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A B S T R A C T

We developed an ET model, namely the Enhanced and Spatial-Temporal Improvement of MODIS EvapoTrans-
piration (ESTIMET), for local-to-regional ET monitoring and applications in the tropics, based on the original
MOD16 evapotranspiration (ET) algorithm. The main distinguishing features of ESTIMET are providing a near-
real-time product with increased spatial (from 500 to 250 m) and temporal (from 8-day to daily) resolutions,
minimising gaps in cloud cover and adjusting specific tropical characteristics of diverse vegetation and micro-
climate types. We compared the results of ESTIMET with the MOD16A2GF, PML_V2, and GLEAM 4.1a ET
products, using eddy covariance (EC) data from 14 sites in Brazil, as well as the water balance-based annual ET in
25 Brazilian catchments. Overall, the ESTIMET estimates captured the daily seasonal variations of the EC data,
especially in the Caatinga, Pantanal, and Cerrado biomes, with concordance correlation coefficients (ρc) ranging
from 0.45 to 0.80 at eight sites located in these three biomes. The comparisons of the 8-day cumulative ET show
that the ESTIMET algorithm exhibits a mean ρc of 0.63, greater than that of MOD16A2GF (ρc = 0.58), GLEAM
4.1a (ρc = 0.47), and PML_V2 (ρc = 0.45). Similarly, for the catchment water balance, ESTIMET exhibits a better
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representation of annual ET than other ET products in the three major South American biomes, i.e. the Amazon,
Atlantic Forest, and Cerrado, which cover over 85 % of the Brazilian territory. Thus, ESTIMET improves remote
sensing-based ET estimates in tropical biomes, operating at a finer spatiotemporal scale and latency (i.e.
monthly) under all sky conditions.

1. Introduction

Evapotranspiration (ET) plays a significant role in the global water
cycle, representing the main pathway for water loss to the atmosphere.
Accurately quantifying ET is essential for many purposes, including
drought prediction, efficient irrigation, plant productivity, water man-
agement, and the elucidation of climate change processes (Ahamed
et al., 2022; Hu et al., 2015; Liu et al., 2020; Machado et al., 2014; Silva
et al., 2024). ET can be measured through a variety of direct methods or
estimated using indirect approaches, which include measurements using
the eddy covariance (EC) technique, surface renewal, lysimeters, esti-
mates from soil-water monitoring, and meteorological methods (Silva
et al., 2024; Li et al., 2009; Melo et al., 2021; Silva et al., 2015). How-
ever, these ground-based monitoring techniques are costly and time-
consuming (Grosso et al., 2018; Luo et al., 2015). Furthermore,
landscape-level techniques are limited by their spatial coverage, due to
the large spatial heterogeneity of forests (Andrade et al., 2021; Khan
et al., 2021; Melo et al., 2021; Tang et al., 2013). This means that the
information obtained from these field-based approaches cannot be easily
extrapolated to produce regional values of ET, which are essential for
driving hydrological models and monitoring systems that allow stake-
holders to make more effective decisions (Chen et al., 2005; Grosso
et al., 2018; Immerzeel and Droogers, 2008; Luo et al., 2015; Ollivier
et al., 2021).

To provide spatially distributed information on ET at a regional
scale, remotely sensed observations by satellite sensors have become a
viable solution in the past few decades (Kalma et al., 2008; Wang and
Dickinson, 2012; Zhang et al., 2016; Laipelt et al., 2021; Bezerra et al.,
2023). The data from many remote sensing methods are currently
available and used to produce regionally distributed ET at various
spatiotemporal resolutions (Tang et al., 2013; Chen and Liu, 2020; Fil-
gueiras et al., 2020; Khan et al., 2021). The most common remote
sensing-based methods include: (1) empirical models that relate ET to
vegetation indexes or land-surface temperature (Petropoulos et al.,
2009); (2) residual methods based on the energy balance equation, such
as the Two-Source Energy Budget (TSEB) (Kustas and Norman, 1999;
Norman et al., 1995), Surface Energy Balance Algorithm for Land
(SEBAL) (Bastiaanssen et al., 1998a), and Mapping Evapotranspiration
at high Resolution and with Internalised Calibration (METRIC) (Allen
et al., 2007); and (3) methods based on the application of traditional
calculations, such as the Penman-Monteith (Cleugh et al., 2007; Mu
et al., 2007, 2011) and Priestley-Taylor equations (Fisher et al., 2008;
Jin et al., 2011; Wong et al., 2021).

The energy balance models, such as SEBAL, typically compute the
instantaneous latent heat flux (energy equivalent to instantaneous ET)
as a residual term of the energy balance equation, by estimating the
other energy fluxes (Bastiaanssen et al., 1998b). Hence, SEBAL is
arguably one of the most common, validated and precise techniques for
estimating distributed ET from local to regional scales and at high spatial
resolutions (Andrade et al., 2024a). This is valuable for hydrological
modelling purposes in small and medium-sized river basins. For
instance, Biggs et al. (2016) highlighted the fact that the implementation
of SEBAL provides a lower error over regions smaller than 10,000 km2

compared to larger regions because of the model’s moderate sensitivity
to surface roughness. Although widely used and validated, regionally,
for a large number of different environments worldwide (e.g. Bas-
tiaanssen et al., 1998a; Teixeira et al., 2009; Timmermans et al., 2007;
Allen et al., 2011; Silva et al., 2015; Bala et al., 2016; Grosso et al., 2018;
Ferreira et al., 2020; Mohan et al., 2020; Costa-Filho et al., 2021; Laipelt

et al., 2021; Liu et al., 2021; Bezerra et al., 2023), the SEBAL model still
has some limitations with regards to applications on seasonal timescales.
This is because: (1) a range of preliminary procedures are required to
compute the sensible heat flux, which include the selection of calibra-
tion pixels (hot and cold) and the availability of two-level wind speed
data from meteorological stations (Bezerra et al., 2023); (2) the high-
dependency of surface temperature and emissivity parameters, ob-
tained from thermal infrared satellite data, limits its application to clear-
sky days (Bhattarai et al., 2019); and (3) the errors generated when the
instantaneous ET values for the satellite passage-time are extrapolated
to daily, monthly, or annual scales (Van Niel et al., 2012; Van Niel et al.,
2011).

To overcome the complex procedures and data dependencies of the
models based on the energy balance, Cleugh et al. (2007) developed a
more straightforward approach using Penman-Monteith logic, to esti-
mate ET with data obtained from the MODerate Resolution Spectror-
adiometer (MODIS) sensor onboard the Terra and Aqua satellites.
Subsequently, Mu et al. (2007, 2011) improved the method, to generate
the first ET global product using MODIS and reanalysis-derived meteo-
rological inputs (MOD16). The MOD16A2 dataset provides ET infor-
mation globally, with a spatial resolution of 500 m and three different
timescales (8 days, monthly, and annual) (Running et al., 2017). For
example, the 8-day data represents the sum of ET for all eight consec-
utive days. In 2023, MOD16 was upgraded to version MOD16A2GF,
where linear interpolations were used to fill data gaps caused by cloud
contamination in the 8-day Leaf Area Index/Fraction of Photosyntheti-
cally Active Radiation (LAI/FPAR, MOD15A2H product) and surface
albedo (MCD43 product) images. This interpolation procedure occurs at
the end of each year (Running et al., 2021).

Several studies have tested the accuracy of the MOD16 ET product in
complex areas under distinct climatic and vegetation aspects worldwide,
mainly using information from EC flux towers (Vinukollu et al., 2011;
Ramoelo et al., 2014; Chen et al., 2014; Hu et al., 2015; Tang et al.,
2015; Biggs et al., 2016; Aguilar et al., 2018; Khan et al., 2018; Fil-
gueiras et al., 2020; Zhu et al., 2022). More specifically, in Brazil, several
studies showed that the accuracy of the MOD16 product varies ac-
cording to certain environmental characteristics, such as climate, land
cover, and a combination of both, depending on the biome classification
(Ruhoff et al., 2013; Maeda et al., 2017; Souza et al., 2016; Moreira
et al., 2018; Melo et al., 2021; Dias et al., 2021; Biudes et al., 2022). For
instance, the assessment carried out by Ruhoff et al. (2013), at two sites
located in the Brazilian Cerrado biome, showed that the MOD16 product
overestimated the mean ET (8-days, monthly, and annual) but no long-
term over or underestimation was found for a sugar cane cropland area.
Maeda et al. (2017) also showed that the MOD16 model was unable to
consistently represent the seasonal patterns of the ET at a river basin
scale in the Amazon Forest.

The limitations faced by the MOD16 ET product, especially for
regional and local applications, are the land cover and atmospheric
characterisations, which are made through the MODIS Land Cover Type
(MOD12Q1) and the Modern-Era Retrospective analysis for Research
and Applications (MERRA-2) products; these inputs to the algorithm
obtain canopy conductance and meteorological data, respectively
(Running et al., 2017, 2021). The meteorological input data have 0.5◦ x
0.6◦ or 1.0◦ x 1.25◦ spatial resolutions, which are too coarse for accurate
evaluations, especially in regions characterised by marked climatic
gradients (Alvares et al., 2013). Parallel to this, MCD12Q1 may
misidentify some local or regional vegetation characteristics and intro-
duce significant errors in ET estimates (Ruhoff et al., 2013; Laipelt et al.,
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2021). Moreover, the original MOD16 algorithm was restricted to being
used in clear sky conditions until recently, as the orbital remote sensors
cannot measure cloud base parameters (Sur et al., 2015; Running et al.,
2017). Consequently, despite using the best observations during eight
consecutive days, many grid cells of the MOD16 ET product were still
contaminated by clouds, especially in tropical regions, presenting gaps
in the ET time series (Running et al., 2017). This problem was partially
solved when the product was recently upgraded to version MOD16-
A2GF, in which the cloud-contaminated pixels are filled through linear
interpolation, a correction occurring at the end of each year. Never-
theless, this renders the MOD16A2GF no longer a near-real-time product
because it can only be generated at the end of a given year (Running
et al., 2021).

