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Abstract 5 

Inconsistency in the calculation of time spent in moderate-to-vigorous physical activity (MVPA) 6 

limits inter-study comparability and interpretation of surveillance data. This study assesses 7 

whether combining multiple individual methods results in a more accurate estimate of MVPA, 8 

while considering the influence of device brand and wear location. Participants (n=30, age=49.2 9 

± 19.5 y) wore two accelerometers (GENEActiv, ActiGraph) on each wrist during two laboratory 10 

visits. Individual classification methods (11 for left wrist, 8 for right wrist) estimated minutes of 11 

MVPA using three approaches (cut-point, two-regression, machine learning), two types of input 12 

(count and raw), and five epoch lengths (1, 5, 15, 30, 60 s). The consensus estimate was 13 

calculated as the mean or median (due to skew) across all individual estimates. No individual or 14 

consensus estimates were statistically equivalent to direct observation (mean 38.2 min), with 15 

81-95% of individual methods over-estimating MVPA. The best-performing individual methods 16 

were raw acceleration cut-points, with a bias of -3.2 to 2.4 min across devices and wrists. 17 

Correlation coefficients between individual methods and the criterion were 0.35-0.71 for the left 18 

and 0.12-0.67 for the right wrist, compared to 0.65-0.70 and 0.58-0.66 for consensus methods, 19 

respectively. Correlations between device brands were 0.23-0.99 for individual methods and 20 

0.70-0.86 for consensus methods, whilst correlations between locations were 0.55-0.86 and 21 

0.73-0.87, respectively. Better methods are required for estimating MVPA from wrist-worn 22 

accelerometers given the consistent over-estimation of MVPA observed. Whilst a consensus 23 

method for wrist-worn data was not able to fully resolve these issues, it improves inter-wrist or -24 

brand comparability. 25 

 26 

Keywords: harmonisation, surveillance, measurement, raw acceleration, cut-points, machine 27 

learning 28 
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Introduction 29 

 Moderate-to-vigorous physical activity (MVPA) is recommended for all adults due to its 30 

well-known association with cardiometabolic and psychosocial health and reduced risk of non-31 

communicable disease and premature death (Ding et al., 2016; Kraus et al., 2019; McTiernan et 32 

al., 2019; Piercy & Troiano, 2018; Saint-Maurice et al., 2022). Accelerometers are useful tools 33 

for measuring MVPA in a variety of settings and populations because they are small and 34 

unobtrusive, not subject to participant recall bias, and can be used across languages and 35 

cultures (Pedišić & Bauman, 2015). Whilst these devices have been traditionally worn on the 36 

hip, a shift towards wrist-worn placements has occurred due to improved wear compliance and 37 

a focus on 24-h movement behaviours (Fairclough et al., 2016; Troiano et al., 2014). Indeed, 38 

national surveillance efforts in the United States and United Kingdom, for example, now utilise 39 

wrist-worn devices (Belcher et al., 2021; Doherty et al., 2017).  40 

Many options are available to those interested in estimating MVPA from wrist-worn 41 

accelerometers, including using count- or raw acceleration-based cut-points (Dillon et al., 2016; 42 

Esliger et al., 2011; Hildebrand et al., 2014; Kwan et al., 2020; Lee & Tse, 2019; Montoye et al., 43 

2020; Neil-Sztramko et al., 2017; Rhudy et al., 2020), two-regression models (Hibbing et al., 44 

2018), or machine-learning algorithms (Montoye et al., 2017; Staudenmayer et al., 2015). A 45 

recent review found 67 methods for transforming wrist accelerometer data into physical activity 46 

intensity or energy expenditure solely using raw acceleration and/or machine-learning methods 47 

(Pfeiffer et al., 2022). While many of these methods were created for specific populations (e.g., 48 

children, older adults), the large number of options for a given population makes it difficult for 49 

researchers to know which method to use or is indeed optimal. Use of different processing 50 

methods is problematic because it limits our ability to compare across studies or surveillance 51 

systems. 52 
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Identifying the most accurate method is difficult because variations in sample 53 

characteristics, activities completed, setting, and how results were statistically compared to the 54 

criterion differ amongst validation studies. Further, unlike the hip where wear on the right side of 55 

the body was standard, there is no such agreement as to which wrist the device should be worn 56 

on (e.g. non-dominant wrist, right wrist) (Liu et al., 2021). Few methods have undergone 57 

independent sample cross-validation (Farrahi et al., 2019; Pfeiffer et al., 2022), which is critical 58 

to ascertain the ecological or external validity of a method and to understand how it will perform 59 

in a new setting and/or with new participants who may perform activities in unique ways 60 

(Clevenger, Montoye, et al., 2022; Montoye et al., 2018). The limited research cross-validating 61 

existing methods demonstrates that models perform worse in an independent sample than the 62 

original validation study (Ellingson et al., 2017; Montoye et al., 2018). Conducting independent 63 

sample cross-validation of multiple methods at the same time is particularly useful so that 64 

methods can be directly compared without added variability due to participant characteristics or 65 

data collection and processing decisions. Additional cross-validation research is needed to 66 

inform the optimal approach to analysing wrist-worn accelerometer data. 67 

An added complexity is that existing methods are typically developed using a single 68 

accelerometer brand, or generation of device, and many specifically utilise the ActiGraph count 69 

metric as an input. Until recently, ActiGraph counts were calculated using a proprietary process, 70 

limiting use of these methods to studies using ActiGraph devices. Now that the count algorithm 71 

has been made open source (Neishabouri et al., 2022), researchers can theoretically use 72 

methods developed using ActiGraph count data with other devices, such as the GENEActiv. 73 

Whilst prior research has compared raw acceleration data between GENEActiv and ActiGraph 74 

devices (Rowlands et al., 2017), the validity of using methods developed with ActiGraph on 75 

GENEActiv data input has not been assessed. 76 
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Together, the large number of available methods, and the lack of independent sample 77 

cross-validation studies directly comparing these methods – particularly as researchers may use 78 

different device brands or wear locations – hinders our ability to use accelerometry as an 79 

accurate physical activity measurement tool. While it is important to accurately measure MVPA 80 

in individual studies or surveillance systems (e.g., to assess the impact of physical activity-81 

promoting interventions, monitor trends over time), lack of agreement as to how to analyse wrist 82 

accelerometer data also limits comparability across studies or surveillance systems. Attempts 83 

have been made to improve comparability across studies. For example, the Prospective 84 

Physical Activity, Sitting, and Sleep consortium (ProPASS) has generated standard operating 85 

procedures to harmonize data collection across cohorts as well as methodologies to harmonize 86 

data after collection is completed. Alternatively, the monitor-independent movement summary 87 

(MIMS) unit was created to account for differences in parameters such as device sampling 88 

frequency or dynamic range, which should improve comparability in data collected across 89 

different device types and initialization parameters.  Other approaches to harmonization include 90 

the use of conversion equations (Brazendale et al., 2016), ensemble models to pool estimates 91 

across machine-learning algorithms (Chowdhury et al., 2017), or pooled cut-points prior to 92 

application (Troiano et al., 2008). 93 

Clevenger et al. (2022) recently proposed another solution to the challenge of 94 

harmonizing accelerometer analyses across studies. When comparing processing techniques 95 

for hip-worn accelerometer data, they found that most individual methods did not accurately 96 

predict MVPA (Clevenger, Mackintosh, et al., 2022). Given that individual methods both over- 97 

and under-estimate MVPA, it was postulated that the average across methods (the 98 

“consensus”) may approach the true value (Clevenger, Mackintosh, et al., 2022). Indeed, it was 99 

demonstrated that 10 individual classification methods, including cut-points, two-regression 100 

models, and machine-learning algorithms, had mean absolute errors ranging from 4.9 to 12.3 101 



