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Abstract

Antihydrogen, composing an antiproton and positron, is the only bound state of
two antiparticles yet to be synthesised, making for an enticing system to study
the purported symmetry of matter and antimatter. As antihydrogen does not
occur naturally in the observable universe, any study of this atom requires it to
be synthesised in a lab, which the ALPHA experiment is routinely able to do.
However, the absolute numbers are small and efficient detection is crucial for the
experiment.

To detect these atoms, ALPHA deploys two main annihilation detectors: a
silicon vertex detector and a new time projection chamber installed in 2018. A
key challenge for both detectors is distinguishing between antimatter annihilations
and background events (e.g. cosmic radiation), a task for which machine learning
is well suited. Presently, for the silicon vertex detector, this is done with high-level
variables, while the time projection chamber has no way of filtering these events.

In the present work, we have developed the first models capable of filtering
events in the time projection chamber, which proved vital in the first measure-
ment of the effect of gravity on the motion of antimatter. A first-of-its-kind deep
learning model trained on low-level data from the silicon vertex detector has been
developed, and it can successfully classify events to a high degree of accuracy.
Further, the newest models trained for the silicon vertex detector are presented.
The use of these models on real data is included, and all results generated by
ALPHA from the 2022-2024 experimental runs will use the models described in
this thesis.

Finally, the transverse beam profile in the accelerators throughout CERN
(such as the one used to provide antiprotons to ALPHA) is an important metric for
successful operation. The significant increase in beam intensities poses a challenge
that make the currently deployed correcting magnetic fields undesirable. The
possibility of using machine learning to reconstruct beam profiles in the Proton
Synchrotron is presented, and a first attempt at applying these models to real
data is included which, despite a troubled dataset, shows promising results.
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Chapter

1 Introduction

For thousands of years, humans have been fascinated by symmetry, the proof of

which is reflected in our architecture (Figure 1.1a), art (Figure 1.1b), pottery, and

even music. The reasons for our captivation are likely due to its prevalence in

nature as a signal for health and harmony, and it may be associated with the way

the brain processes visual information, mediated by evolution [1]. Perhaps initially

an aesthetic pursuit for humans, symmetry has since taken up a central role in

how we actually understand the universe around us and even how we explain its

inner workings.

(a) Built from 3100BC by the native
Celtic population, Stonehenge is one
of the earliest examples of symmetry
in human architecture. This recon-
structed sketch was drawn in 1725 by
Inigo Jones.

(b) Roman floor mosaic: Head of
Medusa, ca. 115–150AD, stone
tesserae. The Romans were famous for
using symmetry in all aspects of life.

Figure 1.1: Examples of symmetry in early human architecture and art.

In physics, the term symmetry has become synonymous with invariance; an

absence of change under specific kinds of transformations [2]. So when, in 1918,

Noether proved the link between invariance of various actions under a symmetric

transformation and the laws of conservation already recognised at the time (namely

classical mechanics and electrodynamics) [3], the concept was cemented in the

minds of physicists as a fundamental property of nature. Since then, this concept

of symmetry in nature has become a powerful tool of theoretical physics, and it

has since been shown that many laws of nature originate in symmetries of some
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kind.

Three significant discrete symmetries currently being studied in fundamental

physics are:

• The charge conjugation C : q 7→ −q, where all fundamental charges change

sign;

• the parity transformation P : x 7→ −x which describes an inversion of spatial

coordinates;

• and time reversal T : t 7→ −t.

The combination of which is known as CPT symmetry and describes a particle

(p) turning into its antiparticle (p̄). Individually, these are sometimes known as

near-symmetries as each is broken in the universe. However, the CPT theorem says

that CPT symmetry must hold for all physical phenomena, which implies, among

many other things, that particles and antiparticles should demonstrate the same

(or sign-opposite) properties when probed. The standard model (SM) is the closest

to a theory of everything that we have today, accurately describing three of the

four fundamental forces of nature1, and classifying all known elementary particles;

and the CPT theorem2 is a cornerstone of this model. It is through this theorem

that the study of antimatter is intimately linked with the study of symmetry as a

concept, and therefore, our understanding of antimatter is inherently linked with

the standard model and how we understand the laws of nature as a whole.

The Antihydrogen Laser Physics Apparatus (ALPHA) experiment is split into

two main components: ALPHA-2, the goal of which is to test CPT symmetry

by probing antimatter directly, and ALPHA-g, to test the theory of gravity on

antimatter, one of the few missing pieces of the standard model. The apparatus

used for these studies and the methods by which the particles are detected and

analysed will be the main focus of the following thesis, with a specific focus on

how machine learning is used to classify events as accurately as possible.
1The electromagnetic, weak, and strong forces – gravity is not described in the standard

model.
2The CPT theorem says that any Lorentz invariant local quantum field theory with a Her-

mitian Hamiltonian must have CPT symmetry.
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1.1 History of Antimatter

In 1928, Dirac derived what is now known as the “Dirac equation” [4] 3:

(iℏγµ∂µ −mc)ψ = 0 (1.1)

as a relativistic version of the Schrödinger wave equation:

iℏ
d

dt
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩. (1.2)

This result, however, allows for negative energy solutions to the already well-

established energy-momentum relation:

E2 = p2c2 +m2c4. (1.3)

Dirac commented on this supposed discrepancy in his work, stating:

“The second difficulty in Gordon’s interpretation arises from the

fact that if one takes the conjugate imaginary of equation (1)4, one

gets [(1) in another form] which is the same as one would get if one

put −e for e. The wave equation (1) thus refers equally well to an

electron with charge e as to one with charge −e.” [4]

While this quote already seems to suggest the idea of a negative electron, it wasn’t

until 1931 [5] when Dirac formally proposed the idea of an antiparticle, suggesting

that the negative-energy solutions might instead correspond to some new form of

particle, equal to the electron in mass but opposite in charge; an “anti-electron”.

In 1933, Anderson was able to observe this particle for the first time by exam-

ining images of cosmic rays passing through cloud chambers under the influence

of a magnetic field [6]. In these images, some of the tracks produced match the

charge-to-mass ratio of the electron but curve in the opposite direction than those

produced by electrons, indicating that the observed particle has the same mass as

the electron but an opposite charge; an anti-electron- or “positron” as Anderson
3Though Dirac never wrote the equation in this form, his result was analogous.
4Throughout this quote (1) refers to Dirac’s form of our Equation 1.1
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named it.

Both of these discoveries earned Nobel Prizes, one for Dirac in 1933 “for the

discovery of new productive forms of atomic theory,”5 and one for Anderson in

1936 “for his discovery of the positron”.

While the first reference to the “antiproton” also occurs in Dirac’s 1931 article

[5], it took until 1955 for their discovery at the Bevatron in Berkeley, Califor-

nia. Between the years of 1954 and 1993, the Bevatron was operated as a proton

synchrotron, allowing high-energy collisions between proton beams and a copper

target, reaching collisions of up to 6.2GeV6, the calculated optimum energy for

producing antiprotons. A paper titled “Observation of antiprotons” by Owen

Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis [7] was pub-

lished in November 1955 announcing the discovery of a new particle which, much

like the positron, was found to be identical to the proton except with negative

charge. To detect the antiprotons, three scintillating panels and two Cherenkov

counters were deployed along a secondary beamline beyond the copper target, de-

signed to observe the velocity of particles that passed through them, the resulting

signal of which (curve and momentum) could have only come from an antiproton.

Another Nobel Prize was awarded for this discovery to Segrè and Chamberlain in

1959 “for their discovery of the antiproton”. By 1996, CERN in Geneva, Switzer-

land, had been creating and accumulating antiprotons using a similar method for

years, albeit with relatively high energies. After the machines required for this

process: the Antiproton Accumulator (AA), the Antiproton Collector (AC), and

the Low Energy Antiproton Ring (LEAR) were shut down, the community of low

energy antimatter scientists requested a new ring that would enable them to study

antiprotons at lower energies. The proposal for the “Antiproton Decelerator (AD)”

promised dense beams of over 107 antiprotons per minute with a momentum of

∼ 100MeV/c in 200ns bunches [9]. The proposal was approved on 6 February 1997

[10], and operation began, on the site of the old AA and AC, in the year 2000.

From here antimatter research began to flourish, with ATHENA creating thou-

sands of “cold” antihydrogen atoms in 2002 [11], its successor, ALPHA, initially

trapping them in 2010 [12], confining them for over 1000 seconds in 2011 [13]
5Dirac shared this Nobel Prize with Schrödinger.
6Or 6.2 billion electron volts (BeV), hence the name Bevatron.
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(a) Image of the first identified
positron. The lead plate separat-
ing the gas chamber is 6mm thick,
and the track of this particle and
its secondary indicates that it is a
positron. This image and other sim-
ilar ones were published in [6].

(b) Antiproton star-shaped annihi-
lation captured in emulsion. Figure
from [8].

Figure 1.2: Images from the discoveries of the positron and antiproton.

and then performing precision spectroscopy of the 1S-2S transition [14], the 1S-

2P (Lyman-α) transition [15] in 2018, and demonstrating successful laser cooling

on the trapped antihydrogen [16] in 2022. More recently, in 2023, the ALPHA

collaboration, including the author was able to experimentally measure the value

of ḡ (the local acceleration of antimatter towards the Earth) to within 25% [17],

demonstrate consistent and controllable laser cooling, increase antihydrogen pro-

duction to stacks of 15,000 atoms at a time, and measure the hyperfine structure,

1S-2S transition frequency, 2S-4P frequency, and the 2S-2P Lamb shift transitions.

1.2 Motivation

Despite passing all tests of its validity so far, there are some major gaps within the

standard model. For example, it cannot explain the baryon asymmetry problem
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(the observed imbalance of matter and antimatter), it does not incorporate the

theory of gravitation as per general relativity, nor does it account for the universe’s

accelerating expansion.

In order to understand the final force, gravity, we must turn to Einstein’s

theory of general relativity (GR) [18] and, similar to the CPT theorem, which

claims that matter and antimatter share the same properties, the weak equivalence

principle (WEP), predicts that matter and antimatter should gravitate in the same

way.

A violation of either of these laws could potentially explain, or at least demon-

strate, some of the issues with our current theory of everything.

Most antimatter studies consist of these types of particle/antiparticle com-

parisons; for example comparisons of the charge, mass, and g-factor of the elec-

tron/positron pair [19–21]; or of the charge, mass, and magnetic moment of the

proton/antiproton pair [22, 23]. Since none of these measurements have uncov-

ered a statistically significant difference between these properties, they must act

as a form of validation of the CPT theorem and, therefore, the SM. However, the

baryon asymmetry problem still cannot be accounted for regardless of these find-

ings, potentially pointing to some undiscovered fundamental difference between

matter and antimatter that made the universe favour one over the other.

Beyond these mysteries, antimatter has practical applications for which it is

important to understand its properties. The ability to monitor and manipulate it

accurately, which is central to this field of antimatter research, is vital for use in

any practical sense. A typical example of these applications is positron emission to-

mography (PET), which is a form of medical imaging relying on positron-electron

annihilations to build an image. Additionally, antiprotons have been calculated

to potentially be effective in treating certain forms of cancer, much like currently

employed ion therapy methods [24].

With all these considerations in mind, it is clear that the study of antimatter

holds significant importance and relevance in modern physics and beyond, and any

inconsistency of the SM found would represent one of the biggest breakthroughs

in the history of physics.
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1.2.1 Antihydrogen as a Test Subject

To test these fundamental symmetries, many groups are looking at antiprotons,

positrons, or positronium (the bound state between an electron and positron).

However, ALPHA uses antihydrogen for its studies, and the reasons for this are

numerous:

1. It is the simplest pure bound-state antimatter atom, and atoms allow for

spectroscopy.

2. It is neutral, preventing the effect of the atom’s charge from dominating the

other incredibly sensitive properties we would like to measure.

3. It corresponds to the very well-known hydrogen atom, providing ample re-

sources for comparison.

4. It is (again assuming a certain similarity with hydrogen) stable.

5. Given its small magnetic moment, it is relatively easy to confine.

Given enough antihydrogen, trapped or in flight, lots of experimental opportunities

arise, generally involving performing spectroscopy on the atoms or measuring the

gravitational interactions of antimatter.

1.2.2 Spectroscopy

Comparing antihydrogen (H̄) with hydrogen (H) via spectroscopy is beneficial for

many reasons. For example, the 1S−2S transition is an ideal candidate for preci-

sion comparisons of H̄ and H because it has a sharp natural line width of ∼ 1.3Hz,

and has been measured in hydrogen very precisely (f1S−2S = 2, 466, 061, 413, 187, 018(10)Hz

with a relative uncertainty of 4.2 × 10−15 using Doppler-free two-photon spec-

troscopy [25]). This result was later confirmed with a caesium fountain [26] and

allows for a very precise comparison when performing spectroscopy on H̄. Be-

yond this, other transitions in hydrogen have been measured to a high degree of

accuracy that are also potential candidates for direct comparisons, including the

2S1/2 − 2P1/2 Lamb shift (measured to be f2S1/2−2P1/2 = 1057.8446(29)MHz with

a relative uncertainty of 3.2 × 10−6 [27]), and the ground state hyperfine splitting
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(measured to be 1, 420, 405, 751.7662(30)Hz with relative uncertainty of 2.1×10−12

[28]). Each of these has been measured in H̄ this year (with contribution from

the author) and was analysed using the machine learning models and analysis

techniques described later in this thesis, the details of which are currently being

reviewed prior to publication.

1.2.3 Antimatter and Gravity

One of the attributes of our current theory of gravity, general relativity, is the

universality of free-fall, which states that gravitational mass and inertial mass are

the same. This principle is known as the weak equivalence principle and, if true,

implies matter and antimatter should respond to gravity in the same way.

Before 2023, the gravitational interaction between antimatter and matter had

not been directly measured [29], but the fact that GR and the SM can not be

unified again points to some missing piece. While the theoretical consensus is

that any mass must be attracted to mass regardless of charge [30], there do exist

major consequences should antimatter be repelled by normal matter instead of

attracted. These “antigravity” theories have been discussed at length by other

authors [31–34]; however, until a direct measurement of the interaction was suc-

cessfully performed these proposals could not be ruled out entirely.

This interaction was indeed measured with H̄ in 2023 [17] with contributions

from the author and was analysed using the techniques to be described throughout

this thesis.

1.3 Overview

This thesis will describe the first-ever direct measurement of the effect of gravity

on the motion of antimatter and the first machine learning models to be deployed

utilising data from the newly commissioned time projection chamber detector (see

Sec. 4.4.1) used for detection (the training and analysis of which was the respon-

sibility of the author). Further, the models used in the silicon vertex detector

will be presented with a first of its kind deep neural network, trained to work on

low-level raw detector signals, being explored.
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Chapter 2 will discuss the theory behind the formation, trapping, and manipu-

lation of antimatter particles used in the ALPHA experiment. Chapter 3 describes

the apparatus specific to ALPHA in more detail and explains the processes used

in the production and trapping of antihydrogen. Chapter 4 turns to the detec-

tion of antihydrogen using two tracking detectors, describing the theory behind

their implementation and the reconstruction algorithms used to convert the raw

detector output to event information. Chapter 5 will present simulations used to

calibrate signals on counting detectors to absolute numbers within the apparatus.

Then, Chapter 6 describes the general theory behind some of the machine learning

models tested and used. Chapter 7 will apply these models to beam reconstruction

in a beam profile monitor installed at CERN, and Chapter 8 applies these models

to data collected from the ALPHA detectors quantifying which performs the best.

Chapter 9 will apply these models to previously unseen validation dataset, mea-

suring the model performance, and finally, 10 presents the first attempt at deep

learning for event classification at ALPHA.

As this thesis contains topics from many aspects of the scientific landscape

care is taken not to take knowledge for granted and, though some discussions may

seem elementary to some, this approach was taken to ensure readers from any of

the fields contained in this thesis will not lack some of the field-specific knowledge

required to understand the whole document.

1.4 Author Contribution

The ALPHA collaboration is a group with a diverse set of experts and scientists

from different disciplines, and all scientific contributions by ALPHA are a result

of teamwork. The author of this thesis spent 30 months on-site at CERN with the

experiment working on a range of activities spanning various fields. This includes

the commissioning and installation of the time projection chamber detector for

the ALPHA-g experiment, the maintenance of the silicon vertex detector used

for the ALPHA-2 experiment, the production and implementation of online data

analysis tools, as well as various other software-related tasks such as offline analysis

tools, and developing machine learning models. Like all members of ALPHA, shift
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work is a big part of being on-site and usually consists of running the experiment

itself, analysing data live, and optimising procedures by scanning parameters or

tuning experiments. Other day-to-day operations range from cryogenic handling to

replacing broken electronics or ultra-high vacuum (UHV) valves. The author was

run coordinator for one week in August 2024, acting as the lead responsible for the

direction of the experiment during the week, ensuring all activities are conducted

according to plan. Further to this, the author spent six months working with the

CERN beam instrumentation group using machine learning to reconstruct profiles

obtained from a specific instrument, the details of which are reported in Chapter 7.

The work presented in this thesis is additionally reported in the following

publication with the author’s participation:

• Anderson, E.K., et al. Observation of the effect of gravity on the motion of

antimatter. Nature 621, 716–722 (2023).
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Chapter

2
Antihydrogen Theory &
Formation

Experimental work with antimatter requires an understanding of many different

fields of physics, the basics of which are important to be established.

This chapter will discuss the atomic theory behind the antihydrogen atom,

the possible mechanisms behind its formation during synthesis, how the resulting

atoms are trapped, and the process by which they annihilate. There is a focus

on three-body recombination as a formation mechanism due to its importance in

the ALPHA production cycle, as well as the specific traps used by the ALPHA

collaboration.

2.1 Antihydrogen in Flight

The antihydrogen atom is one of the most basic antimatter systems, consisting of

a single positron (e+) and an antiproton (p̄) in a bound state; mirroring hydrogen

which contains one electron (e−) and one proton (p).

There are multiple mechanisms by which trappable antihydrogen can form,

involving the mixing of cold antiproton and positron plasmas; however, the first

antihydrogen formed was detected in flight at LEAR, CERN in 1995 [35] (also

slightly later at Fermilab’s Antiproton Accumulator in 1998 [36]). An antiproton

passing through the Coulomb field of a nucleus will create e+/e− pairs in a pro-

cess known as “pair production,” and occasionally, the antiproton will recapture

the positron in a bound state, forming antihydrogen. Both experiments passed

antiprotons travelling with a transverse momentum of 1.94GeV/c and ∼ 6GeV/c

respectively through a gas target to create antihydrogen in this way. At the lowest

order, two mechanisms were described for this process for a nucleus of charge Z

[35]:

pZ → pγγZ →pe+e−Z → He−Z (2.1)

pZ → pγ∗Z →pe+e−Z → He−Z (2.2)

The first process (Equation 2.1) is a two-photon (γγ) mechanism for H̄ produc-
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tion and the second process (Equation 2.2), which involves a virtual photon (γ∗),

is much more likely to occur, with a cross-section roughly three times greater

than the previous [35]. The resulting cross-section is characterised by a Z2 and

a lnEp̄/mp̄ dependence, where Ep̄, and mp̄ is the energy and mass of the p̄ re-

spectively; and Ep̄/mp̄ is collectively known as the Lorentz factor of the p̄. For

the beam used at CERN in 1995 [35], this cross-section was calculated to be

∼ 2pb ×Z2 ≈ 6nb given the Xenon target used. The overall process which can be

stated simply as: p̄Z → H̄e−Z has a cross-section ∼ 4Z2 for a beam of momentum

greater than 6GeV/c, which is not particularly high.

After the antihydrogen was formed in this experiment, it has the same mo-

mentum as the proton beam it was formed with (1.94GeV) and 10 meters later

this beam impacts three consecutive silicon counters and the resulting annihilation

products were detected by both the counters and a cylindrical six-fold segmented

sodium iodide (NaI) detector for the two 511KeV photons that are produced as a

result of electron/positron annihilations (see Sec. 2.4).

While both of these experiments observed 9 and 99 H̄ atoms respectively,

in-flight antihydrogen production results in H̄ samples that are too energetic to

be trapped and, as such, using in-flight antihydrogen like this is not ideal for

spectroscopy and measurements on gravity.

2.2 Cold Antihydrogen

The production of in-flight antihydrogen in the mid-90s was an important stepping

stone in the field of antimatter research; however, precision measurements require

cold, stable antihydrogen. This requires trapping both p̄ and e+ and mixing them

in a slow and controllable manner instead of in-flight production. In 2002, both

the ATHENA and ATRAP experiments succeeded in the dynamic recapture and

cooling of p̄ plasmas in a Penning trap (see Sec. 2.3.2 for Penning traps) and mixing

them with e+ plasmas to form much colder antihydrogen [11, 37]. Producing

antihydrogen in this manner potentially allows for trapping and results in higher

antihydrogen production rates, sometimes peaking at multiple 100s per second.

This amount of antihydrogen allowed for studies on the temperature dependence
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of H̄ formation, the cooling dynamics, as well as temperature modulated and laser

stimulated production [38–43]. Additionally, the silicon vertex detector of the

ATHENA experiment allowed for 3D reconstruction of events [44] and therefore

studies on the spacial and temperature profiles of the produced H̄ [45]. Though

the ATHENA experiment was completed in 2005, the detector described in [44]

was the basis for the silicon vertex detector used by the ALPHA collaboration.

There are numerous mechanisms by which mixing plasmas of e+ and p̄ can form

H̄, all of which are low-energy processes, therefore requiring low-energy plasmas

and resulting in relatively cold antihydrogen. Regardless of the method however,

each form of antihydrogen production requires three ingredients: e+, p̄ and some

third party to carry away the binding energy of the process associated with the

formation of H̄.

The most commonly discussed mechanisms of antihydrogen production are:

1. Spontaneous radiative recombination (SRR), which occurs when a

photon generated via spontaneous emission carries away the binding energy

of the interaction (this process is the inverse of photoionisation). The re-

sulting interaction can be described by:

e+ + p̄ → H̄ + ℏω (2.3)

where ℏ is Planck’s constant, and ω is the angular frequency of the emitted

photon. Due to the reliance on this spontaneously emitted photon, the

cross-section of this interaction is small and was calculated to be

σSRR = (2.1 × 10−22cm2) E2
0

nEp(E0 + n2Ep) (2.4)

where n is the energy level of the H̄, E0 is the binding energy of the ground

state positron around the antiproton (e.g. 13.6eV for n = 1), and Ep = 1
2mv

2
p

is the kinetic energy of the positron-antiproton centre-of-mass frame [46].

Alternatively, this cross-section can be given as a rate per second per an-

tiproton [47]:

ΓSRR =
(
3 × 10−11

)
n

√
4.2 K
Te+

(2.5)
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where T and n are the temperature and density of the positron plasma.

2. Laser induced recombination (LIR), which can occur when the above

process (SRR) is stimulated with the addition of laser exposure. This inter-

action can be described by:

e+ + p̄+ kℏω → H̄ + (k + 1)ℏω, (2.6)

which is similar to that of SRR but with k additional photons, each with an

energy of ℏω as a result of the laser. This process would further allow tuning

the energy of the laser (and therefore the photons) to create antihydrogen in

specific energy states. The ratio of the stimulated recombination probability

over the spontaneous recombination probability is given by

g = Wstim

Wspon
= Pc2

F∆ν8πhν3 (2.7)

where P is the laser power in watts, F is the cross-sectional area of the

laser, ν is the frequency of the laser, and ∆ν is the frequency spread of the

interaction (laser × positrons) [48]. In practice, this frequency spread is

dominated by that of the positrons1, and therefore ∆ν can be expressed as

(mve+/ℏ)∆νe+ where νe+ and ∆νe+ is the velocity and velocity spread of the

positron respectively.

This method of H̄ production was investigated by the ATHENA collabora-

tion in 2006, targeting in the n = 11 state [43]. By applying Equation 2.7 to

the parameters of the experiment at the time, one would expect the H̄ pro-

duction rate to increase from the previously seen 24 H̄
s

to ∼ 224 H̄
s

(although

[43] claims an expected an increase to 84 H̄
s

due to a slight correction on

Equation 2.7 to account for the re-ionisation rate given by the laser power

that is comparable to the radiative decay rate - more discussions of this

effect can be found in [49]). However, a 90% confidence limit was placed

on an upper bound of the measured increase to be 0.3 H̄
s

suggesting that

SRR contributes negligibly to the H̄ production rates seen by the experi-
1I.e., the frequency spread of the laser is much smaller than that of the positron energy

spread.
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ment prior to the addition of LIR. This hints that the other mechanisms

of antihydrogen production (charge transfer and three-body recombination)

are the dominant production mechanisms over SRR/LIR. As a result of this

experiment, LIR as a method for efficient H̄ production was abandoned in

favour of these other mechanisms.

3. Charge transfer, which is when, instead of mixing p̄ and e+ plasmas to

form antihydrogen with some third body carrying away the binding energy,

positronium (Ps)2 is mixed with p̄. Once mixed, the p̄ is able to replace the

electron in the Ps system, creating H̄ and releasing an electron:

Ps + p̄ → H̄ + e−. (2.8)

Producing H̄ in this method requires first forming positronium plasmas. This

can be achieved in a few ways; for example, the GBAR experiment creates

Ps atoms by colliding ∼ 1010 positrons onto a target made from porous

silica, converting the positrons into Ps with an efficiency of ∼ 30% [50], or

“laser-controlled” H̄ production, successfully implemented by the ATRAP

experiment in 2004 [42] uses collisions between excited caesium (Cs) atoms

and positrons to create excited Ps. The energy level of the H̄ produced in

this method will be dominated by that of the positronium and it is therefore

possible to create H̄ in higher energy states by exciting the Ps atoms prior

to mixing [51].

4. Three-body recombination (TBR), which is the most relevant method

for this thesis due to its high formation rates at high-density and low-

temperature plasmas, and as this is the preferred method deployed by the

ALPHA experiment. TBR occurs when the positron plasma is dense enough

for an additional positron to carry away the binding energy of the process:

e+ + e+ + p̄ → H̄ + e+. (2.9)

This process occurs when two positrons collide close to a p̄, hence the need
2Positronium (Ps) is the bound state of an electron and a positron in orbit around each other.
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for high-density plasmas. If the collision occurs in such a way that one of

the positrons loses more kinetic energy than the binding energy of the p̄, it

will become trapped in a bound state with the p̄, while the other e+ carries

away the excess energy. This process can be very efficient for dense plasmas;

however, it mostly forms high-n states that are either untrappable or weakly

bound [47]. Further collisions between the H̄ and the positron plasma can

occur after production, knocking the positron deeper into a bound state [52],

but it is also possible for further collisions to ionise the H̄ back into a p̄.

The production rate of this procedure was first calculated by Glinsky and

O’Neil [53] for an ion introduced into a positron plasma3, in a strong mag-

netic field (|B⃗| → ∞). The frequency of positron-ion collisions can be given

by nb2v and the probability that there will be another positron in the vicin-

ity to carry away the binding energy can be given by nb3, where n is the

density of the positron plasma, v =
√
kBT/m is the thermal speed of the

positrons (T is temperature of the plasma, m is the positron mass, and kB

is Boltzmann’s constant), and b = e2/kBT is the classical distance of closest

approach (DCA) (e is the elementary charge). Hence, the resulting rate of

production will be proportional to the product of these two frequencies:

ΓT BR ∝ (nb2v)(nb3) = n2b5v

=⇒ ΓT BR = Cn2b5v
(2.10)

for some constant C. Equation 2.10 can be loosely understood as the velocity

of the e+, v, multiplied by the cross-section, b2, multiplied once further by

the probability of finding another e+ in that volume nb3. While it can

therefore be seen that the production rate is proportional to the density

and temperature of the positron plasma (ΓT BR ∝ n2T−9/2); the exact rate

depends on the constant of proportionality, C.

Initially also calculated by Glinsky and O’Neil [53] to be C = 0.070(10) and

later confirmed by Robicheaux and Hanson [54] using a completely different,

more precise, method giving C = 0.072(2). This can be compared to the
3Actually their work considers ions into electron plasmas, but we assume the same formulas

to hold for p̄ into e+.
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rate calculated for |B⃗| = 0, which was 0.76(4), showing the effect of the

magnetic field on the production rate. Though by including the next order

term (which essentially accounts for the E⃗ × B⃗ drift) in the guiding centre

approximation, the value of C increases slightly to C = 0.11(1).

This process was simulated using Monte-Carlo methods [55], and the result-

ing value of C was found to agree with those calculated by Robicheaux and

Hanson [54]. However, this simulation also found that the formation rate

of low field seeking (and therefore trappable) states of H̄ is suppressed in

stronger magnetic fields. In the paper, less than 8% of the resulting H̄ were

found to have magnetic moments large enough to be trappable, significantly

increasing the loss of the process and reducing the overall efficiency.

Further, note that the T−9/2 term in the rate suggests that colder positrons

could result in higher production rates, and Sec. 3.9.1 discusses recent de-

velopments in ALPHA’s experimental cycle aimed at achieving this.

N.B: There is an assumption of an infinite and homogeneous mixing of

positron and antiproton plasmas in the work of Robicheaux and Hanson and

other papers by, for example, Jonsell [56] which aim to better approximate

experimental conditions suggest that the trappable fraction is much lower,

on the order of 10−4, the evidence of which is backed up by experimental

results.

These processes are discussed in more detail in, for example, [52] [57].

2.3 Trapping Particles

The ALPHA collaboration employs positron/antiproton mixing as its method

of antihydrogen production leading to TBR. This requires the trapping of both

species prior to mixing, as well the resulting neutral antihydrogen after formation.

This section will discuss the traps used by ALPHA to achieve this. When dis-

cussing the trapping of charged particles, matter and antimatter are equivalent as

they are both charged, just oppositely, and the principles of their operation are

identical.
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2.3.1 Charged Particles

Consider initially the trapping of a single particle. Since charged particles interact

with both the electric (E⃗) and magnetic fields (B⃗), a simple way to trap them

would be to place them in the 3D minimum of the electrostatic potential. However,

Earnshaw’s theorem, which follows from Gauss’ law, states that a point charge

cannot be maintained in a stationary equilibrium by the electrostatic interaction

of the charges alone.

Formally, this means that the electric force in 3D space (F(x)) resulting from

an electric potential (U(x)) will always be divergenceless, and therefore no local

maxima or minima can exist in free space [58], i.e.:

∇ · F = ∇ · (−∇U) = −∇2U = 0. (2.11)

As a result of this, electrostatic fields can be used to contain particles in at most

two dimensions, and the third must be constrained in another way. One method

of achieving this is to add a uniform magnetic field along the trap axis (B⃗ = B0ẑ),

which confines particles in the (x, y) plane.

A Penning trap, then, is a particle trap capable of confining the motion of

charged particles by using both an electric and a magnetic field. The homogeneous

magnetic field (parallel to the trap axis) confines their motion radially and stops

the charged particles from escaping perpendicular to the trap axis. While an axial

electric field then confines the particles along the trap axis and stops them from

escaping axially. In this configuration, the particles remain trapped in all three

dimensions, though not completely stationary.

The trap itself is named after F.M. Penning by Hans Dehmelt, who first pro-

posed the idea of the Penning trap in 1955 after seeing a vacuum gauge built by

Penning. Dehmelt and Wolfgang Paul finally built the first Penning trap in 1959,

jointly winning the Nobel Prize in 1989 for their ion trapping techniques, which

included the Penning trap [59].

Generally, a Penning trap consists of two end caps, which are biased with

respect to a hyperbolic electrode surrounding the trap (see Figure 2.1). Then,

18



2.3. TRAPPING PARTICLES CHAPTER 2. THEORY

given the resulting quadratic electrostatic potential

U(x) = V0

R2 (2z2 − x2 − y2) (2.12)

where V0 is the trap potential, and R2 is related to the size of the trap (r2
0 + 2z2

0 -

see Figure 2.1), one can confine the motion of a particle within the trap.

A potential such as that found in Equation 2.12 can be generated by a config-

uration of electrodes found in Figure 2.1.

Figure 2.1: A standard Penning trap configuration formed from a hyperbolic elec-
trode with two end caps. The central electrode is biased with a voltage of V0. The
electric field lines are displayed in blue, and the magnetic field in red. The orange
circle displays the magnetron motion which arises in Penning traps, and the black
trajectory displays the full motion of the particle after solving the equations of
motion. This motion is seen in more detail in Figure 2.2.

The equations of motion of a single ion inside the trap are then described by

the Lorentz force

F = ma = q(E⃗ + v × B⃗) (2.13)

where m, q, v, and a are the mass, charge, velocity, and acceleration of the particle

respectively. Given that E⃗ = −∇U , and B⃗ = B0ẑ we can expand this equation
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(Equation 2.13) into the three equations of motion for x, y, z:

d2x

dt2
− ωc

dy

dt
− 1

2ω
2
zx = 0 (2.14)

d2y

dt2
+ ωc

dx

dt
− 1

2ω
2
zy = 0 (2.15)

d2z

dt2
+ ω2

zz = 0 (2.16)

where ωz =
√

4qV0/mR2, and ωc = qB0/m.

We note that solutions to Equation 2.16 will take the form z(t) = A sinωzt+

B cosωzt, which corresponds to a harmonic, oscillatory motion in z with a fre-

quency quantified by ωz, this is known as the axial frequency.

It can also be seen now that by setting B = 0 in Equation 2.13 and finding

the resulting equations of motion that without the magnetic field and only the

electrostatic field, the particles will still be confined in z with the same harmonic,

oscillatory motion, but will have exponential solutions in x, y plane, indicating

that they will not be trapped radially.

It is also worth noting here that the equation of motion of z is decoupled from

the motion in the x, y directions, while the motion in x, y are dependent on each

other.

Finding the solutions to the equations of motion for x, y with the magnetic

field in place, however, is more difficult. Following the methods described in [60]

we can substitute u = x+ iy into both Equation 2.14 and Equation 2.15, merging

them into a single equation of motion for u:

u′′ + iωcu
′ − 1

2ω
2
zu = 0 (2.17)

the solution of which has general form u = e−iωt. Substituting this ansatz into

Equation 2.17 gives the condition:

ω2 − ωcω + 1
2ω

2
z = 0 (2.18)
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whose roots are given by:

ω± = 1
2

(
ωc ±

√
ω2

c − 2ω2
z

)
. (2.19)

For this to have real solutions we require that ω2
c − 2ω2

z > 0, this is sometimes

referred to as the trapping condition [60] as this is required for solutions to Equa-

tion 2.14 and Equation 2.15 to be bounded (otherwise they are exponential).

Then for ωc ≫ ωz the positive root approximates to ωc, which is known as

the cyclotron frequency. Further, by noting the product of both roots ω+ω− = ω2
z

2

we can approximate the negative root as ω2
z

2ωc
, this is known as the magnetron

frequency, often denoted ωm and is the motion resulting from the E⃗ × B⃗ drift,

which occurs when a charged particle moves in the presence of both electric and

magnetic fields, causing it to drift with a velocity perpendicular to both fields.

In summary, the motion of a single particle in a Penning trap can be consid-

ered as a superposition of three oscillatory motions, the frequencies of which are

described by:

ωz =
√
qV0

m
, (Axial) (2.20)

ω+ ≈ ωc = qB0

m
, (Cyclotron) (2.21)

ω− ≈ ωm = ω2
z

2ωc

(Magnetron) (2.22)

The motion of a particle trapped in this configuration can be seen in Figure 2.2.

For two ions in a trap, the equations of motion need to be corrected to account

for the Coulomb interaction between them as a result of their charge. This results

in the inclusion of a q2/4πϵ0r
2
ab term, where ϵ0 is the vacuum permittivity, and rab

is the distance between the two ions. This new term couples the motion of the

particles to each other, as well as the x, y motion with the previously independent

z motion.

Further, for full plasmas of charged particles, which are dense and often contain

millions of particles, this becomes even more involved, and the Penning trap is no

longer the optimum trap. A modified version of the Penning trap (the Penning-

Malmberg trap) is discussed in Sec. 2.3.2, and the equations of motion for a trapped
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Figure 2.2: The motion of a single trapped particle in a Penning trap. Not to
scale. The axial (ωz), cyclotron (ω+), and magnetron (ω−) motions are displayed
in blue, red, and orange respectively. The direction of the magnetic field vector is
also shown in red in the centre of the plot.

plasma are derived. More detailed descriptions of the dynamics of a Penning trap

can be read in, e.g. [61] or [62].

2.3.2 Charged Plasmas

The Penning-Malmberg (PM) trap is a modified version of the Penning trap that

is a series of cylindrical electrodes instead of two perfectly hyperbolic end caps

and the hyperbolic ring electrode.

First implemented by John Malmberg in 1975 [63], the interest in a PM trap

comes from its ability to trap and store plasmas instead of singular ions. A

schematic diagram of a PM trap with just three electrodes can be seen in Fig-

ure 2.3.

Although it is typically difficult to trap neutral plasmas in a PM trap, single-

species, non-neutral plasmas can be trapped for considerable amounts of time with

this configuration.

A plasma is a state of matter with properties slightly different from that of

solid, gas, or liquid and is defined as a collection of charged particles moving freely

in space under the influence of external and internal magnetic/electric fields. In

a plasma, these internal fields are usually strong enough to affect the dynamics of
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Figure 2.3: A Penning-Malmberg trap

the plasma itself, adding a layer of complexity to the kinetics.

The Debye length (λD) of a plasma is a measure of its net electrostatic effect

and how far it persists in space [64]. The Debye length is a fundamental property

when discussing plasmas and is defined as
√

ϵ0kBT
ne2 where T , n are the temperature

and density of the plasma.

If the Debye length of the plasma is much smaller than its actual length in z

(L), then the cloud can be considered to be a plasma.

Further, we can assume the plasma density is described by a continuous Boltz-

mann distribution and is therefore semi-fluidic if and only if the density of the

plasma varies slowly on the scale of the mean inter-particle spacing, a ≡ n−1/3.

Without this condition (λD ≫ n−1/3) the plasma cannot be treated as a contin-

uous distribution, as there will be large variations throughout the sample. This

inequality is often written as λDn
−1/3 ≫ 1 and the dimensionless quantity λDn

−1/3

is the “number of charges in a Debye sphere”, often called the plasma parameter

[65].

Most of the collections of particles used at ALPHA adhere to these two con-
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ditions, and are therefore treated as plasmas. They are also usually non-neutral,

single-species plasmas though there are many situations where multiple species sit

close, or mixed in the same well.

While the equations of motion described in Sec. 2.3.1 can hold for some of the

collections of particles used by ALPHA (specifically antiprotons prior to compres-

sion), generally, we will need to adjust these equations to account for the internally

generated electric and magnetic fields from the plasma cloud itself.

In order to demonstrate radial confinement of charged plasmas one looks at

conservation of angular momentum of the plasma as a whole, and the individual

dynamics of particles in the trap are not considered.

The methods described in [66, 67] outline the proof of principle of confining

plasmas in a trap.

First, consider a plasma of N particles (of the same charge) in a cylindrical

and symmetric PM trap (see Figure 2.3), with the same constant axial magnetic

field as in Sec. 2.3.1. The motion of the charges is well approximated by the

Hamiltonian for many particles, and it can be shown through the properties of

cylindrical symmetry that the Hamiltonian is invariant under translations of θ (in

cylindrical coordinates) [67] and thus the total canonical angular momentum of

the system (Pθ≡
∑N

j=1 pθj
) is conserved (i.e. Pθ = L for some constant L). While in

theory, perfect conservation is possible, in practice, this isn’t the case. Neutrals in

the trap (remaining due to imperfect vacuum conditions) will collide with particles

in the plasma - slowly radiating energy and angular momentum away from the

plasma. Further, minor imperfections in the symmetry of the trap will create

slight variations on the fields, generally resulting in a small torque being applied

to the plasma. With enough care, these effects can be minimised such that the

plasma will reach thermal equilibrium prior to any significant loss of energy or

great torque being applied.

To see why conservation of angular momentum implies radial confinement, we

begin by rewriting the constant of angular momentum using velocity variables,

giving:

Pθ =
N∑

j=1
mjvθj

rj + qj

c
Aθ(rj)rj (2.23)

where mj, vθj
, qj, and rj are the mass, angular velocity, charge, and radius of
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the j-th particle respectively, and Aθ(r) is the azimuthal component of the vector

potential (for the magnetic field described so far this is equal to Br/2). Hence,

by noting that we are working with a single species plasma (i.e., mj = m∀j,

and qj = q∀j) and that for a sufficiently large magnetic field the second term in

Equation 2.23 will dominate, it can be approximated as:

Pθ ≃ qB

2c

N∑
j=1

r2
j (2.24)

and, since we already know Pθ = L we can say:

N∑
j=1

r2
j ≃ const. (2.25)

providing a constraint on the overall radius (or, more accurately, the mean square

radius). Therefore, as long as angular momentum is conserved, which will hold

as long as no additional external forces are applied to the plasma, the radius of

the plasma will remain constant. It is worth noting here that the synonymous

equation for a multi-species plasma of the same mass is:

N∑
j=1

qjr
2
j ≃ const. (2.26)

and hence it would be possible for e.g., an electron-positron pair to travel together

radially outwards until neither is trapped, while still keeping the total angular

momentum of the system constant.

While the conservation of angular momentum ensures the plasma remains

trapped radially, axial confinement comes from applying a bias voltage on the two

end electrodes such that the plasma cannot overcome the resulting electrostatic

potential. This dip between two peaks of electrostatic potentials is often referred

to as a well, and can be thought of classically as a ball rolling up and down a hill. If

the ball (plasma) does not have enough longitudinal energy to climb the hill (well,

or more accurately potential difference), it will remain trapped until either the

blocking potential is lowered or some mechanism of inducing longitudinal energy

is imposed on the plasma.
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2.3.3 Neutral Atoms

Both the Penning, and the Penning-Malmberg trap rely on the non-neutrality

of the particles they are trapping to confine them, and both depend upon the

electrostatic field to contain the particles in two dimensions. For an electrically

neutral atom such as antihydrogen, these electric potentials will not contain it.

As such a new method of trapping is required to hold these atoms.

First, consider that all atoms can be thought of as small magnetic dipoles, the

potential energy of which, given magnetic moment µ⃗H , in an externally produced

magnetic field B⃗, can be written as

E = −µ⃗H · B⃗. (2.27)

By applying an external magnetic field on this dipole, a torque will be generated

(τ⃗ = −µ⃗H ×B⃗), causing it to either align or anti-align with the external field. This

results in the magnetic moment of the antihydrogen atom taking one of two forms:

µ⃗H = ±µ⃗B where µB is the Bohr magneton (µB = eℏ/2me). As such the resulting

potential energy (Equation 2.27) can be expressed as E = ∓µ⃗B · B⃗. This means

that depending on the state of the antihydrogen, the potential energy will either

be negative or positive. For a positive dipole, this results in a negative potential

energy, and hence, the energy decreases as the field increases. Antihydrogen in this

configuration is known as “high-field seeking H̄”; synonymously, negative dipoles

are known as “low-field seeking H̄”.

