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Abstract
This study evaluates the effectiveness of the analytic hierarchy process (AHP) based on six 
machine learning models in predicting flood susceptibility in the Dwarakeswar river basin 
in Eastern India. Fifteen flood conditioning factors were employed as input predictors. The 
dataset underwent a series of pre-processing procedures, including conducting a statistical 
Pearson correlation, ordinary least squares (OLS), and multi-collinearity analysis, to iden-
tify the best flood-contributing factors. Additionally, the Information Gain Ratio (InGR) 
feature selection technique was utilized to assess the relevance of features. The accuracy of 
the models during the validation phases was assessed using various statistical metrics such 
as accuracy, kappa score, sensitivity, specificity, positive predictive value, negative predic-
tive value, and the area under the receiver operating characteristic curve (AUC). Although 
all models demonstrated robust flood prediction abilities (AUC > 0.988), the AHP-Gradi-
ent Boosting Machine (GBM) model exhibited the highest performance (AUC = 0.996). 
This indicates that, among the models examined, the AHP-GBM model holds significant 
promise for evaluating flood-prone regions and facilitating effective planning and manage-
ment of flood hazards. This model identified 12.68% and 5.14% of the study area as very 
high and high flood susceptibility zones, respectively. The SHapley Additive exPlanations 
(SHAP) analysis shows that the Modified Normalized Difference Water Index (MNDWI), 
rainfall, elevation, Normalized Difference Vegetation Index (NDVI), proximity to rivers, 
drainage density, and Terrain Ruggedness Indices (TRI) are the best influences on flood 
probability. Based on the climate projections from future Coupled Model Intercomparison 
Project Phase 6 (CMIP6) models (SSP2 4.5, SSP5 8.5), the southern region of the study 
area has been pinpointed as a hotspot for flooding vulnerability, with a susceptibility level 
classified as very high, encompassing 16.68% of the area.
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1  Introduction

Floods are recognized as the most catastrophic natural hazard globally, overshadowing 
various other hydro-meteorological risks (Wubalem et al. 2021). These hazards primar-
ily stem from prolonged periods of intense rainfall, snowfall, landslides, climate and 
land use shifts, and sudden glacier lake outbursts. Moreover, the severity of floods is 
notably influenced by human activities such as faulty dam construction, rapid urbaniza-
tion, deforestation, and population expansion (Tehrany et  al. 2018). In contrast, flood 
hazard incorporates not only the likelihood of flooding but also the characteristics of 
flood events, including magnitude, frequency, duration, and depth. Floods, occurring 
worldwide, unleash devastating impacts on the environment, wreaking havoc on human 
infrastructure, transportation networks, and agricultural sectors and leading to loss of 
lives (Islam et  al. 2021; Arabameri et  al. 2022; Fatah and Mustafa 2022; Vilasan and 
Kapse 2022). Numerous regions, including the Ganges-Brahmaputra basin (India-Bang-
ladesh), and the Mississippi Delta (US state), are particularly prone to flooding. World-
wide, floods stand out as the most devastating of all hydro-climatic natural occurrences, 
impacting millions each year. Between 1995 and 2015, approximately 150,061 flood 
events occurred, resulting in about 157,000 fatalities and rendering nearly 75 million 
people homeless each year (Islam et  al. 2021). The top eight countries most affected 
by floods include India (2013), China (1887, 1931, 1935), Bangladesh (1974), Guate-
mala (1949), Iran (1954), Venezuela (1999), Peru (1941), Japan (1953), and many more 
(Swain et al. 2020), and others, as highlighted by the World Resources Institute. Notable 
historical floods have occurred in China, Bangladesh, Guatemala, Venezuela, and many 
other regions.

India, a prominent Southeast Asian country, witnesses approximately 320 million peo-
ple affected by floods annually (Mitra et  al. 2022). The nation’s economy relies heavily 
on agriculture, leading to a significant population residing in flood-prone river valleys and 
coastal plains. Flood occurrences in India are primarily attributed to monsoon seasons, 
with 60% of the damage stemming from riverine floods and the remaining 40% from heavy 
rainfall and cyclones (Samanta et al. 2018a, b). Over the period from 1953 to 2009, India 
suffered 92,000 deaths and incurred an economic loss of $200 billion due to floods (Tri-
pathi 2015). Notable instances include the submersion of three-quarters of Patna city in 
1971 and 1975, flooding in Kolkata in 1978 and 2000, and inundation in Delhi in 1977 
and 1978. In West Bengal, 111 blocks across 18 districts are at risk of flooding, constitut-
ing about 42% of the region (Samal et al. 2014). The Gangetic Delta, particularly prone to 
flooding, experiences significant property damage annually. The Bhagirathi-Hooghly River 
basin in West Bengal has faced devastating floods in various years, including 1956, 1959, 
1978, 1995, 1998, and 1999 (National Disaster Management Authority, India, NDMA 
2021). In the Dwarakeswar river basin, rainfall predominantly occurs during the monsoon 
season, from June to mid-October, with recorded flood events in 1984, 1987, 1993, 1995, 
1999, 2000, 2007, 2009, 2011, 2013, 2014, 2016, and 2017 (Roy 2019). Anticipated socio-
economic development, deforestation, and climate change are expected to exacerbate flood 
impacts in the future. Consequently, the identification of flood-prone areas becomes para-
mount in mitigating future disasters. Hirabayashi et al. (2021) examined future flood risk 
projections based on Coupled Model Intercomparison Project Phase 6 (CMIP6) climate 
models. The study underscores the correlation between global warming and the potential 
increase in flood exposure, particularly as populations grow, emphasizing the urgency of 
proactive decision-making.
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Flood susceptibility refers to the likelihood of flooding based on inherent physical and 
environmental factors like topography, soil, land use, and proximity to water, typically rep-
resenting a static assessment regardless of flood timing or intensity. Flood susceptibility 
mapping (FSM) is an essential tool for emergency planning and effective flood risk man-
agement, enabling the identification of high-risk areas and facilitating measures to mini-
mize losses and damages caused by climate-induced flood disasters (Sun et al. 2021). FSM 
is more than just identifying hazards; it is about crafting tailored strategies for flood risk 
management. These maps, requiring less data than hazard and risk analyses, serve as cru-
cial tools for preliminary assessments of potential flood events (Nguyen 2022). Given the 
impact of climate change and land use alterations, flood susceptibility analyses are vital for 
developing early warning systems and strategies to prevent or mitigate future floods (Tabari 
2020). As climate shifts and land use patterns change, FSM gains significance in proac-
tively pinpointing flood-prone areas and guiding preventive measures to bolster resilience 
against this natural threat (Shu et al. 2023). In the studies reviewed, researchers employed 
various variables contributing to flooding, presenting a complex challenge in FSM. There 
are no set guidelines for determining flood-influencing factors, with the selection depend-
ing on the study area’s physical and environmental traits and data availability. The pro-
cess of identifying and selecting suitable variables driving flooding is intricate, directly 
influencing the accuracy and reliability of the  resultant FSM. Typically, FSM analysis 
approaches fall into three primary groupings: (1) hydrological approaches, (2) multi-crite-
ria decision analysis (MCDA), and (3) machine learning (ML) models. While hydrological 
and hydrodynamic models allow for precise flood magnitude predictions, they are often 
resource-intensive and require comprehensive datasets (Zeng et al. 2024; Gai et al. 2019; 
Khosravi et al. 2019; Vashist and Singh 2023; Kannapiran and Bhaskar 2024). MCDA is 
straightforward to compute and understand, but it heavily depends on expert judgments and 
faces challenges associated with redundant data layers, leading to subjectivity, and height-
ened computational demands (Kaya, and Derin 2021; Swain et al. 2020; Edamo et al. 2022; 
Wang et al. 2019).

In recent times, FSM has undergone a noteworthy transition from traditional expert 
judgments to the adoption of diverse ML techniques, representing a significant advance-
ment in the discipline. ML techniques such as Extreme Gradient Boosting (XGB) (Zhu 
et al. 2024), Random Forest (RF) (Hitouri et al. 2024), Gradient Boosting Machine (GBM) 
(Singha et  al. 2022); Support Vector Machines (SVM) (Liu et  al. 2022), Decision Tree 
(DT) (Seydi et  al. 2023), Artificial Neural Networks (ANN) (Islam et  al. 2023), Naïve 
Bayes (NB) (Singha and Swain 2022), classification and regression tree (CART) (Ahmad-
lou et al. 2022) and multivariate adaptive regression spline (MARS) (Mosavi et al. 2022) 
have been incorporated into FSM evaluation owing to their exceptional ability to manage 
heightened complexity.

The combination of MCDA, ML, Geographic Information System (GIS), and Remote 
Sensing (RS) has proven to be an effective tool for spatial analysis in hazard evaluation. 
Nachappa et  al. (2020) evaluated the effectiveness of two MCDA models (i.e. analytic 
hierarchy process (AHP), analytic network process (ANP)) and two ML models (i.e. RF, 
SVM) for predicting flood susceptibility in Austria, finding that ML models, with an Area 
Under the Curve (AUC) greater than 0.87, performed slightly better than the MCDA mod-
els. The methods used to analyze FSM have evolved from traditional expert assessments to 
statistical methods utilizing large datasets and ML techniques. ML algorithms are steadily 
improving and have become increasingly popular for predicting FSM.

Statistical and analytical techniques typically depend on limited field data, which often 
fail to fully account for the complex and nonlinear interactions among flood-related factors. 



