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Abstract

In this article, we consider slow-fast McKean-Vlasov stochastic differential equa-
tions driven by fractional Brownian motions with Hurst parameter H € (%, 1) and
Brownian motions. We give a definition of the large deviation principle (LDP) on the
product space related to fractional Brownian motion and Brownian motion, which is
different from the traditional definition for LDP. Under some proper assumptions on co-
efficients, LDP is investigated for this type of equations by using the weak convergence
method.
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1 Introduction

The LDP theory is used to solve the asymptotic behaviour of rare events and has a wide range
of applications such as in finance, statistic mechanics, biology, etc., see, e.g., [9, 37, 30, 31] and
references therein. From the literature, we can see that there exist two main methods to study
the LDP, one is based on contraction principle, that is, it relies on approximation arguments
and exponential-type probability estimates, see, e.g., [12, 22, 32| and references therein. The
other one is the weak convergence method due to [10]. This method has been proved to be
very effective for slow-fast stochastic models, etc., see, e.g., [38, 13, 14, 29, 41, 16].

On the other hand, many researchers are interested in Mckean-Vlasov stochastic differ-
ential equations (SDEs) driven by Brownian motion , in which the coefficients depend not
only on the state process but also on its distribution. McKean-Vlasov SDEs, being clearly
more involved than It6’s SDEs; arise in McKean [25], who was inspired by Kac’s Programme
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in Kinetic Theory [19], as well as in some other areas of high interest such as propagation
of chaos phenomenon, PDEs,; stability, invariant probability measures, social science, eco-
nomics, engineering, etc. (see e.g. [5, 8, 6, 24, 26, 43, 15, 36]). Later, the averaging principle
and LDP for slow-fast McKean-Vlasov SDEs driven by Brownian motions have been studied
in many papers. We refer the reader to [17, 18, 21, 39].

Recently, the averaging principle and LDP for McKean-Vlasov SDEs driven by fractional
Brownian motions have been investigated. Fan et al. [11] studied the asymptotic behaviors
for distribution dependent SDEs driven by fractional Brownian motions. Shen et al. [35]
and Zhang et al. [42] built the the averaging principle for distribution dependent SDEs
driven by fractional Brownian motions. Aidara et al. [1] analyzed the averaging principle
for BSDEs driven by two mutually independent fractional Brownian motions. As far as we
are concerned, there is no literature to discuss the LDP for slow-fast McKean-Vlasov SDEs
driven by fractional Brownian motions and Brownian motions.

In the paper, we shall consider the following slow-fast McKean-Vlasov SDEs driven by
fractional Brownian motions and Brownian motions:

dX] = [i(XD, Lo YO)dt + g1 (X7, Ly ) AW} + 1(Lys)dBH, X§ = =,
dYt(s = %b(Xfa "%Xfa Yté)dt + \/Lgo-l(Xt67$Xf’ }/1€6>th1 (11>
_’_\/Lgo-Q(Xfa D%Xga }Qé)dWEv 1/()6 =Y,

where b, fl : R4 x QQ(Rd) x R? — Rd, g - RY x :@2(Rd) — RdXdl, l: ﬁg(Rd) — RdXdl,
o1 RIx P5(RY) xR — R gyt REx P (RY) x R — R YL W2 are d; —dimensional
Brownian motion and dy—Brownian motion, respectively, B¥ is a d; —dimensional fractional
Brownian motion with Hurst parameter H < 1. W' W2 B are mutually independent.
Moreover, by similar reasons in [11], the integral with respect to B is interpreted in the
Wiener sense due to the fact that [ (fxg) is deterministic. In slow-fast system, the small
parameter 0 < ¢ < 1 represents the separation of time scales between the slow component
X? (which can be thought of as the mathematical model for a phenomenon appearing at
the natural time scale) and the fast motion Y,? (which can be interpreted as the fast vary-
ing environment). Thus, it characterizes the ratio of timescales between processes X? and
Y. Obviously, it contains some essential differences compared with conventional SDEs.
Since the extensive separation of time scales and the cross interaction between slow and fast
motion, the slow-fast MVSDEs has been proven that it is more difficult to handle. Hence,
a simplified equation which controls the evolution of the system over the long time scale is
highly desirable. In this direction, the theory of averaging principle provides a good tool in
research on convergence rate of rare events for the slow component.
The main contributions are as follows:

o We give the definition of LDP on the product space related to fractional Brownian
motion and Brownian motion, which is different from the traditional definition for
LDP.

e Two LDP criteria are given on the product space related to fractional Brownian motion
and Brownian motion.

e The LDP is derived for slow-fast McKean-Vlasov SDEs (1.1) by using weak convergence
method.



We close this part by giving our organization for this article. In Section 2, we intro-
duce some necessary notations and assumptions. In Section 3, We give our main results.
Throughout this paper, we make the following convention: the letter C'(n) with or without
indices will denote different positive constants which depends on 7, whose value may vary
from one place to another. The letter C' with or without subscripts denotes an unimportant
positive constant and its value may vary in different cases.

2 Preliminaries

2.1 Notations

Throughout this paper, denote Cy([0,T],R?) by the continuous functions vanishing at 0
equipped with the supremum norm. Let Q; = Cy(0,T;R%), Qs = Co(0,T;R%), Q3 =
Co(0, T;R%M). F;i = 1,2,3 are the Borel o—algrebra, F; := {%/ t € [0,T]} are the
o—algebra filtration and P?,i = 1,2, 3 are the probability on €, ,i = 1,2, 3 such that W! is
a di-Brownian motion on (Qy,.%1,Fy, P'), W2 is a do-Brownian motion on (2, %, Fy, P?)
and B is a d;-fractional Brownian motion (Q3, %3, Fs, P3). Let (Q := Q1 x Qy x Q3,.F 1=
F1X Fox Ty, T := T xFyxFy, P := P'x P?x P?), where Fy xFoxF3 := { F}x FZx F3 t €
(0,77}, be the product space. Then, W W2 BH are mutually independent. If z,y € R?,
we use |z| to denote the Euclidean norm of z, and use (z,y) or xy to denote the Euclidean
inner product. If A is a matrix, AT is the transpose of A, and |A| represents /Tr(AAT).
Moreover, let |a| be the integer parts of a. Let Z(R?) be the Borel o—algebra on R?, C'(R?)
denotes all continuous functions on R? and C*(R?) denotes all continuous functions on R?
with continuous partial derivations of order up to k. Let Z2(R?) be the space of all proba-
bility measures on Z(R?), and Z2,(R?) denotes the space of all probability measures defined
on Z(R?) with finite pth moment:

utl- 1= ( |x|m<dx>)‘l’ <o,

For pu,v € 2,(R?), we define the Wasserstein distance for p > 1 as follows:
1
Wyuo)i= it { [ o= ypatanan |
well(p,v) RA xR

where II(p, v) is the family of all coupling for p, v.

