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Mesoscale Modelling of Fibrin Clots: The Interplay be-
tween Rheology and Microstructure at the Gel Point†

Elnaz Zohravi,∗a Nicolas Moreno,∗a Karl Hawkins,b Daniel Curtis,c and Marco Elleroa,c,d

This study presents a numerical model for incipient fibrin-clot formation that captures characteristic
rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering
framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the
fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations
in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin
clots. In particular, the model reproduces the fractal dimension’s dependency on gel concentration
and the trends in elasticity and gelation time with varying thrombin concentrations. This approach
allows us to accurately recreate the gelation point of fibrin-thrombin gels, highlighting the intricate
process of fibrin polymerization and gel network formation. This is critical for applications in the
clinical and bioengineering fields where precise control over the gelation process is required.

1 Introduction
The viscoelastic properties of blood clots are biomarkers for blood
coagulation in health and disease. They can reveal changes in clot
structure, coagulation kinetics, and the processes of clot retrac-
tion and fibrinolysis.1–4 The mechanical properties of blood clots
are determined by the microstructure of the complex fibrin net-
work, which is formed by the polymerization of fibrinogen into
fibrin fibers. Clots with altered fibrin microstructure have varying
susceptibility to fibrinolysis.2,3,5,6 The fractal characteristics of in-
cipient clots have been probed by oscillatory shear measurements
of the gel point (GP) in whole blood,2,7–9 revealing the character-
istic interplay between the structural properties and mechanical
response. The clot’s mechanical response can change due to var-
ious conditions including venous thrombosis and coronary artery
disease. In this context, the viscoelastic characterization of clots
can be used in the screening and diagnosis of coagulopathies and
in monitoring therapeutic interventions.

Fibrin-thrombin gels are a widely studied model system for
blood clotting, providing insights into the clot’s microstructure
and mechanical properties.3,8,10–12 Thrombin plays a crucial role
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in the coagulation cascade by converting fibrinogen to fibrin. Ex-
perimental studies have shown that thrombin concentration can
significantly alter the rate and microstructure formation of fibrin
gels.8,10,13–15 Investigations using Scanning electron microscopy
(SEM) have shown that the concentration of thrombin signifi-
cantly influences the characteristics of fibrin fibers, including their
structure, length, and diameter. Specifically, lower thrombin con-
centrations result in thicker but less dense fibrin fibers, whereas
higher concentrations lead to thinner, denser fibers. Similarly, the
clots’ fractal dimension, D f , has been identified to correlate with
thrombin levels.14,16–18

Chambon and Winter19 demonstrated that, at the gel point,
both the storage modulus (G′) and the loss modulus (G′′) exhibit
a power-law dependence on the angular frequency (ω), with the
relationship G′′ ∼ G′ ∼ ωα , where α represents a stress relaxation
exponent. This relationship indicates that, at the GP, the phase
angle (δ = tan−1(G′′/G′)) becomes independent of frequency and
equals δ = απ/2. Evans et al20 demonstrated that the GP of
coagulating blood could provide a robust measure of a ’clotting
time’ and that power-law exponent (α) is sensitive to variations
in thrombin availability. This sensitivity suggests that α can serve
as a critical parameter for investigating and monitoring the im-
pact of thrombin on the microstructure and stability of clots in a
clinical setting.2,20

Over the last decade, different numerical and experimental in-
vestigations have provided insights into blood clot rheological
and microstructural characteristics.12,14,18,21 In the context of fib-
rin clots at the gel point, relevant numerical studies have been
also addressed. Curtis and coauthors3,11 have explored the for-
mation of incipient clots in fibrin-thrombin gels and heparinized
blood using molecular dynamics simulations. They observed a
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correlation between gel-point time (tGP) and fractal dimension,
noting that D f decreases as tGP increases. Although their nu-
merical model provides valuable insights into the microstructural
properties of these gels, it does not account for variations of
the viscoelastic properties with changing thrombin concentration.
Overall, there is a noticeable knowledge gap in the numerical
modeling of fibrin-clot formation. Existing models fail to simulta-
neously account for changes in the gel structure and viscoelastic
response as thrombin concentration varies. Moreover, they do
not adequately capture the key mechanical and structural rela-
tionships observed at the gel point. Here in, we provide a nu-
merical scheme that captures relevant rheological and structural
properties of fibrin-thrombin network formation. We demonstrate
that the experimentally reported effects of thrombin concentra-
tion on the fractal dimension, gel elasticity, and gel time of fibrin-
thrombin gels are accurately reproduced.3,11

2 Definition of Gelation System
Gel-network formation can be modeled using explicit coarse-
grained representations of the aggregating molecules. These
models are effective for capturing the specific interactions and
kinetics of molecule aggregation,22,23 as well as the distinct mor-
phological features of these molecules.24,25 However, the com-
putational demands of such detailed simulations can limit their
applicability to larger spatial and temporal scales. Here, we
adopt a recently proposed mesoscale framework26 to model bio-
logical clustering, accounting for hydrodynamic interactions and
network formation kinetics. This approach balances detailed mi-
crostructural features and computational efficiency, enabling the
study of morphology and rheological response of the gel over
larger scales. The framework discretizes the gelling system into
a particle-based representation, in which the microstructural el-
ements are constituted by passive (P), active (A), and solvent
(S) particles. The particle interactions are modeled using the
Smoothed Dissipative Particle Dynamics method27, and the con-
nectivity (bonding) between particles uses Morse potentials28

(see simulation method for a detailed description of the model).
As described by Zohravi et al.,26 the rate of bond formation
and maximum coordination number of bonds can be adjusted
to model a variety of biological clustering mechanisms and mor-
phologies.