6 
 

min compared to the criterion of direct observation in adults wearing a hip-worn ActiGraph. 102 

Averaging estimates from these 10 individual methods resulted in reduction of mean absolute 103 

error to 4.2 min. The consensus method also had improved comparability with individual 104 

methods, indicating it may help resolve the issue of poor comparability across studies 105 

employing different processing methods. The consensus approach is unique in that it allows for 106 

inclusion of a variety of model types, epoch lengths, and data inputs, maximising its flexibility 107 

and application. However, the utility of such a consensus method needs to be verified at other 108 

wear locations.  109 

The purpose of the present analysis was to assess the criterion validity of a consensus 110 

method for estimating MVPA using wrist-worn accelerometers. We hypothesised that, akin to 111 

the hip-consensus method, the wrist-consensus method would be equivalent to the criterion for 112 

capturing time spent in MVPA. This study also provides an independent sample cross-validation 113 

of the included individual methods, including the application of methods developed with 114 

ActiGraph devices to data collected using GENEActiv data (and vice-versa). Finally, we 115 

compare the consensus and individual methods across device brands (ActiGraph and 116 

GENEActiv) and wear locations (dominant and non-dominant wrist). We hypothesized that the 117 

consensus method would demonstrate improved comparability across device brands and wear 118 

locations compared to individual methods. 119 

Methods 120 

Data Collection 121 

The same data used in developing the hip-consensus method were used for the present 122 

analysis (Montoye et al., 2017). Briefly, the Institutional Review Board approved the study 123 

protocol, after which 30 adults 18-79 years of age (49.2 ± 19.5y; 50% female) provided written 124 

informed consent prior to participation in structured and semi-structured laboratory visits. 125 
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Participants were apparently healthy (no known disease or disability) and did not need a 126 

physician’s clearance for participation in exercise according to a Physical Activity Readiness 127 

Questionnaire (PAR-Q). Recruitment was stratified by age (18-40 y, 41-60 y, 61-80 y). Body 128 

Mass Index (BMI) was 26.0 ± 4.3 kg/m2; 56.7% of participants were classified as overweight or 129 

obese (BMI ≥25 kg/m2). 130 

Briefly, in the ~2-hour structured laboratory visit, participants completed 11 activities 131 

selected by research staff from a larger list of options, including sedentary behaviours (e.g. lying 132 

down, writing while seating, watching television while seated), household activities/chores (e.g. 133 

dusting, making the bed, sweeping), and ambulatory/exercise activities (e.g. treadmill and 134 

overground walking, stairs, cycling) for five min each, generally in order of increasing intensity. 135 

The second visit incorporated simulated free-living/semi-structured activities which participants 136 

were free to choose in terms of order, duration, and type for 80 min, although participants were 137 

required to complete at least four activities from each category (sedentary, household/chore, 138 

ambulatory/exercise) to ensure variety in the activity types performed during the sessions. All 139 

data, including transitions and breaks (typically 1-2 minutes), were included in the present 140 

analysis. The criterion measure of time spent in MVPA was determined using direct observation 141 

of activity type (Lyden, Petruski, et al., 2014) – research assistants recorded the exact start and 142 

end time of each activity type. The 2011 Compendium of Physical Activities (Ainsworth et al., 143 

2011) was used to determine metabolic equivalent of task (MET) for each activity, with activities 144 

requiring ≥ 3.0 METs determined to be MVPA.  145 

Participants wore ActiGraph GT9X (Pensacola, FL; firmware version 1.1.0) and 146 

GENEActiv (Activinsights, Cambridge, UK) accelerometers on the dorsal aspect of each wrist, 147 

initialised with a sampling frequency of 60 Hz. Sampling frequency has been shown to influence 148 

the generation of activity counts. However, prior research demonstrates that use of sampling 149 

rates of 60 or 90 Hz are comparable to 30 Hz (Brønd & Arvidsson, 2016; Clevenger, Brønd, et 150 
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al., 2022). Proximal and distal positioning of the ActiGraph and GENEActiv monitors was 151 

randomised across participants but consistent between visits. All accelerometers were initialised 152 

using a common computer, which was calibrated to atomic time to ensure ease of data 153 

alignment during analysis. 154 

Data Processing 155 

Accelerometer data were imported into RStudio (Boston, MA; version 1.3.1056) using 156 

the ‘AGread’ (version 1.3.0) or the ‘GENEAread’ (version 2.0.9) packages. Activity counts were 157 

generated for both devices using ActiGraph’s algorithm via modified code from the ‘agcounts’ 158 

package (version 0.1.0). 159 

Individual classification methods for estimating time spent in MVPA were identified using 160 

recent systematic reviews (Liu et al., 2021; Migueles et al., 2017; Pfeiffer et al., 2022), the 161 

accelerometer repository (Clevenger, Montoye, et al., 2022), and literature searches (Table 1). 162 

We sought to include approaches which use a variety of inputs (raw, count data), epoch lengths 163 

(from 1- to 60-s), and model types (artificial neural networks, decision trees, two-regression, cut-164 

points), rather than every possible available method. Of note, we did not include the Montoye et 165 

al. (2020) cut-points for non-dominant wrist vector magnitude counts because of some overlap 166 

in the data used in the present analysis. For one method (Neil-Sztramko et al., 2017), the axis 167 

was not specified, so we applied the provided cut-points to both the vertical axis and vector 168 

magnitude counts.  169 

Three sets of models relied on the use of metrics that are orientation dependent 170 

(Montoye et al., 2016; Neil-Sztramko et al., 2017; Staudenmayer et al., 2015). The axes of the 171 

devices used in the present analyses (ActiGraph GT9X and GENEActiv) and those used in the 172 

validation studies (ActiGraph GT3X+, GENEActiv) vary in both orientation and sign direction 173 

(Supplemental Table 1). For the Staudenmayer et al. (2015) model, they indicate to use the axis 174 
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that recorded -1 g when the arm was hanging straight down, so we used the GT9X’s x-axis, and 175 

the GENEActiv’s y-axis inverted. For the Montoye et al. (2016) model, the GT9X’s x- and y-axes 176 

were switched and inverted to align with the GENEActiv’s y- and x-axes data, and the sign of 177 

the z-axis inverted. Finally, if the Neil-Sztramko et al. (2017) cut-points were developed for the 178 

“vertical axis,” this would be equivalent to the GT9X’s x-axis and the GENEActiv’s y-axis when 179 

worn on the wrist. 180 

The consensus estimate was calculated as the mean across all models developed for a 181 

wear location. Specifically, the consensus-estimate on the left wrist included 11 models, while 182 

the consensus-estimate on the right wrist included eight models. We used dominant wrist 183 

interchangeably with right wrist (and vice-versa) because our sample was almost exclusively 184 

(93%) right-hand dominant. In addition to the overall consensus-estimates, we tested three 185 

other variations of the consensus method at each wear location. First, we excluded any 186 

methods which did not include activities of daily living in their validation protocol. This was 187 

because we expect greater and more variable movement of the wrist during these types of 188 

activities as compared to locomotive or more stationary activities like watching television, which 189 

makes their inclusion important for the development of methods to classify activity intensity 190 

using wrist data. This resulted in the inclusion of seven (out of 11) methods for the left/non-191 

dominant wrist-consensus estimate and six (out of eight) methods for the right/dominant wrist-192 

consensus estimate. Second and third, we used the median, instead of the mean, to pool 193 

estimates for all methods or the methods which included activities of daily living in their 194 

validation protocol. Consensus estimates using the median were tested as this may be more 195 

appropriate when a few extreme estimates would affect the mean. 196 

Statistical Analyses 197 

 All analyses were conducted in RStudio. Minutes of MVPA were compared between the 198 

criterion and the individual classification approaches and the four consensus methods using 199 
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mean absolute difference, Pearson’s r correlation coefficient, and equivalence testing. The two 200 

one-sided tests of equivalence were conducted using the ‘TOSTER’ package (version 0.4.0). If 201 

the 90% confidence interval around the mean difference did not overlap or exceed the 202 

equivalence bounds, the methods were considered equivalent (p<0.05). Equivalence bounds 203 

were set as 10% of the mean MVPA according to the criterion (3.825 min; O’Brien, 2021). 204 