2.2 Fractional integral and derivative

This aim of this section is to introduce some notion and notation of fractional calculus
involving fractional integral and derivative, Wiener space associated to fractional Brownian
motion.

We mention that B = (B#:! ... BH4d) with Hurst parameter H € (0,1) is a centered
Gaussian process with the covariance function E(Bf" B®7) = Ry (t, s)d; ;, where

1
Ry(t,s) = 5 (T + 2 — |t —s]P), t,5€[0,T).
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Then, the following results hold:
E(| B — BHi|9) = C,|t — 5|77 for every ¢ > 1 andi=1,--- ,d.

2° B is (H — ¢)-order Holder continuous a.s. for any e € (0, H) and is an H-self similar
process.

For any a,b € R with a < b, f € L'([a,b],R) and o > 0, the right-sided (respectively
left-sided) fractional Riemann-Liouville integral of f of order a on [a, 8] is defined as

1\—a b
O e = (2.1)

(respectively e f(x) = F(la) / ’ - f (5;1_ady),

where = € (a,b) a.e., (—1)"* = e 7 and T" denotes the Gamma function.

Fractional differentiation may be given as an inverse operation. Let a € (0,1) and p > 1.
If felf (LP(a,b],R)) (respectively I;* (LP([a,b],R))), there exists a unique function g in
LP([a,b],R) satisfying f = I, g (respectively f = I;* g) and it coincides with the left-sided
(respectively right-sided) Riemann-Liouville derivative of f of order o shown by

o gy b d [" fly
P = T |, G

<respectively Dy f(z) = 1E<_11—)_1+aa>% /: %dy) :

The corresponding Weyl representation is as follows:

D) = iy (e o [ 2y ) (2.2
(respectlvely D f(a ):rg1—a> ( b_x / Ha) = 1) a+1 )>

Obviously, from [34], the convergence of the integrals at the singularity y = = holds pointwise
for almost all x if p =1 and in the L? sense if p > 1.

2.3 Wiener space associated to fractional Brownian motion

Denote by & the set of step functions on [0,7] and the Hilbert space H is the closure of &
with respect to the scalar product

di
<(H[O,t1}; w5 Lo, 1)y Lpossa)s - s H[O,sdl])>H = Z Ry (ti, si).
=1

In order to give the integral representation of Ry(t,s), we set

1\ ) 11 1 t
Rkt (14 8) - e (- o ha ).
S



in which F(-,-,-,-) is the Gauss hypergeometric function ( see [7] or [27]). Ky is a square
integrable kernel and Ry (t, s) has the following integral representation from [7]

Ry(t,s) = /0 Ky(t,r)Kg(s,r)dr.

Furthermore, the mapping (Ijo4,

Ljot,) = Zdl BHz can be extended to an isometry
between H and the Gaussian space 7-[1 associated with BH . Denote this isometry by ¢
©).

BH(p). Consequently, due to [2] again, B has the following Volterra-type representation

t
B = [ Kutt.s)aw., te0.7),
0

where W is some d;-dimensional Wiener process defined on (03, 73,

P3).
Besides, define the operator Ky : L?([0,T], R%) — Igjl/?(LQ([O,T],Rdl)) b

KHf /KHtS

According to [7], we obtain that it is an isomorphism and for each f € L%([0, 7], R%)

(2.3)

[RHg 2 H R H=1 2 e (0,1/2),
(Kuf)(s) =
LT 12 Pl g e (1/2,1).

Thus, for any g € [£+1/2(L2([0, T],R%)), the inverse operator of Ky is given by

s1/2— HDl/2 H H- 1/2D2+g, H € (0,1/2),
(Kp'g)(s) =

(2.4)
stl/zDéi_l/Qsl/Z*Hg’, H e (1/2,1).

In particular, if g is absolutely continuous, we have

(Ki'g)(s) = s 2127 "2 "y H € (0,1/2). (2.5)

Now, define the linear operator K3 : & — L*([0,T],R%) as follows

\ 4 OK i
(Kie)() = Kn(T9)p(s) + [ (o(r) — ls))
According to [2], we have the following the relation for any ¢, ¢ € &

(r, s)dr.

T T
(Ko, Kiyd) ooy = s S = HEH — 1) / / £ 5P (s), Blt))dsdr. (2.6)

and then the bounded linear transform theorem implies that K7j, can be extended to an
isometry between H and L?([0, 7], R%).



Note that the injection Ry = Ky o K, : H — {23 embeds H densely into €23 and for
every ¢ € Q% C H it holds that Ee!F" %) = exp(—12||¥|3,). By (2.6) in [11], for any ¢ € H,
we derive that

(Ruo)(t / / ORu (o 1)(K ) (r)drds. (2.7)

Next, we introduce some results about the Malliavin calculus for fractional Brownian
motion. Let .% be the set of smooth and cylindrical random variables of the form

F = f(B"(¢1),- -, B (n)),

where n > 1, f € Cp°(R") and ¢; € H,1 < i < n. The Malliavin derivative of F is given as
follows:

o)
DF =Y LB (). B (o)
i=1 '

and denoted by DF.
For any p > 1, we denote by D'? the Sobolev space which is the completion of . with
respect to the norm

IFI7, = EIF[” + E[[DF[S,.

Denote by 6 and Domd the dual operator of D and its domain, respectively. The following
results are needed later. By [28, Proposition 5.2.1] and [28, Proposition 5.2.2], one has

Proposition 2.1. Denote by ]DW the deriwative operator with respect to the underlymg
Wiener process W in (2.3), and D 2 the corresponding Sobolev space. For every F € ]D)W =
D2 we obtain that

K;DF =DVF,

Proposition 2.2. Domd = (Kj;) ' (Domdy ), and it holds that 5(u) = dw(Kju) for any
H-valued random variable uw in Domd, where oy, represents the divergence operator corre-
sponding to the underlying Wiener process W in (2.3).

Remark 2.1. The above proposition and [28, Proposition 1.3.11] implies that u € Domd if
Ku e LA([0,T] x Q,R4) (the closed subspace of L*([0,T] x Q,R%) formed by the adapted
processes).

Finally, we complete this section by giving the following notation for future use.
A= {i_zis R% valued .%, — predictable process such that ||hljy < oo P — a.e.}.
Sy :={heH |hl3 <N}

Ay = {71 cA:h(w)eSy P— a.e.}.



H := {h = / h(s)ds : h € L*(0, T; RN%%) with the norm

Il = (| T\h<s>r2ds)% <o},

T
A= {his R4+ valued .%; — predictable process such that / |h(s)|?ds < co P — a.e.}.
0
T .
Sy :={heH: / |h(s)|*ds < N}.
0
Ay = {h €A:h(w)eSy P— a.e.}.

