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Abstract—This paper addresses the continuous Human Activ-
ity Recognition (HAR) problem using acoustic sensors, which
finds application in aged population health and well-being moni-
toring. The challenging class imbalance problem has been studied
using three main groups of time-series modelling strategies,
including: 1) the local feature extraction based on Convolutional
Neural Networks-Long Short-Term Memory Networks (CNN-
LSTM), 2) feature learning based on global dependencies using
Video Vision Transformer (ViViT), and 3) combination of the
local and global features using ResNet-based frame-level feature
extraction followed by Temporal Transformer (RNTT). The
acoustic spectrograms have been augmented by adding noise,
which has improved all models accuracy (83-86%). Research
findings have also demonstrated the best level of resilience to
noise condition using the proposed RNTT pipeline (93%), and
then the ViViT model (86%).

Index Terms—Keywords: HAR, CNN-LSTM, ViViT, ResNet,
Temporal-Spatial Analysis, Acoustic

I. INTRODUCTION

In recent years, the use of various digital sensor data for
HAR has drawn considerable interest owing to its broad
applications. In the context of elderly care, HAR is partic-
ularly valuable for promoting prolonged independent living
by monitoring daily activities, detecting falls, and identifying
accidents. Acoustic sensors that focus on identifying key
actions, such as a call for ”help” or routine daily tasks,
rather than private conversations, are well-suited for care home
settings, where conventional wearable sensors might not be
feasible.

Despite their potential, acoustic sensors have not been
widely adopted for HAR for the elderly population. The data
used for HAR is different in some aspects compared to other
applications of acoustic modeling, such as speech recognition
that usually uses data from a close microphone, or scene
classification that mainly uses environmental data. For HAR
application, the human-generated sounds are used not only
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based on their speech, but also as a result of their interaction
with environment. Furthermore, the user is not necessarily
close to the microphone.

Besides that, there are some methodological barriers that
should be carefully addressed to design robust acoustic-based
HAR models using Artificial Intelligence (AI) time-series
analysis strategies. One of the important challenges is provid-
ing a large data set of continuous activity recordings, including
scenarios similar to real life, with balanced class condition
for Deep Neural Networks (DNN). The balance condition is
necessary for fair AI modeling. Furthermore, given the diverse
acoustic conditions in living environments, designing time-
series HAR pipelines with strong features robust to noisy
acoustic conditions is desired.

Traditional acoustic models utilized hand-crafted features
such as PLP or MFCC [1] [2], which require more manual
parameter tuning compared to DNNs. On the other hand,
the efficiency of the more recent transformer-based pipelines
compared to CNN-LSTM or cascading strategies to combine
local CNN features with global dependencies based on trans-
formers has not been well studied in the context of HAR.
Considering the reports about the challenges of CNN-LSTMs
in capturing long-range dependencies and generalization [3], it
is reasonable to conduct comparative studies in HAR domain.

To address these challenges, this paper explores three
different deep learning pipelines for HAR, using acoustic
data: 1) a CNN-LSTM pipeline, 2) a ViViT pipeline and
3) a proposed cascaded pipeline designed based on ResNet
for frame-level feature extraction followed by a Temporal
Transformer (RNTT). We further address the class imbalance
issue by augmenting the dataset with noise to improve fairness
in model decisions across various classes of activities.

A newly collected dataset of acoustic signals, which in-
cludes recordings of specifically designed sequences of ev-
eryday activities, is utilized in this research. Then, based
on an overlapped windowing strategy, the spectrograms have
been computed at the window level. This dataset has been



augmented by applying various types of noises, and the
robustness of the models under clean and noisy conditions has
been explored. All models achieved good accuracy in clean
condition with slightly better results of CNN-LSTM. In noisy
test condition, the proposed cascaded RNTT and then, ViViT
model demonstrated remarkable resilience to noise condition,
offering better generalization compared to CNN-LSTM. To
enhance reproducibility, the code used in this study is publicly
available at: [4], we plan to release the data later, due to
ongoing research involving the same data.

II. RELATED WORK

In the field of acoustic signal classification, there are similar
methods that can be employed for both HAR and environmen-
tal classification such as CNN-LSTM and unsupervised learn-
ing, where similar challenges of noise and variability arise.
Although HAR deals specifically with human activities rather
than environments, reviewing scene classification research,
helps to inform the selection of models and data pre-processing
strategies for HAR. Recent studies in acoustic scene clas-
sification have employed various machine learning models.
Bae et al. Supervised strategies such as Hybrid CNN-LSTM
models [5], leveraging both spectral and temporal features and
unsupervised methods such as negative matrix factorization
(NMF) [6] were employed for scene classification. Besides
that Deep NN models were used [7] with emphasis on data
augmentation. In the case of HAR, DNNs, CNN-GRU were
used [8], [10]. Other studies [9] demonstrated the effectiveness
of combining multiple sensors such as Radio-Frequency (RF)
sensors and acoustic signals for detection of activities such
as walking and falling. These studies collectively illustrate
the importance of acoustic data in non-wearable HAR, with
particular success achieved using CNN-based architectures and
DNNs for sequence modeling.

