
Large deviation for slow-fast McKean-Vlasov
stochastic differential equations driven by

fractional Brownian motions and Brownian
motions

Hao Wua), Junhao Hua), Chenggui Yuanb)

a)School of Mathematics and Statistics, South-Central University For Nationalities

Wuhan, Hubei 430000, P.R.China

Email: wuhaomoonsky@163.com, junhaohu74@163.com

b)Department of Mathematics, Swansea University, Bay campus, SA1 8EN, UK

Email: C.Yuan@Swansea.ac.uk

Abstract

In this article, we consider slow-fast McKean-Vlasov stochastic differential equa-
tions driven by fractional Brownian motions with Hurst parameter H ∈ (1

2 , 1) and
Brownian motions. We give a definition of the large deviation principle (LDP) on the
product space related to fractional Brownian motion and Brownian motion, which is
different from the traditional definition for LDP. Under some proper assumptions on co-
efficients, LDP is investigated for this type of equations by using the weak convergence
method.
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1 Introduction

The LDP theory is used to solve the asymptotic behaviour of rare events and has a wide range
of applications such as in finance, statistic mechanics, biology, etc., see, e.g., [9, 37, 30, 31] and
references therein. From the literature, we can see that there exist two main methods to study
the LDP, one is based on contraction principle, that is, it relies on approximation arguments
and exponential-type probability estimates, see, e.g., [12, 22, 32] and references therein. The
other one is the weak convergence method due to [10]. This method has been proved to be
very effective for slow-fast stochastic models, etc., see, e.g., [38, 13, 14, 29, 41, 16].

On the other hand, many researchers are interested in Mckean-Vlasov stochastic differ-
ential equations (SDEs) driven by Brownian motion , in which the coefficients depend not
only on the state process but also on its distribution. McKean-Vlasov SDEs, being clearly
more involved than Itô’s SDEs, arise in McKean [25], who was inspired by Kac’s Programme
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in Kinetic Theory [19], as well as in some other areas of high interest such as propagation
of chaos phenomenon, PDEs, stability, invariant probability measures, social science, eco-
nomics, engineering, etc. (see e.g. [5, 8, 6, 24, 26, 43, 15, 36]). Later, the averaging principle
and LDP for slow-fast McKean-Vlasov SDEs driven by Brownian motions have been studied
in many papers. We refer the reader to [17, 18, 21, 39].

Recently, the averaging principle and LDP for McKean-Vlasov SDEs driven by fractional
Brownian motions have been investigated. Fan et al. [11] studied the asymptotic behaviors
for distribution dependent SDEs driven by fractional Brownian motions. Shen et al. [35]
and Zhang et al. [42] built the the averaging principle for distribution dependent SDEs
driven by fractional Brownian motions. Aidara et al. [1] analyzed the averaging principle
for BSDEs driven by two mutually independent fractional Brownian motions. As far as we
are concerned, there is no literature to discuss the LDP for slow-fast McKean-Vlasov SDEs
driven by fractional Brownian motions and Brownian motions.

In the paper, we shall consider the following slow-fast McKean-Vlasov SDEs driven by
fractional Brownian motions and Brownian motions:

dXδ
t = f1(Xδ

t ,LXδ
t
, Y δ

t )dt+ g1(Xδ
t ,LXδ

t
)dW 1

t + l(LXδ
t
)dBH

t , X
δ
0 = x,

dY δ
t = 1

δ
b(Xδ

t ,LXδ
t
, Y δ

t )dt+ 1√
δ
σ1(Xε

t ,LXδ
t
, Y δ

t )dW 1
t

+ 1√
δ
σ2(Xδ

t ,LXδ
t
, Y δ

t )dW 2
t , Y

δ
0 = y,

(1.1)

where b, f1 : Rd ×P2(Rd) × Rd → Rd, g1 : Rd ×P2(Rd) → Rd×d1 , l : P2(Rd) → Rd×d1 ,
σ1 : Rd×P2(Rd)×Rd → Rd×d1 , σ2 : Rd×P2(Rd)×Rd → Rd×d2 , W 1,W 2 are d1−dimensional
Brownian motion and d2−Brownian motion, respectively, BH is a d1−dimensional fractional
Brownian motion with Hurst parameter H < 1

2
. W 1,W 2, BH are mutually independent.

Moreover, by similar reasons in [11], the integral with respect to BH is interpreted in the
Wiener sense due to the fact that l(LXδ

t
) is deterministic. In slow-fast system, the small

parameter 0 < δ � 1 represents the separation of time scales between the slow component
Xδ
t (which can be thought of as the mathematical model for a phenomenon appearing at

the natural time scale) and the fast motion Y δ
t (which can be interpreted as the fast vary-

ing environment). Thus, it characterizes the ratio of timescales between processes Xδ
t and

Y δ
t . Obviously, it contains some essential differences compared with conventional SDEs.

Since the extensive separation of time scales and the cross interaction between slow and fast
motion, the slow-fast MVSDEs has been proven that it is more difficult to handle. Hence,
a simplified equation which controls the evolution of the system over the long time scale is
highly desirable. In this direction, the theory of averaging principle provides a good tool in
research on convergence rate of rare events for the slow component.

The main contributions are as follows:

• We give the definition of LDP on the product space related to fractional Brownian
motion and Brownian motion, which is different from the traditional definition for
LDP.

• Two LDP criteria are given on the product space related to fractional Brownian motion
and Brownian motion.

• The LDP is derived for slow-fast McKean-Vlasov SDEs (1.1) by using weak convergence
method.
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We close this part by giving our organization for this article. In Section 2, we intro-
duce some necessary notations and assumptions. In Section 3, We give our main results.
Throughout this paper, we make the following convention: the letter C(η) with or without
indices will denote different positive constants which depends on η, whose value may vary
from one place to another. The letter C with or without subscripts denotes an unimportant
positive constant and its value may vary in different cases.

2 Preliminaries

2.1 Notations

Throughout this paper, denote C0([0, T ],Rd) by the continuous functions vanishing at 0
equipped with the supremum norm. Let Ω1 = C0(0, T ;Rd1),Ω2 = C0(0, T ;Rd2),Ω3 =
C0(0, T ;Rd1). Fi, i = 1, 2, 3 are the Borel σ−algrebra, Fi := {F i

t , t ∈ [0, T ]} are the
σ−algebra filtration and P i, i = 1, 2, 3 are the probability on Ωi, , i = 1, 2, 3 such that W 1

· is
a d1-Brownian motion on (Ω1,F1,F1, P

1), W 2
· is a d2-Brownian motion on (Ω2,F2,F2, P

2)
and BH

· is a d1-fractional Brownian motion (Ω3,F3,F3, P
3). Let (Ω := Ω1 × Ω2 × Ω3,F :=

F1×F2×F3,F := F1×F2×F3, P := P 1×P 2×P 3), where F1×F2×F3 := {F 1
t ×F 2

t ×F 3
t , t ∈

[0, T ]}, be the product space. Then, W 1,W 2, BH are mutually independent. If x, y ∈ Rd,
we use |x| to denote the Euclidean norm of x, and use 〈x, y〉 or xy to denote the Euclidean
inner product. If A is a matrix, AT is the transpose of A, and |A| represents

√
Tr(AAT ).

Moreover, let bac be the integer parts of a. Let B(Rd) be the Borel σ−algebra on Rd, C(Rd)
denotes all continuous functions on Rd and Ck(Rd) denotes all continuous functions on Rd

with continuous partial derivations of order up to k. Let P(Rd) be the space of all proba-
bility measures on B(Rd), and Pp(Rd) denotes the space of all probability measures defined
on B(Rd) with finite pth moment:

[µ(| · |p)]
1
p :=

(∫
Rd
|x|pµ(dx)

) 1
p

<∞.

For µ, ν ∈Pp(Rd), we define the Wasserstein distance for p ≥ 1 as follows:

Wp(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

|x− y|pπ(dx, dy)

} 1
p

,

where Π(µ, ν) is the family of all coupling for µ, ν.

2.2 Fractional integral and derivative

This aim of this section is to introduce some notion and notation of fractional calculus
involving fractional integral and derivative, Wiener space associated to fractional Brownian
motion.

We mention that BH = (BH,1, · · · , BH,d) with Hurst parameter H ∈ (0, 1) is a centered
Gaussian process with the covariance function E(BH,i

t BH,j
s ) = RH(t, s)δi,j, where

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ [0, T ].
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Then, the following results hold:

1◦ E(|BH,i
t −BH,i

s |q) = Cq|t− s|qH for every q ≥ 1 and i = 1, · · · , d.

2◦ BH is (H − ε)-order Hölder continuous a.s. for any ε ∈ (0, H) and is an H-self similar
process.

For any a, b ∈ R with a < b, f ∈ L1([a, b],R) and α > 0, the right-sided (respectively
left-sided) fractional Riemann-Liouville integral of f of order α on [a, b] is defined as

Iαb−f(x) =
(−1)−α

Γ(α)

∫ b

x

f(y)

(y − x)1−αdy (2.1)(
respectively Iαa+f(x) =

1

Γ(α)

∫ x

a

f(y)

(x− y)1−αdy

)
,

where x ∈ (a, b) a.e., (−1)−α = e−iαπ and Γ denotes the Gamma function.
Fractional differentiation may be given as an inverse operation. Let α ∈ (0, 1) and p ≥ 1.