Normality was verified for all variables using histograms. Bland-Altman plots were generated for 205 

the individual and consensus methods with the least amount of bias compared to the criterion 206 

using the ‘blandr’ package (version 0.6.0). 207 

 The same analytic approach was used to compare minutes of MVPA between 208 

accelerometer brands (ActiGraph versus GENEActiv) while keeping the method and wrist the 209 

same. For example, we compared the Esliger et al. (2011) cut-points applied to ActiGraph left-210 

wrist data to the same cut-points applied to GENEActiv left-wrist data. Finally, we compared 211 

minutes of MVPA between wrists (left versus right) while keeping the device type and method 212 

the same. For example, we compared Esliger et al. (2011) cut-points applied to left-wrist data 213 

versus applied to right-wrist data. These analyses were only conducted for methods that were 214 

developed for both wrists. 215 
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Table 1. Classification methods for determining minutes of moderate-to-vigorous physical activity 216 

Method Criterion Location Type Epoch (s) Age (y) Device Metric Description of MVPA 
determination  

Dillon et al. (2016) Indirect NDW, DW CP 60 18-65; NR GA SVM NDW: ≥ 174.2, DW: ≥ 187.6 mg*  

Esliger et al. (2011) Indirect LW, RW CP 60 40-65; NR GA SVM LW: ≥ 134, RW: ≥ 92 mg* 

Hibbing et al. (2018) Indirect LW, RW Two-
regression 

1 NR; 23.0 ± 
2.3 

AG GT9X ENMO Coefficient of variation in ENMO∙1-
s-1 determines which of two 
equations is used to predict METs 
(≥3 METs classified as MVPA). 
Implemented using the 
‘TwoRegression’ package. 

Hildebrand et al. (2014) Indirect NDW CP 5 21-61; 
34.2 ± 10.7 

GA, AG 
GT3X+ 

ENMO GENEActiv (≥93.2 mg), ActiGraph 
GT3X+ (≥100.6 mg) 

Kwan et al. (2020) Indirect LW, RW CP 60 60-73; 
66.6 ± 3.5 

AG GT3X+ VM counts LW: ≥4117.1, RW: ≥4212.9 
counts·min-1 

Lee et al. (2019) Indirect LW, RW CP 60 18-26; NR AG wGT3X-
BT 

VM counts LW: ≥4514, RW: ≥4793 counts·min  

Montoye et al. (2016) DO LW, RW ANN 30 18-44; 
22.0 ± 4.2 

y 

GA Raw 
acceleration 

features 

Input features include the 10, 25, 
50, 75, and 90th percentiles of 
acceleration in each axis. 

Neil-Sztramko et al. (2017) Indirect NDW CP 60 22-65; 
40.0 ± 14.9 

AG GT3X+ Not 
reported 

≥2199 counts·min-1; women only 

Rhudy et al. (2020) Indirect LW CP 60 NR; 
26.1 ± 9.6 

AG GT9X VM counts ≥4836 counts·min-1 

Sanders et al. (2019) Indirect NDW CP 1 60-86; 
69.6 ± 8.0 

GA ENMO ≥104 mg 

Staudenmayer et al. (2015) Indirect DW Linear 
regression, 

decision 
tree 

15 20-39; 
24.1 ± 4.5 

AG GT3X+ Raw 
acceleration 

features 

Standard deviation of VM of the raw 
acceleration and mean angle of 
acceleration relative to the vertical 
axis predicts METs (≥3 METs 
classified as MVPA) or activity 
intensity. 

AG: ActiGraph; ANN: artificial neural network; CP: cut-points; DO: direct observation; DW: dominant wrist; ENMO: Euclidean norm minus one, 217 
calculated as vector magnitude of the raw acceleration minus one, with negative values rounded to zero; GA: GENEActiv; Indirect: indirect 218 
calorimetry; LW: left wrist; METs: metabolic equivalents of task; mg: milli-g; MVPA: moderate-to-vigorous physical activity; NDW: non-dominant 219 
wrist; NR: not reported; RW: right wrist; SVM: the absolute value of vector magnitude of raw acceleration minus one; VM: vector magnitude, 220 
calculated as the square root of the sum of the squared values in each axis; VA: vertical axis.*Scaled version as implemented in GGIR (Published 221 
Cut-Points and How to Use Them in GGIR, 2022)222 
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Results 223 

Comparison of Individual and Consensus Methods to Criterion 224 

According to the criterion, participants spent 38.2 min in MVPA. On the left wrist, over-225 

estimation was markedly worse when the Neil-Sztramko et al. (2017) cut-points were applied 226 

using vector magnitude counts (over-estimated by over 40 min), so we only retained the vertical 227 

axis analysis in the present study. Mean MVPA ranged from 40.6 to 60.4 min across the 228 

individual classification methods when using the ActiGraph, and 33.5 to 55.2 min when using 229 

the GENEActiv, while consensus estimates varied from 44.7 to 49.1 min and 41.6 to 44.9 min, 230 

respectively (Figure 1). On the right wrist, individual methods ranged from 35.1 to 73.8 min 231 

when using the ActiGraph, and 35.1 to 69.4 min when using the GENEActiv, with consensus 232 

estimates of 52.2 to 56.9 min and 51.0 to 53.9 min, respectively (Figure 2). Irrespective of 233 

accelerometer device brand, 95% of individual methods over-estimated MVPA compared to the 234 

criterion when using left-wrist data, compared to 81% on the right wrist. The bias of methods 235 

which over-estimated MVPA was greater than the bias of methods which under-estimated 236 

MVPA (Figures 1 and 2). 237 

Mean absolute differences, correlation coefficients, and results of equivalence testing 238 

comparing individual classification methods and the consensus method with the criterion are 239 

reported in Tables 2 (ActiGraph) and 3 (GENEActiv) for the left wrist and Tables 4 (ActiGraph) 240 

and 5 (GENEActiv) for the right wrist. Across wear locations and device brands, no individual or 241 

consensus methods were statistically equivalent to the criterion. 242 

For the left wrist, mean absolute differences between the criterion and individual 243 

methods ranged from 7.0 to 23.0 min, compared to 7.6 to 12.5 min for the consensus methods. 244 

Bias ranged from 1.4 to 22.1 min for individual methods compared to the criterion, and 3.3 to 245 

10.8 min for the consensus methods. Correlation coefficients comparing individual methods to 246 
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the criterion ranged from 0.35 to 0.71, while comparisons of the consensus methods with the 247 

criterion resulted in correlation coefficients of 0.65 to 0.70. Bland-Altman plots (Supplemental 248 

Figure 1) show similar patterns of bias between individual and consensus methods compared to 249 

the criterion wherein there is greater over-estimation compared to the criterion in those with 250 

higher MVPA. 251 

For the right wrist, mean absolute differences between the criterion and individual 252 

methods ranged from 8.9 to 35.8 min, compared to 13.1 to 18.6 min for the consensus methods. 253 

Bias ranged from 2.5 to 35.6 min for individual methods compared to the criterion, and 13.0 to 254 