For @6 € AN,@ € Ay, l}e = @ means l}e converges in distribution to @ as € — 0.
For h. € Ay, h € Ay, he = h means h, converges in distribution to h as ¢ — 0.

2.4 Assumptions

We now impose the following condition on coefficients:

(H1) Let A and A be two positive constants such that the following conditions hold for any
T,T1,%2 € Rdap’a“b”? € WZ(Rd)7y7ylay2 € Rd :

’f1<x17/'617y1> - fl(-r27li2,92)| + |b(:L‘17,u1,y1) - b(ZEQ,M27y2)|
+ lo1 (@1, s 1) — o1(w2, pa, yo)| + |o2 (@1, pa, Y1) — 022, pi2, Y2)|

< A(Jr — 22| + [yr — ya| + Walp, p2)), (2.8)
lg1(21, 1) — g1(@2, p2)| < A|zy — 22| + Walpr, p2)),
[(p1) = Up2)| < AW (pur, pi2), (2.10)

and

4b(x, 1, 1) — b(x, 1, 92), 1 — ya) + 6o (x, 11, 31) — o (2, 1, )|
+ 6|C72([L', H, yl) - 0_2(3:7 M, ?J2)|2 S _)‘|y1 - y2|2' (211)

Firstly, we give several uniform estimations w.r.t. § € (0, 1) for the 4th moment of solution
(X°,Y?) of Eq. (1.1).

Lemma 2.3. Assume (H1). Then the following inequalities hold:
sup sup E[|X7|'] < C(T)(1 + [a|* + [y[*),

5€(0,1) te[0,T]

sup sup E[[Y?|"] < C(T)(1 + |=]* + |y[*).
0€(0,1) te[0,T7]



Proof. By Eq. (1.1), we have

E[sup |X°|*] < Clz|* + C’E[ sup

0<s<t 0<s<t

4]

/ fl(XfﬂgX,‘??}/r&)dr
0
s 4
/ 91<Xf7$X;§, Y;"J>dWT :|
0
s 4
[ ]
0

0<s<t

+ C’IE[ sup

+ CIE[ sup

0<s<t

where C'is a constant.
For the term I;, by the fact Wi (%%,,d) < E[|X;|!] and (H1), we derive

4]

< CE [ (1 7 1as + o)

I = C]E[ sup

0<s<t

/ fl(Xf7 ng’ K%]dr
0

Next, we look at 5. The Burkholder-Davis-Gundy(BDG) inequality and (H1) yield that

4
[Q—CIE‘[ sup }

0<s<t

t
/ (X3, Ls)Pds
0

/ gl(XfaiﬂXﬁ)dWr
0

T
Finally, for I3, it follows from (4.1) in [11] and (H1), we obtain
T

t
< C(T, H)E/ | X°%|*ds 4+ CO(T).
0

< C(T)E[

t
< O(T)IE/ |X?|*ds + C(T).
0

I3 = CE{ sup

0<s<t

/ l(fxé)dB;H
0

< C(T, H)E[ /Ot 1(ZLys)| ds

These imply
t
B[ sup [X2[Y] < Cilal* + C(T) + C(T. 1) [ (B sup [X}1%) + B[ sup |¥7[9)ds.
0<s<t 0 0<r<s 0<r<s
An application of It6’s formula yields that

4 t
B/ = Iyl + 5B [ VIR0 bl X2 2 YO ds
0
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t
+ 3 [V (X0, L V)P
0

NS

t
+5E [0V (X 2 YO P
0

N S,

t
38 [ VIPIoa(X2, s YO
4 Ot
+5E/ (Y7, 02(X2, Lxs, YD) Pds. (2.13)
0
By (2.11), there exists o' > 0 such that for any ¢ € [0, 7],

d 1
TEIVEI] < SEAYVEP (Y, 0(XF, L, V7)) + 1Y Plon (XS, Ly, YT
+61Y7Ploa(XY, Lxs, YO

< -2E 1+ “Dapxgn + 1),

It follows from the comparison theorem that

o't T t o/ (t—s
BIEI < it + S [+ as
0

< [y[* + C(T)( sup E[IXP["] +1).
0<s<t
This together with (2.13) implies

t
sup E[JX7|"] < C(T)lyl* + C(T)/ sup E[|X7|"ds.
0

0<s<t 0<r<s

Gronwall’s inequality gives

sup sup E[|X7|"] < C(T)(1 + |2|" + [y[*).

0<6<10<s<t

which also implies

sup sup E[[Y/[] < C(T)(1+ [a]* + [y[H).

0<6<1 0<s<t
[l

Lemma 2.4. Assume (H1). For any 0 <t <t +u <T, we have the following inequality.
E[| X}, — XP[P) < O(T)(1 + [z + [y]*)u.

Proof. By (1.1), we have
t+u
i - X0 = [ RO 2 Vs
¢
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t+u t+u
s aedgawt+ [ st
t t
Set X; := X7, — X?. Analogous to the calculation of (2.12), it holds that
2]
2 2
] ¥ C]E{ }

<o [ @+ XS +EIVE)As + O [ I+ X+ B P)s

t+u
E[X () < OEH | ne s
t

t+u t+u
+CE { / g(X2, Ly, Y,))AW, / I(Lxs)dB!
t t

Then, Lemma 2.3 leads to the required assertion. O

2.5 The averaged equation.

We now introduce the following parameterized McKean-Vlasov equation: for fixedt > 0,z €
R, 1 € Po(RY), let

d}/sz#’y = b(l‘, K, sthu’y>d8 + 0'1(1’7 s Y'sivjujy)dWsl
+ oy, p, YERAW2, Y =y, (2.14)
where Wﬂﬁﬁ are d;-dimensional and ds-dimensional Brownian motions respectively and
mutually independent, on another complete probability space (€2,.%#, P) and {.%;}i> is the
natural filtration generated by W', W2, B . Since the coefficients of parameterized McKean-
Vlasov equation satisfy the Lipschitz conditions, under (H1), similar to the Eq.(3.3) in [33],

Eq.(2.14) has a unique strong solution {Y/*#¥} -, and it is a homogeneous Markov process
with the following estimate

sup E[[Y V"] < C(T)(L+ [af* + [yl + (] - [*)).

0<s<T

Let { P¥*} >0 be the transition semigroup of Y**¥. By [20, Theorem 4.3.9], under (H1),
PP} >0 has a unique invariant measure v>* satisfying
S =

[ o) < 0@+ el + - P,
Set
Fla) = [ fle.p 2 (as),

We have the following lemma.