Fibrin clot formation is a hierarchical and dynamic process. It
begins with thrombin, generated through the coagulation cas-
cade, converting soluble fibrinogen into insoluble fibrin. This
leads to a lag phase where thrombin accumulates, followed by
the polymerization of fibrin monomers into protofibrils and the
cross-linking of fibrin fibers by activated Factor XIII to form a sta-
ble, elastic network. The process involves dynamic interactions
between fibrin monomers, which influence the clot’s stiffness and
contraction.13,29 In Fig. 1.a, we provide a simplified sketch of
the hierarchical fibrin-gel formation. It involves the aggregation
of fibrin monomers into mesoscale-mesh structures, which subse-
quently polymerize into fibers and crosslink to form a network of
fibers that constitute the clot.

Here, P particles act as mesoscale-mesh subunits that polymer-
ize into fibers by attaching to A particles. These active particles,

once part of the fibers, can then cross-link to form the final gel
structure (see Fig. 1.a). Therefore, we can describe the fibrin-gel
formation in two main stages: activation, where passive particles
become active by bonding with active particles, and cross-linking,
where these now-active particles bond among themselves to so-
lidify the structure. Initially, only passive and solvent particles
constitute the simulated system. The gelation initiates by placing
a single active particle seed in the center of the domain.

Previous studies in fibrin-thrombin gels have shown that the
fractal dimension, elasticity, and gelation time are sensitive to
the activation and crosslinking mechanisms.3,11,30. Based on the
framework introduced by Zohravi et al.,26 we investigate three
representative clustering mechanisms, to identify the model that
better captures the viscoelastic transitions during the gel forma-
tion dynamics. These mechanisms are denoted as Branched, Low-
Connected, and Highly-Connected, and allow us to sample different
degrees of connectivity in the system and cross-linking rates.

During the activation stage, the bonding between passive and
active particles occurs when particles are within a distance r∗ of
each other. The bond formation process, repeats with nearby ac-
tive particles, allowing for a maximum of three bonds per particle.
During the cross-linking stage, the bonding between A particles
also takes place when their distance is smaller than r∗. Depend-
ing on the clustering mechanism a maximum number of "m" bonds
can be formed per A particle. We set m= 0 for branched, m= 2 for
Low-Connected, and m = 10 for Highly-Connected. This allows us
to mimic the various degrees of connectivity between fibers.31

It is important to note that although activation and cross-
linking can occur synchronously, they are consecutive stages from
the P particle standpoint. As described by Zohravi et al.,26 is it
possible to control the rate of the different stages, using a lag time
between activation and crosslinking, or equivalently changing the
bonding probability of each stage. If the lag time is too short, the
cross-linking stage can overtake the gelling process, leading to
smaller aggregates that do not percolate the domain; conversely,
if the lag time is too long, the formed gels get kinetically trapped
in the branched condition. Here, we set a bonding probability of
one for the activation stage –as long as the particles are within
the bonding distance, they will form a bond-. Whereas, the bond-
ing probability is reduced to 1/100 for cross-linking to mimic a
slower cross-linking rate than activation. In the context of fibrin-
gel formation, a lag time between activation and cross-linking can
represent factors that lower thrombin levels or reduce the poly-
merization rate. These factors limit fibrinogen conversion and
cross-linking.32,33

We denote the initial concentration of P particles as φint =

(Np/Nt)×100%, where Np and Nt are the numbers of passive par-
ticles and total particles in the system, respectively. Here, we use
φint as a proxy for thrombin concentration, and we investigate
the effect of varying φint on the gelation process, as illustrated in
Fig. 1.b. Thrombin is responsible for converting fibrinogen to fib-
rin, consequently generating the mesoscale-fibrin-mesh subunits.
Therefore, it is expected that increasing thrombin concentration
correlates with a higher number of initial passive particles. Over-
all, increasing φint implies that the probability of activation of
passive particles increases. Similar approaches have been suc-
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Fig. 1 (a) Schematic of the fibrin-gel formation process, where fibrin monomers containing E domains (blue spheres) in the center of the monomers bind
to D domains (red spheres) on adjacent monomers, forming initial mesoscale-mesh structures. Subsequent cross-linking between D domains stabilizes
the fibrin mesh, creating a durable clot-network structure. (b) Particle representation for fibrin-network formation used in this study. Passive particles,
P (dark blue), represent the initial mesoscale-mesh structures that can bond (blue bonds) to active particles, A (green), to mimic fibrin-network growth.
Further bond (red bonds) formation between A particles models the cross-linking between fibrin fibers to consolidate the gel structure. Solvent particles
(light blue) only interact hydrodynamically with the rest of the particles. (c) The initial concentration of passive particles (φint) serves as a proxy
for thrombin concentration. At lower thrombin concentrations fewer mesoscale-mesh subunits form, leading to fewer fibrin fibers. Simulations are
initialized with solvent and passive particles, and one active particle that acts as a seed to start the polymerization. A higher φint reflects an increased
thrombin concentration, due to the larger probability of forming mesoscale-mesh subunits that can polymerize into fibers.

cessfully used to model the effect of thrombin on the formation
of fibrin-thrombin gels.3,11 In the Results section, we show that
φint effectively captures the structural and rheological effects of
thrombin on the gelation process.