18.6 min for the consensus methods. Correlation coefficients comparing individual methods to 255 

the criterion ranged from 0.12 to 0.67, while comparisons of the consensus methods with the 256 

criterion resulted in correlation coefficients of 0.58 to 0.66. Full correlation matrices for both 257 

wrists are available in Supplemental Table 2. Bland-Altman plots (Supplemental Figure 2) show 258 

smaller limits of agreement for the consensus methods versus the individual methods when 259 

compared to the criterion. However, the consensus method resulted in consistent over-260 

estimation, whereas MVPA could be over-or underestimated when using the individual methods. 261 

Comparison by Device Type 262 

Mean absolute differences, correlation coefficients, and the results of equivalence 263 

testing comparing individual classification methods and the consensus method between device 264 

types are reported in Supplemental Table 3 (left) and Supplemental Table 4 (right), while an 265 

overview of the findings is reported in Table 6. On the left wrist, correlation coefficients were 266 

0.28 to 0.99 for individual methods and 0.80 to 0.86 for consensus methods. On the right wrist, 267 

correlation coefficients were 0.24 to 0.99 for individual methods, compared to 0.70 to 0.78 for 268 

consensus methods. Across both wrists, eight (of 19) individual methods and three (of eight) 269 

consensus methods were equivalent across device types. 270 
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Comparison by Wrist 271 

Mean absolute differences, correlation coefficients, and results of equivalence testing 272 

comparing individual classification methods and the consensus method between wrists are 273 

reported in Supplemental Table 5, while an overview of findings is reported in Table 6. 274 

Correlation coefficients were 0.58 to 0.81 for ActiGraph and 0.55 to 0.86 for GENEActiv, 275 

compared to 0.73 to 0.82 and 0.76 to 0.87, respectively, for consensus methods. No methods 276 

were statistically equivalent across wrists. 277 

 278 

Figure 1. Comparison of minutes of moderate-to-vigorous physical activity (MVPA) according to 279 
the criterion, individual classification methods, and the consensus method using an ActiGraph 280 
and GENEActiv on the left wrist. Points (triangle or circle) represent the mean, while bars 281 
represent the standard deviation. Consensus: the mean of all 11 individual methods. Consensus 282 
ADL: the mean of seven methods which included activities of daily living in their validation 283 
protocol. Median: the median of all 11 individual methods. Median ADL: the median of seven 284 
methods which included activities of daily living in their validation protocol.285 

 286 

 287 
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Figure 2. Comparison of minutes of moderate-to-vigorous physical activity (MVPA) according to 289 
the criterion, individual classification methods, and the consensus method using an ActiGraph 290 
and GENEActiv on the right wrist. Points (triangle or circle) represent the mean, while bars 291 
represent the standard deviation. Consensus: the mean of all eight individual methods. 292 
Consensus ADL: the mean of six methods which included activities of daily living in their 293 
validation protocol. Median: the median of all eight individual methods. Median ADL: the median 294 
of six methods which included activities of daily living in their validation protocol. 295 

 296 

 297 

 298 
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Table 2. Comparison of minutes of moderate-to-vigorous physical activity according to the criterion versus individual classification 299 

methods or the consensus method using an ActiGraph on the left wrist 300 

 MVPA (min) Absolute Difference  Equivalence Test 
Method Mean SD Min Max Mean  SD r Bias 90% CI Equivalent 
Criterion 38.2 6.6 25.0 49.5 - - - - - - 
Dillon et al.(2016) 40.6 14.4 9.0 60.0 9.4 6.1 0.68 2.4 -1.0, 5.8 N 
Esliger et al.(2011) 50.2 12.5 20.0 65.0 13.6 6.7 0.68 11.9 9.0, 14.8 N 
Hibbing et al.(2018) 45.8 11.5 18.8 60.4 9.5 6.0 0.70 7.6 5.0, 10.2 N 
Hildebrand et al. (2014) AG 45.1 12.0 16.8 60.5 10.7 6.7 0.67 9.2 6.4, 11.9 N 
Hildebrand et al.(2014) GA 47.4 11.7 19.1 62.1 9.3 6.3 0.67 6.8 4.0, 9.6 N 
Kwan et al.(2020) 60.4 14.2 19.0 81.0 23.0 10.0 0.58 22.1 18.5, 25.8 N 
Lee et al.(2019) 55.7 14.3 18.0 76.0 18.7 9.3 0.61 17.5 13.9, 21.1 N 
Montoye et al.(2016) ANN 41.8 15.1 15.0 66.0 11.2 9.1 0.35 3.6 -0.8, 7.9 N 
Neil-Sztramko et al.(2017) 58.3 13.1 21.0 79.0 21.1 9.3 0.51 20.1 16.6, 23.6 N 
Rhudy et al.(2020) 52.1 14.3 16.0 73.0 15.3 9.3 0.62 13.8 10.3, 17.4 N 
Sanders et al.(2019) 42.3 10.7 16.5 55.4 7.1 5.4 0.66 4.0 1.5, 6.5 N  
Consensus 49.1 12.0 17.3 62.7 12.5 6.5 0.66 10.8 8.0, 13.6 N 
Consensus ADL 44.7 11.7 16.6 58.3 9.1 5.8 0.67 6.5 3.8, 9.2 N 
Median 47.9 11.7 18.0 62.0 11.5 6.2 0.65 9.7 6.9, 12.4 N 
Median ADL 45.3 11.8 16.8 60.0 9.3 6.3 0.67 7.0 4.3, 9.7 N 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; AG: ActiGraph; GA: GENEActiv; ANN: artificial neural 301 
network; Consensus methods are the mean or median of multiple individual methods (Consensus: the mean of all 11 individual 302 
methods; Consensus ADL: the mean of seven methods which included activities of daily living in their validation protocol; Median: the 303 
median of all 11 individual methods; Median ADL: the median of seven methods which included activities of daily living in their 304 
validation protocol); Confidence intervals (CI) were compared to equivalence bounds of ±3.825 min to determine equivalence at 305 
p<0.05. 306 

  307 
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Table 3. Comparison of minutes of moderate-to-vigorous physical activity according to the criterion versus individual classification 308 

methods or the consensus method using an GENEActiv on the left wrist 309 

 MVPA (min) 
Absolute 

Difference  Equivalence Test 
Method Mean SD Min Max Mean  SD r Bias 90% CI Equivalent 
Criterion 38.2 6.6 25.0 49.5 - - - - - - 
Dillon et al.(2016) 40.6 14.4 9.0 60.0 9.4 6.1 0.68 2.4 -1.0, 5.8 N 
Esliger et al.(2011) 47.6 13.6 19.0 66.0 11.8 7.0 0.71 9.4 6.2, 12.5 N 
Hibbing et al.(2018) 43.0 12.0 16.8 57.1 8.2 5.6 0.70 4.7 2.0, 7.5 N 
Hildebrand et al. (2014) 
AG 42.1 12.8 15.6 56.9 9.3 6.6 0.66 6.4 3.4, 9.3 N 

