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Abstract: With the increasing availability of wearable devices for data collection, studies in human
activity recognition have gained significant popularity. These studies report high accuracies on k-fold
cross validation, which is not reflective of their generalization performance but is a result of the
inappropriate split of testing and training datasets, causing these models to evaluate the same subjects
that they were trained on, making them subject-dependent. This study comparatively discusses this
validation approach with a universal approach, Leave-One-Subject-Out (LOSO) cross-validation
which is not subject-dependent and ensures that an entirely new subject is used for evaluation in
each fold, validated on four different machine learning models trained on windowed data and select
hand-crafted features. The random forest model, with the highest accuracy of 76% when evaluated
on LOSO, achieved an accuracy of 89% on k-fold cross-validation, demonstrating data leakage.
Additionally, this experiment underscores the significance of hand-crafted features by contrasting
their accuracy with that of raw sensor models. The feature models demonstrate a remarkable 30%
higher accuracy, underscoring the importance of feature engineering in enhancing the robustness
and precision of HAR systems.

Keywords: machine learning; LOSO; human activity recognition

1. Introduction and Background

Weiser’s initial vision of ubiquitous computing foresaw computers seamlessly inte-
grating into daily life, operating inconspicuously to enhance human experience without
intrusion [1]. Today, this vision has materialized, with computers seamlessly incorporated
into personal smart devices. Pervasive computing, a key aspect, achieves non-intrusive
functionality by allowing computers to detect and respond to user actions implicitly based
on their environment. The emergence of wearable sensor devices represents a significant
development in the ongoing activity recognition research landscape, enabling individuals
to monitor their physical activity seamlessly.

Smartphones, smart watches, or bands are the most common wearable sensors. They
are embedded with motion sensors such as accelerometers, gyroscopes, and magnetometers.
Accelerometers gauge the acceleration of an object for the rate of change in its velocity,
measured in meters per second (m/s). Gyroscopes determine the orientation and angular
velocity, measured in degrees per second (◦/s), and magnetometers measure the magnetic
field strength at a specific position, denoted in tesla units (T) [2].

The activity recognition chain [3] propounds the framework for activity classification
applied to machine learning. It summarily involves data reading from sensors, preprocess-
ing, segmentation, feature selection, and classification as can be seen in Figure 1. While
most HAR studies rely on this protocol, its effectiveness can be stymied by validation
methods, which are techniques used to estimate how well they will generalize to unseen
data by evaluating them on different subsets of the available data [4].
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evaluated using questionable k-fold cross-validation. K-fold is a common validation ap-
proach in HAR systems, and it achieves high accuracies in generalization [7]. The ap-
proach randomly splits the data into training and testing subsets, repeating the process in 
the specified k times. For systems that are trained on participants’ continuous data, this 
can cause a leak, where participant samples exist in both training and testing sets, leading 
to classification accuracy, as these  data have already been seen [8,9]. Ensuring trained 
models are tested on unseen samples should be the true test of their predictive accuracy. 

This work investigates the impact of validation methodologies on classification algo-
rithms for HAR systems in wrist-worn wearables. It analyzes how different HAR models 
trained on feature vectors generalize to k-fold cross-validation and LOSO. The perfor-
mance of models trained on raw data will also  be examined. 

In summary, this study examines the generalization performance of HAR systems 
trained on extracted features and  validated on k-fold and LOSO cross-validation. We 
highlight the inappropriate splitting and data leakage in k-fold cross-validation leading 
to higher  accuracies over LOSO and compare the testing performance of HAR systems 
trained on raw data to those trained on  extracted features, validating the importance of 
feature vectors. We propose a combination of training models on extracted feature vectors 
as well as validating  with LOSO for better-generalized HAR systems. 