On the other hand, transformers have recently shown
promise in processing time-series data, particularly with their
ability to capture global dependencies. The introduction of
the Vision Transformer (ViT) [11] adapted the transformer
architecture for image classification by treating image patches
as sequential tokens. The idea was also extended for video
data [12] by introducing ViViT model based on the spectro-
temporal dimensions in parallel using tubelet embeddings.
This concept is directly applicable to HAR using acoustic data,
where spectrograms serve as sequences of frames similar to
video [13].

III. METHODOLOGY

A. Data Acquisition and Pre-processing

This study utilized a dataset, collected at Coventry Univer-
sity using a 16-channel array-based UMA-16 acoustic sensor.
A diverse set of young and elderly volunteers carried out the
activities. Each activity series has been recorded 10 times by
each of the 11 subjects. The raw audio data underwent several
pre-processing steps as follows:

1) Manual Labelling, Windowing, and Spectrogram Com-
putation: Each audio sequence was manually annotated and
then segmented into windows of 400 ms with 50 percent
overlap. This window size is chosen based on a grid search,
matching the natural pace of human activities. A spectrogram
has been computed for each 400 ms acoustic window. The
spectrogram includes 35 bins (frames) of length 11.428 ms
along time and 1025 bins along the frequency axis. A window
contains frames that may represent the same or different activi-
ties. Due to this heterogeneous nature within some windows, a
sequence-to-sequence prediction pipeline was developed. The
activities classified in this study include ”silence”, ”coughing”,
”picking up food”, ”eating food”, saying ”hungry”, ”walking”,
and ”dropping a spoon”.

2) Augmentation: Data augmentation has been applied to
simulate diverse environmental conditions by adding white,
pink, brown, and blue noise to the original audio files. The
noise levels range from 0.007 to 0.013 with (µ = 0.01, σ =
0.002449). This augmentation process was intended to expand
the dataset size and increase model robustness against noisy
environments.

3) Data Balancing: To mitigate potential class imbalance
issues, data balancing based on over-sampling of minority
classes and the under-sampling of majority classes has been
performed. This has been conducted at the window level
and since there are both homogeneous and heterogeneous
windows, it wasn’t possible to generate the same number
of frames for all the activities, though it has improved the
balance condition of classes as a whole. Initially, a target of
600 samples (windows) per activity, comprising both clean and
noisy signals, have been established. Then, the samples per
class have been increased to 2500 to train models demanding
more data.

B. Model Architectures and Training

1) 1st pipeline: CNN-LSTM:
• Spectrogram Pre-processing for CNN-LSTM Model

The input spectrograms were reshaped to (41, 25, 35) to match
the input dimensions required by the CNN architecture. The
process is shown in Figure 1.

This model architecture consists of three CNN layers and
two LSTM networks to capture both frame-level spectro-
temporal features and the dependencies across the frames. The
model has not shown reasonable accuracy without augmented
data. However, by leveraging both clean and noisy acoustics,
the model demonstrated improved performance in recognizing
activities under various environmental conditions.

2) 2nd pipeline: ViViT:
• Spectrogram Pre-processing for ViViT Model
Due to the requirement of square-shaped input patches by

the ViViT model, the initial spectrograms of shape (1025, 35)
were reshaped. [11] [13]. To achieve this, the last row of
the spectrogram was removed using custom code, resulting
in a new shape of (1024, 35). This reshaped data was further
transformed into (32, 32, 35) to match the ViViT’s expected



Fig. 1. Pre-processing Workflow for Patch Generation and Input Reshaping
for CNN-LSTM Model

Fig. 2. ViViT architecture, input spectrograms are divided into 3D patches
and processed by a Tubelet Embedding layer. Positional encoding keeps the
track of sequential structure of the data, while the transformer layers capture
both spectro-temporal dependencies

input format, the input shape processing is presented in Figure
2. The final shape for the reshaped window samples represents
35 frames of spectrogram data with a spatial resolution of
32× 32 for each frame, which was fed into the ViViT model.
The initial patch shape of (41,25) for CNN-LSTM did not
yield results as effective as a (32,32) shaped ViViT. The model
processed the reshaped spectrograms 35 × 32 × 32 using the
key components of ViViT [12]:

• Tubelet Embedding

Fig. 3. RNTT architecture, cascading ResNet50 for frame-level spectro-
temporal feature extraction with a Temporal Transformer for sequence mod-
eling. The architecture concludes with a classification layer, making it highly
effective for HAR tasks

Fig. 4. In all scenarios, models were trained using both noisy and real data.
In case 1, presented by the dark blue bars, M1 model of all pipelines trained
on more than 3.5k training samples were used, and the test set contained a
mix of augmented and real data. In case 2, presented by light blue, the M2
models of all pipelines trained using more than 15.5K samples were used and
the test set also included mix data. However, in case 3, represented by orange
bars, only noise-free clean test data was used. For CNN-LSTM pipeline, the
M3 model was used that was trained using less augmented data ( 5k samples)
due to its poor performance for highly augmented train set, while the same
M2 models were employed for the other ViViT and RNTT pipelines.

