss is composed of two terms: (1) a pixel-wise binary cross entropy loss LBCE , and (2) a global spatial loss
LDICE , defined respectively as:

LBCE(x, x̂) := − 1

N

N∑
i=1

[xi log(x̂i) + (1− xi) log(1− x̂i)] (1)

LDICE(x, x̂) := 1−
2
∑N

i=1 xix̂i + ϵ∑N
i=1 xi +

∑N
i=1 x̂i + ϵ

(2)



Figure 1: An overview of the architecture and training procedure of the proposed diffusion segmentation model. ek
is the class embedding vector for segmentation targets. The training loop includes adding noise, neural network-based
denoising, and optimizing the model through backpropagation using LMSE and LV LB .
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where ϵ is a term introduced for numerical stability.

We note that previous work by Rombach et al.19 found it beneficial to diffuse across a regularised latent
space, encoded by either a VAE or VQ-VAE. However, we observe that regularised latent spaces are redundant
for encoding a binary segmentation mask, and increase the convergence time of the segmentation model. As
such, we opt for a regular auto-encoder and utilise weight decay20 which by extension enforces a lower variance
latent space. The final loss function is then given by:

LAE := LBCE + LDICE + λ||w||2 (3)

where w are the auto-encoder model weights, and λ is a tune-able hyper-parameter controlling the strength of
the regularisation term, that we set to 1e−5. We opt to utilise a variational-autoencoder (VAE)21 as our image
auto-encoder (Ey, Dy). The VAE training objective function is based on maximizing the Evidence Lower Bound
(ELBO), which consists of two main components: (1) the expected log-likelihood of the reconstruction, and (2)
the negative Kullback-Leibler (KL) divergence between the approximate posterior q(z(y)|y) and the prior p(z(y)).
This ensures that the approximate posterior is roughly modeled by the prior, which in our case we define as a
multivariate Gaussian distribution N (0, I). We additionally incorporate a learned perceptual similarity22 loss
defined as:

LLPIPS(y, ŷ) :=
∑
l

wl ⊙ ||(F l
y −F l

ŷ)||22 (4)

where Fy = φ(y), Fŷ = φ(ŷ) are multi-layer feature maps, and φ is a pre-trained VGG network. The final
training objective for our VAE is then given by:

LV AE := E
[
− log(y|z(y)) + αLLPIPS

]
+ βDKL(q(z

(y)|y) || p(z(y))) (5)



2.2 Diffusion Processes

The forward diffusion process gradually corrupts a latent segmentation mask z
(x)
0 , adding Gaussian noise accord-

ing to a number of steps T and corresponding monotonically-increasing variance schedule βt ∈ [0, 1] as:

q(z
(x)
t |z(x)0 ) := N (z

(x)
t ;

√
ᾱt z

(x)
0 , (1− ᾱt)I) (6)

where αt := 1− βt and ᾱt =
∏t

i αi are defined in order to allow us to compute z
(x)
t without the prior trajectory

z
(x)
0 , . . . z

(x)
t−1. At the end of the trajectory, for a well defined noise schedule βt, z

(x)
T should be approximately

Gaussian distributed.

The denoising process is estimated by our neural network, parameterized by learned parameters θ, and learns
to reverse the forward process according to:

pθ(z
(x)
t−1|z

(x)
t ) := N (z

(x)
t−1;µθ,Σθ) (7)

where µθ = µθ(z
(x)
t , z(y), t, k) and Σθ = Σθ(z

(x)
t , z(y), t, k)) are approximated by our model, conditional on the

latent image z(y), denoising time-step t, and segmentation class k. To sample from our model, we can sample
zT ∼ N (0, I) and apply the denoising trajectory:

pθ(z
(x)
0 |z(x)T ) = pθ(z

(x)
T )

T∏
t=1

pθ(z
(x)
t−1|z

(x)
t ) (8)

There are multiple ways that µθ can be parameterized. In practice, Ho et al.23 found that training the model to

predict the noise ϵ added by q(z
(x)
t |z(x)0 ) and parameterizing µθ as a function of ϵθ achieves the best results for

image synthesis. However, given that we always condition on the conditional image z(y), this provides a strong

enough signal to be able to estimate z
(x)
0 at any point of the diffusion process. We find that parameterizing µθ

by predicting z
(x)
0 leads to faster convergence, such as:

µθ =

√
αt(1− ᾱt−1)

1− ᾱt
z
(x)
t +

βt
√
ᾱt−1

1− ᾱt
z
(x)
θ (z

(x)
t , z(y), t, k) (9)

where ẑ
(x)
θ (z

(x)
t , z(y), t, k) is parameterized by the model parameters θ to predict ẑ

(x)
0 , and learnt by optimising

the following loss function:

LMSE := E
[
||z(x)0 − ẑ

(x)
θ (z

(x)
t , z(y), t, k)||2

]
(10)

In summary, the proposed method achieves superior segmentation performance by leveraging a dual auto-
encoder framework. Our approach not only improves reconstruction quality, as evidenced by a lower MSE, but
also achieves enhanced consistency and robustness across multiple classes compared to baseline methods.