Background 
Previous studies have highlighted the inappropriateness of the traditional train–test 
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that utilize data segmented from the same subject data and employ k-fold cross-validation 
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overlapping frames likely capture identical activity within a similar context; consequently, 
these adjacent segments are highly correlated. Ref. [11] corroborate this with their study 
demonstrating that assessing performance with a randomized training and test split indi-
cates remarkably accurate identification of eight activities, attaining a 96% F1 score in the 
context of singular participant and stationary position data. However, when subjected to 
thorough backtesting, the F1 score declines, settling at 54%, indicating challenges with 
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Ref. [3] propose subject cross-validation in their educational approach to the common 
challenges in the ARC chain of HAR. Ref. [12] highlighted the impact of overlapping win-
dows, a  common segmentation technique, in the correlation challenges of k-fold cross-
validation, recommending subject CV (further explained in Section 3) as a performance 
evaluator for HAR systems.  A recent study by [13] further validates this conclusion on 
three datasets of varying modalities: the CASAS containing binary motion sensors, 
MHEALTH, and PAMAP2 on-body inertial sensors trained on Random Forest (RF) and 
Graph Neural Networks (GNNs). These showed that the traditional techniques’ reported 
accuracy is highly overestimated, regardless of the data type. 
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Studies in HAR have typically reported high accuracies [5,6]. They have all also
been evaluated using questionable k-fold cross-validation. K-fold is a common validation
approach in HAR systems, and it achieves high accuracies in generalization [7]. The
approach randomly splits the data into training and testing subsets, repeating the process
in the specified k times. For systems that are trained on participants’ continuous data, this
can cause a leak, where participant samples exist in both training and testing sets, leading
to classification accuracy, as these data have already been seen [8,9]. Ensuring trained
models are tested on unseen samples should be the true test of their predictive accuracy.

This work investigates the impact of validation methodologies on classification algo-
rithms for HAR systems in wrist-worn wearables. It analyzes how different HAR models
trained on feature vectors generalize to k-fold cross-validation and LOSO. The performance
of models trained on raw data will also be examined.

In summary, this study examines the generalization performance of HAR systems
trained on extracted features and validated on k-fold and LOSO cross-validation. We
highlight the inappropriate splitting and data leakage in k-fold cross-validation leading
to higher accuracies over LOSO and compare the testing performance of HAR systems
trained on raw data to those trained on extracted features, validating the importance of
feature vectors. We propose a combination of training models on extracted feature vectors
as well as validating with LOSO for better-generalized HAR systems.

Background

Previous studies have highlighted the inappropriateness of the traditional train–test
split and k-fold cross-validation. Ref. [10] emphasized the tendency for clinical studies
that utilize data segmented from the same subject data and employ k-fold cross-validation
to frequently overestimate the accuracy of predictions. They suggest the possibility that
overlapping frames likely capture identical activity within a similar context; consequently,
these adjacent segments are highly correlated. Ref. [11] corroborate this with their study
demonstrating that assessing performance with a randomized training and test split in-
dicates remarkably accurate identification of eight activities, attaining a 96% F1 score in
the context of singular participant and stationary position data. However, when subjected
to thorough backtesting, the F1 score declines, settling at 54%, indicating challenges with
robustness and generalization.

Ref. [3] propose subject cross-validation in their educational approach to the common
challenges in the ARC chain of HAR. Ref. [12] highlighted the impact of overlapping
windows, a common segmentation technique, in the correlation challenges of k-fold cross-
validation, recommending subject CV (further explained in Section 3) as a performance
evaluator for HAR systems. A recent study by [13] further validates this conclusion on three
datasets of varying modalities: the CASAS containing binary motion sensors, MHEALTH,
and PAMAP2 on-body inertial sensors trained on Random Forest (RF) and Graph Neural
Networks (GNNs). These showed that the traditional techniques’ reported accuracy is
highly overestimated, regardless of the data type.

Ref. [14] introduced a residual learning framework designed to simplify the training
of much deeper networks than those traditionally used. By restructuring the layers to learn
residual functions that relate to the layer inputs rather than learning functions without
reference, ref. [14] made training more manageable. Comprehensive empirical results
demonstrate that these residual networks are more straightforward to optimize and benefit
from significantly increased depth, achieving higher accuracy. Ref. [15] propose an efficient
approach to reduce DenseNet redundancy by replacing its bottleneck with their SMG
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module, enhanced with local residuals. The SMG module uses a two-stage pipeline
designed to integrate previous outputs. It gradually condenses redundant features with
hierarchical convolutions, followed by multi-kernel depth-wise convolutions. This results
in a compact output with richer, multi-scale features.