	 Natural Hazards

Developing accurate and dependable FSM models is crucial, particularly when leverag-
ing ML, to effectively support disaster risk management and promote sustainable growth 
in flood-prone areas. The lack of comprehensive FSM data hampers timely and efficient 
disaster response and limits the implementation of adaptive measures. Advancing research 
in this field is key to creating models reliably detecting flood-prone zones, offering cru-
cial insights that help communities improve their readiness and ability to withstand flood-
related hazards. Given the complexities and uncertainties involved in classifying features 
for FSM assessment, numerous studies have chosen to expand the variety of feature data 
(i.e., input data) to improve the accuracy and effectiveness of their models (Hosseini et al. 
2020). Thus, conducting flood susceptibility assessment using MCDA-based ML with a 
satisfactory accuracy level by pinpointing critical features through data reduction on 
smaller samples is significantly important, even though the accuracy of this approach may 
slightly lag that of models using extensive data resources. These hybrid models have been 
proven to improve prediction precision, thus furthering the effectiveness of flood suscepti-
bility mapping methods (Plataridis and Mallios 2023; Talukdar et al. 2022; Ghobadi et al. 
2024).

Previous studies showed the slow processing MCDA approach including bivariate fre-
quency ratio (FR), Knowledge-Driven (KD), Fuzzy Logic (FL), Logistic Regression and 
Dempster-Shafer-based evidential belief function (EBF) with minimal accuracy for FSM 
in Dwarakeswar river basin (Ghosh et al. 2023; Malik et al. 2020). Nsangou et al. (2022) 
demonstrated an FSM model using AHP in the Mfoundi watershed of Central Africa, 
incorporating both natural and human-induced factors. The outcomes of the model indi-
cated an AUC of approximately 84%. Vilasan and Kapse (2022) generated flood suscepti-
bility maps for Ernakulam district, India, utilizing remote sensing data and GIS, employ-
ing both the AHP and Fuzzy-AHP methods. The AUC values were 0.75 and 0.81 for the 
AHP and Fuzzy-AHP methods, respectively. Conventional MCDA techniques are capable 
of addressing various factors, but they often struggle with issues such as slow execution 
and the complexity of assigning accurate weights challenges that become more pronounced 
when used alongside complex ML algorithms. Moreover, a notable limitation in current 
studies is the difficulty in precisely mapping the spatial and temporal dynamics of flood 
occurrences and ensuring that flood data remains consistently updated. This study intro-
duces a novel hybrid method for current and future FSM focused on the Dwarakeswar 
River basin in India, aiming to overcome existing research limitations. By leveraging 
multi-temporal Synthetic Aperture Radar (SAR) data and an Otsu thresholding technique, 
we develop a continuously updated flood inventory that captures the dynamic behavior of 
flood events. The methodology offers three significant innovations.

This study addresses the following research questions: (i) What factors are associated 
with FSM in river catchments? and (ii) Does a hybrid AHP-based ML approach achieve 
optimal accuracy in FSM probability? (iii) What are the scenarios of future flood probabil-
ity distribution?

To address these research questions, the study is guided by three primary objectives:

	 (i)	 To generate a real-time flood inventory for use in FSM modeling, enhanced by inte-
grating historical data from the Global Flood Database (GFD.v1, 2000–2018).

	 (ii)	 To develop an innovative hybrid FSM model by combining 15 flood-inducing param-
eters and training and validating it with a suite of novel ML algorithms (including 
RF, XGB, GBM, glmboost, glmnet, and rda) alongside the AHP method. This fusion 
aims to improve the reliability, interoperability, and consistency of flood susceptibil-
ity assessments.
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	 (iii)	 This work enhances standard FSM by incorporating climate projections based on 
CMIP6 pathways (SSP2-4.5 and SSP5-8.5). This approach provides a forward-
looking perspective on how climate change might affect flood risks, aiding adaptive 
planning and disaster preparedness efforts within the Dwarakeswar River basin.

Unlike previous research, this study utilizes a novel flood inventory generated from Sen-
tinel-1 data and incorporates climatic projections from CMIP6 to enhance the accuracy of 
flood susceptibility predictions. A distinctive feature of this research is the use of Explain-
able Artificial Intelligence (XAI), specifically SHAP analysis, to understand the sensitivity 
of model parameters, bridging a gap in the literature and enhancing the transparency of 
the modeling process. This approach not only improves theoretical understanding but also 
supports decision-making for mitigating the impacts of flooding. Overall, the study offers 
new insights into FSM in Eastern India, contributes to disaster environmental management, 
and proposes strategies to reduce future flood risks, benefiting human society. The region 
has faced frequent flooding events and continues to be highly vulnerable to inundation, 
largely due to its unique landform features and prevailing weather patterns. Further, this 
study offers valuable insights into FSM assessment for flood-prone river catchment areas 
by establishing a robust and transparent modeling approach. A comprehensive methodol-
ogy was employed to analyze FSM, encompassing several objectives: Initially, a detailed 
flood inventory dataset was constructed using freely available Sentinel-1 SAR satellite 
imagery to outline flood and non-flood areas, while also integrating factors of flood-con-
tributing factors. The dataset underwent pre-processing steps, including a Pearson correla-
tion, ordinary least squares (OLS), multi-collinearity test to identify and eliminate redun-
dant contributing factors. In addition, the Information Gain Ratio (InGR) feature selection 
technique was used to determine feature importance. Advanced ML algorithms such as RF, 
XGB, GBM, glmboost, glmnet, and rda were fused with the AHP weightage of the fac-
tors utilized to generate the FSM model. Next, this method is implemented to generate 
future FSM using the CMIP6 datasets for both Shared Socioeconomic Pathway, i.e. SSP2 
4.5 and SS5 8.5. These maps offer valuable insights into areas prone to flooding by consid-
ering identified factors that contribute to flooding. Following this, the model’s performance 
underwent thorough evaluation using a range of statistical metrics, including kappa coef-
ficient, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and AUC. Furthermore, the variation of SHAP analysis was utilized to 
interpret and elucidate the significance of flood-contributing factors within the predictive 
models, thereby enhancing the interpretability of the model and providing insights into the 
mechanisms underlying flood susceptibility.

2 � Study area

The Dwarakeswar River, also known as Dhalkishore, is a significant river in the western 
part of West Bengal. Its drainage area spans from latitudes 23°32′00" N to 23° 40′25" N 
and longitudes 86°31′08″ E to 87°47′58" E (Fig. 1), covering a vast area of 4356.6 km2 
(Ghosh 2024). The Dwarakeswar River, originating from the Tilboni hill in Purulia dis-
trict, flows through Bankura, Hooghly, and partially through Bardhaman and West Mid-
napore districts of West Bengal, India, before intersecting the Shilabati River near Ghatal 
to form the Rupnarayan River. The river basin serves as a transitional area between the 
Ganga Brahmaputra Delta and the Chhotanagpur Plateau, featuring varied landforms 
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from erosional hilly terrain to alluvial plains. This catchment area is subject to a mon-
soon climate characterized by considerable fluctuations in seasonal temperaturespeaking 
at an average of 32.55 °C during summer and dipping to 18.98 °C in winter with yearly 
rainfall ranging from 1400 to 1500 mm. The Dwarakeswar River experiences significant 
fluctuations in discharge, with September’s average discharge around 130 tm3 ts⁻1 and 
peaks exceeding 2000 m3 s⁻1, contrasting sharply with June’s average of just 16.96 m3 s⁻1. 
This dramatic discharge level variation makes the river prone to instability and frequent, 
severe flood events. The basin’s soil is primarily lateritic, especially in the western region 
of Bankura district. With a population of over 3 million, the basin faces challenges from 
agricultural pollution, with rice as the main crop, alongside efforts to diversify agriculture 
with oilseeds, pulses, and vegetables to enhance productivity.

3 � Methodology

Figure 2 showed the methodological flowchart of this study aiming to provide an overview 
of the entire process, encompassing stages such as the creation of a flood inventory map, 
development of flood conditioning factors, assessment of these factors using information 
Pearson correlation, OLS, multi-collinearity, InGR and tests, and the application of vari-
ous ML techniques (i.e. RF, XGB, GBM, glmboost, glmnet and rda) with AHP weightage 
factors for FSM modeling. The SHAP analysis provided detailed insights into the contribu-
tions of individual features to the model explanation. Ultimately, this research delved into 
forecasting future FSM using the CMIP6 datasets.

3.1 � Flood inventory map generation

The integration of the GPS field survey and the Sentinel-1 Ground Range Detected GRD 
(S1) data were utilized to map flood inventory in this study area. The Google Earth Engine 
(GEE) platform was used to access the pre-processed S1 imagery from February 2020 to 
October 2023. All the flood inventory information was produced using 121 S1 C band 

Fig. 1   Study area location map
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(VV/VH) tiles. Table 1 shows the S1 imagery acquisition dates employed in this study. S1 
data sourced from GEE underwent pre-processing to eliminate noise via speckle filtering. 
Subsequently, the S1 imagery captured during flood occurrences between 2020 and 2023 
was analyzed to map flood areas within the Dwarakesawr River Basin. The classification 

Fig. 2   Schematic illustration of the suggested analytical framework for flood susceptibility mapping
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of water and non-water pixels was conducted using Otsu’s automatic thresholding method 
(Otsu 1979), which operates under the assumption of a bimodal histogram of pixel back-
scatter values through the differences of the pre and post-flood events. This technique 
employs a clustering approach to determine the threshold value, effectively segregating the 
classes into foreground (1 ~ flood) and background (0 ~ non-flood) categories. The optimal 
threshold value is derived by minimizing the weighted sum of intra-class variances, a pro-
cess equivalent to maximizing the between-class variance, as outlined in Eq. (1). The flood 
inventory maps of the Dwarakeswar Basin produced through Otsu’s thresholding algorithm 
underwent validation with the historical Global Flood database (2000–2018). The distinct 
flooded instances were condensed into 1,260 points for FSM utilization. Alongside the 
flooded samples, an equivalent number of non-flooded samples within the basin area were 
chosen arbitrarily. In machine learning models, values of 0 and 1 were respectively attrib-
uted to non-flooded and flooded points. Subsequently, the dataset was divided into a 70% 
training set and a 30% testing set for model training and evaluation purposes. All the his-
torical time series of flood occurrence maps (2020–2023) are shown in Fig. 3. The detailed 
methodology for generating the flood inventory map is summarized in Fig. S1 (Fig. 4).

where �2
B
 is the between-class variance, �f  and �nf  are mean values of flood pixel and 

non-flood pixel, and �f  and �nf  are the fraction of flood and non-flood pixels, respectively. 
An optimal threshold is identified, with pixel values falling below this threshold indicating 
areas affected by flooding.