If f ∈ Iαa+(Lp([a, b],R)) (respectively Iαb−(Lp([a, b],R))), there exists a unique function g in
Lp([a, b],R) satisfying f = Iαa+g (respectively f = Iαb−g) and it coincides with the left-sided
(respectively right-sided) Riemann-Liouville derivative of f of order α shown by

Dα
a+f(x) =

1

Γ(1− α)

d

dx

∫ x

a

f(y)

(x− y)α
dy(

respectively Dα
b−f(x) =

(−1)1+α

Γ(1− α)

d

dx

∫ b

x

f(y)

(y − x)α
dy

)
.

The corresponding Weyl representation is as follows:

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
(2.2)(

respectively Dα
b−f(x) =

(−1)α

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

))
.

Obviously, from [34], the convergence of the integrals at the singularity y = x holds pointwise
for almost all x if p = 1 and in the Lp sense if p > 1.

2.3 Wiener space associated to fractional Brownian motion

Denote by E the set of step functions on [0, T ] and the Hilbert space H is the closure of E
with respect to the scalar product〈

(I[0,t1], · · ·, I[0,td1 ]), (I[0,s1], · · ·, I[0,sd1 ])
〉
H

=

d1∑
i=1

RH(ti, si).

In order to give the integral representation of RH(t, s), we set

KH(t, s) := Γ

(
H +

1

2

)−1

(t− s)H−
1
2F

(
H − 1

2
,
1

2
−H,H +

1

2
, 1− t

s

)
,
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in which F (·, ·, ·, ·) is the Gauss hypergeometric function ( see [7] or [27]). KH is a square
integrable kernel and RH(t, s) has the following integral representation from [7]:

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r)dr.

Furthermore, the mapping (I[0,t1], · · ·, I[0,td1 ]) 7→
∑d1

i=1 B
H,i
ti can be extended to an isometry

between H and the Gaussian space H1 associated with BH . Denote this isometry by ϕ 7→
BH(ϕ). Consequently, due to [2] again, BH has the following Volterra-type representation

BH
t =

∫ t

0

KH(t, s)dWs, t ∈ [0, T ], (2.3)

where W is some d1-dimensional Wiener process defined on (Ω3,F3, P
3).

Besides, define the operator KH : L2([0, T ],Rd1)→ I
H+1/2
0+ (L2([0, T ],Rd1)) by

(KHf)(t) =

∫ t

0

KH(t, s)f(s)ds.

According to [7], we obtain that it is an isomorphism and for each f ∈ L2([0, T ],Rd1),

(KHf)(s) =

 I2H
0+ s

1/2−HI
1/2−H
0+ sH−1/2f, H ∈ (0, 1/2),

I1
0+s

H−1/2I
H−1/2
0+ s1/2−Hf, H ∈ (1/2, 1).

Thus, for any g ∈ IH+1/2
0+ (L2([0, T ],Rd1)), the inverse operator of KH is given by

(K−1
H g)(s) =

 s1/2−HD
1/2−H
0+ sH−1/2D2H

0+ g, H ∈ (0, 1/2),

sH−1/2D
H−1/2
0+ s1/2−Hg′, H ∈ (1/2, 1).

(2.4)

In particular, if g is absolutely continuous, we have

(K−1
H g)(s) = sH−

1
2 I

1
2
−H

0+ s
1
2
−Hg′, H ∈ (0, 1/2). (2.5)

Now, define the linear operator K∗H : E → L2([0, T ],Rd1) as follows

(K∗Hϕ)(s) = KH(T, s)ϕ(s) +

∫ T

s

(ϕ(r)− ϕ(s))
∂KH

∂r
(r, s)dr.

According to [2], we have the following the relation for any ϕ, φ ∈ E ,

〈K∗Hϕ,K∗Hφ〉L2([0,T ],Rd1 ) = 〈ϕ, φ〉H = H(2H − 1)

∫ T

0

∫ T

0

|t− s|2H−1〈ϕ(s), φ(t)〉dsdt. (2.6)

and then the bounded linear transform theorem implies that K∗H can be extended to an
isometry between H and L2([0, T ],Rd1).
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Note that the injection RH = KH ◦ K∗H : H → Ω3 embeds H densely into Ω3 and for
every ψ ∈ Ω∗3 ⊂ H it holds that Eei〈BH ,ψ〉 = exp(−12‖ψ‖2

H). By (2.6) in [11], for any ϕ ∈ H,
we derive that

(RHϕ)(t) =

∫ t

0

∫ s

0

∂KH

∂s
(s, r)(K∗Hϕ)(r)drds. (2.7)

Next, we introduce some results about the Malliavin calculus for fractional Brownian
motion. Let S be the set of smooth and cylindrical random variables of the form

F = f(BH(ϕ1), · · ·, BH(ϕn)),

where n ≥ 1, f ∈ C∞b (Rn) and ϕi ∈ H, 1 ≤ i ≤ n. The Malliavin derivative of F is given as
follows:

DF =
n∑
i=1

∂f

∂xi
(BH(ϕ1), · · ·, BH(ϕn))ϕi,

and denoted by DF.
For any p ≥ 1, we denote by D1,p the Sobolev space which is the completion of S with

respect to the norm

‖F‖p1,p = E|F |p + E‖DF‖pH.

Denote by δ and Domδ the dual operator of D and its domain, respectively. The following
results are needed later. By [28, Proposition 5.2.1] and [28, Proposition 5.2.2], one has

Proposition 2.1. Denote by DW the derivative operator with respect to the underlying
Wiener process W in (2.3), and D1,2

W the corresponding Sobolev space. For every F ∈ D1,2
W =

D1,2, we obtain that

K∗HDF = DWF,

Proposition 2.2. Domδ = (K∗H)−1(DomδW ), and it holds that δ(u) = δW (K∗Hu) for any
H-valued random variable u in Domδ, where δW represents the divergence operator corre-
sponding to the underlying Wiener process W in (2.3).

Remark 2.1. The above proposition and [28, Proposition 1.3.11] implies that u ∈ Domδ if
K∗Hu ∈ L2

a([0, T ]× Ω,Rd1) (the closed subspace of L2([0, T ]× Ω,Rd1) formed by the adapted
processes).

Finally, we complete this section by giving the following notation for future use.

A :=

{
h̄ is Rd1 valued Ft − predictable process such that ‖h̄‖H <∞ P − a.e.

}
.

SN := {h̄ ∈ H : ‖h̄‖2
H ≤ N}.

AN :=

{
h̄ ∈ A : h̄(ω) ∈ SN P − a.e.

}
.
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H :=

{
h =

∫ ·
0

ḣ(s)ds : ḣ ∈ L2(0, T ;Rd1+d2) with the norm

‖h‖H :=

(∫ T

0

|ḣ(s)|2ds

) 1
2

<∞
}
.

A :=

{
h is Rd1+d2 valued Ft − predictable process such that

∫ T

0

|ḣ(s)|2ds <∞ P − a.e.
}
.

SN := {h ∈ H :

∫ T

0

|ḣ(s)|2ds ≤ N}.

AN :=

{
h ∈ A : h(ω) ∈ SN P − a.e.

}
.

For hε ∈ AN , h ∈ AN , hε ⇒ h means hε converges in distribution to h as ε→ 0.
For h̄ε ∈ AN , h̄ ∈ AN , h̄ε ⇒ h̄ means h̄ε converges in distribution to h̄ as ε→ 0.

2.4 Assumptions

We now impose the following condition on coefficients:

(H1) Let Λ and λ be two positive constants such that the following conditions hold for any
x, x1, x2 ∈ Rd, µ, µ1, µ2 ∈P2(Rd), y, y1, y2 ∈ Rd :

|f1(x1, µ1, y1)− f1(x2, µ2, y2)|+ |b(x1, µ1, y1)− b(x2, µ2, y2)|
+ |σ1(x1, µ1, y1)− σ1(x2, µ2, y2)|+ |σ2(x1, µ1, y1)− σ2(x2, µ2, y2)|
≤ Λ(|x1 − x2|+ |y1 − y2|+W2(µ1, µ2)), (2.8)

|g1(x1, µ1)− g1(x2, µ2)| ≤ Λ(|x1 − x2|+W2(µ1, µ2)), (2.9)

|l(µ1)− l(µ2)| ≤ ΛW2(µ1, µ2), (2.10)

and

4〈b(x, µ, y1)− b(x, µ, y2), y1 − y2〉+ 6|σ1(x, µ, y1)− σ1(x, µ, y2)|2

+ 6|σ2(x, µ, y1)− σ2(x, µ, y2)|2 ≤ −λ|y1 − y2|2. (2.11)

Firstly, we give several uniform estimations w.r.t. δ ∈ (0, 1) for the 4th moment of solution
(Xδ, Y δ) of Eq. (1.1).

Lemma 2.3. Assume (H1). Then the following inequalities hold:

sup
δ∈(0,1)

sup
t∈[0,T ]

E[|Xδ
t |4] ≤ C(T )(1 + |x|4 + |y|4),

sup
δ∈(0,1)

sup
t∈[0,T ]

E[|Y δ
t |4] ≤ C(T )(1 + |x|4 + |y|4).
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Proof. By Eq. (1.1), we have

E[ sup
0≤s≤t

|Xδ
s |4] ≤ C|x|4 + CE

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

f1(Xδ
r ,LXδ

r
, Y δ

r )dr

∣∣∣∣4]
+ CE

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

g1(Xδ
r ,LXδ

r
, Y δ

r )dWr

∣∣∣∣4]
+ CE

[
sup

0≤s≤t

∣∣∣∣ ∫ s

0

l(LXδ
r
)dBH

r

∣∣∣∣4]
=: C|x|4 + I1 + I2 + I3. (2.12)

where C is a constant.
For the term I1, by the fact W 4

2 (LXt , δ0) ≤ E[|Xt|4] and (H1), we derive

I1 = CE
[

sup
0≤s≤t

∣∣∣∣ ∫ s

0

f1(Xδ
r ,LXδ

r
, Y δ

r )]dr

∣∣∣∣4]
≤ C(T )E

∫ t

0

(|Xδ
s |4 + |Y δ

s |4)ds+ C(T ).