This work explores the effectiveness of LOSO based on training models on extracted
features. These systems show a more valid and lower generalization accuracy of 76% when
validated with LOSO and 89% on k-fold cross-validation.

2. Dataset and Methodology
2.1. Dataset

For this study, we explore PAMAP2 (Physical Activity Monitoring Dataset), an open-
source dataset available at the UCI Machine Learning Repository [16]. It contains a variety
of physical activities and postures recorded under laboratory conditions.

Collection

Nine subjects performed an extensive range of physical activities, including a com-
bination of household and sport activities. The participants wore three wireless Inertial
Measurement Units (IMUs) and a heart rate monitor and were made to follow the same
protocol when performing 12 key activities. These sensors were placed on the chest, the
wrist of the dominant arm, and the ankle. Each IMU contains a 3D magnetic sensor, two
3D accelerometers, and a 3D gyroscope. The IMU sampling frequency is 100Hz, and the
sampling frequency of the heart rate monitor is 9Hz, which means that data are collected at
0.01 s and 0.111 s, respectively.

In Figure 2, the distribution of activities is represented, including activities like walking,
which are more prevalent than rope-jumping.
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2.2. Methodology

This section describes the proposed methodology. Adapted from the ARC chain
framework, it comprises two modules. The first module involves HAR systems trained on
extracted time and frequency domain features from hand sensors and validated on k-fold
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and LOSO cross-validation. The second module involves training raw sensor data on fewer
classifiers and validating them as described above. The impact of each module is compared,
highlighting their benefits and drawbacks.

2.2.1. Data Preprocessing

The raw data contained noise due to how it was collected, making this step mandatory
before performing classification.

Missing values, indicated with NaN, were found in all sensor features. They were
handled by linear interpolation, which estimates values based on the surrounding data
points [17].

Redundant features of time stamp, 6g acceleration, and orientation were removed.
The 6g acceleration and orientation were established as invalid by the authors. Activity
code 0 represents a break between activities and was dropped from the dataset. Subject 9
only performed 5 of the 18 activities; therefore, this subject’s data were also dropped.

2.2.2. Feature Engineering and Exploratory Data Analysis

Exploratory Data Analysis (EDA) was carried out to visually present trends in the
dataset using the Python Seaborn and Matplotlib libraries [18–24]. For intensity and
visualization of the sensor data, the magnitude of the sensor features was derived. Box
plots of the sensors, along with heart rate and temperature features, were plotted for outlier
detection. While extreme outliers were detected, as seen in Figure 3, none were removed,
as abnormal data readings are expected during vigorous activities.

Algorithms 2024, 17, x FOR PEER REVIEW 4 of 14 
 

Figure 2. Distribution of Activities in PAMAP2 dataset. 

2.2. Methodology 
This section describes the proposed methodology. Adapted from the ARC chain 

framework, it comprises  two modules. The first module involves HAR systems trained 
on extracted time and frequency domain features from hand sensors and validated on k-
fold and LOSO cross-validation. The second module involves training raw sensor data on 
fewer classifiers and validating them as described above. The impact of each  module is 
compared, highlighting their benefits and drawbacks. 

2.2.1. Data Preprocessing 
The raw data contained noise due to how it was collected, making this step manda-

tory before  performing classification. 
Missing values, indicated with NaN, were found in all sensor features. They were 

handled by linear interpolation, which estimates values based on the surrounding data 
points [17]. 

Redundant features of time stamp, 6g acceleration, and orientation were removed. 
The 6g acceleration and  orientation were established as invalid by the authors. Activity 
code 0 represents a break between activities and was dropped from the dataset. Subject 9 
only performed 5 of the 18 activities; therefore, this subject’s data were also dropped. 

2.2.2. Feature Engineering and Exploratory Data Analysis 
Exploratory Data Analysis (EDA) was carried out to visually present trends in the 

dataset using the Python Seaborn and Matplotlib libraries [18–24]. For intensity and visu-
alization of the sensor data, the magnitude of the sensor features was derived. Box plots 
of the sensors, along with heart rate and  temperature features, were plotted for outlier 
detection. While extreme outliers were detected, as seen in Figure 3, none were removed, 
as abnormal data readings are expected during vigorous activities. 

 
Figure 3. Box plot of hand features. 