Hildebrand et al.(2014) GA 44.6 12.5 21.0 58.8 8.5 6.1 0.65 3.8 0.7, 6.9 N 
Kwan et al.(2020) 54.2 12.8 22.0 77.0 16.3 9.0 0.68 16.0 13.0, 18.9 N 
Lee et al.(2019) 49.0 12.9 17.0 74.0 12.5 7.7 0.64 10.7 7.6, 13.8 N 
Montoye et al.(2016) ANN 33.5 14.0 4.0 54.5 11.4 7.8 0.37 -4.8 -8.8, -0.7 N 
Neil-Sztramko et al.(2017) 55.2 13.0 23.0 74.0 17.7 9.5 0.56 16.9 13.6, 20.3 N 
Rhudy et al.(2020) 44.7 12.5 14.0 70.0 9.4 6.9 0.62 6.4 3.4, 9.5 N 
Sanders et al.(2019) 39.6 11.3 17.1 53.1 7.0 5.1 0.66 1.4 -1.3. 4.1 N 
Consensus 44.9 11.6 16.5 59.6 9.1 5.5 0.70 6.7 4.0, 9.3 N 
Consensus ADL 41.6 11.8 15.1 55.8 7.6 5.4 0.69 3.3 0.6, 6.0 N 
Median 44.3 12.4 17.0 58.8 9.2 6.1 0.68 6.0 3.2, 8.9 N 
Median ADL 42.6 12.5 16.8 57.1 8.4 5.9 0.68 4.4 1.5, 7.3 N 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; AG: ActiGraph; GA: GENEActiv; ANN: artificial neural 310 
network; Consensus methods are the mean or median of multiple individual methods (Consensus: the mean of all 11 individual 311 
methods; Consensus ADL: the mean of seven methods which included activities of daily living in their validation protocol; Median: the 312 
median of all 11 individual methods; Median ADL: the median of seven methods which included activities of daily living in their 313 
validation protocol); Confidence intervals (CI) were compared to equivalence bounds of ±3.825 min to determine equivalence at 314 
p<0.05. 315 

  316 
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Table 4. Comparison of minutes of moderate-to-vigorous physical activity according to the criterion versus individual classification 317 

methods or the consensus method using an ActiGraph on the right wrist 318 

 MVPA (min) Absolute Difference  Equivalence Test 
Method Mean SD Min Max Mean  SD r Bias 90% CI Equivalent 
Criterion 38.2 6.6 25.0 49.5 - - - - - - 
Dillon et al.(2016) 35.1 13.8 8.0 58.0 8.9 7.2 0.61 -3.2 -6.6, 0.3 N 
Esliger et al.(2011) 66.8 11.6 42.0 93.0 28.6 9.9 0.52 28.6 25.5, 31.7 N 
Hibbing et al.(2018) 48.8 11.5 25.5 68.6 11.3 7.8 0.65 10.6 7.8, 13.3 N 
Kwan et al.(2020) 66.0 13.4 43.0 92.0 27.8 10.7 0.61 27.8 24.5, 31.1 N 
Lee et al.(2019) 59.5 13.3 36.0 87.0 21.2 10.7 0.65 21.2 17.9, 24.5 N 
Montoye et al.(2016) ANN 44.5 14.7 17.5 75.5 11.8 9.7 0.32 6.2 1.9, 10.6 N 
Staudenmayer et al.(2015) Linear 53.8 11.1 31.2 73.2 35.8 15.6 0.17 35.6 30.6, 40.6 N 
Staudenmayer et al.(2015) DT 73.8 15.8 29.2 102.2 15.9 9.4 0.47 15.6 12.5, 18.6 N 
Consensus 56.0 9.8 36.7 76.1 17.8 7.5 0.65 17.8 15.5, 20.1 N 
Consensus ADL 53.8 9.2 35.7 71.6 15.6 7.3 0.62 15.6 13.3, 17.8 N 
Median 56.9 10.1 36.8 79.2 18.6 7.6 0.66 18.6 16.3, 21.0 N 
Median ADL 52.2 9.8 34.0 70.1 14.0 7.3 0.64 14.0 11.7, 16.3 N 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; ANN: artificial neural network; DT: decision tree; Consensus 319 
methods are the mean or median of multiple individual methods (Consensus: the mean of all eight individual methods; Consensus 320 
ADL: the mean of six methods which included activities of daily living in their validation protocol; Median: the median of all eight 321 
individual methods; Median ADL: the median of six methods which included activities of daily living in their validation protocol); 322 
Confidence intervals (CI) were compared to equivalence bounds of ±3.825 min to determine equivalence at p<0.05. 323 

 324 

 325 

  326 
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Table 5. Comparison of minutes of moderate-to-vigorous physical activity according to the criterion versus individual classification 327 

methods or the consensus method using an GENEActiv on the right wrist 328 

 MVPA (min) Absolute Difference  Equivalence Test 
Method Mean SD Min Max Mean  SD r Bias 90% CI Equivalent 
Criterion 38.2 6.6 25.0 49.5 - - - - -  
Dillon et al.(2016) 35.1 13.8 8.0 58.0 8.9 7.2 0.61 -3.2 -6.6, 0.3 N 
Esliger et al.(2011) 65.9 13.7 26.0 86.0 28.0 10.5 0.55 27.7 24.1, 31.2 N 
Hibbing et al.(2018) 51.4 11.8 16.9 67.5 14.4 6.5 0.67 13.1 10.4, 15.9 N 
Kwan et al.(2020) 62.4 15.0 22.0 90.0 24.8 11.3 0.55 24.1 20.2, 28.0 N 
Lee et al.(2019) 55.0 14.8 21.0 84.0 18.0 10.8 0.51 16.7 12.8, 20.7 N 
Montoye et al.(2016) ANN 35.8 13.0 8.0 59.5 10.1 8.5 0.24 -2.5 -6.5, 1.6 N 
Staudenmayer et al.(2015) Linear 69.4 17.3 27.8 90.8 32.4 15.3 0.12 31.2 25.7, 36.7 N 
Staudenmayer et al.(2015) DT 50.0 13.2 23.8 69.8 13.3 9.3 0.53 11.8 8.3, 15.2 N 
Consensus 53.1 10.9 26.1 73.3 15.2 8.1 0.59 14.9 12.1, 17.6 N 
Consensus ADL 51.3 10.3 27.6 68.7 13.3 7.9 0.59 13.0 10.4, 15.6 N 
Median 53.9 12.1 24.0 75.8 16.3 8.7 0.58 15.7 12.6, 18.8 N 
Median ADL 51.0 11.0 28.8 66.6 13.1 8.3 0.60 12.8 10.1, 15.5 N 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; ANN: artificial neural network; DT: decision tree; Consensus 329 
methods are the mean or median of multiple individual methods (Consensus: the mean of all eight individual methods; Consensus 330 
ADL: the mean of six methods which included activities of daily living in their validation protocol; Median: the median of all eight 331 
individual methods; Median ADL: the median of six methods which included activities of daily living in their validation protocol); 332 
Confidence intervals (CI) were compared to equivalence bounds of ±3.825 min to determine equivalence at p<0.05. 333 

  334 
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Table 6. Summary of equivalence (bias in minutes of moderate-to-vigorous physical activity) for 335 
comparisons of individual and consensus methods with the criterion, across device types, and 336 
across wrists 337 

Method 

Criterion 
vs AG 

LW 

Criterion 
vs GA 

LW 

Criterion 
vs AG 

RW 

Criterion 
vs GA 

RW 

AG vs 
GA 
LW 

AG vs 
GA 
RW 

LW vs 
RW 
AG 

LW vs 
RW 
GA 

Avg 

Dillon et 
al.(2016) N (2.4) N (2.4) N (-3.2) N (-3.2) Y (0.0) Y (0.0) N (5.5) N (5.5) 1.2 

Esliger et 
al.(2011) N (11.9) N (9.4) N (28.6) N (27.7) Y (2.6) Y (0.9) N (-16.7) N (-18.3) 5.8 

Hibbing et 
al.(2018) N (7.6) N (4.7) N (10.6) N (13.1) Y (2.9) Y (-2.6) N (-3.0) N (-8.4) 3.1 

Hildebrand et 
al. (2014) AG N (9.2) N (6.4) - - Y (2.8) - - - 6.1 

Hildebrand et 
al.(2014) GA N (6.8) N (3.8) - - N (3.0) - - - 4.5 

Kwan et 
al.(2020) N (22.1) N (16.0) N (27.8) N (24.1) N (6.2) N (3.7) N (-5.7) N (-8.2) 10.8 