(1)�2
B
= �f�nf

(
�f − �nf

)

Fig. 3   S1C-based historical flood occurrences map generation (2020–2023)
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3.2 � Selection of flood condition factors

Flood-influencing factors were selected based on previous studies to assist in the develop-
ment of FSM models (Muthusamy et al. 2021; Al-Kindi and Alabri 2024; Das 2018; Ngo 
et al. 2018; Rahmati et al. 2019; Costache et al. 2020; Soltani et al. 2021). The suitability 
of these selected factors was subsequently assessed using techniques such as OLS, multi-
collinearity analysis, and the InGR algorithm. All the flood-influencing parameter sources 
and descriptive statistics are summarized in Table 2.

3.3 � Flood condition factors

3.3.1 � Topographical factor

The Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM), derived 
from C-band SAR, is widely used in FSM analysis due to its global coverage, free access, 
and moderate resolution (30 m) (Tehrany et al. 2014 and Rahmati et al. 2016). Topographi-
cal factors such as elevation, slope, aspect, curvature, and Terrain Ruggedness Index (TRI) 
were obtained from SRTM DEM, utilizing the GEE cloud platform. The study area exhib-
its a range of elevations from 0.1 m to 438 m (Fig. 5a). Flooding susceptibility decreases 
with increasing elevation, showing an inverse relationship (Mojaddadi et al. 2017; Muth-
usamy et  al. 2021). Regions characterized by lower elevations, particularly those below 
52 m, demonstrate notably higher susceptibility to floods, predominantly observed in the 
lower parts. Conversely, areas with higher elevations exceeding 177 m, mainly situated in 
the upper part of the study area, display lower susceptibility to flooding. Slope significantly 
impacts flood risk by controlling surface runoff (Skilodimou et al. 2021). The study area’s 
slope varied significantly, with values ranging from below 1.39° to above 13.4° (Fig. 5b). 
Low-sloped areas, primarily located in the basin’s middle and lower parts, demonstrated a 
high risk of flooding. In contrast, areas with steep slopes, over 13.4°, were sparsely distrib-
uted and showed a lower flood risk. Aspect influences how a slope segment interacts with 
elements such as wind, rainfall, sunlight, vegetation growth, evaporation, and soil mois-
ture, affecting the balance between infiltration and runoff as well as the slope’s orientation 

Fig. 4   Pre-processing steps of Sentinel 1C based on Otsu’s method for flood inventory map generation
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Fig. 5   The maps of the FCPs, including topographical factor a–f: a elevation, b slope, c aspect, d curvature, 
e TRI; climate hydrological factor f–j: f TWI, g rainfall, h SPI, i drainage density, j distance from river and 
terrain distribution factor k–o: k LULC, l geology, m soil texture, n NDVI, o MNDWI
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Fig. 5   (continued)
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(Das and Pardeshi 2018). In this study, the aspect map was segmented into ten categories: 
(1) flat; (2) north (0–22.5 degrees); (3) northeast (22.5–67.5 degrees); (4) east (67.5–112.5 
degrees); (5) southeast (112.5–157.5 degrees); (6) south (157.5–202.5 degrees); (7) south-
west (202.5–247.5 degrees); (8) west (247.5–292.5 degrees); (9) northwest (292.5–337.5 
degrees); and (10) north again (337.5–360 degrees) (Fig. 5c).

Curvature plays a pivotal role in governing surface water movement and infiltration pro-
cesses (Al-Kindi and Alabri 2024). In this study, curvature values range from −6.08 to 
6.08 (Fig. 5d). The curvature was categorized into concave (−6.08 to −0.05), flat (−0.05 
to 0.05), and convex (0.05 to 6.08) subgroups. Positive curvature values denote areas with 
an upward convex gradient, indicating low susceptibility to flooding. Conversely, negative 
curvature values indicated areas with a concave gradient, suggesting high susceptibility to 
flooding. Areas with flat curvature, characterized by zero value, exhibited moderate vul-
nerability to flooding. TRI is a valuable metric for distinguishing between flat and uneven 
terrains (Pourali et al. 2014). Lower TRI values suggest areas more prone to flooding, such 
as floodplains adjacent to streams. In the study area, TRI values ranged from 0 to 71.81 
(Fig. 5e), categorized into five distinct classes on the map. Regions with low TRI values 
(0 to 1.41) are highly susceptible to floods, whereas those with high TRI values (18.03 to 
71.81) exhibit lower susceptibility.

3.3.2 � Climatic and hydrological factors

This study examines several climatic and hydrological factors, including the Topographic 
Wetness Index (TWI), rainfall, Stream Power Index (SPI), drainage density, and the dis-
tance from the river. Among these, the TWI holds particular significance in assessing flood 
susceptibility, offering insights into how topography influences water flow, soil moisture, 
and accumulation within a river catchment area (Das 2018). The TWI map is derived from 
slope and flow accumulation data extracted from SRTM DEM data, with TWI calculated 
using Eq. 2 (Shahabi et al. 2020).

where As represents the catchment area and β represents the slope (in degrees). Areas with 
higher TWI values are more susceptible to flooding than those with lower TWI values.

TWI values in the study area varied from 3.47 to 29.18 (Fig. 5f), with higher values 
(14.47 to 29.18) signalling an increased flood risk, and lower values (3.47 to 7.4) suggest-
ing a reduced flood susceptibility.

In the study area, flooding is predominantly triggered by rainfall, with a direct correla-
tion between precipitation levels and flood occurrence (Jenkins et  al. 2018; Penki et  al. 
2023). Annual rainfall data from 1991 to 2022 were acquired from the Climate Research 
Unit-Time Series Data (CRU-TS Data) portal to produce the annual rainfall map. Employ-
ing the Inverse Distance Weighting (IDW) technique, the rainfall data were interpolated 
and subsequently classified using the Natural Breaks (Jenks) method within a GIS frame-
work. The natural breaks method classifies data by identifying inherent patterns to max-
imize differences between classes and minimize variation within them for clearer, more 
coherent groupings (Jenks 1967). The resultant rainfall map delineates the study area into 
five distinct annual rainfall categories, ranging from 1280 to 1454 mm (Fig. 5g). As would 
be expected, regions characterized by higher rainfall values (1417–1454  mm) typically 
coincide with areas more susceptible to flooding, particularly observed in the lower basin 

(2)TWI = Ln

(
As

tan�

)
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area. Conversely, regions with lower rainfall values (1280–1311 mm) correspond to areas 
less vulnerable to flooding, predominantly found in the upper basin region. Notably, the 
lower basin area exhibits a heightened susceptibility to flooding in comparison to the upper 
basin area.

Flood occurrences are notably affected by the SPI, which assesses both flow rate and 
erosion power in a particular area. A lower SPI value indicates a heightened flood risk 
(Ngo et al. 2018; Mitra et al. 2022). The SPI map is created using slope data and flow accu-
mulation, typically derived from the SRTM DEM, with calculations based on Eq. (3) (Ali 
et al. 2020).

Within the study area, the SPI values ranged from −11.51 to 13.12 (Fig. 5h), indicating 
varying levels of deposition or erosion potential across different locations. Negative SPI 
values suggest susceptibility to deposition, while positive values indicate erosive potential. 
Regions with lower SPI values are at higher risk of flooding, while those with higher SPI 
values are less prone to flooding.

The river networks were extracted from the HydroRIVERS dataset (accessed via URL: 
https://​www.​hydro​sheds.​org). Drainage density, reflecting the length of rivers per unit area, 
plays a vital role in flood management, with higher densities indicating elevated flood risks 
due to increased surface runoff (Mahmoud and Gan 2018; Rahmati et al. 2019). Utilizing 
the GIS line density tool, a drainage density map was generated, revealing values rang-
ing from 0 to 2.75 km/km2 across the region (Fig. 5i). This map was categorized into five 
classes, delineating areas with high drainage density (1.75–2.75  km/km2) as highly sus-
ceptible to flooding, predominantly in the middle and lower riverside regions. Conversely, 
areas with low drainage density (0–0.4 km/km2) are less prone to floods. Moreover, drain-
age density diminishes with distance from the river.

The distance from the river serves as a pivotal determinant in gauging a region’s sus-
ceptibility to flooding, with a diminishing influence of the river as distance increases from 
its banks (Singha et al. 2024; Waqas et al. 2021). Euclidean distance tool was employed to 
generate the distance from the river map using the HydroRIVERS datasets. This map spans 
from 0 to 7601 m (Fig. 5j). Areas in close proximity to the river (0–537 m) exhibit height-
ened flood risk, while those situated farther away are less susceptible to flooding.