The relationships between the features and trends in the sensors were explored. Fig-
ure 4 shows the variations in the hand sensor reading across the activities, with the gyro-
scope capturing the most variation in activities compared to the other  devices, especially 
during rapid movements. 

Figure 3. Box plot of hand features.

The relationships between the features and trends in the sensors were explored.
Figure 4 shows the variations in the hand sensor reading across the activities, with the gy-
roscope capturing the most variation in activities compared to the other devices, especially
during rapid movements.
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2.2.3. Feature Segmentation and Extraction

Segmentation using windowing is important for extracting meaningful information
from real-time data, as it facilitates the recognition of patterns. It also improves compu-
tational efficiency, as it provides a structured input format for ML models and processes
smaller segments, improving computational efficiency [25]. For this study, a sliding win-
dow size of 200 was applied with an overlap of 100. This represents 2 s of sensor reading,
as it was collected at 100 Hz.

Some experiments utilize only accelerometer readings [26]. Gyroscopic data were
included in this study, as they clearly showed the most variation in activities (Figure 4).
For each x, y, and z-axis, hand-crafted (manually engineered) time and frequency domain
features were extracted. The time–domain features were derived by performing statistical
calculations that offer simple and low computational complexity, while the frequency–
domain features capture inherent patterns and trends by decomposing the data into real and
imaginary values, which represent wave characteristics. This decomposition is achieved
using methods such as Fourier or Wavelet transforms [27]. From this, 70 hand-crafted
features were extracted. Table 1 provides a list of features extracted from the sensors.

Table 1. List of time and frequency domain features extracted from the sensors.

Feature Domain

Mean Time

Median Time

Max/min Time

Kurtosis Time

Standard deviation Time

Variance Time

Covariance between axes Frequency

Energy Frequency

Entropy Time
This step was bypassed in the second module of this experiment, as raw sensor data were input into the classifiers [28].

2.2.4. Feature Selection

To ensure that the models were trained on the most optimal features, Minimum
Redundancy Maximum Relevance (mRMR), a method of feature selection, was used to
select 50 features. This is a filter-based algorithm that combines the condition of minimum
redundancy, achieved by avoiding highly correlated features, and maximum relevance,
maximized by prioritizing features that are most important to the dependent variable, into
a function.
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2.2.5. Modeling and Classification

Subject data were set to an equal number of data points to ensure equal training data
size in both validation techniques, resulting in 170,000 rows of data for all subjects.

Features for both modules were trained on four machine learning classifiers: random
forest (RF), logistic regression (LR), support vector machines (SVMs), and k-nearest neigh-
bors (KNN) and implemented on scikit learn [26]. For optimization, a randomized grid
search was used to select some of the best hyperparameters for the RF classifier, and an
elbow plot was used in selecting an appropriate number of neighbors (k) for the KNN
model using cross-validation.

2.3. Evaluation

The validation methods can be classified into two main categories.

(i) K-fold cross-validation involves splitting the dataset into k parts. While one part is
reserved for testing, the other will be used in training. This is repeated k times, and a
different part is used each time. This method reports higher accuracy but struggles
with generalization.

(ii) Leave-One-Subject-Out (LOSO) cross-validation is a variant of k-fold cross-validation,
but one subject is left out of the entire fold for testing. The approach employs a testing
subset of size p and a training subset of size n − p, where p retains all samples from
a specific subject together. This process is iterated n times, ensuring that a given
subject is not simultaneously present in both testing and training sets. This approach
facilitates model generalization by incorporating data from diverse subjects.

All of the trained models are validated using k-fold and LOSO cross-validation. For
k-fold, the k value was set to 8, meaning each time, 7 of 8 of the data points were used for
training, and 1 of 8 was used for testing. This value was set to match the training data for
LOSO for standardized comparison. For LOSO, each time, seven of the eight subjects’ data
were used for training, and the remaining one was used for testing.

Accuracy, precision, and recall were used to calculate the performance metrics of
all the approaches. While accuracy evaluates correct classifications, precision and recall
measure performance in the predicted classes.

3. Results

This section presents the results of the two experiment areas: the performance of the
four models in k-fold and LOSO cross-validation. Secondarily, the performance of the raw
sensor models is compared with HC models on RF and LR classifiers.