Lemma 2.5. f satisfies the following Lipschitz conditions, i.e.

|f (21, ) — 2, p2)| < C(Jwr — @2 + Wapa, p2)).
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Proof. Based on the definition of f, the Lipschitz continuity of f; and the definition of
Wasserstein metric, we derive

|f(z1, 1) = f (2, p2)|

= fl(xhﬂl,z)”zl’m(dz) - Ji(2, p2, Z)Vm’m(dz)
R4 R4
< /d i1, p, 2) = fi(wg, pe, 2)]v™ 1 (d2)
R%1
+ ‘ fi(xa, po, 2)v™ 1 (dz) — Ji(2, o, 2)v**#2(d2)
R91 R%1

< C(’-Tl - 5132‘ + W2(M17,U2) + WQ(VM”“, I/xQ,},LQ)).
By [40, Theorem 3.1], we obtain

Wg(yﬁvhﬂl’ Vx27M2)
S 3W§(V$17H1,$nz,u1,0> + 3W22(V$2”u2, gysz,/m,O) + 3W22 (gysm,;q,o, gysz,,uz,o)
< Ce 208 (W5 (™11, 8) + W3 (1™ 60)) + C(|wy — | + W5 (11, 12)).

From the above calculation, we obtain

|f(21, 1) = flaa, p2)| < Clzy — o + Wa(pa, p2))-

We now consider the following averaged equation:
dX, = f(Xy, Lx,)dt + g1 (X, Lx,)AW! + (L, )dBE, Xy = . (2.15)

Since fi, g1, satisfy the Lipschitz condition, we have the following existence and unique-
ness result for Eq. (2.15).

Theorem 2.6. Assume (H1). Then Eq.(2.15) has a unique solution.

2.6 Large deviation principle

Consider the following multi-scale McKean-Vlasov system with small perturbation.

dX,f’(S =fi (Xf,e’éa gxt@éa Yf’&)dt + EHZ(D%XE"S)dBfH
VG (XT, Les) AW, X =,
€,0 €,0 €,0 €,0 €,0
in :%b(Xt "’zﬂXf’é’Y; )dt‘f’\/igUl(Xt 73)(:’57}/; )thl
+2502(XP, Lyes, YOO)AWR YT = .

(2.16)

€ describes the intensity of the noise and ¢ describes the ratio of the time scale between the
slow component X; ? and fast component Yf";. In the following, as € — 0, we need §/e — 0,
thus the coefficient of the multi-scale stochastic system is averaged first, and then for the
averaged equation with small noise, the large deviation principle is obtained by using the
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weak convergence method. Thus, due to the classical Yamada-Watanabe theorem, there
exists a measurable map 'y, : C([0, T|; R4 +%) x C(0, T;R™) — C(0, T; R?) such that we
x&

have the following representaiﬁion

X0 = Ty s (VeW, e BT,

where W := (W' W?). For simplicity of notation, we denote I'* = T, _,- For he =

X

(he,he), he € An, he € Ay, X5 .= I* (\/EW + /s he(-)ds, e BH + RHh€(~)> is the first

part of solution of the following equation.

AX; = [ Lo, YV At + gy (XP, Les)Prh (£)dt + 1(Lyes ) AR (1)
Veg (XM Len)AW] + I Lyes) B X =,
AV = (X L Yt + oy (XM, Ly, YO P () dt
+50o (X Ly, W&hs)%if(t)dt ~
O X, L YO YAW + Foa(XPM, Lo, Y)W,
Yot =y,

(2.17)

where Py : Ratd 5 R4 P, . Riitd s R% are two projection operators. In this part, we
will investigate the LDP for Eq. (2.16). We need some definitions of the theory of LDP.

Definition 2.1. A nonnegative function I is called a rate function on C(0,T;R?) if it is
lower semicontinuous. Moreover, I is a good rate function if for each constant M < oo, the
level set {x € C(0,T;R?) : I(x) < M} is a compact subset of C(0,T;R?).

Definition 2.2. Let I be a rate function on C(0,T;RY). The family {X<° := T¢(\/eW., ! BT)} o
of C(0, T; RY)—valued random variables is said to be satisfied a LDP on C(0, T; R?) with speed
I(e) := (&, ") and rate function I if the following two conditions hold:

1° (Upper bound) For each closed subset F € C(0,T;R?),

limsup €2 log(P(X“° € F)) < — inf I(x). (2.18)

e—0 zeF

2° (Lower bound) For each open subset G € C(0,T;R?),

lim iglfelog(P(Xeﬁ € G)) > — inf I(z). (2.19)
€E—r

zeG

Definition 2.3. Let I be a rate function on C(0,T;R?). {X¢° = I'‘(\/eW,, ! BH)}. g
is said to be satisfied the Laplace principle upper bound (respectively, lower bound ) on
C(0,T;RY) with speed () := (e,e*H) and rate function I if for any bounded continuous
function p on C(0,T;R?),

12
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limsup —e2" log E [eXp ( - p(;(;ﬁ))} < inf  {p(z)+I(2)}). (2.20)

e—0 z€C(0,T;R4)

2° (Lower bound) For any open subset G; € C(0,T;R%),i = 1,2,

lim inf —elogE{eXp (- M)] > inf  {p(x) + ()} (2.21)

€ (0,T;R%)

Remark 2.2. In these definitions, we use different speeds for the upper bound and lower
bound, i.e. the speed in upper bound (2.18) is €22, while the speed in lower bound (2.19) is
€. In fact, this is reasonable. Noting that H > % and € € (0,1), we therefore have

lim sup elog(P(X*° € F)) < limsup ¢ log(P(X*° € F)),

e—0 e—0
limionfoslog(P(Xe"S €G)) < limiélf M log(P(X € @)).
€—> €E—

This implies the consistency the definition of the LDP of SDEs driven by Brownian motion
or fraction Brownian motion, respectively.

We give the following sufficient condition for LDP criteria, which is a version of [4,
Theorem 4.2] on the product space.

Lemma 2.7. Assume the following conditions hold:

1° For any ¢ > 0, T : C([0,T];R#T42) x C(0,T;R™) — C(0,T;R?) is a measurable
mapping.
1
2° Let T9: C(0, T; R +d2) x Li“ (L*(0, T;R™M)) — C(0,T;RY) be a measurable mapping.
3° For every N > 0, and any family {hs;e > 0} C Ay, {he;e > 0} C Ay satisfying that
he = h,h. = h,e — 0, then

re (\/EW. +/ he(-)ds, e BH + RHhE(-)) = F(/ h(s)ds,RHh(-)),e — 0.
0 0
4° For every N > 0, the set {F"(fd h(s)ds,RHfL(-)>;h € Sy,h € Sy} is a compact
subset of C(0,T;RY).

Then the family {T¢(\/eW.,e" BH)} satisfies a large deviation principle in C(0,T;R?) with
the rate function I given by

1 7T . 1 _
o= o [ sRas+ Gl € CO.TRY,  (222)
{(hh)E(H,H);9=T0([; h(s)ds,Rurh)} L2 Jo 2

with inf ) = co by convention.
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Proof. The proof is placed in the appendix.