Next, we look at I2. The Burkholder-Davis-Gundy(BDG) inequality and (H1) yield that

I2 = CE
[

sup
0≤s≤t

∣∣∣∣ ∫ s

0

g1(Xδ
r ,LXδ

r
)dWr

∣∣∣∣4]
≤ C(T )E

[∣∣∣∣ ∫ t

0

|g1(Xδ
t ,LXδ

r
)|2ds

∣∣∣∣2]
≤ C(T )E

∫ t

0

|Xδ
s |4ds+ C(T ).

Finally, for I3, it follows from (4.1) in [11] and (H1), we obtain

I3 = CE
[

sup
0≤s≤t

∣∣∣∣ ∫ s

0

l(LXδ
r
)dBH

r

∣∣∣∣4]
≤ C(T,H)E

[∣∣∣∣ ∫ t

0

|l(LXδ
s
)|4ds

∣∣∣∣]
≤ C(T,H)E

∫ t

0

|Xδ
s |4ds+ C(T ).

These imply

E[ sup
0≤s≤t

|Xδ
s |4] ≤ C1|x|4 + C(T ) + C(T,H)

∫ t

0

(E[ sup
0≤r≤s

|Xδ
r |4] + E[ sup

0≤r≤s
|Y δ
r |4])ds.

An application of Itô’s formula yields that

E[|Y δ
t |4] = |y|4 +

4

δ
E
∫ t

0

|Y δ
s |2〈Y δ

s , b(s,X
δ
s ,LXδ

s
, Y δ

s )〉ds
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+
2

δ
E
∫ t

0

|Y δ
s |2|σ1(Xδ

s ,LXδ
s
, Y δ

s )|2ds

+
4

δ
E
∫ t

0

|〈Y δ
s , σ1(Xδ

s ,LXδ
s
, Y δ

s )〉|2ds

+
2

δ
E
∫ t

0

|Y δ
s |2|σ2(Xδ

s ,LXδ
s
, Y δ

s )|2ds

+
4

δ
E
∫ t

0

|〈Y δ
s , σ2(Xδ

s ,LXδ
s
, Y δ

s )〉|2ds. (2.13)

By (2.11), there exists α′ > 0 such that for any t ∈ [0, T ],

d

dt
E[|Y δ

t |4] ≤ 1

δ
E[4|Y δ

t |2〈Y δ
t , b(X

δ
t ,LXδ

t
, Y δ

t )〉+ 6|Y δ
s |2|σ1(Xδ

s ,LXδ
s
, Y δ

s )|2]

+ 6|Y δ
s |2|σ2(Xδ

s ,LXδ
s
, Y δ

s )|2]

≤ −α
′

δ
E[|Y δ

t |4] +
C(T )

δ
(E[|Xδ

t |4] + 1).

It follows from the comparison theorem that

E[|Y δ
t |4] ≤ |y|4e−

α′t
δ +

C(T )

δ

∫ t

0

e−
α′(t−s)

δ (E[|Xδ
s |4] + 1)ds

≤ |y|4 + C(T )( sup
0≤s≤t

E[|Xδ
t |4] + 1).

This together with (2.13) implies

sup
0≤s≤t

E[|Xδ
t |4] ≤ C(T )|y|4 + C(T )

∫ t

0

sup
0≤r≤s

E[|Xδ
r |4]ds.

Gronwall’s inequality gives

sup
0<δ<1

sup
0≤s≤t

E[|Xδ
t |4] ≤ C(T )(1 + |x|4 + |y|4).

which also implies

sup
0<δ<1

sup
0≤s≤t

E[|Y δ
t |4] ≤ C(T )(1 + |x|4 + |y|4).

Lemma 2.4. Assume (H1). For any 0 ≤ t ≤ t+ u ≤ T, we have the following inequality.

E[|Xδ
t+u −Xδ

t |2] ≤ C(T )(1 + |x|2 + |y|2)u.

Proof. By (1.1), we have

Xδ
t+u −Xδ

t =

∫ t+u

t

f1(Xδ
s ,LXδ

s
, Y δ

s )ds

9



+

∫ t+u

t

g1(Xδ
s ,LXδ

s
)dW 1

s +

∫ t+u

t

l(LXδ
s
)dBH

s .

Set X̂t := Xδ
t+u −Xδ

t . Analogous to the calculation of (2.12), it holds that

E[|X̂(t)|2] ≤ CE
[∣∣∣∣ ∫ t+u

t

f1(Xδ
r ,LXδ

r
, Y δ

r )dr

∣∣∣∣2]
+ CE

[∣∣∣∣ ∫ t+u

t

g1(Xδ
r ,LXδ

r
, Y δ

r )dWr

∣∣∣∣2]+ CE
[∣∣∣∣ ∫ t+u

t

l(LXδ
r
)dBH

r

∣∣∣∣2]
≤ C(T )u

∫ t+u

t

(E[1 + |Xδ
s |2] + E[|Y δ

s |2])ds+ C(T )

∫ t+u

t

(E[1 + |Xδ
s |2] + E[|Y δ

s |2])ds.

Then, Lemma 2.3 leads to the required assertion.

2.5 The averaged equation.

We now introduce the following parameterized McKean-Vlasov equation: for fixed t ≥ 0, x ∈
Rd, µ ∈P2(Rd), let

dY x,µ,y
s = b(x, µ, Y x,µ,y

s )ds+ σ1(x, µ, Y x,µ,y
s )dW̃ 1

s

+ σ2(x, µ, Y x,µ,y
s )dW̃ 2

s , Y x,µ,y
0 = y, (2.14)

where W̃ 1
· , W̃

2
· are d1-dimensional and d2-dimensional Brownian motions respectively and

mutually independent, on another complete probability space (Ω̃, F̃ , P̃ ) and {F̃t}t≥0 is the

natural filtration generated by W̃ 1
t , W̃

2
t , B

H
t . Since the coefficients of parameterized McKean-

Vlasov equation satisfy the Lipschitz conditions, under (H1), similar to the Eq.(3.3) in [33],
Eq.(2.14) has a unique strong solution {Y t,x,µ,y

s }s≥0 and it is a homogeneous Markov process
with the following estimate

sup
0≤s≤T

Ẽ[|Y x,µ,y
s |2] ≤ C(T )(1 + |x|2 + |y|2 + µ(| · |2)).

Let {P x,µ
s }s≥0 be the transition semigroup of Y x,µ,y

s . By [20, Theorem 4.3.9], under (H1),
{P x,µ

s }s≥0 has a unique invariant measure νx,µ satisfying∫
Rm
|y|νx,µ(dy) ≤ C(T )(1 + |x|+ [µ(| · |2)]

1
2 ).

Set

f̄(x, µ) :=

∫
Rd
f1(x, µ, z)νx,µ(dz).

We have the following lemma.

Lemma 2.5. f̄ satisfies the following Lipschitz conditions, i.e.

|f̄(x1, µ1)− f̄(x2, µ2)| ≤ C(|x1 − x2|+W2(µ1, µ2)).

10



Proof. Based on the definition of f̄ , the Lipschitz continuity of f1 and the definition of
Wasserstein metric, we derive

|f̄(x1, µ1)− f̄(x2, µ2)|

=

∣∣∣∣ ∫
Rd1

f1(x1, µ1, z)ν
x1,µ1(dz)−

∫
Rd1

f1(x2, µ2, z)ν
x2,µ2(dz)

∣∣∣∣
≤
∣∣∣∣ ∫

Rd1
[f1(x1, µ1, z)− f1(x2, µ2, z)]ν

x1,µ1(dz)

∣∣∣∣
+

∣∣∣∣ ∫
Rd1

f1(x2, µ2, z)ν
x1,µ1(dz)−

∫
Rd1

f1(x2, µ2, z)ν
x2,µ2(dz)

∣∣∣∣
≤ C(|x1 − x2|+W2(µ1, µ2) +W2(νx1,µ1 , νx2,µ2)).

By [40, Theorem 3.1], we obtain

W 2
2 (νx1,µ1 , νx2,µ2)

≤ 3W 2
2 (νx1,µ1 ,L

Y
x,µ1,0
s

) + 3W 2
2 (νx2,µ2 ,L

Y
x,µ2,0
s

) + 3W 2
2 (L

Y
x,µ1,0
s

,L
Y
x,µ2,0
s

)

≤ Ce−2λ0s(W 2
2 (νx1,µ1 , δ0) +W 2

2 (νx1,µ1 , δ0)) + C(|x1 − x2|+W 2
2 (µ1, µ2)).

From the above calculation, we obtain

|f̄(x1, µ1)− f̄(x2, µ2)| ≤ C(|x1 − x2|+W2(µ1, µ2)).

We now consider the following averaged equation:

dX̄t = f̄(X̄t,LX̄t)dt+ g1(X̄t,LX̄t)dW
1
t + l(LX̄t)dB

H
t , X̄0 = x. (2.15)

Since f̄1, ḡ1, l satisfy the Lipschitz condition, we have the following existence and unique-
ness result for Eq. (2.15).

Theorem 2.6. Assume (H1). Then Eq.(2.15) has a unique solution.