3.3.3 � Terrain distribution factors

Land use and land cover (LULC) profoundly influence various hydrological processes, 
including infiltration rates, surface runoff accumulation, and surface-underground water 
interaction (Souissi et  al. 2020; Costache et  al. 2020). LULC data also encompass 
human activities such as settlements, industrial areas, and agriculture, reflecting both 
environmental impacts and natural cover distributions. Forested and vegetated regions 
typically exhibit high infiltration rates, whereas built-up and rocky areas experience 
lower rates, rendering them more prone to flooding (Hammami et al. 2019). The acqui-
sition of LULC data involved obtaining a Landsat 8 image (2020) with minimal cloud 
cover (< 0.5%) from the United States Geological Survey (USGS) via the GEE server. 
LULC patterns were delineated using the random forest (RF) supervised classification 
technique within GEE. The classification identified six primary categories within the 
basin, including water bodies, vegetation cover, cropland, barren land, fallow land, and 
built-up areas (Fig.  5k). Water bodies and built-up areas are more prone to flooding, 

(3)SPI = As × tan�

https://www.hydrosheds.org
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while regions with dense vegetation are less susceptible. Geology plays a key role in 
influencing water runoff dynamics, which is integral to understanding flooding mecha-
nisms (Kourgialas et al. 2011). The permeability and porosity of soil and rock forma-
tions directly impact processes like infiltration and runoff generation (Donnelly et  al. 
2006). The Geological Survey of India (GSI) provided the geology map used in this 
study (scale 1:50,000), delineating various formations such as the Panskura Formation, 
Sijua Formation, Lalgarh Formation, Laterite, Chotanagpur Granite Gneiss Complex, 
Manbhum Granite, and Unclassified Metamorphic (Fig.  5l). These formations exhibit 
diverse characteristics in terms of permeability and storage capacity, influencing their 
susceptibility to flooding events.

Soil texture significantly influences flood occurrence by regulating permeability pat-
tern and surface runoff rate (Haghizadeh et  al. 2017). Lower soil porosity results in 
slower infiltration rates, leading to increased surface runoff and flood risk. Clay soils, 
with their low porosity and limited infiltration, are more prone to flooding compared to 
loamy and sandy soils. The soil map utilized in this study, sourced from the National 
Bureau of Soil Survey and Land Use Planning (NBSS & LUP), delineates various soil 
types including river, very fine, fine, fine loamy, loamy, and coarse loamy (Fig.  5m). 
In the lower part of the study area, soil types exhibited high flood susceptibility due to 
their impermeability.

Furthermore, the existence of vegetation profoundly influences both infiltration capa-
bility and surface water movement, rendering Normalized Difference Vegetation Index 
(NDVI) a pivotal element in pinpointing flood-vulnerable areas (Soltani et al. 2021). Rec-
ognized for its efficacy, NDVI stands as one of the most extensively employed vegetation 
indices. Employing Landsat 8 imagery within GIS software facilitates the generation of an 
NDVI map, with NDVI values calculated using Eq. 4 (Rouse et al. 1974).

where NIR represents the near-infrared band value and RED represents the red band value. 
The NDVI value is assessed across a spectrum from −1 to + 1, in which -1 denotes exten-
sive water bodies and + 1 signifies dense vegetation cover. Therefore, areas exhibiting 
negative NDVI values are notably prone to flooding, whereas those showcasing positive 
NDVI values are linked to reduced susceptibility to flooding (Duong Thi et al. 2020). In 
this study,

the NDVI values observed within the study area varies between −0.15 and 0.51 
(Fig. 5n). Lower NDVI values within the range of −0.15–0.15 indicated an elevated like-
lihood of flooding, whereas higher NDVI values, ranging from 0.39 to 0.51, implied a 
diminished susceptibility to flooding.

The Modified Normalized Difference Water Index (MNDWI) is highly effective in 
detecting water-related features compared to other indices, with higher values indicating 
increased flood susceptibility (Han-Qiu 2005). It is computed using Eq. 5 (Xu 2006).

where GREEN represents the green band and SWIR 1 the short-wave infrared band. 
MNDWI values typically range from −1 to + 1, where negative values signify an absence 
of water bodies and positive values indicate their presence. In this study, the MNDWI was 
classified into five categories from −0.46 to 0.35 (Fig. 5o). Higher MNDWI values (0.03 
to 0.35) suggest greater flood susceptibility, while lower values (−0.46 to −0.16) imply 
reduced susceptibility.

(4)NDVI = (NIR − RED)∕(NIR + RED)

(5)MNDWI = (GREEN − SWIR1)∕(GREEN + SWIR1)
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3.4 � OLS and multi‑collinearity analysis

The OLS technique is a fundamental and extensively applied approach for linear regres-
sion analysis (Zdaniuk 2014). The reliability of OLS depends heavily on whether its core 
assumptions are met. It provides valuable insights into the relationships between variables, 
aiding in the decision-making approach.

Multicollinearity, a statistical test, enables the examination of the linear relationship 
among two or more explanatory variables. In this approach, the variance inflation factor 
(VIF) metric was utilized to identify and address unsuitable geo-environmental elements. 
Threshold values for VIF were established at < 10, respectively, to detect potential mul-
ticollinearity concerns (Singha et  al. 2023). Strictly, multicollinearity is indicated when 
the TOL value is under 0.1 and the VIF exceeds 10, signifying strong correlation among 
predictors (Sahana et al. 2020). If these variables surpass these thresholds, it suggests the 
presence of multi-collinearity issues. Values between 1 and 5 imply moderate correlation, 
while a VIF of 5 + suggests significant multicollinearity, risking model reliability (Shrestha 
2020).

3.5 � Information gain ratio analysis

Prior to model training and validation, it is essential to evaluate the significance of flood-
influencing parameters. This process entails assessing the statistical properties and correla-
tion of each parameter with flooding. Implementing InGR metric analysis through scikit-
learn in a Python-based Google Colab environment. Utilizing the InGR technique aids in 
pinpointing influential parameters for flood susceptibility analysis (Sameen et  al. 2019). 
Each parameter receives an InGR value, serving as a metric for its importance, where 
higher values signify increased influence (Bui et al. 2020). The simplicity and efficacy of 
the InGR model render it well-suited for this study, computed through Eqs. (6–9) (Khodaei 
et  al. 2025). The InGR enhances feature selection by addressing the bias of Information 
Gain (IG) toward features with many distinct values. Calculated as InGR, IG is divided by 
Split Information (SI), where IG measures entropy reduction from a data split, and SI rep-
resents the feature’s intrinsic entropy InGR helps identify genuinely predictive attributes 
with reducing uncertainty. This normalization is particularly effective in DT algorithms, 
leading to more accurate and balanced models compared to using IG alone. Additionally, 
the entropy method was applied as a metric in DT algorithms to identify the optimal split 
during tree construction. It measures the level of impurity or disorder within a dataset, with 
values ranging from 0 (fully pure) to 1 (fully impure) (Quinlan 1986).

(6)IG(X ⋅ F) =
Entropy(X) − Entropy(X ⋅ F)

Split Entropy(X ⋅ F)

(7)Entropy(X) = −

2∑

i=1

(
Yi ⋅ F

)

|X|
log

n
(
Yi ⋅ F

)

|X|

(8)Entropy(X ⋅ F) = −

m∑

j=1

Xj

|X|
Entropy(X)
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where X denotes the training dataset comprising n input samples, while n(Yi·X) indicates 
the count of input samples that belong to the category Yi (either flood or no flood).

3.6 � AHP weightage estimation for flood condition factors

The AHP, proposed by Saaty (1980), is widely adopted for MCDA due to its efficacy in 
handling complex problems. It proves invaluable for resolving intricate problems and is 
frequently used for assigning weights or ratings to components (Supplementary Table S1). 
In this study, a comprehensive set of fifteen flood-influencing factors was integrated 
to establish the flood susceptible areas.  Based on the experts’ opinions, we developed a 
matrix table of each flood conditioning factor (Table 3). Flood hazard factors underwent 
evaluation on a scale from 1 to 9, with 1 indicating equal importance and 9 indicating 
one component’s greater significance over another. Reciprocal values such as 1/1 and 1/9 
were used to denote relative importance. These ratings, as per Penki et al. (2023), served to 
assess the weights assigned to the factors for conducting a multi-criteria evaluation of their 
impact on flood occurrence within the study area (Supplementary Table S2). The normali-
zation of the matrix involved summing the values in each column and dividing each entry 
in the column by this sum, resulting in its normalized score (Supplementary Table  S3). 
The total sum of each column is equal to 1. Criteria weights were then obtained using this 
normalized matrix, calculated by determining the arithmetic mean of each row in Supple-
mentary Table S4. Subsequently, percentages for each thematic layer were computed based 
on the derived criteria weights. The Consistency Ratio (CR) serves as a measure to assess 
the pair-wise comparison of parameters and their sub-categories (Nguyen and Hoang 2023; 
Siddayao et al. 2014). It is determined using Eq. (10):

Here, CR represents the Consistency Ratio, CI denotes the Consistency Index, and RCI 
stands for the Random Consistency Index. The RCI values remain constant, as outlined by 
Saaty in Supplementary Table S2, for different n values and indexes. CI is calculated using 
Eq. (11):

where n signifies the number of factors, and λmax is the average value of the consistency 
vector. If the CR value is ≤ 0.1, the AHP result is considered acceptable. However, if the 
CR value exceeds > 0.1, it indicates that the obtained result does not align with the assess-
ment objective and necessitates a revision of the method used (Saaty 1987).