Several studies have been undertaken in parallel, attempting to
modify the MOD16 ET algorithm to overcome the limitations mentioned
earlier (Morillas et al., 2013; Ke et al., 2016; Wu et al., 2016; Yeom et al.,
2015; Srivastava et al., 2017; Ke et al., 2017; Chang et al., 2018; El Masri
et al., 2019; He et al., 2019; Zhang et al., 2019; Brust et al., 2021; Dias
et al., 2021; Astuti et al., 2022; Liu et al., 2022; Lu et al., 2022; Guo et al.,
2023; Kumar et al., 2023). These modifications generally involve the
following processes: (1) improve the spatiotemporal resolutions; (2)
make adaptations for obtaining information for all sky conditions; and
(3) implement local parameterisations, such as land use and land cover
(LULC) information (Table 1). All of these improvements used distinct
adjustment approaches but none covered all aspects together, for a more
operational data extraction at local and regional scales.

In this context, in order to address these limitations for local and
regional applications in tropical areas, we developed and evaluated the
Enhanced and Spatial-Temporal Improvement of MODIS EvapoTrans-
piration model (ESTIMET). This model implements a series of im-
provements to the original MOD16 ET algorithm, including: (a) fitting a
more regional/local algorithm by using LULC adjusted to the vegetation
characteristics in Brazil; (b) overcoming data loss due to frequent cloud
cover, whilst reducing the latency period to provide a near-real-time
product; (c) modifying the stomatal conductance and net incoming ra-
diation parameterisation schemes to generate a new product at a daily
time scale (currently being accumulated for 8 days with the MOD16-
A2GF) for all sky conditions; (d) enhancing the spatial resolution of the
MOD16A2GF ET product (from 500 to 250 m); and (e) changing the
meteorological forcing dataset to high-quality data for accurate flow
estimates, differentiating microclimates. To evaluate the ESTIMET
product, we compared the daily ET estimations with ET measurements
from 14 flux sites and an annual ET derived from the water balance in 25
catchments, both in Brazil and distributed throughout the major repre-
sentative biomes of tropical climates. The estimations of ESTIMET were
further compared to MOD16A2GF and two other global satellite-based
ET products. Based on these implementations and evaluations, this
paper is intended to assess and highlight the capacity of ESTIMET to
consistently provide a finer spatiotemporal variability of ET (i.e. daily at
250 m) with low latency for tropical biomes from 2003 to the present.

2. Study area

The ESTIMET model was applied to the entire Brazilian territory and
evaluated in different parts of the country. Brazil covers approximately
8.5 million km2 between coordinates 5◦16 ́N-33◦45 ́S and 34◦47 ́W-
73◦59 ́W (Fig. 1). According to Alvares et al. (2013), Brazil has twelve
different Koppen climate types, divided into three main zones: Tropical
(Zone A), Semi-arid (Zone B), and Humid Subtropical (Zone C). More-
over, six terrestrial biomes are featured in the territory, namely: Amazon
Forest (rainforest, 49 % of land area), Cerrado (wooded savannah, 24 %
of land area), Atlantic Forest (13 % of land area), Caatinga (tropical dry
forest, 10% of the land area), Pantanal (tropical wetland, 2 % of the land
area), and Pampa (grassland, 2 % of the land area) (Roesch et al., 2009)
(Fig. 1a). The mean annual rainfall in Brazil ranges from 380 (Caatinga)
to 4000 mm (Amazon Forest), while the mean annual air temperature

Table 1
Summary of studies with enhancements of the MOD16 evapotranspiration al-
gorithm to fit more local and regional characteristics.

Study Region Enhancements

Jang et al.
(2013)

Northeast Asia Use surface meteorological data from
the Korea Land Data Assimilation
System (KLDAS) and MODIS to
facilitate continuous regional ET
estimates.

Di et al.
(2015)

United States Combination of two layers of soil
relative humidity parameters with a
surface resistance model.

Yeom et al.
(2015)

South
Korea

Application of a multilayer feed-
forward neural network approach
with Levenberg–Marquardt back
propagation (LM-BP), using input
from various satellite-based products
of ET, NDVI, NDWI, land surface
temperature, air temperature, and
insolation.

Srivastava
et al.
(2017)

Kangsabati River Basin,
India

Use indirect ET estimation methods,
such as MODIS and the water budget
approach, incorporated into the semi-
distributed variable infiltration
capacity (VIC-3 L).

Baik et al.
(2018)

Australia Applies two mixing approaches,
Maximise R and simple Taylor skill’s
score, to generate a fused ET product
using combinations of the GLDAS,
GLEAM, MOD16, and MERRA
datasets.

Chang et al.
(2018)

China Integration of wind speed and
vegetation height to estimate
aerodynamic resistance, using the
Fisher et al. method. (Fisher et al.,
2008), to constrain temperature and
humidity for stomatal conductance,
and reduce soil evaporation
uncertainties.

He et al.
(2019)

United States (CONUS) Calibration for agricultural land,
model parameters according to crop
types, and finer-scale satellite
vegetation data incorporation.

Zhang et al.
(2019)

Global Application of the sensitivity analysis
method, and use of the Markov chain
method of differential evolution for
each key parameter in various
biomes, to obtain an optimised
model.

Dias et al.
(2021)

Brazil Use of 8 regression algorithms
(multiple linear regression, random
forest, cubist, partial least squares,
principal components regression,
adaptive forward-backwards greedy,
generalised boosted regression, and
generalised linear model by
likelihood-based boosting) and
machine learning.

Brust et al.
(2021)

United States Use of SMAP soil moisture to
constrain ET and local observations to
calibrate ET.

Astuti et al.
(2022)

Brantas River Basin,
Indonesia

Application of an artificial neural
network and machine learning to
characterise the spatiotemporal
patterns of ET in the basin.

Liu et al.
(2022)

Central China Integrates NDWI as a soil moisture
adjustment, making improvements
for estimating soil surface resistance
and stomatal conductance.

Lu et al.
(2022)

Three different scenic
areas in China

Spatial downscaling based on the
correlation between surface ET
differences and corresponding land
cover types and spectral mixture
analysis theory.

Xue and Ko
(2022)

South Korea, Japan,
China, Philippines, India,
Spain, Italy, and the USA

Sensitivity analysis of the MOD16
model and parameter optimization

(continued on next page)
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ranges from below 10 ◦C to greater than 26 ◦C (Gadelha et al., 2019).

3. Material and methods

3.1. Development of the ESTIMET model

MOD16 ET, and its adaptation under the ESTIMET algorithm, is

based on the Penman-Monteith equation (Monteith, 1965; Mu et al.,
2011). Both models estimate the latent heat flux density (λE; W m− 2),
allowing for the calculation of the total daily ET (mm) from the con-
version factor, corresponding to the sum of evaporation from the wet
canopy surface (λEwet), the transpiration from vegetation with a dry
surface (λEtrans), and the soil evaporation (λEsoil) (Mu et al., 2011;
Running et al., 2017) (Eq. (1)):

λE = λEwet + λEtrans + λEsoil =
sA+ ρCp(es − ea)

/
ra

Δ + γ
(

1+ rs
ra

) (1)

where Δ is the slope of the curve relating saturated water vapour pres-
sure to temperature (kPa ◦C− 1), A is the available energy (W.m− 2), ρ is
the air density (kg.m− 3), Cp is the specific heat capacity of air at a
constant pressure (J kg− 1 ◦C− 1), ea is the actual water vapour pressure
(kPa), es is the saturated water vapour pressure (kPa), rs is the surface
resistance (s/m), ra is the aerodynamic resistance (s/m), and γ is the
psychrometric constant (kPa ◦C− 1).

Similar to Mu et al. (2011), ESTIMET also considers daytime and
night-time ET. We modified specific procedures to adopt a more local/
regional algorithm that can be applied daily and provide accurate ET

Table 1 (continued )

Study Region Enhancements

strategies (Radiation and
temperature, and LAI and Rn).

Guo et al.
(2023)

China Restrictions of moisture based on the
ratio of antecedent accumulated
precipitation to soil evaporation
balance.

Kumar et al.
(2023)

Kangsabati River Basin
(India)

Use of a Genetic Algorithm (GA),
inspired by natural selection, to
determine whether a string will
participate in the reproduction
process, and thus improve the fit to
local conditions.

Fig. 1. (a) Brazilian biomes and (b) Köppen climate classification for Brazil, according to Alvares et al. (2013), showing the spatial distribution of the 14 eddy
covariance flux towers (red triangles) and the 25 catchments (black dots) used for this study. (c) Data availability in the flux towers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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estimates under all sky conditions (Fig. 2), as detailed in the following
subsections. These modifications are essential to capture ET’s spatial
and temporal variability in Brazilian regions, where climate dynamics
and vegetation cover vary significantly. We included calculations of the
net radiation, vegetation cover fraction, surface albedo, and vegetation
indexes. Furthermore, higher resolution spatiotemporal meteorological
data were incorporated as input for obtaining the ET product, as well as
information on LULC which is more adjusted to the vegetation charac-
teristics in Brazilian forests. The model’s modifications were performed
to adapt the algorithm to these new higher resolution or improved input
datasets.

3.1.1. Changes in canopy conductance and plant transpiration
Canopy conductance and plant transpiration are important partitions

for ET and play an essential role in the Penman-Monteith method
(Shuttleworth and Wallace, 1985; Chang et al., 2018). MOD16A2GF ET
uses the leaf area index (LAI) to scale stomatal conductance (Cs, leaf
level) up to canopy conductance (Cc, surface level) (Landsberg and
Gower, 1997). Stomatal conductance is mainly expressed as a function
of minimum air temperature (Tmin) and vapour pressure deficit (VPD),
as follows (Oren et al., 1999; Xu and Baldocchi, 2003) (Eq. (2); Eq. (3)):

CS = CL*m(Tmin)*m(VPD) (2)

CC = CS*LAI*(1 − fwet) =
1
rs

(3)

where CL and fwet correspond to the mean potential stomatal conduc-
tance per leaf unit area (m/s) and the water cover fraction (unitless)
obtained from Fisher et al. (2008), respectively, while m(Tmin) and m
(VPD) are limiting factors of potential stomatal conductance for mini-
mum air temperatures and VPD high enough to reduce canopy
conductance, respectively. This step was estimated from a ratio estab-
lished by Running et al. (2017), using parameterised values for each
land cover type (Table 2).