3.1. Performance of k-Fold and LOSO Methods Across Models

Figure 5 shows the training and testing accuracies of all four models validated on
eight-fold and LOSO CV.

Both validation methods achieved relatively equal training accuracies across all four
models, with random forest achieving the highest result of 97%. In testing, expectedly,
LOSO achieved lower accuracies than k-fold in all models. This can be deduced to be
caused by the variability in how the different subjects performed the activities, which
the LOSO models were less effective in differentiating, especially when closely tied to
individual users.

In analyzing the performance of k-fold and LOSO on the random forest, Table 2 pro-
vides a classification report for k-fold in each of the eight folds, and Table 3 is a classification
report for LOSO in each subject-specific test instance. For subject 8, the model was trained
on subjects 1–7 and evaluated on 8.



Algorithms 2024, 17, 556 7 of 14
Algorithms 2024, 17, x FOR PEER REVIEW 7 of 14 
 

 
Figure 5. Plot of all models’ training vs. testing accuracies for k-fold and LOSO. 

Both validation methods achieved relatively equal training accuracies across all four 
models, with random forest achieving the highest result of 97%. In testing, expectedly, 
LOSO achieved lower accuracies than  k-fold in all models. This can be deduced to be 
caused by the variability in how the different subjects performed the activities, which the 
LOSO models were less effective in differentiating, especially when closely tied to indi-
vidual users. 

In analyzing the performance of k-fold and LOSO on the random forest, Table 2 pro-
vides a classification report for k-fold in each of the eight folds, and Table 3 is a classifica-
tion report for LOSO in each subject-specific test  instance. For subject 8, the model was 
trained on subjects 1–7 and evaluated on 8. 

Table 2. Classification report of random forest on each fold of k-fold. 

 Accuracy Precision Recall Model 
0 0.890995 0.901599 0.893519 random forest 
1 0.890338 0.911733 0.892361 random forest 
2 0.895080 0.914623 0.896021 random forest 
3 0.873740 0.899322 0.875867 random forest 
4 0.882039 0.890860 0.886018 random forest 
5 0.880261 0.897396 0.877654 random forest 

Figure 5. Plot of all models’ training vs. testing accuracies for k-fold and LOSO.

Table 2. Classification report of random forest on each fold of k-fold.

Accuracy Precision Recall Model

0 0.890995 0.901599 0.893519 random forest
1 0.890338 0.911733 0.892361 random forest
2 0.895080 0.914623 0.896021 random forest
3 0.873740 0.899322 0.875867 random forest
4 0.882039 0.890860 0.886018 random forest
5 0.880261 0.897396 0.877654 random forest
6 0.889152 0.909028 0.891709 random forest
7 0.882632 0.907564 0.885401 random forest
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Table 3. Classification report of random forest on each subject on LOSO.

Model Subject Accuracy Precision Recall F1-Score

Rf_model

1 0.684866 0.693740 0.684866 0.667359
2 0.812204 0.825516 0.812204 0.808839
3 0.770006 0.785704 0.770006 0.759448
4 0.755187 0.784565 0.755187 0.753585
5 0.623815 0.579001 0.623815 0.583957
6 0.772970 0.780498 0.772970 0.768426
7 0.783175 0.810397 0.783175 0.784631
8 0.852401 0.862090 0.852401 0.854501

As observed based on the performances, there is a huge variation in accuracy amongst
the subjects in LOSO compared to k-fold, where the variation is negligible. This highlights
the capacity of LOSO to capture variability among subjects.

Tables 4 and 5 are classification reports of k-fold and LOSO. k-fold generally achieved
higher, precision which means it correctly classified the activities better than LOSO. This
lower LOSO classification can be explained as differences among subjects in the training
and testing datasets.

Table 4. Classification report of k-fold on random forest.

Precision Recall F1 Score Support

1 0.89 0.72 0.79 1893
2 0.69 0.76 0.73 1819
3 0.77 0.78 0.77 1868
4 0.89 0.73 0.80 1629
7 0.00 0.00 0.00 59
12 0.57 0.64 0.60 1138
13 0.75 0.56 0.64 1017
16 0.79 0.83 0.81 1721
17 0.73 0.90 0.80 2353

accuracy 0.76 13,497
macro avg 0.68 0.66 0.66 13,497

weighted avg 0.76 0.76 0.76 13,497

Table 5. Classification report of LOSO on random forest.