2.6 Large deviation principle

Consider the following multi-scale McKean-Vlasov system with small perturbation.
dXε,δ

t = f1(Xε,δ
t ,LXε,δ

t
, Y ε,δ

t )dt+ εH l(LXε,δ
t

)dBH
t

+
√
εg1(Xε,δ

t ,LXε,δ
t

)dW 1
t , X

ε,δ
0 = x,

dY ε,δ
t = 1

δ
b(Xε,δ

t ,LXε,δ
t
, Y ε,δ

t )dt+ 1√
δ
σ1(Xε,δ

t ,LXε,δ
t
, Y ε,δ

t )dW 1
t

+ 1√
δ
σ2(Xε,δ

t ,LXε,δ
t
, Y ε,δ

t )dW 2
t , Y

ε,δ
0 = y.

(2.16)

ε describes the intensity of the noise and δ describes the ratio of the time scale between the
slow component Xε,δ

t and fast component Y ε,δ
t . In the following, as ε→ 0, we need δ/ε→ 0,

thus the coefficient of the multi-scale stochastic system is averaged first, and then for the
averaged equation with small noise, the large deviation principle is obtained by using the
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weak convergence method. Thus, due to the classical Yamada-Watanabe theorem, there
exists a measurable map ΓεL

X
ε,δ
t

: C([0, T ];Rd1+d2)×C(0, T ;Rd1)→ C(0, T ;Rd) such that we

have the following representation

Xε,δ
t = ΓεL

X
ε,δ
t

(
√
εW, εHBH),

where W := (W 1,W 2). For simplicity of notation, we denote Γε = ΓεL
X
ε,δ
t

. For h̃ε =

(hε, h̄ε), hε ∈ AN , h̄
ε ∈ AN , Xε,δ,h̃ε := Γε

(
√
εW· +

∫ ·
0
ḣε(·)ds, εHBH

· + RH h̄
ε(·)
)

is the first

part of solution of the following equation.

dXε,δ,h̃ε

t = f1(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )dt+ g1(Xε,δ,h̃ε

t ,LXε,δ
t

)P1ḣ
ε(t)dt+ l(LXε,δ

t
)d(RH h̄

ε)(t)

+
√
εg1(Xε,δ,h̃ε

t ,LXε,δ
t

)dW 1
t + εH l(LXε,δ

t
)dBH

t , X
ε
0 = x,

dY ε,δ,h̃ε

t = 1
δ
b(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )dt+ 1√
εδ
σ1(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )P1ḣ
ε(t)dt

+ 1√
εδ
σ2(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )P2ḣ
ε(t)dt

+ 1√
δ
σ1(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )dW 1
t + 1√

δ
σ2(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )dW 2
t ,

Y ε,δ,h̃ε

0 = y,

(2.17)

where P1 : Rd1+d2 → Rd1 ,P2 : Rd1+d2 → Rd2 are two projection operators. In this part, we
will investigate the LDP for Eq. (2.16). We need some definitions of the theory of LDP.

Definition 2.1. A nonnegative function I is called a rate function on C(0, T ;Rd) if it is
lower semicontinuous. Moreover, I is a good rate function if for each constant M <∞, the
level set {x ∈ C(0, T ;Rd) : I(x) ≤M} is a compact subset of C(0, T ;Rd).

Definition 2.2. Let I be a rate function on C(0, T ;Rd). The family {Xε,δ := Γε(
√
εW·, ε

HBH
· )}ε>0

of C(0, T ;Rd)−valued random variables is said to be satisfied a LDP on C(0, T ;Rd) with speed
l(ε) := (ε, ε2H) and rate function I if the following two conditions hold:

1◦ (Upper bound) For each closed subset F ∈ C(0, T ;Rd),

lim sup
ε→0

ε2H log(P (Xε,δ ∈ F )) ≤ − inf
x∈F

I(x). (2.18)

2◦ (Lower bound) For each open subset G ∈ C(0, T ;Rd),

lim inf
ε→0

ε log(P (Xε,δ ∈ G)) ≥ − inf
x∈G

I(x). (2.19)

Definition 2.3. Let I be a rate function on C(0, T ;Rd). {Xε,δ := Γε(
√
εW·, ε

HBH
· )}ε>0

is said to be satisfied the Laplace principle upper bound (respectively, lower bound ) on
C(0, T ;Rd) with speed l(ε) := (ε, ε2H) and rate function I if for any bounded continuous
function ρ on C(0, T ;Rd),

12



1◦

lim sup
ε→0

−ε2H logE
[

exp

(
− ρ(Xε,δ)

ε2H

)]
≤ inf

x∈C(0,T ;Rd)
{ρ(x) + I(x)}. (2.20)

2◦ (Lower bound) For any open subset Gi ∈ C(0, T ;Rd), i = 1, 2,

lim inf
ε→0

−ε logE
[

exp

(
− ρ(Xε,δ)

ε

)]
≥ inf

x∈C(0,T ;Rd)
{ρ(x) + I(x)}. (2.21)

Remark 2.2. In these definitions, we use different speeds for the upper bound and lower
bound, i.e. the speed in upper bound (2.18) is ε2H , while the speed in lower bound (2.19) is
ε. In fact, this is reasonable. Noting that H ≥ 1

2
and ε ∈ (0, 1), we therefore have

lim sup
ε→0

ε log(P (Xε,δ ∈ F )) ≤ lim sup
ε→0

ε2H log(P (Xε,δ ∈ F )),

lim inf
ε→0

ε log(P (Xε,δ ∈ G)) ≤ lim inf
ε→0

ε2H log(P (Xε,δ ∈ G)).

This implies the consistency the definition of the LDP of SDEs driven by Brownian motion
or fraction Brownian motion, respectively.

We give the following sufficient condition for LDP criteria, which is a version of [4,
Theorem 4.2] on the product space.

Lemma 2.7. Assume the following conditions hold:

1◦ For any ε > 0, Γε : C([0, T ];Rd1+d2) × C(0, T ;Rd1) → C(0, T ;Rd) is a measurable
mapping.

2◦ Let Γ0 : C(0, T ;Rd1+d2)× IH+ 1
2

0+ (L2(0, T ;Rd1))→ C(0, T ;Rd) be a measurable mapping.

3◦ For every N > 0, and any family {hε; ε > 0} ⊂ AN , {h̄ε; ε > 0} ⊂ AN satisfying that
hε ⇒ h, h̄ε ⇒ h̄, ε→ 0, then

Γε
(√

εW· +

∫ ·
0

ḣε(·)ds, εHBH
· +RH h̄ε(·)

)
⇒ Γ◦

(∫ ·
0

ḣ(s)ds, RH h̄(·)
)
, ε→ 0.

4◦ For every N > 0, the set {Γ◦
(∫ ·

0
ḣ(s)ds, RH h̄(·)

)
;h ∈ SN , h̄ ∈ SN} is a compact

subset of C(0, T ;Rd).

Then the family {Γε(
√
εW·, ε

HBH
· )} satisfies a large deviation principle in C(0, T ;Rd) with

the rate function I given by

I(g) := inf
{(h,h̄)∈(H,H);g=Γ0(

∫ ·
0 ḣ(s)ds,RH h̄)}

{
1

2

∫ T

0

|ḣ(s)|2ds+
1

2
‖h̄‖2

H

}
, g ∈ C(0, T ;Rd), (2.22)

with inf ∅ =∞ by convention.
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Proof. The proof is placed in the appendix.

The following lemma is equivalent to the above one.

Lemma 2.8. Assume the following conditions hold:

1◦ Let {hε : ε > 0} ⊂ AN , {h̄ε : ε > 0} ⊂ AN . For any ε0 > 0,

lim
ε→0

[
d

(
Γε
(√

εW· +

∫ ·
0

ḣε(·)ds, εHBH
· +RH h̄ε(·)

)
,

Γ◦
(∫ ·

0

ḣε(s)ds, RH h̄
ε(·)
))

> ε0

]
= 0,

where d(·, ·) stands for the metric on C(0, T ;Rd).

2◦ Let {hε} ⊂ SN , {h̄ε} ⊂ SN . If hε converges to some element h in SN and h̄ε converges
to some element h̄ in SN , n→∞, then

Γ◦
(∫ ·

0

ḣε(s)ds, RH h̄
ε(·)
)
→ Γ◦

(∫ ·
0

ḣ(s)ds, RH h̄(·)
)

inC(0, T ;Rd).

Set Xε
· = Γε(

√
εW·, ε

HBH
· ). Then {Xε, ε > 0} satisfies the Laplace principle (hence the LDP)

on C(0, T ;Rd) with the rate function I given by (2.22).

Proof. Since the proof is similar to that in [23, Theorem 3.2], we omit it here.

Assume X̄0 satisfies the following equation.

dX̄0
t = f̄(X̄0

t ,LX̄0
t
)dt. (2.23)

The following skeleton equation w.r.t. the slow component of stochastic system (2.16) will
be used later.

dX̄ h̃
t = f̄(X̄ h̃

t ,LX̄0
t
)dt+ g1(X̄ h̃

t ,LX̄0
t
)P1ḣdt+ l(LX̄0

t
)d(RH h̄)(t), (2.24)

where h̃ = (h, h̄), h ∈ AN , h̄ ∈ AN . Since f̄ , g1, l satisfy Lipschitz condition, Eq. (2.24) has

a unique solution X̄ h̃. Define a mapping X̄ h̃
· = Γ◦

(∫ ·
0
ḣ(s)ds, RH h̄(·)

)
. Now, we are in the

position to state our main result.

Theorem 2.9. Assume (H1) and limε→0
δ
ε

= 0. If

sup
y∈Rd
|σ1(x, µ, y)| ∨ sup

y∈Rd
|σ2(x, µ, y)| ≤ C(1 + |x|+W2(µ, δ0)),

then {Xε,δ, ε > 0} satisfies the LDP on C(0, T ;Rd) with the rate function I given by (2.22).
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2.7 Several priori estimates

Choose a step size ∆ ∈ (0, 1), and set t̄ := b t
∆
c∆. Before giving the proof of the main results,

we intend to show several useful estimates by using similar method as used in Lemma 2.3
and Lemma 2.4.