3 Simulation Method

We use the smoothed dissipative particle dynamics (SDPD)27,34

method to model the hydrodynamic interaction between the par-
ticles that constitute the system. SDPD is a thermodynamically
consistent method that discretizes the fluctuating Navier-Stokes
equations and has been widely used in the modeling of soft mat-
ter.35–37 We consider a gelling system containing N particles with
a volume Vi, such that 1/Vi = di = ∑ j W (ri j,h), being di the num-
ber density of particles, ri j = |ri − rj|, and W (ri j,h) an interpolant
kernel with finite support h and normalized to one. The evolution
equations for the position of the particles is dri/dt = vi, whereas
the stochastic differential equation of the momentum, can be ex-

pressed as

m
dvi

dt
=−∑

j

[
pi

d2
i
+

p j

d2
j

]
Fi jri j −∑

j

[
avi j +b(vi j · ei j)ei j

] Fi j

did j

+∑
j

(
Ai jdWi j +Bi j

1
D

tr[dWi j]

)
·

ei j

dt
, (1)

where vi and pi are velocity and pressure of the i-th particle.
vi j = vi − v j, ei j = ri j/|ri j|, a and b are friction coefficients re-
lated to the shear η and bulk ζ viscosities of the fluid through
a = (D+2)η/D−ζ and b = (D+2)(ζ +η/D). D is the dimension
of the system. In Eq.(1), we conveniently introduce the positive
function Fi j = −∇W (ri j,h)/ri j. The last term in equation Eq.(1),
consistently incorporates thermal fluctuations in the momentum
balance. SI.S1, Eqs.(S1-S5) provide a detailed explanation of the
terms Ai j and Bi j, the equation of state that defines the pressure
p, and the form of the function Fi j.

The bonding between connected particles is modeled using a
Morse potential28 of the form Ubond

i j = DMorse[1−e−α(ri j−r0)]2 (2).

Journal Name, [year], [vol.],1–12 | 3

Page 3 of 13 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
6 

Ja
nu

ar
y 

20
25

. D
ow

nl
oa

de
d 

by
 S

w
an

se
a 

U
ni

ve
rs

ity
 o

n 
1/

13
/2

02
5 

3:
53

:3
9 

PM
. 

View Article Online
DOI: 10.1039/D4SM01126K

https://doi.org/10.1039/d4sm01126k


The Morse potential is an ideal and typical anharmonic po-
tential among the several molecular potentials, resulting in
a bonding force Fbond

i j = −∂Uadh/∂ ri j = 2DMorseα[e−2α(ri j−r0) −
e−α(ri j−r0)] (3). Additional information about implementing the
SDPD model, time window and dimensionless parameters used
in the simulation are produced in SI.S3.

4 Gel Characterization

The gelling mechanisms adopted allow us to model gels with dif-
ferent rheological responses and microstructural connectivity. To
investigate the rheological response of the gels, we conduct the
small-amplitude oscillatory shear (SAOS) analysis, as described
in the following section. Whereas to account for variations in the
microstructural features of the gels, we describe the connectivity
in terms of their bond distribution, and the characteristic average
number of bonds between particles- (N̄B) and maximum-number
(NB−Max) of bonds per particle. In addition to the bond distribu-
tion, we also estimate the fractal dimension of the different gels,
as an indicator of morphological distribution of the network. See
SI.S2 for a detailed description of the fractal dimension computa-
tion. Given the statistical variability of the gels (and the stochas-
tic nature of SDPD) depending on the initial distribution of the
particles, the different gel characteristics are determined as mean
values of five independent realizations of the gelling process.

4.1 SAOS Analysis

We use SAOS38,39 to study the linear viscoelastic response (com-
plex modulus and loss tangent) for our model gels. We define
the gel time (tGP) as the time at which the sol-gel transition oc-
curs due to network formation. The selection of the waveforms’
upper (5π Hz) frequency limit is determined by considering the
effects of fluid inertia. The lower limit, (0.25π Hz) is selected for
computational reasons. Lower frequencies pose numerical chal-
lenges, due to excessively long simulation times, or very small
changes in the system behavior, making it difficult for our nu-
merical method to detect meaningful responses. We first deter-
mine the ’linear viscoelastic region’ for our gels by performing
amplitude sweeps at a fixed frequency. In the linear viscoelas-
tic limit, the moduli do not depend on the amplitude of oscilla-
tion. A strain amplitude of 0.05 was found to be well within the
linear-viscoelastic response throughout the gelation process. To
ensure a quasi-incompressible flow, the speed of sound was set to
c = 50 ≫ Vmax(ω) = γ0ω for every frequency, such that the Mach
number was always smaller than one. In addition, the solvent
viscosity considered produces a Reynolds number Re = ρLVmax/η