3.7 � Machine learning model application

To construct the FSM model, we utilized flood inventory as the dependent variable for 
prediction, employing binary values where 1 represents flood points and 0 represents non-
flood points through the S1 SAR data. The numerous instances of flooding were condensed 
into 1,260 points for use in the FSM. Following this, the dataset was split into a 70% train-
ing set (882 samples) and a 30% testing set (378 samples). In this research, independent 

(9)Split Entropy(X ⋅ F) = −

m∑

j=1

Xj

|X|
log2

Xj

|X|

(10)CR = CI∕RCI

(11)CI = (�max−n)∕(n − 1)
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parameters including elevation, slope, LULC, distance from the river, drainage density, 
rainfall, soil texture, geology, MNDWI, NDVI, TWI, aspect, SPI, TRI, and topographic 
curvature were employed. Consequently, hybrid AHP-based ensemble ML algorithms 
(specifically AHP-RF, AHP-XGB, AHP-GBM, AHP-glmboost, AHP-glmnet, and AHP-
rda) were developed for both current and future FSM modeling. Hyperparameters of all 
ML were adjusted using tenfold cross-validation to stabilize the predictive capacity of the 
model. ML models are performed with the caret package in R software v3.4.4. Table 4 and 
Supplementary Fig. S1 summarize all the model tune parameters for FSM analysis.

3.7.1 � Random forest (RF)

Developed by Breiman in 2001, RF is a powerful supervised ensemble machine learning 
technique for classification and regression. It improves the accuracy of individual classi-
fiers through bagging and feature selection, generating multiple regression trees from ran-
domly sampled data. This process culminates in a majority vote for classification, mini-
mizing bias and overfitting. RF’s methodology ensures broad applicability and robust 
performance by diversifying both the data and features used in training. In this study, the 
RF model was executed with 500 trees, a maximum tree depth of 10, and attempting 2 vari-
ables at each split.

3.7.2 � Extreme gradient boosting (XGB)

XGB, a prominent tree-based algorithm in machine learning, stands out for its efficiency 
and accuracy. It excels due to its scalability, ability to handle different types of data, resil-
ience to nonlinear relationships, natural feature selection process, and transparency.

XGB generates a predictive model as an ensemble of weak decision trees, employing 
gradient descent to minimize the loss function (Cui et  al. 2017). This algorithm signifi-
cantly decreases processing time and is versatile, being applicable to both regression and 
classification tasks. Key hyper-parameters were tune as follows: max_depth as 5, eta as 0.4, 
colsample_bytree as 0.6, gamma as 0.01, subsample as 1, min_child_weight as 0.05, and 
the objective function was set to binary: logistic.

Table 4   Best tune parameters of ML models for FSM analysis

Model Tune parameter

RF mtry = 5, verbose = FALSE, summaryFunction = 2, Type of random forest = classification, 
Number of trees = 500, variables split = 2

XGB eta = 0.4, max_depth = 5, gamma = 0.01, colsample_bytree = 0.6, min_child_weight = 0.05, 
subsample = 1, objective = binary:logistic, validate_parameters = TRUE, niter = 100

GBM Loss function = bernoulli, iterations = 150
Glmboost Generalized Linear Models Fitted via Gradient Boosting, weights = NULL, off-

set = NULL,family = Gaussian(), boosting iterations: mstop = 150, Step size: 0.1,Offset: 0, 
coefficients = binomial, model = glm(family = ’binomial’)

Glmnet Family = binomial, alpha = 1, lambda = 0.00009, logistic function = modified Newton
rda Gamma = 0.001, lambda = 0.5
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3.7.3 � Gradient boosting machine (GBM)

GBM was employed in supervised machine learning tasks, addressing various classi-
fication and regression challenges. GBM constructs a predictive ensemble from sim-
ple models, often decision trees (Strickland 2016). It focuses on three core elements: 
optimizing a specific loss function, employing weak learners for initial predictions, and 
using an additive approach to refine predictions by minimizing the loss function. Key 
tuning parameters for GBM involve Bernoulli loss function used with 150 iterations 
were performed. There were 15 predictors of which 15 had non-zero influence for FSM.

3.7.4 � glmboost

The glmboost machine learning model is a powerful tool designed to address regression 
and classification tasks using generalized linear models (GLMs). It falls under the cate-
gory of boosting algorithms, which enhance prediction accuracy by combining multiple 
weaker models (Mayr et al. 2014). glmboost applies the principles of gradient boosting 
to GLMs, enabling it to handle diverse data types such as binary, count, and continuous 
outcomes. It constructs an ensemble of GLMs incrementally, correcting errors made 
by previous models. Key features include flexibility in applying various statistical dis-
tribution models, robustness in handling noisy data, regularization to prevent overfit-
ting, interpretability akin to standard GLMs, and tuning parameters like the number of 
boosting iterations: mstop is 150, step size is 0.1, offset parameters is 0.1, and family is 
Gaussian type for optimal performance in this study.

3.7.5 � glmnet

Glmnet combines generalized linear models (GLMs) with regularization techniques to 
improve prediction accuracy and handle high-dimensional data efficiently with Lasso 
and Elastic Net Regularization parameters (Friedman et al. 2010). The optimal tuning 
parameters for the glmnet model in this study were determined as follows: the fam-
ily parameter was set to binomial, alpha was specified as 1, lambda was adjusted to 
0.00009, and the type of logistic function used was modified by Newton.

3.7.6 � Regularized discriminant analysis (RDA)

RDA stands as a regularization method that merges elements of Linear Discriminant 
Analysis (LDA) and Quadratic Discriminant Analysis (QDA). It operates under the 
foundational framework established by LDA and QDA, and RDA introduces a novel 
approach to covariance estimation (Friedman 1989). This method involves blending 
the class-specific covariance matrices found in QDA with the overall covariance matrix 
used in LDA through the application of a tuning parameter λ. In this study, RDA was 
characterized by two parameters, gamma (0.001) and lambda (0.5).

3.7.7 � Hybrid approach

The novel hybrid approach in this study combined the AHP method with all ML mod-
els for FSM analysis. It was determined that employing a hybrid approach was more 
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advantageous than using a single AI algorithm for FSM analysis (Singha et al. 2022). 
The integration of the AHP with ML enhances FSM modeling by combining expert-
driven prioritization with data-driven prediction (Singha et al. 2025; Sahoo et al. 2024). 
AHP first assigns weights to flood-causative factors through pairwise comparisons, 
reclassifying input layers to reflect their relative influence. These weighted inputs are 
then fed into ML algorithms, which refine predictions using historical flood data. This 
hybrid approach improves accuracy in data-scarce regions by balancing expert knowl-
edge with empirical pattern recognition while maintaining interpretability through 
transparent AHP weightings and robust ML validation.

3.8 � Future flood susceptibility modeling

The study examined the future climatic analysis of FSM (1990–2030) using data from the 
CMIP6 MIROC6 datasets. This analysis was conducted under two distinct shared SSPs 
(i.e., SSP2 4.5 and SSP5 8.5) through the GEE platform. Future FSM for the study area 
was developed using datasets from CMIP6, incorporating key flood-related conditioning 
factors such as projected precipitation, 2030 LULC, along with topographic and environ-
mental variables including elevation, slope, aspect, curvature, TRI, TWI, SPI, drainage 
density, proximity to rivers, geology, soil texture, NDVI, and MNDWI. Future FSM was 
conducted using R software version 4.3.2. LULC prediction was carried out on the GEE 
platform using a RF ML technique, specifically the.smileRandomForest classifier. LULC 
datasets from 2018 to 2022, sourced from the ESRI 10-m resolution collection, were used 
to train the model. A range of environmental predictor variables, including elevation, 
slope, NDVI, and MNDWI were also incorporated. The input parameters were prioritized 
using the AHP technique under the MCDA framework and utilized in six machine learning 
models to accurately forecast future FSM.

Training data was generated using the.stratifiedSample method to ensure balanced rep-
resentation across all LULC classes. The dataset was divided into 80% for training (48,177 
samples) and 20% for testing (11,919 samples) purposes. Model performance was evalu-
ated using a confusion matrix to determine overall accuracy and kappa coefficient. Once 
validated, the trained model was used to forecast LULC for the years 2026 and 2030 at 
4-year intervals, offering key insights into land use dynamics to support informed planning 
and resource management. These future conditioning factors were integrated with AHP 
weights and applied across six ML models to analyze future FSM in the study area. This 
analysis employed a tenfold repeated resampling technique for robustness. In this method, 
the dataset is split into 10 folds; the model trains on 9 and tests on 1, cycling through all 
folds. This process is repeated multiple times with different random splits to ensure reliable 
evaluation. It reduces bias and variance by training and testing the model across multiple 
randomized splits. It ensures more stable and reliable performance metrics, improving con-
fidence in the model’s generalizability for the FSM analysis (Shahabi et al. 2020; Singha 
et al. 2024).

3.9 � Validation analysis

All the model’s performance was assessed using practical and effective experimental tech-
niques. In this research, key metrics such as accuracy, kappa score, sensitivity, specific-
ity, NPV, PPV, and AUC were employed as primary measures for evaluating performance 
(Eqs. 12–18).
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3.9.1 � SHAP analysis

SHAP serves as a tool for interpreting the role of individual features in the predictions 
made by ML models. After training the ML model, SHAP values were computed to assess 
the impact of each feature on individual predictions. In this study, the best GBM model 
was executed for SHAP analysis. SHAP was calculated through Python’s shap library on 
the Google Colab platform. It adopts an additive explanation framework, viewing each fea-
ture as a ’contributor’ to the prediction, an idea derived from the principles of cooperative 
game theory (Lundberg and Lee 2017). For every predicted instance, the SHAP model pro-
duces a ’Shapley value’ by aggregating the contributions of individual features, providing 
an explanation as follows in equation (Eq. 19):

where the represents every factor, the explanation model, z′ ∈ {0, 1}M represents the 
Top of Form coalition factor, M, the maximum union size, and ∅j ∈ R represents the fac-
tor acknowledgment for a variable j (Shapley value). In this study, the SHAP analysis is 
explained through different analyses, namely, SHAP score, waterfall plot, decision plot, 
SHAP heat map, force plot, etc. In this study, SHAP values are expressed relative to the 
model’s baseline or expected value, similar to how the effects of a linear model are relative 
to its intercept. Values are centered around the model’s average, reflecting shifts above or 
below the baseline. The SHAP sign indicates whether a feature increases or decreases the 
prediction, showing its directional and consistent impact. SHAP values indicate a feature 
contributes to the model’s output: i.e., positive values increase the prediction (e.g., higher 

(12)Accuracy =
TP + TN

TP + TN + FP + FN

(13)Kappa coefficient =
Pobs − Pexp

1 − Pexp

(14)Sensitivity =
TP

TP + FN

(15)Specificity =
TN

TN + FP

(16)PPV =
TP

TP + FP

(17)NPV =
TN

TN + FN

(18)AUC =

�∑
TP +

∑
TN

�

(P + N)

(19)g
(
z�
)
= �0 +

M∑

j=1

�jzj�
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flood susceptibility). Negative values decrease the prediction (e.g., lower flood susceptibil-
ity). The magnitude reflects the strength of the feature’s influence.