Lemma 2.10. Assume (H1). Then it holds that

(i) supε,δ∈(0,1) supt∈[0,T ] E[|Xε,δ
t |4] ≤ C(T )(1 + |x|2 + |y|2),

(ii) supε,δ∈(0,1) supt∈[0,T ] E[|Y ε,δ
t |4] ≤ C(T )(1 + |x|2 + |y|2),

(iii) supε,δ∈(0,1) E[|Xε,δ
t −X

ε,δ
t̄ |

2] ≤ C(T )∆(1 + |x|2 + |y|2),

(iv) suph∈SN supt∈[0,T ] |X̄ h̃
t |2 ≤ C(N, T )(1 + |x|2 + supt∈[0,T ] |X̄0

t |2),

(v) E
∫ T

0
|X̄ h̃

t − X̄ h̃
t̄ |2] ≤ C(N, T )∆(1 + |x|2 + |y|2),

Furthermore, if limε→0
δ
ε

= 0, we have

(vi) E[supt∈[0,T ] |Y
ε,δ,h̃ε

t |2] ≤ C(T,N)(1 + |x|2 + |y|2),

(vii) E
∫ T

0
|Xε,δ,h̃ε

t |2dt ≤ C(T,N)(1 + |x|2 + |y|2),

(viii) E
∫ T

0
|Xε,δ,h̃ε

t −Xε,δ,h̃ε

t̄ |2] ≤ C(N, T )∆(1 + |x|2 + |y|2).

2.8 The auxiliary process

Choose a step size ∆ ∈ (0, 1) and define an auxiliary process Ȳ ε,δ
t with Ȳ ε,δ

0 = Y ε,δ,h̃ε

0 = y.
For t ∈ [k∆, (k + 1)∆], k = 1, 2, 3, · · · ,

Ȳ ε,δ
t = Ȳ ε,δ

k∆ +
1

δ

∫ t

k∆

b(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
s )ds+

1√
δ

∫ t

k∆

σ1(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
s )dW 1

s

+
1√
δ

∫ t

k∆

σ2(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
s )dW 2

s . (2.25)

We will show the following error estimate between the process Y ε,δ,h̃ε and Ȳ ε,δ.

Lemma 2.11. Assume (H1). For any N, T > 0, it holds that

sup
ε,δ∈(0,1)

sup
t∈[0,T ]

E[|Ȳ ε,δ
t |2] ≤ C(T )(1 + |x|2 + |y|2),

and

E
∫ T

0

|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2dt ≤ C(T,N)(1 + |x|2 + |y|2)(

δ

ε
+ ∆).
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Proof. Similar to arguments as the proof in Lemma 2.4, we can obtain the first result. Next,
we prove the second statement. Note that

Y ε,δ,h̃ε

t − Ȳ ε,δ
t =

1

δ

∫ t

0

[b(Xε,δ,h̃ε

s ,L
Xε,δ,h̃ε
s

, Y ε,δ,h̃ε

s )− b(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
t )]ds

+
1√
δ

∫ t

0

[σ1(Xε,δ,h̃ε

s ,LXε,δ
t
, Y ε,δ,h̃ε

t )− σ1(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
s )]dW 1

s

+
1√
ε

∫ t

0

[σ2(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )− σ2(Xε,δ,h̃ε

s̄ ,L
Xε,δ,h̃ε

s̄

, Ȳ ε,δ
s )]dW 2

s

+
1√
εδ

∫ t

0

σ1(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )P1ḣ
ε
sds

+
1√
εδ

∫ t

0

σ2(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )P2ḣ
ε
sds.

By Itô’s formula, we have

d

dt
E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2]

≤ 2

δ
E〈Y ε,δ,h̃ε

t − Ȳ ε,δ
t , b(Xε,δ,h̃ε

t ,L
Xε,δ,h̃ε

t

, Y ε,δ,h̃ε

t )− b(Xε,δ,h̃ε

t̄ ,L
Xε,δ,h̃ε

t̄

, Ȳ ε,δ
t )〉

+
2√
εδ
E〈Y ε,δ,h̃ε

t − Ȳ ε,δ
t , σ1(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )P1ḣ
ε〉

+
2√
εδ
E〈Y ε,δ,h̃ε

t − Ȳ ε,δ
t , σ2(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )P2ḣ
ε〉

+
1

ε
E|σ1(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )− σ1(Xε,δ,h̃ε

t̄ ,L
Xε,δ,h̃ε

t̄

, Ȳ ε,δ
t )|2

+
1

δ
E|σ2(Xε,δ,h̃ε

t ,LXε,δ
t
, Y ε,δ,h̃ε

t )− σ2(Xε,δ,h̃ε

t̄ ,L
Xε,δ,h̃ε

t̄

, Ȳ ε,δ
t )|2 =:

5∑
i=1

Mi.

For M1,M4,M5, by (H1), we have

M1 +M4 +M5 ≤ −
α̃

δ
E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2] +

C

δ
E[|Xε,δ,h̃ε

t −Xε,δ,h̃ε

t̄ |2]

+
C

δ
W 2

2 (LXε,δ
t
,LXε,δ

t̄
), (2.26)

where α̃ ∈ (0, λ). For M2,M3 by Young’s inequality, we derive

M2 +M3 ≤
α̃1

δ
E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2] +

C

ε
E[(1 + |Xε,δ,h̃ε

t |2 + LXε,δ(| · |2))‖P1‖|ḣεt|2]

+
C

ε
E[(1 + |Xε,δ,h̃ε

t |2 + LXε,δ(| · |2))‖P2‖|ḣεt|2]. (2.27)

where α̃1 ∈ (0, α̃). By the above calculations, we have

d

dt
E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2] ≤ − ς

δ
E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2] +

C

δ
E[|Xε,δ,h̃ε

t −Xε,δ,h̃ε

t̄ |2]
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+
C

δ
E[|Xε,δ

t −X
ε,δ
t̄ |

2] +
C

ε
E[(1 + |Xε,δ,h̃ε

t |2 + LXε,δ(| · |2))‖P1‖|ḣεt|2]

+
C

ε
E[(1 + |Xε,δ,h̃ε

t |2 + LXε,δ(| · |2))‖P2‖|ḣεt|2],

where ς = α̃− α̃1. Due to the comparison theorem, we derive

E[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2]

≤ C

δ

∫ t

0

e−
ς(t−s)
ε E[|Xε,δ,h̃ε

s −Xε,δ,h̃ε

s̄ |2]ds+
C

δ

∫ t

0

e−
ς(t−s)
ε E[|Xε,δ

s −X
ε,δ
s̄ |2]ds

+
C

ε

∫ t

0

e−
ς(t−s)
ε E[(1 + |Xε,δ,h̃ε

s |2 + LXε,δ(| · |2))‖P1‖|ḣεs|2]ds

+
C

ε

∫ t

0

e−
ς(t−s)
ε E[(1 + |Xε,δ,h̃ε

s |2 + LXε,δ(| · |2))‖P2‖|ḣεs|2]ds.

From Fubini’s theorem, it holds that

E
∫ T

0

[|Y ε,δ,h̃ε

t − Ȳ ε,δ
t |2]

≤ C

δ

∫ T

0

E[|Xε,δ,h̃ε

s −Xε,δ,h̃ε

s̄ |2]

(∫ T

t

e−
ς(t−s)
ε dt

)
ds

+
C

δ

∫ T

0

E[|Xε,δ
s −X

ε,δ
s̄ |2]

(∫ T

t

e−
ς(t−s)
ε dt

)
ds

+
C

ε

∫ T

0

E[(1 + |Xε,δ,h̃ε

s |2 + LXε,δ(| · |2))|ḣεs|2]

(∫ T

t

e−
ς(t−s)
ε dt

)
ds

+
C

ε

∫ T

0

E[(1 + |Xε,δ,h̃ε

s |2 + LXε,δ(| · |2))|ḣεs|2]

(∫ T

t

e−
ς(t−s)
ε dt

)
ds

≤ C(T,N)(1 + |x|2 + |y|2)(∆ +
δ

ε
),

as required.

3 The proof of LDP

Lemma 3.1. Assume (H1) and limε→0
δ
ε

= 0. It holds that

lim
ε→0

sup
0≤t≤T

E|Xε,δ
t − X̄0

t |2 = 0. (3.1)

Proof. In the same way as in [33, Theorem 2.3], we can get the desired result.

We shall investigate the LDP by using criteria in Lemma 2.8. The criterion 2◦ in Lemma
2.8 will be shown in the following Theorem.