always smaller than one for all the frequencies investigated.40

See SI.S4-5 for a detailed description of the simulation setup and
boundary condition41 for stress measurement. To streamline the
presentation of our results, we adopt non-dimensional time units,
by normalizing the time with the corresponding SDPD viscous
time, tν = (h)2ρ/η , where h is the kernel cutoff radius, ρ and η

are the density and viscosity of the solvent, respectively. To ac-
count for the difference in bonding rate between activation and
cross-linking, the lag time between the two stages corresponds
to τ̄ = 0.16. We chose to normalize the elastic modulus, vis-

cous modulus, and frequency by utilizing the values Böhme and
Stenger proposed in their work42. As such Ḡ′ = ρ(s)2/2η2G′,
Ḡ′′ = ρ(s)2/2η2G′′ and ω̄ = ρ(s)2/2ηω are the dimensionless elas-
tic modulus, viscous modulus and frequency. Whilst s is the gap
between the fixed plate and the moving plate in the SAOS test.
This facilitates the comparison with the results of different stud-
ies. By introducing the dimensionless frequency ω̄ we account for
variations in viscosity (η), density (ρ), and gap width (s). This
approach allows ω̄ to scale linearly with ω while adjusting for
these changes in fluid properties. We conduct simulations for gel
concentrations of φint = 7.5,10,12.5,15%. Further details related
to the maximum value of gel concentration can be found in Sec-
tion SI.S2.

5 Results
We conduct an initial assessment of the connectivity and
viscoelastic properties of the different gelation mechanisms
(Branched, Low-Connected, and Highly-Connected) to identify
which model better captures the dynamics of fibrin-gel forma-
tion. In Fig. 2.(a), we present the variation in the connectivity
features for the three mechanisms at their final state. We define
the final gel state as the point where bond formation stabilizes.
Specifically, we consider the gel to be in its final state when the
number of new bonds changes by less than 0.1% over 10000 time
steps. Their characteristic average bonds between particles and
maximum number of bonds per particle can be summarized as
follows:

• Branched: N̄B = 1.0±0.01, NB−Max = 3

• Low-Connected: N̄B = 2.0±0.01, NB−Max = 5

• Highly-Connected: N̄B = 5.4±0.04, NB−Max = 13

Regarding their rheological response, in Fig. 2.(b), we com-
pare the elastic and viscous modulus of the final gel obtained for
each mechanism at φint = 15%. The Branched mechanism shows
a power-law rheological response with a low elastic modulus.
The elastic modulus scales with a slope of two and the viscous
modulus with a slope of one, suggesting a liquid-like behavior.
Thus, despite its network-like connectivity this mechanism is in-
sufficient to model viscoelastic response. In contrast, the plateau
in G′ observed for Low-Connected and Highly-Connected mech-
anisms evidence a final higher rigidity of the gel. In particu-
lar, the Highly-Connected mechanism exhibits a larger change in
the elasticity modulus during the gelation process. Besides the
highlighted differences among mechanisms, in their bond count
and elasticity modulus, the differences in their bond distribu-
tion reveal disparities in the rate at which the gel consolidates.
For example, when comparing the Highly-Connected and Low-
Connected mechanisms in (see Fig. 3.) with the same average
number of bonds, N̄B = 1.86 ± 0.01, the Highly-Connected case
exhibits faster gelation (t̄ = 0.63) compared to the low-connected
(t̄ = 3.91) case. In this case, the larger number of bonds allowed
during the cross-linking stage leads to a quicker consolidation or
fast gelation of the Highly-Connected gel. Given that it depicts
the solid phase in the Highly-Connected mechanism’s final state,
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Fig. 2 (a) Bond histogram of 3 proposed mechanisms. (b) Elastic (solid
lines) and viscous (dashed lines) modulus of 3 proposed mechanisms at
φint = 15%. Power-law slopes are included for the Branched mechanism.
The elastic modulus scales with a slope of two and the viscous modulus
with a slope of one, suggesting a liquid-like behavior.

Fig. 3 Comparing the bond histogram for the Highly-Connected mech-
anism and the Low-Connected mechanism at the same average number
of bonds N̄B = 1.86±0.01

we can anticipate that it will be able to replicate the pre-gelation,
gel-point, and post-gelation phases of a gelation process.

For further analysis and calibration of fibrin-gel formation, we
focus on the Highly-Connected mechanism due to its ability to
accurately represent the entire gelation process, including a wide
range of elasticity modulus variations during gelling, and faster
gel network consolidation. While the Low-Connected mechanism
can model the gelation process, it is better suited for slower gela-
tion processes with lower elasticity. It’s important to highlight
that the adopted gelling framework26 supports modeling systems
with features that span from low to high connectivity, by vary-
ing the degree of bond formation during the cross-linking stage.
However, a detailed exploration of these parameters is beyond
the scope of our current study. In subsequent sections, we address
the identification of the three distinct gel phases —pre-gelation,
gel-point, and post-gelation—using the Highly-Connected mech-
anism. Additionally, we compare the effect of gel concentration
on the microstructural and rheological properties of the gel.