4 � Results

4.1 � Multicollinearity and OLS analysis

Multicollinearity and OLS were evaluated across all 15 features (Table 5). Each feature’s 
VIF did not surpass 10, indicating no serious multicollinearity among the features. Con-
sequently, these features were considered appropriate inputs for the model. Elevation 
(6.04) and aspect (1.01) features exhibited the highest and lowest VIF values, respectively. 
According to the OLS analysis, curvature, TWI, SPI, drainage density, distance from river, 
rainfall, MNDWI, and NDVI were statistically significant at the 99% confidence level 
(p < 0.001) for the FSM. Furthermore, there is a 95% (p < 0.01) concordance observed in 
the elevation, aspect, and LULC features.

The results of Pearson’s correlation analysis between flooding and its influencing factors 
are depicted in Fig. 6a. As per previous studies (Douglas et al. 2000), a higher correlation 
signifies an increased likelihood of flood occurrence. Key potential factors contributing to 
flood occurrence include rainfall, elevation, MNDWI, geology, NDVI, TRI, slope, TWI, 
and soil texture.

In the study area, most floods were observed in locations characterized by the Sijua and 
Lalagarh geological formations, fine soil type, elevation below 52 m, land cover consisting 
predominantly of cropland and bare land, low TRI values, high MNDWI values, rainfall 

Table 5   Results for the OLS and multicollinearity test for FSM analysis

β ~ Coefficient; t ~ t test std err ~ Standard error, Robust standard errors ~ *p < 0.05, **p < 0.01, and, 
***p < 0.001, F ~ Statistical, R2 ~ Linear regression

Feature VIF β std err t P >|t|

Elevation 6.043  − 0.0252 0.01  − 2.528 0.012*
Slope 2.352 0.0097 0.01 0.966 0.334
Curvature 1.168  − 0.0326 0.006  − 5.139 0.00***
TWI 5.069  − 0.044 0.011  − 4.078 0.00***
TRI 1.966 0.0066 0.009 0.731 0.465
SPI 4.437  − 0.0571 0.009  − 6.565 0.00***
Drainage density 1.391  − 0.0332 0.006  − 5.715 0.00***
Aspect 1.011  − 0.0088 0.004  − 2.413 0.016*
Distance from river 1.307 0.0281 0.006 4.526 0.00***
Rainfall 5.807 0.207 0.009 23.582 0.00***
LULC 1.066 0.0363 0.012 3.073 0.01*
NDVI 1.669  − 0.1244 0.008  − 16.011 0.00***
MNDWI 1.635 0.1326 0.007 18.949 0.00***
Soil texture 1.086  − 0.0018 0.009  − 0.197 0.843
Geology 3.24  − 0.0028 0.013  − 0.221 0.825

R2 = 0.879 F-statistic = 1049 Durbin wat-
son = 1.398

Prob > chi2 = 0.002
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Fig. 6   a Correlation plot and b the feature importance of FCPs calculated by the Information Gain method
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ranging from 1417 to 1454  mm, slope less than 1.3 degrees, TWI values ranging from 
−1.54 to 7.72, low NDVI values, and flat aspect.

4.2 � Information gain ratio analysis

The results are depicted in Fig. 6b, illustrating the calculated InGR values for each parame-
ter. According to the analysis, rainfall (0.390), geology (0.367), MNDWI (0.344), elevation 
(0.263), and NDVI (0.259) emerge as the most significant factors, showing high InGR val-
ues compared to other influencing factors. TRI (0.084), slope (0.060), soil texture (0.053), 
drainage density (0.036), and LULC (0.029) revealed medium significance. Conversely, 
distance to river (0.011), SPI (0.008), curvature (0.008), aspect (0.004), and TWI (0.003) 
exhibit minimal relevance in predicting FSM.

4.3 � Flood susceptibility models

We utilized an AHP Pairwise Comparison Matrix (PCM) model to develop normalized 
weights for each criterion (Supplementary Table  S5). According to the AHP results, 
slope received the highest weight (0.199), followed by rainfall, elevation, drainage 
density, soil texture, distance from river, LULC, geology, TWI, NDVI, SPI, curvature, 
aspect, MNDWI, and TRI. Hybrid AHP ML methods, namely AHP-RF, AHP-XGB, 
AHP-GBM, AHP-glmboost, AHP-glmnet, and AHP-rda, were employed to predict FSM 
using ArcGIS v.10.7.1 software. The six ML models were employed to compute FSM 

Fig. 7   Flood susceptibility maps a–f: a AHP-RF, b AHP-XGB, c AHP-GBM, d AHP-glmboost, e AHP-
glmnet, and f AHP-rda and g area cover percentage
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for each pixel in the basin (Fig.  7a–f). The susceptibility classes were classified into 
five classes (i.e., very low, low, moderate, high, and very high) with the natural breaks 
method in ArcGIS.

The results showed that, in the case of AHP-RF model, 61.82% area comes under 
the very low class, followed by low (11.11%), very high (10.43%), moderate (8.37%) 
and high (8.28%) classes (Fig. 7g). The percentages of area are 13.09%, 4.61%, 3.96%, 
5.30%, and 73.05% for the very high, high, moderate, low, and very low classes, respec-
tively, in the case of the AHP-XGB model. Findings revealed that AHP-GBM predicted 
12.68% area as a very high class, followed by 5.14% area (high), 3.81% area (moder-
ate), 5.55% area (low), and 72.82% area (very low), respectively. In the case of AHP-
glmboost, AHP-glmnet, and AHP-rda models, the area percentages for very high classes 
are 20.37%, 13.71%, and 17.59%, respectively. In the case of very low flood susceptibil-
ity, the classes are 43.40%, 66.95%, and 72.10%, respectively. Across all maps, regions 
characterized by flat terrain and significant rainfall, particularly in the lower portions of 
the basin, are identified as having very high to high flood susceptibility zones.

Fig. 8   Model performance of six ML algorithms for FSM modeling
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4.4 � Validation analysis

Based on Fig. 8, the accuracy outcome of the RF model using the testing dataset is 0.968, 
which outperforms AHP-XGB (0.960), AHP-GBM (0.965), AHP-glmboost (0.954), AHP-
glmnet (0.951), and AHP-rda (0.940). Figures  9a–f showed a comparison of the AUC 
scores across all ML methods used for generating FSM. The findings indicate that while 
all six FSMs demonstrated high predictive accuracy (AUC > 0.940), the AHP-GBM model 
emerged as the most effective for modeling FSM in this specific study area, achieving 
the highest AUC score of 0.996 (Fig. 9c). Illustration from the experimental findings of 
the kappa score, which varied between 0.881 and 0.936, was leveraged to improve model 
effectiveness. The results revealed that the glmboost model exhibited the greatest sensitiv-
ity, while the RF model demonstrated superior specificity compared to the other models. 
Subsequently, AHP-GBM and AHP-glmboosst showed the most favourable performance 
with a PPV and NPV Score of > 0.96.

4.5 � Future flood susceptibility mapping analysis

Future climate CMIP6 MIROC6 data (SSP2 4.5 and SSP5 8.5 scenarios) were employed to 
delineate FSM zones within the study region, as illustrated in Fig. 10a–l. Future FSM was 
generated using CMIP6 datasets, incorporating projected precipitation, 2030 LULC, and 
key factors like topography, hydrology, geology, vegetation, and soil characteristics. For 
the 2030 LULC prediction, model validation showed 99.8% overall accuracy and a kappa 
coefficient of 0.997. These future conditioning factors, combined with AHP weights, were 
applied to six different ML models to assess future FSM in the area. A tenfold repeated 
resampling method was used in this analysis to ensure the robustness of the results.

The AHP-GBM, as the more precise model with SSP2 4.5 and SSP5 8.5 scenarios, 
revealed that the average susceptibility classes of very low, low, moderate, high, and very 
high resembled 64.63%, 6.51%, 4.26%, 8.94%, and 15.67% of the study area. In the SSP2 
4.5 scenario, the average area of the entire study area to very low, low, moderate, high, 

Fig. 9   AUC comparison among the different ML methods a RF, b XGB, c GBM, d glmboost, e glmnet, f 
rda
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and very high flood susceptibility classes were 59.73%, 7.59%, 5.72%, 9.27%, and 17.69%, 
respectively (Supplementary Table  S6). Similarly, with the SSP5 8.5 scenario, the aver-
age areas categorized as very low, low, moderate, high, and very high flood susceptibility 
classes accounted for 56.10%, 9.08%, 7.90%, 8.82%, and 18.10%, respectively. According 
to all models, regions situated in the southern part of the study area are identified as being 
more highly vulnerable hotspots to flooding, as forecasted by future climate patterns.