The MOD16A2GF algorithm uses two remote-sensing products as
input for calculating the canopy conductance and plant transpiration.
First of all, CL, VPD (open indicates no inhibition to transpiration and
close indicates nearly complete inhibition with full stomatal closure),
and Tmin (open and close) parameters were set differently, according to
the biome type from the MODIS Land Cover Type (MCD12Q1) product,
which globally provides data characterising 12 land cover at 500-m
spatial resolution. Because the values of these parameters can signifi-
cantly affect the calculation of plant transpiration, algorithm accuracy is
essentially driven by the quality of that classification (Ruhoff et al.,
2013). Hence, the global representation of the MCD12Q1 product,
associated with the limited number of classes covering the globe, inev-
itably mischaracterises or ambiguously renders some local/regional

Fig. 2. Flowchart of the ESTIMET algorithm, indicating the adjustments made in this study, in relation to the MOD16A2GF product (adapted from Mu et al., 2011).
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variations of LULC (Jung et al., 2006).
Regional LULC classification allows us to account for the more spe-

cific characteristics and landscape complexity of some regions (Jung
et al., 2006). A multi-institutional initiative launched in 2015, namely
the MapBiomas Project (http://mapbiomas.org), provides annual
national-level LULC maps for the whole of the Brazilian territory with
30 m spatial resolution. This project has data from 1985 to the present,
based on a pixel-per-pixel automatic classification of Landsat images.
Therefore, to fit more regional/local information, adjusted to the char-
acteristics of the Brazilian vegetation, we merged the 33 LULC types
available from the MapBiomas project into seven classes of similar
characteristics, to match the biophysical parameters proposed by
Running et al. (2017) (Table 2) and preserve the heterogeneity of Bra-
zilian land use and coverage.

In addition, MOD16A2GF ET uses LAI information fromMOD15A2H,
an 8-day composite product generated at a spatial resolution of 500 m.
This implies that LAI does not vary during a given 8-day period and
helps to provide information with less cloud contamination. However, in
some tropical regions, such as Brazil, the frequency of cloud cover is
high, which often leads to incorrect ET estimates (Running et al., 2017).
To deal with the cloud cover issue and increase the spatial resolution to
250 m, the ESTIMET algorithm uses the soil-adjusted vegetation index
(SAVI) proposed by Huete (1988) to compute LAI from both 8-day
MOD09Q1 (Terra Satellite) and MYD09Q1 (Aqua Satellite) reflectance
products, with a 250 m spatial resolution (Eq. (4) and Eq. (5)):

LAI = −

ln
(
0,69− SAVI

0,59

)

0, 91
(4)

SAVI =
(1+ L)(r2 − r1)
(L+ r2 + r1)

(5)

where r1 and r2 are the spectral reflectance of the bands 1 (red) and 2
(near-infrared) of the MOD09Q1 and MYD09Q1 products, and L is an
adjustment factor. In this study, the adjustment factor is equal to 0.1, the
same used by Silva et al. (2015) in a study carried out in Brazil. To
exclude the impact of as much cloud cover as possible, the SAVI data
calculated from both MOD09Q1 and MYD09Q1 were composed
monthly, based on the selection of pixels with higher values obtained

from the eight images made available each month (i.e. four from
MOD09Q1 and four from MYD09Q1), assuming that clouds possibly
contaminated the lower or negative values of this biophysical param-
eter. This overlapped monthly SAVI was considered to be a fixed bio-
physical input parameter for each month, used to estimate the daily ET.

3.1.2. Changes in vegetation cover fraction
To distinguish the net radiation between the canopy and the soil

surface, the cover fraction (FC) information is required, varying from
0 to 1. The latest version of the MOD16 product uses the 8-day infor-
mation from MOD15A2H (FPAR, the Fraction of Absorbed Photosyn-
thetically Active Radiation) product with 500 m spatial resolution, as a
substitute for FC (Mu et al., 2011; Running et al., 2017). As an alterna-
tive, Cleugh et al. (2007) used the Normalised Difference Vegetation
Index (NDVI) to calculate FC. Still, this vegetation index is very sensitive
to background canopy variations and atmospheric influences (Huete
et al., 2002). Conversely, Mu et al. (2007) calculated FC in the
MOD16A2GF, replacing NDVI with Enhanced Vegetation Index (EVI), to
adjust the background canopy and reduce the atmospheric influence (i.
e. with the use of three reflectance bands, including blue). To reduce the
pixel size and deliver a final ET product with 250 m spatial resolution,
we calculated the FC using the 2-band EVI (EVI2), as suggested by Jiang
et al. (2008). Unlike EVI, EVI2 only uses red and infrared bands but
presents satisfactory results, especially when atmospheric effects are
insignificant or corrected (Bolton and Friedl, 2013; Rocha and Shaver,
2009), making it possible to use the MOD09Q1 and MYD09Q1 products
(Eq. (6) and Eq. (7)):

FC =
EVI2 − EVI2min
EVI2max − EVI2min

(6)

EVI2 = 2, 5×
r2 − r1

r2 + 2,4r1 + 1, 0
(7)

where EVI2min is the signal from bare soil (LAI → 0) and EVI2max is the
signal from dense green vegetation (LAI → ∞) during the study period;
these are generally set as invariant constants varying between 0.05 and
0.95, respectively. Similar to the SAVI procedures, EVI2 was also
considered a fixed input parameter throughout the month, using the
highest values obtained from the eight available MOD09Q1 reflectance

Table 2
Land cover types provided by the MapBiomas project for Brazil and reclassified in this study through the joint of classes, with their respective biophysical parameters
according to Running et al. (2017).

MapBiomas classes (ID) Reclassification Tminclose
(◦C)

Tminopen
(◦C)

VPDopen
(Pa)

VPDclose
(Pa)

glsh
(m/
s)

gle wv
(m/s)

gcu (m/
s)

CL (m/
s)

rblmin
(s/m)

rblmax
(s/m)

Forest (1); Forest Formation (3);
and Forest Plantation (9)

Evergreen
Broadleaf Forest
(EBF)

-8 9.09 1000 4000 0.01 0.01 0.00001 0.00240 60 95

Farming (14); Pasture (15);
Temporary Crop (19); Sugar Cane
(20); and Mosaic Agriculture and
Pasture (21)

Croplands (Crop) -8 12.02 650 4500 0.02 0.02 0.00001 0.00550 60 95

Mangrove (5) Mixed forests
(MF)

-7 9.50 650 2900 0.01 0.01 0.00001 0.00240 60 95

Savanna Formation (4);
Non-Forest Natural Formation
(10); Wetlands (11);
Grassland (12); and
other Non-Forest Formations (13)

Savannah -8 11.39 650 3600 0.04 0.04 0.00001 0.00550 60 95

Urban Area (24) Non-vegetated
Area

0 0 0 0 0 0 0 0 0 0

Water (26); River; Lake and Ocean
(33); and Aquaculture (31)

Water 0 0 0 0 0 0 0 0 0 0

Salt Flat (32); Non-vegetated Area
(22); Beach, Dune, and Sand Spot
(23); Rocky Outcrop (29); Mining
(30); and other Non-Vegetated
Areas (25)

Other Non-
vegetated Area

0 0 0 0 0 0 0 0 0 0

C.M.A. Claudino et al.
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products and assuming that the lower values reflect clouds.

3.1.3. Changes in net incoming radiation to the land surface
In the MOD16A2GF ET algorithm, the net incoming radiation to the

land surface (Rnet) is calculated following Mu et al. (2011), using the
same equation stemming from Mu et al. (2007) and Cleugh et al. (2007)
(Eq. (8)).

Rnet = (1 − α) RS↓ +σ (εa − εs) (273.15+ T)4 (8)

where α corresponds to the surface albedo, RS↓ is the downward short-
wave of incoming radiation, σ is the Stefan-Boltzmann constant (5,67 ×

10− 8 W m− 2 K− 4), εs is surface emissivity, εa is atmospheric emissivity,
and T represents the air temperature in ◦C.

The original algorithm obtains α from the 8-day composite
MCD43A2/A3 product with 500 m of spatial resolution. This evaluation
may suffer from cloud contamination, resulting in a dramatically
increased α (Running et al., 2017). To minimise this risk, we made use of
the two 250 m reflectance bands of the MOD09Q1 product to calculate
α, as proposed by Teixeira et al. (2013) (Eq. (9)):

α = a+br1 + cr2 (9)

where a, b, and c are regression coefficients obtained by comparing
remote sensing and field measurements. The values of a, b and c found
by Teixeira et al. (2013), for the Caatinga biome, were 0.08, 0.41, and
0.14, respectively. Since these values are not available in the literature,
for the other Brazilian biomes, three flux towers (EUC, FM, and K34; see
paragraph 3.2 for their descriptions), which are distributed throughout
the country and located in the other Brazilian biomes, were used to
obtain their respective regression coefficients (Table 3). The same
regression coefficients used for the Amazon and Pantanal biomes were
considered for the Atlantic Forest and Pampa biomes, respectively, due
to the absence of free available flux tower data for these two biomes and
the most similarities between them. Similar to SAVI and EVI2, the
monthly composition of α was also considered in this step, to reduce the
influence of clouds in the ET estimates, using the lowest values obtained
from the eight MOD09Q1 reflectance products available within 30 days
and assuming that the highest values were possibly contaminated by
clouds. Such monthly compositions applied to the vegetation indexes
and surface albedo lead to a maximum latency of one month after the
event for ESTIMET, remaining much lower than the one-year latency of
the MOD16A2GF product.

In addition, contrasting with the original MOD16 ET algorithm,
which considers surface emissivity (εs) as a constant parameter of 0.97,
this study used the following empirical equation by Allen et al. (2007),
integrating the effects of LAI and NDVI and calculated from the two
reflectance bands of the MOD09Q1 product (Eq. (10)):

εs = 0.95+0.01 LAI (10)

with εs = 0.98 when LAI > 3 and εs = 0.99 when NDVI <0 (Eq. (11)).