The following lemma is equivalent to the above one.
Lemma 2.8. Assume the following conditions hold:

1° Let {h¢:e >0} C Ay, {h:e> 0} C Ay. For any g¢ > 0,
lim [d(FE (\/EW + / he(-)ds, " BH 4 RHB€(~)>,
0

) o [ Ko ra0)) >

where d(-,-) stands for the metric on C(0,T;RY).

=0,

2° Let {h°} C Sy, {h} C Sy. If h* converges to some element h in Sy and h® converges
to some element h in Sy,n — oo, then

r(/o hﬁ(s)ds,RHi_f(-)) N r(/ h(s)ds,RHﬁ(-)) inC(0, T RY).

0

Set X¢ =T(\/eW., e BH). Then {X¢, ¢ > 0} satisfies the Laplace principle (hence the LDP)
on C(0,T;RY) with the rate function I given by (2.22).

Proof. Since the proof is similar to that in [23, Theorem 3.2], we omit it here. O

Assume X satisfies the following equation.

dXP = f(X?, Lxo)dt. (2.23)

The following skeleton equation w.r.t. the slow component of stochastic system (2.16) will
be used later.

AXP = F(XP, Lxo)dt + g1(X]', Lo)Prhdt + 1(Lxo)d(Rih) (1), (2.24)
where h = (h,h),h € Ay, h € Ay. Since f, g1, satisfy Lipschitz condition, Eq. (2.24) has
a unique solution X", Define a mapping Xh = Fo(fd h(s)ds, RHl_z(~)>. Now, we are in the
position to state our main result.

Theorem 2.9. Assume (H1) and lime_,og =0. If

sup |o1(z, 1, y)| V sup |oa(z, p, y)| < C(1+ [z] + Wa(p, do)),
y€Rd y€ER4

then {X“° e > 0} satisfies the LDP on C(0,T;R%) with the rate function I given by (2.22).

14



2.7 Several priori estimates

Choose a step size A € (0,1), and set ¢ := | £ ] A. Before giving the proof of the main results,
we intend to show several useful estimates by using similar method as used in Lemma 2.3
and Lemma 2.4.

Lemma 2.10. Assume (H1). Then it holds that
(i) SUP¢ 5¢(0,1) SUPte(0,1) E[|Xt675|4] <O+ Jz* + [yl?),
(ii) Supese(o,1) SUPseo,1] E[Y '] < C(T)(1 + |z + |y[?),
(ifi) supe se(o) EIIXE" — X712 < C(T)A(L + [af? + [y]?),
(iv) suPpes, SuPyeo ) | X7 2 < C(N, T)(1 + |2 + supyepo.ry [ X7,
(v) E Jy IX] = XP1P) < C(N.T)A + [« + [y]?).
Furthermore, if lime_mg =0, we have
(i) Efsupicpor [ < C(T, N1+ [2f? + [yf?),
(vii) E [ [X7 Pt < O(T, N)(L + Jaf? + |y[),

(viii) E [ [ X0 = XMP) < O(N, T)AL + |22 + |y]?).

2.8 The auxiliary process
Choose a step size A € (0,1) and define an auxiliary process Yf"s with 1705’5 = YOG"SJLE = .

For t € [kA, (k+ 1)A],k=1,2,3,---,

— — 1 t he — 1 t he —
Y=Yk + 5 / (XM, L s, Y0 )ds + 7 / o1 (Xe™M, L s, YO ) AW,
kA s kA s

1 [ e _
+ % /kA O'Q(Xg’é’h ,gxg,gﬁe , Y:’a)dWSQ. (2.25)

We will show the following error estimate between the process yedht and Yoo,

Lemma 2.11. Assume (H1). For any N,T > 0, it holds that

sup sup E[[V;7P) < C(T)(1 + |z* + [y[*),
€,6€(0,1) t€[0,T]

and
T e o )
B[yt - Ve < O N1+ laf + )+ ),
0

15



Proof. Similar to arguments as the proof in Lemma 2.4, we can obtain the first result. Next,
we prove the second statement. Note that

Xs

€,0,h¢ €, 1 €,0,h® €,6,he €,0,h¢ Y€
thfsvh VA —/ [b(XE b @ cane, YOOI ) — b(X5O" 7‘$Xf75ﬁ€’Yt75)]dS

(Sile 5,5721,6 E»(sj;'e \/ ’5 1
/ 0'1 XE ,D%X:,J,S/; ) _UI(XE Jg 675,;167YSE )]dWS

X5

/ 0'2 X65h D%Xe ,YEéh) 0-2(X§75’B67$X§,6,ﬁ57)736,6)]dWS2

—/ UI(X?‘;’EG,XXE,(;,Y;"s’ﬁe)Pll'lst
ed Jo s

1 t Te 1e :
= / oo (XN L s, YOI Y Pyhids.
€0 Jo s

By It6’s formula, we have
d
dt
S S]E<Ye ,0, he _ Ye 0 b<X€ ,0, he f CRes }/te,(s,he) _ b(Xe ,0, he gxgéﬁe 7 }7;76)>

Hye ,0,he }_/;56,(5|21|

Xy

2 €,0,h¢ €,0 §,he §,he 1
—=E " =Y 0 (X0, Lyes, YOO YPLRS
/_65 < t t 1( X ) 1 >

2 €,8,he cre,0 5.he 5.he 1
ERYR P gy (X P s Y ESRYP, e
= (Y 1 oo e )P2h)

1 €,0,h¢ €,0,h¢ €,0,he \/ €
+EE\01(Xt";’h L YOI — (X L sne VNP

+

_|_

Xy Xt

1 ~E ~5 ~5 —
+ 5E|0.2(Xt€75,h ’XX?&’ }/te,é,h ) o O_Q(th,é,h 7$X5,5,E67Y;€’6>|2 —. Z M;.
t y

For My, My, Ms, by (H1), we have

¢ 3 = C 7€ Te
.]w1 + M4 + M5 < —%EHY;’S’}L i }/te,6|2] + KEHX;’&}L i X;’é’h |2]
C
+ gwgwxf,&,zxtf,g), (2.26)

where & € (0, A). For M, M3 by Young’s inequality, we derive

ONé € Te = ¢ C € T e o
M + Mz < FIEH}/t VP + —E[1+ [ XEP 4 Lyes (- PDIPlIIAE]

C

+ B[+ X0+ Ly (|- ) IPall ). (2.27)

where &; € (0, &). By the above calculations, we have

_E YE,(;,;Le _ Y + CE Xe§h€ _ Xf(;he
! J

d P
EHYECS}L _Yt€,5|2] < _ ]