• Positional Encoding
• Multi-Head Self-Attention

C. 3rd pipeline: RNTT

In the RNTT pipeline, ResNet50 extracts spectral features
from each frame (size:32 × 32), treating temporal data as 35
separate frames. Optimal results were achieved with 5 epochs,
132 frozen layers, and a batch size of 32. Figure 3 illustrates
the overall architecture.

Frame Sequence Embedding: The frame-level features from
ResNet50 are reshaped into a time series sequence of shape
(35, 512) for transformer input.

Temporal Transformer: The transformer captures temporal
dependencies via multi-head self-attention, processing the se-
quence Xseq into X ′

seq:

X ′
seq = Transformer(Xseq) (1)

Output Layer: The transformer’s output is passed through a
softmax classifier:

ŷ = softmax(WoX
′
seq + bo) (2)

where Wo and bo are the weights and biases of the output
layer.

IV. RESULTS AND DISCUSSION

A. Results

The experiments were designed to evaluate the performance
of the three different pipelines, in terms of two key factors:
(1) the effect of low versus high levels of data augmentation



TABLE I
HYPERPARAMETERS FOR CNN-LSTM, VIVIT, AND RNTT MODELS

Model Epochs Batch Size Learning Rate Dropout Activation Optimizer
CNN-LSTM 300 20 1.00E-4 0.1 LeakyReLU, Softmax Adam

ViViT 100 16 1.00E-5 0.3 ReLU Adam
RNTT 50 32 1.00E-3 0.7 Mish Adam

in training HAR model, and (2) HAR model accuracy in clean
versus noisy environments. The results of these experiments
are summarized in Table I and Figure 4.

The first models of all pipelines (M1) was trained using lim-
ited amount of augmented data as described in the methodol-
ogy section, where 600 samples per activity have been initially
used). These models were tested on a mix group of clean and
noisy test samples. The second group of models (M2) for all
three pipelines were trained using a higher level of augmented
data, building upon the previously mentioned augmentation
process by increasing the dataset to 2,500 samples per activity.
These models have been applied on a test set including both
clean and noisy samples. Since the performance for CNN-
LSTM dropped with heavy augmentation, a third model M3
was developed for this pipeline using less augmented data.
Then, in a third test scenario, including only clean acoustic
test samples, the accuracy of M3 for CNN-LSTM and M2
models of ViViT and RNTT pipelines were evaluated.

Due to the significantly low accuracy observed in prelimi-
nary tests before augmentation, results for models trained only
on clean data have been neglected from this section. The focus
is instead on the impact of augmentation on performance and
the robustness of each model in noisy and clean environments.
The results of these experiments are presented in Figure 4
and detailed in Table I. Furthermore, in order to analyse the
accuracy of these models for different groups of activities,
the confusion matrices for all models are provided in Figure
5. While all models generally perform well for ’coughing’,
there is notable confusion between ’silence’ and ’walking’.
That can be explained based on the low levels of sound in
walking activities in PC Lab surface.

B. Discussion

The experiments provide insights about the models per-
formance, the effect of data augmentation, and resilience to
diverse conditions. The CNN-LSTM model performed well
with controlled augmentation in both clean and noisy condi-
tion, while showing sensitivity to over-augmentation. That can
be due to its strong local frame level features compared to
temporal features, because noise effect is dominant in spatial
2D frames. On the other hand, both the proposed RNTT and
ViViT demonstrated good resilience to noise, maintaining high
accuracy on both noisy and clean conditions. That is connected
to the attention mechanism and tubelet embeddings which can
capture strong global spectro-temporal features connected to
the inherent acoustic features. That has made these models
robust to noisy environments and also aligns with other
research findings [14]. Since RNTT uses both frame level local

Fig. 5. Confusion matrix for the ViViT model when tested on clean samples
(encoded labels. The encoded labels are as follows: 0 - coughing, 1 - drop
spoon, 2 - feel bad, 3 - hungry, 4 - pickup/eat food, 5 - silence, 6 - walking)

features based on CNN, besides the global temporal features
from transformer part, its accuracy has slightly dropped in
clean condition (83.29%), when trained using augmented data.
Because the CNN layers learn part of noise features, besides
the inherent acoustic features.This proposed RNTT pipeline,
due to its tolerance to noise, can be used in noise condition
while also maintaining reasonable accuracy in clean condition.

These results emphasize the impact of augmentation levels
on model performance, aligning with previous research on
noise augmentation [2]. Besides that, Transformer-based mod-
els can outperform traditional CNN-LSTM models in noisy
condition, but also demand more training data and computa-
tional resources, which is consistent with prior research [11],
[15]. This makes them well-suited for real-world applications
like elderly care monitoring in noisy environments.

CONCLUSION

This study evaluated three pipelines for acoustic HAR:
CNN-LSTM, ViViT, and a proposed RNTT model. All models
achieved comparable accuracy in clean condition, when trained
using both clean and augmented data based on some types
of noise. In the case of noisy condition, the proposed RNTT
model achieved the highest accuracy, while ViViT and CNN-
LSTM, were the second and third in that case. While these
experiments highlight the positive effect of data augmentation
on the accuracy of HAR models, they also demonstrate the
challenges it poses for models generalization.
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