3. EXPERIMENT AND DISCUSSION

3.1 Dataset and Implementation

We collected a set of datasets (Table 1) focusing on CT imaging of the abdominal structure, covering a total
of 29 segmentation targets (23 organs and 6 tumours). The aggregated dataset D was divided into a training
and validation set using a 9:1 split. To ensure conformity between samples, we utilise the MONAI library29

to re-space all volumes to (1.5mm, 1.5mm, 2mm) spacing, scale and normalise intensity, and apply foreground
cropping and spatial padding. Since different datasets may have different label formats, we standardized all
labels to make them consistent. We created a mapping table to align different labels across datasets, ensuring
that the structures were represented the same way. Finally, labels were converted to a one-hot encoded format.

To address imbalanced datasets, we uniformly sample datasets Di ∼ U(D) and randomly select cases c ∈ Di.
For each case c, we extract B patches {(y1,x1), . . . , (yB ,xB)} ⊂ c, where y,x ∈ R256×256, using an oversampling
technique where patches with active segmentation labels are sampled with higher probability. Each sample is



Table 1: Statistics of the aggregated dataset

Dataset # of Cases # of Structures
MSD (CT)8 945 9
BTCV9 30 12

KiTS 202324 489 4
TCIA Pancreas25 76 1
AbdomenCT-1k26 722 5
AMOS (CT)27 500 15

WORD28 120 16

Figure 2: A set of predictions generated from our diffusion segmentation model.

noised using time-steps sampled using importance sampling, where time-steps are weighted according to the
average term they contribute to the denoising loss. To perform inference on a 3D medical image y ∈ RH×W×D

with target segmentation classes K = {k1, . . . kN}, we utilise the MONAI sliding window inference algorithm to
process y as a series of 2D patches {ỹ0, . . . , ỹM}, ỹi ∈ R256×256. For each patch ỹi and target kn ∈ K, we forward

to the model a tuple (z
(x)
T , z

(ỹ)
i , kn) where z

(x)
T ∼ N (0, I) and z

(ỹ)
i = Ey(ỹi) is the latent conditional image. We

then apply the denoising trajectory pθ(z
(x)
0 |z(x)T ) to sample z

(x)
i,n , which corresponds to a latent segmentation

mask for target kn of patch ỹi. Finally we utilise the decoder Dx to produce the full-size segmentation mask

xi,n = Dx(z
(x)
i,n) ∈ R256×256.

3.2 Experimental Result

Figure 2 shows a set of predictions sampled from our model. The first two columns show the conditional image
and ground-truth segmentation mask, labeled by the target anatomical structure. The following columns show



Table 2: Benchmark on MSD (DICE %) by Model Configuration

Target Emb. Spl.
Liv. HepVes. Panc.

Lung Tmr. Colon Tmr.
Org. Tmr. Org. Tmr. Org. Tmr.

Noise ϵθ
Learnt 92.2 92.3 42.9 45.0 20.6 69.6 23.3 13.2 16.8
CLIP 92.7 94.8 43.4 32.8 20.4 62.3 17.6 15.1 20.7

Mask ẑ
(x)
θ

Learnt 94.2 95.4 55.2 45.5 44.9 67.3 30.3 35.4 23.8
CLIP 94.3 94.2 56.9 47.1 41.5 68.6 30.3 39.1 41.3

the denoising trajectory of a single sample, and the final two columns show the mean and variance map obtained
by ensembling various samples.

The training objective of this model centers on optimizing convergence speed and segmentation accuracy,
particularly for small anatomical structures such as liver tumors, pancreas, intestines, and blood vessels. To
achieve this, the model is designed to estimate the parameter µθ by directly predicting the segmentation mask

ẑ
(x)
θ instead of the conventional noise prediction ϵθ. This adjustment leverages the conditionally strong signal

from the image itself, allowing the model to focus on capturing finer details in segmentation. Given the limitations
of regularized latent spaces, our model employs a standard autoencoder with weight decay. This setup reduces
latent space variance and enhances computational efficiency without sacrificing segmentation precision. As
shown in Table 2, this approach has proven advantageous, particularly for smaller structures, such as liver
tumors(+13.5%) and pancreatic tumors(+7%), as evidenced by the significant improvements in Dice score.