NDVI =
r2 − r1
r2 + r1

(11)

3.1.4. Changes in the meteorological forcing data
The global meteorological reanalysis data MERRA-2, provided by

NASA’s Global Modelling and Assimilation Office (GMAO), with a
spatial resolution of 0.5◦ x 0.6◦ or 1.0◦ x 1.25◦, were used as input to the
original MOD16 algorithm (Mu et al., 2011; Mu et al., 2007; Running
et al., 2017). MERRA-2 incorporates ground-based and satellite-based
observations and provides information with a 6-h resolution. Howev-
er, some studies have emphasised that some uncertainties of the MOD16
product may be mainly due to the coarse spatial resolution of the
MERRA-2 climate database (Ruhoff et al., 2013; Ramoelo et al., 2014;
Zhang et al., 2016; Chang et al., 2018). For instance, Chang et al. (2018)
found a considerably lower performance of MOD16 driven by GMAO
data, compared to the same algorithm driven by observation data, which
suggests that the reanalysis data led to substantial errors in the ET
estimation. Indeed, high-quality meteorological data are required for
accurate flow retrievals which differentiate microclimates, although
spatial resolution requirements may be less stringent than for other land
surface variables (Fisher et al., 2017). Unlike the original algorithm, we
used the ERA5-Land meteorological dataset (ECMWF Climate Rean-
alysis) to obtain hourly information of T and dew point T at 2 m levels
(‘temperature_2m’ and ‘dewpoint_temperature_2m’), and surface at-
mospheric pressure (‘surface_pressure’) with 0.1◦ x 0.1◦ spatial resolu-
tions (Muñoz, 2019). In parallel, downward shortwave solar radiation
was retrieved from GLDAS 2.1 (Global Land Data Assimilation System –
Noah), making this variable available with 3-h and 0.25◦ resolutions
(Rodell et al., 2004). The ERA5-Land and GLDAS 2.1 meteorological
dataset was evaluated in Brazil (Araújo et al., 2022; Matsunaga et al.,
2024) and other regions (Liu et al., 2024; Vicente-Serrano et al., 2010;
Wang et al., 2024; Zou et al., 2022), mostly presenting improved results
compared with MERRA-2 (Kara and Elbir, 2024; Liu et al., 2025; Zuo
et al., 2023). We also found that T and solar radiation values from ERA-5
Land and GLDAS 2.1 are closest to the observed data recorded in some
flux towers in Brazil, when compared with MERRA-2 (Fig. S1). Addi-
tionally, meteorological data from ERA5-Land and GLDAS 2.1 were also
used as input by other algorithms and products to estimate ET, such as
geeSEBAL-MODIS (Andrade et al., 2024a), STEEP (Seasonal Tropical
Ecosystem Energy Partitioning) (Bezerra et al., 2023), and PML_V2
(Penman-Monteith-Leuning Evapotranspiration, Version 2) (Zhang
et al., 2019).

3.2. Model evaluation

3.2.1. Local scale
We compared daily and 8-day accumulated ET estimates from orbital

remote sensing with the eddy covariance (EC) data from flux towers at
14 sites throughout Brazil (Fig. 1). The towers belong to the AmeriFlux
network, EMBRAPA (Brazilian Agricultural Research Cooperation), and
three universities (the University of São Paulo – USP, the Federal Uni-
versity of Mato Grosso – UFMT, and the Federal University of Mato
Grosso do Sul – UFMS). These flux towers represent all of the main
climate zones and almost all the terrestrial biomes found in Brazil. The
land covers of the EC sites include both the natural vegetation of the
Brazilian Biomes and anthropised environments, such as irrigated
croplands, pasture, and eucalyptus plantations.

The EC method is accepted as being the most reliable technique for
the direct and continuous measurement of sensible (H) and latent (LE)
heat fluxes (Sun et al., 2013). The EC data used in this study, and
considered to be observed ET (ETObs), were obtained for different years,
ranging from 2003 to 2021, according to their availability (Fig. 1b). The
altitude of the studied sites ranged from 90 to 710 m above sea level
(Table 4).

For comparison, half-hour EC measurements were used to compute
daily and 8-day flux data. In parallel, to achieve the spatial represen-
tativeness of the measured data for each site, daily values of ET (esti-
mated by ESTIMET) were spatially averaged over a 750 × 750 m
window, centred at each flux tower to ensure the spatial

Table 3
Regression coefficients obtained for each biome using the data from the flux
towers and used for estimating surface albedo (α).

Biome Flux tower a b c

Amazon K34 0.118 − 0.016 0.016
Atlantic Forest – 0.118 − 0.016 0.016
Caatinga – 0.08 0.41 0.14
Cerrado PDG 0.124 − 0.009 0.043
Pantanal FM 0.168 − 0.032 0.117
Pampa – 0.168 − 0.032 0.117

C.M.A. Claudino et al.
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representativeness of the estimations for each site (Ruhoff et al., 2012).
ET product data fromMOD16A2GF Version 6.1, covering the image cells
of the proposed algorithm at the flux tower sites, were also used for
comparison. Additionally, ESTIMET was compared with two other
consolidated global satellite-based ET products at a local scale: (i)
version 4.1a of the Global Land Evaporation Amsterdam Model (GLEAM
4.1a) product, which is based on a set of algorithms and also uses
reanalysis data to provide daily ET with grid cells of 0.1◦ x 0.1◦ (~10
km); and (ii) version 02 of the Penman-Monteith-Leuning Evapotrans-
piration (PML_V2) product, which provides ET at 500 m (spatial) and 8-
day (temporal) resolutions. As MOD16A2GF and PML_V2 are 8-day
composite products at a 500 m pixel resolution, we accumulated the

daily values initially obtained from ESTIMET, GLEAM 4.1a, and the EC
systems, to produce the 8-day values. Days with imbalances ≤0.75 or ≥
1.25 in the surface energy balance ratio were disregarded for the ETObs
computation to ensure the quality of the data used for the comparison.
For the same reasons, we excluded the days with precipitation >0.5 mm
from the daily-based comparisons. For the accumulated 8-day compar-
isons, only the ETObs data featuring less than 50 % of rainy days in each
8-day window were considered for the comparison with ESTIMET and
the other three products. In order to identify the rainy days and analyse
the response of remotely sensed ET (i.e. the ET variation in dry and wet
seasons), we used rainfall data from automatic rain gauges associated
with the flux towers.

Table 4
Main characteristics of the eddy covariance (EC) sites used in this study.

Location Code Latitude,
Longitude
(WGS84)

Biome Climate Land cover Altitude
(m)

Ecological description Reference

Serra Negra do
Norte, Rio
Grande do Norte

ESEC − 6.578,
− 37.251

Caatinga Bsh Savanna 205 Conservation unit of the Caatinga biome,
characterised by dry xerophilous forest and
deciduous plant species, presenting predominance of
widely dispersed small trees and shrubs with less
than 7 m in height and herb patches, which develop
and grow only during the wet season.

(Campos et al.,
2019)

Serra Talhada,
Pernambuco

CST − 7.968,
− 38.384

Caatinga Bsh Savanna 468 Vegetation characterised by bushes and trees typical
of the Caatinga biome, where cattle graze during part
of the year. This site is considered preserved and
representative of the dry forests of this region.

(Souza et al.,
2016; Silva et al.,
2017)

Petrolina,
Pernambuco

CAA − 9.047,
− 40.321

Caatinga Bsh Savanna 391 A region characterised by dry and spiny deciduous
shrub/forest vegetation, without anthropogenic
activities.

(Souza et al.,
2016)

São João,
Pernambuco

SJO − 8.81,
− 36.41

Atlantic
Forest

As Agriculture 702 Cultivated area with signal grass (Brachiaria
decumbens Stapf) intercropped with maize (Zea mays
L.) to recover the pasture.

(Machado et al.,
2016; Souza
et al., 2016)

Ribeirão Preto, São
Paulo

EUC − 21.583,
− 47.6

Cerrado Cwa Agriculture 710 Presence of a Eucalyptus plantation (Eucalyptus
urophylla x Eucalyptus grandis clonal hybrid), whose
trees were two years old in 2006 and the average
canopy-top height was 12 m.

(Cabral et al.,
2011)

Luíz Antônio, São
Paulo

PDG − 21.621,
− 47.63

Cerrado Cwa Forest 710 Natural vegetation of Cerrado, surrounded by
eucalyptus and sugarcane plantations.

(Cabral et al.,
2015)

Luís Antônio, São
Paulo

USR − 21.637,
− 47.79

Cerrado Cwa Agriculture 541 Sugarcane plantation, surrounded by pasture, citrus
fruit orchards, and the native savanna forest
(Cerrado).

Cabral et al.,
2012)

Araguaia,
Tocantins

BAN − 9.824,
− 50.159

Cerrado Aw Forest 168 A floodplain area covered by Cerrado (Brazilian
savanna), whose ecosystem is composed of
semideciduous forests, a high woodland savanna
with 18 m canopy height and sparse shrubs, and a
dense Cerrado with 5 m height trees and grass
understory.

(Borma et al.,
2009)

Itirapina, São
Paulo

IAB − 22.10,
− 47.52

Cerrado Cwa Forest 780 An area of undisturbed woodland, 300 ha, with
vegetation physiognomy of Cerrado woodland, trees
with heights of 5–8 m, and absolute density of trees
with 13,976 individuals per hectare.

(Oliveira et al.,
2015)

Fazenda Miranda,
Mato Grosso

FM − 15.716,
− 56.067

Pantanal Aw Agriculture 154 A mixed forest-grassland that was partially cleared of
trees over 35 years ago. The predominant vegetation
includes grasses and tree species, especially
C. americana and Diospyros hispida A. DC.

(Rodrigues et al.,
2014)

Pantanal, Mato
Grosso

NPW − 16.498,
− 56.412

Pantanal Aw Savanna 120 A preserved area of the Pantanal biome, which is a
seasonally flooded forest dominated by Combretum
lanceolatum (Combretaceae) with a small presence
of macrophytes fixed and rooted to the soil with
floating leaves that emerge during the flood cycle.
The forest cover height exceeds 2 m.

(Dalmagro et al.,
2018;
Vourlitis et al.,
2019)

Manaus, Amazonas K34 − 2.609,
− 60.209

Amazon Af Forest 90 An area of largely contiguous forest on flat terrain,
with a closed canopy and a mean height of
approximately 40–45 m, with some trees reaching up
to 55 m. Forest classified as ‘primary’ with abundant
large logs, numerous epiphytes, an uneven age
distribution, and emergent trees.

(Hutyra et al.,
2007)

Santarém, Pará K83 − 3.02,
− 54.97

Amazon Am Forest 181 A tropical rainforest near the confluence of the
Tapajós and Amazon rivers. The site was selectively
logged in September 2001, becoming a logged forest.