Gauss’ law again prevents any sort of field configuration with a local maximum

from existing, and therefore, the “high-field seekers” are sometimes referred to as

untrappable H̄. However, it is possible to create a trap with a local minimum

where the centre of the trap is the minimum of the absolute magnetic potential,

which increases outwards in every direction. Such a trap would be able to hold any

low field seeking H̄, and this type of configuration is referred to as a minimum-B

or Ioffe trap. As long as the kinetic energies of the atoms contained within it are

small enough to not overcome the magnetic potential of the trap walls, the atoms

will remain trapped [12].
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The maximum potential energy of a minimum-B trap is given by

Emax = µ⃗B(Bmax −Bmin), (2.28)

or

Emax = 0.67∆B[K] (2.29)

after dividing by kB (to convert to temperature) where ∆B = Bmax − Bmin is

the difference between the maximum and minimum of the traps magnetic field

magnitude in tesla.

A minimum-B trap can be achieved simply with two mirror coils in an anti-

Helmholtz configuration (i.e. with oppositely flowing currents); however, the fields

resulting from this configuration can produce Majorana spin flips at the centre

which has a region of zero field [68, 69] resulting in gradual losses of the trapped

atoms as the probability of flipping to an untrappable state approaches 1. There-

fore, in order to prevent this zero field inconvenience, a trap is required that

contains a minimum, but does not pass directly (or very near) to zero field. In

the case of an Ioffe-Pritchard (IP) trap, this is done by introducing a series of

parallel bars that generate a transverse multipole with zero field at r = 0. In this

setup, the two mirror coils are still required to maintain axial trapping, though

no longer with oppositely flowing currents. It then becomes possible to change

the curvature of the trapping potential to obtain a more homogeneous field in the

axial direction, suppressing Majorana transitions [70]. Given a multipole field of

order p the magnetic field strength as a function of r (|B⃗(r)|) is proportional to

rp−1 [71] (p = 2 =⇒ quadrupole, p = 3 =⇒ sextupole, p = 4 =⇒ octupole).

A plot of the magnetic field magnitude as a function of r for various multipole

orders can be seen in Figure 2.4.

In antihydrogen synthesis, it is necessary to utilise both a PM trap to ma-

nipulate the charged species and an IP trap to contain the resulting neutral H̄.

However, as mentioned in Sec. 2.3.2, one must assume azimuthal symmetry in the

confining fields in order to achieve stable trapping of plasmas. This condition will

not hold with the addition of a multipole to the magnetic field. How much this

perturbs the field is extremely important when deciding on which order of pole to
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Figure 2.4: Relative radial fields for different order multipole. Plot is normalised
s.t. |B⃗(1)| = 1.

implement. As can be seen from Figure 2.4, the higher the order of the pole, the

smaller the perturbation is near r = 0. However, given that the entire structure is

to be placed around a PM trap already, this means that our maximum in r will be

less than the maximum displayed in the graph, and the higher order the multipole

is, the smaller the depth of the resulting IP trap will be. Further to this, the dis-

tortion of otherwise homogeneous field lines caused as a result of superimposing

a multipole over a solenoidal field can cause field lines to diverge/converge when

moving along the axial direction. Therefore, depending on the inner radius of the

trap electrodes, particles which follow the field lines could be made to intersect

the walls, causing losses. This maximum radius of perturbation before loses occur

(rmax) can be expressed as

rmax = R exp
−|B⃗(R)|L

2B0R

 (Quadrupole) (2.30)

rmax = R

1 + |B⃗(R)|L
B0R

−1/2

(Octupole) (2.31)

where R and L are the trap radius and length of confinement respectively, |B⃗(R)|
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is the magnitude of the multipole field at the wall, and B0 is the uniform axial

magnetic field. Assuming a trap of (R,L) = (2.25, 2.25)cm, in a 1T axial field, and

a 2T radial field, the values of rmax for a quadrupole and octupole are 0.827729, and

1.29904 respectively. This increase in rmax, along with the reduced perturbation

at r = 0 motivated ALPHA to build its trap using an octupole for transverse

confinement despite the decrease in trap depth that occurs as a result [71].

2.4 Annihilation

When a particle collides with its corresponding antiparticle, the resulting process

is known as an annihilation. When this happens, the particles involved in the

collision destroy each other, producing additional particles often called “secon-

daries”. Since any particle-antiparticle pair must have opposite additive quantum

numbers, any set of particles created as a result of this process must also have net-

zero quantum numbers. Further, this process obeys the laws of conservation of

energy, momentum, and spin, placing further restrictions on the sets of secondaries

possible from the process.

In general, sufficiently low-energy collisions produce photons; however, in high-

energy collisions lots of exotic and heavy particles can be generated via pair pro-

duction. In the ALPHA experiment, most of the collisions that occur would be

described as low energy due to the low kinetic energy of the plasmas involved, and

as such, this chapter will only consider low-energy annihilations.

When positron and electron pairs annihilate, the most likely outcome is the

production of two or more photons. Conservation of momentum forbids a single

photon from being produced (as a single photon must carry some non-zero mo-

mentum), and the only other fundamental particle that the interaction has enough

energy to generate are neutrinos (ν), which are 10,000 times less likely to be pro-

duced than photons. This is due to the ratio of the coupling constants for both

the electromagnetic and the weak force which is ∼ 10, 0004.

The Feynman diagrams for 2γ, 3γ, and ν− ν̄ production via electron-positron
4The cross-section for photon production is proportional to the electromagnetic force cou-

pling constant, and same for neutrino-antineutrino pair production with the weak force coupling
constant.
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annihilation can be seen in Figure 2.5.

e− + e+ → 2γ

e−

e+

γ

γ

(a) Feynman diagram
for the 2γ e+/e− anni-
hilation.

e− + e+ → 3γ

e−

e+

γ

γ

γ

(b) Feynman diagram
for the 3γ e+/e− anni-
hilation

e− + e+ → W → ν + ν̄

e−

e+

W

ν

ν̄

(c) Feynman diagram
for the ν − ν̄ production
e+/e− annihilation

Figure 2.5: Feynman diagrams for the 2γ (Figure 2.5a,) 3γ (Figure 2.5a), and
ν − ν̄ production (Figure 2.5c) mechanisms for electron-positron annihilation.

In the two-photon case, the resulting photons must have each the energy of

the electron/positron rest energy (E0 = mec
2 = 511keV), and due to conservation

of angular momentum, must be ejected in exactly opposite directions. These two

properties provide enough of a unique characteristic to be detected and discrim-

inated against the background with good confidence. The ATHENA experiment

exploited this fact to detect antihydrogen annihilations in their apparatus [11,

72], proving they had indeed trapped antihydrogen. By using 192 pure CsI crystal

scintillators (each ∼ 4cm3) arranged in a concentric cylinder around the trap and

searching for signals around 511keV with cos(θ) = −1 they were able to unambigu-

ously identify 131 ± 22 events resulting from antihydrogen production. However,

this method of detection suffers from poor photon detection efficiency (∼ 20%

per crystal, and ∼ 0.25% total efficiency), requiring new detection methods to be

developed for spectroscopy and other measurements (see Chapter 4).

While the discussion of the electron/positron annihilation is simplified by the

fact that they are both elementary particles, the antiproton itself is a composite

particle, comprised of two up antiquarks (ū) and one down antiquark (d̄).

The antiquarks in the antiproton will therefore annihilate on contact with any

other quarks such as those found in a proton, or a neutron. Further, and the

more frequent process at ALPHA, is the annihilation of an antiproton on a heavy

nucleus, N (as most of the antiprotons lost will be on the wall of the PM trap,

comprising gold-plated aluminium) which can result in quite exotic behaviour dur-
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ing the final state interaction (FSI)5 such as absorption of the produced secondary

pions [73], or the hadronisation of the nucleus itself [74].

Regardless of the method, when an antiquark-quark annihilation occurs, usu-

ally the result is the production of a gluon which subsequently (along with the

remaining quarks, antiquarks, and gluons), undergoes a complex rearrangement

process known as hadronisation, or fragmentation. This process leads to the for-

mation of several mesons, predominantly pions (π) and less often kaons (k) which

distribute the total energy and momentum of the interaction throughout them-

selves [75].

The resulting mesons are unstable and will decay into photons, neutrinos, or

electron-positron pairs unless they themselves collide with more material. The

lifetime of the charged mesons is on the order of ∼ 10−8s, which is enough time

to travel through the ALPHA apparatus entirely; the neutral mesons however

typically have a lifetime of ∼ 10−16s after which they decay into γ rays, which can

then impact the apparatus creating more electron/positron pairs. The charged

mesons can be detected as they leave the apparatus in a variety of different ways

and will be the focus of Chapter 4.

While in pure p̄p annihilations, equal numbers of π+ and π− are produced (on

average 1.5 of each, as well as 2 π0), and in pure p̄n annihilations the number of

π− must exceed π+ by 1 (on average 1 π+ and 2 each of π−, π0) one consequence

of the FSI on p̄N annihilation is that p̄p annihilations can assume properties

of p̄n annihilations and vice versa. This is caused by charge exchange in πN

reactions (π−p ↔ π0n and π+n ↔ π0p) and due to π reabsorption reactions

(π−pp ↔ np, π−pn ↔ nn, π+nn ↔ pn, and π+np ↔ pp). All this makes it

difficult to predict the multiplicity of a p̄N annihilation, and as a result they are

often modelled as the statistical average of both processes, of which the branching

ratios are well known6. For example Table 2.1 shows the values for the results

of an experiment performed in 1974 that measure the branching ratios of the

product of p̄p annihilations (from [76]), and Table 2.2 shows the results from a

similar experiment measuring the branching ratios of p̄n annihilations (from [77]).
5The FSI is the interaction of the annihilation products and the residual nucleons in the

nucleus.
6These ratios are well known in the sense that experiments have been performed to measure

them.

31



2.4. ANNIHILATION CHAPTER 2. THEORY

These branching ratios are crucial for use in simulating p̄ annihilations, and these

Annihilation Products Branching ratio (%)
π+ π− 0.375 ± 0.030

π+ π− π0 6.9 ± 0.35
π+ π− mπ0 (m > 1) 35.8 ± 0.8

2π+ 2π− 6.9 ± 0.6
2π+ 2π− π0 19.6 ± 0.7

2π+ 2π− mπ0 (m > 1) 20.8 ± 0.7
3π+ 3π− 2.1 ± 0.25

3π+ 3π− π0 1.85 ± 0.15
3π+ 3π− mπ0 (m > 1) 0.3 ± 0.1

Table 2.1: Branching ratios of pp̄ annihilations, from [76].

Annihilation Products Branching ratio (%)
π− π0 0.75 ± 0.15
π− mπ0 (m > 1) 16.9 ± 0.7
π+ 2π− 2.3 ± 0.3

π+ 2π− π0 17 ± 2
π+ 2π− mπ0 (m > 1) 39.7 ± 2

2π+ 3π− 4.2 ± 0.2
2π+ 3π− π0 12 ± 1

2π+ 3π− mπ0 (m > 1) 6.6 ± 1
3π+ 4π− mπ0 (m > 1) 0.35 ± 0.03

Table 2.2: Branching ratios of p̄n annihilations, from [77].

experimentally found branching ratios are the basis for many programs internal

physics list, including the one used to generate the results found in Chapter 5.

Further, accurate branching ratios allow for a more faithful comparison of true

detector responses against simulation, especially where the number of resulting

tracks is an important property of the detector’s software.
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Chapter

3 ALPHA

The Antiproton Decelerator (AD) at CERN, Geneva, where the ALPHA exper-

iment is based, is the only place where experimentation on cold, trapped anti-

hydrogen takes place. In order to achieve this task, ALPHA makes use of many

different components and experimental techniques. While the general theory of

particle trapping was discussed in Chapter 2, and the methods of antihydrogen

annihilation detection will be discussed in Chapter 4, this chapter describes the

general procedures and components used by ALPHA during the trapping and

experimentation cycle.

The ALPHA apparatus is split roughly into two major components, sometimes

referred to as independent experiments: ALPHA-2 and ALPHA-g. Though the

majority of diagnostic stations (instruments for diagnosing various properties of

the beam, discussed in Sec. 3.1) are present in both sections, and, for example,

the same catching trap (Sec. 3.7), and positron accumulator (Sec. 3.5.2) is used

to transfer the antiprotons and positrons to both experiments there are some

fundamental differences described as needed in the following chapter. A schematic

diagram of the whole apparatus with appropriate labels can be found in Figure 3.1.

3.1 Sticks

Given the size of the ALPHA experiment, and the many species of plasma and

laser/microwaves deployed at various points throughout, there is a need to im-

plement many different diagnostic measurements, and to access the machine at

different positions. In order to achieve this, ALPHA deploys both vertically and

horizontally translating sticks to switch between various beamline instruments

during operation.

These stations, often referred to simply as “sticks” are the housing unit of AL-

PHA’s many diagnostic tools, and consists of a vertically or horizontally mounted

translator used to align different devices with the plasma traps axis during the

cycle of the experiment.

33



3.1. STICKS CHAPTER 3. ALPHA

a
) 

C
a
tc

h
in

g
 T

ra
p
 (

C
T

)

b
) 

A
L

P
H

A
-2

e)
 P

o
si

tr
o
n
 A

cc
u
m

u
la

to
r

d
) 

A
L

P
H

A
-g

c)
 B

ea
m

li
n
e

Fi
gu

re
3.

1:
Fu

ll
sc

he
m

at
ic

of
th

e
A

LP
H

A
ex

pe
rim

en
t,

sp
lit

ro
ug

hl
y

in
to

its
co

ns
tit

ue
nt

co
m

po
ne

nt
s,

fro
m

le
ft

to
rig

ht
th

ey
ar

e
a)

th
e

ca
tc

hi
ng

tr
ap

;b
)

A
LP

H
A

-2
;c

)
th

e
be

am
lin

e;
d)

A
LP

H
A

-g
;a

nd
e)

th
e

po
sit

ro
n

ac
cu

m
ul

at
or

.

34



3.1. STICKS CHAPTER 3. ALPHA

The ALPHA experiment has nine sticks placed throughout the various sec-

tions of the beamline, and though the specific instruments on each stick vary,

in general, the sticks will consist of a selection from the following list: an elec-

tron gun, a microchannel place, a Faraday cup, laser/microwave mirrors/horns,

a beryllium ablation source, or a “passthrough”. While some of these are fairly

self-explanatory, for example, a passthrough is simply a hole to allow particles to

pass through, and a laser mirror is just a mirror; other tools are described in more

detail in the following sections.

3.1.1 Electron Gun

An electron gun (also called electron emitter) is an electrical component that

produces a narrow, collimated electron beam. The electron guns consist of a

filament, usually made of barium oxide, which releases electrons when a voltage

is applied over it. The resulting electrons are then directed into Penning traps to

be used for antiproton cooling or magnetometry.

3.1.2 Microchannel Plate

A microchannel plate (MCP) is a device used to detect single particles or photons.

It works similarly to an electron multiplier (discussed later in Sec. 3.2) as both

devices use secondary emission to amplify the intensity of a single particle. How-

ever, because the MCP has many channels arranged in a 2D plane, it can provide

images which are a 2D projection of whatever impacts the MCP. This is especially

useful when used with a plasma as it can allow for diagnostic of the size and shape

of the plasma.

An MCP is a plate made of a highly resistive material containing many small

tubes (microchannels) which lead through the plate. The plate is usually a maxi-

mum of ∼ 2mm thick, the channels are ∼ 5 − 20µm in diameter, are distributed

evenly throughout the plate, and are at an angle non-parallel to the plane of the

plate. This ensures that when a particle enters a microchannel from the parallel

plane it will hit the wall; and, by applying a strong electric field across the plate,

each individual channel becomes a continuous electron multiplier, which causes the

impact to release more electrons, which cascade and impact the wall again, further
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releasing more electrons. This continuous cascading and amplifying is what causes

the amplification by several orders of magnitude of the signal initially hitting the

plate.

The electrons eventually leave the reverse side of the plate and can be detected

by an anode; however, in the setup at ALPHA, the electrons are directed onto a

phosphor screen, which in turn becomes excited by the impact of the electrons,

emitting photons. Finally, a 45° mirror directs the light onto a charge-coupled

device (CCD) camera set to trigger at the same time at the MCP.

The gain of an MCP is very noisy, meaning identical particles can give widely

varying signals when viewed on an MCP.

The MCPs deployed at ALPHA have an active area ∼ 13.53cm2 (diameter

of 4.15cm) with a hexagonal array of microchannels, each with a 12µm diameter,

and 15µm spacing. The voltage applied on the MCP varies with the expected

signal but is usually either 1 or 1.1kV, resulting in a gain of ∼ 8 × 105.

Details of the specific configuration of the MCPs at ALPHA can be found in

[78], including the differences between using the MCP for species of e+, e−, or p̄.

A schematic diagram of the setup can be seen in Figure 3.2a, and an example

of one of the images recorded by one such MCP can be seen in Figure 3.2b.

3.1.3 Faraday Cup

A Faraday cup is a conductive cup designed to catch and measure the total charge

of a batch of charged particles in a vacuum and is useful for counting the number

of electrons or positrons in a given shot.

When a charged particle hits the wall of a Faraday cup it gains a small net

charge as the particle impacts the wall of the cup. This cup can then be discharged

to measure a small current which should be proportional to the total charge of the

particle. By directing many particles into the cup it can be used to gain a rough

count of how many particles were in the packet. However, since the readout noise

of these is high, and the charge of elementary particles is small, in general, > 106

particles are required for a discernable measurement above noise in our setup.
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(a) Cartoon schematic of the
MCP/phosphor/CCD camera imaging
system used by ALPHA. The MCP
is shown as the yellow plate and the
microchannels as chevrons through
the volume. The phosphor screen is
represented as the blue rectangle, the
mirror is the grey rectangle, and the
CCD camera is shown in red. The
red cascade within the MCP chevron
represents how the electrons multiply
to amplify the signal that comes into
the MCP.
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(b) Example of an image from the CCD
camera after directing a sample of an-
tiprotons onto the MCP after the full
p̄ preparation steps have been com-
pleted.

Figure 3.2: Schematic diagram of the MCP imaging system (Figure 3.2a), and an
example of an image taken using the system (Figure 3.2b).

3.1.4 Beryllium Source

One of the sticks houses a beryllium ablation source which, using 5ns pulses of a

355nm laser, produces Be+ ions to be used for sympathetic positron cooling. The

target is > 99% pure beryllium and ∼ 0.5mm thick. Using this method we are

able to reliably produce between 108 and 1010 ions, approximately 5% of which

are directed towards a PM trap for cooling and mixing with positrons.

3.2 Scintillating Counters

A scintillating counter is an instrument used to detect and measure charged par-

ticles by using the excitation effect of incident radiation within the scintillating

material.

When antiparticles collide with particles, the resulting secondary products

generally have sufficient energy to ionise the molecules in a scintillating material

if it should pass through some. The scintillators absorb the energy of the particle
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and scintillate, re-emitting the absorbed energy in the form of a photon, hence

the name. This light is then usually amplified and converted to an electric signal

by a photomultiplier tube (PMT) or a silicon photomultiplier (SiPM).

PMTs are essentially discrete electron multipliers consisting of a cascade of

electrodes (often called dynodes) which cause secondary emission by the photo-

electric effect, resulting in a signal large enough to be read out.

SiPMs use single-photon avalanche diodes (SPADs), which rely on p−n junc-

tions [79] to convert the photons to signal for readout. p − n junctions will

be discussed in more detail in Sec. 4.2 as they are also the technology behind

the ALPHA silicon detector, the primary resource for detecting antihydrogen in

ALPHA-2. The gain in a SiPM is generally more deterministic than those of a

PMT, reducing the excess noise in the readout chain and improving the signal-to-

noise ratio (SNR). Further, the bias voltages used in SiPMs is ∼ 100V, which is

considerably less than the bias voltages required for PMTs (typically in the range

of multiple kV), making them the preferential choice in most cases.

ALPHA deploys a range of both PMTs and SiPMs throughout the apparatus,

mostly arranged in pairs to allow for coincidence detection, significantly reducing

the noise in the readout. By using the panels in this way, we are able to count

how many particles impact the scintillator. It is important to note that this is not

necessarily the same as the number of antiparticles as each panel has an individual

efficiency, the coincidence operations will come with an associated efficiency, and

their geometric solid angle compared to the source of the antiparticles will all con-

tribute to the total efficiency of the signal with respect to number of antiparticles.

This efficiency is of great importance when using these scintillating panels for di-

agnostics, and the calibration of these panels when performing certain operations

via simulations is the focus of Chapter 5.

3.3 CsI Detectors

Another form of scintillating counter; caesium iodide counters are crystalline

blocks sensitive to the 511keV γ-rays produced after a positron annihilates. They

are coupled to photodiodes that measure the yield and read out the traces. These
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detectors are placed throughout the experiment, specifically in places where par-

ticles are transferred between sections.

3.4 Longitudinal Temperature Diagnostic

An important parameter in antihydrogen production is the temperature of the

plasmas involved, as the production rate of antihydrogen scales with both the

temperature of the p̄ and the e+. However, a plasma doesn’t have one single

temperature associated with it; instead, the plasma has a distribution function

(f(x, t,v)) describing its energy distribution (often Maxwellian in nature) at a

given time t, in position x. In general, then, the temperature of a plasma can

be considered the average thermal kinetic energy (KE) per particle in the plasma

and is typically measured in eV or K. In [80], the authors describe a method for

measuring the parallel energy distribution of a magnetically confined plasma by

slowly lowering a confinement potential and seeing how many have enough energy

to escape the confinement at any given moment. The probability density function

f(Ep) for finding a particle with energy E can be described as:

f(Ep) = 2
√
Ep

π

[
1

kBTp

] 3
2

exp
(

− Ep

kBTp

)
(3.1)

where Ep is the parallel/axial energy, Tp is the parallel temperature of the plasma,

and kB is the Boltzmann constant. However, we can assume as the particles escape

on axis, their energies follow a one-dimensional Maxwell-Boltzmann distribution,

i.e. the probability density function Equation 3.1 simplifies to

f(Ep) = 1√
πkBTp

exp
(

− Ep

kBTp

)
(3.2)

Then, the relationship (also from [80])

d ln(f(Ep))
d(Ep) = −1.05

kBTp

(3.3)

which is accurate to about 5% while Ep ≳ 2kBTp, allows us to relate the parallel

energy to the temperature. This derivative is easy to find experimentally in a PM
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trap since the confining voltages and the number of escaped particles reflect this

distribution. Figure 3.3 shows one such measurement of p̄ temperature using this

method.
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(a) Log plot of counts detected on a nearby scintillating panel
as the on-axis blocking potential is slowly lowered, releasing con-
tained antiprotons longitudinally. The blue line shows the voltage
applied to the containing electrode over the same time. The counts
occurring after the voltage has reached zero are particles that sit
at a high radius compared to those in the centre. These particles
are often referred to as the beam halo.
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(b) Log plot of the counts converted to energy units. The black
line is a linear fit (on a semi-log plot) to the range [1, 2]. Using
Equation 3.3 this is converted to temperature units, and the re-
sulting temperature of the plasma is quoted as ∼ 3628K.

Figure 3.3: Example of the longitudinal temperature diagnostic procedure used
by ALPHA to attribute a temperature to plasmas.

By plotting the number of escaping particles as a function of the trap depth on

a log scale, one finds that the linear sections of these plots correspond to regions

where Equation 3.2 accurately describes f(Ep) (and hence where the energy dis-

tribution is Maxwellian), thus by fitting a line to these regions using Equation 3.3
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we can find the temperature of the plasma. The non-linear sections of the curve

seen for low energy particles represent the areas where the effect of space charge of

the remaining particles is enough to alter their energy distribution as they leave.

It is also possible to use these non-linear sections to determine the temperature if

more sophisticated fitting methods (which take into account this space charge ef-

fect) are used; a detailed description of this method can be found in [81]. Further,

in order to experimentally determine f(Ep), it is necessary to lower the confining

potential, and, in doing so, it is possible to apply some forces on the plasma,

potentially changing the energy, dimensions, or density of the plasma. Thus, the

temperature derived from the above method is not necessarily representative of

the temperature of the plasma prior to the measurement. To correct for these

“finite length effects” as they are known, one can either analytically calculate cor-

rections for the temperature to take this into account, or one can simulate the

dynamics of the dumps to reproduce the measurement and obtain a correction.

Both methods have merits, and more discussion of this effect and the possible

corrections to counteract it (as well as for the space charge effect) can be found

in [82].

3.5 Obtaining antiparticles

Fundamental to the production of antihydrogen is the collection and trapping of

the constituent particles (antiprotons and positrons - see Sec. 2.2), which can be

a difficult process and, in the case of antiprotons, requires a large facility and lots

of energy to produce.

3.5.1 Antiproton Production

The “usual” method of p̄ production is to shoot a very high energy proton beam

onto a conversion target and then collect the resulting p̄ in a separated beam chan-

nel [83–85]. In this way, antiprotons can be produced via pair production (where

some of the collision’s energy is converted into mass, creating new (anti)particles).
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The interaction can be described with the equation:

p(beam) + p(target) → p+ p+ p+ p̄ (3.4)

provided the colliding protons have an energy above the production threshold for

antiproton production (∼ 7mpc
2 ≈ 6.6GeV). Generally, a beam of high luminosity

protons are directed onto a stationary target, usually a thin rod of some heavy

metal, such as tungsten or iridium. Ideally, it would be long compared to the

length of the collision but short compared to the absorption length so that most

of the protons interact with, but also leave, the target. This is the process deployed

by the AD facility at CERN, where 1013 protons are accelerated up to 26GeV/c by

the Proton Synchrotron (PS), then directed into a 3mm diameter, 5cm long rod of

iridium, creating many secondaries, some of which are antiprotons [86]. In order to

capture these antiprotons, special “collector lenses” such as plasma lenses, lithium

lenses, or a “magnetic horn” are needed to guide the beam. Previous studies

have shown that magnetic horns are easier to repair and exchange, and, despite

resulting in a 20-40% reduction in the total yield of p̄, this was chosen as a lens

for the AD facility, resulting in ∼ 5 × 107p̄ per shot [87]. These antiprotons have

an energy of ∼ 3.57GeV/c with a momentum spread (∆p/p) of ∼ 1.5% and are

directed into a storage ring for cooling and deceleration.

In this context, cooling refers to a decrease in the beam emittance. The beam

emittance (often denoted ϵ) is a way to measure the quality of a beam, specifically

its “laminarity”. Beam emittance is a quantity related to the area occupied by the

beam when plotted in the position-momentum phase-space. Though each particle

is technically represented by a 6D vector comprising the particles position and

momentum in three dimensions (x, y, z, px, py, pz) if we assume that the motions

in each dimension are independent, then we can treat them separately thus the

emittance in, for example x, denoted ϵx, is related to the area of the 2D plot of x

vs px.

Deceleration refers simply to a reduction in momentum.

Further discussions of how the antiprotons are cooled and decelerated prior to

injection to the experiments can be found in Sec. 3.6.
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3.5.2 Positron Accumulation

Accumulating positrons is a far simpler process than accumulating antiprotons,

and they can be accumulated in much larger numbers and at much lower energies

using a radioactive source that emits positrons, and an accumulator.

The ALPHA experiment (as well as many others that collect positrons) uses a
22Na isotope as a positron source, which emits positrons via the following decay:

22Na → 22∗Ne + e+ + νe (3.5)

where a proton in the sodium-22 nucleus converts to a neutron and emits a positron

and an electron-neutrino in the process. The excited neon atom (22∗Ne) then

decays to the ground state, emitting a 1.274MeV gamma ray (22∗Ne → 22Ne + γ).

The branching ratio of this beta decay (Equation 3.5) is ∼ 90% and the source

has a half-life of ∼ 2.6 years [88] allowing the use of one source for multiple

experimental seasons without the need for replacement.

The positrons emitted from this process have a very large energy spread, typi-

cally on the order of MeV, which renders them unusable for low-energy physics. In

order to reduce their energy enough to be trapped, first they are implanted into

some solid material known as a moderator to lose enough energy for trapping.

When positrons are implanted into a material they will slow down through a few

different processes (mostly involving the creation of electron-hole pairs, phonons,

and core electronic excitations) and, depending on the properties of the moderator

used, the time for the positrons to reach thermalisation can approach the annihi-

lation lifetime. However, by selecting its initial implantation depth and diffusion

length (a characteristic of the material), the positrons can reach the surface of the

other side of the moderator before annihilation. Thus, positrons implanted into

materials and released into the trap may reach the surface in a thermal or near-

thermal state. The probability of this happening is low (in the 0.1–1% range), but

the resulting positrons released into the vacuum are much lower energy than those

that leave the source now in the ∼ 50eV range [57]. The ALPHA experiment uses

a layer of solid neon deposited directly on the source as a moderator and using

this technique can produce ∼ 5 × 106 positrons per second.
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Now, in order to further collect, cool, and store the positrons emitted from

this source one must deploy some form of trap; and ALPHA deploys a buffer-gas

trap (BGT), also known as a “Surko” trap after it’s inventor Clifford Surko [89,

90].

A Surko trap consists of a modified PM trap (see Sec. 2.3.2) where instead

of multiple electrodes of constant inner radius, the radii of each consecutive elec-

trode increases. A uniform axial magnetic field of 0.15T inhibits positron motion

radially, and voltages imposed on these electrodes prevent axial loss. The num-

ber of electrodes in this stack is often referred to as stages, for example, ALPHA

deploys a 3-stage trap. The trap has a stepped electric potential, where the well

gets deeper in multiple steps to its maximum depth.

However, when positrons enter the trap, without any mechanism to lose energy,

they will be reflected at the furthest end of the trap and leave. In order for them to

lose enough energy to remain trapped, BGTs deploy a volume of some molecular

gas which (via inelastic collisions) causes cooling via excitation. The cooling gas

used by ALPHA is ordinary molecular nitrogen, N2, which has been found to be

the most efficient gas for positron capture, and has a good probability of causing

an excitation over an annihilation.

Nitrogen has a prominent positron excitation transition:

e+ + N2 → e+ + N2∗ . (3.6)

which, upon decay of the N2∗ results in the positron losing ∼ 9eV kinetic energy,

and, since the well is set specifically to have a roughly 5eV blocking potential, once

the positrons lose the 9eV after entering the trapping region above the blocking

potential, they are subsequently confined axially.

At 10eV (the energy level of the positrons in the high-pressure region of the

trap [57]) the cross-section of this transition is greater (∼ 2.2a2
0) than that of the

transition which will cause the loss of positrons into positronium (1.2a2
0) [91]:

e+ + N2 → Ps + N2+, (3.7)

where the positron binds to an electron in the nitrogen, forming positronium and
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leaving an ion behind. The relative frequency of these two interactions is what

makes nitrogen an efficient form of positron cooling.

Since the electrodes have varying radii, there is a pressure gradient in the buffer

gas along the electrodes; the lower pressure regions correspond to the regions with

the lowest electrostatic potential. As a result the positrons enter the trap in the

“high potential, high pressure” region of the trap and through collisions slowly

drop into the “low potential, low pressure” region of the trap.

Surrounding this final low-pressure region is an electrode that is segmented az-

imuthally, allowing one to apply different electric fields at different angles around

the plasma. By oscillating this field around the plasma, a torque can be applied,

causing a compression. This is known as a “rotating wall” electrode, and is dis-

cussed in more detail in Sec. 3.8.1. The combination of the rotating wall for

compression and the small amounts of remaining buffer gas result in a dense, cool

positron plasma ideal for antihydrogen production.

A diagram of the ALPHA Surko trap can be seen in Figure 3.4, which shows

the setup of the trap, as well as a sketch of the energy loss mechanism.

Figure 3.4: Schematic of the ALPHA Surko trap, adapted from [92], which shows
the radioactive source, magnets, moderator, cryogenic equipment, and PM trap
electrodes. The lower panel shows a diagram of the cooling process, where the red
curve represents the electric potential, as a function of the pressure (and therefore
also position). When the nitrogen line is closed, the gas is swiftly pumped out
to allow for ballistic transfer of the positrons into the ALPHA-2, or ALPHA-g
mixing traps.

Once the positrons are collected in the BGT, they can be transferred into one

of the two mixing regions of the experiment. This process, known as the “positron
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transfer,” requires pumping out the N2 gas, then firing a series of pulsed magnets

in the “beamline” (see Sec. 3.11) to transfer the positrons across the regions of low

radial confinement into the antiproton trap. The transfer efficiency of this is ∼ 50%

with ∼ 108 positrons arriving in both the ALPHA-2 and ALPHA-g traps. In total,

the accumulation cycle takes about 100s. This accumulation and ballistic-transfer

method (along with the stacking of several accumulation cycles) can give some of

the highest density positron plasmas currently used in experimental physics [93].

3.6 Antiproton Deceleration and Cooling

The antiprotons resulting from the process described in Sec. 3.5.1 are too energetic

to be used in antihydrogen production. For this reason the antiprotons need to

be cooled before injection to the various experiments operating from the AD hall.

This is done through two further storage/accelerator1 rings; the AD, and ELENA

(Extra Low ENergy Antiproton).

3.6.1 AD

The AD uses radio-frequency (rf) cavities to decelerate the beam and two separate

processes to cool the antiprotons over its (roughly2) 100s cycle: stochastic cooling

and electron cooling.

For the rf-deceleration an oscillating electric field which opposes the direction

of motion of the beam is applied to the pulses as they pass through the rf-driven

cavity. However, due to the conservation of phase-space density by decreasing the

momentum of the particles in the beam, the position spread of the particles must

expand, causing adiabatic expansion [94].

Thus, the beam must be cooled to reduce the size and energy spread of the

circulating beam after any round of rf-deceleration. By applying both of these

processes alternatively one can reduce both the momentum, and beam energy

spread of the circulating beam.

Stochastic cooling [95, 96] involves applying a series of corrections or “kicks”
1(decelerator)
2The timing of this whole cycle is not completely deterministic, and can often fluctuate from

100-130s.
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to the mean position of the beam using an electric field. The method requires a

pickup (detector) to record the mean deviation of the beam, and an apparatus

to apply the kick. Further, by placing these on opposite sides of the storage ring

and running a cable directly between the two points, the signal arriving from the

pickup to the kicker (with information on the optimum kick to apply) will arrive

before the beam; allowing these kicks to be applied to the same particles that were

measured at the pickup. Since the pickup can only record the mean deviation of

the entire plasma no one single kick will be a correct correction for all particles.

However, by carefully selecting the kick based on which will minimise divergent

corrections to the beam, and ensuring to minimise the noise in the system, over

the course of many turns the effect of this divergence is minimised, and the result

is a net convergence to reduce the beam size and energy spread of the beam.

Electron cooling [97, 98] uses a beam of already cold electrons to interact

with the antiproton beam, transferring energy to the electrons. To do this, cold

electrons are ejected in the ring, matching the speed of the antiprotons. Then

through Coulomb interaction between the two species the antiprotons transfer

some of their excess energy to the electrons, reducing their energy spread, and

increasing those of the electrons. These higher energy electrons are then removed

from the beam later so as not to contaminate the bunch.

The two methods are complementary to each other and work well in tandem;

the requirement to match the electron velocities to those of the antiprotons makes

electron cooling an inefficient method of cooling when the antiprotons have a high

velocity, conversely stochastic cooling is better applied to higher-energy beams,

as the rate of cooling incurred from electron cooling is strongly dependent on the

velocity spread of the antiprotons.

Therefore, the AD uses stochastic cooling on the two higher momentum stages,

and electron cooling on the lower two stages.

Table 3.1 shows the target beam emittance (ϵ) and the momentum spread

(∆p/p) of the beam before, and after each stage of the cooling process (subscript

b for before, and a for after); and Figure 3.5 gives a schematic view of the cycle

showing both the momentum and emittance from injection to ejection.

As some of the antiprotons are lost through the cycle, the result of this process
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Before After
p ϵb ∆pb/pb ϵa ∆pa/pa t Cooling

(GeV/c) (π · mm · mrad) (%) (π · mm · mrad) (%) (s) process
3.57 200 1.5 5 0.1 17 Stochastic

2 9 0.18 5 0.03 8 Stochastic
0.3 33 0.2 2 0.1 16 Electron
0.1 6 0.3 1 0.01 9 Electron

Table 3.1: Transverse emittances and momentum spread before (b) and after (a)
each cooling stage during the AD cycle.
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Figure 3.5: Example of AD cycle showing the momentum, and beam emittance
throughout the cycle. The moments that show a decrease in momentum corre-
spond to deceleration of the beam, and the moments that show a decrease in the
emittance correspond to a cooling process (labelled on this plot). Notice on this
plot that periods of deceleration also give beam “heating,” i.e. they increase the
emittance.

is bunches of ∼ 5 × 107 antiprotons at energies of ∼ 5.3MeV being delivered to

ELENA for further cooling and deceleration [99, 100].

3.6.2 ELENA

While the 5.3MeV are considerably less energetic than the time of creation, the

majority are still far too energetic to be trapped in a PM trap (this would require

electrodes biased to 5.3 million Volts). Prior to the construction of ELENA the

experiments were forced to further reduce the energy themselves before being able
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to trap them, and in ALPHA the loss during this process was typically 99%.

To avoid these losses and allow more of the antiprotons to be trappable ELENA

was constructed, reducing the energy of the 5.3MeV antiprotons even further to

∼ 100keV [101].

ELENA is a 30m ring located within the AD hall, and is the only ring at

CERN entirely visible. It uses further rf-deceleration and electron cooling cycles

to reduce the beam energy to ∼ 100keV over another period of ∼ 20s. This is then

split into 4 separate bunches which can be delivered to up to four experiments

simultaneously [100], allowing for 24-hour p̄ delivery (provided fewer than four

experiments are requesting beam), which, prior to ELENA, had to be shared

between the experiments as only one beam was available. Losses incurred during

this cycle reduces the roughly 5×107 antiprotons entering ELENA by about 12%,

into four bunches of ∼ 1.1 × 107 antiprotons each.

ELENA has two cooling plateaus, both utilising electron cooling, and two

deceleration cycles [101].

Table 3.2 shows the target beam emittance (ϵ) and the momentum spread

(∆p/p) of the beam before and after the two stages of electron cooling (subscript

b for before, and a for after); and Figure 3.6 gives a schematic view of the cycle

showing both the momentum and emittance from injection to ejection.

Before After
p ϵb ∆pb/pb ϵa ∆pa/pa t Cooling

(MeV/c) (π · mm · mrad) (%) (π · mm · mrad) (%) (s) process
35 8 0.1 1.1 0.02 8 Electron

13.7 2.8 0.05 0.5 0.03 2 Electron

Table 3.2: Transverse emittances and momentum spread before (b) and after (a)
each cooling stage of the ELENA cycle.

3.7 Catching Trap

The ALPHA catching trap (CT) is a device built to catch and cool the antiprotons

from ELENA before transferring them to a separate device for antihydrogen pro-

duction. The CT consists of a PM trap sat within an external 3T magnetic field
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Figure 3.6: Example of ELENA cycle showing the momentum, and beam emit-
tance throughout the cycle. The moments that show a decrease in momentum
correspond to deceleration of the beam, and the moments that show a decrease
in the emittance correspond to a cooling process (labelled on this plot). Notice
again on this plot that periods of deceleration also give beam “heating,” i.e. they
increase the emittance.

provided by a solenoid known as the “Swansea magnet”. The PM trap consists of

20 electrodes labelled E1-E20, two of which (E6 and E16) are segmented to allow

for rotating wall compression (see Sec. 3.8.1); and two are high voltage electrodes

labelled high-voltage A (HVA or E1), and high-voltage B (HVB or E13), used for

dynamic trapping of antiprotons. Prior to the construction of the CT, antiprotons

were caught directly in the 3T field of the mixing trap (see Sec. 3.10) however,

in order to separate the high voltage electrodes from the region marked for pre-

cision spectroscopy, and to allow for better access of light axially into the trap,

a dedicated catching apparatus was constructed for use in the 2014 experimental

season. The catching trap also contains a special foil known as the degrader foil

used to reduce the energy of the antiprotons even further prior to trapping (much

like the positron moderator in Sec. 3.5.2).

The combination of AD and ELENA allows for ∼ 107 antiprotons to be deliv-

ered to the experiments with an energy of ∼ 100keV with a pulse length < 150ns.

This is equivalent to a momentum of 13.7MeV/c and is still slightly too energetic

for trapping, even with the high voltage electrodes. In order to reduce their en-

ergy further the antiprotons are directed through a sheet of ∼ 1µm thick pure
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aluminium foil. Like the positron moderator this reduces the energy of the an-

tiprotons further, resulting in cooler, lower energy p̄ which are easier to catch

[102]. The degrader foil can also be used as a Faraday cup, allowing diagnostic

information on the number of antiprotons annihilating (see Sec. 3.1.3). Detailed

discussions of the degrader foil can be found in [103]; and while the main purpose

of the foil is to decrease the energy of the antiprotons passing through, some an-

tiprotons annihilate on foil, and the secondaries of this interaction can be measured

on external scintillators surrounding the experiment.

The two high-voltage (∼ 4kV) electrodes are used for the initial trapping, until

the antiprotons can be cooled enough via cyclotron cooling to be contained by the

standard electrodes (which are limited to a voltage of 140V). The antiprotons

enter the ALPHA apparatus with HVB already engaged, antiprotons with energy

< 4keV will not be able to overcome the electric potential barrier and will be

reflected, back towards ELENA. HVA is then ramped up, triggered by the ELENA

timing signal, before the antiprotons can leave the trap, confining them between

HVA and HVB. A diagram of the CT PM trap can be seen in Figure 3.7 along

with the trapping potentials applied when catching antiprotons.

At this point further cooling is required to reach thermal temperatures, allow-

ing the low voltage electrodes to be sufficient for confinement.