Theorem 3.2. Assume (H1). Let {hn} ⊂ SN , {h̄n} ⊂ SN such that hn → h in SN , and h̄n →

h̄ in SN , as n→∞, respectively. Then Γ◦
(∫ ·

0
ḣn(s)ds, RH h̄

n(·)
)
→ Γ◦

(∫ ·
0
ḣ(s)ds, RH h̄(·)

)
in C(0, T ;Rd).
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Proof. Let h̃n = (hn, h̄n) and X̄ h̃n

· = Γ◦
(∫ ·

0
ḣn(s)ds, RH h̄

n(·)
)
. Then, X̄ h̃n

t solves the follow-

ing equation:

dX̄ h̃n

t = f̄(X̄ h̃n

t ,LX̄0
t
)dt+ g1(X̄ h̃n

t ,LX̄0
t
)P1ḣ

n
t dt+ l(LX̄0

t
)d(RH h̄

n)(t). (3.2)

If hn → h in SN and h̄n → h̄ in SN , as n → ∞, respectively, it suffices to prove that X̄ h̃n

converges strongly to X̄ h̃ in C(0, T ;Rd) with h̃ = (h, h̄), as n→∞, which solves

dX̄ h̃
t = f̄(X̄ h̃

t ,LX̄0
t
)dt+ g1(X̄ h̃

t ,LX̄0
t
)P1ḣdt+ l(LX̄0

t
)d(RH h̄)(t). (3.3)

By (3.2), we have

X̄ h̃n

t − X̄ h̃n

s =

∫ t

s

f̄(X̄ h̃n

r ,LX̄0
r
)dr

+

∫ t

s

g1(X̄ h̃n

r ,LX̄0
r
)P1ḣ

n
rdr +

∫ t

s

l(LX̄0
r
)d(RH h̄

n)(r). (3.4)

From (H1) and Lemma 2.10, we have∣∣∣∣ ∫ t

s

f̄(X̄ h̃n

r ,LX̄0
r
)dr

∣∣∣∣ ≤ C(T,N)

∫ t

s

(|X̄ h̃n

r |+ |X̄0
r |)dr + C(T,N)(t− s)

≤ C(T,N)(1 + sup
t∈[0,T ]

|X̄0
t |)(t− s), (3.5)

and ∣∣∣∣ ∫ t

s

g1(X̄ h̃
t ,LX̄0

t
)P1ḣ

n
rdr

∣∣∣∣ ≤ ∫ t

s

|g1(X̄ h̃
t ,LX̄0

r
)||P1ḣ

n
r |dr

≤
(∫ t

s

|g1(X̄ h̃
t ,LX̄0

t
)|2dr

) 1
2
(∫ t

s

|P1ḣ
n
r |2dr

) 1
2

≤ C(T,N)(1 + sup
t∈[0,T ]

|X̄0
t |)(t− s)

1
2 . (3.6)

In view of (H1) and (2.7), one has∣∣∣∣ ∫ t

s

l(LX̄0
r
)d(RH h̄

n)(r)

∣∣∣∣ =

∣∣∣∣ ∫ t

s

l(LX̄0
r
)

∫ r

0

∂KH

∂r
(r, u)(K∗Hh

n)(u)dudr

∣∣∣∣
≤ C(T )(1 + sup

r∈[0,T ]

|X̄0
r |)
∫ t

s

∫ r

0

(
r

u
)H−

1
2 (r − u)H−

3
2 |(K∗Hhn)(u)|dudr

≤ C(T )(1 + sup
r∈[0,T ]

|X̄0
r |)
[ ∫ s

0

u
1
2
−H |(K∗Hhn)(u)|

(∫ t

s

rH−
1
2 (r − u)H−

3
2 dr

)
du

+

∫ t

s

u
1
2
−H |(K∗Hhn)(u)|

(∫ t

u

rH−
1
2 (r − u)H−

3
2 dr

)
du

]
. (3.7)
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By the relation ‖K∗Hhn‖L2 = ‖hn‖H, we derive that∫ s

0

u
1
2
−H |(K∗Hhn)(u)|

(∫ t

s

rH−
1
2 (r − u)H−

3
2 dr

)
du

≤ TH−
1
2

∫ t

s

(r − s)H−
3
2 dr

∫ s

0

u
1
2
−H |(K∗Hhn)(u)|du

≤ T
1
2

(H − 1
2
)
√

2(1−H)

(∫ T

0

|(K∗Hhn)(u)|2du

) 1
2

(t− s)H−
1
2

=
T

1
2

(H − 1
2
)
√

2(1−H)
‖hn‖H(t− s)H−

1
2 , (3.8)

and ∫ t

s

u
1
2
−H |(K∗Hhn)(u)|

(∫ t

u

rH−
1
2 (r − u)H−

3
2 dr

)
du

]
≤ TH−

1
2

H − 1
2

∫ t

s

u
1
2
−H(t− u)H−

1
2 |(K∗Hhn)(u)|du

≤
√
B(2− 2H, 2H)TH−

1
2

H − 1
2

‖hn‖H
√
t− s. (3.9)

By (3.1)− (3.6) and the fact that ‖hn‖H ≤
√

2M, one can see that {X̄ h̃n} is equi-continuous

and bounded in C(0, T ;Rd), which implies {X̄ h̃n} is relatively compact in C(0, T ;Rd). Thus,

there exists a subsequence still denoted by {X̄ h̃n} such that {X̄ h̃n} converges to some X̄ ∈
C(0, T ;Rd).

Next, it suffices to prove X̄ = X̄ h̃. By (H1), firstly, we have∣∣∣∣ ∫ t

0

f̄(X̄ h̃n

s ,LX̄0
s
)ds−

∫ t

0

f̄(X̄s,LX̄0
s
)ds

∣∣∣∣ ≤ C

∫ t

0

|X̄ h̃n

s − X̄s|ds

≤ C(T ) sup
t∈[0,T ]

|X̄ h̃n

s − X̄s| → 0, n→∞.

Thus, for any t ∈ [0, T ], we have

lim
n→∞

∫ t

0

f̄(X̄ h̃n

s ,LX̄0
s
)ds =

∫ t

0

f̄(X̄s,LX̄0
s
)ds. (3.10)

Secondly, ∣∣∣∣ ∫ t

0

g1(X̄ h̃n

s ,LX̄0
s
)P1ḣ

n
sds−

∫ t

0

g1(X̄ h̃
s ,LX̄0

s
)P1ḣsds

∣∣∣∣
≤
(∫ t

0

|g1(X̄ h̃
s ,LX̄0

s
)− g1(X̄ h̃

s ,LX̄0
s
)|2ds

) 1
2
(∫ t

0

|ḣns − ḣs|2ds

) 1
2

≤ C(T,N) sup
t∈[0,T ]

|X̄ h̃n

t − X̄t| → 0, n→∞. (3.11)
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Then, for any t ∈ [0, T ], we have

lim
n→∞

∫ t

0

g1(X̄ h̃n

s ,LX̄0
s
)P1ḣ

n
sdsds =

∫ t

0

g1(X̄ h̃
s ,LX̄0

s
)P1ḣsds. (3.12)

Finally, for any t ∈ [0, T ], we intend to prove

lim
n→∞

∫ t

0

l(LX̄0
s
)d(RH h̄

n)(s) =

∫ t

0

l(LX̄0
s
)d(RH h̄)(s) (3.13)

By Fubini’s theorem, we have∫ t

0

l(LX̄0
s
)d(RH h̄

n)(s)−
∫ t

0

l(LX̄0
s
)d(RH h̄)(s)

=

∫ t

0

l(LX̄0
s
)ds

(∫ s

0

∂KH

∂s
(s, r)[(K∗Hh

n)(r)− (K∗Hh)(r)]dr

)
= C(H)

∫ T

0

[
1[0,t](r)r

1
2
−H
(∫ t

r

l(LX̄0
s
)sH−

1
2 (s− r)H−

3
2 ds

)]
[(K∗Hh

n)(r)− (K∗Hh)(r)]dr.

For any unit vector e ∈ Rd, t ∈ [0, T ], let

ρt(r) := 1[0,t](r)r
1
2
−H
(∫ t

r

l(LX̄0
s
)sH−

1
2 (s− r)H−

3
2 ds

)
e, r ∈ [0, T ].

From (H1), one has

|ρt(r)| ≤
C(T,H)

H + 1
2

(1 + sup
s∈[0,T ]

|X0
s |)r

1
2
−H .

This implies ρt(·) ∈ L2(0, T ;Rd). Combining (3.27) and the condition that h̄n → h̄ in SN ,
we derive

lim
n→∞

∫ t

0

l(LX̄0
s
)d(RH h̄

n)(s) =

∫ t

0

l(LX̄0
s
)d(RH h̄)(s). (3.14)

Taking n → ∞ in (3.2), one has X̄ solves (3.3). By a standard subsequential argument,

we can conclude that the sequence {X̄ h̃n} to X̄ h̃ in E , which implies X̄ = X̄ h̃. The proof is
therefore complete.

We now prove the criterion 1◦ in Lemma 2.8.

Theorem 3.3. Assume (H1). Then we have

lim
ε→0

P

{
d

(
Γε
(√

εW· +

∫ ·
0

ḣε(·)ds, εHBH
· +

εH

ε
1
2

RH h̄
ε(·)
)
,Γ◦
(∫ ·

0

ḣε(s)ds, RH h̄
ε(·)
))

> ε0

}
= 0.
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Proof. Note that

Xε,δ,h̃ε

t − X̄ h̃ε

t =

∫ t

0

[f1(Xε,δ,h̃ε

s ,LXε,δ , Y ε,δ,h̃ε

s )− f̄(X̄ h̃ε

s ,LX̄0
s
)]ds

+

∫ t

0

[g1(Xε,δ,h̃ε

s ,LXε,δ)− g1(X̄ h̃ε

s ,LX̄0
s
)]P1h

ε(s)ds

+
√
ε

∫ t

0

g1(Xε,δ,h̃ε

s ,LXε,δ , Y ε,δ,h̃ε

s )dW 1
s

+

∫ t

0

[l(LXε,δ
s

)− l(LX̄0
s
)]d(RH h̄

ε)(s)

+ εH
∫ t

0

l(LXε,δ
s

)dBH
s .