5.1 Gel phases identification

Identifying the gel point (GP) through viscoelastic characteri-
zation presents significant challenges. For accurate viscoelastic
measurements, the degree of cross-linking in the gels should re-
main constant, or mutational effects should be negligible. The
Mutation number (Nµ ) is a dimensionless quantity proposed by
Winter et al.43 It determines if a material’s viscoelastic properties
remain constant during the measurement. It specifically measures
the rate at which material properties such as the storage modulus
or loss modulus change in relation to the timescale of the rheo-
logical test. In our work, the mutation number is zero. However,
gelling systems are inherently transient, changing as they gel. To
address this, experimental methods such as halting the crosslink-
ing reaction before conducting rheological measurements,44,45 or
employing multifrequency rheometric techniques, have been de-
veloped.46,47 Numerically, a key advantage in identifying the GP
is our ability to separate the gelling process from rheological char-
acterization. Instead of having to pause or stop the reaction to
monitor the GP during gelling, we first run simulations up to the
post-gelation stage. We save the particle positions of the system
at specific time intervals. Then, as a post-processing step, we per-
form SAOS tests to observe changes in the tan(δ ) at various fre-
quencies for selected samples from the entire gelling trajectory.
We perform a SAOS test on one selected sample. If the system is
in pre-gel ( primarily liquid-like behavior), move forward in time
to a later snapshot with higher N̄B (indicating more bonds and
progression toward gelation). If the system is post-gel (solid-like
behavior), move backward to an earlier snapshot with a lower N̄B.
During the rheological characterization of these samples, we only
consider existing hydrodynamic and bonding interactions, with-
out allowing any new bond formations. This approach enables us
to track changes in the system’s viscoelastic properties at different
stages, free from the ongoing gelling process. We essentially con-
firm that no structural changes have occurred by asserting that
the mutation number is zero.45

In Fig. 4.(a) we show tan(δ ) for the three phases of gelation
–pre-gelation, gel-point, and post-gelation– at five different times
(two at pre-gelation, two at post-gelation, and gel point) for the
highest concentration, φint = 15%. In the pre-gelation phase, as
the frequency (ω) increases, we observe a decrease in tan(δ ),
indicating behavior typical of a viscoelastic fluid. As gelation
advances, the relationship between δ and ω weakens, and by
the time we reach the gel point, tan(δ ) becomes independent
of frequency. Beyond the gel point, the material behaves as a
viscoelastic solid, showing a characteristic dependency on fre-
quency. In Fig. 4.(b), Ḡ′ and Ḡ′′ evolution in these phases are
shown. Both increase with time but G′ shows a more noticeable
increment, indicating the development of the gel network. In
Fig. 4.(c), we show the values of D f , N̄B at the selected time sam-
pled. Across the various systems evaluated, we identify that the
average number of bonds between particles can be linked to the
different phases of gelation. For instance, for φint = 15% a value
of N̄B < 1.86± 0.01 is indicative of the pre-gelation phase, while
N̄B > 1.86±0.01 correlates with the post-gelation stages. The in-
crease in G′ and G′′ and the decrease in D f after GP indicates
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microstructural changes after GP. The GP occurs at lower values
of both N̄B and G′ and these parameters continue to change well
beyond the GP. We must note that for a fixed φint , after the gel
point the morphology of the network can keep changing due to
cross-linking, without further increase of the gel volume fraction.
This effect, leads to a morphological transition to more porous or
open gels, along with a reduction in D f .

5.2 Effect of thrombin concentration on gel microstructure
and viscoelasticity

We focus now on the variation of the microstructure and vis-
coelastic properties of the gel, with the initial concentration of
P or equivalently to the thrombin concentration during the for-
mation of fibrin-thrombin gels.

5.2.1 Microstructure behavior

Simulation snapshots of gel bond networks at GP are shown in
Fig. 5.(a) for φint = 7.5,10,12.5,15% gel concentrations. The color
map indicates the number of bonds per particle, evidencing a
wider distribution in Nb for lower concentrations. These snap-
shots show higher concentrations lead to more densely packed
structures and less open. Higher thrombin concentrations have
been shown to cause the formation of dense microstructure and
fibers with a high degree of branching due to rapid polymeriza-
tion. These structures are often described using terms such as
"fine," "coarse," "open," "sparse," and "tight". Although our model
does not explicitly model fiber branching at the monomer level,
we can qualitatively say that higher initial concentrations of pas-
sive particles result in a denser network with more branch points
due to the greater number of particles.13,15 These effects on
branching are consistent with SEM images of fibrin clots formed
at different concentrations of thrombin, analyzed by Wolberg, as
shown in Fig. 5.(b).13

In general, a quantitative microstructure characterization is
rarely performed.8,23 In most cases, the results of quantitative
characterization are limited to the average distance between
branch points and the densities of the branch points. Here we
provide a quantitative analysis of the microstructure complexity
and branching of the gels by measuring their fractal dimension
D f . We compute D f by considering the variation in the mass M
of the formed clot with respect to their radius of gyration (Rg) as
M ∼ Rg

D f (see SI.S2.1 for a detailed description). The estimation
of D f is restricted on the length scales Rg < ε, where ε corre-
sponds to the size of a blob in which φblob = φint . Beyond this
scale, the network is considered to be homogeneous, and D f = 3.