Fortunately, charged particles will self-cool in a magnetic field via a mechanism

known as cyclotron cooling. The Larmor formula [105] is used to calculate the total

power radiated by a non-relativistic point charge as it accelerates and is given by

dE

dt
= − q2

6πϵ0c3 |⃗a|2 (3.8)

where a⃗ is the acceleration of the particle. However, for a particle in a PM trap,

the cyclotron motion dominates this cooling effect, meaning we can approximate

a⃗ with ω⃗c × v⃗. Further, we can assume the energy of the system is entirely kinetic

[106] and thus

dE

dt
= q2ω2

c

3πϵ0mc3E (3.9)

= q4B2
0

3πϵ0m3c3E (using Equation 2.21) (3.10)
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Figure 3.7: The CT electrodes and the axial potential before (dashed line) and
after (solid line) catching antiprotons. Antiprotons enter from the left while HVA
is off, a set time (∼ 11µs) after the bunch is injected a signal triggers HVA to
ramp up, trapping the antiprotons inside. Electrons already sit inside the trap for
cyclotron cooling. The peak voltage of HVA and HVB sits off the axis of the plot
at -4kV. Figure from [104].

which can be rewritten as dE/dt = −γcE where γc is the factor in Equation 3.10

and referred to at the cyclotron cooling rate. The solution to this equation is E(t) =

E0e
−γct where E0 is the initial kinetic energy of the particle, showing that the

cooling of a particle in a magnetic trap due to the cyclotron motion is exponential.

We can calculate the value of γc for both antiprotons and electrons (which is

a constant given constant uniform magnetic field), and we see that the cooling

rate for antiprotons in a 3T trap is γc,p̄ ≈ 1.953125e−93/s which is considerable

slower than that of electrons or positrons γc,e− ≈ 3.333.../s. This motivates the

decision to use electrons in the cooling process whereby, instead of waiting for the

antiprotons to cyclotron cool alone, we mix them with electrons, and, through the

cooling of the electrons, allow the antiprotons to cool via Coulomb interactions.

It’s worth noting here that while lim
t→∞

E(t) = 0, in reality this method has

a limit where the mechanical temperature matches the cyclotron cooling rate,

resulting in an equilibrium point.

Following the model and methods described in [107, 108] it can be shown that
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as many as 104 antiprotons, with initial energies in the keV range, could be cooled

down to the eV range in several hundred milliseconds using an electron cloud with

a density of only 108e−/cm3

A sketch of the whole antiproton catching and electron cooling procedure can

be seen in Figure 3.8.
High voltage electrode 

(HVA - 4keV)
Incoming antiprotons from ELENA

Pre-loaded 

electrons

a)

High energy antiprotons (>4keV)
Low energy 

antiprotons (<4keV)

Fast-switch high 

voltage barrier (HVB)

Antiprotons interact 

with the cold 

electrons

b)

High voltage barriers can be disengaged

Electron and antiproton mix confined in the same well

c)

Figure 3.8: Sketch of the antiproton catching and cooling process. a) Antiprotons
from ELENA enter the CT where electrons are already preloaded and HVA is
already engaged; b) antiprotons with <4keV of energy are reflected back towards
ELENA (those of energy >4keV are lost) whereby HVB is quickly engaged, confin-
ing the antiprotons between the two electrodes; c) Through Coulomb interactions
with the elections they can cool into the low-voltage electron well and the HV
barriers can be disengaged
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3.8 Antiproton Preparation

Once the antiprotons have been captured and cooled to a reasonable level, they

require transfer to the mixing trap where antihydrogen can be produced. Before

this is done (and also after the transfer in the new trap), there are more parameters

of the plasma that must be controlled. Namely, temperature, density, and size.

There are multiple methods deployed by ALPHA that aim to control these proper-

ties of the trapped plasma, which are detailed in the following sections (Sec. 3.8.1

- Sec. 3.8.5).

3.8.1 Rotating Wall Compression

As mentioned in Sec. 3.5.2 plasmas often require compression or occasionally,

expansion. This can be achieved through a method known as a “rotating wall”. A

rotating wall is a special segmented electrode, divided azimuthally. By applying

a pulsed, off-phase, periodic potential on these electrodes a torque is applied on

the plasma, and, depending on the charge, will cause compression or expansion.

Rotating wall waveform 

generator

Phase shift

Figure 3.9: Sketch of a rotating wall electrode. A waveform generator provides a
sinusoidal wave, which is split and phase-shifted, to each of the electrodes.

Referring to Equation 2.24 recall that the total canonical angular momentum

applied on the plasma (Pθ) is proportional to the mean squared plasma radius

(∑N
j=1 r

2
j ), i.e. Pθ ≃ qB

2c
⟨r2⟩. Therefore if dPθ/dt > 0 and q < 0 (as is the case

with antiprotons and electrons), then d ⟨r2⟩ /dt < 0. Meaning that by applying a

positive torque to a plasma of antiprotons or electrons, the change in the average
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of the radii will also be negative, compressing the plasma. It also follows that a

negative torque will cause plasma expansion; and further that these are reversed

for positively charged particles and negative torques.

The system shown in Figure 3.9 is capable of applying such torques to plasmas,

where each section of the segmented electrode receive an oscillating sinusoidal

potential with an offset phase, generating a rotating electric field which couples

with the radial motion of the plasma.

The voltage applied to the n-th electrode in a rotating wall configuration is

Vn = V0 sin(ωRWt− θn) (3.11)

where V0 is the magnitude of the compression, ωRW the angular frequency, t is

time, and θn = 2nπ/N where N is the total number of segments in the electrode,

in the case where N = 6 the angles θn are displayed as phase shift in Figure 3.9

This rotating wall method for compression is common in particle manipula-

tions where controlling the exact size or density of a given plasma is necessary [67,

109–113].

In ALPHA this method is generally applied to the combination of particles

and antiparticles that allow cyclotron cooling; as compression invariably comes

with heating [94], the combination of both in the well allows for compression via

rotating wall, and then cooling through Coulomb interactions with the electrons,

which radiate away the heat via cyclotron cooling.

3.8.2 The Strong Drive Regime

The strong drive regime (SDR), first discovered in 2005 [114], is a specific method

of implementing the rotating wall where the rotational frequency of the plasma

becomes in sync with the frequency of the field applied on the RW electrode. This

results in a linear relationship between the frequency applied and the final density

of the plasma, allowing for better control and more reproducibility of plasmas.

The SDR has been shown to work on electron plasmas a few cm long and of

frequencies from 0 − 10MHz [115].

Reaching the SDR can be difficult, as the orientation of the plasma axis, mag-
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netic field axis, and electrode field axis relative to each other is important; however

ALPHA has been able to consistently use the SDR to obtain linear increases in

plasma densities when driving from 100kHz - 1MHz.

Prior to development of SDR, in order to couple to the plasma one must couple

to the plasma modes at very specific rotating wall frequencies. Which can result

in very slow, gradual changes in the plasmas rotational frequency (and hence, its

size), further plasma compression will only occur at discrete frequencies ωRW , this

is now known as a weak drive regime.

If instead one is able to reach the strong drive regime, efficient compression

can occur over a much wider range of frequencies, without requiring specific tuning

to the mode of each plasma.

3.8.3 Electron Kick-Out

The combination of antiprotons and electrons works well for the application of

rotating wall compression and cyclotron cooling, however, the electrons must be

removed prior to positron mixing for antihydrogen production.

This is achieved with an electron kick-out, also referred to as an “e-kick”.

The large mass difference between the two species means that the axial thermal

velocity of a particle is inversely proportional to its mass3. The thermal velocity

of a particle in the axial direction at time t is given by

v(t) =
√
kBT

m
(3.12)

where m, T are the mass, and temperature respectively. Therefore, the electrons

have a thermal velocity that is ∼ 42 times greater than that of the antiprotons,

independent of temperature; and when the two species are no longer trapped

by confining potentials they will separate almost instantly. For example, to travel

the approximately 2cm distance corresponding to the width of the electrode would

take the electrons ∼ 0.1625µs, while the antiprotons would take ∼ 6.897µs.

Given this fact we can now deploy a simple solution to remove the electrons

from the well:
3Actually it’s proportional to temperature/mass but as the particles are in thermal equilib-

rium the temperature should be equal for both species.
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1. The potential well containing the electron-antiproton mix is raised, and a

single electrode separates the well from the ground potential

2. The potential applied to this single separating electrode is quickly lowered

to ground.

3. Now that the plasma is unconfined the electrons (and antiprotons) are free

to escape; however owing to the difference in their masses, the electrons

escape much quicker, leaving most antiprotons yet to leave the trap

4. The confining potential is reapplied before the antiprotons can leave

5. Repeat until all electrons are gone.

Figure 3.10 shows a sketch of this procedure.

a)

b)

c)

Confining potential quickly lowered.

Confining potential re-raised.

Electrons are quick to escape.

Antiprotons are slow to 

escape and stay in the 

trap.

Only antiprotons 

remain, all electrons 

have been ejected.

The confining potentials 

holding the antiprotons and 

electron mix are raised.

Figure 3.10: Sketch of the electron kick-out sequence. a) The confining potentials
surrounding the electron/antiproton mixture are raised above ground; b) one of
the confining potentials is lowered, allowing the electrons to escape; c) the con-
fining potential is quickly re-raised after the electrons are gone, but before the
antiprotons are able to leave.
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The quick pulsing of this electrode, as well as the change in charge density

of the mixture that comes from removing a large amount of charged particles,

again causes heating. In order to reduce this effect, multiple e-kicks are applied

to the plasma in increasingly intensity. The first kick removes most (∼ 95%) of

the electrons, which still leaves some electrons to once again cool the antiprotons

through Coulomb interactions. Successive e-kicks then occur each time with a

shallower well, and a lower raise from ground, causing less heating.

Often-times multiple kicks are required to completely eliminate the electrons

and if all are not tuned correctly this process will heat/expand the plasma, or

release too many antiprotons. By carefully tuning the parameters and alternating

e-kicks with rotating walls this process can leave us with a cool, dense, pure

antiproton plasma of somewhere between 200-1000K, and a radius of ∼ 0.8mm.

3.8.4 Evaporative Cooling

A lot of time in the preparation procedure has been dedicated to keeping the

antiprotons cool, and while 200K is relatively cold, in order to trap the resulting

H̄ in the roughly 0.8T field provided by the ALPHA-2 and ALPHA-G neutral

traps the temperature of the resulting H̄ must be < 0.5K4. In order to maximise

the amount of H̄ produced that is cool enough to trap, the temperature of the p̄

must be reduced even further. Another method of cooling charged particles, which

has been shown to be capable of reaching < 500pK [116] is known as evaporative

cooling (EVC).

Evaporative cooling works by lowering the potential on one side of a confining

well just enough such that the hotter particles can leave, but not enough such

that the cooler ones can escape. In the case where the energy distribution of

the plasma is a Maxwell-Boltzmann (MB) distribution, those atoms at the higher

velocity tail which have a higher KE (and therefore temperature) are the first

to escape when lowering the potential. The net result is that while the total

trap population decreases, so does the mean energy of the remaining population,

and through collisions the energy of the population will redistribute again to a

thermal equilibrium resulting in a MB distribution with a mean lower than the
4This value comes from substituting ∆B = 0.8T into Equation 2.29.
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initial sample. An example of the evaporation stage of this process can be seen in

Figure 3.11.
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Figure 3.11: An example of an electric potential well design to confine antiprotons
during evaporative cooling. The antiprotons (which are negatively charged) sit
at the bottom of the potential well in black. By generating an uneven potential
that is similar in magnitude to the energy spread of the antiprotons, the hottest
particles are free to escape, leaving a cooler sample behind in the well. Figure
adapted from [117].

EVC is a technique that relies on losses to work; something which is generally

not desirable. This results in a trade-off between the antiproton number and the

temperature desired. As more particles evaporate out of the well, the colder the

remaining plasma will be, but also the fewer particles will remain.

ALPHA chooses to optimise this step based on antihydrogen formation rates,

aiming to maximise the rate of production, not at producing the coldest possible

plasma.

Using the evaporative cooling technique on antiprotons ALPHA recorded a

minimum temperature of 9±4K, with 6±1% of the initial 45,000 antiprotons that

were used remaining in the final 10 mV well [118]. ALPHA has also demonstrated

evaporative cooling on positrons [119] and uses this technique to cool the positrons

prior to mixing also.

3.8.5 Strong Drive Regime Evaporative Cooling

Developed in 2018 by the ALPHA collaboration [117], strong drive regime evapo-

rative cooling (SDREVC) combines the methods of a rotating wall in the strong

drive regime (Sec. 3.8.2), with evaporative cooling (Sec. 3.8.4) applied simultane-
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ously. By performing both concurrently in this way SDR allows precise tuning of

the plasma density, and EVC allows tuning of the plasmas space charge yielding

incredibly consistent and reproducible plasmas.

When aspects such as the background gas levels, electrode fields, magnetic

fields, and temperatures are all fluctuating, even on a shot to shot basis, having

some method to maintain consistency is incredibly valuable. Two consecutive

antiproton/positron shots produced under (nominally) the same conditions can

often produce varying plasmas which is not good for systematic production of

antihydrogen. The control and reproducibility of the plasmas at ALPHA are

crucial, not only for H̄ production and physics experimentation; but also for use

in systematic measurements such as electron cyclotron resonance (ECR) which

is used to characterise the magnetic fields at ALPHA and requires a consistent

electron plasma (often referred to as an electron reservoir).

SDREVC works by elongating the plasma to a “cigar” shape in the PM trap,

the tail of which is sat under a RW electrode; then, by applying the RW and

lowering the potential difference s.t. the space charge of the plasma is limited by

the electrostatic potential of the well, the plasma will have a well-defined density

and space charge.

As long as the initial number of particles is enough to both a) reach the strong

drive regime; and b) fill the final well aimed for in the EVC step, this will result in

reproducible plasmas with a known number of particles, density, and space charge.

If the number of particles prior to the SDREVC step falls below this minimum

threshold, the SDREVC will not succeed in producing an identical plasma; and in

fact, in most cases where SDREVC has stopped giving reliable results, increasing

the number of particles prior to the SDREVC step, generally resolves the problem.

The application of a RW to a plasma will again cause heating; and in order

for SDREVC to work the plasma must be sufficiently cold. For electrons this isn’t

a problem as the cyclotron cooling discussed in Sec. 3.7 is enough to counteract

the heating of the RW. However, for this reason SDREVC has not been demon-

strated to work on antiprotons, as the heating via the RW is too much (sometimes

increasing the plasma from 100k to 3/4000K). However, the Be+ ions used for

positron cooling (see Sec. 3.9.1) also benefit from external cooling in the form of
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laser cooling and recently the ALPHA collaboration was able to demonstrate the

first application of SDREVC to obtain reproducible Be+ plasmas; this being the

first time that SDREVC has been demonstrated on a heavy ion.

3.9 Positron Preparation

Experimental [120] and theoretical [56] evidence has shown that for the parameters

of the experiment in ALPHA, the antiprotons will thermally equilibrate with the

positrons during mixing, just before antihydrogen is produced. This means the

temperature of the resulting antihydrogen is essentially that of the positron plasma

prior to mixing. Given that the trapping field for both the ALPHA-2 and ALPHA-

g magnetic trap is ∼ 0.5K deep (i.e. ∆B in Equation 2.29 is ∼ 0.8T); it is essential

for efficient trapping to keep the positrons as cool as possible. A newly developed

method of positron cooling consists of mixing positrons with positive beryllium

ions which can be cooled via laser cooling, and then in turn sympathetically cool

the positrons.

3.9.1 Beryllium Assisted Positron Cooling

The Be+ ion is the lowest mass ion that can be laser-cooled from the ground state

making it an excellent candidate for sympathetic cooling [121, 122].

The Be+ ions are generated by ablation on a piece of metal beryllium using a

pulsed 355nm laser [123], regularly producing anywhere from 108 to 1010 atoms.

Once the positrons are transferred from the positron accumulator and re-caught we

may apply any of the methods mentioned in Sec. 3.8 - namely RW for compression,

and SDREVC for better control of density and space charge. Once the positrons

have been sufficiently cooled they are merged with the Be+ ions where another

round of RW compression takes place. Immediately following this step the Be+ and

positron plasmas have good radial overlap (r ≈ 0.6mm). This mixture can then

be cooled using a detuned 313nm laser, and much like using the cyclotron cooling

of electrons to sympathetically cool antiprotons, here laser cooling of Be+ ions

causes sympathetic cooling of the positron plasma. Using this method positron

temperatures were on average 6.8±0.5K, [124] a factor of 2.6 times lower than the
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temperatures reported (using the same measurement method5) as those recorded

at the cyclotron limit in the absence of any Be+ ions: 17.3 ± 0.5K [124].

It was also shown that using these much cooler positrons to mix with antipro-

tons and form antihydrogen resulted in a factor 8 increase in trapped H̄. This

allows us to accumulate over 15,000 atoms in under 7 hours making measure-

ments that would previously take weeks, be able to be performed in under 24

hours.

While both the ALPHA-2 and ALPHA-g trap were built to allow room for laser

light, (for Be+ cooling, H̄ cooling, and spectroscopy) as of 2024 only the ALPHA-2

trap has the hardware in place for ablation and laser cooling of beryllium ions.

The introduction of this method to the ALPHA-g apparatus has begun and is

ongoing, which could seriously reduce the statistic error on the result presented

on the gravity experiment [17].

3.10 Atom Trap(s)

Both the ALPHA-2 and ALPHA-g apparatus contain a PM trap for mixing the

charged particles to produce antihydrogen, as well as a neutral trap for containing

the resulting H̄. Though both the ALPHA-2 and ALPHA-g traps are very similar

there are some minor differences, and the specifics of each trap (both the PM and

neutral traps) is described in the following sections.

3.10.1 ALPHA-2 Trap

The ALPHA-2 atom trap consists of a PM trap containing 27 electrodes (labelled

E1-E27) in a 1T external solenoid. The magnets for the neutral trap sit between

the electrodes and external solenoid for the PM trap. I diagram of the A2 atom

trap can be seen in Figure 3.12.

The PM trap is split roughly into three sections, the re-catching trap (RCT),

the mixing trap, and the positron re-catching trap. Electrodes E1-E7 (see Fig-

ure 3.12) are part of the RCT, and are in place to “re-catch” the antiprotons
5The technique used here - described in Sec. 3.4 - may not be truly indicative of absolute

temperature, however, it should at least be relatively comparable with other measurements made
in the same way.
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E1 E7 E8 E20 E21 E27

Figure 3.12: a) Sketch of the electrode and magnet layout of the ALPHA-2 atom
trap. Antiprotons and positrons are re-caught at each end of the trap, before they
are mixed in the central region, where the octupole and mirror coils can trap the
resulting antihydrogen. The external PM solenoid is beyond the figure. Electrodes
E3 and E25 are segmented to allow RW compression and E8-E20 have a larger
radius than the re-catching traps; b) Axial well formed by the five mirror coils
responsible for the axial confinement of neutral antihydrogen. c) Radial magnetic
octupole field profile. Figure adapted from [14].

transferred to the atom trap from the catching trap, and apply the same prepa-

ration that was performed in the CT (see Sec. 3.8). E3 and E24 are segmented

to allow for rotating wall compression (as described in Sec. 3.8.1). The mixing

trap (E8-E20) is the section used for the mixing of antiprotons and positron for

antihydrogen production (see Sec. 3.12). The neutral trap to store the resulting H̄

surrounds the electrodes. The final section (E21-E27) is the positron re-catching

section, and is once again used for the re-catching of the positrons transferred

from the positron accumulator and to perform preparation similar to that of the

antiprotons.

The ALPHA-2 neutral trap consists of five mirror coils and an octupole [71].

The mirror coils provide a strong magnetic field gradient along the axial direction,

and though there is some radial component (as well as fringe fields) their purpose is

to axially trap the resulting H̄’s motion in the z-direction, and maintain a uniform

field in the region where experiments will occur.

The mirror coils are placed at ∼ ±14cm centred on the PM trap, giving the
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locations of the field maximum seen in Figure 3.12.

This corresponds to a minimum of ∼ 1.06T, and a maximum of 1.82T, resulting

in a trap depth of 44µeV, or ∼ 0.5K (from Equation 2.28 and Equation 2.29

respectively). This value defines the overall trap-depth of the ALPHA-2 atom

trap, as any atom with an energy greater than this will eventually escape the well

and annihilate on the wall.

3.10.2 ALPHA-g Trap

The ALPHA-g trap is, by design, very similar to that of the ALPHA-2 trap.

However, since both the antiprotons and positrons enter the apparatus from the

same direction, instead of multiple re-catching traps on either end of the mixing

trap, the ALPHA-g trap has an extra long RCT to allow for the preparation of

both species simultaneously.

ALPHA-g was constructed specifically to measure the effect of gravity on

the motion of antimatter and, due to the fact that gravity is one of the weakest

fundamental forces, precise control of the magnetic fields in ALPHA-g is essential.

A ±1% precision gravity experiment would require controlling the field at the

relevant mirror coils to within ±7 × 10−6T [125], including all stray fields.

The neutral trap (and also the PM trap) are divided into three sections, the

lower trapping region, the analysis region (in the centre), and the upper trapping

region. The lower, and upper traps are designed to both be identical to each

other (and to the ALPHA-2 trap), and are capable of performing the gravity

measurement outlined in Sec. 9.1.3 alone. However, the analysis region in the

centre is designed to perform a precision measurement when it is installed. Though

it does not contain a PM trap like the bottom and top, and is therefore not

capable of producing antihydrogen itself however, two transfer coils are in place

to allow transfer of antihydrogen from either of the productions traps into the

centre. Identical traps on either side of the ALPHA-g apparatus are essential for

good symmetry and good detection coverage in the case that antimatter should

fall in either direction.

The depth of both the upper/lower traps is also ∼ 0.5K, and though technically

the depth of the analysis trap is deeper it would regardless be limited by the
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temperature of H̄ trapped in the production traps.

A detailed diagram of the ALPHA-g lower PM and neutral trap can be seen

in Figure 3.13, ALPHA-g was designed to be entirely symmetric axially, meaning

that the designs for an identical, inverted trap further up the apparatus exist and

was installed in August/September 2024, though it has not been tested as yet.

The central analysis trap region is also not installed as of 2024 and therefore not

displayed in the plot.

Figure 3.13: Detailed view of the ALPHA-g atom trap, a) shows a cross-section of
ALPHA-g pointing out the locations of two MCPs, the detectors, and the direction
of injection of antiprotons and positrons; b) shows an extended view of the dashed
box in a) illustrating the PM and neutral traps (Note that the detectors and the
main solenoid are not drawn to scale in this close up). The on-axis, axial field
profile at full current is shown on the right. Figure from [17].

3.11 Beamline

Prior to the construction of ALPHA-g the positron accumulator was connected

directly to the ALPHA-2 atom trap, meaning the ballistic transfer of the positrons
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into the atom trap was rather simple, and since the timing of the ejection can be

controlled very accurately, the recapture was easily done using a similar re-catching

system to that described in Sec. 3.7. However, after the ALPHA-g apparatus was

constructed, and placed between the positron accumulator and the ALPHA-2 atom

trap, it was required for some method of not only the linear (axially) transfer into

ALPHA-2, but also a method of positrons being transferred upwards, around a 90°

bend, into the ALPHA-g trap. Further, the beamline must be multispecies and

reversible, capable of also transferring antiprotons through the ALPHA-2 atom

trap upwards 90° into ALPHA-g.

A novel beamline was constructed and commissioned in 2018 to address this

problem [126].

In most other beamlines used for transferring particles, the plasmas are on

the order of MeV to GeV, which are less strongly effected by the magnetic field.

ALPHA’s catching trap and positron accumulator are only capable of transferring

plasma with energies of 10-100eV6, which can be perturbed significantly from their

path in the presence of a magnetic field. For example, a positron plasma being

transferred at 50eV would be perturbed radially by ∼ 20cm in the presence of a

10−4T field [126], whereas conventional magnetic or electrostatic lattice beamlines

can generate stray fields on the order of 100s of times greater than this. As such,

ALPHA opted to implement a magnetically guided beamline, using a series of

solenoids to focus and steer the beam in the transverse directions.

A special part of the beamline, known as the “interconnect”, is used to steer

positrons and antiprotons around the 90° corner into ALPHA-g. The interconnect

is an arrangement of seven independent magnets that act to create a curved mag-

netic field, allowing for multidimensional transfers. A diagram of the interconnect,

as well as the simulated field lines, can be seen in Figure 3.14.

Further, there are multiple MCPs along the beamline, allowing us to diagnose

and confirm the beam is following the expected path.

Other experiments have previously implemented this type of 90° bend, and

the ASACUSA experiment (also operating out of the AD hall facility) also has a

beamline for the transfer of 100eV positrons around a 90° corner [127].
6Even if possible, in favour of lower temperatures ALPHA would prefer to transfer with lower

energies.
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Figure 3.14: (a) Simplified schematic showing a cross-section of the interconnect.
The magnet windings are highlighted in orange, while the other structures are in
grey. One of the AGBL06 magnets (placed at −x of the visible one) cannot be
seen. Crosses (dots) indicate the current flowing into (out of) the shown cross-
section of each magnet. (b) Quiver plot showing the strength (colour) and direction
(arrow orientation) of the magnetic field within the mid-plane of the interconnect.
The blue line shows a magnetic field line traced from the horizontal axis of the
experiment, while the dashed line indicates the location of an MCP. Figure from
[126]

3.12 Antihydrogen Formation - “Mixing”

Antihydrogen synthesis at ALPHA is done by mixing the positrons and the an-

tiprotons together in a PM trap. Other experiments operating from the AD hall

have also used this process to synthesise antihydrogen in the past [11, 37, 128].

Since antiprotons and positrons are oppositely charged, and therefore held in

oppositely charged wells, overlapping them in a PM trap is not trivial. The two

wells storing the plasmas are opposite to each other and therefore in order for

the two populations to interact with one another one of the plasmas must receive

enough energy to overcome the barrier holding the other plasma. Prior to the

introduction of SDREVC this was done via “auto-resonant” mixing which involves

using a chirp generator to pulse the electrode holding the antiprotons, driving

the antiprotons into the positron cloud7. This resulted in about one trapped

antihydrogen atom per mixing cycle.

However, simulations had shown that given consistent plasmas (something
7It was shown that driving the antiprotons into the positrons provided better results than

the opposite setup [129].
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now possible with SDREVC) an alternative method of mixing would be optimum

for antihydrogen production, the slow merge or “smerge” [130].

3.12.1 Slow Merging - “Smerge”

The slow merge or “smerge” is a method of mixing the two populations which

does not require the driving of extra energy into one of the plasmas. Instead, if

one lowers the potential barriers of each population in a specific way as to cause

EVC on both plasmas, in opposite directions, the two plasmas will evaporate into

each other, causing mixing. A sketch of this process can be seen in Figure 3.15.

Figure 3.15: Different stages of the smerge process. The dashed line represents
electrostatic potentials before each step, and the solid lines shows the potentials
after the step. a) Potentials prior to mixing process. b) EVC, where positrons
escape to the right. c) Potential adjustment in preparation for mixing. d) Smerge
mixing, the wells slowly shrink until both plasmas have fully evaporated. This
whole process can take anywhere from 0.5-5s. Figure from [120].

The result of utilising this smerging process over auto-resonant mixing was

an immediate jump from 1 H̄ per cycle to ∼ 20. While the process of smerging

has remained roughly similar since it’s addition to the ALPHA experiment some

variables of its exact implementation have shifted over the years. For example,

68



3.13. LASER COOLING CHAPTER 3. ALPHA

while mixing was 1s in 2016-2018, with the introduction of Be+ (see Sec. 3.9.1)

it was found that 2s mixing steps gave better results. Further, the EVC step

portrayed in Figure 3.15b is no longer used, and the positrons are actually mixed

with the Be+ which is simultaneously being laser cooled during this mixing process.

The antihydrogen produced in this method is usually a result of TBR (see Sec. 2.2),

and with the inclusion of Be+ cooling into the experiment has peaked at 186

H̄/cycle.

In this step, anywhere from 50-400k H̄ can be produced with close to 100%

efficiency; however, only those that are cooler than the trap depth of 0.5K will re-

main trapped, generally 50-120 per cycle. ALPHA is able to repeat this step over

multiple cycles without incurring major losses, as demonstrated in [120], accumu-

lating upwards of 15000+ atoms for high statistics experiments. The antihydrogen

lifetime in the ALPHA trap has been demonstrated to be over 66 hours [131] al-

lowing for the possibility of stacking over multiple days. Though this number

is dependent on vacuum conditions, rarely is this a problem for stacking. Each

stack takes two cycles of the AD/ELENA to complete, amounting to ∼ 50 − 120H̄

trapped every 5 minutes.

The data obtained during this mixing process provides an excellent candidate

for machine learning applications. More details on the data obtained during this

process, including rates, distributions, etc., can be found in Sec. 8.3.

3.13 Laser Cooling

Once the antihydrogen is trapped in the neutral well it is ready to be used for

physics experiments. However, for many experiments, the line shape we are mea-

suring is a function of the temperature of the sample. For example, in the case of

1S − 2S spectroscopy the transit time broadening affects the natural linewidth.

Further, in any hyperfine/spin-flip experiment which is dependent on the mag-

netic field, the temperature of the antihydrogen atoms defines how far from the

B-minimum the atoms can deviate, changing the frequency of spin-flip transition

levels and broadening the spectrum.

Once trapped the energy of the H̄ is < 0.5K, and is also Maxwellian. However,
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the mean and shape of this distribution is unknown, only its maximum, and it

would be nice to have a method to consistently control this distribution from

experiment to experiment. Doing so would place a limit on the effect of the transit-

time broadening for a given experiment, or on the magnetic field contribution in

microwave experiments. Further, being able to reliably reproduce a sample of H̄

in terms of temperature would allow us to systematically study these effects.

While photons are massless, they carry momentum and can therefore exert a

force upon other particles they collide with [132]. Laser cooling then, is a process

for cooling atoms where photons from laser light injected into a trap collide with

the atoms stored within it, slowing them and reducing their transverse energy

[133]. While ALPHA is only able to inject light on axis, and laser cooling only

occurs in the single dimension parallel to the laser, the ALPHA neutral trap

couples the motion of atoms to all three dimensions, causing an overall reduction

in the energy of the particle.

Laser cooling was initially demonstrated on matter in 1978 [134, 135], on hy-

drogen in 1993 [136], and on antihydrogen by ALPHA in 2021 [16] after observing

the 1S-2P transition in 2018 [15].

By exciting the 1S-2Pa+ transition with a Lyman-α laser and allowing the

atom to decay back to the ground state, it is possible to Doppler cool the sample

down from 44µeV (0.5K) to ∼ 12.5µeV (0.15K) [16]8.

Further, in the 2023 run, by applying laser cooling for varying amounts of time

and measuring the temperature of the resulting sample through spectroscopy and

time-of-flight analysis, we were able to create consistent and reproducible samples

of laser-cooled H̄ with which to perform sensitive experiments on.

8In the paper the transverse energies were well-defined and reduced from 15.1 ± 0.8µeV to
1.3 ± 0.1µeV - however the longitudinal energies are more difficult to reconstruct, relying on
spectral line shapes for reconstruction. Instead, an upper bound of ∼ 7.5µeV is placed on the
longitudinal energy.
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4 Detection & Reconstruction

Once antihydrogen has been trapped, the only method of observing its existence

so far is through annihilation with matter. Upon annihilation (see Sec. 2.4) the

resulting charged pions can easily be recorded given the correct detectors are

in place. Both the ALPHA-2, and ALPHA-g PM traps are completely encased

by their own unique detector systems which sit outside the trapping region and

just inside the external solenoid to minimise travel distance (and also therefore

scattering material) for the annihilation products.

Since the neutral traps have a maximum depth of 0.5K, and the hottest an-

tiprotons and positrons get in the apparatus at any point is 2-3000K, the maxi-

mum velocity of particles annihilating at ALPHA is ∼ 369km/s1 we can treat all

annihilations non-relativistically.

As discussed in Sec. 2.4, when positrons annihilate they release two, oppo-

sitely directed 511keV photons, and while the detectors that originally verified the

production of antihydrogen contained the required scintillating crystals to detect

these particles [11, 72], they are no longer needed; and instead, the ALPHA de-

tectors focus on detecting the charged pions/kaons produced by annihilation with

the goal to reconstruct the x, y, z position (or vertex) of the annihilation.

Since the detectors are external to the trap (both the PM, and neutral traps)

the secondaries will have to travel through a lot of material before reaching any

detector systems, this can sometimes cause scattering of the reconstructed tracks

(discussed in Sec. 4.2.1).

Annihilations can occur on many different materials, usually though, they

either occur on the trap wall (gold-plated electrodes) or on the residual gas in

the vacuum chamber. The recent introduction of heavy beryllium ions into the

experiment however has offered a new material for which annihilations can occur,

though the fingerprint of this annihilation is generally similar to those on residual

gas. Though the pressure in the traps is generally kept low (below 10−10mbar) this

does change throughout operation, and can cause some issues, especially during

microwave exposure 2.
1This corresponds to a 3000K positron, antiprotons would be even slower.
2The presence of microwaves causes the electrodes to heat, boiling any frozen gasses off,
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The ALPHA-2 trap is surrounded by a single detector known as the silicon

vertex detector (SVD), while ALPHA-g has a time projection chamber (TPC) for

vertex reconstruction, and additionally (owing to the large size of the ALPHA-g

detector) a barrel of scintillating bars (the barrel veto), for use in cosmic back-

ground rejection.

The SVD relies on charged semiconductors to record the location of a passing

charged particle through its modules to detect signals. The theory behind these

semiconductor detectors is presented in Sec. 4.1, with the specifics of the SVD

presented in Sec. 4.2.

The TPC is a form of ionisation chamber, which works similarly to semicon-

ductor detectors but uses a gas instead of a solid material. The theory behind

gas chamber detectors is presented in Sec. 4.3, and the specifics of the TPC in

Sec. 4.4.1. The barrel veto which is a form of scintillating counter (already dis-

cussed in Sec. 3.2) is presented in Sec. 4.4.2.

4.1 Semiconductor Theory

4.1.1 Semiconductor Diode Detectors

Semiconductor diode detectors (SDDs) are detection devices that rely on electron-

hole pairs produced by a charged particle passing through some semiconducting

material for detection. The motion of these electron-hole pairs in an electric field

generates the basic signal of the detectors. SDDs are beneficial for their ability

to have fast timing characteristics, and to be quite compact. The most popular

material for SDDs is silicon, but other possibilities exist.

4.1.2 Band Structure Model

Given that the electrons in a material all sit at a specific energy level, the lattice

structure of crystalline materials allows for particular energy bands in which the

electrons must be confined to. The gaps between these energy bands are known as

“forbidden energies” and in general, electrons do not exist at these energy levels. A

temporarily reducing the vacuum in the trap, and increasing the likelihood of antihydrogen
encountering a gas molecule (discussed in Chapter 9)
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simplified way of looking at this is to imagine each material as having two bands:

the valence band and the conduction band. Electrons in the valence band are

confined to specific lattice sites in the material and cannot move freely; whereas

the electrons in the conduction band, are free to move throughout the material,

therefore carrying charge. It follows that a material in which all electrons sit in

the valence band, will not carry charge, and therefore not conduct electricity, and

a material in which all electrons sit in the conduction band will conversely conduct

very well. The difference between the energy levels of these two bands is what’s

referred to as the energy gap (denoted Eg), and the size of this gap is what defines

the conductivity of a material. For example, a very good insulator has a large

energy gap (often > 5eV), and, in absence of electric fields or thermal excitation

will not have any electrons in the conduction band, and therefore nothing to carry

charge. Something that conducts well, like for example metal, might instead have

a zero or even negative energy gap. A semiconducting material is one where this

energy gap is greater than that of metal, but not quite as large as that of a good

insulator. Usually the energy gap for semiconductors is considered to be ∼ 1eV. A

diagram of this simplified model can be seen in Figure 4.1 showing roughly where

these energy bands might sit for an insulator, a semiconductor, and a metal.

Conduction 

band

Valence 

band

Conduction 

band

Valence 

band

Conduction 

band
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Electron 

energy

Insulator Semiconductor Metal

Overlap

Figure 4.1: Illustration of the band structure for electron energies in metals, semi-
conductors, and a good insulator.
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4.1.3 Pair Mobility

The arrangement of electrons in this structure is not constant. If a material has

non-zero temperature, some of the thermal energy will be shared by the electrons

and it is then possible for an electron in the valence band to gain enough energy to

become excited into the conduction band. This process not only creates an electron

that has left its bonding site and is free to travel throughout the material, but it

has also left a hole behind in its original place in the valence band. This is known

as an electron-hole pair, and by applying an electric field, both can be made

to “move”3 in opposite directions throughout the material, contributing to the

materials observed conductivity. The probability of this energy jump happening

at a given time is a function of the temperature of the material, T , and of the

energy gap:

p(T ) = CT 3/2e

(
− Eg

2kBT

)
(4.1)

where C is the proportionality constant characteristic of the chosen material. As

can be seen from the negative exponential term, this probability is dependent on

the ratio of the energy gap, to the temperature. I.e. materials with a large Eg will

be unlikely to experience this thermal excitation, and therefore will show the low

conductivity properties expected of an insulator, even as you heat it. Without the

application of an electric field, the electron-hole pairs will eventually recombine

returning the material back to its equilibrium state. If however, an electric field is

applied to the material the electron-hole pairs will undergo an overall migration

which is a combination of the random thermal velocity, and of the drift-velocity

coming as a result of the electric field. The electrons in the material will be drawn

in the opposite direction of the electric field, causing the holes to be filled by

electrons further downstream (relative to the electric field), these electrons and

holes act as negative and positive point charges moving throughout the material

and is what causes a material to conduct charge.

The mobility of both the holes and the electrons can be expressed (in a mod-
3A hole is said to have moved when an already bound electron leaves a valence spot to fill

the hole, resulting in the hole “moving” to the spot where the electron once was.
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erate electric field) in terms of the drift velocity (ν) to be

µholes = νholes/E0 (4.2)

µelectrons = νelectrons/E0 (4.3)

where E0 is the magnitude of the electric field. In semiconductors the mobility

of both the holes and the electrons are roughly similar, and as the electric field

increases the drift velocity also increases logarithmically until a saturation veloc-

ity is reached. This usually occurs at velocities of 107cm/s which corresponds to

the charge carriers moving through 0.1cm of silicon (the typical thickness used in

SSDs) in 10ns, making SSDs one of the fastest responding detectors, and explains

why most detectors are operated with fields strong enough to reach the saturation

velocity [137]. The electron-hole mobility of a material is an important property

when selecting a material for detectors, as fast readout (on the order of nanosec-

onds) is required. The collection time of the ∼ 0.3cm thick silicon modules used

in the SVD, is ∼ 30ns, making it extremely fast, especially compared to other de-

tector systems [129]. Some typical values for these properties in silicon at different

temperatures are listed in Table 4.1.

Temperature (K)
∀T 0 77 300

Atomic number 14
Atomic weight 28.09

Stable isotope mass numbers 28-29-30
Density (g/cm3) 2.33

Atoms/cm3 4.96 × 1022

Dielectric constant (relative to vacuum) 12
Eg (eV) 1.165 1.115

Intrinsic carrier density (cm−3) 1.5 × 1010

Intrinsic resistivity Ω·cm 2.3 × 105

Electron mobility cm2/V·s 2.1 × 104 1350
Hole mobility cm2/V·s 1.1 × 104 480

Energy per electron-hole pair (eV) 3.76 3.62

Table 4.1: Some important properties of silicon at different temperatures, from
[138].
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4.1.4 Pure/Dopants

In the absence of any ionising radiation, and assuming a pure semiconductor ma-

terial, we must have an equal number of electrons in the conduction band as holes

in the valence band, as every electron that jumps to the conduction band via ther-

mal excitation must leave behind a hole in the valence band. A material such as

this is referred to as an intrinsic semiconductor. However, purity at this level is

very rarely achieved in reality, even in silicon, which is generally the highest-purity

semiconductor that can be produced.

Formally, an intrinsic semiconductor is one in which the concentration of elec-

trons in the conduction band, n, (for “negative”) will be exactly equal to the

concentration of holes in the valence band, p, (for “positive”). These two quan-

tities are referred to as the intrinsic carrier densities and represent the average

carrier density over the whole material, offering a measure for the conductivity of

the material. It can be seen from Table 4.1 that pure silicon contains 15 billion of

these electron/hole pairs per cm3.

When producing semiconductors, intentionally introducing impurities into the

material can sometimes cause it to acquire some useful properties. This process is

known as “doping”, and the resulting material is known as an extrinsic semicon-

ductor.

There are two types of doping used in semiconductor production, referred to

as n-type and p-type doping, resulting in n-type and p-type semiconductors.

4.1.5 n-Type Semiconductors

n-type semiconductors are created by doping the pure material with extra donor

electrons during manufacturing. While silicon, germanium and even diamond can

be used in SDDs [139], to illustrate this process we use silicon as an example.

Since the atomic structure of silicon is tetravalent, each silicon atom forms

covalent bonds with its four nearest neighbours, as illustrated in Figure 4.2a.

By introducing a dopant to the material in sufficiently small quantities (usually

∼1-5ppm) the lattice structure of the silicon will be maintained (as the dopant

will take the place of a silicon atom in the lattice) and, by selecting the doping
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material from group V of the periodic table (i.e. it is pentavalent) the material

will not only bind in place of a silicon atom, but will have an extra electron weakly

bound to the impurity site, as illustrated in Figure 4.2b.

Si

SiSi

Si Si

Si

Si

Si

Si

(a) Pure silicon.

Si

SiSi

P Si

Si

Si

Si

Si

Donor electron

(b) n-type doped silicon, with a donor
phosphorus atom.

Figure 4.2: Silicon lattice structure for both pure (Figure 4.2a) and n-doped silicon
(Figure 4.2b).

It follows that this electron will take much less energy to dislodge it into the

conduction band, and will not leave behind a corresponding free moving hole4.

These electrons generally have energies that lie in the usually forbidden energy

gap, at a new level known as the donor level (see Figure 4.4). The new gap formed

between these weakly bound electrons and the conduction band is sufficiently small

that the probability of thermal excitation is high enough to ensure a large fraction

of all impurities become ionised, and the number of conduction electrons becomes

completely dominated by the contribution from the impurities.

Despite the fact that the net effect of this is a dominance of conductivity

through the electrons instead of the holes (as the majority of electrons in the

conduction band have not left behind a hole) the total conductivity of silicon

doped in this way is much larger than that of pure silicon.

The net effect then of n-type doping is to create a material where the number

of conduction electrons is much greater than the number of conduction holes. The

conductivity of this material is now determined almost entirely by the movement

of electrons, and the holes play a very small part in this determination. In this

case the electrons are referred to as majority carriers, and the holes as minority
4The hole is still formed, maintaining the charge neutrality of the material, but they are no

longer free to move throughout the material since the donor atoms are fixed in the lattice and
cannot migrate, removing the effect of their mobility to the overall conductivity of the material.
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carriers.

4.1.6 p-Type Semiconductors

Similarly to n-types, by introducing an impurity from group III of the periodic

table (trivalent), when the atom replaces a silicon atom, it will instead have one

fewer valence electron than the surrounding silicon, as illustrated in Figure 4.3.

Si

SiSi

B Si

Si

Si

Si

Si

Acceptor site

Figure 4.3: p-type doped silicon, with a donor boron atom.