Precision Recall F1 Score Support

1 0.98 0.91 0.95 1893
2 0.91 0.87 0.89 1819
3 0.83 0.89 0.86 1868
4 0.96 0.93 0.95 1629
7 0.97 1.00 0.98 59
12 0.88 0.82 0.85 1138
13 0.92 0.76 0.83 1017
16 0.89 0.86 0.88 1721
17 0.80 0.94 0.86 2353

Accuracy 0.89 13,497
Macro avg 0.90 0.89 0.89 13,497

Weighted avg 0.89 0.89 0.89 13,497

In analyzing specific activities, LOSO achieved 0% across all metrics for class 7, Nordic
walking. This means it could not predict a single correct instance. This was caused by the
low support value of 59 for this class, meaning that a substantial number of instances for
this class was not available and was not represented in each training instance, leading to
poor model generalization. K-fold, however, achieved 98% accuracy for the same class
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LOSO, and k-fold achieved the highest recall of 90% and 98% in the lying activity, class 1.
This static activity is less characterized by a person, meaning that the slight accelerations
involved in these activities are likely similar across various groups of individuals. The
opposite is true for class 12, ascending stairs, which people with different fitness levels and
body types potentially perform differently.

3.2. Performance of Raw Data Models and Extracted HC Feature Models

The testing accuracy of the models trained on raw sensor signals was compared with
that of the results above for the random forest and logistic regression classifiers.

From Figure 6, in both validation techniques, the models performed better when
trained on HC features than raw data, resulting in an absolute percentage difference of 30%
and 25% for k-fold and LOSO, respectively, on the random forest. This is attributed to the
interpretability of HC features, as they are designed with insight information regarding each
activity. Table 1 presents the detailed characteristics of the extracted features, presenting a
meaningful representation of the activities and leading to improved performance. Inputting
raw data into the models creates a challenge in this area, as the models might not interpret
the complex patterns that they are learning.
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In both experiment modules, the random forest achieved the highest accuracy. This
attributed to:

(i) Its ensemble learning property, which combines the predictions of multiple decision
trees, allowing it to adapt well to different activity characteristics, even where they
may exhibit complex and diverse patterns.

(ii) Its measure of feature importance, selecting the most relevant features that contribute
more to the model’s predictive performance. Where features are crucial to distinguish-
ing between activities, it assigns higher importance to these features.

(iii) Its robustness in handling imbalanced classes, which is the case in our dataset, as seen
in Tables 4 and 5.

4. Discussion

The core aim of this experiment was to emphasize the exaggerated accuracy derived
from k-fold cross-validation in HAR models. From Section 3, LOSO achieved a lower
accuracy compared to k-fold. This is due to subject-specific data leakage in the former.
K-fold cross-validation randomly splits the data into subsets, with the possibility of subject-
specific information presenting in multiple folds simultaneously, leading to unintentional
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data leakage. This results in the model appearing more robust during k-fold validation,
but less so when faced with entirely new subjects in LOSO validation.

Therefore, LOSO accuracy, which rigorously tests the model’s ability to generalize to
unseen subjects, provides a more accurate evaluation in the presence of subject-specific
data and more realistic results in real-life deployment.

Considering that overlapping windows and a small window size of 2 s were used in
this experiment, overlap between adjacent windows in subject data creates dependency, also
causing over-estimation in k-fold generalization. As activities span multiple overlapping
windows, predictions for one window are influenced by information in the neighboring
windows, leading to dependencies between the training and testing fold and overestimation
of the model’s generalization performance [29–37]. With overlapping dependence occurring
within the same subject, LOSO is not impacted by this, as it focuses on one subject at a time
during testing.

For a personalized activity recognition system that is tailored to a specific user, k-fold
would be better suited. Ref. [38] consider it a hybrid of the subject-independent models,
which refers to the LOSO approach, and subject-dependent models, which are models
built specifically with the data of the final user. While the subject-independent approach
expectedly achieves the highest accuracy of all personalized models, it is not realistic in
real-life use because the models cannot be built for every user, except in special cases. This
makes k-fold a preferred alternative.