4.6 � SHAP analysis

In this study, we introduced an interpretable method to control how the chosen model 
achieved an accurate outcome, along with its importance. According to the summary plot, 
we finalized that MNDWI, rainfall, elevation, NDVI, and drainage density were the most 
contributory factor for FSM analysis with the all-model prediction, whereas soil texture, 

Fig. 10   Future flood susceptibility map of CMIP6 MIROC6 model: SSP2 4.5 scenario a RF, b XGB, c 
GBM, d glmboost, e glmnet, f rda and SSP5 8.5 scenario g RF, h XGB, i GBM, j glmboost, k glmnet, l rda
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Fig. 11   SHAP plot a summary plot: SHAP feature impact values influence flood susceptibility predictions 
and their correlations. Red indicates higher susceptibility values, while blue signifies lower ones. This pro-
vides a concise view of the distribution and variation of SHAP values for each feature. Summary plots 
are organized by the importance of each feature to the model output, based on the sum of the absolute 
SHAP values for each feature. b Waterfall plot: these are intended to provide explanations for individual 
predictions, therefore, they require a single row from an Explanation object as input. A waterfall plot begins 
at the model’s expected output value at the bottom, and each subsequent row demonstrates how each fea-
ture’s positive (red) or negative (blue) contribution shifts the value from the expected output across the 
background dataset to the actual model output for that specific prediction., c Heatmap: the model’s output 
is displayed above the heatmap matrix, centered on the explanation’s base value, while the global signifi-
cance of each model input is illustrated as a bar plot on the right side of the plot, using the shap.order.abs.
mean measure as the default metric for overall importance d Decision plot: the horizontal axis depicts the 
model’s output, measured in log odds. The plot is centered on the x-axis at the explainer’s expected value. 
All SHAP values are relative to this expected value, similar to how linear model effects are relative to the 
intercept. The vertical axis lists the model’s features. Each prediction is represented by a colored line, with 
the line intersecting the x-axis at the predicted value for that observation. This value determines the color 
of the line along a spectrum. As you move from the bottom to the top of the plot, SHAP values for each 
feature are added to the model’s base value, illustrating each feature’s contribution to the overall prediction. 
At the bottom of the plot, the observations converge at the expected value of the explainer. e Force plot: the 
horizontal layout of the force plot makes it difficult to display all significant features clearly. It reveals the 
key features that influence a model’s output
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geology, aspect, distance from river, and TWI were the moderate importance and SPI, 
slope, curvature, and LULC are least important (Fig.  11a). The water plot showed the 
global influencing flood condition factors like rainfall, NDVI, elevation, curvature, dis-
tance from river, and SPI had the positive impact where the MNDWI drainage density, 
aspect soil texture, and TWI had the negative impact of the flood susceptibility modelling 
(Fig.  11b). Using the heatmap plot function with a matrix of SHAP values generates a 
visualization where the instances are represented on the x-axis, the model inputs on the 
y-axis, and the SHAP values depicted using a color scale. This explanation revealed the 
overall importance of model accuracy achieved through the MNDWI, rainfall, elevation, 
and NDVI factors (Fig. 11c). In addition, Fig. 11d showed the variables improved accu-
racy for each pixel ordering, including rainfall, MNDWI, NDVI, elevation, TWI, drainage 
density, and the decision-making chances for flood susceptibility evaluation. The force plot 
effectively illustrates the decision-making process of the successive model. For the output 
shown in Fig. 11e, variables improving classification accuracy for each pixel included rain-
fall, NDVI, elevation, TRI, curvature, SPI, and distance from river; those decreasing clas-
sification accuracy included MNDWI, drainage density and aspect.

5 � Discussion

Modeling and simulation platforms are vital tools that aid decision-makers by improving 
insights into flood hazard management. The varying designs and features of these mod-
els result in different levels of predictive accuracy and outcomes. Importantly, having a 
range of modeling options available equips policymakers with the resources to develop and 
implement robust environmental policies (Edamo et  al. 2022). On the other hand, vari-
ous approaches have been applied independently across different geographical areas for 
the mitigation of flood susceptibility. In the Dwaraeswar River basin, specifically in the 
lower part, data on flood susceptibility showed a wide distribution of areas at high risk. 
Both natural and human-made factors play a role in increasing the susceptibility of these 
regions to flooding. The winding course and meandering channels of rivers, particularly in 
streams with low gradients, increase the region’s susceptibility to flooding. When the river 
reaches high water levels during peak times, it can overflow and lead to severe floods in 
Bihar and West Bengal. Land use plays a pivotal role in defining areas highly susceptible to 
floods. Malik et al. (2020) underscore the land-use changes triggered by river dynamics in 
the lower Dwarakeswar plains, where increased settlement and agricultural activities have 
influenced erosion and sediment deposition. Similarly, in the Dwarakeshwar river Basin, 
changes in LULC due to river dynamics have been documented by Sahoo et al. (2018). The 
relationship between river dynamics and land use is crucial, as it directly impacts the lives 
of those residing in floodplains. Variations in land use patterns, shaped by river dynam-
ics, are key in evaluating the socioeconomic effects of river-related hazards. Notably, the 
expansion of residential areas and agriculture, alongside a reduction in grassland, high-
lights the consequences of agricultural expansion influenced in different districts by ero-
sion, sediment deposition, and river path changes. The study found significant erosion and 
deposition in the middle of the river. The outcomes demonstrate that erosion and deposi-
tion show less impact on the upper and lower portions of the river. The topography of the 
Dwarakeswar basin includes both hilly and plain land areas. The study site has a maxi-
mum elevation in the extreme northeastern and eastern corners and a minimum elevation 
in the western and southwestern areas. The current research areas include fifteen blocks in 
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Bankura, five in Purulia, three in Burdwan, four in Hooghly, and three in the West Mid-
napore district. Bankura district covers the majority of the river basin.

For instance, Seydi et  al. (2023) utilized RF to create a flood susceptibility map in 
Golestan province, Zhu et  al. (2024) employed the XGB model in the Yangtze River 
Delta, and Stefanidis and Stathis (2013) implemented AHP in Greece’s Kassandra Pen-
insula. Consequently, there is a need for comparative studies to assess the effectiveness 
of these models under identical conditions and to impartially evaluate their performance 
(Nachappa et  al. 2020). This study analyzed and compared the predictive capabilities 
of six distinct modeling methods for mapping flood susceptibility in Dwarakeswar river 
basin, eastern India. These included hybrid AHP-based ML models and MCDA models, 
namely AHP-RF, AHP-XGB, AHP-GBM, AHP-gumboots, AHP-glmnet, and AHP-rda. 
According to the AUC score, the AHP-GBM (0.996) model demonstrated the highest pre-
dictive accuracy compared to the other models. A previous study showed that the AUC 
values ranged from 72 to 89% in this study area using the traditional MCDA approach 
(Ghosh et  al. 2023; Malik et  al. 2020). Furthermore, the advantage of ML models over 
MCDA ones stems from the uncertainty associated with the weighting of criteria based on 
expert knowledge in MCDA models. Nonetheless, all hybrid methods used in this study 
exhibited good to excellent accuracy. This study demonstrates the combination of AHP 
and ML methods, utilizing outcomes through a hybrid approach, which is distinctive and 
achieves improved accuracy in flood susceptibility mapping. A related study by Mfondoum 
et al. (2023) demonstrated the use of the Multi-Geoenvironmental Hazards Susceptibility 
(MGHS) tool, which integrates the AHP with ML across the North-Moungo region. We 
assessed the effectiveness of integrating MCDA-based AHP with ML techniques by ana-
lyzing and comparing the AUC values of both the standalone AHP and its hybrid models, 

Fig. 12   Comparison of FSM assessment results using standalone AHP and hybrid AHP-ML models
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as illustrated in Fig. 12. Figure 12 shows that standalone AHP had the lowest predictive 
accuracy (AUC = 0.908), while AHP-ML models performed better, with GBM achieving 
the highest AUC (0.996) and rda has the lowest (0.988). This confirms the superiority of 
AHP ML methods over AHP for FSM analysis. Moreover, the hybrid AHP-ML models 
consistently outperformed both individual approaches, demonstrating enhanced predictive 
performance through integration.

Several researchers have explored ensemble approaches for FSM. Tehrany et al. (2013) 
utilized an ensemble of multivariate and bivariate statistical models, finding that the 
ensemble model surpassed individual models. Similarly, Tehrany et al. (2014) developed 
new ensemble models using weights-of-evidence and SVM models, demonstrating their 
superiority over single models. Termeh et al. 2018 discussed novel ensembles of adaptive 
neuro-fuzzy inference system and nature-inspired algorithms, which exhibited improved 
prediction performance for flood susceptibility. This study reinforces these findings, show-
ing that the hybrid model combining AHP with six ML models yielded superior flood sus-
ceptibility predictions.