In Fig. 5.(c) we present the measured D f for the lowest and
highest concentrations evaluated, indicating the range in D f at-
tained with our numerical model, where D f = 1.56 ± 0.1 for
φint = 7.5% and D f = 2.18± 0.04 for φint = 15%. At the lowest
concentrations, we have low-mass gels with the largest number
of bonds observed at the gel point, N̄B = 4.14 ± 0.02. This is

1Reprinted from Blood Reviews 21, A.S. Wolberg, Thrombin Generation and Fibrin
Clots, 131-142, Copyright 2007, with permission from Elsevier.

consistent with percolation models, network theory, and polymer
physics, where increasing bond connectivity leads to more com-
pact networks with lower fractal dimension.48,49. As the particle
concentration increases, D f also rises because the gel occupies
more space. Consequently, fewer bonds per particle are required
to reach a percolating cluster in a densely connected network.

Within the range of φint investigated, we observe a quasi-linear
relationship of D f with φint . This is consistent with experimen-
tal observations11 on the dependency of fractal dimension at the
gel point with thrombin concentrations, as depicted in Fig. 5.(d).
For comparison, in Fig. 5.(d) we include the corresponding lin-
ear fittings of the measured and reported fractal dimension. In
Fig. 5.(d), we normalize both thrombin concentration (φthrombin)
and φint to allow a proper comparison between the experimen-
tal and numerical data. The thrombin concentration in the ex-
perimental data is normalized against the concentration where a
plateau in the gel-time is reached,11 corresponding to φ∗ = 0.11
NIH/ml. For simulation results, we use φint|max = 15% as a repre-
sentative limiting value. We must note that for larger particle con-
centrations (φint > 15%), the simulated gels exhibit D f > 2. There-
fore, we select the threshold for the limiting concentration to en-
sure consistency with experimental evidence for thrombin clots,
where a fractal dimension much larger than 2 is unusual (See
SI.S2 for further discussion about the selection of φint|max = 15%).
This normalization provides a φint : φthrombin mapping, aligning
the maximum gel concentration simulated, to the maximum ef-
fective thrombin concentration, beyond which the gelation kinet-
ics is not affected.

It is crucial to point out that the SEM images in Fig. 5.(b) show
how fiber thickness changes with concentration. While our model
does not explicitly incorporate fiber thickness, it effectively cap-
tures the network’s key behavior by focusing on particle concen-
tration, which governs branching and connectivity. In real fibers,
thickness influences the fractal dimension: thicker fibers tend to
form fewer and more widely spaced contact points, resulting in
less dense, simpler networks with lower fractal dimensions. In
contrast, thinner fibers, with their greater surface area for inter-
actions, create denser, more interconnected networks with higher
fractal dimensions. Our model implicitly reflects these effects by
considering particle concentration, consistent with experimental
observations showing that higher thrombin concentrations pro-
duce denser networks with more branching points and higher
fractal dimensions, as evident in the SEM images. Also since the
fractal dimension quantifies the spatial distribution of mass rela-
tive to the radius of gyration, branching has a more pronounced
influence on changes in D f compared to fiber thickness.

We must note that besides the fractal dimension, other relevant
structural features in our model such as i) the characteristic gel
size and ii) branch point density, can be used to correlate numer-
ical and experimental evidence further. Whilst such mappings of
other structural features are out of the scope of the present study,
we identify a consistent trend among the simulation results. For
instance, the formation of larger clusters with increasing the con-
centration of passive particles (φint), is consistent with the varia-
tions in the size of the fibrin gels observed experimentally (due
to higher thrombin concentrations). A systematic mapping of the
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Fig. 4 (a) tan(δ ) at pre-gelation, gel-point, and post-gelation phases for φint = 15%, (b) Ḡ′ and Ḡ′′ evolution at pre-gelation, gel-point, and post-gelation
phases for φint = 15% (c) D f and N̄B evaluation with time.

cluster size evolution between simulation and experiments can
potentially offer a link between the characteristic size of the dis-
crete particles in our model and the mesoscale-fibrin-mesh sub-
units. In experiments, the increase in thrombin concentration re-
sults in a denser network with more branching points. In our
model, correlations of this branching density can be further ex-
plored by tuning the maximum number of bonds during cross-
linking.