If an electron is then captured for this spot the bond it is confined by is

slightly weaker than that of the surrounding material. Therefore, these electrons

once again reside in the previously forbidden energy gap, near the valence band

known as the accepter level (see Figure 4.4).

It again takes less energy for the electrons in the valence band to fill these

holes, and each time an electron is excited to the acceptor energy level, it leaves

behind a corresponding hole in the valence band.

This results in a dominance of holes coming from the acceptor impurities.

Further, this increased availability of holes makes it more likely for electrons to

fill them, reducing the number of free conduction electrons available.

The filled acceptor sites again represent fixed negative charges that balance

the positive charge of the majority holes, keeping the net charge neutrality of the

material as a whole; and analogously to n-types the net result of this process

is that the availability of conduction holes is greater than that of the electrons,
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Figure 4.4: Energy bands in n-type and p-type semiconductors.

making the holes the majority carriers and the electrons the minority carriers.

4.1.7 p-n Junctions

When a material is doped such that part of it n-doped, and another part is p-doped

the region where both the p-type and n-type regions meet is known as a p − n-

junction [79]. In this region electrons from the n-type material diffuse across and

fill holes in the p-type material, and vice versa, in a process known as diffusion.

This creates a region within the material known as the depletion layer/region and

acts as an insulator, as within this region there are no free electrons or holes to

move throughout the material carrying charge.

The build-up of charge in the depletion region causes an electric field to form,

the potential of which at any point within the region is described by the Poisson

equation:

∇2φ = −ρ

ϵ
(4.4)

where ϵ is the dielectric constant of the material (∼11.9 for silicon), and ρ is the

charge density.

Any electrons or holes that exist in or near the depletion region will then

migrate quickly back to the n or p-doped regions as required by the electric field.
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Meaning, the only charges left within the depletion region are immobilised donors

and filled acceptors, which do not contribute to the conductivity. As such the

resistivity in these regions is high compared to that of the p and n-doped regions.

Therefore, when a charged particle travels through the depletion region, electron-

hole pairs are created in great numbers, which then drift quickly according to the

electric field, and create a burst of current through the material which can be

detected. It is this process of electron-hole pair creation and the quick reset to

equilibrium that makes sharp, fast signals in the charge of the material, allow-

ing for the detection of particles through this region. However, without further

adjustments a detector like this does not perform well. The potential, φ (usu-

ally ∼ 1V) which is formed across this junction is not strong enough to make

the charge carriers move fast enough, resulting in charge carriers being lost due

to recombination and occasional signals not being collected, causing a significant

decrease in efficiency. Further the depletion region itself may not be big enough

to provide enough solid angle coverage, which can reduce efficiencies even further.

For this reason, unbiased junctions are not used. Instead, an external voltage

is applied over the junction, resulting in a “reverse bias”5 on the semiconductor.

Under a reverse bias the electric field penetrates further into the silicon bulk,

increasing the size of the depletion region and therefore extending the volume

over which radiation-produced charge carries will be detected. Further, electron-

hole pairs created as a result of a charged particle will travel faster and more

forcefully towards equilibrium, allowing for greater efficiency and faster readout

times.

A schematic of the band structure under no bias, forward bias, and reverse

bias can be seen in Figure 4.5.

When a charged particle passes through a p − n junction, it will ionise the

atoms along its path causing the electron-hole pairs. The average energy loss per

unit distance ⟨dE/dx⟩ (also referred to as the stopping power) for a moderately

relativistic charged particle passing through the bulk of a material is described by
5Here forward means applying a positive voltage to the p-side and reverse as applying a

positive voltage to the n-side.
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Electron 

energy
Acceptor levels

Donor levels

(a) No bias - With no bias the junction is in equilibrium, and
the donor level matches the acceptance level.

Electron 

energy
Acceptor levels

Donor levels

Electrons move to fill holes

(b) Forward bias - With a forward bias applied the donor level
moves above the acceptor level, allowing electrons to freely
move “down” into the p-side from the n-side, resulting in a
net current through the diode.

Electron 

energy
Acceptor levels

Donor levels

(c) Reverse bias - With a reverse bias applied the acceptor
band is moved above the donor level, meaning some form of
thermal excitation (i.e. a charged particle passing through
the region) is needed to allow current to flow.

Figure 4.5: p − n junction characteristic behaviour for no bias, forward bias and
reverse bias.
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the Bethe-Bloch formula [140]:

−
〈
dE

dx

〉
= 4π
mec2 · nz

2

β2 ·
(

e2

4πε0

)2

·
[
ln
(

2mec
2β2

I · (1 − β2)

)
− β2

]
(4.5)

where v is the velocity of the particle, z is the charge number, n is the electron

density of the material (n = NA·Z·ρ
A·Mu

where ρ is density, Z is atomic number, A is

atomic mass, NA is the Avogadro constant, and Mu is the molar mass constant),

and finally β = v/c.

A feature of this equation is that it has a global minimum, and particles near

this minimum are known as minimum ionizing particles (MIPs).

Further, a charged particle passing through matter will undergo many small

angle deflections, mostly due to the Coulomb scattering from the nuclei. This

process is known as multiple Coulomb scattering. The distribution of the resulting

angles is roughly Gaussian for “small” deflections6, and is well described by Molière

[141] demonstrating that the resulting distribution of angles of many particles is

roughly Gaussian with a width given by

θ0 = 13.6 MeV
vp

z
√
x/X0 [1 + 0.038 log(x/X0)] (4.6)

where p is the momentum of the incident particle and x/X0 is the thickness of

the scattering medium in radiation lengths [142, 143]. For larger angles it behaves

more like Rutherford scattering which has larger tails than a Gaussian distribution

[144].

This value of θ0 comes from a fit to experimental data from Molière [141] and

is accurate to at least 11% for 10−3 < x/X0 < 100.

Understanding these concepts are essential in the design of any detector as

correctly simulating these properties allow one to properly estimate the expected

performance/response of the detector during the design phase, and incorrectly

accounting for the stopping power of the detector, or the scattering throughout

could result in a detector not fit for purpose.
6“Small” in this context is less than a few θ0, defined in Equation 4.6.
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4.1.8 Double-Sided Silicon Microstrip Detectors

By using multiple strips of p − n junctions arranged in a grid it is then possible

to create a module/block of silicon that is sensitive to the position of charged

particles passing through it. Further, by having two layers of strips per module,

arranged orthogonally one can gain three-dimensional7 information on the location

of the particle passing through the module [145]. Generally, one side contains p-

type strips, and the other side contains n-type strips sat orthogonally, as shown

in Figure 4.6.

Figure 4.6: A diagram of a double-sided silicon microstrip detector. The p-side
strips on one side of the module run orthogonally to the n-side strips on the
opposite side, allowing for two-dimensional resolution. Figure adapted from [146].

Pixel detectors such as the Timepix [147] series use similar technology but

instead of two layers of strips, they segment the junctions into squares or “pixels”

to obtaining x− y resolution [148].

The spacing between each strip or pixel can often range from 50 − 300µm

[149–151] and overall, double-sided silicon detectors can provide fast and stable

particle detection with excellent spatial resolution.

4.2 Silicon Vertex Detector

The SVD is made up of 72 individual double-sided silicon microstrip detectors,

or modules. The 72 modules are arranged in 3 concentric circles, split into two

halves. A schematic diagram of the detector with respect to the PM trap can be

seen in Figure 4.7, and a cross-section of the panels can be seen in Figure 4.8.

Each layer is staggered to allow for more solid angle coverage, and the radii of

the layers are shown in Table 4.2.
7The third dimension comes from knowing where in space the modules are placed.
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Figure 4.7: A schematic diagram of where the ALPHA-2 detector sits in respect
to the ALPHA-2 PM trap. The mirror coils are shown in green, and the octupole
is in red. The PM trap electrodes are shown in yellow, and the surrounding silicon
detector is light blue. Though this image is of a slightly older configuration than
the current, the placement of the detector with respect to the PM trap is still the
same. Figure from [119]. (Not to scale.)

SVD Module Layer Radius

Inner 89
94.5

Middle 108
113.5

Outer 127
132.5

Table 4.2: Radius of each panel in the silicon modules, per layer.

Each module contains two silicon wafers and 256 n-side and p-side strips with

four Application Specific Integrated Circuit (ASIC) readout chips. The silicon

wafers are 6.1cm × 11.5cm meaning each module has an active area of 6.1cm ×

23.0cm = 140.3cm2. The pitch width is 227µm for the p-side strips, and 875µm

for the n-side strips, and each ASIC reads out 128 signal strips making for a total

of 36,864 channels. The ASICs handle both the trigger signal, and the readout for

each strip. Each channel on the ASIC contains a discriminator which generates a

fixed 105nm trigger pulse if the signal exceeds the preset discriminator threshold
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Figure 4.8: Cutaway of the SVD showing the layered module configuration. Figure
from [152].

causing readout of every channel on the detector. Though each channel has its

own trigger signal, they are logically ORed such that only one trigger signal is

delivered out per ASIC. Further, each ASIC only has one analogue out channel

requiring the signal on each channel to be read out serially. A diagram of a single

silicon module can be seen in Figure 4.9.

4.2.1 Event Reconstruction

The event reconstruction algorithm attempts to determine the annihilation lo-

cation (or vertex) of the event causing the detector trigger and read-out. This

process is divided into roughly three parts: (1) the hit clustering, which attempts

to find the location of hits on each silicon module; (2) the reconstruction of sec-
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Figure 4.9: Diagram of a single silicon module (not to scale) showing each silicon
wafer and the readout ASICs. Figure from [146].

ondary trajectories caused as a result of annihilation; and (3) the determination

of the vertex location.

The first step to reconstructing the vertex is to reconstruct where the charged

secondaries pass through the silicon modules. The location of each strip and each

module is well known and therefore the read-out position can be easily recon-

structed from the signals on the ASICs. However, it is possible, depending on

the angle that particles travel through the module, for multiple strips to register

a signal in a single event. In this case, the electron-hole pairs generated by the

particle’s path through the depletion region of the module will be shared between

many strips. The resulting groups of hits are referred to as clusters and actually

allow us to better determine the position of a hit as compared to a single strip by

weighting the pulse height of each channel on the ASIC. The resulting position of

the hit (in one dimension) is then given by

x =
∑127

i=0 hixi∑127
i=0 hi

(4.7)

where xi is the x position of strip i, and hi is the height of the recorded pulse on

that strip.

By combining the location of clusters on the p-side strips, and the n-side

strips we are able to completely reconstruct the location of the hit in the plane
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of the silicon module. Further, since the location of the module’s placement in a

global coordinate frame is known, we can translate these hits into absolute x, y, z

positions in the lab frame. In this way each event, usually consisting of ∼ 9 − 15

module hits, can be transformed into a series of points in 3D space (sometimes

referred to as space-points).

The next step in the reconstruction algorithm is to group the hits into tracks,

where each track represents the path of a charged particle through the detector.

The relatively small number of hits per event allows for a full examination

of all hit combinations when attempting to reconstruct tracks, which offers a

significant advantage in track finding. Each of these combinations is known as

a track candidate, and consists of exactly three hits, one in each layer of the

detector. Each track candidate has six degrees of freedom (as each space-point

has two - x, y in the module plane); and, by using Monte Carlo simulations it has

been shown the tracks resulting from H̄ annihilation are generally helical [153],

therefore the actual tracks the particles take have only five degrees of freedom8.

Thus, after determining the five helix parameters, there is only one remaining

degree of freedom for tracks, corresponding to the axial projection of the helix.

Track candidates can then be selected based on how well the fits correspond to

helices in the axial projection. As such a χ2 goodness-of-fit test is constructed

comparing the points the predicted helix passed through the silicon module with

the actual hits recorded. Note that since each candidate only has three hits, the

projection of the helix into the x, y plane (here z is the direction of the magnetic

field) forms a circle, which will certainly pass through each point. As such, these

terms do not contribute to the goodness-of-fit test, and only its axial projection

contributes. Tracks with a sufficiently low χ2 (see Appendix A, and specifically

Equation A.5) are kept for the final stage of the process, and the rest are discarded

in a process known as pruning. The tracks that are kept for vertexing are known

as the good/used tracks.

The efficiency of this track finding process, evaluated using Monte Carlo sim-

ulations, was found to be 88 ± 5% for all charged tracks with three hits. Further,

many of the tracks that were not resolved originate from e+ /e− pairs produced
8Helices can be parametrised by a 5-component vector. See Appendix A.

87



4.2. SILICON VERTEX DETECTOR CHAPTER 4. DETECTION

from scattering in the silicon itself, and as such the tracks do not generally ex-

trapolate back to the annihilation vertex, making their exclusion beneficial.

Once the tracks have been found the final stage of the reconstruction is to

resolve the vertex position, which is considered to be the location where the tracks

converge, and is taken to be the position where the tracks mean distance of closest

approach (DCA) is minimised. The DCA is defined as

D = 1
Ntracks

Ntracks∑
i=1

√
min {|ri − rv|2} (4.8)

where min {|ri − rv|2} is known as the distance of closest approach between the

i-th track and the reconstructed vertex position, rv.

The minimisation of which results in a vertex position that balances contribu-

tions from each track equally. Since all tracks are treated equally it is important

to make sure that we include as many tracks as possible, and that we exclude

tracks that do not converge with the others as these tracks could potentially bias

the resulting vertex position away from the true annihilation position. For this

reason a multistep vertex finding algorithm is implemented to reduce sensitivity to

specific tracks, and ensure the vertex position is stable. The steps to the algorithm

are as follows:

1. If Ntracks < 2 do not proceed. At least two tracks are needed to find a

vertex. If this occurs prior to any track exclusion and vertex determination

the event is considered to not have a vertex. These events may be useful for

some studies but in general are not used.

2. Using all tracks find the vertex that minimises Equation 4.8 and find the

resulting value of D, denoted D0.

3. Loop through each track and repeat step 2 excluding said track, resulting

in a set of DCAs: D = {Di | i ∈ [1, Ntracks + 1]}, the minimum of which is

Dmin.

4. Calculate ∆D = (D0 − Dmin)/D0 which represents the fractional improve-

ment in the mean DCA by excluding that specific track.
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5. If ∆D ≤ Dc for some Dc known as the cut-off value, then exit the algorithm

and return the given rv position. Otherwise, continue to the next step.

6. If ∆D > Dc then remove the track corresponding to current value of ∆D

and repeat the algorithm from step one. If there are now less than two tracks

return the value of rv and do not proceed.

The choice of Dc used by the ALPHA-2 reconstruction (informed by Monte Carlo

simulations) is 0.4 [153].

An example of a reconstructed event can be seen in Figure 4.10.

Figure 4.10: An example of a reconstructed event seen from three different angles.
Three module hits (blue crosses) are combined into tracks (blue lines), and the
tracks are combined into a vertex (black cross).

By simulating many events and comparing the true vertex to the reconstructed

vertex we are able to find the resolution of the detector and reconstruction algo-

rithm as a whole where we find the radial resolution to be 0.87cm, the axial

resolution to be 0.56cm, and the azimuthal resolution of 21.4° which corresponds

to 0.83cm given the electrode radius of 2.2275cm [153].

During this process many variables relevant to the topological fingerprint of

an event (such as Ntracks, D0, Dmin) are saved and stored for machine learning

purposes. Detailed descriptions of these variables and their uses can be found in

Sec. 8.2.
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4.3 Ionisation Chambers

Ionisation chambers are some of the oldest and most widely used variety of particle

detectors [137, 154–156], and utilise the effects resulting from a charged particle

passing through a gas for detection. As a charged particle passes through the gas

within the chamber, the gas molecules along the track either become ionised or

excited. Most ionisation chambers are based on detecting this ionisation created

as a result of these charged particles.

Ion chambers are the simplest form of gas-filled detectors and are based simply

on the collection of these charges through the application of an electric field; similar

to the process used in SDDs to collect electron-hole pairs (Sec. 4.1.1).

4.3.1 Ionisation of Gasses

When a charged particle passes through a gas it leaves behind a trail of ionised

particles in its wake. Upon ionisation, neutral molecules will convert to a positive

ion, and a free negative electron. These are known as ion pairs and are synonymous

with the electron-hole pair created when a charged particle passes through a solid.

The total number of ion pairs created along the trajectory is of importance to

the principle of operation and for ionisation to occur the particle must transfer

at least the ionisation energy of the gas molecule used. For most gasses, this is

∼ 10 − 20eV. However, as mentioned, excitation is also possible along the path,

and though these can be detected in some configurations the gas detector deployed

by ALPHA cannot do this. As such, the average energy lost by the travelling

charged particle per ion pair is known as the W -value, and is always much higher

than the actual ionisation energy usually at around 30 − 35eV. This means that

a particle with, for example, a kinetic energy of 139MeV could create anywhere

from 4−4.6×106 ion pairs before being stopped completely (assuming the particle

doesn’t leave the gas volume before stopping).
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4.3.2 Ion Pair Mobility

If an external electric field is applied over the region of ion pair creation the

electrostatic forces will move the charges away from their origin. This motion is

described by a combination of the random thermal velocity (the gas will be in a

state of constant thermal motion which will be imparted on the ion pairs) and the

net drift velocity.

The drift velocity for the positive ions is in the direction of the field, while the

negatives go against it.

For the ions in a gas, the drift velocity (vion) can be well described as

vion = µion
E0

p
(4.9)

where E0 is the magnitude of the electric field, p is the pressure of the gas, and µion

is the mobility and is proportional to the average time between collisions [157].

The mobility generally remains fairly constant for a wide range of pressures and

electric fields and further, it does not really differ between positive or negative

ions. Typically, this value ranges from 1 − 1.5 × 10−4m2 · atm/V · s [158]. Given a

gas at a pressure of 1atm and an electric field of 1000V, the resulting drift velocity

will be 1m/s.

The electrons however have a much lower mass than the ions, which allows

for a greater acceleration between encounters with neutral gas molecules, and the

value of the mobility is generally ∼ 1000 times greater than that of the ions.

The ionisation current generated by the movement of ion pairs under the

electric field can then be measured by an electrometer circuit, though the resulting

current will be on the order of 10−12 − 10−15A. With correct amplification an

analogue signal proportional to the amount of ionisation (and therefore energy

deposition) can be recorded.

4.4 The ALPHA-g Detector(s)

The ALPHA-g apparatus utilises two different detector systems. The radial time

projection chamber (TPC, or sometimes rTPC) which is a form of ionisation cham-
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ber, used for precise vertex reconstruction; and the barrel veto (BV) which is a

barrel of scintillating bars read out on both ends by SiPMs used for both triggering

the detector readout, and for background suppression. The detectors are arranged

around the trap in concentric circles, with the TPC lying immediately outside the

neutral trap and cryostat, and the BV surrounding that.

Due to the large size of the ALPHA-g sensitive region required for detection

(∼ 3m - see Chapter 3 and specifically Figure 3.13) a silicon strip detector is not a

realistic solution, despite their strong overall performance. SSDs are expensive to

produce, especially with the amount of panels that would be required for ALPHA-

g. Further, whole tracks can be lost if a certain panel loses efficiency, and given the

amount of material required between the trapping region and the detector (mainly

magnet coils) there is a chance that a lot of scattering occurs, again losing tracks.

The cost and time required to manufacture a silicon strip detector is not

favourable. A gas chamber detector becomes more suitable, as inexpensive gas

can replace the solid-state material required in an SDD, and a gas detector allows

for many more samples of the track than just the three layers of a silicon strip

detector, making the loss of tracks in ALPHA-g less likely. However, the cost is a

decrease in accuracy, and a slower readout time than an SSD.

4.4.1 The Time Projection Chamber

The ALPHA TPC uses a radial electric field, meaning the charged particles drift

outward towards the wall of the detector.

The electric field E⃗(r) in use is given by

E⃗(r) = V

ln b
a

r̂
r

(4.10)

where a and b are the inner and outer radii of the TPC, and V is the bias voltage

(typically 10kV) [159]. In this coordinate frame z is the vertical axis pointing

upwards, and the direction in which the constant magnetic field B⃗ is directed. It

is more common for TPCs to have the electric field parallel to the magnetic field,

i.e: E⃗ = f(z)ẑ; however, the ALPHA TPC is 3m long in this direction and this

would result in long drift times, through a magnetic field which has the potential to
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perturb the tracks and seriously degrade the accuracy of the resulting trajectories

and vertices. Further, there is a strong need to be compact in the design of the

ALPHA TPC as there are space constraints that must be considered, especially at

the top and bottom of the apparatus, making a radial electric field the favourable

option.

The result of the electric field described in Equation 4.10 is that ion pairs

created by the charged particles drift outwards radially towards the wall and need

to be collected there. The outer wall of the TPC is made up of many cathodes

known as pads, with resolution axially (z), and azimuthally (ϕ). Each pad has a

4 × 4mm active area and can record the deposited charge of resulting electrons.

There are 576 pads segmented axially, and 32 azimuthally giving a total of 18,432

pads for readout. The pads are read out by special 72-channel ASICs in groups

of 4 making for a total of 4,608 ASICs. As mentioned, without amplification, the

charges deposited on these pads would be too small to read out; as such, just prior

to the pads sits an array of anode wires, biased to 3.5kV, which creates an electric

field that causes an electron avalanche and thereby achieving charge multiplication

to be read out. Thus, the origin of each ionisation in space can be determined

from which pad is registering the signal. However, as all ionisation products are

collected on the outer wall where the pads reside, r information is lost. In order

to reconstruct the r positions of the hits (which is required to construct the space-

points in 3D space needed for reconstructing tracks) we infer the r position from

the ionisation drift time td. That is, the r position is determined from the time-

projection equation:

r = |vion| · td (4.11)

where vion is the drift velocity from Equation 4.9 and td is the drift time. Measured

on a “per-event” basis the drift time is the time between the readout trigger9 and

the hits registered on the pad, and can be recorded for each individual hit.

Given the external magnetic field required for the PM trap to function, the

electrons also experience a similar Lorentz force to those of the atoms inside the

trap (Equation 2.13). Given E⃗ and B⃗ are orthogonal then the motion is curved

according to the Lorenz force with an angle, α, known as the Lorentz angle which
9The ALPHA-g detector is triggered on two or more clusters of signal on the anode wires.
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separates the drift velocity and the electric field. The magnitude of α is given by

α = tan−1 e|B⃗|τ
m

(4.12)

where e,m are the electron mass and charge respectively, and τ is the average

time between collisions of an electron with gas molecules while drifting towards

the wall [157]. During the reconstruction this angle must also be corrected for in

the ϕ position of the space-points. If the Lorentz angle is expected to be large

then one would like to choose a gas with a high mobility (µion) for an increased

drift velocity [159, 160], this can be done by adding small portions of polyatomic

gasses to the mixture used in the chamber. Further, it is important to choose a

gas that has low electron capture probability, that is, one in which the likelihood

of the electron being re-absorbed prior to reaching the pads is small. For this

reason noble gasses, and very commonly argon, are chosen to be the main gas in

TPCs. The ALPHA TPC uses a mixture of 70% argon with 30% CO2 for a good

balance of drift velocity and low electron capture probability [17].

4.4.2 Barrel Veto

Surrounding the TPC is the Barrel Veto (BV) detector which is a scintillating

bars detector read out on both ends by an array of SiPMs. The BV is used in

combination with the TPC both for the triggering of the detector, and for the

rejection of cosmic background rays. Though it is not a true veto (it will always

trigger the detector when it detects charge, not attempting to veto specific events),

it is used for cosmic background rejection during offline analysis.

The BV comprises a series of 64 plastic scintillating bars arranged in a cylinder

around the TPC. Each bar is slightly trapezoidal (∼ 0.7cm in the front and ∼

0.76cm at the back) to allow for uniformity and structural integrity. Each bar is

260.4cm in length and contains one SiPM on either end of the bars for readout.

The inner diameter of the BV is 44.6cm, and it is ∼ 2cm thick. The BV was

designed to have both a long attenuation length, which is required for the 2.6m

distance the light will potentially be required to traverse before readout, and a

fast readout, required for triggering and vetoing.
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The main purpose of the BV is to calculate the time-of-flight (TOF) of par-

ticle trajectories throughout the detector. To understand why this is a valuable

variable: consider the situation where a cosmic ray passes directly through the

TPC, against an H̄ annihilating on the wall. Assume the cosmic ray passes di-

rectly through the detector, and enters the BV triggering a bar at some time t1,

then leaves the detector triggering another bar at time t2, then one must have

t1 < t2 as the time taken for the particle to pass the detector is (assuming speed c

and a roughly 1m path10) is ∼ 3.3ns which can be distinguished from one another

with fast enough read out electronics. However, in the case where an H̄ atom has

annihilated on the wall and released n secondaries, which all travel outwardly to

the wall passing through both the TPC and BV. Then it can be expected that

tn1 ∼ tn2 ∀ n1, n2 ∈ n. A diagram (not to scale) of this concept can be seen in

Figure 4.11.

Trap wall

BV

TPC

a) b)

Trap wall

BV

TPC

Figure 4.11: A diagram showing how TOF might vary between a) a cosmic ray; and
b) an annihilation on the trap wall (denoted by the red star). Cosmic rays usually
only leave two hits with distinguishable time delay between the hits, whereas
antihydrogen events often produce multiple hits, with minimal delay between the
hits recorded times. (Not to scale).

Sometimes a cosmic ray may scatter on material in the detector, causing a

shower of two or more hits, each with similar TOFs, however the initial entry time

of the ray (and therefore the first hit) should still be much sooner than the shower
10This is dependent on the angle of entry but for demonstration purposes assume 1m trajectory

through the TPC and BV.
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recorded later, allowing discrimination of these events by comparing the largest

and smallest TOF.

Further, using the TPC itself to trigger detector readout is not ideal, drift

times of electrons in the gas will vary between events meaning the trigger is not

consistent between events. The propagation of light through scintillators, and the

readout by SiPMs is much faster, making the BV an ideal candidate for triggering

the detector readout, providing a consistent and fast trigger.

The BV signal is read out by 8 analogue-to-digital (ADC) converters, and

a single time-to-digital (TDC) board and was designed to measure the TOF of

particles within a precision of 200ps.

4.4.3 Event Reconstruction

The ALPHA-g event reconstruction works similarly to ALPHA-2 with some key

differences to account for differences in the detector hardware and readout.

The first stage is to reconstruct the space-points from the pad hits. For this

we require knowledge of which pad was hit, the time of the hit (to reverse the drift

time), and the geometry of the pads in space, as well as information on the drift

time for the chosen detector configuration. Consider a hit recorded on a specific

pad at a given time denoted (cz, cϕ, ct) where cz and cϕ represent hits in a given

column/row of the pads (i.e. cz ∈ N[1, 577], and cϕ ∈ N[1, 33]11), and ct represents

the time bin of the hit. Since the pad hits represent the end point of the electron

trajectory, and where the charge is collected on the TPC wall, in order to convert

the given pad hit to an origin of ionisation we use the following relations:

x = rh cosϕ (4.13)

y = rh sinϕ (4.14)

z = cz · 4mm (4.15)

where ϕ = cϕ·4mm
rTPC

− α (rTPC is the outer radius of the TPC, 203mm). rh and

the Lorentz angle (α) are functions of the drift time, and therefore of ct. In

order to obtain these values Monte Carlo simulations were run with the Garfield
11In this context N[a, b] = {x ∈ N | a ≤ x ≤ b} ∀a, b ∈ N
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[161] package and the results were stored in a look-up table for access during

the reconstruction algorithm. Once this stage of the reconstruction is complete

we are left with a set of space-points (x, y, z) for which to reconstruct the tracks

(a track being defined as a collection of space-points originating from the same

particle’s path through the detector). In order to group the space-points into

tracks, an algorithm is used that searches for nearby space-points within a sphere

of given radius starting with the high-radius space-points and working inwards.

Monte Carlo simulations helped settle on a radius of 11.5mm for this sphere in

the ALPHA-g reconstruction.

Once the space-points have been successfully grouped into tracks, the next step

is to fit a line to their trajectory. It is known that the paths of the secondaries

given the magnetic field will be roughly helical, and therefore parametrised by

five variables, two of which are the axial parameters, and three of which are

the radial parameters. The fitting is done via the method of least-squares, and

the two groups of parameters are minimised separately (see Equation A.4 and

Equation A.5). To give an initial value for the fitting parameters a straight line

is fitted between the first and last space-point of a track, and its parameters are

fed into the minimisation algorithm.

Not all helices are a result of the initial H̄ annihilation, and a round of pruning

(see Sec. 4.2.1) must take place prior to vertex fitting. This is done using the same

DCA, D, as defined in Equation 4.8, but also from the axial and radial χ2 resulting

from the fitting process (Equation A.4 and Equation A.5).

The cuts deployed on these variables in the ALPHA-g reconstruction are shown

in Table 4.3.

Variable Cut
|D| < 40mm

χ2
r (Equation A.4) < 15
χ2

z (Equation A.5) < 8

Table 4.3: Cuts used to reject or accept a helix in the ALPHA-g reconstruction
algorithm.

All helices are denoted candidates, and only those passing the chosen cuts are

designated as used or good helices.
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With all this in place, the final step is to reconstruct the vertex position, which

is done in a three-step process, as outlined below:

1. Seed: Loop through each pair of helices and find the pair that give the

minimum DCA. The midpoint of the two points along the tracks resulting

in this minimum DCA is taken as the seed vertex.

2. Recalculate: Extend both helices used in the previous step and minimise the

distance between their trajectories, using the seed vertex as an initial value

for the minimisation.

3. Improve: If there are more than two good helices include another helix and

perform another round of minimisation. The resulting χ2 of this minimisa-

tion must be less than some cut-off value (in our case χ2 < 3) to consider

the tracks inclusion an improvement.

An example of a reconstructed event in the TPC can be seen in Figure 4.12.

(a) Axial view. (b) Slightly tilted view.

Figure 4.12: Two images of the ALPHA-g reconstruction. The small points are
space-points, and their colour gradient reflects their time of detection (blue hits
come first and are hence closer to the wall). The lines are reconstructed tracks,
the two purple tracks are the initial seed helices, and the green tracks were re-
constructed but not used in the “improve” step. The furthest out points are hits
on the BV, again with colour reflecting hit time (not on the same scale as the
space-points).

This reconstruction algorithm was found via Monte Carlo to have an efficiency

of 94.1 ± 0.2%; and to have radial resolution of 6 ± 0.2mm, axial resolution of
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3.9 ± 0.1mm, and an azimuthal resolution of 16.3 ± 0.4° which corresponds to

6.337 ± 0.156mm given the electrode radius of 2.2275cm [159].

4.5 Conclusion

In conclusion, we have seen how detecting and reconstructing antihydrogen annihi-

lations requires dedicated technology and techniques to understand. By utilising

SDDs and ion chamber detectors, the ALPHA experiment has a wide array of

detection devices, each with different pros and cons, capable of reconstructing

the events annihilation vertex to millimetres of the actual position (according to

simulation). ALPHA’s detection, readout, and reconstruction chain is essential

to all generated results, and without these dedicated methods working optimally,

results can become lost to noise. The final step to the reconstruction, the event

classification, is not included in this chapter and is instead the focus of Chapter 8

and Chapter 9.
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Chapter

5
Simulations for Calibrating
Absolute Atom Counts

Monte Carlo simulations have already proven vital for calibrating detector re-

sponses in the ALPHA experiment, particularly for the SVD and the TPC (refer

to Sec. 4.2.1 and [153], or Sec. 4.4.3 and [159]). Additionally, to these tracking de-

tectors, ALPHA deploys multiple scintillating panels throughout the experiment

(see Sec. 3.2), which detect signals resulting from the manipulation and movement

of plasmas, some of which lead to partial or total loss of atoms.

While uncalibrated panel signals are useful for relative measurements, they

cannot provide absolute particle counts. A straightforward method to achieve this

calibration involves using Monte Carlo simulations to replicate the processes that

cause particle losses and comparing the simulated responses with experimental

data.

Currently, only the SVD and TPC have undergone this calibration process,

with trigger efficiencies (relative to true p̄) known to be approximately 99.5% and

93.5% respectively. These calibrations enable us to convert trigger signals to ab-

solute p̄ counts, which is crucial for determining particle transfer efficiencies, such

as between ALPHA-2 and ALPHA-g. Although direct p̄ transfers from ALPHA-2

to ALPHA-g are rare, we can assess the transfer efficiency from the catching trap

(CT) to the respective atom traps. Observations indicate that the transfer effi-

ciency into ALPHA-g is roughly 10% of that into ALPHA-2, implying significant

p̄ losses along the beamline, with annihilation signals detectable by the caesium

iodide (Sec. 3.3) and scintillating detectors (Sec. 3.2).

To address these inefficiencies, calibrating various panels throughout the AL-

PHA experiment using Monte Carlo simulations will enable us to obtain absolute

p̄ counts across different stages, not just within the atom traps. This calibration

could help enhance transfer efficiency and potentially increase H̄ production rates.

Achieving this calibration requires both experimental data and simulations

to compare observed results with expected outcomes. This chapter details four

unique experimental procedures employed by ALPHA during the antihydrogen

production cycle for diagnostic purposes and compares the results with Monte

Carlo simulations to ensure accurate reproduction of experimental conditions.
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5.1 Simulation Setup

In this section, we describe in detail the software and setup used for these simu-

lations.

5.1.1 ROOT, Virtual Monte Carlo, and Geant4

The foundation of the simulations are built on three main software packages:

ROOT [162], Virtual Monte Carlo (VMC) [163], and Geant4 [164, 165]. ROOT

provides a versatile framework for data analysis, widely adopted by the physics

community. VMC acts as an intermediary; providing integration of the various

Monte Carlo engines, including Geant4, into the simulation. Geant4 is the physics

engine powering the physics processes, and managing all physics interaction from

its internal physics list. The geometry model is built in ROOT using the TGeo

class and is then converted to Geant4 using the Virtual Geometry Model (VGM)

package [166]. It is necessary to provide Geant4 with a geometry model, and par-

ticle generator (responsible for initialising individual events), and Geant4 handles

the step-by-step solving procedure itself, tracking all particles until they either

lose all kinetic energy, or exit the simulation volume.

There is an internal wrapper class that manages the initialisation of the simula-

tions, the a2mcVirtualMC class. This class takes care of building the geometric

model, initializing the primary generator and retrieving/storing the event infor-

mation to an output ROOT file as particles step through the simulation. The

ROOT file is broken into many TTree [167] objects which store various informa-

tion about the simulated event, such as the primary particle’s generation location

and momentum, the annihilation position, and the resulting signal on the various

detectors.

The coordinate system of the world geometry is Cartesian with origin at the

centre of the SVD. The z-axis corresponds with the axial direction of the fields

in the ALPHA-2 atom trap, the y-axis points vertically up, and the x-axis points

to the “right” (or starboard side relative to p̄) while standing at negative z and

looking positively. As the beam enters from the negative z direction, this is known

as the upstream end, conversely the other side is the downstream end and is relative
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to p̄ direction through the apparatus; therefore the CT sits on the upstream end,

and the positron accumulator sits at the downstream end of the beam line.

5.1.2 Geometry

The geometry is built within the a2mcApparatus class, which creates TGeoVolume

objects for each individual component between the trap and detectors. Figure 5.1

shows a view of the overall geometry the simulation uses, and Figure 5.2 shows

more detailed views of the internals of the ALPHA-2 atom trap, catching trap,

and DSAT/IC region.

Figure 5.1: Image of the overall geometry of the simulations, from left (upstream)
to right (downstream) we have the catching trap, surrounded by four scintillating
panels, the atom trap with two panels, the “downstream atom trap (DSAT)” stick,
then finally the interconnect surrounded by three SiPMs.

Further, VMC allows for the user to import a magnetic field map, and the map

used contains the value of B⃗ at each point of (x, y, z) from (−50,−50,−444)cm

to (50, 50, 444)cm with the value of (Bx, By, Bz) given every 2 × 2 × 2cm3.

The most dense material between the trapping region and the scintillating

panels are usually the magnets that supply the constant B⃗-field for the PM traps,

the Swansea magnet (CT), and the Carlsberg magnet (ALPHA-2) both of which

consist of NbCuTi windings surrounded by steel shells. The detailed geometry

of these magnets, and the geometry used for the simulations can be found in

Appendix E.
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Figure 5.2: View of the simulated geometry. a) Cutaway view of the ALPHA-
2 atom trap region in the simulations. b) Cutaway view of the CT region in
the simulations. c) Side view of the DSAT and IC (MCPs are pictured in red).
Individual images are not to scale with one another and are only placed in this
configuration for display purposes.

5.1.3 Particle Generation

While the geometry of the simulations remains consistent across different setups,

the location and momentum of particle generation depend on the specific experi-

ment being simulated. Four rounds of simulations were conducted, each aimed at

calibrating different scintillating counters during a distinct process. In each con-

figuration the particles are given an initial position (xorigin) and the unit vector of

the momentum (p̂origin), with some Gaussian spread to mimic the real spread of

plasmas in the ALPHA experiment.

The four configurations currently implemented are:

1. Slow release of antiprotons in the atom trap. It has previously been shown
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that the SVD trigger channel is ∼ 99.5% efficient to true p̄ numbers. This

is one of the few places in the experiment where we have such a well-defined

calibration, and surrounding the ALPHA-2 atom trap are two 60 × 40cm2

scintillating panels (Sec. 3.2) read out by PMTs. By comparing the numbers

recorded on each of these panels with that of the SVD trigger channel we are

able to obtain a good estimate for the detection efficiency of these panels

- without the need for simulation. However, simulating the same process

and comparing this experimentally calculated efficiency with the simulated

efficiency will provide a good benchmark with which to test the accuracy

of the Monte Carlo. In this experimental configuration the p̄ are held in

the ALPHA-2 PM trap, confined to one electrode (E13) and trapped axially

between the two surrounding electrodes with a 0.2V potential. By slowly

raising the confining potential the p̄ are gradually released from the trap

and are free to annihilate on the wall. The gradual release of the p̄ takes

200s to ensure that no detectors become saturated. This is known as a slow

release of p̄. In this configuration we set xorigin to (0, 0,−1) corresponding

to the location in the trap where the p̄ are held. In principle the p̄ are free

to annihilate anywhere on the trap wall azimuthally, however when these

experiments were performed a small patch potential [168] on the surface of

the electrodes had formed, meaning the p̄ were drawn to a location that

corresponds roughly to p̂origin = (2/
√

5,−1/
√

5, 0).

2. Cold dump from the catching trap to the degrader foil. As mentioned in

Sec. 3.4 it is possible to obtain longitudinal temperature measurements by

dumping the particles near a detector. When performed with particles cooled

in the catching trap this is known as a CT cold dump and is an important

diagnostic tool in the ALPHA experimental cycle. Surrounding the CT are

four scintillating panels, two of which have an active area of 60 × 40cm2 and

are read out by PMTs, and another two 40×40cm read out by SiPMs sitting

slightly closer to the trap. Though the temperature diagnostic is indepen-

dent of the absolute calibration of the detector, knowing the calibration of

the panels allows for an additional diagnostic during the cold dump. By

lowering the potentials asymmetrically the atoms are directed upstream and
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annihilate on the degrader foil (see Sec. 3.7). In this configuration the p̄ are

generated in the centre of the catching trap (xorigin = (0, 0,−317)cm), and

are given negative z momentum only (p̂origin = (0, 0,−1)) directing them

upstream towards the foil.

3. DSAT dump from ALPHA-2 to the “DSAT” stick MCP. One of the sticks (see

Sec. 3.1) further downstream of the atom trap, known as the “downstream

atom trap stick” (DSAT) has an MCP (Sec. 3.1.2) and is surrounded by a

small 20 × 7cm2 scintillating panel read out by a SiPM. The true efficiency

of this panel during an MCP dump could provide information on p̄ num-

bers leaving the ALPHA-2 atom trap, or leaving the CT when transferred

directly to ALPHA-g. For this round we set xorigin = (0, 0, 20)cm which is

directly upstream of the MCP; and the p̄ are directed onto the MCP with z

momentum only: p̂origin = (0, 0, 1). (See Figure 5.3)

Figure 5.3: Example event at the DSAT. The red square is the MCP, and the
yellow circle the annihilation location. The resulting tracks are in green, and the
blue circle denotes where the scintillator registers a hit.

4. IC dump from ALPHA-2 to the interconnect MCP. Further along the transfer

line into ALPHA-g is the interconnect (see Sec. 3.11) where p̄ (and e+) must

turn a 90° corner to enter ALPHA-g. This transfer carries a high risk for
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losses, and understanding how many particles survive this transfer is impor-

tant and especially useful when compared with the DSAT dump, providing

a potential answer to where exactly the particles are being lost, potentially

improving transfers. For this configuration xorigin = (0, 37.7,−420)cm which

corresponds to directly below the MCP; and are given vertical momentum

only, directing them upwards onto the MCP: p̂origin = (0, 1, 0).

A summary of these four simulation conditions can be seen in Table 5.1.

Experiment Particle # of particles xorigin (cm) p̂origin

Slow Release p̄ 100,000 (0, 0,−1) (2/
√

5,−1/
√

5, 0)
Cold Dump p̄ 100,000 (0, 0,−317) (0, 0,−1)

DSAT Dump p̄ 20,000 (0, 0, 20) (0, 0,−1)
IC Dump p̄ 50,000 (0, 37.7,−420) (0, 1, 0)

Table 5.1: Summary of simulation conditions used to match each experimental
dump.

In each case, the primary generator creates antiprotons at the chosen location

with the momentum direction given by the unit vector specified and all resulting

collisions are handled by Geant4’s internal physics list. The overall multiplicity of

the events should follow the values seen in Table 2.1 and Table 2.2 which outline

the expected branching ratios and multiplicity of secondary particles resulting

from antiproton annihilation on various target nuclei.

In all four experimental setups, the most likely target for annihilation is some

heavy nucleus (N ), given that the foil target, ALPHA-2 electrodes, and MCP

are made from gold-plated aluminium, aluminium, and glass respectively. When

an antiproton annihilates with a nucleus, it results in the production of several

secondary particles. The detailed physics processes governing these interactions

are modelled within Geant4, which includes hadronic interactions, electromagnetic

processes, and particle decays.

5.1.4 Simulation Output

Each particle interaction with either the SVD or scintillating panels placed through-

out the experiment results in the creation of an a2mcSilDIGI or a2mcPanelDIGI
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object respectively. These objects handle the digitization of the hits, ensuring dou-

ble hits from the same event do not count twice and correctly calculating the total

energy deposited into the strips and panels respectively. Each simulated p̄ is con-

sidered a unique event and for each event many variables are recorded and saved

to a ROOT file for later analysis, these include:

• Generation position: The initial position where the antiproton is gener-

ated.

• Generation momentum: The initial momentum of the generated antipro-

ton.