(Paca et al., 2019;
Miller et al.,
2004)

Sinop, Mato Grosso SIN − 11.412,
− 55.325

Amazon Am Forest 349 A vast expanse of humid forest, with dense forest
cover and large trees that form a closed canopy and
reach heights that often exceed 30 m.

(Vourlitis et al.,
2008)

C.M.A. Claudino et al.
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3.2.2. Catchment scale
The annual performance of ESTIMET was also evaluated at a catch-

ment scale. A multi-criteria step was applied for the selection of these
catchments. First, we filtered non-nested catchments in each biome with
a total area of 1–5 km2 and without substantial surface water reservoirs.
After this first criterion, we selected five catchments from each biome
which contained more natural land cover area and presented high Kling-
Gupta Efficiency (> 0.5) during the calibration and validation of the
simulated streamflow performed by Andrade et al. (2024b). As no
streamflow data were available for Pantanal, this biome was not
included in this evaluation, giving a total of 25 catchments. The total
annual ET at the catchment scale (ETCatch) was calculated as a residual of
the water balance between 2003 and 2009 (Eq. (12)):

ETCatch = P − Q − SΔT (12)

where P is the observed catchment-scale total annual precipitation
(mm), Q represents the observed annual streamflow at the catchment’s
outlet (mm), and S represents annual changes in the catchment’s water
storage (mm).

P and Q data were obtained from the Catchment Attributes for Brazil
(CABra) dataset (Almagro et al., 2021), while S was derived from the
Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004)
by calculating the average of the three equivalent water thickness
products from GFZ (GeoForschungsZentrum Potsdam), CSR (University
of Texas Centre for Space Research), and JPL (NASA’s Jet Propulsion
Laboratory). The calculation of the annual water balance was based on
the hydrological year. We identified the start of the rainy season by
decomposing the monthly precipitation time series from each catch-
ment, using the seasonal component of an additive data series decom-
position method (Kendall and Stuart, 1983), available through the
‘decompose’ function (R Core Team, 2017). This method separates the
series into three parts, namely the ‘trend’, ‘seasonality’, and ‘noise’. The
seasonality was transformed into a binary vector, assigning 1 to rainy
months and 0 to dry months. The transition from the dry season to the
rainy season was identified by detecting a change from 0 to 1, marking
the beginning of the rainy season. The month corresponding to this
change was recorded as the starting point of the rainy period.

3.2.3. Evaluation metrics
We used three statistical metrics to evaluate the ESTIMET algo-

rithm’s (ETESTIMET) performance regarding the ground-based and water
balance measurements. We also compared its performance with the
global satellite-based ET products, including the MOD16A2GF data
(ETMODIS).

To measure both the precision and accuracy between the ET esti-
mates and observations, we computed the concordance correlation co-
efficient (ρc), which evaluates how well bivariate data falls on the 1:1
slope (Eq. (13)).

ρc = 2
∑N

i=1(Oi − Ō)(Ei − Ē)
∑N

i=1(Oi − Ō)2 +
∑N

i=1(Ei − Ē)2 + (N − 1)(Ō − Ē)2
(13)

where N is the sample size, O is the observed value, E is the estimated
value, Ō is the observed mean and Ē is the estimated mean. The metric
presents values varying between − 1 and 1, with desirable values close to
1, which indicates perfect agreement.

To evaluate the algorithm’s errors against the ETObs and ETCatch data,
we used: (1) the Percent Bias (PBIAS), which measures the trend as a
percentage of estimated values in relation to observed values (Eq. (14));
and (2) the root mean square error (RMSE), which gives the sample
standard deviation of the differences between ETs (Eq. (15)).

PBIAS =

[∑N
i=1(Mi − Oi)
∑N

i=1Oi

]

x 100 (14)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Mi − Oi)
2

N

√

(15)

The metrics of this second group range from 0 to +∞] (RMSE) and
from -∞ to +∞ (PBIAS), with more desirable numbers close to 0 indi-
cating smaller errors in the estimated values, in relation to the ET ob-
tained from flux towers.

4. Results

4.1. Daily based evaluation of ESTIMET at the local scale

Fig. 3 shows the daily variations of ETESTIMET, ETObs, and precipita-
tion. Overall, the daily ETESTIMET similarly tracks seasonal fluctuations
in ETObs, with most curves showing an upward trend during the wet
season and a downward trend during the dry season. In the Caatinga
biome, very similar variations of ETESTIMET were observed (Fig. 4a-c),
especially at the ESEC (ETESTIMET= 1.15mm/day and ETObs= 1.10 mm/
day, on average) and CST (ETESTIMET = 1.17 mm/day and ETObs = 0.98
mm/day, on average) sites. In contrast, some differences occurred at
CAA (ETESTIMET= 2.17 mm/day and ETObs= 1.91 mm/day, on average),
mainly in March 2011 (rainy season), which was characterised by
greater gaps of ETObs. Similar concurrent variations of ET were also
observed at the SJO site, although average ETESTIMET (2.39 mm/day, on
average) was ~90 % greater than ETObs (1.25 mm/day, on average)
during the rainy period (April–September) (Fig. 3d).

In the Cerrado biome (Fig. 3e-i), the ETESTIMET and ETObs remarkably
overlapped over the three years of continuous monitoring at the PDG
site (ETESTIMET = 2.64 mm/day and ETObs = 3.30 mm/day, on average).
Conversely, notably lower and slightly greater values of ETESTIMET were
identified at the BAN (ETESTIMET = 1.05 mm/day and ETObs = 3.85 mm/
day, on average) and USR (ETESTIMET 3.75 mm/day and ETObs = 2.89
mm/day, on average) sites in the Cerrado biome during the dry
(May–September) and rainy (October–March) seasons, respectively. In
the Pantanal biome, daily ETESTIMET at the NPW (4.94 mm/day, on
average) site followed the seasonal fluctuations of ETObs (4.03 mm/day,
on average), with some overestimations from October to April during
the rainy season (ETESTIMET = 6.90 mm/day and ETObs = 4.70 mm/day,
on average). At the FM site, the ETESTIMET (1.73 mm/day, on average)
was also close to ETObs (1.70 mm/day, on average) but exhibited small
underestimates in the dry period (May–September) (ETESTIMET = 0.70
mm/day and ETObs = 1.22 mm/day, on average). For the Amazon
biome, although ~62, ~74 and 93 % of the time series of the three flux
towers (SIN, K83 and K34, respectively) were missing, a good overlap
was observed between the ETESTIMET and ETObs, especially at K34
(ETESTIMET = 3.23 mm/day and ETObs = 3.76 mm/day, on average) and
K83 (ETESTIMET = 3.80 mm/day and ETObs = 3.99 mm/day, on average)
(Fig. 3l-n). Nevertheless, during the driest period at SIN (from June to
September), differences of ~40 % between the ET values estimated by
the two sources were observed (ETESTIMET = 1.69 mm/day and ETObs =
2.82 mm/day, on average).

Fig. 4 shows the scatterplots with the metrics to compare the daily
similarity between ETESTIMET and ETObs, statistically. Overall, the ET
variability was well estimated by ESTIMET, with ρc values varying be-
tween 0.45 (EUC; Cerrado) and 0.80 (ESEC; Caatinga) at eight control
sites. For some sites presenting ρc values lower than 0.45, the clouds of
points were nevertheless concentrated close to the lines of equality, as
observed at K34 (ρc= 0.23) and SIN (ρc= 0.28), in the Amazon. At eight
control sites, ESTIMET appears to underestimate ET (ESEC, EUC, PDG,
BAN, IAB, FM, K34, and SIN), while at the other six sites, ET appeared to
be overestimated, compared to EC evaluations (CST, CAA, SJO, K83,
USR, and NPW), as shown by the trend lines above and below the lines of
equality, respectively.

ESTIMET exhibited better overall performance at the Caatinga sites
(Fig. 4a-d), with ρc values ranging from 0.46 to 0.80 (ρc = 0.62, on
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average). Satisfactory ρc values of ETESTIMET were also obtained for the
Pantanal (Fig. 4j-k) (ρc= 0.45, on average) and Cerrado (Fig. 4e-i) (ρc=
0.41, on average) biomes. On the other hand, the lowest agreements
between daily ETESTIMET and ETObs were noted for the sites in the
Amazon biome (Fig. 4l-n), with a mean value of ρc equal to 0.22 (0.28
for SIN, 0.23 for K34, and 0.15 for K83).

Compared to the ETObs data, ETESTIMET only showed positive PBIAS
at CST, SJO, and USR, and negative PBIAS at ESEC, CAA, EUC, PDG,
BAN, IAB, FM, NPW, K34, K83, and SIN. This suggests that there is a
more general trend of underestimations of daily ET (Fig. 5). The ETES-
TIMET at K83 (PBIAS = − 4.00 %; Amazon) and CST (PBIAS = 7.78 %;
Caatinga) exhibited the lowest negative and positive biases,

Fig. 3. Daily evapotranspiration (mm) obtained by the Eddy Covariance method (ETObs) and modelled by the ESTIMET algorithm (ETESTIMET), plotted with the daily
precipitation data (mm) obtained by the flux towers located in the Caatinga (ESEC, CST, CAA, and SJO), Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and
NPW), and Amazon (K34, K83, and SIN) biomes.

C.M.A. Claudino et al.
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respectively. Conversely, the highest positive and negative biases of
ETESTIMET were identified for the USR (PBIAS = 26.95 %) and BAN
(PBIAS = − 56.45 %) sites in the Cerrado biome. The daily values of
RMSE varied between 0.66 mm/day (ESEC; Caatinga) and 3.08 mm/day
(IAB; Cerrado), with the highest average values for Cerrado (average
RMSE = 2.06 mm/day) and the lowest for Caatinga (average RMSE =

0.96 mm/day).