5.2.2 Viscoelastic behavior

In Fig. 6.(a) and (b), we summarize the viscoelastic characteriza-
tion of the gels with varying concentrations. Values of the elas-
tic G′ and loss modulus G′′ at the gel point exhibit a power-law
relationship with respect to frequency for all the concentrations
evaluated, as depicted in Fig. 6.(a). The corresponding values of
α are also presented for comparison in Fig. 6.(a). In Fig. 6.(b),
we show the variation of α = tan−1(G′′/G′)/(π/2) for the differ-
ent concentrations, as a function of frequency. We could observe
that α is frequency independent and approximately equal to val-
ues of power-law exponent shown in Fig. 6.(a), indicating that

our gels are approximately at the gel point19. We observe that
small variations in φint (7.5% to 15%) cause significant changes in
the microstructure, resulting in noticeable alterations in the vis-
coelastic modulus and gelation time. Both G′ and G′′ increase
with concentration, but the greater change in G′ leads to a reduc-
tion in tan(δ ).

For the simulated fibrin clots, we identify that the range of
power-law exponent measured, α = 0.78 − 0.89, is in general
larger than the ones reported for fibrin clots11,50. In our model
lower power-law exponent can be obtained by i) adjusting the
fluid viscosity of SDPD particles, to reduce the viscous contribu-
tions –reducing G′′–, or ii) increasing the elasticity of the gel –G′–
with further fine tuning of the bonding potential adopted.

Overall, our simulations show that the changes in the viscoelas-
tic properties of the gels, specifically the reduction in the power-
law exponent and the rise in the storage modulus satisfactorily
reproduce the response induced by thrombin in fibrin gels.11. In
Fig. 6.(c) and (d), we further compare the values of tGP and Ḡ′

(measured at ω = 6.28Hz) as a function of φint , with previously
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Fig. 5 (a) Snapshots of gel bond networks at the GP for φint = 7.5,10,12.5,15% concentrations. (The color map indicates the number of bonds per
particle for each gel concentration.)(b) SEM images of fibrin clots formed at different thrombin concentrations as imaged by Wolberg1. 13 (c) Mass
scaling of the clusters as a function of their radius of gyration (SDPD units). We obtain the fractal dimension from these data D f = 1.56± 0.1 for
φint = 7.5% and D f = 2.18± 0.04 for φint = 15% (d) D f as a function of concentration compared with experimental results. 11Dashed lines show the
linear fitting of D f , ≃ 0.2x+1.8 for experimental and ≃ 1.2x+1.1 for numerical results.

Fig. 6 (a) Values of elastic modulus Ḡ′, and loss modulus Ḡ′′ as a function of frequency for φint = 7.5,10,12.5,15% concentrations. (b) α =

tan−1(G′′/G′)/(π/2) as a function of frequency. (c) tGP as a function of concentration compared with experimental results. Dashed lines indicate the
curve-fitting tGP≃ 3.7exp(−1.3x) for experimental and tGP≃ 3.3exp(−1.2x) for numerical results. (d) Ḡ′ (measured at ω = 6.28Hz ) at the GP as a
function of concentration compared with experimental results (all values normalized based on their respective values observed at the φint|max = 15% for
present results and φ∗ = 0.11 NIH/ml for experimental results. 11Dashed lines indicate the linear fitting G′ ≃ 1x+0.1 for experimental and G′ ≃ 1.1x−0.1
for numerical results.
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reported evidence11. Following the normalization used rational-
ize the variation in D f , in Fig. 6.(c) and (d) the parameters tGP
and G′ are normalized using the values gel-point time and elas-
ticity modulus observed at the thrombin concentration, φ∗ = 0.11
NIH/ml, corresponding to the limiting concentration where the
gelation time reaches a plateau. For simulation results, we use
φint|max = 15% as the limiting value. In Fig. 6.(c), we identify
that tGP quickly decreases as the concentration of thrombin in-
creases, indicating faster gelation at higher concentrations. The
variation in gelation rates—from slow at φint = 7.5% to fast at
φint = 15%— is attributed to differences in the activation proba-
bility of the Highly-Connected mechanism, which speeds up the
cross-linking process. Similar to experimental results, the reduc-
tion in gelling time reaches a plateau, where further addition of
thrombin does not shorten the gelling time. In this context, the
limiting concentration, φint|max = 15% in our simulations is suffi-
ciently high to capture the plateau in the gelation time (reflecting
a stabilization of the gel formation), while maintaining the values
of D f < 2, as discussed in the previous section.

Comparing the functional dependence of tGP, with the throm-
bin concentration, both experimental and numerical results show
that at higher concentrations the tGP can approximated by an
exponential decay of the form tGP ∼ ae−bφ̄ , where φ̄ is the nor-
malized concentration, a,b = 3.7,1.3 for experiments, and a,b =

3.3,1.2 for simulations. The corresponding fitted forms are in-
cluded as dashed lines in Fig. 6.(c). Experimentally, the existence
of a limiting value of tGP is attributed to the fact that in those
experimental essays, thrombin concentration solely dictated the
kinetics of fibrinogen activation. In this sense, the variation on
φint in our model is equivalent to the variation in thrombin con-
centration in the experiments. At lower thrombin concentrations,
the experimental evidence shows that the tGP asymptotically in-
creases. In our simulation results, we capture this trend for the
range of φint evaluated. We must remark that for φint < 7.5%, we
do not reach the gel point within the simulated computational
time, consistent with such asymptotic behavior in tGP.