• Annihilation position: The position where the antiproton annihilates.

• Annihilation products: The particles resulting from the annihilation.

• Multiplicity: The number of secondary particles produced.

• Secondary momenta: The momenta of the secondary particles produced

from the annihilation.

• Energy deposition: The total energy deposited in the detectors.

• Hit information: Detailed information about each interaction in the de-

tectors, including time, location, and energy.

The output of the simulation is the collection of these events, stored in a structured

format within the ROOT file for analysis.

5.2 Results

The results of the experiments outlined in Sec. 5.1.3 are presented here. The

primary focus is on the response of the detectors during each simulation setup,

with an aim to calibrate the signal on the panels to the number of simulated p̄.

By looking at the multiplicity of each event separated into particles (Figure 5.4)

we are able to see the branching ratios of the charged pions match well with those

presented in Table 2.1 and Table 2.2.
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Figure 5.4: Multiplicity of each event in the simulated results, separated into π0,
π±, and e−. The mean number per event is denoted as µ in brackets in the legend.

5.2.1 Slow Release Experiment

The slow release experiment takes place in the ALPHA-2 atom trap, which is

surrounded by the SVD. We are therefore able to reconstruct the vertex position

of the original annihilation within the trap, something not possible with the other

experiments. The slow release experiment was repeated four times during the 2022

run, each time slowly raising the potential of the electrode holding the p̄ until the

potential was flat and all particles were released. The reconstructed x, y, z position

of the resulting vertices over all four trials can be seen in Figure 5.5.

The peak in z is expected, and the width of the resulting histogram corre-

sponds to the width of the electrode in which the p̄ are held during this experi-

ment.

The distinctive x, y “hotspot” arises due to patch potentials on the trap walls

(resulting from imperfections in the metal, and amplified by prolonged operation

of the apparatus, on the order of days/weeks). These patches cause localized

areas of increased charge on the metal surface. Consequently, when p̄ are free to

annihilate, they tend to concentrate in the positively charged regions [168].
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(a) x − y vertex of all slow release experiments performed.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Z position [cm]

0

2000

4000

6000

8000

C
ou
nt
s
p
er

0.
1c
m

Counts per 0.1cm

Electrode Centre (A13)

Electrode Extent (±1.25cm)

(b) z vertex of all slow release experiments performed.

Figure 5.5: x, y, z vertex of all slow release experiments performed. The plots
contain four trials, each of 200s, resulting in 158,694 vertices. Figure 5.5a shows the
x, y vertex, binned into 0.3×0.3mm2 bins, and the black circle shows the location of
the electrode at r = 2.2275cm. Figure 5.5b shows the z vertex, binned into 10mm
bins, and the black lines shows the width and location of the electrode where the
p̄ were stored. In these plots the resolution of the detector and reconstruction
algorithm are evident, as the true vertex for the majority of these events is likely
directly on the wall.
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Over the whole experiment we record 493, 800 ± 7001 SVD triggers, which,

when assuming an efficiency of 99.5%, and given the 9.603(50)Hz background rate

converts to 488, 500 ± 700p̄ annihilating in the trap. The two panels surrounding

the SVD are logically ORed to obtain a single channel known as the “ATOM_OR”

channel, which in the same period records 25, 350 ± 160 counts above threshold.

Given the background rate of this channel (12.609(57)Hz) there are 15, 260 ± 160

counts above background, expected to come from p̄ annihilations. This results in

a detection efficiency of 3.125(33)% to true p̄ annihilations in the trap.

To validate these findings, simulations were conducted with 100,000 simulated

p̄ particles following the same experimental conditions. The resulting x, y, x posi-

tions of the decay events are depicted in Figure 5.6

Once a simulated particle is recorded as passing through the sensitive volumes

(detectors) surrounding the atom trap, the energy deposited is stored, and any

further hits are digitised to ensure no double counting occurs. 99,650 particles were

detected in the SVD, resulting in a trigger efficiency of 99.65(44)%, confirming the

previous value obtained via other simulations.

Further, once accounting for the efficiency of both individual SiPMs in the

“ATOM_OR” channel2, and logically ORing on an event-by-event basis, a total

3189 events are recorded on the ATOM_OR during the simulation. This results in

a detection efficiency of 3.189(57)% which agrees with the experimentally obtained

value of 3.125(33)%.

These simulations confirm experimental outcomes, validating the setup’s ac-

curacy for applications where direct experimental verification via the SVD is not

possible.

5.2.2 CT Cold Dump

The CT cold dump takes place upstream of the CT on the degrader foil. In the

absence of a tracking detector, the only source of detection here is the scintillating

panels themselves. This region includes two 60 × 40cm2 panels read out by PMTs
1All errors in this section come from counting statistic errors propagated with the appropriate

formulas where needed.
2Here we are referring to the efficiency of a given panel to detect a charged particle that passes

through it. The values of these efficiencies for each panel was measured using the technique
outlined in Appendix D, and the results of these measurements are displayed in Table D.1
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(a) x − y vertex of simulated slow release.
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Figure 5.6: x, y, z vertex of simulated slow release experiment. The plots contain
100,000 p̄ simulated using the configuration described in Table 5.1. Figure 5.6a
shows the x, y vertex, binned into 0.3 × 0.3mm2 bins, and the black circle shows
the location of the electrode at r = 2.2275cm. Figure 5.6b shows the z vertex,
binned into 10mm bins, and the black lines shows the centre of the electrode,
where the p̄ are initiated.
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which are logically ORed to create the “CT_PMTOR” channel, and two 40 ×

40cm2 panels read out by SiPMs which are both logically ORed and logically

ANDed to create the “CT_SiOR” and “CT_SiAND” channels respectively.

Background rates for these channels were measured and can be seen in Ta-

ble 5.2, and all final counts throughout this section include the panel’s detection

efficiency (see Appendix D and Table D.1).

Panel Background Rate (Hz)
CT_PMTOR 8.772 ± 0.048

CT_SiOR 27.607 ± 0.085
CT_SiAND 0.720 ± 0.013

Table 5.2: Measured background rates for channels in the CT region.

The cold dump was repeated 11 times, lasting approximately 4s each. The

resulting background subtracted counts recorded over all 11 trials can be found in

Table 5.3, along with background rates themselves, the simulated counts recorded

on each channel after generating 100,000 p̄ directed onto the foil (as described in

Sec. 5.1.3), and the resulting simulated efficiency of these channels.

Channel Background
Rate (Hz)

Counts Simulated
Efficiency (%)Background

Subtracted
Simulated

CT_PMTOR 8.772(48) 530 432 ± 729 3916 ± 63 3.92(6)
CT_SiOR 27.607(85) 3 783 903 ± 1946 34 670 ± 186 34.67(19)
CT_SiAND 0.720(13) 740 128 ± 860 4336 ± 66 4.34(7)

Table 5.3: Background rates of each channel around the CT region, along with
background subtracted counts recorded over 11 repeats of the cold dump exper-
iment, the simulated counts recorded on each detector after simulating 100,000
p̄toward the degrader foil, and the resulting simulated detection efficiency.

These numbers suggest that if ∼5k particles are detected on the CT_SiOR

channel during a CT cold dump, the true number of p̄ in this dump is ∼14k

(5k/34.76%) particles.

While there is no detector here to calibrate these numbers as in the atom

trap, one potential approach is look at the counts of each channel in this region

relative to one another, forming a “matrix” of relative counts. By comparing the

values of this matrix between real and simulated data it may be possible to gain
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some insight into whether the simulation is under or over counting, and potentially

offer a method of self-calibration. This matrix for the real CT cold dump data

and for this round of simulations can be seen in Table 5.4 labelled “real data”, and

“simulated data” respectively. The values of these tables are of the same order of

magnitude, but differ somewhat. It can be seen for example, that the simulated

counts on both ORed channels is too high in relation to the real cold dump data,

or alternatively, the AND channel is too low. It is possible that other effects such

as noise in the DAQ system, or cosmic background (neither of which are currently

included in simulations) cause erroneous readouts on the AND channel though

this remains untested and further simulations would be required to confirm this.

Relative to Counts on
CT_PMTOR CT_SiOR CT_SiAND

Real Data
CT_PMTOR 100.00 713.36 ± 1.05 139.53 ± 0.25
CT_SiOR 14.02 ± 0.02 100.00 19.56 ± 0.02
CT_SiAND 71.67 ± 0.13 511.25 ± 0.65 100.00

Simulated Data
CT_PMTOR 100.00 885.34±14.93 110.73 ± 2.44
CT_SiOR 11.30 ± 0.19 100.00 12.51 ± 0.20
CT_SiAND 90.31 ± 1.99 799.58±12.88 100.00

Table 5.4: Relative counts on each channel in the CT region with respect to
each other over all 11 trials of the cold dump experiment (real data); for the
100,000 simulated p̄ (simulated data). Systematic errors are not included and
are presumably much larger than those from statistics (which are included). The
values themselves agree to within 20-30% showing our prediction should be roughly
similar to reality, but further measurements would need to be done to quantify
exactly the systematic uncertainty and further simulations could be run including
some of the improvements mentioned in Sec. 5.3.

These results provide a value for the efficiencies of the panels surrounding

the CT region, and point to a method of calibration which suggests reasonable

agreement. However, more simulations could be run to more precisely estimate

these values in future.

5.2.3 DSAT Dump

Above the DSAT stick there is a single scintillating panel, read out by a SiPM

known as “ATOM_Stk”. After simulating 20,000 p̄ into the MCP we observe

3979 ± 166 counts, which after correcting for the panel efficiency, results in a
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detection efficiency of 19.90(84)%.

Performing the usual transfer from the CT to ALPHA-g results in 32274±180

counts on the SiPM during an MCP dump (the resulting MCP image can be seen

in Figure 5.7), suggesting ∼ 162000 ± 7000 p̄ are surviving the journey out of

the CT, through ALPHA-2, and on to the MCP. Given the mean number of p̄

that were re-caught in the atom trap during these experiments (∼ 240k p̄), this

corresponds to a transfer efficiency of ∼ 67.5%.
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Figure 5.7: A comparison of a single MCP image containing ∼ 64000 p̄ (using
the above calibration factor), with the simulated 20000 p̄ annihilation position in
the x, y plane. An aperture is visible in the MCP image which blocks the full
image from being displayed, and though the size and position between the two is
slightly different, differences on this level will not change the overall outcome of
the simulation.

In order to verify these results, a sequence was prepared that was tuned to

split the p̄ plasma precisely in two. The variation in this splitting process was

found to be < 2%. One half was then directed to the MCP, and the other half

slowly released in the SVD for counting. An example of two of these “half-dumps”

can be seen in Figure 5.8.

Three rounds of dumping half to the MCP, and half into the SVD results in

an estimated efficiency of 23.3(1)% which matches well with the simulated result.
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Figure 5.8: Example of two p̄ half dumps taken in the ALPHA-2 atom trap. These
two images were taken ∼ 600ms apart, and the estimated number of particles is
2.142e7 and 2.154e7 for the left and right images respectively.

5.2.4 Interconnect Dump

The final round of simulation has no way of cross-calibration. As such only the

results of the simulations are presented without any comparison to real measure-

ments of any kind. However, the “half-dump” experiment described above could

be adapted to provide an experimental value here also.

There is a further MCP on the interconnect between the beamline and the

ALPHA-g atom trap (see Sec. 3.11 for details). Once again the plot of the image

recorded by the MCP during a transfer is compared to the distribution of the

annihilation position of the p̄ in Figure 5.9 which shows good general agreement.

For this setup there were three 20 × 7cm2 scintillating panels read out by

SiPMs known as “SiPM_H,I,J” respectively.

The simulated resulting counts and efficiency of each panel is shown in Ta-

ble 5.5.

Panel Counts Efficiency (%)
SiPM_H 7631 ± 309 15.26 ± 0.62
SiPM_I 7793 ± 316 15.59 ± 0.63
SiPM_J 8029 ± 325 16.06 ± 0.65

Table 5.5: Simulated counts and resulting efficiencies on nearby panels after sim-
ulating 20,000 p̄ annihilating on the IC MCP.
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Figure 5.9: A comparison of a single MCP image on the interconnect MCP with
the simulated 50000 p̄ annihilation position in the x, z plane.

5.3 Conclusion

The description and results of four rounds of simulations, each specifically tai-

lored to match an event within the ALPHA experimental cycle, were presented;

and resulting simulated efficiencies for each panel have been estimated. These

efficiencies can be used to convert detector signals into true p̄ numbers, a useful

diagnostic to be added to the many in which ALPHA already deploys on a daily

basis. Through experimental results we were able to verify the results obtained in

the ALPHA-2 atom trap, and on the downstream atom trap MCP dump. We were

also able to provide some calibration on the CT simulations, potentially pointing

to a minor disagreement between the two results. The interconnect dump remains

uncalibrated and an experimental scheme designed to verify the results obtained

here would be beneficial when the possibility arises. A potential scheme to ver-

ify these IC efficiencies exists by replicating the p̄ half dump techniques used to

verify the DSAT results either using the TPC as the verification of the absolute

number, or taking into account the transfer efficiency from the ALPHA-2 trap to

the region in question. Further, potential measurements exist to verify the CT

simulations. Specifically adding the cosmic background flux to the simulations

would be an important step to verifying the results, as well as measuring the noise

on the channels in this system. Optimally this is done by entirely shielding the
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panel from particles while operating everything else in the exact same configura-

tion. However, shielding the detector entirely such that it can be sure that all

signal are a result of internal noise, and not external particles, seems unlikely to

be possible and therefore a better method for measuring the readout noise would

be required.
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Chapter

6 Machine Learning Methods

The concepts behind antihydrogen detection within the ALPHA experiment were

discussed in Chapter 4, and the SVD itself was used to verify simulated panel

efficiencies in Chapter 5. However, in addition to the charged products of an anti-

hydrogen/antiproton annihilation within the trap, the detectors are both sensitive

to the passage of charged particles originating from cosmic rays. These cosmic

rays are our major source of background, and account for a vertex rate of ∼7Hz in

the SVD, and ∼ 70Hz in the TPC. The need to differentiate these types of event

(especially for experiments with low signal) has motivated the need for some anal-

ysis capable of discriminating between these events. Fortunately, the fingerprint

of antiproton annihilations, and cosmic ray events is distinct enough that it is

possible to effectively filter events on a per-event basis. The preferred method to

perform this analysis is generally by using traditional rectangular cuts (discussed

in [153]) or machine learning (ML).

ML is a subset of artificial intelligence in which specific algorithms are devel-

oped that can “learn” from a set of given data, and generalize this information to

unseen data. In this way, the model is capable of making decisions without explicit

instructions or intervention from a human. The benefits of ML often include im-

proved accuracy and efficiency, the ability to handle large and complex datasets,

automation of repetitive tasks, and the potential to discover insights and patterns

that may not be apparent through conventional analysis methods. Further, ML

allows one to find if a pattern even exists when it is not necessarily clear to human

eyes.

Machine learning models are generated using specific algorithms which depend

on the architecture of the given model, known as the training process. The choice

and resulting accuracy of which depends on the dataset itself, as well as the pat-

terns that exist within it. Often, the best-performing algorithm is selected, where

performance grading depends on application, though this choice is not always

well-defined.

Two forms of ML model exist to handle two different types of problem:

1. Regression models are ML models that aim to predict a continuous variable
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from the data sample provided, for example using a home’s number of rooms,

total ground area, and garden size to predict its value. Regression allows

one to estimate the conditional expectation of the dependent variable (house

price) when the independent variables take on a given set of values (e.g.

when number of rooms, ground area, and garden size = (5, 50m2, 25m2)).

Specifically, regression models are functions that take the input variable(s)

and maps them to a continuous interval.

2. Classification models are models that aim to predict a discrete variable or

“class” that the data sample belongs to. For example classifying emails as

genuine or spam based on specific markers of the email. A classifier that

only aims to place the samples in one of two classes is known as a binary

classifier, otherwise it is a multi-class classifier. Here the model is a function

that takes the input variable(s) and maps them to a specific set of discrete

values.

6.1 Training

The training process is a critical step in developing an ML model, and defines how

the model learns the patterns and relationships existing in a given dataset. This

dataset is known as the training data and can come in a few forms which vary the

“type” of learning performed:

1. Supervised learning occurs when the training sample is strictly labelled,

each entry has a resulting output, or target variable. This would be the

dependent variable for regression and the class for classification.

2. Unsupervised learning occurs when the specific label is not known, and

the goal is for the algorithm to find patterns in the data that may not be

known prior to the training. While this is more commonly used in classi-

fication (and referred to as clustering) technically unsupervised regression

algorithms do exist.

3. Semi-supervised learning occurs when the training data contains a mix

of labelled and unlabelled data. Generally this process will train initially on
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a small amount of labelled data, then later on the larger batch of unlabelled

data.

4. Reinforcement learning is a method which attributes positive and nega-

tive values to desired outcomes or actions, pushing the model to avoid nega-

tive samples and seek out positive outcomes. It can be used in combination

with unsupervised learning as a way to direct the training process.

Generally in machine learning literature x is used to denote the input/feature

variable, and y is used for the output/target. The input does not have to be

scalar and can contain many variables, in this case it is referred to as the feature

vector, and is denoted x. The size of this feature vector must remain constant for

each sample in the dataset. Further, the output need not be scalar, and using a

vector as a target variable in this way is known as “multivariate regression.” More

commonly however, when there are multiple dependent variables, one would train

N different models for each variable y ∈ y instead which is known as univariate

regression. It is important to note that both of these are different concepts to

“multivariable regression” which is just any regression with multiple inputs as

these concepts are often confused [169, 170].

The set of labelled examples of inputs and outputs is known as the training

sample: D = {(x0, y0), (x1, y1), ..., (xk, yk)}. Each member of this set is known as a

sample, and the total number of samples, k, is an important metric when collecting

data. In general, k will need to scale with the complexity of the problem; however

there is no well-defined way to calculate the exact amount of data needed to

achieve good results. Generally though, the more samples in the training set, the

more likely the model is to converge to a solution without over-training.

The overall goal of most machine learning methods is to find the mapping f

(known as decision function) that best approximates the true underlying relation-

ship between the feature and target variables:

f(x) = y (6.1)

f can take many different forms, but let us call the set of parameters used in

the function Θ = {θm}. Then for each ML method used, the structure of the
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decision function is fixed, such as the number of parameters in {θm}, and their

arrangement; however, the parameters themselves can change with the objective

to find the best set of parameters s.t. f(x|Θ) describes the output best.

For example, when fitting a straight line to a data set (which is a basic form of

regression) one would have a decision function of the form f(x) = mx+ b, and the

set of model parameters Θ = {m, b}. The function f is fixed throughout, but the

training process will aim to find the optimum values of m, b that most accurately

describe the relationship between the given data.

This is done by minimising a “loss function” L : {x, y, yp|Θ} → R+ between

true (y), and predicted (yp ≡ f(x)) outputs.

Ultimately, the choice of ML model essentially amounts to a choice of f and L,

along with a certain way to generate/adjust {θm} at each iteration of the training

process that will converge.

6.1.1 Over/Underfitting

Overfitting can occur when a model has been trained to correspond too closely to

the training set and therefore is unable to predict future observations accurately.

That is, the model contains more parameters than can be justified by the data.

It corresponds to having accidentally fit a model to predict the variation of the

measurements in the dataset as if they were part of the model.

Similarly, underfitting occurs when the model used to describe the data is too

simple to accurately represent the underlying relationship.

An example of over and underfitting can be seen in Figure 6.1 where data

generated from a sine curve with some additional Gaussian noise has been fitted

with multiple different polynomials of varying degree.

In the case of the overfitting example the model resembles the data set too

closely and is trying to predict the Gaussian noise in the samples; in the example

of underfitting the linear fit to the data is too simple to accurately predict the

sample data. However, when selecting a polynomial of degree 5 the model is able

to predict/approximate the data well.

Finding evidence of overfitting is generally simple, when the accuracy of the

training data and the testing data starts to diverge it’s likely the model is starting
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Figure 6.1: Example of over/underfitting showing how model hyperparameters can
either cause the model to be underfit, overfit or just right. The points are generated
from a sine curve with a small amount of Gaussian noise added representing noise
in a given measurement. Figure a) shows the result of applying a linear fit to the
data, leading to underfitting; b) shows a polynomial of degree 5, which fits the
data well; and c) shows the result of a polynomial of degree 20 which overfits the
data.

to overfit to the training data. Signs of underfitting can be less clear but in general

models with a high average bias (difference between model prediction and target)

are likely underfit.

6.1.2 Curse of Dimensionality

The curse of dimensionality refers to various phenomena that arise when analysing

data in high-dimensional phase spaces that do not occur in low-dimensional spaces.

Generally it refers to issues that arise when the number of samples is small relative

to the dimensionality of the samples. While also not necessarily well-defined in

definition or consequences as they can vary a lot, one very relevant example for

ML use is that of various distance metrics as the number of dimensions increase.

The Euclidean (L2) norm (||a · b||2 =
√∑m

i=1(ai − bi)2), or Manhattan (L1) dis-

tance (||a · b||1 = ∑m
i=1(|ai − bi|)1, for example, are frequently used in ML to

measure the “distance” between sample points in high-dimensional phase space.

Distance metrics are essential for many types of models such as k-nearest neigh-

bour (Sec. 6.2.1), or the loss functions in regressions models (Sec. 6.3). However,
1Both of which are special cases of the more general Minkowski Distance: (

∑m
i=1(|ai−bi|)p)1/p

for p = 1, 2 respectively.
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as both of these distance metrics break down at high dimensions [171, 172] there

is incentive to keep the number of variables limited when possible. Suggestions

of using Lk norms with k < 1 have been put forward to combat this issue [172]

but it has recently (2020) been shown that these also have issues at higher dimen-

sions [173]. As such to prevent this issue entirely, or any others that come as a

result of high-dimensionality data, some form of dimensionality reduction is often

performed prior to training.

Further examples of the curse in action include data becoming sparse, com-

putational methods becoming exponentially slower, and the amount of samples

required increasing.

6.1.3 Dimension Reduction

Dimensionality reduction is when data is transformed from a high dimensional

space to a lower one in such a way that the low dimensional space retains the

meaningful properties of the original space. An intuitive example of this in action

is reducing (x, y) coordinates simply to r, which for some datasets may be enough

to retain properties of the original position. Generally some information is lost in

this process, but the key is to reduce the data in such a way that all meaningful

information is retained. Converting (x, y) to r is an example of feature extraction

whereas simply dropping variables is known as feature selection, both of which are

valid techniques.

6.1.4 Normalisation

Normalisation can have a lot of meanings, however in the context of machine

learning it almost exclusively refers to adjusting the values of the inputs to match

a different, usually (but not necessarily) common scale.

One often used example of data normalisation is called standardization which

converts a value measured x, to a standard score z, which represents the distance

(in units of σ) between the measured value x, and the mean of the population via

the formula

z = x− µ

σ
(6.2)
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where µ and σ are the mean and standard deviation of the population respectively.

In cases where neither of these values are known the z-score is estimated by taking

the sample mean, and sample standard deviation instead.

For normalising feature variables in ML applications a specific form of nor-

malisation is deployed known as feature scaling which is used to scale the range of

the feature variables and is part of the data preprocessing step.

Min-max scaling is one of the most popular and simple methods of normal-

isation which is usually used to scale the features to the range [−1, 1] or [0, 1],

though it can be generalised to any interval. The general formula for scaling the

variable x to the interval [a, b] is given by

x′ = a+ (x− min{x})(b− a)
max{x} − min{x}

(6.3)

In machine learning methods where distance metrics in phase-space are deployed

such as k-nearest neighbour (Sec. 6.2.1) and neural-nets (Sec. 6.4) data normali-

sation is an essential step in data preprocessing, as any variable that has a range

significantly larger than another will dominate the resulting distance metric.

6.2 Classification Models

We have discussed generally the training process, and some important features of

data pre-processing, now we look at the specific algorithms in place for training

some models. It has been mentioned how the choice of model is ultimately a

choice of f , L and Θ, and in regression models these are much more well-defined.

However, in many classification models these objects are more abstract and the

training process follows a more algorithmic rather than analytic approach to train-

ing. This section describes a few of the more commonly used classification models

and their training algorithms.

In the case of classification models, the target variable (y) is discrete and non-

continuous (i.e. y ∈ {0, 1, ..., n} where n is the number of classes, and n = 1 for a

binary classifier).
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6.2.1 k-Nearest Neighbour

The k-nearest neighbour (k-NN) algorithm is a form of supervised learning de-

veloped in 1951 [174] and subsequently improved upon throughout the following

decades [175].

While technically it can be used for both classification and regression it is far

more popular as a method of classification due to its consistency and the limit

that can be imposed on the error rate with respect to the Bayes error rate [175]2.

k-NN works simply by predicting the label of a given value by considering

the labels of the values “closest” to it in the training data set. Sometimes this is

limited by only looking at the k nearest neighbours, or only at neighbours within a

certain “distance” d. It relies on the assumption that similar classes will sit closer

to each other in feature space, creating clusters that can be compared to the point

to be classified.

To formalise this consider the training set D to be a set of pairs,

D = {(x0, y0), (x1, y1), ..., (xk, yk)} ⊆ Rm × {0, 1}, (6.4)

so that yi is the label of xi (in this case a binary classifier). Then given some

distance metric ||·|| on our feature space (Rm) and a point we would like to classify

x′ we can reorder the training set in order of distance from x′. I.e. we can consider

D′ = {(xa, ya), ..., (xb, yb)}) to be an ordered set such that ||xa·x′|| ≤ ... ≤ ||xb·x′||.

Then, the classification of the point x′ is simply either the majority vote of

the first k values in D′, or the majority vote of all neighbours in D′ such that the

norm is less than some positive distance d.

In theory any vector norm on Rm is valid, however the most commonly used

vector norms are the Euclidean distance (L2 norm) or Manhattan distance (L1

norm).

It’s notable that this method requires recalculating the distance between every

point in D and the new point x′ when classifying a new point, meaning it can be

computationally inefficient, especially when one has many data points, or high

dimensional data.
2The Bayes error rate is the minimum achievable error rate given the distribution of the data.
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For this reason, as well as the curse of dimensionality in the context of the

Euclidean norm (discussed in Sec. 6.1.2), dimension reduction is usually performed

prior to the k-NN algorithm when the feature space has high dimensionality or

large sample dataset [176].

Further, since k-NN relies on distance metrics to make predictions, normali-

sation of data is very important, especially when the features represent different

physical units or come in vastly different scales, something very common with our

chosen variables.

6.2.2 Decision Trees

Decision trees are flowchart-like structures, resembling trees, used to predict an

outcome. The tree is made up of nodes, branches, and leafs where each node

denotes a feature of the dataset, each branch a decision (or a cut), and each leaf

a prediction. The topmost node in the tree is known as the root node. It learns

to partition the tree recursively based on the separation of the feature values.

Their easy visualisation and interpretability makes them desirable for many uses,

especially where explainability is important.

To train an individual tree first consider the dataset D to be as in Equation 6.4.

Let x0 = {a0, b0, c0} be our input vector in feature space consisting of three unique

features a, b, c. In this specific example m = 3 as the input consists of three vari-

ables/features. Then consider the set Da to be a sorted set of one dimensional

pairs, using only one of the three available features: {(a0, y0), (a1, y1), ..., (ak, yk)}

such that a0 ≤ a1 ≤ ... ≤ ak. We are able to split Da into two separate sub-

sets, using any point as the boundary (usually the mean of two adjacent points),

essentially placing a cut on the variable a, and by doing so the two resulting sub-

sets DL, and DR
3 will have differing amounts of samples from class 0 (y = 0)

and from class 1 (y = 1). The amount these two subsets differ in this regard is

called the separation, and a good cut on a well performing variable will have a

higher separation index than one that doesn’t. There are multiple ways to place

an absolute value on this separation but the GINI index is the most common for
3Here DL = {(a0, y0), ..., (al, yl)} and DR = {(al+1, yl+1), ..., (ak, yk)} for some 0 ≤ l ≤ k so

that Dx = DL ∪ DR.
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machine learning methods. The GINI index of a cut is defined as p(1 − p) where

p is the purity of one of the sets after the cut p = |{DL | y = 0}|/k. This process

can be tested with every feature (a, b, or c) in the phase space, and with every cut

in the sorted set, resulting in a final cut on a specific variable in the input space

that provides the best separation of the two populations. This cut is then chosen

as a branch for the decision tree, and a new node is created repeating the same

process, this time only with entries in D that passed (or failed) the cut.

If a cut results in a pure node (i.e. one where all the elements belong to the

same class) the process is stopped here and this node becomes a decision leaf.

This whole process repeats until all nodes are leaf nodes or a sufficient stopping

condition is reached.

An example of a decision tree, designed to classify animals as either birds or

dogs is shown in Figure 6.2.

Number of legs?

Height? Dog

DogBird

Figure 6.2: An example of a decision tree designed to classify animals into one
of two classes: bird or dog, based on the height and number of legs. The root
node is in pink, the decision nodes/leafs are in green, and a normal node can
be seen in blue. The arrows, along with the corresponding cut value are the
branches. It is notable how explainable this model is, we can see the decisions the
model is making and understand them, something not possible with more abstract
models, however this sometimes comes at a price as one can also note that any
two legged bird larger than 1ft in height will be incorrectly classified as a dog in
this configuration. Here the maximum depth of the model is two, as it contains
two layers.

In practice, doing this until all nodes are 100% pure will result in overfitting,

so instead usually there is a limit to the depth of a tree, and to the purity required

for a node to become a leaf. Thus, instead of deploying a single giant tree with
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every possible decision inside, generally multiple of these smaller trees are deployed

together, in a process known as ensemble learning.

6.2.3 Ensemble Learning

On its own a single decision tree is known as a weak learner, i.e. generally it is only

slightly better than guessing the outcome randomly. A strong learner however, is

one that is “well-correlated”4 to the true classification problem.

In 1989 Kearns and Valiant posed the question “Can a set of weak learners

become a strong learner?” [177]. This question was answered in 1990 with a “yes”

from Schapire [178], who went on to develop one of the more popular ensemble

learning methods used today: AdaBoost (or adaptive boosting) [179] which earned

him the Gödel prize in 2003.

Another form of ensemble learning is known as bagging (bootstrap aggregating)

which was introduced by Breiman in 1996 [180] where new trees are trained only

with access to a subset of the data (or even of features [181]), resulting in more

variety of the trees and overall a more robust model.

There are many forms of ensemble learning other than bagging or boosting,

however, both of these are very common, and the resulting models, random forests

and boosted decision trees respectively, are some of the most frequently used ML

models available today.

6.2.4 Random Forests

Random forests are a form of ensemble learning method where multiple decision

trees are combined to create a collection of trees, or a forest which is ultimately

more robust than the individual trees themselves.

Consider a single tree to be a function (denoted ft) that maps the feature space

to the classification label, i.e. ft : Rm → {−1, 1}, then a forest is a collection of

these trees in the form:

F (x) =
T∑

t=0
αtft(x) (6.5)

where T is the total number of trees in the forest, and αt is the weight of tree t.
4This label is somewhat arbitrary, and the true definition of “well-correlated” depends on the

given problem and true limit of accuracy possible.
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Generally, to prevent each tree from being identical, boosting or bagging is

deployed to ensure variety. Otherwise, by following the same separation algorithm

outlined in Sec. 6.2.2 we would obtain identical trees at every iteration. In bagging

each of the trees is trained on a different subset of the training data set (either

via “random sample with replacement”, or via “bootstrapping”), then combined

(or aggregated) with a unique weight (α) for a final “bagged” model, F (x).

There are multiple ways to decide on the weights, αt, however most generally

αt = 1/T is used, essentially giving each tree the same weight and an equal say in

the overall classification.

6.2.5 Boosted Decision Trees

Boosted decision trees (BDTs) are an ensemble method that can be used incon-

gruently with bagging, and can rely on not only weighting each tree, but also by

weighting training samples.

AdaBoost is one such boosting algorithm which works by weighting training

samples at each iteration of the training process by whether they were correctly

classified by the previous iteration or not. By giving these “harder to classify”

events more weight, later trees are incentivised to classify these samples correctly,

over the “easy to classify” events, resulting in a model that is, in general, much

more accurate.

That is to say, subsequent trees are trained using a slightly modified event

sample in which the weights of previously incorrectly classified events are mul-

tiplied by a common boost weight, denoted α. The weight is a direct result of

the misclassification rate (ferr): α = 1−ferr
ferr

. The rate of learning is controlled by

something known as the AdaBoost beta: α 7→ αβ.

Further to this the trees themselves are also weighted by how accurate they

were (also based on the number of weighted samples it correctly classified). While

AdaBoost is generally presented for binary classifiers, it can be expanded to multi-

class problems. The resulting classifier is then defined as

F (x) = 1
T

T∑
t=0

lnαtft(x) (6.6)
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It’s important to note here that although the weak learners ft(x) only output

a single class prediction -1, or 1, the ensemble method will output a prediction

yp ∈ [−1, 1] due to the way the weak learners are combined with the weights. The

sign of which is generally considered the prediction, and the absolute value the

confidence in said prediction. It is possible however to set a cut value somewhere

else in the interval (other than the default at 0) to reduce false positives, doing so

however has potential to increase false negatives and choosing an optimum cut in

this interval is discussed further in Sec. 8.6.

6.2.6 Support Vector Machines

Support vector machines (SVMs) are models that aim to linearly separate two

classes in phase space. There are likely many hyperplanes that do this and so

the one that maximises the distance from it to the nearest point on either side is

known as the maximum-margin hyperplane.

By constructing multiple hyperplanes SVMs are able to be multi-class classi-

fiers, and by deploying the kernel trick (discussed in Sec. 6.3.3) they are able to

create non-linear hyperplanes which helps when data is not linearly separable.

More formally the linear hyperplane can be expressed as: wT x − b = 0 and

the one that separates the data best is chosen for the SVM. Assuming the data

is separable (i.e. a boundary exists such that on either side are the two different

classes) in the feature space, SVMs can be quite accurate, however their need to

evaluate distance metrics between each training sample and multiple hyperplanes

can make it extremely slow, especially when the training data contains a lot of

samples.

6.3 Regression Models

In this section, we turn to regression models, focusing on how different choices for

the decision function f , the loss function L, and the parameter set Θ influence the

model’s performance and applicability. Several widely used regression models are

presented, highlighting their individual characteristics and applications.
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6.3.1 Linear Regression

Linear regression (LR) is a model which predicts the linear response between the

feature and target variables. The most basic case (where both feature and target

are scalars) is known as simple linear regression, and results in a straight line in

two dimensions, giving the following decision function:

yp ≡ f(x) = mx+ b. (6.7)

In this configuration the set of parameters Θ is simply {m, b} and they are gener-

ally determined by minimising the mean-squared-error (MSE) loss function:

L = arg min
{m,b}

∑
k

(f(xk) − yk)2 (6.8)

where the sum is over each member of the training data set D.

However, in the extension to multiple/vector valued features (x = x) which is

known as multiple linear regression, or multivariable linear regression we have:

yp ≡ f(x) = wT x + b (6.9)

where wT is a vector of coefficients known as the “weights”, and b is the bias term.

Both of these are adjusted during the fitting procedure to minimise the same loss

function as in Equation 6.8.

Linear regression offers the advantages of simplicity, interpretability, and com-

putational efficiency, making it a good starting point for regression analysis; and,

when the data is indeed described by a linear model it works effectively. How-

ever, this strength is also its limitation as without the assumption of linearity the

model will not capture the data well. Further, linear regression models can be

sensitive to outliers, and have the potential for overfitting with high-dimensional

data. Generally though its inability to capture non-linear patterns in the data is

what limits its applicability in more intricate real-world scenarios.
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6.3.2 Ridge Regression

Ridge regression (RR) is essentially identical to linear regression, and the decision

function is the same, but the loss function contains an extra regularisation term

(λ
2 ||wT ||2) which combines the L2-norm of the weights with a scalar (known as

the “strength” of regularisation, denoted λ). This scalar value governs the relative

importance of the regularisation term as compared to the sum-of-squares error.

The resulting loss function can be seen in equation 6.10:

L = arg min
{w,b}

∑
k

(f(xk) − yk)2 + λ

2 ||wT ||2 (6.10)

This regularisation term acts as a penalty for high weights, meaning the fitting

process will try to keep the weights as small as possible. This can help increase the

overall robustness of the model in comparison to linear regression [182], however,

the same limitations apply here as with standard linear regression.

6.3.3 Kernel Ridge Regression

One thing to note about the two previous models is that while they make work

for linear relationships in a given dataset, if the relationship between the feature

and target is not linear, they will not provide good predictions (see for example

Figure 6.1a).

Kernel ridge regression (KRR) differs from standard ridge regression in the

decision function, whereby it utilises a transformation of the input vector to a

higher dimensional feature space, allowing for non-linear relationships in the fea-

ture phase-space.

The decision function in KRR is given by

yp ≡ f(x) = wTk(x) + b (6.11)

where k(x) is the transformation, potentially to a higher dimensional space, which

described the data better than the previous linear relationship. Note that linear

regression is just a form of KRR where k(x) = x.

This mapping (k : x → x′) may be computationally difficult to calculate so
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to circumvent this issue, something known as the “kernel trick” is applied. Dur-

ing the fitting process, only the dot product between samples is actually required

(k(x0) · k(x1)). So if we let K(xi,xj) = k(xi) · k(xi) and set K as something

computationally simple, we are able to calculate the weights required for Equa-

tion 6.11 without needing to perform the implicit mapping k. The function K is

known as the “kernel function”, and many choices for K exist depending on the

given problem, such as:

• Linear (this collapses to linear regression given the same loss function):

K(x,y) = xT y, x,y ∈ Rd

• Polynomial (once again this collapses to linear regression for n = 1 and

r = 0):

K(x,y) =
(
xT y + r

)n
, x,y ∈ Rd, r ≥ 0, n ≥ 1.

• Radial basis function (RBF):

K(x,y) = e− ∥x−y∥2

2σ2 , x,y ∈ Rd, σ > 0

Following the methods in [183] using the representer theorem [184] the decision

function in Equation 6.11 can be equivalently written as:

yi ≡ f(x) =
∑

j

αjK (xj,x) ≡ αjk (xj) · k(x) (6.12)

Here the sum over j is over the training set, and αj are the Lagrange multipliers

used during fitting, essentially the weights.

Interestingly, while the goal of most ML methods is to find the optimum set of

model parameters Θ = {θm} s.t. the loss is minimised based upon previously seen

training example, KRR differs in the sense that it is a form of “instance-based”

or “memory-based” learning. It “memorises” certain samples, attributes weights

to them and constructs its prediction on the training samples themselves. This

sometimes means that the complexity of KRR models can grow with the amount

of data, however, many computation tricks are deployed to limit this issue [183].
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The same loss function, measuring the mean squared distance between each

sample with a regularisation term, is utilised as in ridge regression (Equation 6.10).

A good (and classic) example of the usefulness of this transformation to higher

dimensions is to return to classification, and to consider 2D points inside and

outside a given circle as belonging to two classes needing to be linearly separated.

Trying to linearly separate points in a circle with a straight line will not work,

however using a kernel function of k : (x, y) → (x, y, x2 + y2) transforms these 2D

points to 3-dimensional space, where they are now able to be linearly separated

by a hyperplane. A visualisation of this example can be seen in Figure 6.3.
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Figure 6.3: An example of the kernel trick transforming 2D, non-linearly-separable
data to a higher dimension, where it is now able to be separated using a three-
dimensional linear hyperplane.

This same concept is applied in both regression or classification to allow non-

linearities to be represented by the model which cannot occur in linear models.

However, as KRR utilised this additional function, and “memorises” training sam-

ples this can make them more computationally intensive to train and use. Regard-

less KRRs are still a powerful tool for various regression tasks.

6.3.4 Support Vector Regression

Support vector regression (SVR), proposed in 1997 by Vapnik et al. [185] support

vector machines (SVMs) work similarly to KRR, differing only in the loss function,

where instead of the standard ridge loss, SVR introduces what is known as an
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“epsilon-insensitive loss”. This new loss function includes a max {|yp − y| − ϵ, 0}

term, which doesn’t punish predictions deemed “close enough” to the target the

distance of which is defined by ϵ. This amounts to minimising the loss function

subject to the condition |yp − y| > ϵ for some ϵ > 0. The complete loss function

(keeping still the regularisation term from Sec. 6.3.2) is:

L = arg min
Θ

∑
j

max {|yp − y| − ϵ, 0} + λ

2 ||wT ||2 (6.13)

The corresponding decision function is defined as:

yp =
∑

j

(αj − α′
j)K (xj,x) + b (6.14)

This time the sum over j is not over the entire training set; but over the subset

of samples selected for inclusion in the loss function. These samples are known as

the “support vectors”, and again αj, α
′
j are the Lagrange multipliers used during

fitting.

It is important to note here that both kernel methods require a selection of ker-

nel and some hyperparameter tuning, the choice of which can often feel arbitrary

and random. Either extensive knowledge of the problem and data is required,

or an exhaustive search on the hyperparameter space to find optimum solutions.

There is no closed-form solution for selecting the “correct” hyperparameters.

6.4 Neural Networks

Artificial neural networks (ANNs), or just “neural networks” (NN), are computa-

tional systems that draw inspiration from the intricate networks found in biological

brains and can be used for both classification and regression purposes. These net-

works consist of interconnected nodes known as artificial neurons, which serve as

simplified models of the neurons in our brains. Similar to biological synapses,

connections between neurons enable the transmission of signals throughout the

network. Each artificial neuron receives various input signals, processes them,

and can then transmit signals to other connected neurons further downstream the

network. The strength of these connections (represented by weights) adjusts as
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the network learns from data. Non-linear functions applied to the sum of inputs

determine the output of each neuron.

There are many kinds of ANN, but the one most commonly utilised is the

multi-layer perceptron (MLP).

6.4.1 Multi-Layer Perceptron

An MLP is a fully-connected forward-directed graph; consisting of nodes (or neu-

rons) and edges (or synapses). It is a specific architecture for an ANN, of which

there are many options.

In general, MLPs have at least three layers: an input layer (the same size as

the input x); one or more hidden layers of varying number of nodes; and finally

an output layer (the same size as the output y). An example diagram of an MLP

with three layers and a single output can be seen in Figure 6.4.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ� Output Layer ∈ ℝ¹

Figure 6.4: Example schematic of a 3-layer MLP with layer sizes (3,4,1). Each
node’s value/output is denoted al

j where a0
j = xj is the input/feature vector. Here

l refers to the layer number (from 0-2) and A,B represent the number of nodes in
layers 0, 1 respectively. In this case the output is a scalar and therefore the size
of the final layer is fixed at 1, representing our prediction.

