

1 Tailoring the Thermal, Mechanical, and Gas Transport Properties of
2 Cellulose Acetate Membranes with Ionic Liquids for Efficient
3 Propene/Propane Separation

4

5 Pegah Hajivand,^{a,b} Mariagiulia Longo,^{a,*} Teresa Fina Mastropietro,^b Nicolas Godbert,^b Marcello
6 Monteleone,^a C. Grazia Bezzu,^c Donatella Armentano,^{b,*} Johannes C. Jansen^{a,*}

7 ^a Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, 87036, Rende (CS), Italy. E-mail:
8 m.longo@itm.cnr.it, johannescarolus.jansen@cnr.it.

9 ^b Chemistry and Chemical Technology Department, Università della Calabria, Via P. Bucci 14/C, 87036, Rende (CS),
10 Italy. E-mail: donatella.armentano@unical.it.

11 ^c Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.

12 **ABSTRACT**

13 In light of the importance of designing less energy-intensive and cleaner technologies for olefin purification,
14 the current work aims to systematically enhance the separation of a challenging pair of olefin/paraffin gases,
15 namely propene/propane. To achieve this goal, various blended-membranes are fabricated by mixing cellulose
16 acetate (CA), a carbohydrate-based biopolymer, with three different aprotic ionic liquids (ILs) including
17 $[\text{BMIM}]^+[\text{BF}_4^-]$, $[\text{BMIM}]^+[\text{OTf}^-]$, and $[\text{BMIM}]^+[\text{Tf}_2\text{N}^-]$, which are used as additives, with a plasticizer effect,
18 at concentrations in the range of 10-30%. Extensive physicochemical characterization of these membranes by
19 DSC and TGA (thermal properties), Tensile tests (mechanical properties), X-ray diffraction and SEM
20 (structural properties) show that ILs are well-dispersed within the polymeric matrix owing to the interactions
21 between the ILs and CA functional groups. The incorporation of ILs leads to enhanced gas transport properties
22 of the blended membranes compared to the neat one, generally improving their permeability. In particular, the
23 blended-membrane, incorporated with 30% of $[\text{BMIM}]^+[\text{Tf}_2\text{N}^-]$, increased the C_3H_6 permeability by 35 times
24 and the $\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ selectivity by nearly two times compared to the neat CA membrane. These results suggest
25 that Ionic Liquid-doped cellulose acetate membranes are potential candidates for efficiently separating the
26 propene/propane gas pair.

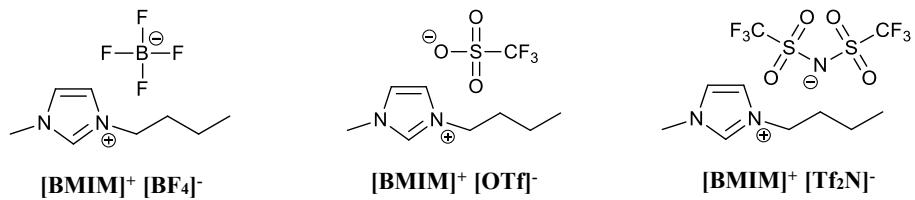
27 **Keywords**

28 cellulose acetate; ionic liquid; mixed matrix membrane; gas separation; CO_2 capture; propene/propene
29 separation

30

31 **1. Introduction**

32 The propene/propane mixture is one of the most challenging pairs of gases to separate due to the similar
33 shape, size and physical properties of these gases [1]. Nevertheless, despite the vital role of propene in the
34 industry [2], compared to light gases, relatively few membrane-based works in the literature considered
35 propene/propane separations [3–7]. Cellulose acetate (CA) is one of the first and the most common
36 biopolymers, widely employed for gas separation studies, mostly owing to its non-toxicity and
37 biodegradability, ease of availability [8–10], functional adjustability [11,12], excellent film-forming properties
38 [8], and transportation properties, which are essential for achieving higher gas productivity [13,14]. However,
39 due to its glassy nature, semi-crystalline structure, and trade-off behaviour, there are certain issues associated
40 with CA's application in industrial gas separation processes [15]. In particular, the strong hydrogen bonds in
41 CA structures resulted in a low diffusivity of larger molecules like C₃ hydrocarbons [16].