4.2. 8-day based evaluation of ESTIMET at local scale

To assess the performance of the model in comparison to the global
satellite-based ET products (MOD16A2GF, PML_V2, and GLEAM 4.1a),
we further evaluated the quality of daily ETESTIMET accumulated at 8-
days against the ground-based measurements (ETObs). Overall, similar
behaviour was identified between the ETESTIMET and ETMODIS values,
especially in the Caatinga, Cerrado, and Pantanal biomes (Fig. 6). When
compared to MOD16A2GF, ESTIMET showed an improved linear rela-
tionship with the EC-based ET values for six flux towers (i.e. ESEC and
SJO in Caatinga; EUC, PDG, and IAB in Cerrado; and NPW in Pantanal),
with higher values of ρc (0.93 vs 0.88, 0.61 vs 0.50, 0.51 vs 0.34, 0.68 vs
0.63, 0.37 vs 0.18, and 0.33 vs 0.24, respectively) (Fig. 7). Conversely,
ESTIMET presented lower values of ρc (0.54 vs 0.61, 0.77 vs 0.85, 0.69
vs 0.81, 0.05 vs 0.21, 0.05 vs 0.21, 0,42 vs 0.45, 0.01 vs 0.38, 0.02 vs
0.09, and 0.30 vs 0.50) when compared to the estimations of MOD16-
A2GF at eight control sites (i.e. CST and CAA in Caatinga, USR and BAN
in Cerrado, FM in Pantanal, and K34, K83, and SIN in the Amazon,

respectively). Although presenting lower linear relationships with the
ETObs in these sites, ETESTIMET also reached high or similar values of ρc at
CST, CAA, USR, and FM. At the same time, at K34, K83, and SIN, the
number of samples was low (i.e. 9, 15, and 19, respectively) for this 8-
day ET aggregation, hampering a more in-depth analysis.

The smallest bias between the accumulated 8-day ETESTIMET and
ETObs was found at the NPW (PBIAS = − 3.28 %; Pantanal) and K83
(PBIAS = 0.56 %; Amazon) sites, while the largest was at BAN (PBIAS =
− 58.92 %; Cerrado) (Fig. 5). MOD16A2GF presented its smallest accu-
mulated 8-day biases at CAA (PBIAS= 2.43 %; Caatinga) and its highest
at IAB (PBIAS = − 60.60 %; Cerrado). Overall, ETESTIMET presented a
mean PBIAS≤±13 % for six sites (ESEC, CST, IAB, NPW, K83, and SIN),
while this performance was reached for ETMODIS at seven sites (CAA,
SJO, EUC, PDG, USR, BAN, FM and K34) (Fig. 5d).

The lowest RMSE were observed at sites located in the Caatinga and
Pantanal biomes (i.e. ESEC, with RMSE = 3.32 mm/8-days; SJO, with
RMSE = 4.84 mm/8-days; and FM, with RMSE = 6.64 mm/8-days;
respectively) (Fig. 5c). When comparing the mean 8-day accumulated
RMSE data from ETESTIMET with that from ETMODIS, both were similar for
eleven sites (ESEC, CST, CAA, SJO, EUC, PDG, USR, FM, NPW, K83, and
SIN), with differences lower than 3mm/8-days and ETESTIMET presenting
the largest overall errors. The largest mean RMSE for the ETESTIMET es-
timations were found at the BAN (Cerrado) and NPW (Pantanal) sites
(RMSE = 19.64 and 16.98 mm/8-days, respectively).

The evaluation of ESTIMET andMOD16A2GF for all 14 experimental
sites indicates that both algorithms presented a reasonable performance

Fig. 4. Scatter plots of daily evapotranspiration modelled by the ESTIMET (ETESTIMET) algorithm versus the daily estimations obtained by the Eddy Covariance
(ETObs) method in the 14 flux towers located in the Caatinga (ESEC, CST, CAA, and SJO), Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and NPW), and
Amazon (K34, K83, and SIN) biomes. The metric ρc (concordance correlation coefficient) is shown, to statistically compare the similarity between the daily variations
of ETObs and ETESTIMET. N represents the sample size.
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for ET estimates (Fig. 8ab). However, using ESTIMET statistically
resulted in a slightly better performance in terms of similarity (ρc =

0.63) when compared to MOD16A2GF (ρc = 0.58). A higher value of ρc
was also observed for ESTIMET in comparison to PML_V2 (ρc = 0.45)
and GLEAM 4.1a (ρc = 0.47) when all experimental sites were consid-
ered (Fig. 8c-d). Overall, ESTIMET presented a better linear relationship
than PML_V2 and GLEAM 4.1a at ten and nine sites, respectively,
highlighting the best performance of ESTIMET, particularly at the
Caatinga and Cerrado sites. This was particularly the case when
compared with the PML_V2 product (Figs. S2 and S3). Regarding the
RMSE, ETESTIMET and ETMODIS presented lower values (13.21 and 12.68
mm/8-days, respectively) compared to the ET estimations by PML_V2
(13.25 mm/8-days) and GLEAM 4.1a (14.11 mm/8-days), considering
all of the experimental sites (Fig. 8). The lower values of RMSE for
ESTIMET were observed in 8 and 9 out of 14 sites, compared to PML_V2
and GLEAM 4.1a, respectively (Fig. S4). All products presented negative
values of PBIAS, with values closer to zero being observed for PML_V2
(− 8.83 %) and GLEAM 4.1a (− 12.18 %) when compared to ETESTIMET
(− 22.59 %) and ETMODIS (− 15.28 %) (Fig. 8). This was probably influ-
enced by the mutual annulment between positive and negative differ-
ences. When considering all metrics in the Taylor diagram (Fig. S5),
ESTIMET exhibits the best correlation, the second smallest RMSE, and
the standard error closest to the observations.

4.3. Annually based evaluation of ESTIMET at a catchment scale

Fig. 9 shows the scatterplots of annual accumulated ET modelled by
ESTIMET and the three global satellite-based ET products, compared to
the ETCatch calculated by the water balance in 5 Brazilian biomes. The
evaluations show that ETESTIMET presented higher values of ρc in the
Amazon (0.49), Atlantic Forest (0.37), and Cerrado (0.52) biomes when
compared to the other three products, which ranged from − 0.08
(GLEAM 4.1a) to 0.36 (MOD16A2GF) in the Amazon, from 0.02
(PML_V2) to 0.14 (GLEAM 4.1a) in Atlantic Forest, and from 0.01
(PML_V2) and 0.35 (MOD16A2GF) in Cerrado. Overall, ESTIMET also
exhibited low values of RMSE and PBIAS in the Amazon (RMSE =

170.77 mm/year and PBIAS -1.49 %), Atlantic Forest (RMSE = 152.99
mm/year and PBIAS 7.13 %), and Cerrado (RMSE = 164.57 mm/year
and PBIAS -10.75 %) biomes. This can be likened to the other satellite-
based products. For instance, the ET estimated by GLEAM 4.1a in the
Amazon presented elevated RMSE (301.60 mm/year).

A low similarity of all products with the water balance calculations
was observed in the Caatinga biome, with the emphasis on ESTIMET,
which presented ρc values close to 0 (− 0.01) and high RMSE (422.27
mm/year) and PBIAS (52.74 %). These pronounced discrepancies be-
tween the ETCatch and those estimated by the products in the Caatinga
biome were noted in three catchments (Fig. S5), with an overall ten-
dency for the satellite-based products to overestimate the ET calculated
by the water balance over the years, especially those modelled by
ESTIMET. Similar statistic metrics (i.e. ρc ≈ 0.10, RMSE ≈ 220 mm/
year, and PBIAS≈ 15%) were observed for the three Penman–Monteith-
based algorithms (i.e. ESTIMET, MOD16A2GF, and PML_V2) in the
Pampa biome, where GLEAM 4.1a stood out (ρc= 0.23, RMSE= 141.18
mm/year, and PBIAS = 3.05 %).

5. Discussion

5.1. Accuracy of ESTIMET in estimating ground ET in tropical biomes

The selection of ET products for scientific research requires consid-
eration of their different performances at a spatial scale, as well as the
influence of land cover and climate conditions (Zhu et al., 2022). Our
study indicates that the general trend is for ETESTIMET and ETMODIS to be
underestimated at a local scale, with most of the ET values presenting
the lowest PBIAS (Fig. 5 cd) and located above the 1:1 line in the scat-
terplots (Figs. 4 and 7). This is consistent with the findings from other
works performed in South America (e.g. Salazar-Martínez et al., 2022;
Andrade et al., 2024a). Similar to the study by Melo et al. (2021), which
evaluated four remote sensing-based ET models forced by ground-based
meteorological data in South America, EC-based analyses also found
that the best overall performance of the Penman–Monteith-based algo-
rithms was noted at sites located in semi-arid regions, such as the

Fig. 5. (a-b) RMSE and (c-d) PBIAS statistics for ESTIMET (ETESTIMET) and MOD16A2GF (ETMODIS) evapotranspiration data when compared to the Eddy Covariance
(ETObs) observations in the flux tower sites, on a (a-c) daily and (b-d) 8-day accumulated basis.
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Fig. 6. Accumulated 8-day ET (mm) modelled by the ESTIMET (ETESTIMET) and MOD16A2GF (ETMODIS) algorithms, compared to those obtained by the Eddy
Covariance method (ETObs), at the flux towers located in the (a-d) Caatinga, (e-i) Cerrado, (j-k) Pantanal, and (l-n) Amazon biomes. The measured daily precipitation
data (mm) at each site is also shown.
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Caatinga biome. For such a biome, the correlations of the daily ET es-
timations, obtained in our study using ESTIMET (ρc ranging from 0.46 to
0.80), were similar to, or better than, those in Bezerra et al. (2023). This
study used two remote sensing-based surface energy balancing algo-
rithms (i.e. SEBAL and STEEP) in three of the same flux towers (i.e.
ESEC, CAA, and CST), with values of ρc ranging from 0.18 to 0.67 for
SEBAL and from 0.41 to 0.80 for STEEP. The good performance of
ESTIMET in Caatinga occurred after the monthly composition of the
reflectance-based parameters was carried out to reduce the impact of the
clouds, which could impact the variability of land surface information
used as input for the algorithm, especially in highly dynamic hydro-
climatic vegetation systems like the Caatinga and Cerrado biomes. For
instance, the disagreements between ETESTIMET and ETObs in these two
biomes were not associated with the beginning or end of the rainy
seasons.