In this schematic al
i represents the output of the i-th neuron in layer l, and

wl
i,j represents the weight of the edge connecting neuron i in layer l with neuron

j in layer l + 1.
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For each node in the network there also exists a bias term bl
i (not displayed in

Figure 6.4) such that the net input of neuron i in layer l can be described as:

zl
i =

∑
j

wl−1
i,j a

l−1
j + bl−1

i . (6.15)

To obtain the final output or activation value of that node (al
i) we then apply an

activation function (denoted g(x)) to this input:

al
i = g(zl

i) = g

(∑
j

wl−1
i,j a

l−1
j + bl−1

i

)
(6.16)

In a fully-connected graph each node in a previous layer is connected to every

node in the next layer; and the choice for activation function is similar to that

of the kernel where it should be non-linear to reflect non-linearities in the data.

Common choices for this function include the sigmoid function:

g(x) = 1
1 + e−x

= ex

ex + 1 = 1 − g(−x), (6.17)

tanh activation:

g(x) = ex − e−x

ex + e−x
, (6.18)

or the rectified linear unit (ReLU) function:

g(x) = x+ = max(0, x). (6.19)

Generally the tanh function is preferred over sigmoid as it seems to improve per-

formance but it does not solve the “vanishing gradient problem” like the ReLU

function does.

A MLP with at least one hidden layer is known as a “universal approximator”,

and it can be shown via the universal approximation theorem [186] to represent

any function given a sufficient number of layers and nodes.

By starting with the input vector and moving forward through the network,

calculating the output of each node at each layer eventually the model reaches the

output value which is the final prediction of the model.

So, for example, the overall decision function of the model shown in Figure 6.4
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using activation function g, can be described as:

yp,i = g

(
B∑
m

w1
i,m · g

(
A∑
j

w0
m,jxj + b0

m

)
+ b1

i

)
. (6.20)

More generally, we can define the decision function for a generic MLP with a total

of L layers (including input and output layers) by incorporating each bl
i into the

function gl such that gl(x) = g(x+ bl), and by denoting the matrix of weights at

layer L with WL as:

yp ≡ f(x) = gL−2(WL−2gL−3(WL−3...g0(W0x)...)). (6.21)

While MLPs do still have a loss function, usually, it is referred to as a “cost”

function (denoted C, allowing L to be free to describe the number of layers), and

the MLP converges to optimum values of WL and bL through a process known

as backpropagation.

6.4.2 Backpropagation

In the backpropagation process, the loss and activation specifics are unimportant;

as long as their derivatives can be evaluated efficiently, the process will converge.

These choices will ultimately affect the accuracy of the final model and are con-

sidered further hyperparameters of the model, but it does not change the training

process, and presented here is a general description of the process for which this

choice is independent.

For a given cost function C acting on our training set D = {(xk, yk)} (which

contains a series of input-output pairs) the total cost of the model, given weights

and biases in the sets WS = {wl
i,j} = {WL}, and BS = {bl

m} = {bL}, is

C(D;WS, BS) = 1
k

∑
k

λ(yk, f(xk)) (6.22)

where f describes the output of the model (as per Equation 6.21) and λ is a

distance metric between inputs and outputs (the mean squared error, λ(u,v) =∑
i(ui − vi)2 is most commonly used for this). The sum in Equation 6.22 is (in

theory) over all k training samples however later in this section we will see why
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this is not always the case.

After evaluating the value of the cost function a process known as gradient

decent is utilised to shift the weights and biases. By taking the partial derivative

of C with respect to the weights then we are able to find the direction of the step

required by the weights that minimise the total value of the cost function.

That is to say by calculating ∂C
∂wl

j,k

and ∂C
∂bl

j
for each wl

j,k ∈ WS and each bl
j ∈ BS

we are able to construct a vector, known as the gradient of C:

∇C =


∂C

∂w0
0,0

...

∂C
∂bL

L


and take a corresponding minimising “step” in phase space until we reach a global

minimum. There is much discussion about the effect of saddle points in this

space [187, 188] (or whether they even exist [189]) but in general this process

will converge to some minimum value given enough time, or epochs as they are

commonly known.

In order to calculate ∇C it is necessary to first calculate the value of f for

each training sample k (i.e. f(xk)). This is known as the forward-propagation step

as we take the inputs xk and feed them forward through the network, calculating

the response of each node as we go until we get the final response of the model.

Each individual component of ∇C can be computed using the chain rule on

Equation 6.21, but doing this for each weight individually will be incredibly in-

efficient, especially with large models that can often have thousands of weights.

Instead, backpropagation efficiently computes the gradient by avoiding duplicate

calculations and only calculating the gradient of each layer, denoted δL, and avoid-

ing this full calculation entirely.

By using the chain rule, it can be shown δL−1 is dependent only on δL, and

therefore the values can be saved at each layer, ready to calculate the derivatives

for the previous layer. Therefore in backpropagation, we work our way backwards

through the network from the last layer to the first, each time using the last

derivative calculations via the chain rule to obtain the derivatives for the current

layer and populating ∇C.
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The derivation and formal definition of this process is omitted for brevity;

however the key point in this process is that as the only way a weight in layer

L affects the loss is through its effect on the next layer. Further, as this effect

is linear, δL is the only data one needs to compute the gradients of the weights

at layer L − 1. Further details about this process can be found in, for example,

[190–192].

In this way, the backpropagation algorithm allows us to efficiently calculate

the gradient with respect to each weight and to avoid duplicate calculations.

We then shift the whole phase space of weights and biases by ∇C, whole layers

at a time, and repeat the process until convergence.

This shift of weights and biases is known as a “gradient descent” step, but a

true gradient descent step occurs only when using every sample in the training set

to calculate the true “most efficient” step to take that minimises C. However, even

with the shortcuts of backpropagation, this can still be a slow process, especially

in models with many weights, or if we have a large training sample. As such, if

we instead take the sum over k in Equation 6.22 to be over some subset of the

training data, we are still able to take a good (though not perfect) step in the

correct direction. This is known as a “stochastic gradient descent” step and the

whole process of using smaller “batches” of samples is known as batching.

Commonly used cost functions include the mean squared error for regression

(described previously), and binary cross entropy for classification:

BCE(x, y) = − 1
N

N∑
i=0

yi log(f(xi)) + (1 − yi) log(1 − f(xi)) (6.23)

where f is a probability of a specific class.

6.5 Metrics to Evaluate Machine Learning

Algorithms

Understanding different types of models is only part of the process; it’s equally

important to employ the right evaluation metrics to quantify their performance.

The choice of metric depends on the type of model (classification or regression)
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since their outputs differ in nature, requiring distinct functions to assess their

performance accurately.

6.5.1 Classification Metrics

To evaluate the performance of classification models, the following metrics are

commonly used:

1. The confusion matrix is essentially a table layout that allows one to

visualise the performance of a classifier. Usually used in a binary classifier

to compare type I errors (false positives) with type II errors (false negatives)

but can be expanded to multi-class models also. An example of a confusion

matrix for a binary classifier can be seen in Figure 6.5.
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False Negative

(FN)
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(TP)
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(TN)P
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1
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0
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Figure 6.5: Example of a 2 × 2 confusion matrix. Generally type I errors refer to
FP, and type II to FN (although often they are switched arbitrarily).

This metric is often especially important in medical applications, where false

negatives can be more dangerous than false positives.

2. Accuracy simply counts as a percentage how many test samples were cor-

rectly classified TP+TN
TP+TN+FP+FN

3. Recall, sensitivity, or true positive rate is TP
TP+FN

4. Specificity, or true negative rate is TN
FP+TN

5. Precision is TP
TP+FP
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6. F1 score is the harmonic mean of the precision p, and the recall r: F1 =
2

(1/p)+(1/r)

7. Receiver operating characteristic curve, or ROC curve is used to illus-

trate the performance of a binary classifier that has varying threshold values

such as BDTs or random forests. The ROC curve is a plot of the true positive

rate against the false positive rate for each threshold value available.

8. Area under curve (AUC), usually of the ROC curve is a way to quantify

the total performance of the model. In general models with a higher AUC

will perform better, but the shape is not accounted for in this metric. For

example, a model may perform better than another in one area of the ROC

curve, but worse in another area, resulting in a lower AUC despite performing

better at the specific region of interest.

6.5.2 Regression Metrics

Regression models are able to be more numeric in their metrics owing to the

continuous nature of the outputs. Some common metrics include:

1. Mean absolute error between predictions and outputs:

1
N

N∑
j=1

|yj − f(xj)| (6.24)

2. Mean squared error between predictions and outputs:

1
N

N∑
j=1

(yj − f(xj))2 (6.25)

6.6 Conclusion

The basis for many machine learning algorithms to be used for the remainder

of the thesis have been presented, as well as a few methods for evaluating the

performance of the resulting models.
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Chapter

7

Machine Learning
Reconstruction of
Distorted IPM Beam
Profiles

During a six-month placement the author spent time at the CERN Beam Instru-

mentation (BI) group working on using machine learning to reconstruct beam

profiles obtained with an ionisation profile monitor (IPM).

The principle of an IPM is quite simple: when a beam passes through a gas

chamber it will ionise the gas creating electron-ion pairs. By applying electric

and magnetic fields to direct these particles downward towards a detector, it is

possible to measure a profile of the given beam.

However, it is possible that the profile becomes distorted before being recorded

by the IPM, and this is especially common with high-brightness beams with a large

space charge effect.

This chapter briefly examines the underlying mechanisms responsible for these

distortions before exploring the application of machine learning algorithms to re-

construct the true beam profile from distorted measurements. While good results

are obtained through multiple tests conducted on simulated data, demonstrating

the effectiveness of these algorithms, and reproducing results from similar previ-

ous studies (see [193–195]); the first applications of these reconstruction methods

on data collected from a currently operational IPM, the CERN PS-BGI-82, are

promising but not conclusive, likely owing to the problems occurring in the dataset

itself. These findings suggest that machine learning algorithms could prove highly

valuable for beam reconstruction in IPMs, but further data is required to demon-

strate their effectiveness in reality.

7.1 Introduction and Motivation

Using IPMs to measure the beam profile in storage rings is a highly valuable

diagnostic, as it is (assuming the density and volume of gas is tuned correctly)

non-destructive, meaning the profiles can be obtained for the beam in real time,

while it is being used for physics. Further, the capability to monitor the beam

145



7.2. IPMS CHAPTER 7. IPM BEAM PROFILES

profile in real-time is an essential aspect of cancer treatment in medical accelerators

[196, 197].

The profile that is recorded on the detectors can often vary from the true

profile of the beam due to multiple different compounding mechanisms, and while

the application of guiding electric and magnetic fields are able to suppress this

somewhat, in situations where there are space, cost, or time restrictions the abil-

ity to forego these hardware solutions would be preferable. These requirements

have motivated the search for reconstruction methods that either do not require

a magnetic field, or allow the field to be minimised as much as possible.

7.2 IPMs

IPMs have been widely used in particle accelerators since their invention in the

late 60s [198, 199], and are still important tools for modern and future accelerators

[200, 201]. They work by passing the beam through a small chamber in which a

residual gas is present, causing the ionisation of the gas where the beam passes

and results in a non-destructive measurement of the beam profile. Due to the

simplicity of their design, and the one dimensional nature of the resulting profiles

they can be measured extremely fast, allowing beam profiles to be measured per

turn or even per bunch.

A schematic diagram of an IPM can be seen in Figure 7.1, showing the beam

(which is travelling towards the page), the position sensitive detectors (usually

either an MCP or a pixel detector) and the direction of the electric and magnetic

field.

The most commonly used IPMs can be distinguished by their use or omission

of a magnetic guiding field [202]. Generally IPMs without need of a magnetic field

are favoured due to their smaller size, lower cost, and simpler design. However,

with the high brightness beams such as those at CERN, the space charge effects

(one of the mechanisms of profile distortion, to be discussed in Sec. 7.3) can often

cause large distortions of the profile, and as such generally a magnet it required

in their design. The main goal of an IPM is generally to determine the beam

width, defined as the standard deviation of the one dimensional profile obtained
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Figure 7.1: Schematic diagram of a typical IPM. The position sensitive detector
could be an MCP or a pixel detector/wire array.

by the device, denoted σ. However, the lack of magnetic field can often cause the

recorded beam width σm to differ from the true beam width σ0.

7.3 Profile Distortion

The equations of transverse motion for the electrons generated during the ion-

isation process are generally well-defined. Given an electron of mass m, and

charge q in a vertical field of Ey = V0/D, the vertical and horizontal movement

(x(t) = (x(t), y(t))) can be described by the following equation [202]:

x′′(t) =

 fx(x, y, t)x
q
m
Ey + fy(x, y, t)y

 (7.1)

where

f(x,y)(x, y, t) = −
(
q

m

)
· ∂U(x, y, t)

∂(x, y) , (7.2)

and U is the space-charge potential of the bunch. This value is proportional to

beam current J(t) and depends on the beam density distribution which typically

scales proportionally to the radius squared (r2) until r ≫ a for some a, where it

then scales with ln (r).
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As can be seen from Equation 7.2, the more significant the space-charge po-

tential of the beam, the larger the resulting perturbation in x, y will be. Therefore,

the electron motion is defined by three main aspects.

1. Space charge interaction - The interaction of the electric field generated by

the bunch and the electron may alter their trajectory significantly, distorting

the measured profile/width. This is especially evident in high-intensity and

high-energy beams, and often a large magnetic field is required to overcome

this motion.

2. Ionisation Momenta - The magnetic guiding field influences the initial mo-

menta of electrons upon ionisation. As such, any initial momentum along

the axis translates to a transverse displacement of the electrons, while trans-

verse momentum corresponds to a longitudinal displacement. This effect is

more prevalent for beams with lower energy or for IPMs with a weak guiding

magnetic field [195].

3. Gyromotion - The electrons’ motion under the influence of a guiding mag-

netic field is defined by a helix. The radius of this helix is defined by both

the intensity/charge of the beam and the strength of the magnetic field.

In cases of a particularly large radius, this can result in a similarly large

displacement of the products of the resulting profile.

7.4 Profile Corrections

While the approach to profile correction in this chapter will solely focus on ML

methods there do exist many other forms of profile correction discussed in the

following sections.

7.4.1 Analytical Solutions

In order to correct the distortions that occur as a result of these mechanisms it

is generally required to simulate the beam conditions, compare them to measured

results, and define a fit function that relates σm to σ0. [199, 203–205] outline this
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process for the IPMs used in the Fermilab booster, and the Brookhaven AGS. The

formulas derived from these simulations are

σm =
√
σ2

0 + C1
N2

E2
0σ0

, (7.3)

σ0 =C2 + C3σm + C4N, (7.4)

σm =σ0 + C6
N1.025

σ1.65
0

(
1 + 1.5R1.45

)−0.28
, (7.5)

σm =σ0 + C7
N

σ0.615
0

+ C8
N2

σ3.45
0

(7.6)

(from [199, 203–205] respectively).

In these equations, N is the number of particles in the bunch (generally in

units of 1012 protons), E0 = V0/D is the guiding electric field due to a voltage V0

over a given distance D, R is the aspect ratio of the beam (σ0,y/σ0,x), and Ci are

various fit parameters derived from available simulations and measurements.

Despite the good agreement between these approximations and measured data

the unsubstantiated physical reasons for many of the variables used has created a

general call for more sophisticated reconstruction algorithms in recent years [202].

Further, such approximations generally only exist for IPMs without a magnetic

guiding field, and only a few cases exist for those with a magnetic guiding field

[206–209]. In high intensity beams such as those at CERN, where the space charge

of the bunch itself can cause major distortions to the recorded profile, the use of

a magnetic field is generally considered crucial to minimise profile distortions.

7.4.2 Magnetic Field Corrections

In most IPMs, the magnetic guiding field is strong enough to reduce profile distor-

tions to a minimum; however, in some instances, the space charge interaction can

create electric fields up to a few MV/m (compared to the typical extraction field

of ∼ 50−300kV/m). Fields of this magnitude mean that initially the electrons are

trapped within the space-charge region of the beam due to its dominant field over-

powering that of the guiding field near the centre of the bunch. The electrons are

then forced onto significantly different trajectories, resulting in a substantial in-

crease in the gyroradii discussed in Sec. 7.3. Determining the suitable strength for
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the magnetic guiding field to effectively suppress this increase in gyroradii is non-

trivial, as these effects depend on various parameters of the particle beam which

can be hard to quantify. In theory, it is possible to simply increase the magnetic

guiding field until gyroradii are bounded to sufficient levels (many such examples

exist of relating this bound to the magnetic field required [195]), however, in some

scenarios, to ensure this upper bound is sufficiently low the use of a very large

magnetic fields would be required [206]. Acquiring magnetic fields on the order of

those needed to ensure sufficiently bounded gyroradii can be costly, and require

significant space within already congested rings, making them undesirable. As

technology progresses, it is reasonably safe to anticipate increased applications for

high-energy and high-brightness beams, (especially with plans for the future circu-

lar collider (FCC) moving forward [210]), challenging the effectiveness of current

magnetic IPM designs.

7.4.3 Other Solutions

Further attempts to correct for this effect that do not rely on stronger magnets

or arbitrary fit functions have been proposed, such as the “electron sieve”, which

would aim to filter the electrons before they reach the detector and selectively

remove particles with too large of a perturbation. Simulation results showed good

potential; however, one of the main pulls of finding these alternate methods is for

ease of use and compact use of space. The electron sieve was found to be too large

and complicated to implement into existing machines.

Other approaches include parametric curve fitting or utilising more well-defined

analytic functions, which could not be generalised or justified strongly.

More recently, however, attempts to create some form of an inverse mapping

based on specific beam parameters using look-up tables [211] or supervised learning

based on simulated data [193–195] have been attempted. However, both of these

rely on well-understood simulations, which are not always readily available.
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7.5 CERN PS-BGI-82

In CERN on the PS, a pair of beam gas ionisation (BGI) IPMs have been installed

and operational since 2021 [212]. Both use an array of 4 Timepix3 [213] detectors

for their position sensitive detection, and are deployed orthogonally to one another,

allowing for both x and y transverse profiles to be recorded throughout the beam

cycle. Both use electric and magnetic fields to direct the electrons to the detectors,

the magnetic field coming from a 0.2T triplet dipole magnet. All data in this

section comes from the horizontal BGI, known as the PS-BGI-82. By operating

the magnet at full power, and at lower currents we are able to obtain profiles with

varying amounts of distortion. An example of a profile recorded by the PS-BGI-

82 with the magnet operating at full strength can be seen in Figure 7.2a, and at

about 15% the maximum (26A/0.03T) can be seen in Figure 7.2b.
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(a) An example profile at 0.2T
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(b) An example profile at 0.03T

Figure 7.2: Example profiles from the PS-BGI with the directing magnet operating
at different output fields.

It can be seen from these profiles that the reduction of the magnetic field cor-

responds to a broadening of the recorded profile, demonstrating the point spread

that electron would experience inside an IPM [214].

The readout is designed to allow for the number of particles per profile to be

tuned, up to a maximum of 1024 profiles per cycle. For example, if during one

cycle of a beam in the PS, the ionisation cross-section and the chosen residual

gas results in a total of 450,000 detected electrons, then setting the particles per

profile (ppp) to 5000 would result in 90 profiles recorded out of the total possible

1024.

151



7.6. USING SIMULATED DATA CHAPTER 7. IPM BEAM PROFILES

7.6 Using Simulated Data

To first test the validity of using ML to reconstruct profiles in the PS-BGI-82

a round of simulations was performed, mimicking both the true and distorted

profiles to allow for a complete fully labelled dataset to provide to ML algorithms.

Simulations are generally cleaner and much simpler than real datasets, and as such

it is expected that our models are able to work accurately on simulated data before

considering applications on real data. This form of reconstruction has been shown

to work successfully before, albeit in beams with slightly different parameters than

those of the PS [193, 194, 215].

7.6.1 The Dataset

The simulations were performed using Virtual-IPM (VIPM), which is an open-

source package explicitly developed for bunch charge particle tracking in IPM

devices. The package has been tested with various beams and benchmarked to

show good agreement [216]. The modular nature of the package allows users

to tune each part of the hardware and beam to more accurately represent the

expected results.

Table 7.1 shows the beam parameters used for the first round of simulations,

initially tuned to those typically found in the PS at extraction [217].

The position of all 3,000,000 simulated particles was recorded upon generation

(ionisation) and also as they hit the detector region. The data is then binned into

50µm bins giving a complete training set of “real” and “distorted” profiles for

training and reconstruction tests.

7.6.2 Reconstruction of Simulated Profiles

This set of training data was fed into each of the ML methods described in Sec. 6.3,

both to predict the original beam width σ0 and to reconstruct the full original

profile y (except for SVMs which were only used to predict σ0). The models were

trained using the Python machine learning package scikit-learn [218]. Tensorflow

[219] was used to verify some models and gave similar results, though they are
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Variable Value Simulated

Beam Particles Protons
Energy 25.445GeV

Beam Width 850-950µm
Guiding Magnetic Field Strength 0.01T

Bunch population 1.2-1.3e11
Beam Height 800µm
Beam Length 1.0-1.1ns

Electric Guiding Field 286kV/m
Time step 0.0005ns

Total Particles simulated per profile (ppp) 3,000,000
Total Profiles simulated 19,956

Bin size 50µm
Particles per µm ∼ 3,157-3,529

Table 7.1: Beam parameters simulated in VIPM for our application. We set the
magnetic field to 0.01T so that it is not sufficiently strong to remove the distortions
of the profiles, intentionally giving us something to correct.

not displayed here. For each of the models, the following hyperparameters were

used: KRR: d = 2, α = 10−3; SVR: γ = 10−4, C = 103, ϵ = 10−8; MLP: 4

hidden layers of sizes: (200, 170, 140, 110), ReLU activation, with a batch size of

8. Detailed descriptions of these hyperparameters can be found in the respective

software packages.

The accuracy for each ML method and both the case of predicting width and

full profiles of our simulated beam are displayed in Table 7.2. The mean-squared

error in the case of predicting beam width is ∑k(yp −σ0)2, where yp is the result of

the model, and for predicting full profiles, we first convert the full reconstructed

profile (y) to σp by taking the standard deviation of the profile once binned in x.

This allows both approaches to be compared directly, and while there are further

benefits to reconstructing the full profile instead of just the width, if doing so

results in a significant decrease in the ability to predict σ0, then reconstructing

the full profiles will not be valuable. Table 7.2 shows the residuals, errors, and

correlations (between true and predicted values) for each of the models trained.

These results show that for the beam simulated linear regression was the best-

suited model, and with it the original beam width of the distorted profile can

be simulated to within ∼ 1µm or ∼ 0.12% of the true beam width. Pearson’s
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Method Residual Mean (µm) Residual Sigma (µm) NMSE Pearson’s R2

Linear Regression (predicting σ0) 0.7722 0.585 0.001 124 0.999 438
Linear Regression (predicting y) 0.7884 0.601 0.001 176 0.999 422

KRR (predicting σ0) 0.7628 0.579 0.001 098 0.999 451
KRR (predicting y) 0.7722 0.582 0.001 120 0.999 451
SVR (predicting σ0) 0.8773 0.664 0.001 449 0.999 275
MLP (predicting σ0) 0.8098 0.608 0.001 228 0.999 442
MLP (predicting y) 0.8099 0.613 0.001 236 0.999 409

Table 7.2: Resulting metrics for each model configuration, both in predicting σ0
directly, or predicting the full profile y and then using its standard deviation as
yp. These results suggest that ML is capable of predicting true beam width to
within ∼ 1µm or ∼ 0.12% on the simulated beam.

R2 coefficient shows a strong correlation between prediction and target, all above

99.9%.

However, when predicting the full beam profile, it is possible to obtain more

than just the width of the beam, potentially allowing for more diagnostic ability.

Table 7.2 shows that using these profiles to in turn predict σ0 is similarly (though

slightly less) accurate as predicting σ0 directly.

Given that measurements and reconstructions are binned, the process amounts

to sampling from an underlying probability density function (PDF), and as such

the χ2 measure is not the best way to compare predicted and true profiles. Instead,

we must turn to other statistical methods designed to directly compare histograms

drawn from an unknown distribution with expected values of zero as both the

χ2 goodness of fit and histogram distance measure severely punish a predicted

value of anything other than 0 when the expected value is 0 (in fact, it returns

∞). Outlined in [220] are many alternative methods for measuring the distance

between two histograms. We will use, for two histograms of length n given by

h1, and h2, the following four methods of measuring the accuracy of our resulting

profiles, each of which probes a different aspect of the accuracy of the prediction:

• Manhattan Distance:

DM =
∑

j

|h1(j) − h2(j)|. (7.7)

• Euclidean Distance:

DE2 =
√∑

j

(h1(j) − h2(j))2. (7.8)
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• Kolmogorov-Smirnov Divergence:

DKS = max
j

|h1(j) − h2(j)|. (7.9)

• Pearson’s Correlation Coefficient:

DP =
Σj

(
h1(j) − 1

n

) (
h2(j) − 1

n

)
√∑

j

(
h1(j) − 1

n

)2∑
j

(
h2(j) − 1

n

)2
. (7.10)

These metrics, comparing the true and predicted beam profiles are displayed in

Table 7.3. For comparison, these metrics for a set of 2613 profiles which were

simulated with the magnet at 0.2T, suppressing the majority (but not all) of the

distortions is included as a benchmark.

Method DM(µ) DE2(µ) DKS(µ) DP (µ)
0.2T Magnet 100.2189 13.1476 4.4141 0.999 987

Linear Regression 91.1116 11.9112 3.9997 0.999 989
KRR 89.5337 11.7404 3.9513 0.999 989
MLP 89.2321 11.6961 3.9379 0.999 989

Table 7.3: Distance metrics between true and predicted profiles for each ML
method. In this case, the MLP was the best at reconstructing the full origi-
nal profiles even surpassing the accuracy of the 0.2T magnet.

This table suggests that using linear regression to reconstruct the profiles with

our simulated data is just as accurate, if not more so, than using a 0.2T magnet.

An example of one such reconstruction using each method, and compared to both

the distorted and original profile, can be found in Figure 7.3 where it can be seen

that on the scale of the distortions, the difference between the original profile and

the various reconstructions is negligible.

The study was performed with many other beam parameters and magnet

strengths all of which gave similar results and degrees of accuracy. In general,

regardless of the beam setup, using data generated in VIPM to predict the original

beam profiles or width gave accurate models. For example, the same pipeline was

run on a beam with the parameters found in Table 7.4 and the results obtained

(which can be found in Table 7.5 and Table 7.6 respectively) show similar results

to the first beam simulated.
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Figure 7.3: Example of a simulated profile, its distorted profile, and the recon-
struction generated from each ML method. Here the reconstructed profiles are
overlaid and do not show much difference.

Variable Value Simulated
Beam Particles Protons
Beam Width 3000-5500µm

Guiding Magnetic Field Strength 0.0-0.03T
Total Profiles simulated 10,560

Bin size 55µm
Particles per µm ∼545-1000

Table 7.4: Table showing beam parameters simulated in a second round of VIPM
simulations. Here the magnet varies from 0-0.03T and the beam width is wider,
at 3-5.5mm. Parameters not included in this table are the same as those found in
Table 7.1.

Method Residual Mean (µm) Residual Sigma (µm) NMSE Pearson’s R2

Linear Regression (predicting σ0) 131.3219 83.4145 0.046 93 0.976 310
Linear Regression (predicting y) 132.6185 84.8920 0.048 08 0.975 774

KRR (predicting σ0) 77.8011 49.2558 0.016 44 0.991 804
KRR (predicting y) 78.4334 49.6476 0.016 71 0.991 695
SVR (predicting σ0) 46.7781 55.5777 0.010 23 0.994 893
MLP (predicting σ0) 55.7733 44.2230 0.013 41 0.995 435
MLP (predicting y) 67.6684 51.8170 0.020 15 0.994 811

Table 7.5: Resulting scores for each model after the second round of simulations.
This time the best models are accurate to within ∼ 70µm, or 1.3-2.3% of the
original beam width.

In this second batch of simulations the data was binned into 55µm bins to

better match the acquisition system of the Timepix3 detectors used by the CERN

PS-BGI-82, and the number of particles per profile was reduced. However, varia-
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Method DM(µ) DE2(µ) DKS(µ) DP (µ)
0.2T Magnet (95 profiles) 175.8747 11.1870 2.1382 0.999 948

Linear Regression 601.2416 34.2943 4.9063 0.999 580
KRR 389.6027 22.7574 3.6003 0.999 817
MLP 337.8616 19.8724 3.3012 0.999 853

Table 7.6: Distance metrics between true and predicted profiles for each ML
method after the second round of simulations. Again the MLP is the best per-
former of the models, however in this case the 0.2T magnet has overtaken all
models.

tions in beam shape are not considered, as only Gaussian beams were simulated.

One variable the models were found to be sensitive to is the number of particles

per µm. Having profiles with a lower number of total particles introduces a form of

stochastic noise to the resulting profiles, something that machine learning has been

shown to struggle with [221]. When simulating 3 million particles, the resulting

profiles are very smooth, and this is not an issue; however, training on profiles with

5000 particles in total introduced a significant drop in the resulting accuracies.

Results similar to these were obtained in [194], where the authors attempted

to predict the beam width of a simulation of a typical LHC beam, and [195], where

the full profile was predicted, both with similar levels of accuracy as the results

presented here.

Ideally these models would be used to predict the true profiles of real data

recorded by the PS-BGI-82 however, both of these simulations were not calibrated

well to the true beam in the PS, and as such, the model was unable to accurately

predict the original beam width of recorded data when trained on these simulated

datasets. Instead, training on the real data itself yielded slightly better results.

7.7 Using Recorded Data

Measurements were performed on the horizontal PS-BGI-82 on the 5th of May

2022 over a period of 8 hours when a total of 171,540 profiles were recorded,

each with ∼5000 counts per profile, while the magnet ranged from 0.2-0.01T. A

summary of the chosen currents and the number of profiles recorded can be seen

in Table 7.7.
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Current Magnetic Field Number of Profiles Recorded
176.0 0.2T 44370
88.0 0.1T 29070
44.0 0.05T 24480
35.0 0.04T 32850
26.0 0.03T 35550
18.0 0.02T 4950
9.0 0.01T 270

Table 7.7: Chosen currents and the number of profiles recorded at each current
for the day of operation.

Unfortunately, as the PS-BGI-82 is the only horizontal IPM currently installed

in the PS, obtaining profiles at lower magnetic field strengths and recording the

true profile during ionisation simultaneously is impossible, meaning this dataset

is not fully labelled. In order to obtain a more ideal dataset one would need two

horizontal BGIs or another instrument capable of recording the beam width at a

similar rate to that of the BGI.

Instead, by exploiting the stability of the beam while cycling and measuring

the profile with and without the magnet it is possible to roughly match profiles to

the true width by their place within the cycle. As the beam circulates in the ring,

many profiles can be collected, each time the beam orbits the ring is known as a

turn, and the entire duration the beam is in the ring is known as a cycle. This

does make it impossible to match individual profiles to their true width; however,

by taking an average of each cycle’s width at 0.2T, we can find the mean beam

width of that profile in relation to its position in the cycle and map each profile

to that average expected true width. This converts our true regression problem

into a semi-classification problem, instead now mapping the distorted profile to

the width we would expect given its position in the cycle. However, in each case

we still trained regression models for this problem. The training data is shuffled,

and information on the profile’s place in the cycle is not fed to the model so we

are still attempting to build a model that can reconstruct beam widths of any

recorded profile. This dataset is clearly imperfect, many assumptions about the

beam being delivered are made; but this dataset is limited by available equipment.

Figure 7.4 shows the mean beam width at all 90 positions in the cycle, as well as
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the standard deviation of the sample for each position; two example profiles with

the magnet at 0.2 and 0.03T are shown for reference.
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Figure 7.4: Plot of the mean and standard deviation band of the beam width for
the given profile in the cycle. An example of the profile widths throughout one
super cycle with the magnet operating at 0.2T and 0.03T are shown in purple and
green respectively.

The mean beam widths are the target data and for each point, we have a

full profile recorded. In this example we would pair distorted profiles with the

matching width expected from the cycle and feed that data into the ML training

process.

As mentioned, this is an imperfect dataset, acting only as a proof of concept,

not a fully complete novel reconstruction method. The profiles are binned in 1024

55µm bins matching the 4 Timepix3 detectors installed on the BGI and as in the

second batch of simulations.

The results of training models in this way can be seen in Table 7.8.

Method Residual Mean (µm) Residual Sigma (µm) NMSE Pearson’s R2

Linear Regression 31.939 27.162 0.0102 0.994866
KRR 29.037 26.070 0.0089 0.995585
SVR 21.467 22.718 0.0057 0.997152
MLP 22.794 15.062 0.0043 0.999017

Table 7.8: Resulting metrics for each model configuration predicting σ0 using data
recorded from the CERN PS-BGI-82.

Again we see good agreement between predictions and labels, however in this
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case the labels for this dataset are not exact. By looking at the %RMS (also

known as the coefficient of variation - and defined as µ/σ) we aim to quantify

exactly how much they differ, and can see that over the 90 cycles this value ranges

from 1.53-2.30% and has a mean value of 1.82%.

The residuals reported here are slightly smaller than those recorded in the

comparative Table 7.5, likely owing to the averaging method used to create the

target values, resulting in a lower spread of final predictions. Logically this makes

sense, and we might assume that given a more accurate dataset, this reconstruction

method would reproduce results more similar to those found in Table 7.5.

Figure 7.5 shows each reconstruction method’s target and predicted beam

width. The banding in the x-axis shows the discrete nature of the targets thanks

to the average method used to generate labels.
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Figure 7.5: Plot of target vs predicted width for the various models trained. The
bands in x shows how the targets are discretised by the averaging method.

Applying models trained on simulated data to this dataset did not yield good

results. This is possibly due to the stochastic noise effect (so far, all simulated

profiles contained about 3 million particles, while these real ones only contain

5000), which the simulated models had not seen before, or potentially due to the

physical differences between simulation and reality, specifically the varying shape

of the beams. In an attempt to correct for this one final round of simulations was

run, specifically tuned to better match these profiles recorded from the BGI.
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7.7.1 Tuning Simulations

After collecting data from the PS-BGI-82, simulations can be tuned to better

match the data recorded.

After scanning the parameter space it was found that the beam parameters

reported in Table 7.9 were the best at reproducing the profiles seen in the PS-

BGI-82.

Variable Value Simulated
Energy 20GeV [217]

Beam Width 3000-5500µm
Guiding Magnetic Field Strength 0.02-0.03T

Bunch population 8e12 [217]
Total Particles simulated per profile (ppp) 5,000

Beam Height 4000µm
Beam Length 2ns

Total Profiles simulated 10,000
Particles per µm ∼1.6

Table 7.9: Table showing beam parameters simulated in VIPM for the third and
final round of simulations, tuned to better match the profiles recorded in the PS-
BGI-82. Parameters not included in this table are the same as those found in
Table 7.1. The most noticeable difference is the particles per µm, which is greatly
reduced in these simulations.

Plots comparing this simulated beam with the one recorded by the PS-BGI-82

at 0.2T and 0.02T can be found in Figure 7.6a, and Figure 7.6b respectively.

The results, when training and testing on this final simulated dataset for

each of the different ML methods, are summarised in Table 7.10 and Table 7.11

respectively.

There is a considerable drop in the accuracy of the models after this change,

likely as a result of the stochastic noise introduced into the profiles by dropping the

number of particles per profile. Further, attempting to apply the models trained

with this final simulated dataset to the real profiles recorded showed low accuracy.

Not having a truly accurate dataset with which to test these models on makes it

difficult to truly grade the precision accurately. As such, this is left as a project

for when a better dataset can be obtained.
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(a) An example of a profile recorded from the PS-BGI-82 with the
magnet operating at 0.2T, compared to a simulated profile.
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(b) An example of a profile recorded from the PS-BGI-82 with the
magnet operating at 0.02T, compared to a simulated profile.

Figure 7.6: Figure comparing the simulated beam with the real recorded beam
after tuning the simulation to match the recorded data better. In these plots the
BGI profiles have been shifted to match the mean of the simulated profile (x → x−
µ), and counts are normalised to the range [0, 1]. This image shows good agreement
between simulation and reality, especially regarding width. However, we also note
that the maximum height of the profiles varies; the simulation generally shows
more counts in the centre of the profile, while the real data shows more counts in
the fringes. We also see another challenge of collecting data using the PS-BGI-
82 that is not discussed in Figure 7.6b, where the last quarter of the profile is
not being read out due to a heating issue on one of the 4 Timepix3 detectors in
the readout system. Profiles like this need to be discarded prior to the training
process.

7.8 Improvements

As mentioned, this method of averaging the beam width over the cycle and using

that as a target variable (shown in Figure 7.4) is not ideal. It would be preferable

to have two operating BGIs capable of running at varying magnetic fields, or at

162



7.8. IMPROVEMENTS CHAPTER 7. IPM BEAM PROFILES

Method Residual Mean (µm) Residual Sigma (µm) NMSE Pearson’s R2

LR (predicting σ0) 490.39 374.70 0.735 0.519
LR (predicting y) 493.55 369.67 0.734 0.517

KRR (predicting σ0) 358.32 284.21 0.404 0.760
KRR (predicting y) 367.53 284.01 0.416 0.751
SVR (predicting σ0) 278.10 275.79 0.296 0.840
MLP (predicting σ0) 174.18 185.56 0.125 0.933
MLP (predicting y) 177.13 199.12 0.137 0.928

Table 7.10: Resulting scores for each model after the third and final round of
simulations, specifically tuned to match the beam seen in the PS-BGI-82. The
best models now have a mean residual of ∼ 175µm or ∼ 3 − 6% of the simulated
beam width.

Method DM(µ) DE2(µ) DKS(µ) DP (µ)
0.2T Magnet (1000 profiles) 5080.0945 332.5328 63.7164 0.956 580

Linear Regression 13 813.3001 1074.0703 318.4035 0.812 246
KRR 11 595.8992 864.8491 234.9934 0.860 495
MLP 4045.8963 263.2566 52.9423 0.973 416

Table 7.11: Distance metrics between true and predicted profiles for each ML
method after the third and final round of simulations, specifically tuned to match
the beam seen in the PS-BGI-82. This time, only an MLP could surpass the
accuracy of the magnet.

the very least another device capable of measuring the beam width in the PS.

This setup would allow the collection of a training dataset much more similar to

the simulated data, upon which the results were generally quite accurate.

Further, it would be advantageous to spend more time simulating the condi-

tions found in the PS-BGI using VIPM and to better generalise the models to

the problem. It has been shown that using simulated (or synthetic) data to train

models that apply to real-world problems can be a viable option [222], however in

general, simulations excel when one can simulate the behaviours of the system in

question with high fidelity and map the behaviour to the output for prediction;

ML excels in the case where we lack a quality simulation but have a lot of data

to create a general “black-box” solution. Usually, we either have one or the other

but not both. Newer so-called “hybrid” solutions that attempt to merge both

approaches do exist [223] but are not always applicable and were not explored due

to time constraints.

Another desirable trait would be to simulate different shapes of beams to feed

into the models. All the beams simulated were Gaussian in shape, and as such,
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the models had not been trained to reconstruct beams with different shapes which

might significantly drop their accuracy when applied to real data, as the beam is

not always Gaussian.

7.9 Conclusion

We have been able to reproduce results shown by Vilsmeier et al. [195, 216] and

demonstrate that for simulated beams of varying size, ML methods are generally

quite capable of reconstructing the original beam profile and width from distorted

profiles. We also took the first steps to applying these models on a real IPM, the

CERN PS-BGI-82. Although the hardware limits the data set we were able to

obtain; a proof-of-concept solution was deployed by mapping each profile to an

expected beam width resulting from the stability of the beam and the profile’s

placement within the cycle. The %RMS of the targets in this case is around 1.5-

2.3%; and despite this, the models show good levels of prediction ability, showing

promise for future applications. While these models are not ones that should

be deployed in their current state, the potential of the models trained in this

way should act as a proof of concept that the ideas previously shown to work on

simulated beams could translate over to real data if a more ideal dataset can be

obtained. To continue this study, it is necessary to collect a dataset where both

the true and distorted profiles are known. Doing so would require another IPM or

profile width monitor to be installed into the PS. Alternatively, any other ring that

already contains multiple beam width monitors is an ideal candidate to continue

this study.
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Chapter

8
Machine Learning for
ALPHA

The methods described in Chapter 6 and specifically Sec. 6.3 could be useful to the

ALPHA experiment in various ways. For example, the reconstruction algorithms

(described in Chapter 4) can be slow, and where there is a need for real time

information during operation this can be costly. The reconstruction algorithm

for the ALPHA-g detector can be up to 20 times slower than real time making

dynamic debugging during operation difficult, often forcing people to wait many

hours prior to seeing the results of a given experiment. This can be particularly

tedious during parameter sweeps. However, it may be possible to use a regression

model capable of predicting the vertex position from raw detector outputs to “skip”

the reconstruction step entirely and instead use this temporary result to tune on,

only using the fully reconstructed results when necessary. While attempts at that

have been made, nothing is yet accurate enough to be presented here.

Instead, we turn to the more vital use for ML at ALPHA: background event

rejection. As mentioned previously the ALPHA detectors are sensitive to the

passage of charged particles through their volume, however, only events resulting

from antimatter annihilations are of interest, and other events arising from various

sources are not useful for physics. There are a number of background processes

that can look similar to antihydrogen events all of which can obscure results; the

largest and most troublesome source of background events by far are cosmic ray

events, which are due to the constant flux of atmospheric muons.

8.1 Cosmic Ray Background

Cosmic rays are high energy particles originating from outside of Earth. As these

rays impact the Earth’s atmosphere they can generate a shower of secondary parti-

cles, some of which reach the surface (the majority are deflected by the atmosphere

or the Earth’s magnetic field).

When one of these charged particles or secondaries passes through the de-

tectors of the ALPHA experiment, we are, without further analysis, unable to

distinguish between these events and the antihydrogen events the detectors were
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designed to reconstruct. In experiments where sometimes < 50 antihydrogen

atoms are available at a time, these background events can result in errors on the

physics results, or at least reduce the statistical strength attributed to them.

The flux of these rays on the earth’s surface is quite well understood: they are

predominantly muons, have a mean energy of 4GeV, a mean rate of ∼ 1/cm2/60s,

and the angle of their incident is represented by a cos2 distribution [144]. As the

ALPHA detectors lay on the surface, have minimal shielding, and are relatively

large this mean rate represents a potentially huge source of background for the

ALPHA experiment. Further, since these events generally result in two tracks

passing directly through the detector (which is perfectly valid for the reconstruc-

tion algorithm to process), a vertex will often be generated despite there being no

true annihilation vertex.