42 One very promising class of materials that have been proven to be effective in enhancing the gas separation
43 properties of CA membranes, mostly biogas and flue gas, are ionic liquids (ILs) [17–21]. ILs can potentially
44 produce high-performance gas separation membranes [22]. They are molten salts with low melting points
45 (<100 °C, many below RT) and were first utilized by the U.S. Air Force Academy, in the 1960s, as electrolyte
46 salts for thermal batteries [23]. The most typical types of ILs are salts composed of organic cations, such as
47 tetraalkylammonium [NR₄]⁺ or tetraalkylphosphonium [PR₄]⁺, alkylimidazolium [R₁R₂IM]⁺, alkylpyridinium
48 [RPy]⁺, paired with various anions such as tetrafluoroborate [BF₄][−], hexafluorophosphate [PF₆][−],
49 methanesulfonate (mesylate) [CH₃SO₃][−], trifluoromethanesulfonate (triflate) [CF₃SO₃][−], nitrate [NO₃][−], and
50 bis-(trifluoromethanesulfonyl)amide [Tf₂N][−], along with several low-melting bromide, chloride, and iodide
51 salts [24,25].

52 In gas separation, both the cation and anion influence the separation efficiency of ILs. While the anion
53 generally plays a more dominant role, various studies have reported that the cationic structure can also affect
54 the performance of room-temperature ionic liquids (RTILs) [26–29]. For instance, Ortiz et al. [30] reported an
55 increase in propene solubility by changing the cation from [BMIM][BF₄] to [Bmpy][BF₄] although the
56 propene/propane selectivity decreased. In another study [31], an extensive thermodynamic screening was
57 conducted under ambient conditions and low pressure, involving over 20 ILs and their binary mixtures for
58 propene/propane separation. It was observed that increasing the side-chain length on imidazolium cations (a
59 series of 1-alkyl-3-methylimidazolium salts of the type [RMIM][Tf₂N], where R = methyl, ethyl, propyl, butyl)
60 enhanced propene solubility, but led to a decrease in ideal selectivity. Conversely, changing the anion from
61 [Tf₂N][−] to [DCA][−] significantly improved the propene/propane separation. The authors noted that while
62 propene solubility was not strongly influenced by the cation side chain, propane solubility increased with
63 longer alkyl chains, thereby reducing selectivity [31]. Using [C₂C₁Im]⁺ as a cation, Camper et al. found that
64 propene solubility followed the trend [Tf₂N] > [DCA] > [CF₃SO₃] while the selectivity decreased accordingly

65 [32]. These findings on the tuneable solubility and selectivity properties of ILs, achieved through structural
66 variations in both cation and anion, have facilitated their application in mixed matrix membranes.

67 The interaction between ILs and CA has been reported in studies that explored the role of ILs as safe and
68 novel plasticizers [33–35], showing successful gas separation efficiencies mostly for light gases such as
69 CO₂/CH₄, CO₂/N₂, and O₂/N₂ [10,24,25,36–38]. For instance, Lam et al. [39] investigated IL-doped CTA
70 membranes for CO₂/CH₄ separation and they reported a decline in crystallinity and T_g of the polymer both
71 with [EMIM][BF₄] and with [EMIM][DCA], along with an increase in CO₂ absorption and CO₂/light gas
72 permselectivity. These performance improvements are intrinsically linked to the interactions between ILs and
73 the polymer matrix, as demonstrated by extensive research focused on the optimization of cation-anion
74 combinations for cellulose dissolution [40,41], which reveal that anions play a more important role than the
75 cations by disrupting cellulose's hydrogen-bond network through new H-bond formation [42,43]. Cations have
76 weaker effect and may interact with cellulose by the formation of weak H-bonds [44,45] or by Van der Waals
77 interactions [46,47]. Simulations show that the arrangement of the cations also depends on the nature of the
78 anions [48,49]. For instance, Rabideau's simulations of 15 imidazolium-based ILs revealed that the ILs form
79 a patchwork at the surface of cellulose strands, where the anions interact mainly with the hydrophilic sites
80 while cations associate more with the hydrophobic regions of cellulose [50].