Then, we have

|Xε,δ,h̃ε

t − X̄ h̃ε

t |2 ≤
∣∣∣∣ ∫ t

0

[f1(Xε,δ,h̃ε

s ,LXε,δ , Y ε,δ,h̃ε

s )− f̄(X̄ h̃ε

s ,LX̄0
s
)]ds

∣∣∣∣2
+ ε

∣∣∣∣ ∫ t

0

g1(Xε,δ,h̃ε

s ,LXε,δ , Y ε,δ,h̃ε

s )dW 1
s

∣∣∣∣2
+

∣∣∣∣ ∫ t

0

[l(LXε,δ
s

)− l(LX̄0
s
)]d(RH h̄

ε)(s)

∣∣∣∣2
+ ε2H

∣∣∣∣ ∫ t

0

l(LXε,δ
s

)dBH
s

∣∣∣∣2
+

∣∣∣∣ ∫ t

0

[g1(Xε,δ,h̃ε

s ,LXε,δ)− g1(X̄ h̃ε

s ,LX̄0
s
)]P1h

ε(s)ds

∣∣∣∣2
=:

5∑
i=1

Ki(t).

For K2(t), applying BDG’s inequality and Lemma 2.10, we have

E sup
0≤s≤t

K2(s) ≤ C(T )ε(1 + |x|2 + |y|2). (3.15)

For K3(t), using (H1), (2.7), the fact that K∗H is an isometry between H and L2(0, T ;Rd1),
and the same way as used in (3.8), (3.9), we arrive at

E[ sup
0≤s≤t

K3(s)] ≤ C(T,N) sup
0≤s≤t

E[|Xε,δ
s − X̄0

s |2]. (3.16)

For K4(t), by (H1), it yields

E[ sup
0≤s≤t

K4(s)] ≤ C(T )ε2H(1 + |x|2 + |y|2). (3.17)

For K5(t), (H1) implies

E
∣∣∣∣ ∫ t

0

[g1(Xε,δ,h̃ε

s ,LXε,δ)− g1(X̄ h̃ε

s ,LX̄0
s
)]P1h

ε(s)ds

∣∣∣∣2
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≤ C(T,N)E
∫ t

0

|Xε,δ,h̃ε

s − X̄ h̃ε

s |2ds+ C(N, T )E
∫ t

0

|Xε,δ
s − X̄0

s |2ds. (3.18)

Next, we intend to estimate K1(t). By Lemma 2.11, one can derive that

E[ sup
0≤s≤t

K1(s)] ≤ C(T )E
∫ t

0

|f1(Xε,δ,h̃ε

s ,LXε,δ
s
, Y ε,δ,h̃ε

s )− f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )|2ds

+ C(T )

∣∣∣∣ ∫ t

0

[f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)]ds

∣∣∣∣2
+ C(T )E

∫ t

0

|f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)− f̄(Xε,δ,h̃ε

s ,LXε,δ
s

)|2ds

+ C(T )E
∫ t

0

|f̄(Xε,δ,h̃ε

s ,LXε,δ
s

)− f̄(X̄ h̃ε

s ,LX̄0
s
)|2ds

≤ C(T,N)(1 + |x|2 + |y|2)(δ +
δ

ε
) + C(T,N)E

∫ t

0

|Xε,δ,h̃ε

s − X̄ h̃ε

s |2ds

+ C(T )E
∣∣∣∣ ∫ t

0

[f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s̄ )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)]ds

∣∣∣∣2
+ C(N, T )E

∫ t

0

|Xε,δ
s − X̄0

s |2ds. (3.19)

Now, we need to estimate C(T )E
∫ t

0
|f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)|2ds.

C(T )E
∣∣∣∣ ∫ t

0

[f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)]ds

∣∣∣∣2
≤ C(T )

∆
E
k=bt/∆c−1∑

k=0

∣∣∣∣ ∫ (k+1)∆

k∆

[f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

)]ds

∣∣∣∣2
+ C(T )E

∣∣∣∣ ∫ t

t̄

[f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)]ds

∣∣∣∣2
≤ C(T )δ2

∆2
max

0≤k≤bT/∆c−1

{∫ ∆
δ

0

∫ ∆
δ

r

Υk(s, r)dsdr

}
+ C(T,N)∆(1 + |x|2 + |y|2), (3.20)

where for any 0 ≤ r ≤ s ≤ ∆
δ
,

Υk(s, r) := E[〈f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ȳ ε,δ

δs+k∆)− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

),

f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ȳ ε,δ

δr+k∆)− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

)〉]. (3.21)

For any s > 0, µ ∈P2(Rd), x, y ∈ Rd, consider the following equation:

Ỹ δ,s,x,µ,y
t = y +

1

δ

∫ t

s

b(x, µ, Ỹ δ,s,x,µ,y
r )dr +

1√
δ

∫ t

s

σ1(x, µ, Ỹ δ,s,x,µ,y
r )dW 1

r

+
1√
δ

∫ t

s

σ2(x, µ, Ỹ δ,s,x,µ,y
r )dW 2

r , t ≥ s. (3.22)
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Then, we have

Ȳ ε,δ
t = Ỹ

δ,k∆,Xε,δ,h̃ε

k∆ ,L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆

t , t ∈ [k∆, (k + 1)∆].

It follows from the definition of Υk(s, r) that

Υk(s, r) = E[〈f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ỹ

δ,kδ,Xε,δ,h̃ε

k∆ ,L
X
ε,δ
k∆

,h̃ε
,Ȳ ε,δk∆

δs+k∆ )− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

),

f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ỹ

ε,k∆,Xε,δ,h̃ε

k∆ ,L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆

δr+k∆ )− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

)〉].

Since Ỹ ε,k∆,x,µ,y is independent of Fk∆, and Xε,δ,h̃ε

k∆ , Ȳ ε,δ
k∆ are Fk∆−measurable, we have

Υk(s, r) = E
{
E
[
〈f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ỹ

δ,k∆,Xε,δ,h̃ε

k∆ ,L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆

δs+kδ )− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

),

f1(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆
, Ỹ

ε,k∆,Xε,ε,h̃ε

k∆ ,L
X
ε,δ,h̃ε

k∆

,Ȳ ε,εk∆

δr+k∆ )− f̄(Xε,δ,h̃ε

k∆ ,LXε,δ
k∆

)〉
∣∣∣∣Fk∆

]
(ω)

}
= E

{
E
[
〈f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
kδ
, Ỹ

δ,k∆,Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

δs+k∆ )− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

),

f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆
, Ỹ

δ,k∆,Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

δr+k∆ )− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

)〉
]}

.

From the definition of Ỹ ε,s,x,µ,y, we know that

Ỹ ε,k∆,x,µ,y
δs+k∆ = y +

∫ s

0

b(x, µ, Ỹ ε,k∆,x,µ,y
δr+k∆ )dr +

∫ s

0

σ1(x, µ, Ỹ ε,k∆,x,µ,y
δr+k∆ )dW 1,k∆

r

+

∫ s

0

σ2(x, µ, Ỹ ε,k∆,x,µ,y
δr+k∆ )dW 2,k∆

r , (3.23)

where W 1,k∆
r = 1√

δ
(W 1

δr+k∆ −W 1
k∆),W 2,k∆

r = 1√
δ
(W 2

δr+k∆ −W 2
k∆). Note that

Y x,µ,y
s = y +

∫ s

0

b(x, µ, Y x,µ,y
r )dr +

∫ s

0

σ1(x, µ, Y x,µ,y
r )dW̃ 1

r

+

∫ s

0

σ2(x, µ, Y x,µ,y
r )dW̃ 2

r , (3.24)

By the uniqueness of the solutions of (3.23) and (3.24), we have that {Ỹ ε,k∆,x,µ,y
δs+k∆ )}0≤s≤∆

δ
and

{Y x,µ,y
s }0≤s≤∆

δ
have the same distribution. By [33, Proposition 3.7], it holds that

Υk(s, r)

= E
{
Ẽ
[
〈f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆
, Y

Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

s )− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

),
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f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆
, Y

Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

r )− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

)〉
]}

= E
{
Ẽ
[
Ẽ[〈f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆
, Y

Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

s )|F̃r](ω̃)

− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

),

f1(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆
, Y

Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

r )− f̄(Xε,δ,h̃ε

k∆ (ω),LXε,δ
k∆

)〉
]}

≤ C(T )E
{
Ẽ
[
1 + |Xε,δ,h̃ε

k∆ (ω)|2 + |Y
Xε,δ,h̃ε

k∆ (ω),L
X
ε,δ,h̃ε

k∆

,Ȳ ε,δk∆ (ω)

r (ω̃)|2 + LXε,δ
k∆

(| · |2)

]
e−

(s−r)α
2

}
≤ C(T )e−

(s−r)α
2 E[1 + |Xε,δ,h̃ε

k∆ |2 + |Ŷ δ,δ
k∆ |

2 + E(|Xε,δ
k∆|

2) + E(|Xε,δ,h̃ε

k∆ |2)]

≤ C(T,N)(1 + |x|2 + |y|2)e−
(s−r)α

2 . (3.25)

Applying (3.20) and (3.11), we conclude

C(T )

∣∣∣∣ ∫ t

0

[f1(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄
, Ȳ ε,δ

s )− f̄(Xε,δ,h̃ε

s̄ ,LXε,δ
s̄

)]ds

∣∣∣∣2
≤ C(T,N)(1 + |x|2 + |y|2)(

δ2

∆2
+
δ

∆
+ ∆). (3.26)

Thus,

E[ sup
0≤s≤t

|Xε,δ,h̃ε

s − X̄ h̃ε

s |2]

≤ C(T,N)(1 + |x|2 + |y|2)(
δ2

∆2
+
δ

∆
+
δ

ε
+ ∆ + ε) + C(T,N) sup

0≤t≤T
E[|Xε,δ

s − X̄0
s |2]

+

∫ t

0

E[ sup
0≤r≤s

|Xε,δ,h̃ε

r − X̄ h̃ε

r |2]ds.