Lee et 
al.(2019) N (17.5) N (10.7) N (21.2) N (16.7) N (6.8) N (4.5) N (-3.7) N (-6.0) 8.5 

Montoye et 
al.(2016) ANN N (3.6) N (-4.8) N (6.2) N (-2.5) N (8.3) N (8.7) N (-2.7) N (-2.3) 1.8 

Neil-Sztramko 
et al.(2017) N (20.1) N (16.9) - - N (3.2) - - - 13.4 

Rhudy et 
al.(2020) N (13.8) N (6.4) - - N (7.4) - - - 9.2 

Sanders et 
al.(2019) N (4.0) N (1.4) - - Y (2.7) - - - 2.7 

Staudenmayer 
et al.(2015) 
Linear 

- - N (35.6) N (31.2) - N (4.4) - - 23.7 

Staudenmayer 
et al.(2015) DT - - N (15.6) N (11.8) - N (3.8) - - 10.4 

Consensus N (10.8) N (6.7) N (17.8) N (14.9) N (4.2) N (2.9) N (-7.0) N (-8.2) 5.3 
Consensus 
ADL N (6.5) N (3.3) N (15.6) N (13.0) N (3.2) Y (2.6) N (-9.1) N (-9.7) 3.2 

Median N (9.7) N (6.0) N (18.6) N (15.7) N (3.6) N (2.9) N (-9.0) N (-9.7) 4.7 
Median ADL N (7.0) N (4.4) N (14.0) N (12.8) Y (2.6) Y (1.2) N (-7.0) N (-8.4) 3.3 
Average 10.2 6.2 17.4 14.6 4.0 2.8 -5.8 -7.4 5.8 
Dashes (-) indicate this comparison was not applicable; AVG=average; AG: ActiGraph; GA: 338 
GENEActiv; MVPA: moderate-to-vigorous physical activity; SD: standard deviation; ANN: 339 
artificial neural network; DT: decision tree; Consensus methods are the mean or median of 340 
multiple individual methods (Consensus: the mean of all individual methods; Consensus ADL: 341 
the mean of methods which included activities of daily living in their validation protocol; Median: 342 
the median of all individual methods; Median ADL: the median methods which included activities 343 
of daily living in their validation protocol) 344 

  345 
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Discussion 346 

 Use of a wrist-worn accelerometer has become increasingly popular due to improved 347 

wear compliance and easier capture of 24-h movement behaviours (Fairclough et al., 2016; 348 

Troiano et al., 2014). However, lack of agreement regarding the best way to analyse 349 

accelerometer data and inconsistencies in how accelerometer data are analysed remain 350 

fundamental barriers to surveillance of and research on how physical behaviours, such as 351 

MVPA, affect health, change over time, or vary across groups (Pedišić & Bauman, 2015). Whilst 352 

numerous analytic options exist, the present study demonstrates the difficulty in using wrist-353 

worn accelerometer data to accurately capture time spent in MVPA in adults, as almost every 354 

existing method over-estimated MVPA compared to the criterion of direct observation.  355 

 Our first aim was to evaluate the accuracy of a consensus method, which accounts for 356 

the observation that some individual methods under- while others over-estimate MVPA, 357 

resulting in a consensus estimate that is more reflective of the criterion value. This was 358 

demonstrated in a prior study which developed a consensus method for hip-worn devices 359 

(Clevenger, Mackintosh, et al., 2022). However, in the present study, there was a systematic 360 

error in the individual methods, meaning the resultant consensus estimate was also biased. 361 

While the consensus method will never have greater error than any individual method, this 362 

highlights how this proposed method inherently captures the weaknesses of the included 363 

individual methods (“garbage in, garbage out”). The present analysis cannot identify the reason 364 

for this systematic over-estimation but it is clear that new methods with lower error are needed 365 

to characterize MVPA from wrist-based accelerometers. Given that the wrist consensus 366 

methods were not statistically equivalent to the criterion, we cannot recommend their use in 367 

future studies, in which the primary goal is to have the most accurate MVPA assessment.  368 

However, it is pertinent to note there are still potential benefits of using a consensus 369 

method for estimating time spent in MVPA which may warrant additional research if the purpose 370 
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is to foster comparability across studies which have, or may (in the future) use, different 371 

processing methods. Specifically, the consensus method is more consistent than individual 372 

methods, as evidenced by the less variable correlations and errors across device brands and 373 

wear locations, compared to individual methods. Similarly, the range across consensus 374 

estimates is eight-times smaller than that across individual methods. Thus, it is likely that 375 

studies employing different consensus methods would enhance inter-study comparability than 376 

those employing different individual methods. Another key benefit of the consensus method is 377 

the ability to tailor, including the integration or removal of methods based on data availability, 378 

development of new methods, or updated information about the validity of earlier methods. For 379 

example, if researchers implemented a single method, such as the Dillon et al. (2016) cut-380 

points, it would be difficult to compare findings to prior research using a different method, or to 381 

change this method if/when a better method is established. With the consensus method, even 382 

methods using completely different sets of models are comparable (Clevenger, Mackintosh, et 383 

al., 2022), and estimates are “future proofed” as methods can be added/replaced. Further, 384 

backwards comparability is afforded as individual methods could be extracted for comparison 385 

with prior studies. Finally, while individual methods are developed on relatively small, 386 

homogenous samples (e.g., all from one geographic location or age group), the consensus 387 

method may improve generalizability by pooling these methods. However, these benefits of a 388 

consensus method may be offset by the increase in analytic complexity and the associated time 389 

investment. 390 

The data used in the present study included locomotion and simulated activities of daily 391 

living completed during both structured and semi-structured laboratory visits. As such, it could 392 

be postulated that individual methods may have been developed using only locomotive or other 393 

structured behaviours which do not involve much wrist movement, and therefore over-estimated 394 

activity intensity when applied to our data set. When we developed consensus methods which 395 
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only included studies with activities of daily living in the validation protocol, they did have an 396 

improvement of ~1-3 min in mean absolute difference compared to the criterion, but MVPA was 397 

still over-estimated. Use of the median, instead of the mean, to generate the consensus 398 

estimate did not appear to be worthwhile in the present study, with no improved accuracy in 399 

MVPA estimation. While it is expected that models will perform worse when applied to a new, 400 

independent sample (Montoye et al., 2018), further research is needed to ascertain how 401 

validation protocols can be better designed for wrist-worn accelerometer data. For example, 402 

there may be substantial variability in wrist movement when individuals perform activities of 403 

daily living, requiring larger sample sizes compared to hip-worn accelerometer validation 404 

studies. 405 

 Improving how methods are developed has been discussed frequently by researchers, 406 

with many calling for larger and more diverse samples, inclusion of a variety of activities 407 

representative of how the population spends their time, and use of both structured and 408 

unstructured (free-living) settings (Bassett et al., 2012; Keadle et al., 2019; Pfeiffer et al., 2022; 409 

Welk et al., 2005, 2019). The importance of independent sample cross-validation to better 410 

understand how models will perform in new samples and/or settings has also been highlighted 411 

(Clevenger, Montoye, et al., 2022). The present analysis also served as an independent sample 412 

cross-validation of the 19 individual methods, across two device brands. While no individual or 413 

consensus methods were statistically equivalent to the criterion, the best-performing method 414 

across device brands and wrists were the raw acceleration cut-points developed by Dillon et al. 415 

(2016) (Table 6). The Dillon et al. (2016) cut-points were developed on a convenience sample of 416 