Regarding the quality of estimations at some of the flux towers, in
which the concordance/correlation between ETMODIS and ETObs was
already reasonable (Fig. 7) because of the greater seasonality of ET
drivers, significant improvements in the correlations were observed
between ETESTIMET and ETObs (i.e. ESEC, pasture in Caatinga; EUC,
monoculture in Cerrado; and PDG, Forest in Cerrado). Nevertheless,
some flux towers, already reasonably characterised through MODIS,
featured a slight degradation of this concordance/correlation by ESTI-
MET (i.e. USR, pluriculture in Cerrado; and CST and CAA, deciduous
forest in Caatinga). Lower quality RMSE and PBIAS are also found for
USR, suggesting that a patchwork-like zone might be more difficult to

characterise for ESTIMET. This is counter-intuitive as ESTIMET has a
finer spatial resolution. However, these discrepancies seem to be related
to some outliers in specific periods, with much higher values of ETESTI-
MET in February and March 2006 (Fig. 6g), while EC provided remark-
ably low ET values. Except for this specific period, ESTIMET achieves
better ρc and RMSE for daily (0.59–0.64 and 1.37–1.15 mm/day) and 8-
day analyses (0.69–0.75 and 9.15–7.06 mm/8-days). Similarly, despite a
lower concordance/correlation for CST, the errors (PBIAS = 12.11 %
and RMSE = 6.99 mm/8-days) were lower when compared to
MOD16A2GF (PBIAS = 41.45 % and RMSE = 7.05 mm/8-days) and,
especially, GLEAM 4.1a (PBIAS = 42.60 % and RMSE = 8.68 mm/8-
days) and PML_V2 (PBIAS = 125.33 % and RMSE = 12.10 mm/8-days).
These trends suggest that the variability and complexity of land use may
significantly impact the comparison between remote-sensing strategies
and ground-based estimations (Ruhoff et al., 2013).

This difficulty appears to be even greater in specific flux towers,
where both MODIS and ESTIMET present discrepancies with the in-situ
measurements, such as SJO (Caatinga, near the limit with the Atlantic
Forest) and K34 (Amazon), in which RMSE increases when using ESTI-
MET. These findings corroborate previous studies, which reported that
the performance of the MOD16 ET product was better in semi-arid re-
gions than in semi-humid or humid regions. The performance of MOD16
ET was also better during dry seasons than in wet seasons (Degano et al.,
2021; Mu et al., 2011). Apparently, ESTIMET followed the same trend.
This larger difference, already pointed out by Salazar-Martínez et al.
(2022) and Andrade et al. (2024a) for tropical forested areas, is clearly

Fig. 7. Scatterplots of 8-day accumulated evapotranspiration, modelled by the ESTIMET (ETESTIMET) and MOD16A2GF (ETMODIS) algorithms, versus the 8-day
accumulated estimations by the Eddy Covariance (ETObs) method at the 14 flux towers located in the (a-d) Caatinga, (e-i) Cerrado, (j-k) Pantanal, and (l-n)
Amazon biomes. The metric ρc (concordance correlation coefficient) is shown to statistically compare the similarity between the 8-day variations of ETObs, ETESTIMET,
and ETMODIS. N represents the sample size.
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the case for sites located in or near to the Amazon basin featuring low
seasonality, which was also observed for the GLEAM 4.1a and PML_V2
products in our analyses and previous studies (Zhang et al., 2023; Yang,
2025). The weaker correlations of the satellite-based products in the
tropics compared to greater latitudes are thought to be the result of
differences in seasonality rather than differences in performance
(Salazar-Martínez et al., 2022; Miralles et al., 2011; Yilmaz et al., 2014).
In or near the Amazon, the seasonal ET variability remains moderate,
whilst sites at greater latitudes usually feature a greater range of vari-
ability, favouring larger correlations with ETObs. This is consistent with
the latitude effect on energy parameters (e.g. T and Rn) identified by
Patriota et al. (2024), presenting lower variations due to moderate
changes in seasonal solar angle. In addition, precipitation seasonality is
commonly lower in the Amazon than elsewhere in the tropics (Feng
et al., 2013; Lemos et al., 2023), contributing to buffer vegetation (NDVI
or EVI2) and surface parameter changes (albedo) (Andrade et al.,
2024a). Such vegetation parameters, especially NDVI, often saturate
evergreen broad-leaved forests holding tropical climates (e.g. the
Amazon and Atlantic Forest), causing a non-linear response of such
parameters in vegetation index-based algorithms (Oliveira et al., 2022;
Laipelt et al., 2021). However, the calibrated equations of such algo-
rithms are based on adjustments using linear regressions. Our results
indicate that ESTIMET, although not always improving the 8-day error
estimations of ET (i.e. PBIAS and RMSE) compared to MODIS, usually
catch the seasonality (correlations) of ET for some of these specific sites

(e.g. SJO in Caatinga but in a transition zone near the limit with the
Atlantic Forest) (Fig. 7). The ability of ESTIMET to capture the fluctu-
ations of ET is especially noted when analysing the daily-based com-
parisons (Fig. 3).

For NPW (Pantanal Biome) and BAN (Cerrado Biome), ESTIMET
provided lower quality results with larger RMSE and, sometimes,
weaker correlations when compared to the three global satellite-based
ET products, although they presented low PBIAS in NPW (probably
compensated by the positive and negative values). For this site, ET is
overestimated (Fig. 6), which is consistent with the observations in
Andrade et al. (2024a), who used a hybrid SEBAL-MODIS-based algo-
rithm between November and March of each year analysed. Likewise, in
USR, such discrepancies in NPW seem to be related to some outliers
during the rainy seasons, presenting ET values higher than 60 mm/8-
days (see Fig. 8). This phenomenon is still not fully understood and the
reasons for the remote sensing data deviating from the measured values
should still be clarified in this context. Allen et al. (2021) suggested that
an artificial increase in atmospheric demand may occur and over-
compensate for the reduction in available surface moisture observed in
the dry season, generating higher values of ET. In parallel, waterlogging
is known to occur during wet seasons at NPW (Pantanal Biome) and BAN
(Cerrado Biome) (Table 2). This would be a consistent explanation for
the difference between ETObs and ETESTIMET trends in some accumulated
8-day data, both of which could be highly altered for these sites.

Even though the energy balance closure issue has been addressed by

Fig. 8. Scatterplots of 8-day accumulated evapotranspiration modelled by the (a) ESTIMET (ETESTIMET), (b) MOD16A2GF (ETMODIS), (c) PML_V2 (ETPML), and (d)
GLEAM 4.1a (ETGLEAM) algorithms, versus the 8-day accumulated estimations using the Eddy Covariance (ETObs) method for all 14 experimental sites. The metrics ρc
(concordance correlation coefficient), root mean square error (RMSE), and Percent Bias (PBIAS) are shown to statistically compare the similarity between the 8-day
variations of ETObs and the satellite-based datasets. N represents the sample size.

C.M.A. Claudino et al.



Remote Sensing of Environment 325 (2025) 114771

16

excluding data with higher energy imbalances at each flux tower, the
assessment outcomes can still be influenced by the difference in scale
between the footprint of the eddy covariance observations and the pixels
of the ET products. The flux footprint typically spans less than 1 km2

(Chu et al., 2021), depending on each site flux tower deployment, and
the pixel sizes of ET products range from 0.062 (ESTIMET) to 100 km2

(GLEAM 4.1a). While the remote sensing products should fit well within
the flux footprint of each tower, there might still be a disparity in the
scales of the ET contributions, potentially combined with changing
meteorological conditions that can lead to a discrepancy in vegetation
representativeness between the pixels and the flux tower observations
(Hobeichi et al., 2018; Jiménez et al., 2018). Such a mismatch can also
arise from inaccuracies in the models’ vegetation and land cover input
data, such as incorrect classifications. Since many models compute ET
using parameters which are specific to land cover (Anderson et al., 2007;
Miralles et al., 2011; Mu et al., 2011), a mismatch between the actual
vegetation at the observation site and that detected in the model’s pixels
could potentially impact the assessment results (Hu et al., 2015; Melo
et al., 2021). This probably occurred at the SJO site, which is located in a
transitional zone between the Caatinga and Atlantic Forest biomes,

presenting a mixture of cover vegetation (pasture and natural vegeta-
tion) (Machado et al., 2016), which was probably not well represented
by the MOD16A2GF, PML_V2, and GLEAM 4.1a datasets.

Another potential limitation in the ground-truth data, for compari-
son with 8-day accumulated satellite-based data (e.g. MOD16A2GF and
PML_V2), is related to the low availability of EC data in tropical regions
(Salazar-Martínez et al., 2022) like Brazil. When excluding from the
analyses all rainy days within this window consequently reduces even
more the data availability for validation. However, the gap-filling
method used for the 8-day EC data in this study (i.e. the average of ET
of non-rainy days of the same week) also leads to uncertainties for the
accumulated analyses, which could worsen the performance of the
satellite-based datasets.

Regarding the catchment scale, ESTIMET presents better correla-
tion/concordance associated with the lower RMSE when compared to
the ET calculated by the water balance in the three major biomes (i.e.
Atlantic Forest, Amazon, and Cerrado), which cover more than 85 % of
the Brazilian territory. Our regional analysis also showed an overall
tendency of the MOD16A2GF product to overestimate the ETCatch in the
Amazon biome, which was also observed in previous studies (Andrade

Fig. 9. Scatterplots of annual accumulated evapotranspiration modelled by the ESTIMET (ETESTIMET), MOD16A2GF (ETMODIS), PML_V2 (ETPML), and GLEAM 4.1a
(ETGLEAM) algorithms, versus the annual accumulated evapotranspiration calculated by the water balance in the catchments (ETCatch) of the (a-d) Amazon, (e-h)
Atlantic Forest, (i-l) Caatinga, (m-p) Cerrado, and (q-t) Pampa biomes. The metrics concordance correlation coefficient (ρc), root mean square error (RMSE), and
Percent Bias (PBIAS) are shown to statistically compare the similarity between the calculated and modelled annual evapotranspiration. N represents the sample size.
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et al., 2024a; Maeda et al., 2017). For this larger Brazilian biome, most
mean estimations of MOD16A2GF were between 1250 and 1500 mm/
year in the analysed catchments, while ESTIMET mostly presented
annual mean values lower than 1250 mm/year. Such annual ranges of
ET values in the Amazonian catchments (as estimated by ESTIMET)
were closer to those obtained from the other two satellite-based products
(i.e. PML_V2 and GLEAM 4.1a) and by other studies using different
approaches (e.g. Andrade et al., 2023; Ruhoff et al., 2022). The map
showing the mean annual ET between 2003 and 2022 (estimated by
ESTIMET and MOD16A2GF) illustrates that the main (absolute and
relative) differences between the two datasets are in the Amazonian
biome. ESTIMET presents lower overall values of ET and better captures
the spatial variability of ET in the Amazon region, possibly due to the
higher spatial resolution and more detailed LULC and meteorological
data, which are able to better-differentiate vegetation types and mi-
croclimates (Fig. 10).