S
dt )
16



C . . C e -

+ gEHXt"S — XP°P) + —E[1+ X7+ Lyes (| )Pl RG]
C €,6,h¢ |2 2 i e|2

+ B[ X 4 Les (|- PDIPREF,

where ¢ = @ — a;. Due to the comparison theorem, we derive

E[‘ye,é,he o }_/67(5 ’2]

< C [ st oo+ € [ SR - X
0

C s(t—s €

+—/ e—¥E[(1+|X§5’h 2
From Fubini’s theorem, it holds that

T .
E/ |:|}/;E,5,h _}/te,(;|2]

0

€ T §(t s)
<—/ X“Shé XEM ](/ e d)ds
t
_/ X65 65|]</ _s= S)dt)ds

~ . T s(t—s
+—/ E[(1+ [ X2 + Lyes(] - |2))|hg|2]</ e~ >dt>ds
€ 0 t

c ’ €,0,h¢)2 2\ (1 €2 T _st=s)
+ - E[(1+ [ X" |7+ Lxes(] - 7)) S]] e < dt|ds
0 t

< O N) L+ Jof + (A + ),

+ Lxes(| - P)IIPLIRE s

L+ [ XM + Lyes (|- PHIPIIISP]ds

as required. O

3 The proof of LDP

Lemma 3.1. Assume (H1) and im0 ¢ = 0. It holds that

lim sup E[X{° — X°|2 = 0. (3.1)
=0 o<t<T
Proof. In the same way as in [33, Theorem 2.3], we can get the desired result. O

We shall investigate the LDP by using criteria in Lemma 2.8. The criterion 2° in Lemma
2.8 will be shown in the following Theorem.

Theorem 3.2. Assume (H1). Let {h"} C Sy, {h"} C Sx such that ™ — h in Sy, and h™ —
hin Sy, asn — oo, respectively. Then Fo(fo h"(s)ds, Rgh™(- )) — Fo(fo s)ds, Ryrh(- ))
in C(0,T;R%).

17



Proof. Let h" = (h", k") and X" = ( Jo b (s)ds, Rgh™ (- )). Then, X solves the follow-
ing equation:

dX" = f(xM" , Lxo)dt + g1(X] X , Lxo)Pihydt + 1(Lxo)d(Rih™)(t). (3.2)

If h» — hin Sy and A™ — h in Sy, as n — oo, respectively, it suffices to prove that X h"
converges strongly to X" in C(0, T;R?) with i = (h, k), as n — oo, which solves

AXP = (X, Zxp)dt + g1(X], L) Prhdt + U(Lxg)d(Ruh) (1), (33)

By (3.2), we have
— 7 — 7 t — — 7
X=X = [P g
t B . t _
+/ gl(Xﬁn,ng),Plh?dT—F/ l(g)’(g)d(Rth)(’l") (34)

From (H1) and Lemma 2.10, we have

’/ F(XI", Zxo)dr| < C(T,N) /t(|Xf"\+|Xf|)dr+C’(T,N)(t—s)
< O(T,N)(1+ sup |X?|)(t—s), (3.5)
t€[0,T]

and

t N . t e .
[ o zgpiinar) < / 90 (K] L) |[Pufar

(/ 91(X]', Zxo)| dr) (/ [Py er)

<C(T,N)(1+ sup |X? |)(t—s : (3.6)

t€[0,T]

In view of (H1) and (2.7), one has

[ izt 0 ”f% ) (") (w)dudr
<C(T )(1+r2}(l)pT 1XY)) // 2(r — w)" 5| (K5 R™) (w) | dudr
SC(T)(l—I—r:épT | X7 [ 1 (K5h™) (u )|</S re e (r —u) _2dr>du

/ (K B (u )|(/utrH_é(r—u)H_gdr)du]. (3.7)

18



By the relation ||K};h™||12 = ||h"||3, we derive that

t s
gTH—%/ (r—s)H-idr/ wrH (K5 ™) (u)|du
s 0

T% r * 1n 2 % Hf%
< om0k o
- r I et — )7, (3.8)

(H —3)v2(1—H)

and

[P IVt = s. (3.9)

By (3.1) — (3.6) and the fact that ||h"||; < v/2M, one can see that {X""} is equi-continuous
and bounded in C(0, T; R%), which implies {X""} is relatively compact in C'(0, T; R?). Thus,
there exists a subsequence still denoted by {X""} such that {X”"} converges to some X €
C(0,T; RY).

Next, it suffices to prove X = X h, By (H1), firstly, we have

t ~ t t_ B
‘/ f()‘(g",gxg)ds—/ F(Xs, Zxo)ds go/ |XM — X,|ds
0 0 0

< C(T) sup |X’fn - X,| = 0,n — oo.
t€[0,T)

Thus, for any t € [0, 7], we have

t ~ t
lim f(XQ",zxg)ds:/ F(Xs, Lxo)ds. (3.10)
0

n—o0 0

Secondly,

t 7 .
‘/ g1 ( th gXO Plh dS—/ 91(X£7$Xg)771hsd8
0

_ . s/t 3
< (/ |91(Xg7$)'(g) - gl(X;l?g)_(g)FdS) (/ ’h? - hs‘zds)
0 0

< C(T,N) sup |XI" — X;| = 0,n — . (3.11)
te[0,7)
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Then, for any ¢t € [0, 7], we have

t

~ . 3 _ .
lim [ g1(X]", Lxo)Pihldsds = / 91(X2, ZLx0)Pihyds. (3.12)
0

n—oo 0

Finally, for any ¢t € [0, 7], we intend to prove

lim [ U(Lxo)d(Ruh™)(s) = /0 1(Lo)d(Rih)(s) (3.13)

n—oo 0

By Fubini’s theorem, we have

/Ot l(c%zg)d(RHB”)(s) — /Ot l(ng)d(RHﬁxs)
— /Otl(.fxg)ds</0S %(S,T)[(K}}h”)(r) — (th)(r)]dr>
il /OT {1[0’“ WH( / t U(Lxg)s" 2 (s - r)H—ids)] (KR (r) — (K jph) (r)]dr.

For any unit vector e € R ¢ € [0, T, let

t
pi(r) == 1[0#/](7’)7“5}[(/ Z(XXQ)SH’%(S — T)H3d5> e,r € [0,7T].

From (H1), one has

O(T,H)(1+ Sup ’XODréfH.

)l S — 1
S T 0 2

This implies p;(-) € L?(0,T;R%). Combining (3.27) and the condition that h® — h in Sy,
we derive
t

lim [ 1(Lyo)d(Ryh™)(s) = /0 I(Lxo)d(Rh)(s). (3.14)

n—oo 0

Taking n — oo in (3.2), one has X solves (3.3). By a standard subsequential argument,

we can conclude that the sequence {X i‘n} to X" in € . which implies X = X h The proof is
therefore complete. O

We now prove the criterion 1° in Lemma 2.8.