Running the detectors during periods where no antiparticles in the machine

(known as a cosmic run) makes it possible to run the same detection and recon-

struction algorithms described in Chapter 4, giving information about the rates,

angle of incident, and topology of the cosmic background flux. The preferred

choice of background rejection deployed by ALPHA is some form of multi-variate

analysis (MVA), either rectangular cuts, or an ML binary classifier. The rectan-

gular cuts used for general online analysis within the SVD are described in detail

in [153] and will not be the further discussed in this thesis. Instead, ML models

designed to improve on these cuts for offline analysis will be explored.

8.1.1 Other Background Sources

As mentioned, there are other sources of background that result in trigger and

readout of the detector systems. It is important to note that in this context

background refers to any event causing the triggering and readout of the detector,

that does not come as a result of the specific experiment intended, which can

include other antiparticles. Signal refers to signals causing trigger and readout

coming as a direct result of the experiments conducted on the specific antimatter

sample. Examples of other sources of background include:

1. Detector noise causing a trigger readout. Tuning hardware triggers, and

thresholds may prevent these types of background from occurring; however
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in general these events seem rare, and do not generally result in a vertex.

2. H̄ annihilating on gas. This is discussed in more detail in Sec. 9.1.1, and

can become an issue for specific experiments that cause large volumes of

gas to be evaporated from the electrode surface where they are frozen (i.e.

microwave exposure).

3. Other beam operations at CERN such as injection into the AD, into ELENA,

or into ALPHA itself. This source can be easily cleared entirely by cutting

out all time windows where one of these events occurred for which we receive

various trigger signals.

In general however, the cosmic ray flux is dominant and as such the ML models

described in this chapter are specifically tailored to address this problem alone.

8.2 Selection Variables

Many different features or selection variables for distinguishing between signal and

background events have been trialled, and ultimately used, in both these MVA

methods. Most of which have been specifically designed to probe the topological

differences between antimatter annihilations, and cosmic rays (for example the

aforementioned angle of indecent, or the time of flight discussed in Sec. 4.4.2)

resulting in a group of robust and accurate selection variables to classify events

on.

Any cosmic rays that just graze the detector will not produce a vertex and

can be rejected quickly. However, when a cosmic ray passes through the centre

of the detector a vertex is often reconstructed. Fortunately, these distinctions in

their topology are often noticeable enough to classify events on an event-by-event

basis with ∼ 96% accuracy.

The variables chosen for this analysis differ slightly based on the experiment

(and therefore detector), however the following variables are applicable to both

detectors:

1. The number of hits: Nhits, either on the SVD for ALPHA-2, or on the pads

for ALPHA-g.
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2. The number of reconstructed/candidate tracks: NCT.

3. The number of used/good tracks: NGT. (For the distinction of candidate

and good tracks, see Sec. 4.2.1).

4. The ϕ component of the generalized sphericity tensor [224] [225] eigenvector:

v⃗ϕ. The generalized sphericity tensor represents the relative distribution

of particles in momentum space, and is often used to try to select events

with certain topologies. It is claimed that an event shape observable like

transverse sphericity is able to discriminate between jet-like events (cosmics

passing through the detector) and events that originate from within the

detector [226]. Detailed description of the calculation of this tensor can be

found in Appendix C.

5. The z component of the generalized sphericity tensor eigenvector: v⃗z.

6. The combination of the two largest eigenvalues of the generalized sphericity

tensor:
√
λ1 + λ2.

7. The minimum radius of all helices: rmin.

8. The mean radius of all helices: rmean.

9. The minimum pitch of all helices: λmin.

10. The mean pitch of all helices: λmean. (For details about radius and pitch of

helices in canonical form see Appendix A).

11. An integer sum of the sense of curvature of all tracks in the event: c±. (+1

for right curved tracks, and −1 for left curved tracks.)

We also define the following variables specific to the ALPHA-2 models:

1. The squared residual δ. For events with more than two helices we take each

pair of helices and fit a straight line to the six hits. After we have found the

set of six hits with the highest correlation coefficient, we then find the sum of

the residuals squared, where here the residual is defined as the perpendicular

distance from the point to the line. This final residual is known as the
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squared residual and denoted δ. While technically possible in ALPHA-g the

number of spacepoints involved in each helix made this variable error-prone

and therefore was abandoned for better performing variables.

2. The mean distance of closest approach between pairs of tracks: D. (Calcu-

lated from Equation 4.8). Again, though technically possible in ALPHA-g,

this variable was left out for better performing variables.

3. The r position of the resulting vertex. Both this and the ϕ position of

the vertex was left out of the ALPHA-g models to ensure no z bias was

introduced before these variables could be studied in more detail.

4. A 72 × 4 matrix: Σr representing the sum of signals recorded in each ASIC

(4) of each module (72).

These 14 high level variables (excluding Σr) are the standard for ML classification

in ALPHA-2 and have been used in various combinations to create models for the

detectors before. Each of these high level variables require the full reconstruction

algorithm to be computed for each event. The additional low level variable, Σr, is

the raw detector output representing the signal on all 288 ASICs during an event.

Use of this variable is limited only to NN architecture, and will not be used in the

standard classification models used to analyse physics results. However, the fact

that this input would skip entirely the reconstruction step makes it a desirable

input if an accurate model can be constructed using these variables. Details of

using this variable to build a model can be found in Chapter 10.

Finally, for ALPHA-g we include the following variables, generally only appli-

cable to the TPC and BV:

1. The vertex status: v. An integer describing an overall quantitative value of

the quality of the vertex fit. The value is based on specific markers such as

the error on the fits on the individual helices, the number of used helices etc.

2. The number of space points: Nsp. This is the number of space points recon-

structed from the time drift walk out of the hits on the pads (see Sec. 4.4.3).

3. The number of wire hits: NAW. This is the number of hits recorded on the

anode field wires surrounding the detector (see Sec. 4.4.3).
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4. The mean number of points per track: µppt. This is the mean number of

space points used to construct the tracks used for vertexing.

5. The mean χ2
r of all tracks used for vertexing: µχ. χ2

r is defined in Equa-

tion A.4.

6. The number of BV bars hit in the event: Nbars.

7. The number of ADCs registering hits in the event: NADC.

8. The number of end hits in the event: Nends. This is defined as individual

BV bar ends registering a hit (as they are read out from both ends, and not

every event causes signal on both ends).

9. The number of clusters of two or more consecutive bars in the BV, when

reading out each end of the bar separately: Nhalf−bar−clusters.

The resulting twenty high-level variables are used for classification in ALPHA-g

data during the 2022 experimental run. Due to time constraints the BV calibration

was incomplete at the time of the 2022 experimental run, and as such the time of

flight variables were not used in the resulting model. While this section will focus

on the model used in [17] the BV calibration has since been completed, and the

improvements to the resulting model are good but not dramatic.

8.3 Training Data

As discussed in Sec. 6.1 in order to perform any supervised ML training we require

a set of events, each labelled as either signal or background. To obtain a sample of

events for the background data set we operate the detector and collect data when

there are no antiparticles in the machine. With no antiparticles present during

these runs this dataset will consist of a 100% pure sample of events not occurring

as a result of any antihydrogen annihilation, but as a result of cosmic rays or

detector noise.

Conversely, the signal sample was collected during the mixing (Sec. 3.12) phase

of the experimental cycle, filtered to only include periods of high-rate particle

detection. By ensuring the detector is saturated, we are able to maximise the
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number of events in this sample resulting due to antihydrogen annihilation, and

minimise those events as a result of background processes. However, it is inevitable

that some of the events in this sample are background events.

In ALPHA-2, given the cosmic trigger rate of 9.603(50)Hz, and that the typical

rate seen during these high rate windows is 8495(6)Hz we estimate the cosmic

contamination to be 0.1130(6)%.

For ALPHA-g, the cosmic trigger rate is around six times higher at 58.95(6)Hz,

and during these high rate windows we see a trigger rate of 39470(40)Hz and

therefore estimate the cosmic contamination to be 0.1493(2)%.

Studies of the effect of intentionally adding cosmic events to the signal sample

are shown in Sec. 8.7.2, suggesting BDTs are not particularly sensitive to this.

8.4 Training a Binary Classifier for ALPHA-2

The previously described ML methods and data can be used to train a model for

binary classification designed to classify events into signal or background. Under-

standing the distribution of variables before beginning the training step is impor-

tant in order to verify and interpret the model in its context, as such we begin

with a detailed look at the variables, their distribution and correlations.

8.4.1 A Look at the Selection Variables

Looking at the separation histogram of a variable can give insight into whether a

chosen variable will have any power in discriminating between signal and back-

ground. By plotting the two datasets on the same axis we are able to see how

similarly distributed the samples are with respect to the chosen variable. Vari-

ables whose histogram shows two very distinct distributions will have a better

performance than one where background and signal are similarly distributed.

The separation histograms for all one-dimensional selection variables used in

the ALPHA-2 MVA are shown in Figure 8.1.

Another important property of a chosen variable is its correlation or “bias”

towards variables that the classifier must be independent of, for example z, and

in some cases r. Scatter plots between each variable and both z and r can be seen
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Figure 8.1: The separation histograms for each of fourteen selection variables
described in Sec. 8.2 and ϕ. All histograms are normalised. These histograms
show that variables such as

√
λ1 + λ2 are good at discriminating between signal

and background, while variables such as λmin are less powerful (though still show
some separation).

172



8.4. ALPHA-2 CHAPTER 8. ML FOR ALPHA

in Figure 8.2.
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Figure 8.2: 2D histograms of each selection variable against z and r for both signal
and background. None of these variables show any significant correlation with z
or r. Cuts on r in the range [0, 30], and on z in the range [−40, 40] are applied
to improve legibility (by removing large outliers) while retaining the majority
(99.975% on average) of samples.

We can quantify these observations by evaluating the separation of each vari-

173



8.4. ALPHA-2 CHAPTER 8. ML FOR ALPHA

able, and the Pearson correlation coefficient (PCC - denoted ρ1) between r, or

z and the signal, or background samples. The separation ⟨S2⟩ of a variable v is

defined as [227]

⟨S2⟩ = 1
2

∫ (vS − vB)2

vS + vB

dy (8.1)

where yS and yB are the PDFs of the variable y in the signal and background

samples respectively. The separation is 0 for identical signal and background

shapes, and 1 for shapes with no overlap. In cases where the true PDF is unknown

the integral in Equation 8.1 can be approximated numerically using histograms of

the variable’s distribution such as those found in Figure 8.1. A table showing the

separation, and both the signal and background samples correlation with z and r

are shown in Table 8.1.

Variable ρr
B ρr

S ρz
B ρz

S ⟨S2⟩
√
λ1 + λ2 -0.157 0.151 0.023 -0.001 0.766
δ 0.208 0.155 -0.001 0.039 0.527

Nhits 0.131 0.171 -0.005 0.015 0.467
NCT 0.047 -0.002 0.001 0.008 0.454
r 1.000 1.000 0.029 0.049 0.352

rmean 0.136 0.287 -0.020 0.037 0.287
v⃗ϕ -0.012 0.001 0.006 -0.001 0.145
D 0.110 0.373 0.010 0.073 0.135

λmean 0.030 0.016 -0.010 0.047 0.128
NGT 0.065 0.176 0.001 0.018 0.114
rmin 0.025 0.091 -0.027 0.015 0.098
c± 0.048 0.008 0.151 0.001 0.051
v⃗z 0.006 -0.002 0.002 0.001 0.025
λmin -0.000 -0.011 -0.010 0.042 0.013
ϕ 0.052 -0.018 -0.013 0.009 0.009

Table 8.1: Table displaying the correlation of each variable with r, and z in both
the signal and background samples; and the separation of each variable. ρ

r(z)
B(S)

denotes the correlation of the background (signal) sample with respect to r (z).
Table is sorted in descending order of the separation.

The variable Σr is multidimensional and therefore not displayed in either plots

or table. While this variable has been used in the training of a specific model

described in Chapter 10 it will not be discussed in this chapter.
1Generally, ρ is usually used to denote the correlation of the population, and r is used for

samples; however in order to avoid confusion with the selection variables r, rmin etc. ρ will be
used throughout this chapter.
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Further, though not necessarily vital, is a look at the correlation between each

variable, this “correlation matrix” is good for ensuring that variables do not probe

the same aspect of the event. Variables that are entirely orthogonal are preferred.

Plots of the correlation matrices for both the signal and background data samples

can be found in Figure 8.3.

Cosmic

S
ig
n
al

Figure 8.3: Correlation matrices between all fourteen high level variables, sepa-
rated into signal (right) and background (left) datasets.

The plot shows that the chosen variables are generally completely orthogonal,

and no two variables are too strongly correlated. The highest correlation exists

between NCT and NGT, with 83% and 99% correlation in signal, and background

samples respectively. Though this is quite high, and a case could be made for

excluding this variable, the slight difference between signal and background does

hold some discriminating power and for this reason it was kept. All data was

collected using the a2dumper.exe (described in Appendix B), a program built

to perform the reconstruction algorithm described in Sec. 4.2.1 while saving specific

pre-defined variables into a .root file (utilising the tree/branch structure that is

standard for ROOT I/O [167]) for analysis and model training.
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8.4.2 Model Architectures

In order to ensure the best possible model is trained, many different binary clas-

sifier architectures were trialled. All models were either trained using ROOT’s

TMVA package [227], or Python’s scikit-learn [218] and a table of each

trained model’s details can be found in Table 8.4.2.

Table 8.2: Table describing the models trained.

Model Type Model Name Package Variables Description

BDT BDT_WithR ROOT::TMVA All 14 high level variables.

Uses 850 trees, adaptive boost,

a maximum depth of 3, a min

node size of 2.5%.

KNN KNN scikit-learn All 14 high level variables
Using Euclidean distance with

k=20.

SVM SVM_Linear scikit-learn All 14 high level variables Linear kernel (see Sec. 6.3.3).

SVM SVM_Poly scikit-learn All 14 high level variables
Polynomial kernel of degree 2

(see Sec. 6.3.3).

SVM SVM_RBF scikit-learn All 14 high level variables RBF kernel (see Sec. 6.3.3).

BDT BDT_NoR ROOT::TMVA
All 14 high level variables,

except r

Uses 850 trees, adaptive boost,

a maximum depth of 3, a min

node size of 2.5%.

The parameters of the models themselves (such as number of trees in a BDT,

distance metric in KNN) are known as hyperparameters and, where computation-

ally feasible, a grid search was performed over these variables to select the best

performing hyperparameters for the given model. Only the grid search of the

resulting best performer is displayed within this chapter, in Sec. 8.7.1.

In all models the data is normalised to [−1, 1] prior to training, and events

which do not reconstruct a vertex are excluded.

8.4.3 Results

Using the various evaluation metrics described in Sec. 6.5.1 we are able to quan-

titatively compare the performance of each model against one another. Table 8.3

presents the accuracy, F1 score, area under ROC curve, and signal efficiency at

1% background for each of the models described in Table 8.4.2.

Further, the ROC curve for each of the models can be seen in Figure 8.4.

These results show that for classification purposes the BDT, utilising all avail-

able high level variables (BDT_WithR) is the best performer.
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Model Accuracy F1 Score AUC (ROC) Signal Efficiency
at 1% Background

BDT_WithR 0.9623 0.9469 0.9943 0.8894
KNN 0.9505 0.9296 0.9862 0.7915

Linear SVM 0.9459 0.9218 0.9776 0.7055
Polynomial SVM 0.9526 0.9321 0.9853 0.8039

RBF SVM 0.9541 0.9343 0.9865 0.8228
BDT_NoR 0.9534 0.9345 0.9912 0.8035

Table 8.3: Metrics for each trained model. Details of each of these metrics can be
found in Sec. 6.5.1.
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Figure 8.4: ROC curves for each model described in Table 8.4.2.

While the model BDT_NoR is able to keep up with BDT_WithR initially, as

the false positive rate (and therefore background rate) decreases, its performance

starts to decrease rapidly. This shows that while possible, choosing to exclude
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r as a variable does come at a cost. For each of the individual trees that make

up the BDTs we can plot the trees final weight, and the error fraction, found in

Figure 8.5a and Figure 8.5b for WithR and NoR respectively. These are sometimes

referred to as the control plots and show the effect of AdaBoost.
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(a) The tree weight and error fraction
for each of the 850 individual trees
making up the WithR model.
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(b) The tree weight and error frac-
tion for each of the 850 individual trees
making up the NoR model.

Figure 8.5: Control plots for the BDT_WithR and BDT_NoR models. We can see
here that the first tree is roughly 93% accurate alone. However, as each iteration
of AdaBoost re-weights the training samples, more weight is put on the events
that are “harder” to classify. This results in the error fraction approaching 50%
and the tree weight approaching 0. We also see the curve flattening out, which
is a suggestion no more trees are needed or else overfitting could occur, and to
potentially see if reducing the number of trees is possible.

Further a histogram of the response of both the BDT_WithR and BDT_NoR

models can be seen in Figure 8.6a and Figure 8.6b respectively.

In these plots the training and test data set is superimposed to check for

overfitting (these two histograms will diverge if the model is over-fit to the training

set), and they show good general separation between the populations suggesting

they are good performers and show no signs of overfitting.

Overall the models trained using the described methods show a good degree

of accuracy and no signs of overfitting or bias. These models have been internally

commissioned, and are to be used in the analysis of the multiple papers ALPHA

is planning to submit from the 2023/2024 experimental season.
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(a) Histogram of WithR model re-
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dataset. These two histograms show
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Figure 8.6: BDT responses for both the WithR and NoR models.

8.5 Training a Binary Classifier for ALPHA-g

The ALPHA-g experiment requires a binary classifier for signal and background,

much like ALPHA-2, and this chapter describes the model that was trained for the

2022 physics run, and initially introduced in [17]. This model marks the first time

an ML model designed to operate on the newly commissioned ALPHA-g TPC

has been trained and used; and, though the model was used and reviewed for

publication [17], additional details beyond those found in the paper are presented

here.

8.5.1 A Look at the Selection Variables

As described in Sec. 8.4.1, it is important to look at the separation histograms and

correlations of the selection variables prior to training. Of particular importance

to models trained for ALPHA-g is the elimination of bias in relation to the detector

axis, z. The results presented in [17] depend upon the general z direction of the

vertices, and it is therefore important not to introduce a bias in the z direction

during the MVA stage of the analysis.

Figure 8.7 shows the separation histograms of all twenty variables used for the

model in [17], and Figure 8.8 shows the correlation of these variables with respect

to r and z separated into signal and background.

179



8.5. ALPHA-G CHAPTER 8. ML FOR ALPHA

0 1 2 3
v

0.0

0.2

0.4

0.6

0.8

1.0

C
ou
nt
s
(A

.U
.)

Separation Histogram for v

0 50 100 150 200
Nbars

0.000

0.025

0.050

0.075

0.100

0.125

0.150

C
ou
nt
s
(A

.U
.)

Separation Histogram for Nbars

0 100 200
µppt

0.000

0.005

0.010

0.015

0.020

0.025

0.030

C
ou
nt
s
(A

.U
.)

Separation Histogram for µppt

0 100 200
µχ

0.00

0.05

0.10

0.15

0.20

0.25

C
ou
nt
s
(A

.U
.)

Separation Histogram for µχ

0 10 20 30
NCT

0.0

0.2

0.4

0.6

0.8

1.0

C
ou
nt
s
(A

.U
.)

Separation Histogram for NCT

0.00 0.25 0.50 0.75 1.00√
λ1 + λ2

0

20

40

60

C
ou
nt
s
(A

.U
.)

Separation Histogram for
√
λ1 + λ2

−1.0 −0.5 0.0 0.5 1.0
~vz

0.0

0.2

0.4

0.6

0.8

1.0

C
ou
nt
s
(A

.U
.)

Separation Histogram for ~vz

0 1 2 3
~vφ

0.0

0.1

0.2

0.3

C
ou
nt
s
(A

.U
.)

Separation Histogram for ~vφ

0 2 4 6
NGT

0.0

0.2

0.4

0.6

0.8

1.0

C
ou
nt
s
(A

.U
.)

Separation Histogram for NGT

0.000 0.002 0.004 0.006 0.008
rmin (mm)

0

2000

4000

6000

8000

10000

C
ou
nt
s
(A

.U
.)

Separation Histogram for rmin

0.0000 0.0025 0.0050 0.0075
rmean (mm)

0

1000

2000

3000

4000

5000

C
ou
nt
s
(A

.U
.)

Separation Histogram for rmean

0 2 4 6 8
λmin

0.0

0.5

1.0

1.5

C
ou
nt
s
(A

.U
.)

Separation Histogram for λmin

0 2 4 6 8
λmean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ou
nt
s
(A

.U
.)

Separation Histogram for λmean

−5.0 −2.5 0.0 2.5 5.0
c±

0.0

0.2

0.4

0.6

0.8

C
ou
nt
s
(A

.U
.)

Separation Histogram for c±

0 2000 4000
Nsp

0.000

0.002

0.004

0.006

0.008

C
ou
nt
s
(A

.U
.)

Separation Histogram for Nsp

0 10000 20000
Nhits

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

C
ou
nt
s
(A

.U
.)

Separation Histogram for Nhits

0 2000 4000
NAW

0.000

0.002

0.004

0.006

0.008

C
ou
nt
s
(A

.U
.)

Separation Histogram for NAW

0 50 100 150
Nends

0.00

0.05

0.10

0.15

0.20

0.25

C
ou
nt
s
(A

.U
.)

Separation Histogram for Nends

0 50 100 150
NADC

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
ou
nt
s
(A

.U
.)

Separation Histogram for NADC

0 5 10 15
Nhalf−bar−clusters

0.0

0.2

0.4

0.6

0.8

C
ou
nt
s
(A

.U
.)

Separation Histogram for Nhalf−bar−clusters

Background

Signal

Figure 8.7: The separation histograms for each of twenty selection variables. All
histograms are normalised. These histograms show that variables such as

√
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are good at discriminating between signal and background, while variables such
as λmin are less powerful (though still show some separation).
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Figure 8.8: 2D histograms of each selection variable against z and r for both signal
and background. No variables show significant correlation with z or r. Cuts on r
in the range [0, 100], and on z in the range [−1500, 1500] are applied to improve
legibility (by removing large outliers) while retaining the majority (99.158% on
average) of samples.
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The table quantifying these correlations and separations can be found in Ta-

ble 8.4.

Variable ρr
B ρr

S ρz
B ρz

S ⟨S2⟩
√
λ1 + λ2 -0.003 0.003 -0.014 0.026 0.735

Nhalf−bar−clusters -0.001 -0.003 -0.012 -0.030 0.691
Nends -0.001 -0.002 -0.005 -0.013 0.616
Nbars 0.001 0.000 -0.042 -0.032 0.496
NADC 0.001 0.000 -0.012 -0.018 0.489
NCT -0.001 -0.001 0.010 0.019 0.470
v -0.001 -0.003 0.009 -0.004 0.469

NAW -0.001 0.000 0.032 0.026 0.379
Nhits -0.002 -0.001 0.030 0.033 0.342
Nsp -0.001 0.000 0.031 0.030 0.342
λmin -0.007 -0.006 -0.002 0.056 0.325
µχ -0.001 0.001 0.008 0.002 0.195
v⃗z -0.000 -0.000 0.031 -0.001 0.190
c± 0.002 -0.001 -0.013 -0.004 0.139
λmean -0.006 -0.006 0.002 0.039 0.134
rmean -0.003 -0.003 0.005 0.013 0.099
µppt -0.002 0.001 0.036 0.042 0.063
NGT -0.000 -0.002 0.004 0.000 0.037
rmin -0.001 -0.001 0.005 0.021 0.037
v⃗ϕ 0.000 0.004 0.011 0.001 0.001

Table 8.4: The correlation of each variable with r, and z in both the signal and
background samples; and the separation of each variable. ρr(z)

B(S) denotes the corre-
lation of the background (signal) sample with respect to r (z). The table is sorted
in descending order of the separation.

Further Figure 8.9 shows the cross correlation between variables, showing a

good range of orthogonal variables, unsurprisingly Nsp, Nhits, NAW are strongly

correlated with one another, one or two could be dropped in future models for

ALPHA-g, though this should be validated first.

8.5.2 Model Architectures

The models trained for ALPHA-g mimic those trained for ALPHA-2, and a table

of the models can be seen in Table 8.5.2.

Table 8.5: Table describing the models trained.

Model Type Model Name Package Variables Description

Continued on next page
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Cosmic

S
ig
n
al

Figure 8.9: Correlation matrices between all twenty high level variables, separated
into background (left) and signal (right) datasets.

Table 8.5: Table describing the models trained. (Continued)

BDT BDT ROOT::TMVA All 20 high level variables.

Uses 850 trees, adaptive boost,

a maximum depth of 3, a min

node size of 2.5%.

KNN KNN scikit-learn All 20 high level variables
Using Euclidean distance with

k=20.

SVM SVM_Linear scikit-learn All 20 high level variables Linear kernel (see Sec. 6.3.3).

SVM SVM_Poly scikit-learn All 20 high level variables
Polynomial kernel of degree 2

(see Sec. 6.3.3).

SVM SVM_RBF scikit-learn All 20 high level variables RBF kernel (see Sec. 6.3.3).

In this case all models used all twenty available variables.

8.5.3 Results

Using the previously described evaluation metrics (Sec. 6.5.1) we are able to quan-

titatively compare the performance of each model against one another. Table 8.6

presents the accuracy, F1 score, area under ROC curve, and signal efficiency at

1% background for each of the models described in Table 8.5.2.

The ROC curves themselves can be seen in Figure 8.10.

The BDT is the best performer here similarly to ALPHA-2, outperforming all
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Model Accuracy F1 Score AUC (ROC) Signal Efficiency
at 1% Background

BDT 0.9591 0.9465 0.9912 0.8329
KNN 0.9558 0.9420 0.9865 0.7603

Linear SVM 0.9442 0.9261 0.9808 0.6907
Polynomial SVM 0.9513 0.9362 0.9865 0.7633

RBF SVM 0.9534 0.9390 0.9877 0.7817

Table 8.6: Various metrics for each model trained. Details of each of these metrics
can be found in Sec. 6.5.1.
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Figure 8.10: ROC curves for each model described in Table 8.5.2.

other models in all regions of the ROC curve (high signal, and low background re-

gions). Figure 8.11a shows the BDT response for the ALPHA-g BDT model, which

shows the familiar separated histograms corresponding to an accurate model, and
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a good agreement in these distributions between training and test data suggest the

model was not overfit. The control plots for this model can be seen in Figure 8.11b.
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(a) Histogram of the ALPHA-g
model’s response on both the train-
ing and test dataset. These two
histograms show good separation,
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making up the resulting BDT in the
ALPHA-g model.

Figure 8.11: The control plot, and BDT response histogram for the ALPHA-g
model.

These results suggest the model is accurate, and capable of filtering events

effectively. There is no evidence the model was over fit to the training data or has

any bias towards a particular z direction.

8.6 Cuts Placement

Given a model with a variable signal efficiency and background rate, (i.e. any

model which has an associated ROC curve), the question of where to place the

cut on the curve is as important as choosing the model itself. The signal efficiency

should be maximised while keeping the background rate as low as possible, however

in some cases a lower background is more important, whereas in others a higher

signal is more important. In order to formalise the choice of cut, to eliminate bias

in its selection, and to state its sensitivity, an appropriate figure-of-merit (FOM)

is chosen to be maximised, resulting in the final cut for analysis.

Classically, this is done via hypothesis testing, a default hypothesis (null hy-

pothesis, denoted H0), should be accepted or rejected in favour of a new theory

Hf (f generally indicates the free parameters of the theory, i.e. laser/microwave
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frequency).

Consider a simple counting experiment, where we record n counts in a given

window and would like to know if the number of counts are a result of the back-

ground or some process, such as atom ionisation.

The null hypothesis in this case is that the number of observed counts, n, is

consistent with the Poisson distribution of mean B, while Hf is the hypothesis

that the number of counts in this window is a Poisson with a mean larger than

B, instead B + Sf where Sf is the contribution of signal events as a result of the

experiment.

Assuming we know B (by taking a background measurement) we then have

p(n|H0) = e−BBn

n! (8.2)

p(n|Hf ) = e−(B+Sf )(B + Sf )n

n! (8.3)

and we would like to know the minimum number of counts we need (nmin) in order

to accept Hf over H0, and the associated significance, α, of said test where α is

the probability of falsely rejecting H0 when it is true.

Given that the number of signal and background events are functions of the

chosen cut c, that is S = S(c), and B = B(c), then the optimisation of the cut is

generally done with one of the following two FOMs:

S(c)√
B(c)

(8.4)

also known as the discovery FOM, and

S(c)√
B(c) + S(c)

(8.5)

also known as the measurement FOM. These equations are considered “significance-

like” [228] as they do not exactly measure the significance but more so describe

the relative uncertainty.

It can also be seen that though Equation 8.4 is independent of the cross-section

of the process (unlike Equation 8.5) it breaks down as B → 0 (note that it would
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favour a cut that accepts 0.1 signal events to 10−5 background over 10 signal to 1

background).

As such, following Punzi [228] we can derive a different FOM (known now as

the Punzi FOM ) which is independent of these issues.

By making a Gaussian approximation of the Poisson distribution, we see that

the optimum cut is found by maximising the equation

ϵ(c)
a/2 +

√
B(c)

(8.6)

where ϵ(c) is the signal efficiency of the cut c, and a is the number of sigma corre-

sponding to a two-sided Gaussian test of significance α. This FOM is independent

of the cross-section of the process, and does not break down as B → 0 making it

generally a more practical choice for cut selection than the others.

In cases where the cross-section or number of signal events, S, can be estimated

from either well-informed simulations, or other detector channels; and where there

is significant signal expected over background: optimising either Equation 8.4 or

Equation 8.5 will suffice, however it is generally preferable to use Equation 8.6.

A plot of the Punzi FOM for various bin lengths (and therefore background

counts), along with the corresponding optimum cut can be seen in Figure 8.12a. A

plot of the discovery FOM, used for the ALPHA-g cut, can be seen Figure 8.12b.

8.7 Systematic Studies

Many important systematic studies are required to ensure the robustness of our

chosen model to data analysis. As the BDT was found to be the best performer we

will focus on only that model, and since these studies should equally be applicable

to both ALPHA-2 and ALPHA-g this section will only describe the ALPHA-2

model.

8.7.1 Grid Search

The hyperparameters of a model can greatly effect the resulting performance of

the model, as discussed in Chapter 6.
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(a) Punzi FOM for various bin widths in the ALPHA-2 BDT_WithR model, the cor-
responding optimum cut value is also shown.
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(b) Discovery FOM for various numbers of signal and background denoted (S, B) in the
ALPHA-g BDT model, the corresponding optimum cut value is also shown. These three
models are referred to as “Ideal”, “Low Background”, and “Ultra-Low Background” and
make up the three cuts used day-to-day in ALPHA-g. “Ideal” was chosen for the paper,
optimising for 1 count of signal in a period of 8 seconds.

Figure 8.12: Various FOMs for both ALPHA-2 and ALPHA-g models.
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As such a grid-search is often deployed where many different models are

trained, varying the hyperparameters of the model and converging to a final op-

timum choice. The parameters swept and resulting signal efficiency at 1% back-

ground for the ALPHA-2 BDT are displayed in Table 8.7.

Variable Range Tested Results
Number of Trees [300,500,850,1000] [0.882, 0.8867, 0.8894, 0.8902]

Minimum Node Size [1%, 2.5%, 5%, 10%] [0.8912, 0.8894, 0.8855, 0.8763]
Maximum Node Depth [2,3,5,10] [0.8801, 0.8894, 0.894, 0.8947]

Ada Boost Beta [0.2, 0.5, 0.6, 0.9] [0.8865, 0.8894, 0.889, 0.8817]
Bagged Fraction [0.2, 0.5, 0.6, 0.9] [0.885, 0.8894, 0.8895, 0.8889]

Table 8.7: Variables used while searching for optimum hyperparameters in
ALPHA-2. Bold entries indicate the default value from where the sweeps were
performed. A true grid search would try all combinations of these parameters,
but the above grid search alone would require 1024 models and as such linear
sweeps over individual parameters were favoured instead. The results column
shows the signal efficiency at 1% background for each of the models.

These results suggest the model hyperparameters are at a stable plateau, and

improvements on the default model are marginal. They all stem from minimal

modifications and pose the risk of overtraining (more trees, smaller nodes); there-

fore, we decide to remain with the default model.

8.7.2 Introducing Cosmic Contamination

We are able to quantify the effect of our roughly 0.11% cosmic contamination

within the dataset by intentionally introducing cosmic contamination. To measure

this we intentionally trained a BDT with certain amounts of incorrectly labelled

data to mimic the effect of the cosmic contamination. We limited the number of

signal training events to 300,000 and intentionally changed the percentage of this

sample to be cosmic. A cosmic introduction of 50%, corresponds to 150,000 true

signal events, and 150,000 true background events being combined into a single

dataset and labelled signal prior to training. We used a further 300,000 signal

events for testing, and 570,000 cosmic events for both the training and testing

background datasets. The model accuracy, and signal efficiency at 1% background

as cosmic contamination is gradually increased can be seen in Figure 8.13
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Figure 8.13: The effect of intentionally introducing cosmic data mislabelled as
signal to the training step. Interestingly the models performed poorly on the
mislabelled training data, but well on the testing data. Suggesting the model was
able to ignore the labels and find good cuts regardless.

These results suggest that the BDT is not particularly sensitive to contami-

nation until the curve approaches very low numbers of signal events as compared

to background. This is potentially due to how far away the events are in feature

space, meaning that despite the mislabelled data and poor performance on test

data, it is still able to find meaningful relationships/cuts in the data.

8.8 Conclusion

In conclusion it has been shown that BDTs are the most accurate performers for

the classification of background and signal events for the ALPHA experiment given

the high level variables generally used. The first model trained on data from the

ALPHA-g detector, used to generate results in [17] was presented, and it’s lack of

z bias and overfitting was shown. The model is ∼ 96% accurate, and has a signal

efficiency of ∼ 83% when the background rate is reduced to 1%. The models

trained for the 2023/2024 experimental run on the SVD have been presented,

offering the first in-depth look at the ML procedures at ALPHA. We have tested
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the parameter space for trained models, and it showed the default choices are at,

or near, a local peak suggesting there is not much room for improvement with

hyperparameter scans alone. Finally, it has been attempted to quantify the effect

of cosmic contamination in classification models, and they are shown to be quite

robust against this, likely owing to how far away events sit in parameter space.
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Chapter

9 Analysis & Results

Once the best performing model has been found, and the optimum cut chosen

using the methods in Sec. 8.6, the final step in the detection and reconstruction

chain is to analyse the data with the chosen model, applying the cut and rejecting

events that do not pass.

This chapter will show the performance of the best performing ALPHA-2 and

ALPHA-g models applied to a final validation data set containing data taken from

the SVD during the 2023-2024 experimental runs, showing the difference in the

cosmic pass cut rate, and the signal efficiency before and after its application; and

the TPC during the 2022 experimental run.

9.1 Validating Models

In order to provide an unbiased evaluation of the final model we use a set of data

the model has not seen during the training and testing process. This final set is

known as the validation set.

9.1.1 ALPHA-2 Model(s)

The best performing model found for use in ALPHA-2 was the boosted decision

tree including r, known as BDT_WithR. There is a purpose to the model without

r, and this will be discussed and presented briefly in Sec. 9.1.1. The BDT_WithR

model however is to be used to analyse results where r sensitivity is not important,

i.e. where we do not expect significant background from annihilations on residual

gas. The two most important properties of a given MVA is the background rejec-

tion efficiency (and subsequent cosmic pass cut rate), and the signal efficiency. To

ensure we do not introduce any z bias to the model we look at the z distribution

between data with and without the cut.

Background Rejection

The SVD has a cosmic trigger rate of 9.603(50)Hz, roughly 57% of which are

reconstructed to vertices, giving a cosmic vertex rate of 5.467(16)Hz. The BDT
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model trained in Sec. 8.4 (labelled BDT_WithR) operating at a cut value of 0.142

- chosen by optimising the Punzi FOM (Equation 8.6) for 18s windows1 - is able

to reduce this background rate to 29.68(12)mHz. This new rate is over 180 times

lower than without the ML model. A plot comparing the z− t distributions of all

vertices reconstructed during a single 5hr53m cosmic run with and without the

MVA cut is shown in Figure 9.1.
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(a) 21187s of cosmic data taken with
the SVD. The total number of recon-
structed vertices is 118,528 - giving a
cosmic rate of 5.59(2)Hz.
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(b) 21187s of cosmic data taken with
the SVD filtered to only include events
that pass the machine learning cut.
The total number of cosmic events that
pass the cut is 629 - giving a cos-
mic rate of 29.68(12)mHz. This cor-
responds to a rejection of 99.469% of
cosmic events.

Figure 9.1: A 2D histogram of a) all reconstructed vertices; and b) all recon-
structed vertices that passed the ML cut during 5h53m of pure cosmic data. Each
bin is 0.8cm wide in z and ∼ 106s long in t.

This reduction in cosmic rate corresponds to a successful rejection of 99.469%

of cosmic events and is a significant improvement on the detector performance.

However, while this cosmic background suppression is important for improving the

performance of the SVD, any model that reduces the cosmic background, must

maintain high signal efficiency to be usable. The trade-off between signal efficiency

and background rejection is a heavily discussed topic in commissioning ALPHA

models.
118s windows were used for two experiments this year and as such this is chosen as the cut

value for the validation set in this chapter.

194



9.1. VALIDATING MODELS CHAPTER 9. ANALYSIS & RESULTS

Signal Efficiency

The signal efficiency of the SVD with no cuts is roughly 88%, however, this would

correspond with a cosmic pass cut rate of 5.467(16)Hz, which is too high. The

data sample collected for training ML models (and described in Sec. 8.3) is close

to pure. By using data generated in the same fashion we can evaluate the signal

efficiency of the chosen cut. Again using the BDT_WithR model operating at a

cut value of 0.142 we find that of the 182,291 vertices reconstructed during 347.8s

of these saturated windows, a total of 145,832 vertices pass the MVA cut. This

gives a signal efficiency of 79.8(3)% compared to total vertices. A plot comparing

the z − t distributions of all vertices reconstructed during the 347.8s of windows

where the detector is sufficiently saturated both with and without the MVA cut

can be seen in Figure 9.2.
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(a) 347.8s of close to pure antimatter
annihilation data taken with the SVD.
The total number of reconstructed ver-
tices is 182,291.
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(b) 347.8s of close to pure antimatter
annihilation data taken with the SVD
filtered to only include events that pass
the ML cut. The total number of signal
events that pass the cut is 145,832 -
giving a signal efficiency of 79.8(3)%.

Figure 9.2: A 2D histogram of a) all reconstructed vertices; and b) all recon-
structed vertices that passed the ML cut in 347.8s of near-pure signal. Each bin
is 0.8cm wide in z and ∼ 0.25ms long in t.

The reduction of the background by over 180 times was deemed more desirable

for the ALPHA experiment than maintaining roughly 10% of the signal and this

model marks one of the best performing models produced for the SVD to date.

For comparison, the standard pass cuts without the ML (described in [153]) have a
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cosmic pass cut of 58(2)mHz, and a signal efficiency of 76.1(3) i.e. roughly double

the background for less signal. Further the cuts are fixed rectangular cuts, meaning

that one cannot change dynamically the signal efficiency and cosmic acceptance

rate by moving the threshold along the ROC curve in order to tailor cuts to the

chosen measurement.

z-Bias

To ensure there is no z-bias introduced by applying the MVA we can compare

histograms of the z distribution of both cosmic and signal data before and after

applying the MVA cut. Figure 9.3a shows the z distribution of cosmic events for all

vertex events, and those events that pass the MVA cut overlaid. Figure 9.3b shows

the same distribution for the signal dataset. Further, Figure 9.3c and Figure 9.3d

show Q-Q plots of both these distributions.

By looking at these plots we can see there is no significant change to the z

distributions as a result of applying this ML cut. Coupled with Table 8.1 and

Figure 8.2 we can conclude that no z bias is introduced by applying the model.

While this is not as vital in ALPHA-2 as compared to ALPHA-g due to the

nature of the gravity experiment (which relies on z positions), it is still important

to deploy a model that is not biased, especially since the signal data set has a

strong z bias as can be seen from Figure 9.3b.

r-Bias

Much like the previous section we can also compare the changes in the r distribu-

tions as a result of applying the cut.

Figure 9.4a shows the r distribution for cosmic data before and after the MVA

cut, and Figure 9.4b shows the same distributions for the signal dataset. Q-Q

plots for these distributions can be found in Figure 9.4c and Figure 9.4d.

The plots show there is a significant difference between the r distributions,

which makes sense since the BDT_WithR model uses r as one of its selection

variables. This difference in distributions is not necessarily a bad thing, r can be

a powerful selection variable; and the reason for that makes intuitive sense. As the

r coordinate of signal events will be on the trap wall (roughly at r = 2.5cm), while
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(a) z distributions of all vertices, and
those that pass the MVA cut for cosmic
data sample.
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(b) z distributions of all vertices, and
those that pass the MVA cut for signal
data sample.
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(c) Q-Q plot of z distributions before
and after cut, on cosmic data (R2 =
0.9912).
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(d) Q-Q plot of z distributions before
and after cut, on signal data (R2 =
0.9795).

Figure 9.3: Histograms comparing the z-distributions of samples of cosmic and
signal data, both before and after applying the MVA cut. Below those sit Q-Q
plots for each pair of distributions.

cosmic events could come from anywhere in the trap therefore by removing events

with r > 2.5 we can potentially filter some cosmic events (detector reconstruction

smearing effects notwithstanding). However, by adding this variable to the model

we lose the ability to discriminate this ourselves and control the variable exactly.

This is important in experiments where we want to place strict cuts on r, and

want to better understand the r dependence of our results. One such experiment

uses microwaves to probe the antihydrogen hyperfine splitting. When microwaves

are injected into the trap, they cause heating on the electrode surfaces. This can

cause ice which has formed on the wall due to bad vacuum to melt, and be ejected
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(a) r distributions of all vertices, and
those that pass the MVA cut for cosmic
data sample.
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(b) r distributions of all vertices, and
those that pass the MVA cut for signal
data sample.
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(c) Q-Q plot of r distributions before
and after cut, on cosmic data (R2 =
−0.3976).
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(d) Q-Q plot of r distributions before
and after cut, on signal data (R2 =
0.5615).

