
Chemical and temporal manipulation of early steps in protein

assembly tune the structure and intermolecular interactions of

protein-based materials

Supplemental Materials

Supplemental Figure 1. Diagram of the EGFP-Ubx fusion sequence. The Ubx1a isoform was used to generate
the fusion protein. The positively charged Ubx homeodomain is part of the Ubx amino acid sequence. A four
amino acid linker (Gly-Ser-Gly-Ser) was included between the two protein sequences.

SEM Linearity analysis

To assess the axial alignment and uniformity of the fibril components of the UBX fibers, SEM images of

fibers were loaded into MATLAB (2018a) and analysed using the code (see below). The orientation of the

fiber in the image frame was user defined and aligned to the y-axis. Dased on the maximum value of the

user defined background, a threshold was set and a binary mask of the fiber created. Small areas

identified by threshold detection were considered noise and filtered out. Any intensities outside of the

mask area on the original image are set to zero to remove the background noise from the analysis. The

fiber was then put through an image flattening algorithm to separate and differentiate the fibrils. The

shape of the UBX fiber was assumed to be cylindrical and, thus, the algorithm considered the visible part

of the fiber to be a semicircle with the diameter equal to the width of the fiber. The center point of the

fiber was defined as the midpoint between the two widest points on the fiber. From that centre point,

pixel intensity values are expanded horizontally as if the cylinder was being unrolled into a 2D

representation of its surface area (SEM LA Figure 1).

SEM LA Figure 1: Fiber flattening diagram
The view from the SEM (A) can be flattened by assuming a
cylindrical shape and calculating horizontal arc lengths along
the length of the fiber. The arc length is converted into
pixels and rounded to the nearest whole value. When the
radius of the fiber is much larger than the radius of the fibril,
we can cut off the portion of the image that extends beyond
a 60° arc in each direction of the origin (Error! Reference
source not found.B). At this point, a fibril covers more than
half of the following fibril and they become
indistinguishable.

A vertical autocorrelation was then employed to assess the long range alignment of the fibrils along the

fiber. The flattened image was binarized to differentiate between fibril peaks and the troughs between

fibrils. Using the binary image and a copy of the binary image, the autocorrelation vertically translated

one image over the other (SEM LA Figure 2A). At each vertical translation, the overlap was plotted

against the position of the translating image (SEM LA Figure 2B). The use of binary images enhanced the

sensitivity of the autocorrelation because only when fibrils overlap will there be any value added to the

sum. The full width at half of the maximum height (FWHM) of the graph was used to quantize the

alignment. If the fibrils were well aligned, they would stay on top of themselves for a large portion of the

autocorrelation, creating a wide FWHM. If the fibrils were randomly distributed, the autocorrelation

would not start to overlap until the images were directly on top of one another, creating a narrow

FWHM.

SEM LA Figure 2: Autocorrelation Technique
Diagram of how the vertical autocorrelation is translated (A) along with the graph of the computed sum
values (B).

Matlab Main Code
clear all; close all;

%% load image

img = imread(‘file location and name');

umpxl = 20/1000; % um/pxl

%% crop image

figure;

imshow(img);

h_rect = imrect();

% Rectangle position is given as [xmin, ymin, width, height]

pos_rect = h_rect.getPosition();

% Round off so the coordinates can be used as indices

pos_rect = round(pos_rect);

% Select part of the image

img_cropped = img(pos_rect(2) + (0:pos_rect(4)), pos_rect(1) + (0:pos_rect(3)));

%% image mask

figure;

imshow(img_cropped);

h_rect = imrect();

% Rectangle position is given as [xmin, ymin, width, height]

pos_rect = h_rect.getPosition();

% Round off so the coordinates can be used as indices

pos_rect = round(pos_rect);

bkgrnd = max(max(img_cropped(pos_rect(2) + (0:pos_rect(4)), pos_rect(1) + (0:pos_rect(3)))));

binaryImage = img_cropped > bkgrnd;

cleanBinaryImage=bwareafilt(binaryImage, 10);

start1 = find(cleanBinaryImage(1,:)==1,1,'first');

finish1 = find(cleanBinaryImage(1,:)==1,1,'last');

start2 = find(cleanBinaryImage(end,:)==1,1,'first');

finish2 = find(cleanBinaryImage(end,:)==1,1,'last');

cleanBinaryImage(1,start1:finish1) = 1;

cleanBinaryImage(end,start2:finish2) = 1;

roundmask = imfill(cleanBinaryImage, 'holes');

figure; imshow(roundmask);

img_cropped(~roundmask) = 0;

%% flatten fiber

[flatImg, radius] = flattenFiber_v1(img_cropped,roundmask,umpxl);

% fftflatImg = fft2(flatImg);

% figure;imagesc(abs(fftshift(fftflatImg)));

%% binarize/filter image

contrastImg = localcontrast(flatImg,0.4,0.5);

figure; imshow(contrastImg);

contrastImg(~flatmask) = 0;

binImg = imbinarize(contrastImg,'adaptive');

figure; imshow(binImg);

s1 = strel('disk',1);

binImgDilate1 = imdilate(binImg,s1);

binImgFilt = bwareafilt(binImgDilate1,[50 inf]);

figure; imshow(binImgFilt);

% fftbinImg = fft2(binImg);