Theorem 3.3. Assume (H1). Then we have

hmp{d<r€ (\/EW. + /0 he(-)ds, e B + iRHi_f(-)> : r(/o he(s)ds, RHff(-)>) > 50}

e—0 €2

=0.
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Proof. Note that
XEH = X = AT, Y0 = FXE, gl
[ X L)~ (XE )R
Ve [ e 2 e
0
+ [ 1) LA RN

t
+'€}{0/nl(42%(?6)d13§p
0

Then, we have
2

X - X <

t T T ry _~6
/ [fLXE, Lyes, YOOI) = f(X], Lxo))ds
0

2

t ~ -
+ € / 91(X§’6’heagxeﬁaY:’é’he)dWsl
0

2

+ ‘ /0 [[(Lyes) = U Lxo)]d(Rihe)(5)

2
+

t
u/ml(;zkéﬁ)dlif
0

2

t 7 — 7€
+‘ / [g1 (X, Lyes) — gi(XL, Lyo) | Pihe(s)ds
0

5
=) Ki(t).
i=1
For K,(t), applying BDG’s inequality and Lemma 2.10, we have
E sup Ky(s) < C(T)e(1+ |z|* + |y]?). (3.15)

0<s<t

For K3(t), using (H1), (2.7), the fact that K} is an isometry between H and L?(0,7T;R%),
and the same way as used in (3.8), (3.9), we arrive at

E[sup Ks(s)] < C(T,N) sup E[|X° — X9)?]. (3.16)
0<s<t

0<s<t
For Ky(t), by (H1), it yields
E[sup Ky(s)] < C(T)e (1 + |af* + [y]?). (3.17)

0<s<t

For K5(t), (H1) implies
2

t 7 —Je€
Eﬂ‘ / [g1( XN Lyes) — g (XD , ZLx0)P1he(s)ds
0
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t B . t B
< C(T,N)E / | X0 — XM 12ds + C(N, T)E / |X° — X0)2ds. (3.18)
0 0
Next, we intend to estimate K;(t). By Lemma 2.11, one can derive that

t - ~ ~ _
E[sup Ki(s)] < C(T)E / |FUXE Lres, YOI ) = (XM, Ly YEO)Pds
0<s<t 0 ® s

2

t .
b o) [0 270 = FXE 2 las

t 7 = Te
E/ |f(X§’67h67$XE*‘5) - f(X36757h aZng‘s)PdS

D [T Z0) - X 2y s

t 7 7€
< O, N)(1+ [ + )6+ 2) + O, N)E/ X — X Pds
€
t 2
O [T Ly Vi) = FOXE, 2yl
0
t
+ C(N, T)IE/ | X0 — XO2ds. (3.19)
0

Now, we need to estimate C(T Efo | fi(X b s Ly YO0 — f(XEéhe Lyes)|?ds.

2

¢ 7 - Te
JE‘ J U 2729 - X0 2y

k=[t/A) -1

CEZ

+o(m / XED L5, TE8) — FXET 2 )lds
t

2

(k+1)a 8,he .8 7 8,he
[ s 2 Vi)~ G 2 s

2

L — : [ : (o, )dsdr} + O A+l + o), (320

— A2 0<k<[T/A|-1
Whereforanyogrgsg%
€,0, €,0 €,0,h¢
Tils.r) = B[ (XY Lys Vi) = FXET L),
€,6,h¢ 6,5 e,(sﬁe
Ji(Xia >$X;§ay5r+m) - f(XkA ,Zxkg)ﬂ (3.21)

For any s > 0,1 € P5(R?), 2,y € RY, consider the following equation:
- 1 [t -
Y;&,s,z,u,y =y 4 g / b(ﬂ}, 1, Y;ﬂé,s,:}c,u,y>d7, 4+ — / 0_1 T, L, Yés x, uy)dwl
+ L /t ooz, p, YOO mAW?2, t > s. (3.22)
\/g s Y 7 T T —
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Then, we have

6,6,}15 R v
~ 6’kA’XkA "gxe,é,h6 ’YkA

v =, kA . te kA, (k+1)A]
It follows from the definition of Y(s,r) that

€,8,h¢ €,8
Sk XES ,zxz,(; RN

,0,he e’ 7 0,he
Te(s,m) = BIAGR", Lyes s Visira A S FXGRY, Zyeo),
. ~e,kA,XZ£’ﬁe,$X2X7;le;:£ o sie
Ji(Xn ’XX;£7 Sr+kA ) — f(XGA ,fng)ﬂ-

. > . 5,h¢ e,
Since YF4®1Y is independent of .Zja, and X ,:’A’ ,Y,: A are .Zpa—measurable, we have

. RAXRNL e ViR
Vi) = B{E[ (A OGET L Vs )= A 2
s ~ s,kA,X;z,ﬁe 7_%)(;%# RN e .
Si(Xia ,«ZX;X,Y&HM ) = [(Xpa v‘gxgﬁ)) Fia | (W)
_ErlE Xe,éjf @ };5’M’X’iﬁﬁ (w)’gxi’ﬁ’he ENY F Xe,a,if %
= (1(Xx™ (W), Xg Los+kA ) = f(Xx" W), X,iﬁ)’
. SRAXRN @ spe TR W) e
E? b "
AU (@), Ly Vo B - g .20 |

From the definition of Y&%%*¥ we know that

e kA x, B e, kA, B Cre, kA, ,
}/;SS-FkJA Y= Y + /0 b(x7 K, Y:Sr—&-k;A : y>d7, + /O O-l(xv H, Y;Sr—i—kA g y)der ha
+ [ oalan T nawzes, (3.23)
0

where Wh*4 = L/l — W), W2ka = L2 — W2,). Note that
r or+kA kA r Nz r+kA kA

1

Ve

st%y — y+/ b(:L‘,u,Y;f”’“’y)dT +/ al(x,%yrx,u,y)dwrl
0 0

+ / ooz, p, YR AW 2, (3.24)
0

By the uniqueness of the solutions of (3.23) and (3.24), we have that {Yazﬁf’u’y)}ogsg% and
{Y I} o oc a have the same distribution. By [33, Proposition 3.7], it holds that

Tk:(sv T)
,8,h€ €0
XZA ("J)vgxe,é,BGvaEA (w)

— B{E 087 ), 2 - B LR ), 2y,

kA
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€,6,h¢ X’Zﬁ’ﬁe (w),$X€75755 7Yk€£ ®) r €,6,h¢
AT @), Ly Ve B - ot 2] |
e KRN DL e TR @)
— B{ BBl (), L - T 2)@)

- f(le;ﬁ’m (w>7 ‘iﬂX;X)’

€6,k Xd" @D i R €6,k
G (@), Zys, Vs BT - Foat 2] |
XA @2 e TR @)

< O(T)E { {HIX“”( )2+ |V, e @)'2*3)(6&("'2)]6_@1}

< O(T)e™ T E[L+ | XM 2 + V)P + E(XE2 %) + B(IX3" )]
< O(T, N)(1+ [z + [y2)e 5" (3.25)
Applying (3.20) and (3.11), we conclude
t 5 B 7 5 2
T)’ / (XS, Lyes, YIO) = FXE™, Lyes)ds
0 S
) 2 0
< C(T,N)(1+ |z|* + ]y| )(— + —+A). (3.26)

A
Thus,

E[sup [Xo% — XP
0<s<t

‘)

2 5 46 _
< CO(T,N)(1 + |z* + |y|? )(— + — A + +A+e)+CO(T,N) sup E[|X° — X2
0<t<T

t 7 7~€
[ e e -
0

0<r<s

?]ds.