56 adults, 18-65 years of age, who wore GENEActiv devices and participated in sitting, 417 

standing, dish washing, floor sweeping, slow walking, fast walking and jogging for an 418 

undisclosed amount of time. Use of the Dillon et al. (2016) method is promising due to its 419 
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demonstrated validity across device brands and wrists. Further cross-validation in other 420 

independent samples, particularly in free-living, is warranted. 421 

Another purpose of the present study was to compare between device brands and wrist 422 

wear locations. Neither wrist seemed to perform markedly better when compared to the 423 

criterion, and there were moderate correlations between individual methods that were 424 

simultaneously applied to both wrists (r=0.55-0.86). Researchers could consider whether this 425 

level of agreement warrants allowing participants to select which wrist they would like to wear 426 

the device on when methods are simultaneously validated for each wrist (e.g. the Dillon et al., 427 

2016 cut-points), perhaps coupled with further research of the impact on wear compliance.  428 

Similarly, neither device brand seemed to out-perform the other when compared to the 429 

criterion. Applying methods developed using ActiGraph counts to GENEActiv data resulted in 430 

similar comparability to the criterion as using these methods with ActiGraph data. When 431 

compared to each other, most methods were comparable between device brands worn on the 432 

same wrist, although there was marginally better agreement between ActiGraph and GENEActiv 433 

devices at the right wrist (bias 2.8 min) compared to the left wrist (4.0 min). This contradicts 434 

previous research which found that ActiGraph devices were comparable to GENEActiv at the 435 

non-dominant wrist, but that ActiGraph had a lower mean acceleration at the dominant wrist 436 

compared to the GENEActiv (Rowlands, Plekhanova, et al., 2019). It is notable that the poorest 437 

correlations were for methods which relied on the axis- and orientation- dependent raw 438 

acceleration data. Lack of clarity about how to use these methods with different device brands 439 

and/or generations limits comparability across studies. For example, the GT3X+, and GT3X-BT 440 

devices can be worn with the black cap pointed superior or inferior when in anatomical position, 441 

which influences the sign direction of the axes, yet researchers do not consistently report how 442 

the device was worn. Future research may wish to focus on the use of metrics which are axis- 443 

and orientation-independent, like vector magnitude (square root of the sum of the squared 444 
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acceleration in each axis). Moreover, manufacturers are encouraged to maintain consistency in 445 

axis direction and orientation as new generations of devices are released. 446 

 This study is not without limitations. Specifically, we had a relatively small sample with a 447 

wide age range, who only completed laboratory visits and were not observed during free-living, 448 

thereby warranting further investigation into the validity of these methods when applied to other 449 

samples or to free-living data. Individual methods may work better or worse for people of 450 

different ages; the Dillon et al. (2016) cut-points, which were the most accurate individual 451 

methods in the present analysis, used a similar age range (18-65 y) to the present study (18-79 452 

y) which may have contributed to its accuracy. More research is also warranted that identifies 453 

whether there is a more optimal approach to weighting or selecting methods for inclusion in the 454 

consensus estimate. For example, we may use information about the demonstrated validity in 455 

an independent sample or similarity between the demographics of validation protocol with that 456 

of the sample the methods are being applied to, in order to weight the individual methods when 457 

calculating the consensus estimate. However, the consistent over-estimation of MVPA when 458 

analysing wrist accelerometer data needs to be addressed prior to further research on the 459 

optimal use of consensus methods at this wear location being conducted.  460 

In addition to differences in sample characteristics, there may be other differences 461 

between the present study’s methodology compared to that of the original validation studies 462 

which could result in the observed bias. For example, the present study used a sampling rate of 463 

60 Hz which may not match the original validation studies; similar cross-validation studies using 464 

other sampling rates may have different findings. While individual methods were originally 465 

validated using indirect calorimetry, we elected to use a criterion of direct observation in the 466 

present study because indirect calorimetry can be difficult to employ when participants are 467 

performing various activities in succession, especially when they are unlikely to achieve a 468 

steady-state (e.g., due to the duration of the activities). The study which provided the data used 469 
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in the present analysis only required a one to two minute break between activities and activities 470 

during the semi-structured session could be quite short (two min), which would lead to a known 471 

mismatch between accelerometer-captured movement data and oxygen consumption data. 472 

Additionally, it is well known that accelerometry does not account for an individual’s baseline 473 

fitness, and therefore accelerometry is not ideal for measures of relative intensity. Using direct 474 

observation reduces these differences between participants and more closely examines the 475 

association of accelerometer methods with the general intensity of an activity at the group level. 476 

Still, it is known that direct observation can underestimate time spent in MVPA compared to 477 

indirect calorimetry by ~5% (Lyden et al., 2014) – which translates to less than two minutes in 478 

the present study. Therefore, use of direct observation instead of energy expenditure as the 479 

criterion would likely not change the conclusion drawn that most wrist-worn accelerometer 480 

methods to do not accurately measure MVPA. 481 

 We elected to limit the scope of our analysis to MVPA and did not include further 482 

intensity outcomes, such as sedentary time, light physical activity, or moderate and vigorous 483 

physical activity in isolation. This was primarily due to some methods not predicting all 484 

outcomes (Rhudy et al., 2020). Similarly, it is pertinent to note that there are sedentary-specific 485 

methods because sedentary behaviour is defined by both an energy expenditure and postural 486 

component, in contrast to MVPA which is only defined by energy expenditure (Rowlands et al., 487 

2016). Nonetheless, the increasing focus on simultaneous consideration of sedentary time, light 488 

physical activity, and MPVA warrants further research to understand whether a consensus 489 

approach is useful for estimating those outcomes. 490 

 In conclusion, better methods for estimating MVPA from wrist-worn accelerometer data 491 

are needed, given the consistent over-estimation of virtually all of the tested methods compared 492 

to a criterion of direct observation. The use of the Dillon et al. (2016) cut-points is promising, but 493 

free-living cross-validation is still needed. Whilst the wrist-worn consensus method cannot be 494 
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recommended at present, there are still potential benefits of this approach, such as improved 495 

inter-study, -wrist, and -device brand comparability.  496 
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Supplemental Table 1. Comparison of axes for each device and wear location 

 GT3X+ GT3X-BT GT9X GENEActiv 
Hip 

X: 0 g, Y: -1 g, Z: 0 g X: 0 g, Y: +1 g, Z: 0 g X: 0 g, Y: -1 g, Z: 0 g  X: 0 g, Y: -1 g, Z: 0 g 
RW 

 X: 0 g, Y: -1 g, Z: 0 g 

 X: 0 g, Y: +1 g, Z: 0 g 

 X: 0 g, Y: +1 g, Z: 0 g 

 X: 0 g, Y: -1 g, Z: 0 g 

X: -1 g, Y: 0 g, Z: 0 g 
 X: 0 g, Y: +1 g, Z: 0 

g 

LW 

 X: 0 g, Y: -1 g, Z: 0 g 

 X: 0 g, Y: +1 g, Z: 0 g 

 X: 0 g, Y: +1 g, Z: 0 g 

 X: 0 g, Y: -1 g, Z: 0 g 

 X: +1 g, Y: 0 g, Z: 0 
g 

 X: 0 g, Y: -1 g, Z: 0 g 
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Supplemental Table 2. Correlation matrix between criterion, consensus methods, and individual methods. Variables are generally named as the 
wear location (LW: left wrist or RW: right wrist), followed by the device brand (AG: ActiGraph or GA: GENEActiv), the method which may include the 
author's name and additional modifiers needed to specify which method when an author developed more than one method (e.g., esliger_left refers 
to Esliger cut-points developed for the left wrist). For consensus methods, consensus refers to the mean of all individual methods; adl is the mean of 
methods which included activities of daily living in their validation protocol; median is the median of all individual methods; median_adl is the median 
of methods which included activities of daily living in their validation protocol 