% figure;imagesc(abs(fftshift(fftbinImg)));

% fftbinImgFilt = fft2(binImgFilt);

% figure;imagesc(abs(fftshift(fftbinImgFilt)));

%% vertical autocorrelation

vertauto = zeros(length(binImgFilt(:,1))*2-1,1);

temp = [zeros(length(binImgFilt(:,1))-1,length(binImgFilt(1,:))); binImgFilt; zeros(length(binImgFilt(:,1))-

1,length(binImgFilt(1,:)))]; %zero buffer on both sides

for i = 1:(length(vertauto(:,1)))

 if i<=length(vertauto(:,1))/2

 vertauto(i) = sum(sum(binImgFilt.*temp(i:length(binImgFilt(:,1))-1+i,:)))/(length(binImgFilt(1,:))*i);

 else

 vertauto(i) = sum(sum(binImgFilt.*temp(i:length(binImgFilt(:,1))-

1+i,:)))/(length(binImgFilt(1,:))*(length(vertauto(:,1))+1-i));

 end

end

%% subtract background and normalize

vertbaselineauto = vertauto-min(vertauto(50:end-50));

normvertauto = vertbaselineauto/max(vertbaselineauto);

figure; plot(normvertauto);

% baselinevertauto = mean(normvertauto);

halfnormvertauto = normvertauto(round(length(normvertauto))/2:end);

vertfwhm = 2*find(halfnormvertauto <= 0.5, 1,'first');

% loc1 = find(normvertauto >= baselinevertauto+(1-baselinevertauto)/2, 1,'first');

% loc2 = find(normvertauto >= baselinevertauto+(1-baselinevertauto)/2, 1,'last');

% loc1 = find(normvertauto >= 0.5, 1,'first');

% loc2 = find(normvertauto >= 0.5, 1,'last');

% vertfwhm = loc2-loc1

Matlab Function: flattenfiber_v1
Function flatImg = flattenFiber_v1(img,mask,umpxl)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

roundcenterpoint = 0;

maxDiameter = 0;

%% find the diameter and centerpoint

for i = 1:length(mask(:,1))

 start = find(mask(i,:) == 1, 1, 'first');

 finish = find(mask(i,:) == 1, 1, 'last');

 diameter = finish-start;

 if diameter > maxDiameter

 maxDiameter = diameter;

 roundcenterpoint = round(start+diameter/2);

 end

end

% rounddistfromcenter = roundcenterpoint - (size(img,1)/2);

flatWidth = ceil(pi * size(img,2)); %2X the number of pixels needed to add resolution to the flattening

flatImg = uint8(zeros(2*size(img,1),flatWidth)); %2X number of rows to keep aspect ratio

flatcenterpoint = round((flatWidth/2));

%% map and flatten the fiber

for j = 1:length(img(:,1))

 start = find(mask(j,:) == 1, 1, 'first');

 finish = find(mask(j,:) == 1, 1, 'last');

 leftradius = roundcenterpoint-start; %just in case the left and right side are different distances from the

centerpoint

 rightradius = finish-roundcenterpoint;

 flatImg((2*j-1):2*j,flatcenterpoint) = img(j,roundcenterpoint); %the centerpoint remains the same, 2 rows

because of aspect ratio

 leftstartpoint = 1;

 %map and flatten the left side of the fiber

 for x = 1:leftradius-1

 y1 = sqrt(leftradius^2-x^2); %pixels

 y2 = sqrt(leftradius^2-(x+1)^2); %pixels

 dist = sqrt(1^2+(y2-y1)^2); %pixels

 theta = 2*asin((dist/2)/leftradius); %radians

 arclength = round(2*theta*leftradius); %pixels, 2X because increased resolution

 flatImg((2*j-1):2*j,flatcenterpoint-leftstartpoint-arclength+1:flatcenterpoint-leftstartpoint) =

img(j,roundcenterpoint-x); % 2 rows because of aspect ratio

 leftstartpoint = leftstartpoint+arclength;

 end

 rightstartpoint = 1;

 %map and flatten the right side of the fiber

 for x = 1:rightradius-1

 y1 = sqrt(rightradius^2-x^2); %pixels

 y2 = sqrt(rightradius^2-(x+1)^2); %pixels

 dist = sqrt(1^2+(y2-y1)^2); %pixels

 theta = 2*asin((dist/2)/rightradius); %radians

 arclength = round(2*theta*rightradius); %pixels, 2X because increased resolution

 flatImg((2*j-1):2*j,flatcenterpoint+rightstartpoint:flatcenterpoint+rightstartpoint+arclength-1) =

img(j,roundcenterpoint+x); % 2 rows because of aspect ratio

 rightstartpoint = rightstartpoint+arclength;

 end

 if j == 1 || j == round(length(img(:,1))/4) || j == round(length(img(:,1))/2) || j == round(3*length(img(:,1))/4) || j

== length(img(:,1))

 figure;

 cwt(double(flatImg(2*j,flatcenterpoint-leftstartpoint:flatcenterpoint+rightstartpoint-1)),2/umpxl); %figure out

how to use the sampling frequency here

 xlabel('Position (\mum)');

 ylabel('Frequency (cycles/\mum)');

 title(['Magnitude Scalogram:' newline 'Position = ' num2str(j*umpxl) ' \mum']);

 end

end