The congruence in spatial delineation of high and very high flood susceptibility areas 
identified by RF-ANN, Fuzzy-RF, and ANN-Fuzzy models suggests that regions featuring 
extremely low elevation (< 10 m), substantial flow accumulation, concave topography, min-
imal slope, elevated wetness index, and close proximity to rivers are susceptible to flooding 
(Islam et al. 2023). With the optimal AHP-GBM model, our research revealed that 12.68% 
of the area was within the category of very high flood susceptibility, while 5.14% of the 
area was classified as high flood susceptibility. Low elevation, flat areas, minimal slope, 
high TWI primarily located in the basin’s middle and lower parts, demonstrated a high 
risk of flood susceptibility. The AHP-GBM model outperformed other hybrids in FSM. 
In the Dwarakeswar River Basin, especially from northwest to southeast, high-risk zones 
were widespread due to both natural and human factors, as shown in Fig. 7c. Our results 
were validated using flood layers from the flood hazard atlas maps (2000–2020) available 
on Bhuvan, ISRO, India (Fig. 13a). These results were compared with flood hazard zones 
along the lower part of the Dwarakewar river, including the right and left banks in areas 
such as Daulat Chak, Gobindapur, Gangprasad, Dalapatipur, Syamsundarpur, Nanadangar, 
Ratanapur, and Gazipur were classified as high to very high flood susceptible regions. The 
moderate to high susceptible zone includes Hara, Ranghubati, Chutra, Nandpur, Srimana-
tapur, Shnsutra, Tentuietz, and Kenijun. Similarly, the upper part of the region, including 
Lodhasuti, Chhota, Narahipur, Patpur, Nischintapur, Tentulia, and Baijala, also shows low 
to moderate susceptibility to flood hazards within the study area.

Examining the influential factors through the InGR analysis unveiled that rainfall, eleva-
tion, slope, LULC, distance to road, TRI, and SPI exert a significant influence on FSM 
(Hosseini et al. 2020; Islam et al. 2021). These findings align with our study, which iden-
tified the most significant flood conditioning factors as rainfall (0.390), geology (0.367), 
MNDWI (0.344), elevation (0.263), and NDVI.

The examination of LULC in conjunction with FSM indicated that approximately 
5.14% -12.68% of agricultural land lies within the high to very high risk zones, rendering 
them prone to frequent crop damage (Fig. 13c). A comparable study revealed (Singha and 
Swain 2022) that intense rainfall and the severe Cyclone Amphan (May 2020) led to flood 

Fig. 13   Flood susceptibility evaluation by a flood hazard zonation with Bhuvan, ISRO, India database b 
LULC changes with river discharge rate in Dwarakeswar river basin and c cropland risk map due to flood 
susceptibility level within the study area

▸
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inundation impacts on cropland, affecting 35.93% of the total farmland through S1 C band 
images. This data on associated damage could be advantageous for disaster management 
and emergency response efforts in the area studied.

In the Dwarakeswar basin, peak river discharge typically occurs 1 to 2 days after heavy 
rainfall in the upper catchment during the monsoon (Fig.  13b). From 1972 to 2020, the 
annual peak discharges ranged from 11.33 to 3132.44 m3/s, influencing flood events in the 
area. Flows above 800  m3/s exceed the danger level, with 1000  m3/s marking significant 
flood events. Peak discharges increased until 1995, then declined. The highest recorded 
discharge was 3111.44  m3/s on September 27, 1995, exceeding the extreme danger level 
of 77.11 m. The most significant flood occurred on September 1, 1978, at Bankura, with a 
discharge of 3132 m3/s.

The XAI SHAP method utilized in this study facilitated the influence of input factors 
for FSM analysis. It was found that rainfall, MNDWI, elevation, NDVI, distance from the 
river, drainage density, and TRI were identified as the most influential conditioning factors 
for FSM modeling. These findings are consistent with several recent studies (Aydin and 
Iban 2022; Wang et al. 2023). This study presented future FSM using the CMIP6 model 
under SSP2 4.5 and SSP5 8.5 scenarios (1990–2030). Previous studies by Hirabayashi 
et al. (2021) examined future flood risk projections based on CMIP6 climate models. How-
ever, consistent projections from models within the same institute offer hope for reducing 
uncertainties. The AHP-GBM model with SSP2 4.5 and SSP5 8.5 scenarios showed that 
the susceptibility to flooding across the study area varies, with the majority of the area fall-
ing into the very low susceptibility class. Specifically, under the SSP2 4.5 scenario, the dis-
tribution of susceptibility classes ranged from very low (64.63%) to very high (15.67%). In 
the SSP245 scenario, the respective percentages were from 59.73% for very low to 17.69% 
for very high susceptibility. Under the SSP5 8.5 scenario, areas categorized from very low 
to very high susceptibility were 56.10% and 18.10%, respectively. All models identified the 

Fig. 13   (continued)
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southern part of the study area as particularly vulnerable to future flooding due to climate 
change.

The outcomes of this study could offer valuable insights for flood hazard managers or 
researchers in determining the most appropriate techniques for FSM. One limitation of this 
study is its exploring methodologies for conducting flood research in scenarios where data 
is entirely absent, which warrants further investigation. Although the classifiers demon-
strated effectiveness in a vast study area, there is an uneven distribution of flood samples 
across it. Such a heterogeneous distribution of samples could introduce bias in susceptibil-
ity prediction. Nonetheless, a significant drawback of the current approach is the absence 
of temporal variations and real-time flood data. Another primary limitation pertains to 
the methods employed and FSM in general, as these maps solely indicate areas prone to 
flooding without providing details on flood depth or velocity. It is suggested that future 
investigations, such as this one, integrate hydraulic modeling, capable of generating 2D 
maps depicting depth and velocity. Lastly, this paper does not address inter-annual or intra-
annual variations of climatic parameters. Utilizing monthly or daily input data could pro-
vide a deeper understanding of the impact of meteorological conditions. Additionally, the 
increased resolution of input datasets and the availability of conditioning factor datasets 
could also impact the results of susceptibility maps. This study can be extended to assess 
the prediction accuracy of the model in diverse terrain environments.

5.1 � Some suggestion

Different nature-based solution approaches, such as wetland restoration, creating water 
retention zones, clearing barriers, revitalizing former waterways, and integrating with tra-
ditional infrastructure, have enhanced flood protection efforts. These green strategies have 
proven to be effective in mitigating flood risks in recent times.

Several nature-based solutions can be employed as part of flood risk mitigation 
strategies:

•	 Wetland restoration: Reinstating natural wetland habitats can help absorb excess water 
during floods, reducing their impact on surrounding areas.

•	 Riparian buffer zones: planting vegetation along riverbanks can stabilize soil, prevent 
erosion, and absorb floodwaters, acting as a natural barrier.

•	 Floodplain reconnection: allowing rivers to naturally overflow into their floodplains can 
reduce the force of floods downstream by spreading water across a wider area.

•	 Green infrastructure: Implementing green roofs, permeable pavements, and rain gar-
dens can absorb rainfall and reduce surface runoff, thus lowering the risk of urban 
flooding.

•	 Ecosystem-based approaches: Utilizing natural ecosystems such as forests, grassland, 
and dunes can act as buffers against storm surges and tidal flooding, protecting coastal 
communities.

•	 Constructed wetlands: Building artificial wetlands can mimic the functions of natural 
wetlands, providing storage for excess water and improving water quality.

•	 Regenerative agriculture: Practices such as mixed farming, cover cropping, climate-
resilient agriculture, and agroforestry can enhance climate change adaptation, soil 
health and water retention, reducing runoff and flooding.

•	 Natural channel design: Restoring streams and rivers to their natural, meandering state 
can improve their capacity to convey floodwaters and reduce erosion.
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•	 Community engagement and education: involving local communities in flood risk man-
agement and raising awareness about nature-based solutions can enhance their accept-
ance and effectiveness

6 � Conclusion

This study utilized hybrid AHP-based ML methods (i.e., AHP-RF, AHP-XGB, AHP-
GBM, AHP-glmboost, AHP-glmnet, and AHP-rda) for FSM in the Dwarakeswar river 
basin, eastern India. The models were developed using a spatial database comprising fif-
teen flood conditioning factors related to topography, climate, hydrology, terrain distribu-
tion, and historical flood data derived from past flooding events observed via Sentinel-1 
imagery  and Global flood database in the GEE cloud. The significance of these factors 
was assessed through various diagnostic tests for Pearson correlation, OLS, and multicol-
linearity, including VIF score, as well as an InGR test. The outcomes of these tests indi-
cated the absence of multicollinearity issues among the chosen flood conditioning factors. 
The multicollinearity test demonstrated that all factors had VIF scores below 10, indicating 
the absence of multicollinearity issues among the flood conditioning factors. The InGR 
test, however, indicated that rainfall (0.390), geology (0.367), MNDWI (0.344), elevation 
(0.263), and NDVI (0.259) emerge as the most significant factors, showing high InGR val-
ues compared to other influencing factors.

The accuracy of the studied models during the validation phases was assessed using 
various statistical metrics such as accuracy, kappa score, sensitivity, specificity, NPV, PPV, 
and AUC. The validation outcomes indicated satisfactory performance across all models 
examined, with the AHP-GBM model exhibiting the highest performance through the AUC 
of 0.996. Consequently, the AHP-GBM model emerges as a promising option for develop-
ing flood susceptibility maps. Findings revealed that AHP-GBM predicted 12.68% area as 
a very high susceptibility  class, followed by 5.14% area (high), 3.81% area (moderate), 
5.55% area (low), and 72.82% area (very low), respectively. The SHAP findings underscore 
the impact of different factors like rainfall, MNDWI, elevation, NDVI, proximity to rivers, 
drainage density, and TRI on flood susceptibility assessment. Based on the climate projec-
tions from future CMIP6 models (SSP2 4.5, SSP5 8.5), the southern region of the study 
area has been pinpointed as a hotspot for flooding vulnerability, with a susceptibility level 
classified as very high, encompassing 16.68% of the area.

The results of this study hold important policy relevance for flood management and 
disaster readiness within any river basin. By utilizing advanced ML methods combined 
with geospatial analysis, the research has effectively generated accurate FSM. These maps, 
along with the key contributing factors and the proven performance of different ML mod-
els, provide critical information to support informed decision-making and strengthen flood 
management efforts at both local and regional scales. Additionally, the FSM generated can 
inform land use planning in flood-prone areas, while the study’s results overall contribute 
to the improvement of flood risk management across all vulnerable regions.
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