The general inclination of MOD16GFA2 to overestimate the ETCatch
was also identified in our analysis in the Atlantic Forest, featuring
evergreen broad-leaved vegetation, which was not observed in ESTI-
MET, GLEAM 4.1a, or PML_V2. Such overestimation of MOD16A2GF
was not identified in previous studies (e.g. Ruhoff et al., 2022). Fig. 10
shows that the twenty-year mean ET estimated by ESTIMET in the
Atlantic Forest mostly ranges from 1000 to 1500 mm/year while, for

MOD16A2GF, this value was generally equal or superior to 1500 m/
year. Unlike the local analyses, where ESTIMET exhibited good perfor-
mance at daily and 8-day accumulated ET, when likened to the flux
towers in Caatinga, the comparisons at the catchment scale of ET esti-
mated by the satellite-based products in this biome overestimated the
water balance calculations. These lower values of ETCatch in Caatinga
can be associated with the predominance of catchments with non-
perennial rivers in this biome, which are mainly dependent on surface
runoff (Almagro et al., 2021). Another reason for this underestimation of
ETCatch can be related to an under-representation of the ground-based
rainfall, which can reduce the ET calculations via water balance
(Andrade et al., 2022). Overall, Fig. 10 also shows that ESTIMET better
captures the ET variability, not only in Amazon, but in all other biomes.

Such local and regional observations indicate that ESTIMETmay be a
valuable tool for daily ET estimation. However, some specific conditions
may lead to a lack of confidence, such as wet conditions favouring
waterlogging, which avoids robust comparison with ground-based EC
towers. Beyond this, the effect of the relative complexity of land use at a
fine scale could appear overwhelming. For future research, another
option could be to utilise reflectance data to estimate the biophysical
parameters with even higher spatial resolution than the 250 m MODIS
data. This could involve using sources such as the 10-m Sentinel-2 NDVI
or the 3-m Planet NDVI. An example of this approach is seen in the study

Fig. 10. Spatial distribution of the mean annual evapotranspiration between 2003 and 2022 estimated by (a) ESTIMET and (c) MOD16A2GF, with panels showing
their respective (b and d) latitudinal profiles. (e) Spatial distribution of the absolute and (g) relative differences between the estimations of ESTIMET and
MOD16A2GF, with panels showing their respective (f and h) latitudinal profiles. The symbols AMZ, CAT, PA, CER, ATL, and PAM refer to the Amazon, Caatinga,
Pantanal, Cerrado, Atlantic Forest, and Pampa biomes, respectively.
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by Aragon et al. (2018), who utilised 3-m Planet NDVI to create
ultra-high-resolution ET estimates using the Priestley-Taylor Jet Pro-
pulsion Laboratory (PT-JPL) algorithm. In areas featuring a tendency for
land use homogeneity, ESTIMET allowed better results than MOD16-
A2GF (e.g. PDG and EUC), while more complex areas presented similar
difficulties to catch seasonality, like also observed in GLEAM 4.1a and
PML_V2.

5.2. ESTIMET as new support for remote long-term ET evaluation at a
finer spatiotemporal resolution

Despite some specific limitations mentioned above, ESTIMET makes
it possible to evaluate continuous daily ET for any day since 2003 in
tropical latitudes, even when the area was overcast by clouds, with
better latency (monthly) and spatial resolution (250 m) than other
global ET datasets (i.e. having the best 8-day and 500-m resolutions, as
well as annual latency). In the challenging context of a large cloud-
presence between the tropics (Liu et al., 2020; Ahamed et al., 2022),
the information from ESTIMET has the potential to be an important tool
for providing reliable and continuous regional ET series. For example,
these refined data can be used as input for water resource management
strategies and agricultural activities. Furthermore, the daily availability
of ET data expands the potential for hydrological analyses and simula-
tions, allowing precise water balance modelling for catchments
(Guerschman et al., 2022). Indeed, ESTIMET allows access to one of the
most important terms of the hydrological balance, at the same temporal
resolution usually obtained for precipitation and, therefore, provides the
possibility for estimating the water deficit or water surplus at a daily
scale from remote sensing; this being of great interest for water resource,
agricultural and risk management. This type of data also enables a more
detailed and continuous long-term analysis of ET in tropical latitudes,

considering that the patterns and (environmental and anthropogenic)
factors of this component remain poorly understood, especially in such
regions (Fleischmann et al., 2023).

The two insets exhibiting the spatial variability of ET around the EUC
site (Cerrado), obtained by MOD16A2GF (Fig. 11a) and ESTIMET
(Fig. 11b) in an 8-day window between 18 May 2007 and 25 May 2007
during the beginning of the dry season, show how finer the spatial res-
olution of ESTIMET (250m) is when compared toMOD16A2GF (500m).
Such improved spatial resolution allows a better representation of the
land contrasts in the ET estimation. For instance, ESTIMET captured four
distinct values of ET, ranging from 17.29 to 18.78 mm/8-days in a 0.25
km2 inset containing eucalyptus-dominated vegetation with different
growth stages, as shown by the contrasting reflectance responses and
textures (Fig. 11b). In contrast, this was represented by only one aver-
aged value of ET (i.e. 22.6 mm/8-days) by the MOD16A2GF product.
The daily information in ESTIMET also enables a better representation of
the ET sensitivity to meteorological variations, as shown in Fig. 11e. For
instance, while the ETMODIS remains unchanged within the same 8-day
window, represented by an average of 2.86 mm/day of the accumu-
lated ET, the values modelled by the ESTIMET varied between 1.66 and
3.01 mm/day, presenting sensitivities to daily rain events observed at
the EUC site.

6. Conclusions and perspectives

ESTIMET provides a unique remote sensing-based ET assessment tool
operating at a refined spatiotemporal scale and latency under any sky
conditions. Such an enhanced spatiotemporal resolution of this model
may be suitable to upscale the daily flux tower measurements, opening
opportunities for a better understanding of this component of the hy-
drological cycle, especially in data-scarce areas frequently overcast by

Fig. 11. Spatial variability of 8-day accumulated evapotranspiration modelled by the (a) MOD16A2GF (ETMODIS) and (b) ESTIMET (ETESTIMET) algorithms between
18th May 2007 and 25th May 2007 in the surroundings of the EUC site (Cerrado), with 500 and 250 m spatial resolutions, respectively. (c) Temporal variability of
daily evapotranspiration modelled by the two algorithms and precipitation within this temporal window. True coloured satellite images (Landsat/Copernicus) of
30th December 2007 from Google Earth, corresponding to the (d) largest and (e) smallest evapotranspiration map insets.
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substantial cloud cover but playing a fundamental role in the broader
analyses, in the context of water-energy balance, agricultural practices
(e.g. irrigation), and long-term climate change impact monitoring.

The assessment of this model, developed for Brazil, demonstrated
that the underlying hypotheses to refine the MODIS evaluation are
relevant and do not significantly degrade ET evaluation, even allowing
better assessment when compared to EC daily ET, especially for the
Caatinga, Cerrado, and Pantanal Biomes. Two potential issues should be
considered when using eddy covariance observations of ET as ground-
truth data. Firstly, eddy covariance data are affected by uncertainties
due to the energy balance closure problem. Secondly, discrepancies in
scale and classification errors can cause a mismatch in vegetation be-
tween the pixels and the site, complicating the comparisons. Neverthe-
less, the daily ET simulated from ESTIMET usually presents good
representativeness of what is measured by the EC towers and seems to be
efficient for continuous assessment with a short latency (1 month at
maximum), not only at the daily scale, by catching biophysical reactivity
to meteorological or ecological processes at a detailed scale, but also for
applications at coarser scales (e.g. 8-days, similar to MOD16A2GF and
PML_V2). The regional scale assessment also demonstrated that ESTI-
MET was able to better-capture the annual ET calculated by the water
balance approach in the three major Brazilian biomes (Amazon, Atlantic
Forest, and Cerrado) when compared to the analysed global products
MOD16A2GF, PML_V2, and GLEAM 4.1a. Overall, this ESTIMET out-
performance results from the higher resolution and/or improved input
datasets since the algorithm’s modifications were performed to insert
this adapted information. Although developed for Brazil, the model can
be applied to other tropical regions since a land cover map with 30-m
spatial resolution or higher is available and some empirical parame-
ters (e.g. surface albedo) are recalibrated.

This model is sensitive to some underlying hypotheses regarding
land characteristics (e.g. albedo and EVI2), which can be altered from a
spatial and temporal perspective in anthropised landscapes like agri-
cultural land and semi-urban zones. This can be an issue, especially for
local applications of ESTIMET. Nevertheless, this model is expected to be
further adaptable to such local conditions. An illustration of this
adaptability has been provided in the framework of this study. The lack
of available data for some biomes (Pampa and Atlantic Forest) has been
fixed by assuming biophysical similarities (regarding albedo) with other
tropical biomes, before further adjustment, if relevant. Bias corrections
of the daily data, based on machine learning techniques and meteoro-
logical reanalysis data (i.e. not relying on observed data), could be used
in further studies, to improve the ETESTIMET estimations.
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Meller, A., Teixeira, A.D.A., Araújo, A.A., Fuckner, M.A., Biggs, T., 2022. Global
evapotranspiration datasets assessment using water balance in South America.
Remote Sens. 14 (11), 2526. https://doi.org/10.3390/rs14112526.

Running, S.W., Mu, Q., Zhao, M., Moreno, A., 2017. NASA Earth Observing System
MODIS Land Algorithm User’s Guide: MODIS Global Terrestrial Evapotranspiration
(ET) Product (NASA MOD16A2/A3). https://doi.org/10.5067/MODIS/
MOD16A2.006.

Running, S.W., Mu, Q., Zhao, M., Moreno, A., 2021. NASA Earth Observing System
MODIS Land Algorithm (For Collection 6.1) User’s Guide modis global Terrestrial
Evapotranspiration (ET) Product (MOD16A2/A3 and Year-end Gap-filled
MOD16A2GF/A3GF). https://doi.org/10.5067/MODIS/MOD16A2GF.061.
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