In considering performance improvements on LOSO to develop a model that general-
izes better, training with a similar population to user characteristics should be considered.
Evaluating the subject-level performance of LOSO in Table 6, the highest testing accuracy
of 87% was achieved when the model was trained on subjects 1–7 and tested on subject
8, while the lowest accuracy was achieved when the model was trained on the other sub-
jects and tested on subject 5. These results are caused by the semblance and dissimilarity
between the validation subject and those included in the training set, respectively. This
means that subject 8 has a high similarity with the trained subjects, while subject 5 has a
low similarity. Figure 7 captures this trend. Training models on data similar to those of
its final user increases its adaptability and performance. Previous studies [39–50] high-
light this, where fitness level contributed to the characterization of sporting activities like
running, and demographics like gender and body physique informed moderate activities
like walking.
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Table 6. Classification report of all models in each LOSO test subject instance.

Model Subject Accuracy Precision Recall F1 Score

Rf_model

1 0.684866 0.693740 0.684866 0.667359
2 0.812204 0.825516 0.812204 0.808839
3 0.770006 0.785704 0.770006 0.759448
4 0.755187 0.784565 0.755187 0.753585
5 0.623815 0.579001 0.623815 0.583957
6 0.772970 0.780498 0.772970 0.768426
7 0.783175 0.810397 0.783175 0.784631
8 0.852401 0.862090 0.852401 0.854501

knn_model

1 0.613650 0.589627 0.613650 0.594988
2 0.732227 0.744817 0.732227 0.724324
3 0.710136 0.714393 0.710136 0.698735
4 0.768820 0.783423 0.768820 0.768041
5 0.548578 0.520800 0.548578 0.520092
6 0.724956 0.729998 0.724956 0.717539
7 0.778436 0.785914 0.778436 0.778748
8 0.804979 0.806358 0.804979 0.804501

lr_model

1 0.736499 0.741289 0.736499 0.727663
2 0.803318 0.808627 0.803318 0.792767
3 0.743331 0.766390 0.743331 0.732931
4 0.800830 0.817979 0.800830 0.801867
5 0.592417 0.545891 0.592417 0.561564
6 0.772377 0.784693 0.772377 0.770848
7 0.718009 0.673292 0.718009 0.677105
8 0.836989 0.847843 0.836989 0.836116

svm_model

1 0.719288 0.705113 0.719288 0.700663
2 0.816351 0.824913 0.816351 0.808968
3 0.765857 0.796976 0.765857 0.758134
4 0.794309 0.816359 0.794309 0.793946
5 0.599526 0.563832 0.599526 0.569796
6 0.789567 0.798942 0.789567 0.787912
7 0.704976 0.657929 0.704976 0.664564
8 0.859514 0.861714 0.859514 0.859766

The secondary focus of this study was on the importance of hand-crafted features in
training HAR systems, which was achieved by training on raw sensors and comparing the
results with the former. While this was established in the earlier section, segmentation and
windowing also positively impacted the performance of the HC models. By segmenting
into smaller windows, relevant patterns like the sequence of movements of activity over
time were captured by the models within smaller time intervals. Their computational
efficiency was also improved, as the models were processed in smaller chunks.

5. Conclusions and Future Work

In this paper, we targeted the generalization challenge associated with k-fold valida-
tion in a real-world scenario while also highlighting the relevance of feature engineering.
Our results show a drop in performance when validated on LOSO over k-fold. We conclude
that HAR systems should be trained on extracted features instead of raw sensor data, and
that LOSO is best suited for universal recognition systems, while k-fold is suitable for per-
sonalized models. One potential method to enhance the performance of LOSO is to utilize
features that exhibit greater commonality among subjects with diverse characteristics. For
future work, this can be addressed by a combination of increasing the data subject size and
applying deep learning techniques. With more subjects, more information can be captured
from a diverse demography. Applying deep learning techniques, as well automatically
extracting the most relevant features as opposed to manually designing these features, is
heavily reliant on domain knowledge. We recognize that the performance based on the
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time consumption and memory cost is also a key factor to evaluate, so we have a plan to
incorporate it in our future work to provide a more comprehensive understanding of the
computational efficiency of our methods.
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