**see https://osf.io/wgr6d/files/osfstorage/66eac1cd9601d2bdefb7220b   

https://osf.io/wgr6d/files/osfstorage/66eac1cd9601d2bdefb7220b
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Supplemental Table 3. Comparison of minutes of moderate-to-vigorous physical activity between ActiGraph and GENEActiv devices on the left 
wrist  

 Absolute Difference  Equivalence Test 
Method Mean  SD r Bias 90% CI Equivalent 
Dillon et al.(2016) 0.0 0.0 0.99 0.0 0.0, 0.0 Y 
Esliger et al.(2011) 4.0 6.0 0.87 2.6 0.5, 4.7 Y 
Hibbing et al.(2018) 5.5 4.9 0.83 2.9 0.7, 5.0 Y 
Hildebrand et al. (2014) AG 5.2 5.1 0.85 2.8 0.7, 4.9 Y 
Hildebrand et al.(2014) GA 5.6 5.3 0.84 3.0 0.8, 5.2 N 
Kwan et al.(2020) 9.2 8.7 0.66 6.2 2.7, 9.6 N 
Lee et al.(2019) 10.8 8.2 0.63 6.8 3.1, 10.4 N 
Montoye et al.(2016) ANN 15.4 11.5 0.28 8.3 2.9, 13.7 N 
Neil-Sztramko et al.(2017) 6.3 6.3 0.80 3.2 0.6, 5.8 N 
Rhudy et al.(2020) 11.5 8.5 0.58 7.4 3.6, 11.2 N 
Sanders et al.(2019) 5.0 4.7 0.84 2.7 0.7, 4.6 Y 
Consensus 6.6 5.3 0.80 4.2 1.8, 6.5 N 
Consensus ADL 5.2 4.5 0.86 3.2 1.3, 5.1 N 
Median 5.4 5.9 0.82 3.6 1.4, 5.9 N 
Median ADL 4.9 5.2 0.85 2.6 0.6, 4.7 Y 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; AG: ActiGraph; GA: GENEActiv; ANN: artificial neural network; Consensus 
methods are the mean or median of multiple individual methods (Consensus: the mean of all 11 individual methods; Consensus ADL: the mean of 
seven methods which included activities of daily living in their validation protocol; Median: the median of all 11 individual methods; Median ADL: the 
median of seven methods which included activities of daily living in their validation protocol); Confidence intervals (CI) were compared to 
equivalence bounds of ±5 min to determine equivalence at p<0.05. 
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Supplemental Table 4. Comparison of minutes of moderate-to-vigorous physical activity between ActiGraph and GENEActiv devices on the right 
wrist 

 Absolute Difference  Equivalence Test 
Method Mean  SD r Bias 90% CI Equivalent 
Dillon et al.(2016) 0.0 0.0 0.99 0.0 0.0, 0.0 Y 
Esliger et al.(2011) 5.2 5.7 0.83 0.9 -1.5, 3.3 Y 
Hibbing et al.(2018) 4.8 5.8 0.82 -2.6 -4.8, -0.4 Y 
Kwan et al.(2020) 7.6 7.0 0.77 3.7 0.6, 6.7 N 
Lee et al.(2019) 8.0 6.5 0.78 4.5 1.6, 7.4 N 
Montoye et al.(2016) ANN 15.7 10.3 0.27 8.7 3.5, 13.9 N 
Staudenmayer et al.(2015) Linear 14.0 15.4 0.24 4.4 -2.0, 10.8 N 
Staudenmayer et al.(2015) DT 10.3 8.2 0.46 3.8 -0.1, 7.8 N 
Consensus 6.0 4.5 0.78 2.9 0.8, 5.1 N 
Consensus ADL 5.8 4.1 0.77 2.6 0.5, 4.6 Y 
Median 6.8 5.6 0.73 2.9 0.4, 5.5 N 
Median ADL 5.9 5.6 0.70 1.2 -1.3, 3.7 Y 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; ANN: artificial neural network; DT: decision tree; Consensus methods are the 
mean or median of multiple individual methods (Consensus: the mean of all eight individual methods; Consensus ADL: the mean of six methods 
which included activities of daily living in their validation protocol; Median: the median of all eight individual methods; Median ADL: the median of six 
methods which included activities of daily living in their validation protocol); Confidence intervals (CI) were compared to equivalence bounds of ±5 
min to determine equivalence at p<0.05.  
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Supplemental Table 5. Comparison of minutes of moderate-to-vigorous physical activity between left and right wrists 

 ActiGraph GENEActiv 

 
Absolute 

Difference  Equivalence Test 
Absolute 

Difference 
 
 Equivalence Test 

Method Mean  SD r Bias 90% CI Equivalent Mean  SD r Bias 90% CI Equivalent 
Dillon et al.(2016) 8.0 6.7 0.80 5.5 2.8, 8.3 N 8.0 6.7 0.80 5.5 2.8, 8.3 N 
Esliger et al.(2011) 16.7 9.8 0.67 -16.7 -19.7, -13.6 N 18.3 11.6 0.64 -18.3 -21.9, -14.7 N 
Hibbing et al.(2018) 5.9 4.8 0.81 -3.0 -5.2, -0.8 N 8.7 5.8 0.86 -8.4 -10.3, -6.5 N 
Kwan et al.(2020) 10.9 8.3 0.58 -5.7 -9.6, -1.7 N 11.5 9.4 0.60 -8.2 -12.0, -4.3 N 
Lee et al.(2019) 9.9 7.2 0.64 -3.7 -7.4, -0.1 N 10.9 8.8 0.58 -6.0 -10.0, -2.0 N 
Montoye et al.(2016) ANN 7.6 6.2 0.79 -2.7 -5.6, 0.3 N 10.8 7.1 0.55 -2.3 -6.3, 1.7 N 
Consensus 7.7 6.7 0.79 -7.0 -9.3, -4.7 N 8.5 7.2 0.77 -8.2 -10.6, -5.8 N 
Consensus ADL 9.2 6.6 0.82 -9.1 -11.2, -7.0 N 9.7 6.6 0.83 -9.7 -11.8, -7.6 N 
Median 9.5 7.5 0.73 -9.0 -11.5, -6.4 N 10.0 8.0 0.76 -9.7 -12.3, -7.0 N 
Median ADL 7.7 6.5 0.78 -7.0 -9.3, -4.7 N 8.6 6.0 0.87 -8.4 -10.4, -6.5 N 
MVPA: moderate-to-vigorous physical activity; SD: standard deviation; ANN: artificial neural network; DT: decision tree; Consensus methods are the 
mean or median of multiple individual methods (Consensus: the mean of all individual methods; Consensus ADL: the mean of methods which 
included activities of daily living in their validation protocol; Median: the median of all individual methods; Median ADL: the median methods which 
included activities of daily living in their validation protocol); Confidence intervals (CI) were compared to equivalence bounds of ±5 min to determine 
equivalence at p<0.05. 
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Supplemental Figure 1. Bland-Altman plots showing the difference in minutes of moderate-to-vigorous physical activity (MVPA) according to the 
critterion of direct observation compared to a) Dillon cut-points applied to an ActiGraph accelerometer, b) consensus activities of daily living method 
applied to an ActiGraph accelerometer, c) Sanders cut-points applied to a GENEActiv accelerometer, and d) consensus activities of daily living 
method applied to a GENEActiv accelerometer, all at the left wrist. 
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Supplemental Figure 2. Bland-Altman plots showing the difference in minutes of moderate-to-vigorous physical activity (MVPA) according to the 
critterion of direct observation compared to a) Dillon cut-points applied to an ActiGraph accelerometer, b) median consensus activities of daily living 
method applied to an ActiGraph accelerometer, c) Montoye artificial neural network applied to a GENEActiv accelerometer, and d) median 
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consensus activities of daily living0020method applied to a GENEActiv accelerometer, all at the right wrist.

 