3.2.1 Generalisability Performance

In order for medical models to be deployed at large-scale clinical use, they must be able to readily and accurately
process images taken by varying machinery across several different hospitals.30 This is a typical challenge faced
by specialist models, whose limited training dataset renders them more susceptible to the intrinsic imaging noise
produced by different machinery. As such, we evaluate the generalisability of our model on 3D-IRCADb,31 an
external dataset covering CT abdominal imaging that was not used in our training dataset (Table 3, and the
metrics for the competing models are sourced from the work of Liu et al.5).

Our Universal Diffusion model achieves an average Dice score of 86.98% on the 3D-IRCADb dataset, ranking
as the second-best model overall. While our model does not achieve the highest Dice scores, it consistently
outperforms several specialized models, such as nnFormer and Swin UNETR. For instance, our model scores
93.97% on the left kidney, compared to nnFormer’s 88.20% and Swin UNETR’s 66.34%, illustrating its capacity
to generalize well across various anatomical structures without task-specific training (see Table 3). However, our
model struggles with certain structures, such as the pancreas (Dice score of 81.63%). This could be due to the
limited representation of the pancreas in the dataset or its small size and complex anatomy, making it challenging
for accurate segmentation. CLIP Universal model achieves the highest average Dice score of 91.62% across the
structures, demonstrating exceptional generalisability. This superior performance is likely due to the model’s
use of CLIP embeddings, which integrate both anatomical and semantic context, enabling the model to better
capture the intrinsic relationships among different anatomical structures.7 The vision-language framework of
CLIP provides robust contextual cues, allowing CLIP Universal to adapt effectively to new datasets with diverse
imaging characteristics and handle variations introduced by different imaging equipment.5

The proposed model demonstrates significant potential in advancing medical image segmentation, offering
both unique capabilities and practical benefits that set it apart from models like CLIP Universal. Unlike CLIP
Universal, which relies heavily on computationally intensive, pre-trained CLIP embeddings, our model achieves
high segmentation accuracy with a streamlined, diffusion-based architecture that does not require such pre-
training. This design reduces complexity and resource demands, making deployment and maintenance far more
feasible, especially in clinical settings with limited computational resources. By adopting a unified framework,
our model can segment diverse anatomical structures across multiple datasets without specialized training,
highlighting its generalizability and adaptability. It paves the way for developing future models capable of
handling a broader range of tasks, including multi-modality and multi-organ segmentation. While CLIP Universal
may be preferable when maximum segmentation accuracy is critical, our approach strikes an optimal balance
between accuracy, efficiency, and flexibility, making it an ideal choice for diverse clinical applications where ease



Table 3: Generalisability Benchmark on 3D-IRCADb. Blue values indicate instances where ours achieved the second-best
performance among the compared methods.

Model Spl. RKidney. LKidney Gallbl. Liv. Sto. Panc. Avg
SegResNet32 94.08 80.01 91.60 69.59 95.62 89.53 79.19 85.66
nnFormer33 93.75 88.20 90.11 62.22 94.93 87.93 78.90 85.14
UNesT34 94.02 84.90 94.95 68.58 95.10 89.28 79.94 86.68
TransBTS35 91.33 76.22 88.87 62.50 94.42 85.87 63.90 80.44
TransUNet36 94.09 82.07 89.92 63.07 95.55 89.12 79.53 84.76
UNETR37 92.23 91.28 94.19 56.20 94.25 86.73 72.56 83.92
Swin UNETR4 93.51 66.34 90.63 61.05 94.73 87.37 73.77 81.05
CLIP Universal5 95.76 94.99 94.42 88.79 97.03 89.36 90.99 91.62
Universal Diffusion (Ours) 93.89 93.97 93.47 75.77 94.93 75.17 81.63 86.98

of deployment and practical adaptability are priorities. Future work could explore adapting the model to other
imaging modalities, such as MRI, and incorporating domain adaptation techniques to enhance generalizability
across different medical domains.

4. CONCLUSION

In this paper, we presented a guided latent-diffusion model for universal segmentation. Our framework enables us
to train a unified model across a collection of data-sets covering a number of diverse anatomical structures, and
allows model prompting to guide the sampling process towards segmenting any target class covered in the training
data-set. We show that a diffusion back-boned model is capable of effectively modelling the joint distribution of
several anatomical structures within a single, shared architecture. Our approach produces competitive results to
existing models, laying a strong foundation for further research in diffusion-backboned medical imaging models.
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