Taking ∆ = ε
2
3 , it yields

E[ sup
0≤s≤t

|Xε,δ,h̃ε

s − X̄ h̃ε

s |2]

≤ C(T,N)(1 + |x|2 + |y|2)(
δ

ε
+ ε

2
3 + ε) + C(T,N) sup

0≤t≤T
E[|Xε,δ

s − X̄0
s |2]

+

∫ t

0

E[ sup
0≤r≤s

|Xε,δ,h̃ε

r − X̄ h̃ε

r |2]ds. (3.27)

By (3.27), Gronwall’s inequality and Lemma 3.1, we have for any ε0 > 0

P

{
d

(
Γε
(√

εW· +

∫ ·
0

ḣε(·)ds, εHBH
· +

εH

ε
1
2

RHhε(·)
)
,Γ◦
(∫ ·

0

ḣε(s)ds, RH h̄
ε(·)
))

> ε0

}
= P{|Xε,δ,h̃ε

t − X̄ h̃ε

t | > ε0}
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≤
E[sup0≤t≤T |X

ε,δ,h̃ε

t − X̄ h̃ε

t |2]

ε0

→ 0, as ε→ 0. (3.28)

4 Appendix

4.1 Proof of Lemma 2.7

We now borrow the method in [3, Theorem 4.4] to prove Lemma 2.7. The key is to use the
following a variational representation for random functional by making a slight change to
that of [44, Theorem 3.2].

Lemma 4.1. Let f be a bounded Borel measurable function on Ω. Then it holds that

− logE(e−f ) = inf
h̃=(h,h̄)∈A×A

E(f(·+ h(·), ·+RH h̄(·)) +
1

2
‖h̄‖2

H +
1

2
‖h‖2

H).

Proof of Lemma 2.7. Replacing f(·) by ρ◦Γε(
√
ε·,εH ·)

l(ε)
in Lemma 4.1, where ρ is real-valued,

bounded and continuous function on E := C(0, T ;Rd), l(ε) := ε or ε2H , we have

− l(ε) logE
[
e−

ρ(Xε,ε)
l(ε)

]
= −l(ε) logE

[
e−

ρ◦Γε(
√
εW·,εHBH· )

l(ε)

]
= inf

h̃=(h,h̄)∈A×A
E[ρ ◦ Γε(

√
ε(W· + h(·)), εH(BH

· +RH h̄(·))) +
1

2
l(ε)‖h̄‖2

H +
1

2
l(ε)‖h‖2

H]. (4.1)

The rest of the proof will be divided into two steps.
Step1 : The upper bound. Without lost of generality, we assume that infx∈E{ρ(x) +

I(x)} < ∞, where I is a rate function given in (2.22). Taking γ > 0, then there exists
x0 ∈ C(0, T ;Rd) satisfying

ρ(x0) + I(x0) ≤ inf
x∈E
{κ(x) + I(x)}+

γ

2
(4.2)

From (2.22), there exists (h1, h̄1) ∈ H ×H such that Γ0(
∫ ·

0
ḣ1(s)ds, RH h̄1) = x0 and

1

2
‖h1‖H +

1

2
‖h̄1‖H ≤ I(x0) +

γ

2
.

This together with (4.1) implies

− ε2H logE
[
e−

ρ(Xε,δ)

ε2H

]
≤ inf

h̃=(h,h̄)∈A×A
E[ρ ◦ Γε(

√
ε(W· + h(·)), εH(BH

· +RH h̄(·))) +
1

2
ε2H‖h̄‖2

H +
1

2
ε‖h‖2

H]
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= inf
h̃=(h,h̄)∈A×A

E[ρ ◦ Γε(
√
ε(W· + h(·)/

√
ε), εH(BH

· +RH h̄(·)/
√
ε2H))

+
1

2
‖h̄‖2

H +
1

2
‖h‖2

H]

≤ E[ρ ◦ Γε(ε
1
2 (W· + h1(·)/

√
ε), εH(BH

· +RH h̄1(·)/
√
ε2H))] + I(x0) +

γ

2
.

By the fact that ρ is bounded and continuous and taking ε→ 0, we derive

lim sup
ε→0

−ε2H logE
[
e−

ρ(Xε,δ)

ε2H

]
≤ ρ ◦ Γ0(

∫ ·
0

ḣ1(s)ds, RH h̄1)) + I(x0) +
γ

2

= ρ(x0) + I(x0) +
γ

2

≤ inf
x∈E
{ρ(x) + I(x)}+

γ

2
.

Combining this and the fact that γ being arbitrary, we finish the proof of the upper bound.
Step2 : The lower bound. Taking γ > 0, by (4.1), for every ε > 0, there exist (hε, h̄ε) ∈

A× A such that

− ε logE
[
e−

ρ(Xε,δ)
ε

]
≥ inf

h̃=(h,h̄)∈A×A
E[ρ ◦ Γε(

√
ε(W· + h(·)), εH(BH

· +RH h̄(·))) +
1

2
ε2H‖h̄‖2

H +
1

2
ε‖h‖2

H]

≥ E[ρ ◦ Γε(ε
1
2 (W· + hε(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H)) +

1

2
‖h̄ε‖2

H +
1

2
‖hε‖2

H]− γ, (4.3)

which also implies

sup
ε>0

E
[

1

2
‖h̄ε‖2

H +
1

2
‖hε‖2

H

]
≤ 2‖ρ‖∞ + γ. (4.4)

For a given constant M > 0, define the following stopping times.

σεM := inf
t∈[0,T ]

{
1

2
‖h̄ε1[0,t]‖2

H +
1

2
‖1[0,t]h

ε‖2
H ≥M

}
∧ T.

Let hε,M(t) := hε(t)1[0,σεM ](t), h̄
ε,M(t) := h̄ε(t)1[0,σεM ](t). It holds that hε,M ∈ A, h̄ε,M ∈ A.

From the Markov inequality and (4.4), one has

P (hε 6= hε,M , hε 6= hε,M) ≤ P

(
1

2
‖h̄ε‖2

H +
1

2
‖hε‖2

H ≥M

)
≤ 2(‖κ‖∞ + γ)

M
. (4.5)

Moreover, we derive that

ρ ◦ Γε(ε
1
2 (W· + hε(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H))

= ρ ◦ Γε(ε
1
2 (W· + hε,M(·)/

√
ε), εH(BH

· +RH h̄
ε,M(·)/

√
ε2H))

+

[
ρ ◦ Γε(ε

1
2 (W· + hε(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H))
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− ρ ◦ Γε(ε
1
2 (W· + hε,M(·)/

√
ε), εH(BH

· +RH h̄
ε,M(·)/

√
ε2H))

]
1{h̄ε 6=h̄ε,M ,hε 6=hε,M}

≥ ρ ◦ Γε(ε
1
2 (W· + hε,M(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H))− 2‖ρ‖∞1{h̄ε 6=h̄ε,M ,hε 6=hε,M}, (4.6)

By (2.6) , one can see that

‖h̄ε‖2
H = ‖K∗H h̄ε‖2

L2 ≥ ‖K∗H h̄ε,M‖2
L2 = ‖h̄ε,M‖2

H,

‖hε‖2
H = ‖ḣε‖2

L2 ≥ ‖ḣε,M‖2
L2 = ‖hε,M‖2

H. (4.7)

From (4.3) (4.5), (4.6) and (4.7), we therefore have

− ε logE
[
e−

κ(Xε,δ)
ε

]
≥ E[ρ ◦ Γε(ε

1
2 (W· + hε(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H))

+
1

2
‖h̄‖2

H +
1

2
‖h‖2

H]− 2‖ρ‖∞(2‖κ‖∞ + γ)

M
− γ. (4.8)

Since M,γ are arbitrary, in order to prove the lower bound, it suffices to show

lim inf
ε→0

E[κ ◦ Γε(ε
1
2 (W· + hε(·)/

√
ε), εH(BH

· +RH h̄
ε(·)/
√
ε2H)) +

1

2
‖h̄‖2

H +
1

2
‖h‖2

H]

≥ inf
x∈E
{κ(x) + I(x)}. (4.9)

Since
1

2
‖h̄ε,M‖2

H ≤M,
1

2
‖hε,M‖2

H ≤M,

we can extract a (not relabelled) subsequence such that h̄ε,M converges to h̄ in distribution
and hε,M converges to h in distribution. Then, we obtain

lim inf
ε→0

E[κ ◦ Γε(ε
1
2 (W· + hε(·)/

√
ε, εH(BH

· +RH h̄
ε(·)/
√
ε2H)) +

1

2
‖h̄‖2

H +
1

2
‖h‖2

H]

≥ E[κ ◦ Γ0(ḣ(·), RH h̄(·)) +
1

2
‖h̄‖2

H +
1

2
‖h‖2

H]

≥ inf
(x,h,h̄)∈E×H×H

E[κ(x) +
1

2
‖h̄‖2

H +
1

2
‖h‖2

H]

≥ inf
x∈E
{κ(x) + I(x)}.

The proof is complete.

Competing interests

The author declares they have no competing interests.

27



Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant
no.61876192, 11626236), the Fundamental Research Funds for the Central Universities of
South-Central University for Nationalities (Grant nos. CZY15017, KTZ20051, CZT20020)

References

[1] Aidara, S., Sagna, Y. and Faye, I. Averaging principle for BSDEs driven
by two mutually independent fractional Brownian motions. Appl. Anal.,
10.1080/00036811.2021.2021188.
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