Taking A = e%, it yields

E[sup | X0 — XI

0<s<t

‘]

b 2 _
< C(T,N)(L+ [2* + [yI*)(Z + € + ) + C(T, N) sup E[[X7" - X(J’]

0<t<T

t 7 S Te
+ / E[ sup | XM — X |?]ds. (3.27)
0

0<r<s

By (3.27), Gronwall’s inequality and Lemma 3.1, we have for any gy > 0

P{d(rf (ﬁw. + /0 he(-)ds, e B + Z—ZRHhG(.)),FO(/O' he(s)ds, RHhG(-))) > 60}

= P{|X7"" — XM > 0}
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< E[supy<;<r |Xt6’6’h6 — XM

— 0, ase — 0. (3.28)
€0

4 Appendix

4.1 Proof of Lemma 2.7

We now borrow the method in [3, Theorem 4.4] to prove Lemma 2.7. The key is to use the
following a variational representation for random functional by making a slight change to
that of [44, Theorem 3.2].

Lemma 4.1. Let f be a bounded Borel measurable function on 2. Then it holds that

_ . - L - 1
—logE(e™ )= inf  E(f(-+h(-),- + Ruh(-)) + 5 [Rl3 + S| AllR)-
h=(h,h)eAxA 2 2

Proof of Lemma 2.7. Replacing f(-) by el (Vel) i Lemma 4.1, where p is real-valued,

l(e)
2H

bounded and continuous function on & := C(0,T;R%), I(¢) := eor e we have

€. _ pore(vew. e BH)

—(e) 1og]E[e—”(z<e> )] — (o) logEle U}

= inf | Elpo I(VEOV.+ (). (B + Ruh() + 1l + SOlBIE. (4.1)

The rest of the proof will be divided into two steps.

Stepl : The upper bound. Without lost of generality, we assume that inf,cc{p(x) +
I(z)} < oo, where [ is a rate function given in (2.22). Taking v > 0, then there exists
zo € C(0,T;R?) satisfying

7

p(o) + I(z0) < inf{r(z) + I(2)} + 5 (4.2)

From (2.22), there exists (71, h1) € H x H such that T°( [, hi(s)ds, Righi) = 2o and

1 1. -
§Hh1||H + §||h1||H < I(zo) +

BO |2

This together with (4.1) implies

_px%)
— e ogE le 2H }

. 1 . 1
< inf  ElpoT(Ve(W.+h(-),e" (BT + Ryh(-))) + 57 [|h]l3, + sellhllE]
h=(h,h)EAxA 2 2
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= inf  ElpoT(Ve(W. + h(-)/ve), (B + Ryh()/vVeH))

h=(h,h)eAxA
1 - 1
+ 5l + 5 1Al

< Elpo T(eH (W + n(-)/V/e), € (B + Righs (-)/V/e))] + T(wo) + 1.

By the fact that p is bounded and continuous and taking ¢ — 0, we derive

. oH _p(Xe0) o [ _ ~
limsup —e*" logE e @7 | < pol”( [ hi(s)ds, Ryhi)) + I(xo) + 5
e—0 0
= plo) + I(wo) + 3

< inf{p(a) + I(2)} + -

Combining this and the fact that v being arbitrary, we finish the proof of the upper bound.
Step2 : The lower bound. Taking v > 0, by (4.1), for every e > 0, there exist (h¢, h¢) €
A x A such that

N €,0
—elogE{ oo )}

_ 1 _ 1
> inf  E[poT(Ve(W.+ h(-), e (BT + Rph(-)) + s> ||nll3, + sellhllE]
h=(h,h)cAxA 2 2

> Elp o T(eh (W, + 1()/ V&), " (B + R ()/V@M) + S+ I . (43)

which also implies

1 1€ 1 €
supE | o ||A°[[3, + S 12 | < 2llpllee + - (4.4)
>0 2 2
For a given constant M > 0, define the following stopping times.

A & T
ot = it {510l + 3laan 3 2 M AT,

Let heM(t) := he(t)1joc,1(t), hM(t) := h(t)1jo0c,1(t). It holds that hM € A hM € A.
From the Markov inequality and (4.4), one has

€ € € € ]‘ € € 2(||K||OO+7)
Pl £ 1 £ 1) < PSR+ w2 o) < 2= g

Moreover, we derive that

po FG(E%(W +he()/Ve), e (BT + Ryhe(-) /v eH))
= po T (ex(W. + hM () //e), e (BT + Ry (-) |V e2H))

po T (eE (W, + h(-) /), (BT + Ryhe(-)/Ve2H))
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— p o (W + KM () /y/2), (B + R () [V | L g ey
1 € 7€
> po T (H(W. + WM () /y/2), e (BY + Ryh() V@) = 2pllocL i gt pepnnsys (46)
By (2.6) , one can see that

1R, = KRN = KR ML = 1R,

R(13, = 1AN1Z2 2> [|R“M172 = 1AM, (4.7)
From (4.3) (4.5), (4.6) and (4.7), we therefore have

7R(X6,5)
—elogE[e € }

> Elp o T(e2(W. + he(-)/v/€), e (BT + Ryhe(-) /)

Lizne Loy 2lelleo (Kl +7)
— — — — 4.
+ SIRIB, + 31 = . (43)
Since M, ~ are arbitrary, in order to prove the lower bound, it suffices to show
1 7 L= 1
liminf B[ o (e (W + h°(-)/v/e), " (B + Ruh®()/VeH)) + S ll5, + 5 I1][2]
> 1r€1£{m(x) + I(z)}. (4.9)

Since ) )
SIRMIE, < A RO < M,

we can extract a (not relabelled) subsequence such that h%* converges to h in distribution
and h“™ converges to h in distribution. Then, we obtain

timinf [ o T (e (W, + () /&, € (B + Ryo () /@) + S [hll% + 5 1]

e—0

> Bl o T((), Ruh() + 5 1Al + 5llhl

(x,h,h)EEXHXH
> ing{m(x) + I(z)}.
Te

. 1.+ 1
> nf  Ele(e) + SRl + 5 A0
The proof is complete.
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