Figure 9.4: Histograms comparing the z-distributions of samples of cosmic and
signal data, both before and after applying the MVA cut, and Q-Q plots comparing
these distributions.

into the trap temporarily, causing annihilations of the trapped H̄ on these gas

molecules. These events are still antimatter annihilations, and their fingerprints

will be generally similar to events in the signal sample of our training data, mean-

ing the ML models cannot discriminate these events correctly. In terms of the

given experiment these events are considered background, and as such having the

model control the variable r is undesirable. Instead, it would be preferable to ap-

ply a rectangular r cut after the ML classification, which is designed to maximise

signal-to-background based on this condition and other experimental results (i.e.

where we see annihilations when the microwaves are on but off-resonance).
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Removing r-Bias

This is where the BDT_NoR model would be useful, allowing us to discriminate

events to the best of our ability without using r. The r cut, specifically tuned

to the vacuum conditions of the experiment to maximise signal over background

(by including annihilations on residual gas) can then be applied afterwards. The

results in performance of the “BDT_NoR” model are displayed in Table 9.1. How-

ever, looking at Q-Q plots (Figure 9.5), we again see some r bias.
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(a) Q-Q plot of r distributions before
and after cut, on cosmic data (R2 =
0.8299).
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(b) Q-Q plot of r distributions before
and after cut, on signal data (R2 =
0.8301).

Figure 9.5: Q-Q plot of the r-distributions of samples of cosmic and signal data,
both before and after applying the NoR MVA cut. Here we see despite removing
the variable r itself, the model still has some bias in terms of r.

Returning to Figure 8.3 we see that a few additional variables have a significant

correlation with r. By removing these variables and training a new model using

only the 7 least correlated variables with respect to r we find the AUC of the ROC

curve drops to 0.974, and the signal at 1% efficiency drops to 0.504. However,

looking at the new Q-Q plots generated as a result of testing this new model on

a validation set (Figure 9.6) we see that the r bias is now less significant, though

still not completely independent as it was of z.

It can be argued that complete independence of r is not the goal (especially

since there is a genuine dependence of r in our distribution) and that the idea

of removing r from the model was not to entirely remove bias, it was simply to
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(a) Q-Q plot of r distributions before
and after the ML cut on cosmic data
(R2 = 0.7511).
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(b) Q-Q plot of r distributions before
and after the ML cut on signal data
(R2 = 0.9503).

Figure 9.6: Q-Q plots comparing the r-distributions of samples of cosmic and
signal data, both before and after applying the NoRBias MVA cut.

allow a pure rectangular cut to be applied and not give control of this powerful

variable to the “black box” of the ML model. Regardless of final implementation,

these results suggest that simply removing r from the model might not be enough,

and gaining complete independence from r is not as easy as previously expected,

coming at a significant reduction in accuracy (though the rectangular cut may

make back some of this lost performance). A table presenting the cosmic pass cut

rate and signal efficiency of the NoR model, this new model (denoted NoRBias)

with the reduced variable selection, and both with various rectangular r cuts can

be seen in Table 9.1.

Though some of these efficiencies may be low, in the era of stacks of 15,000+

antihydrogen atoms per experiment, one of the benefits is allowing for cuts that

decrease signal efficiency significantly. This benefit is already being exploited by

experimental procedures, where cooling techniques such as adiabatic expansion

(which can lose up to 50% of the sample) reduce the sample significantly in ex-

change for other benefits, such as sub mK samples of H̄. There is no reason these

benefits could not also be applied to the selection of cuts used at ALPHA.
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Model r-cut Background Rate (mHz) Signal Efficiency (%) ϵ/
√
B

NoR ∀r 37(1) 73.9(3) 12.2(2)
NoR r ∈ [1, 4] 9.8(7) 62.1(2) 19.8(7)
NoR r ∈ [2, 3] 4.3(5) 30.6(1) 14.8(9)
NoR r ∈ [2.2, 2.7] 1.7(3) 16.4(1) 13(1)

NoRBias ∀r 113(2) 66.1(2) 6.22(6)
NoRBias r ∈ [1, 4] 16.5(9) 51.7(2) 12.7(4)
NoRBias r ∈ [2, 3] 5.9(5) 25.1(1) 10.3(4)
NoRBias r ∈ [2.2, 2.7] 3.3(4) 13.33(9) 7.3(7)

Table 9.1: Background rate and signal efficiency of both models trained to elimi-
nate r bias from the model. By applying a rectangular cut after the MVA we are
able to obtain better performance and still maintain clear understanding of the r
distribution of vertex events. The cuts in r here are arbitrarily chosen to contain
the radius of the electrode wall (r = 2.2275) within some interval. A true analysis
of the space of this cut would be required before settling on a final optimum cut.
The ϵ/

√
B FOM is included to provide a method of comparing the models to one

another and is related to the Punzi FOM (see Equation 8.6). In all cases the
NoR model outperforms the NoRBias model, and in all cases some type of r cut
improves performance.

9.1.2 ALPHA-g Model

Finally, we present the same results for the ALPHA-g BDT.

Background Rejection

The TPC has a cosmic trigger rate of 58.95(6)Hz, roughly 34% of which are

reconstructed to vertices, giving a cosmic vertex rate of 19.86(3)Hz. The BDT

model trained in Sec. 8.4 labelled (BDT) operating at a cut value of 0.1468 -

chosen by optimising the measurement FOM (Equation 8.5) with 1 signal and

73 background events2 - is able to reduce this background rate to 0.728(6)Hz.

This is considerably higher than ALPHA-2, and only corresponds to a 27 times

reduction in cosmic rate, or a successful rejection of 96.3% of cosmic events. A

plot comparing the z− t distributions of all vertices reconstructed during a single

4h59m cosmic run with and without the ML cut is shown in Figure 9.7.
2These values were used to optimise the cut in [17] and come from vertex data without a cut

to estimate the signal.
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(a) 17968s of cosmic data taken with
the TPC. The total number of recon-
structed vertices is 356,804 - giving a
cosmic rate of 19.86(3)Hz.
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(b) 17968s of cosmic data taken with
the TPC filtered to only include events
that pass the machine learning cut.
The total number of cosmic events that
pass the cut is 13,082 - giving a cos-
mic rate of 0.728(6)Hz. This corre-
sponds to a rejection of 96.3% of cos-
mic events.

Figure 9.7: A 2D histogram of a) all reconstructed vertices; and b) all recon-
structed vertices that passed the ML cut in 4h59m of pure cosmic data. Each bin
is 2.4cm wide in z and ∼ 80s long in t.

Signal Efficiency

The signal efficiency of the TPC with no cuts is roughly 55% corresponding to the

full cosmic pass cut rate of 19.86(3)Hz. The challenges of using a TPC become

apparent at this point as it generally has a lower vertex efficiency rate, a much

higher background rate, and, due to the fact that antihydrogen production in this

new trap is not well refined yet, much fewer atoms to work with. These may be a

result of the infancy of this detector, and the performance of the SVD is not only a

result of the hardware but years of software development which is not yet present

in the TPC. Regardless this makes the ML, and specifically the signal efficiency

of the chosen cut crucial.

Again using the near pure training data sample collected for ML (and described

in Sec. 8.3) we can evaluate the signal efficiency of the chosen cut. We find that

of the 5,895 vertices reconstructed during 28s of these saturated windows, a total

of 5,390 vertices pass the MVA cut. This gives a signal efficiency of 91.4(1.7)%

compared to total vertices. A plot comparing the z− t distributions of all vertices

reconstructed during the 28s of windows where the detector is sufficiently saturated
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both with and without the MVA cut can be seen in Figure 9.8.
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(a) 28s of close to pure antimatter an-
nihilations taken with the TPC. The
total number of reconstructed vertices
is 5,895.
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(b) 28s of close to pure antimatter an-
nihilations taken with the TPC filtered
to only include events that pass the ML
cut. The total number of signal events
that pass the cut is 5,390 - giving a sig-
nal efficiency of 91.4(1.7)%.

Figure 9.8: A 2D histogram of a) all reconstructed vertices; and b) all recon-
structed vertices that passed the ML cut in 28s of near-pure signal. Each bin is
2.4cm wide in z and ∼ 0.25ms long in t.

z-Bias

Again we can compare histograms of the z distributions of vertices before and after

applying the MVA cut to ensure no z-bias is introduced by applying the MVA.

This metric is extremely important for ALPHA-g, the entire result hinges on

determining the z position of resulting annihilations, any model that introduces a

bias in this regard cannot be used. This is especially risky considering all train-

ing data comes from one region of the trap while cosmic events can come from

anywhere. Any model that contains z will quickly learn to accept events in the

“mixing” region of the trap, and reject all others.

Figure 9.9a shows the z distribution of cosmic data for all vertex events, and

only those events that pass the MVA cut overlaid; and Figure 9.9b shows the same

distributions for the signal dataset. Further, Figure 9.9c shows the Q-Q plots of

the cosmic distributions, and Figure 9.9d the signal Q-Q.

By looking at these plots we can see there is no significant change to the

z distributions as a result of applying this cut. Coupled with Table 8.4 and
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(a) z distributions of all vertices, and
those that pass the MVA cut for cosmic
data sample.
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(b) z distributions of all vertices, and
those that pass the MVA cut for signal
data sample. Here the size of the de-
tector and lack of data at the positive z
end of the detector causes a drift, but
in the region of interest the distribu-
tions match well.
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(c) Q-Q plot of z distributions before
and after cut, on cosmic data (R2 =
0.9965).
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(d) Q-Q plot of z distributions before
and after cut, on signal data (R2 =
0.9923).

Figure 9.9: Histograms comparing the z-distributions of samples of cosmic and
signal data, both before and after applying the MVA cut. Below those sit Q-Q
plots for each pair of distributions.

Figure 8.9 we can conclude there is no z bias introduced through the application

of this model.
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9.1.3 Analysing Published Results

Gravity Measurement

In principle the measurement scheme designated to ALPHA-g is quite simple.

Once the H̄ is trapped, the mirror coils at each end of the trap can be lowered,

allowing the H̄ to escape axially. The effect of gravity should translate into a

difference between the number of atoms escaping down vs the number escaping

up. Further, by biasing the difference between the currents of the mirror coils

that define the well as they ramp down to such a value that is comparable to g

we are able to either amplify, cancel out, or reverse the effect of gravity on the

sample of H̄. In fact, by performing this experiment with a range of biases we are

able to determine exactly where the bias cancels out the effect of gravity (found

to be 0.75 ± 0.25g3 [17]). The experiment can be repeated at multiple biases to

improve statistics. A histogram of the results from this experiment organised into

biases (and displayed in units of g) both with and without the ML can be seen in

Figure 9.10.
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(a) Escape histograms with no cut.
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(b) Escape histograms with machine learn-
ing cut.

Figure 9.10: The raw event z-distributions or “escape histograms” for each of the
experimental bias values, including the ±10g calibration runs.

3The error of this result comes mostly from two sources: 1. The temperature distribution of
the H̄ is not well know, which adds to uncertainty in the supporting simulations, and 2. The
uncertainty in the off axis magnetic fields during the magnet ramp down which are hard to
measure dynamically.
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A further possible advantage to the ML would be allowing for slower measure-

ments, which gives more control of the magnetic fields (a major source of error

in the result), but results in considerably more background. Having an ML cut

capable of shifting the optimum cut would allow for measurements like these to be

trailed again, potentially giving a more accurate result for the value of ḡ. During

the 2022 run a few of these “slow ramp” runs were performed (the ramp occurs

over 130s instead of 20s) but not enough were performed to obtain a full measure-

ment. Preliminary results [229] suggest that the value obtained during these runs

is much closer to the expected value of g
ḡ

= 1 however without a full systematic

analysis of the ramp, and a full range of biases the analysis is not complete. It

should be noted however that without the application of ML in these 130s ramps,

which contain over six times as many background events, these experiments would

be impossible.
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10 Deep Learning at ALPHA

Deep learning using raw detector signals is an attractive idea at ALPHA. Using

these signals would allow classification to skip the reconstruction process entirely.

This has the potential to be more accurate than even the BDTs, or could at least

work in cooperation to augment the BDT results and improve the overall reliability

and accuracy of results. As such this chapter briefly explores the idea of using raw

signals from the SVD ASICs to classify events without reconstruction.

10.1 The Data

The data used for this application is a sum of all signals received per ASIC, and,

though the data was saved per channel (each ASIC reads 128 channels) they were

converted prior to training to match this format. The result is a vector of length

288, containing a value ranging anywhere from 0 to 16,000 with means of 50-100

and RMS ∼ 200. To ensure that the models do not learn that certain regions

of the trap correspond to signal and other to background (due to mixing in one

electrode in the trap) a new dataset was introduced that has z values from other

regions of the trap. “Slow release” experiments (described in Sec. 5.2.1) were per-

formed in various regions throughout the trap to ensure a wide range of z values

in the signal sample. Unfortunately this sample is not as pure as the mixing data

because the same amount of p̄ are released as in the mixing windows over 200s

instead of 2s. It is possible to release these p̄ over a shorter time, saturating the

detector and obtaining more pure data. However, in order to perform the count-

ing experiment from Sec. 5.2.1 it is important that the detector is not saturated

meaning these experiments cannot be performed in tandem and a dedicated ex-

periment must be performed to obtain this saturated dataset for machine learning.

Due to constraints on time with the machine itself these experiments could not

be performed and as such the unsaturated data was used. In order to make sure

the cosmic contamination stays low we used only events that passed the standard

rectangular cuts sometimes used in ALPHA-2 [153]. While this does reduce the

cosmic contamination, it potentially only allows the “easy-to-classify” events into
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the dataset. The choice of using this cut is a trade off between allowing cosmic

contamination, or eliminating more difficult to classify events. The additional cuts

were applied for this dataset, as the pure dataset which includes all events will

also be used alongside it. This ensures we have a good mix of events from all parts

of the trap, with a range of “difficulty”, and limited cosmic contamination.

The combined data set contains 1,036,144 signal events from mixing data 2/3

of which was used for training; 1,567,938 events from the slow release experiments

1/3 of which was for training; and 2,894,001 cosmic events 2/3 of which were for

training. The hyperparameter scans used 300k signal and 300k background events

for training (and the same for testing), and the final model (Sec. 10.4) used 800k

signal and 800k cosmic events for training (and the same for testing).

10.2 Architecture

While a convolutional neural network (CNN) would be an interesting approach

(and these have been shown to work well on the ALPHA-g detector, looking at

pad outputs only) the SVD contains three concentric layers of panels, meaning it is

not possible to simply flatten the data into a 2D tensor and apply a convolution.

Relationships between layers are important, especially between panels that are

directly behind one another. Further, there is cylindrical symmetry in the detector,

and any convolution would have to be able to fold over the edge of the 2D data,

connecting nearby strips with those on the other side of the 2D image. For this

reason a convolution was not attempted and only deep neural networks/MLPs

were implemented. Nevertheless, convolutional neural networks that are able to

handle these spatial issues could have great potential and should be investigated

in the future.

All training was performed with ROOT::TMVA package [227], and though

Python has many options for deep learning it was unable to load the samples into

memory with the hardware used, and as such only ROOT was capable of handling

the large files and variables. Python packages such as uproot can handle this

issue better, being specifically designed to stream ROOT data into Python ML

libraries, and this was trailed for deep learning in ALPHA-g where it showed
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promising results, however this has yet to be implemented for ALPHA-2.

10.3 Tuning the Model

We started by training a series of fully connected MLPs, and scanning the learning

rate to see the effect this had on the model. The models had six layers with the

following number of nodes: 576,288,72,72,50,50, each using ReLU activation and a

batch normalisation layer [230] siting between each layer. We used L1 regularisa-

tion with a staling factor of 1e−4 to reduce weight sizes, binary cross entropy loss

(Equation 6.23) and Xavier uniform [231] to initialise the model weights. We used

a batch size of 256, and Adam optimiser to compute the stepping. A Gaussian

transformation is applied to the variables prior to training. These “default” values

were chosen as they were previously found to give good results in less systematic

feasibility tests.

The learning rates (η) chosen to test consist of 0.1, 0.05, 0.015, 0.005, 0.001,

0.0005, and 0.0001. A plot showing the ROC AUC and the signal efficiency at

1% background for the training and test dataset for each of the different learning

rates can be seen in Figure 10.1.

Here we see that the lower learning rates performs better (according to the

AUC), however we notice the model begins to overtrain at around η = 0.0010 as

the training and test accuracy begin to diverge. Based on this plot a learning rate

of 0.0005 to 0.0010 was deemed acceptable.

After this we performed a scan of the batch size (Sb) while keeping all other

parameters the same (learning rate fixed at 0.0010 based on the previous study).

The batch sizes trailed include: 8, 32, 128, 256, 512, 1024, 2048, 4096. The

resulting AUC and signal efficiencies at 1% background can be seen in Figure 10.2.

The AUC increases as the batch size gets larger (up to 4096 - see Figure 10.2),

however the risk of overtraining increases concurrently, though the test accuracy

still improves until 2048.

Further, as the batch size increases the training time per epoch decreased expo-

nentially; however, the limiting factor in training time is performing the Gaussian

transformation on the dataset, and, as most training sessions terminated at ∼ 300
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Figure 10.1: AUC, and signal efficiency at 1% background of both the training
and test dataset while scanning the learning rate of the model. All points use the
axis on the left aside from the AUC which uses the green axis.
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Figure 10.2: AUC, and signal efficiency at 1% background of both the training
and test dataset while scanning the batch sizes used for training. All points use
the axis on the left aside from the AUC which uses the green axis.
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epochs after 150 epochs without improvement the speed of convergence did not

influence the choice much. Regardless, we conclude a batch size of 1024-2048 to

be acceptable.

Next we decided to try different model shapes1 attempting to reduce the size

of the model if possible. We performed this scan at two places, once with a

learning rate at 0.0005, and a batch size of 2048 which aimed to give maximum

accuracy, and once with a learning rate of 0.001 and a batch size of 1024 aimed

at minimising overtraining. A table of the results of these models sorted in order

of the signal efficiency at 1% (SEA-1) of the η = 0.001, Sb = 1024 models can be

seen in Table 10.1.

η = 0.001, Sb = 1024 η = 0.0005, Sb = 2048
Shape AUC SEA-1 µ AUC SEA-1 µ

288,72,50 0.976 0.675 0.043 0.963 0.587 0.138
576,288,72,72,50,50 0.976 0.668 0.051 0.971 0.639 0.145
576,288,72,72,50 0.976 0.665 0.050 0.970 0.633 0.137
288,72,72,50,50 0.975 0.664 0.043 0.964 0.598 0.127
288,288,72,72,50,50 0.975 0.661 0.049 0.965 0.594 0.141
576,576,288,288,72,72,50,50 0.972 0.634 0.048 0.967 0.598 0.156
72,72,72,72,72,72,72 0.965 0.603 0.042 0.965 0.606 0.107
72,50 0.962 0.585 0.038 0.964 0.594 0.073
50,50,50,50,50,50,50 0.958 0.573 0.024 0.961 0.573 0.075
72 0.942 0.450 0.037 0.944 0.460 0.054
0 0.849 0.167 0.004 0.849 0.168 0.003

Table 10.1: AUC, signal efficiency at 1% background (SEA-1) for test samples,
and the difference between these two (denoted µ) for each of the model shapes
trailed. The model is sorted in order of SEA-1 of the η = 0.001, Sb = 1024 models.
The final model takes the 288 inputs and directs them immediately to the output
later, hence the shape is denoted with “0”. Bold typeface denotes the column in
which the table is sorted by.

This table shows that η = 0.0005, Sb = 2048 increased overstraining con-

siderably given the same model shape (indicated by the size of µ), and cannot

match the performance of the (288,72,50) model with η = 0.001 and Sb = 1024.

This model has the added benefit of fewer synapses than other previously trained

models and as such from here we consider this the default model.

We also tried training models with momentum, which allows the previously
1Here model shape refers to number and size of the layers within the model.
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calculated gradient decent step to contribute to the current step, meaning the

algorithm can continue to move in the same direction (in the parameter space)

unless a significant push in another is applied. This can help avoid plateaus and

allow the algorithm to glide more efficiently towards the global minimum. The

strength of this momentum (denoted p) is zero for standard batch gradient descent

and a momentum of 1 would ignore all current steps and only use the previously

calculated gradient at each epoch, which means only the first gradient decent

step would be used for the entire training process. Adam optimiser (which is

used throughout this chapter) implements its own form of momentum and this

additional momentum parameter was not expected to help; and after running a

few different values the results did not show much change in the overall accuracy

of the model, hence it was kept at 0. This potentially is more powerful when not

using Adam optimiser, but other optimisers were found to be less accurate overall

and as such this was not tested.

The final hyperparameter we decided to sweep was the strength, and type

of regularisation used. Currently, we have been using L1 normalisation and a

strength of 1e−4. We tried 1e−3 and 1e−5 with L1 normalisation, surrounding our

current value; and 1e−3, 1e−4, and 1e−5 with L2 normalisation. The results are

presented in Table 10.2 where we conclude that the current values are optimum.

Finally, to ensure no additional improvements could be made to the model,

some additional parameters were tested.

We tried using sigmoid (Equation 6.17) and tanh (Equation 6.18) activations

for the layers instead of ReLU; removing regularisation; using Xavier initialisation;

and other data transformations (the default model uses only a Gaussian transfor-

mation). Using a tanh activation layer increases the test SEA-1 by 1.3% but no

other significant improvements could be made. The final parameters of the model

then with this final change can be found in Table 10.3.

10.4 Final Model

Now that the optimum parameters for the model have been determined we can

proceed with the final model training, using a larger number of samples. We
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Signal Efficiency
at 1% BackgroundNorm Strength AUC µ

Test Train
L1 1e−4 0.976 0.675 0.718 0.04300
L2 1e−4 0.967 0.617 0.661 0.04400
L1 1e−3 0.945 0.500 0.510 0.01000
L2 1e−3 0.939 0.466 0.481 0.01500
L1 1e−5 0.931 0.425 0.518 0.09300
L2 1e−5 0.929 0.412 0.488 0.07600

Table 10.2: AUC, SEA-1 for training and test samples, and the difference between
these two (denoted µ) for each of the models trailed. The model is sorted in order
of test efficiency. We notice L1 norm outperforming L2 in each case, and that
the current strength value of 1e−4 is optimum. We also note that increasing the
strength of this regularisation decreases overtraining, but also decreases accuracy
on testing set. However, if the results of this model do not perform well on
validation data, this is a potential place to decrease overtraining and increase
generalisation of the model. Bold typeface indicates the best model from the
previous step.

Parameter Value
Shape Three layered MLP: (288,72,50)

Activation tanh
Regularisation L1

Strength 1e−4

Learning Rate 0.001
Batch Size 1024

Weight Initialisation Xavier Uniform
Optimiser Adam

Table 10.3: The final model parameters after all sweeps. The model had a ROC
AUC: 0.976, and a SEA-1 on the test (train) sample of 0.746 (0.688).

increased the number of test and training samples to 800k events each (this seems

to be the limit with the hardware used, attempting to use more samples results

in a stall at the Gaussian transformation stage as we were not able to load more

than this into memory to perform the Gaussian transformation). This increase

in samples both improved the performance and reduced overtraining. The final

accuracy, F1 score, AUC, and signal efficiency at 1% on test (train) data was

0.964, 0.966, 0.980, and 0.723 (0.739) respectively. A plot of the training process

showing train and test loss per epoch for the first 60 epochs (more were performed
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but the process never improved after epoch 33) can be seen in Figure 10.3.
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Figure 10.3: Train and test loss per epoch for the MLP. The vertical line represents
the stopping point.

The ROC curve for this final model can be seen in Figure 10.4 along with the

ROC curve for BDT_WithR and BDT_NoR for comparison.

While this MLP performs well, we were unable to outperform the standard

BDT trees used at ALPHA, nor the model excluding r. However, as the current

logic on reading out events is entirely random, during high rate windows a model

such as this which can work on the raw signals could improve the signal-to-noise

ratio of the detector. Alternatively, this model could be used in tandem with the

BDTs to improve their accuracy, or used to classify events prior to reconstruction.

This model, paired with a regression model capable of reconstructing z from the

same signal could be a very powerful tool for ALPHA, allowing for instant vertex

position and classification. The final cosmic pass cut rate, and signal efficiency

of this model when optimising Punzi FOM (Equation 8.6) for 18s windows is

1.363(8)Hz and 54.3(2)% respectively; a considerable drop from the BDTs but a

good first step in the direction of deep learning at ALPHA.

10.5 Conclusion

The deep learning models were not able to outperform the BDTs but do show

promising initial results. The problem is well suited to a CNN, but the challenges
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Figure 10.4: ROC curve for the MLP described in Table 10.3 along with the ROC
curve for BDT_WithR and BDT_NoR models presented in Sec. 8.4.3.

involved with the data makes this architecture difficult to apply at this point, and

calls for additional research. These models were trained with some of the lowest

level variables possible in the SVD, making them extremely desirable and it’s

possible that combining this result with the BDT would improve the classification

at ALPHA considerably. Further, the combination of a model like this, with

a regression model capable of predicting z position from the same input would

provide instant results for the ALPHA experiment.

The model trained here is likely small enough to be installed on an FPGA and

could provide the basis for the first ML trigger used in the ALPHA experiment,

potentially increasing the signal-to-noise ratio of the detector as a whole.
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Chapter

11 Conclusion & Future Work

11.1 Conclusion

By performing Monte Carlo simulations, we have been able to predict the effi-

ciencies of specific panels throughout the experiment (see Chapter 5), allowing us

to trace precisely when losses are incurred in our antihydrogen production cycle.

These values could help improve transfer efficiencies throughout the experiment

and, ultimately, antihydrogen production rates. When antihydrogen is as rare a

substance as it is, any improvements that increase efficiency and production rates

are crucial. We have performed specific experiments to verify these simulations,

the results of which have been presented, and generally show good agreement.

We have reviewed the currently deployed ML techniques used by ALPHA to

classify events, and improved the efficiency and performance of the already well

established models used in the SVD. Further, the first ever ML model capable of

classifying events in the TPC has been presented and has already proven essential

in performing the first direct measurement of the effect of gravity on the motion

of antimatter, where ḡ was found to be 0.75 ± 0.25g [17]. Without this model,

the signal-to-noise ratio reduces the significance of our results considerably, and

overall, this model contributes to a substantial improvement in the performance

of the TPC for all past and future results. The first in-depth analysis into the z

and r dependence of the models trained has been presented, which is a necessary

study for both detectors. The results suggest that classifying events without using

r as a variable is feasible, which could be critical to improving the significance of

certain measurements where vacuum conditions can cause annihilations, though

it does not come without drawbacks.

We have also demonstrated the first attempts at using raw detector signals to

classify events in the ALPHA experiment precluding the need for event reconstruc-

tion. Development in this vein would allow for instant event classification, and

potentially an ML based trigger for the ALPHA experiment, further improving

the signal-to-noise ratio, and therefore overall performance of the detectors. Using

these models in collaboration with BDTs may be the way forward for classification
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in the ALPHA experiment and could potentially mark the first significant increase

in the performance of the SVD for a while.

We can look at the ROC curve of all the models trained so far, in units

more familiar to the ALPHA experiment: cosmic pass cut rate, and signal trigger

efficiency to get a better understanding of each models’ performance. The resulting

ROC curves showing the ALPHA-2 MLP, WithR, NoR, NoR with a rectangular

cut of r < 4 models; and the ALPHA-g BDT can be seen in Figure 11.1.

Figure 11.1: ROC curve for five models presented throughout this thesis in units
of cosmic pass cut rate and signal trigger efficiency. The stars represent the cut
values used for the analysis in Chapter 9, and, in the case of the ALPHA-g BDT,
in [17].

Beyond ALPHA, ML methods aimed at beam profile reconstruction in a

beam profile monitor have been trailed, recreating previously published results

(on slightly different beam conditions) and applying these techniques to real data

from an operational profile monitor at CERN for the first time. The data avail-

able limits the conclusions to be drawn from this test. However, the results were

promising and suggested further data collection would be beneficial. As beams

become brighter and more intense, it is reasonable to assume that future profile

monitors will need more sophisticated methods of profile reconstruction than sim-

218



11.1. CONCLUSION CHAPTER 11. CONCLUSION & FUTURE WORK

ply installing new, larger magnets. This first exploration of ML on real data points

to a possible solution to this problem. If a method of confirming the validity of

these results, along with some way to train models for these devices prior-to or

upon installation, could be established, the material cost saved would be signifi-

cant, and may become the standard for beam profile reconstruction in the future.

At the time of writing, the last year and a half (2023 and 2024 until September

1st) were spent on measurements in ALPHA-2, such as the hyperfine structure,

the 1S-2S transition frequency, the 2S-4P frequency, and the 2S-2P Lamb shift

transition. New techniques for cooling and measuring the temperature of anti-

hydrogen populations have been developed, and improvements to antihydrogen

production rates and laser cooling provide consistently large and cold samples of

antihydrogen for all of these experiments. The results of these experiments are

currently being analysed and will be described in various papers. The rest of the

2024 run is dedicated to ALPHA-g and commissioning the top trap for antihydro-

gen production, with the goal of obtaining a more accurate gravity measurement

firmly in sight.

The ML event classification will be crucial to all of these results, reducing

background considerably from the default rate of the detectors. The results in this

thesis show that while the new TPC may not be able to match the performance

of the SVD yet, the first steps in event classification in the TPC have been made,

and there is potential for improvements in the near future. Similarly, though it’s

unlikely the deep learning models could ever match the performance of the BDTs

alone, there could be a place for them at ALPHA, either working in cooperation

with the BDTs or working to achieve a slightly different goal such as the trigger

logic itself. The first evidence that this may work has been demonstrated, and

there are many avenues of investigation open toward achieving this goal.

Ultimately, these results have helped improve the performance of both detec-

tors used at ALPHA and will continue to do so in the coming years. The models

presented here will allow for higher precision on measurements performed by AL-

PHA with increasing significance, ensuring our understanding of antimatter and,

therefore, the universe, continues to develop despite the challenges that come with

it.
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11.2 Future Work

There are several potential directions to continue the work presented in this thesis,

ranging from further data collection to improving simulations and models:

• The simulations used for calibrating panel efficiencies throughout the AL-

PHA experiment (described in Chapter 5) would benefit from adding the

cosmic background radiation. We see a potential discrepancy in the CT

simulations where the SiPM_AND channel may see more counts than ex-

pected, while all channels with a logical OR seem to match experimental

data well. This could be a result of cosmic background rays triggering the

detector readout erroneously, and it would be important to verify this.

• Further, experiments could be performed to verify the simulated results from

the interconnect panels, namely tuning the half-dumps in the ALPHA-g trap

and comparing the signal on the TPC to those simulated on the interconnect,

much like the experiments performed on the DSAT stick (Sec. 5.2.3).

• In order to truly measure the effectiveness of using machine learning to

reconstruct the profiles recorded from the PS-BGI-82 (as in Chapter 7), a

better dataset is required. Another profile monitor must be installed in the

same ring as the PS-BGI-82 to collect this data. As this seems unlikely to

happen in the near future, any other ring with two profile monitors (one of

which is an IPM) is an ideal target for collecting this data and verifying the

methods used in this thesis.

• More time could also be spent trying to match simulations to the real data

taken from the PS-BGI-82 and train models on the simulated data instead

of training on real data. Although this did not show much promise in the

limited initial trials, it would be beneficial not to require two IPMs per ring

in order to train these models.

• Now that the TOF calibration for the ALPHA-g BV has been completed,

and the variables are available to be used, a new MVA needs to be trained

and analysed using the methods described in this thesis. An attempt at this
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has been made, resulting in a model with ∼ 0.0155Hz cosmic pass-cut rate

and a signal efficiency of ∼ 61.8% when using the same FOM as used in the

gravity paper [17]. However, these results need to be verified and properly

evaluated before being used in any results for the 2024 physics run. The

ROC curve of this model compared with the ROC curve for the standard

ALPHA-g model can be seen in Figure 11.2. In this plot the ROC curve units

have been converted to cosmic pass cut rate, and signal trigger efficiency via

evaluation on a validation set.

Figure 11.2: ROC curve for the ALPHA-g BDT and new ALPHA-g model with
TOF variables.

The results show significant improvement on the previously used model;

however, improvements to the reconstruction algorithm also contribute to

this increase in performance (as well as to the reduction in signal efficiency).

Further, statistics limit the exact nature of the curve at low background.

More testing on this new model is required, as well as quantifying the im-

provement resulting from the changes to the reconstruction algorithm over

the inclusion of TOF variables in the model.

• Data from the other half of the ALPHA-g detector would be instrumental

in ensuring the independence of these models to z in all regions of the trap.

As of 2024, the “top [PM] trap” has been installed, and it is now possible

to trap particles in this region and, in theory, perform mixing to collect this
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data. Performing this test is a primary goal for the remainder of the 2024

physics run, meaning this data could be available before the end of 2024.

• In order to improve the accuracy of the deep learning models in ALPHA

(described in Chapter 10), it would be beneficial to collect a more pure

dataset from all regions of the ALPHA-2 trap; this could be done by speeding

up the slow release experiments such that the rate particles leave the well is

enough to saturate the detector.

• It is also thought that CNNs may have strong potential for deep learning in

ALPHA, and once the challenges described in Chapter 10 can be overcome,

this should be attempted.

• Further, attempting to train a regression model with this same set of deep

learning data used for the deep neural network (see Sec. 10.1) would be an

interesting study and, if successful, would allow for instant reconstruction

and classification of events.

• Finally, given that all data used for machine learning is at least partially

contaminated, semi-unsupervised learning methods could be trailed as these

could limit the effect of cosmic contamination on the results and potentially

increase BDT accuracy overall.
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Appendix A

Helix Parametrisation

The trajectory of a charged particle in a magnetic field, excluding any external

mechanisms to induce scattering or energy loss, is generally helical, consisting of

circular motion in the (x, y) plane, combined with a constant velocity along the

z axis. The helix can be described by the five parameters α = (c, ϕ0, D, λ, z0)

where c is 1/2R where R is the radius of curvature, ϕ0 is the ϕ coordinate of the

momentum at the r − ϕ point closest to the origin, D is the signed distance of

closest approach, λ = cot θ where θ is the polar angle measured from the positive

side of the z axis, and z0 is the z position at the point closest to the origin. These

are often split into two sets, the radial parameters (c, ϕ0, D) which describe the

circular motion in x−y, and the axial parameters (λ, z0) which describe the motion

in the z axis. The resulting equations of motion (in Cartesian coordinates) is then

given by [232]:

fx = x0 + p0x

a
sin(2cs⊥) − p0y

a
(1 − cos(ρs⊥)) (A.1)

fy = y0 + p0y

a
sin(2cs⊥) + p0x

a
(1 − cos(ρs⊥)) (A.2)

fz = z0 + λs⊥ (A.3)

where (x0, y0, z0) = (−D sinϕ0, D cosϕ0, z0) is the point on the helix closest to the

origin, (p0x, p0y) is the momentum vector at that point and can be expressed as

( a
2c

cosϕ0,
a
2c

sinϕ0) (here a = 0.2998Bq - B = magnetic field; q = particle charge),

and s⊥ is the arc length in the (x, y) plane from (x0, y0, z0) to the point (fx, fy, fz)

we are trying to find.

The radial parameters of the helix are found by minimising [233]

χ2
r ≡

N∑
j=1

[xj − fx]2
σ2

xj

+ [yj − fy]2
σ2

yj

, (A.4)
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and the axial parameters by minimising

χ2
x ≡

N∑
j=1

[zj − fz]2
σ2

zj

. (A.5)

The sum in both these equations is over the number of points measured in the

track (i.e. number of hits) and the j-th hit is given by (xj, yj, zj).

The linear momentum of the particle (again assuming no scattering or energy

loss mechanisms) in MeV/c is given by

px = a

2c cosϕ0 (A.6)

py = a

2c sinϕ0 (A.7)

pz = a

2cλ (A.8)
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Appendix B

Data Dumper

A considerable amount of time has gone into the standardisation and modernisa-

tion of the pipeline for dumping data for ML analysis. This appendix describes

the pipeline for both the ALPHA-2 and ALPHA-g reconstruction algorithms.

A diagram in the form of a flow chart of the full ALPHA-2 ML pipeline can

be seen in Figure B.1. Though ALPHA-g is not pictured, it is synonymous.

The pipeline can be run manually (as each program can be individually

run), but there is also a script designed to run the process automatically on the

htcondor cluster at CERN. The runlist and eventlist must always be created

manually, and must be done prior to using the automatic script. This automatic

script allows for fast, and easy recreation of results, as well as allowing changes

to be propagated and tested very quickly, without much input from the user.

Especially since the runlist and eventlist are unlikely to change once settled upon.

Figure B.1: Diagram of the ALPHA-2 data storing and model training pipeline.

A sketch algorithm of the model training procedure is as follows:

1. Select a list of runs for use, separate these into signal and background and

append to a list file (mixingList and cosmicList)
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2. Chose the criteria for events to be included in the dumper. Generally, for

cosmic runs all events are chosen, and for mixing events only events passing

the selection criteria found in main_eventlist_generator are used.

There are options within this macro to change the minimum rate required

for the detector to be considered saturated, as well as the minimal ratio

between detector reads and triggers. The events can be stored using the

WriteEventList method of the TA2Plot or automatically generated via

the eventlist generator.

3. Run the eventlist generator (macro_main_eventlist_generator.exe)

resulting in an eventlist (named eventlist.list).

4. Pass this list to the a2dumper.exe with your chosen run number, XXXX,

returning the dumperoutputXXXX.root file. This .root file contains

only the variables defined in the a2dumper.o module of the alphasoft

repo.

5. Run the macro_main_merger.exe with the mixingList and the

-mixing flag to return mvaSignal.root, which is compiled root

file containing all defined signal events, separated into three TTrees:

trainSignal, testSignal, and validationSignal. Each contain-

ing a third of the total events in the eventlist.list. Synonymously the

flag -cosmic with the cosmicList will return mvaBackground.root.

6. Once the variables are stored in these root files the macro

A2TMVAClassification.C can load the data from these files and

train a chosen ML classifier. The macro has options to load chosen variables

and train using subsets, or change model architecture and hyper parameters.

This will output a model generally in xml format.

7. By running alphaAnalysis.exe with the -usemva flag pointing to the

model the reconstruction algorithm is able to run, booking events and at-

tributing their resulting model response. Events can later be cut by this

model response once an appropriate cut is chosen.
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8. This process is automatically performed on the htcondor supercluster at

CERN if the A2MVADumper.sh macro is used (it requires the run lists and

the event list be generated by the user).

While the ALPHA-g dumper is synonymous there are a few steps prior to the

dumper as the calibration of the barrel veto requires upwards of three hours of

cosmic data. As such the outline for the ALPHA-g algorithm is as follows:

1. Define the mixingList, cosmicList, and selection criteria as in

ALPHA-2. Use the ag_eventlist_generator to generate an eventlist

(eventlist.list).

2. For each run in the events lists save the previous twenty runs to be analysed.

This number can be tuned but it was found that generally to get the three

hours of cosmic data needed for barrel veto calibration twenty runs was

enough.

3. Run alphagonline.exe on all output files. alphagonline.exe is a

light version of the reconstruction algorithm which only reconstructs given

time windows and event counts. This allows the algorithm to run faster

(close to real time) in exchange for losing out on detailed vertex and track

information.

4. Using the time windows from the pre-processed runs find the exact amount

runs needed to get the three hours of cosmic time. Generally only 3-5 runs

are needed for this.

5. Run agana.exe on these runs, generating full vertex, track, and BV data.

agana.exe is the full reconstruction algorithm and is considerably slower

than alphagonline.exe but does reconstruct all vertex and track info.

6. Run the BV calibration for each run, this will automatically look back at

previous runs until it has three hours of data. The BV calibration will output

a file titled BarrelCalibrationXXXX.root for each run XXXX in the

original mixingList and cosmicList.
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7. Proceed as from step 4 in the ALPHA-2 pipeline, instead running

agdumper.exe, AGTMVAClassification.C, and agana.exe instead

of alphaAnalysis.exe

8. This process is also automatically performed on the htcondor supercluster

at CERN if the AGMVADumper.sh macro is used (it also requires the run

lists and the event list be generated by the user prior to running).

A more detailed description of these programs can be found in the respective

documentation in the alphasoft repo.
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Generalized Sphericity Tensor

The generalized sphericity tensor is a measure of the shape of an event, the eigen-

vectors of which describe the thrust axis of the event, and how “spread out” the

tracks are in space. Cosmic rays passing through the detector will be less spread

out than annihilations originating from the centre of the trap, making this tensor

and its associated eigenvalues and vectors a useful variable in event classification.

The tensor itself is defined as

Sab =
∑

i p
a
i p

b
i |p⃗i|r−2∑

i |pi|2
(C.1)

where a, b = 1, 2, 3 corresponds to the x, y, z components of tracks momentum

(defined in Equation A.6).

Originally, this was defined with r = 2 but taking r = 1 offers more desirable

properties [234], and is referred to as the linearised sphericity tensor.

By diagonalising Sab one can find three eigenvalues λ1 ≤ λ2 ≤ λ3, with λ1 +

λ2 + λ3 = 1 and three eigenvectors v⃗1, v⃗2, v⃗3. The first of which corresponds to

the event axis and is closely related (though not identical) to the thrust.

The sphericity of the event is defined as

S = 3
2(λ2 + λ3) (C.2)

with S = 0 for exactly two back-to-back tracks, and S = 1 for configurations with

exactly equal eigenvalues (evenly spread).

The histogram of a similar variable
√
λ1 + λ2, separated for both signal and

background is shown in Figure 8.1 and though the background events are not

generally as low as 0, they are on average lower than signal events.
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Measuring Scintillating Panel

Detection Efficiencies

A scheme for measuring the detection efficiency for a given panel (denoted panel

a) is as follows:

1. Obtain a further two panels (panels b and c) as well as the one set for

measurement.

2. Place and fasten the two additional panels on either side of the measurement

panel.

3. Record the counts on coincidence of both additional panels, Cb,c, and the

counts on coincidence of all three panels, Ca,b,c.

4. The detection efficiency of panel a, Ea, is then defined as the number of

particles passing through all three particles, compared to those not detected

on panel a, i.e: Ea = Ca,b,c

Cb,c
.

The detection efficiencies of all panels within the experiment were measured,

and the table can be found in Table D.1.

Panel Efficiency (%)
PMT1 28.30 ± 2.14
PMT2 58.68 ± 3.44
SiPM1 97.08 ± 0.59
SiPM2 49.29 ± 0.27
PMT3 21.47 ± 0.68
PMT4 9.00 ± 0.26

SiPM_I 77.82 ± 3.06
SiPM_J 82.16 ± 3.16
SiPM_G 82.86 ± 3.25
SiPM_H 82.22 ± 2.28

Table D.1: Measured panel efficiencies for various panels throughout the ALPHA
experiment.
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Appendix E

Magnet Geometry

Here we include the final geometry within both the Swansea (Figure E.1) and

Carlsberg (Figure E.2) magnets after contacting both Oxford and Swansea for the

design notes.
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Figure E.2: Carlsberg magnet and its contents.
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