In Fig. 6.(d), we note that contrary to the gelation time, the
storage modulus increases with thrombin concentration. This
trend suggests that gels formed at higher thrombin concentra-
tions have a greater ability to withstand elastic stress, remain-
ing within the linear viscoelastic region. Experimentally, it has
been observed that G′ plateaus, indicating that further increases
in thrombin concentration do not affect the gel’s storage modulus
beyond a limiting concentration. This plateau is reached at the
concentration of φ∗ = 0.11 NIH/ml, coinciding with the condition
where gelation time also plateaus. In our numerical results, such
plateau in G′ is absent, suggesting that the material’s elastic prop-
erties can still evolve, even after the tGP has stabilized. However,
within the range of the mapping (φint : φthrombin) adopted, the sim-
ulated results are consistent with the experimental data showing
a linear dependency of G′ with the thrombin concentration as
shown by the dashed lines in Fig. 6.(d). Over the concentration
range mapped, the corresponding linear fitting leads to a slope of
≃ 1, for both experiments and simulations.

5.2.2.1 Relationship of power-law exponent α and fractal di-
mension. The relationship between the power-law exponent α

and the fractal dimension D f , provides insights into the interplay
between the viscoelastic properties and the microstructure of gels.
This relationship offers a method to indirectly estimate the struc-
tural properties of gels through rheological characterization2.

In the context of polymeric gels, the pioneering theoretical
work of Muthukumar51 has been used to describe the corre-
lation between the power-law exponent, α and the fractal di-
mension11,52. In contrast to percolation theory48,53, where un-
screened hydrodynamic interactions are present, Muthukumar’s
work51 incorporated screening effects that can influence the net-
work’s morphology. In general, both screened and unscreened
models serve as bounds, with physical systems potentially lying
between them depending on the extent of screening.

In Fig.7, we present our findings of D f and α alongside the
theoretical predictions (α = d/(D f + 2), d = 3) for unscreened
hydrodynamic interactions, discussed by Muthukumar51. In
Fig.7, we can observe that the power-law exponent decreases
as the fractal dimension increases. Overall, our simulation
results align with the reported evidence for percolation theory,
where α ranges from 1 to 0.7.51 Although the absolute values
of α are slightly higher than those predicted by the theory,
the observed slope is consistent with the behavior of gels with
hydrodynamic interactions. We believe this effect is inherent to
the SDPD methodology used to model the gels, as hydrodynamic
interactions between the particles forming the gel are always
present.

We acknowledge that discrepancies may exist between frac-
tal dimension measurements of the stress-bearing network and
those of the overall density distribution. Specifically, density-
based approaches (which reflects the structural network) can
include additional features that do not necessarily contribute
to the material’s mechanical properties. Our reported fractal
dimension corresponds to the structural network. Therefore, the
discrepancies observed in our results may also arise from this
approximation. Alternative strategies to determine the fractal
dimension or estimate the fractal spectrum associated with the
stress-bearing network are beyond the scope of this work but will
be addressed in future publications. Despite the discrepancies
observed between the theoretical predictions and our numerical
results, the identified correlations between D f and α indicate
that the interdependence between the viscoelastic properties
and the microstructure of fibrin gels can be effectively captured
within the framework of our model.

Conclusion
This study introduces a mesoscopic model that simulates the for-
mation of fibrin-thrombin gels, focusing on their rheological be-
havior and microstructural characteristics. Our model effectively
replicates the complex fractal structure and viscoelastic proper-
ties observed in fibrin-thrombin gels at the gel point. One of the
key aspects of our model is its ability to account for variations in
the concentrations of thrombin into the structure of fibrin gels.
The resulting gels have fibers with fewer branch points and larger
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Fig. 7 α as a function D f for theoretical results (unscreened theory) 51,
and present results.

pores at lower thrombin levels. Conversely, higher thrombin con-
centrations lead to denser fiber networks with more branch points
and smaller pores. This variation in fiber structure directly influ-
ences the stiffness of the fibrin network, with higher thrombin
levels generally leading to increased stiffness.

Furthermore, our model demonstrates that increasing the ini-
tial concentration of passive particles—akin to increasing throm-
bin levels—results in a decrease in the gelation time (tGP) and
the power-law exponent (α), while the fractal dimension (D f )
and elasticity modulus (G′) increase. These trends are consistent
with both experimental and numerical data from previous stud-
ies, showing values of D f ranging from 1.56± 0.1 to 2.18± 0.04.
Notably, our results not only align qualitatively with existing ev-
idence but also show good quantitative agreement. Additionally,
our numerical model can capture the interplay between the vis-
coelastic properties and the microstructure of fibrin gels.

By accurately capturing the dynamics of fibrin polymerization
and network formation, our model offers valuable insights for
clinical and bioengineering applications requiring precise gela-
tion control. This mesoscale clot model also sets the stage for
future Lagrangian heterogeneous multiscale modelling54 of clot-
ting processes under physiological flow conditions.
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The data point of simulated gels are available in the fibrinGels repository,
https://github.com/BCAM-CFD/fibrinGels.git

Experimental SEM images of fibrin gels in Figure 4.b from A. S. Wolberg,
Blood reviews, 2007, 21, 131–142 were included with permission from the
publisher.
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