81 Although there are a few works in the literature, considering CA application for C₃H₆/C₃H₈ separation [16,51–
82 54], to the best of our knowledge, no studies have yet established a direct correlation between the transport
83 properties of propene and propane and the tailored physicochemical characteristics of CA, modified with ionic
84 liquids. Recognizing this gap, along with the limited exploration of the blending of ILs with cellulose
85 derivatives for propene and propane separations, this study explored the integration of three imidazolium-
86 based ionic liquids (Scheme 1) into cellulose acetate membranes to systematically investigate their potential
87 not only as plasticizers but also as performance enhancers. The strategy behind selecting these materials was
88 to investigate the effect of anions on tailoring the CA structure, while the cation (BMIM) remained constant
89 to avoid complicating the effects. Imidazolium-based ILs have been widely recognised as successful materials
90 for disrupting the strong hydrogen bonding network in cellulose acetate, leading to a reduction in polymer
91 crystallinity and a desirable plasticising effect [35,38,40,47,55–59]. Along with various physical
92 characteristics, the gas transport properties were initially screened with a series of light gases, and the analysis
93 was then focused on propene and propane. We hypothesise that the incorporation of the appropriate aprotic
94 ionic liquids into CA can sufficiently plasticise the polymer and result in a radical enhancement of the overall
95 permeability yet maintaining a sufficiently high stiffness and mechanical strength to preserve the selectivity,
96 especially for gas pairs like propene/propane that may benefit from both size-selectivity and solubility-
97 selectivity. The results confirm promising improvements in the challenging separation of propene/propane,
98 which is an important step towards cleaner and more energy-efficient olefin purification technologies.

Scheme 1. Structure of the ionic liquids used in this work.

99 **2. Experimental**

100 *2.1. Material*

101 Cellulose acetate (CA) with the degree of substitution (DS) 2.34, as determined by NMR, was obtained as a
 102 gift from SNIA, Italy. The solvents including acetone (98%), Hexane (99.5 %), DMSO-d₆ (Thermo Scientific,
 103 99 atom% D) were obtained from Merck. The ionic liquids (ILs) 1-Butyl-3-methylimidazolium
 104 trifluoromethanesulfonate, ([BMIM]⁺ [OTf]⁻, C₉H₁₅F₃N₂O₃S), 97%, 1-Butyl-3-methyl-imidazolium
 105 tetrafluoroborate ([BMIM]⁺[BF₄]⁻, C₉H₁₅BF₄N₂), 97%, and 1-butyl-3-methylimidazolium bis
 106 (trifluoromethanesulfonyl) imide ([BMIM]⁺[Tf₂N]⁻, C₁₀H₁₅F₆N₃O₄S₂), 98%, were supplied by Merck and
 107 Aldrich, respectively. Elastosil ® M4601 (for coverage of the membrane defects), was provided by Wacker
 108 Chemie AG. (Munich, Germany). The employed gases for the permeation tests, including O₂, N₂, CH₄, CO₂
 109 with a purity of 99.99+% as well as light hydrocarbons including C₃H₆ (purity > 99.5 %) and C₃H₈ (purity >
 110 99.5%) were obtained from Sapiro, Italy. Table SI 1 displays the physical characteristics and molecular
 111 structure of the CA and the ILs used in this study.

112 *2.2. Membrane preparation*

113 A 10 wt% stock solution of CA was prepared by dissolving the polymer (previously dried in an oven at 100
 114 °C, overnight) in acetone under magnetic stirring until obtaining a clear and homogenous solution. An aliquot
 115 of the polymeric solution was then combined with the ILs, [BMIM]⁺[OTf]⁻, [BMIM]⁺[BF₄]⁻, and
 116 [BMIM]⁺[Tf₂N]⁻, to achieve three distinct concentrations (10%, 20%, and 30 wt.%) for each IL, followed by
 117 magnetic stirring at room temperature overnight. The solutions were cast manually on a clean glass plate at
 118 30°C, using a film applicator (Elcometer) with a fixed calibrated casting gap. To minimize the probability of
 119 pinhole defects, two successive layers were cast with an interval of 10 minutes at a casting gap of 250 and 100
 120 µm, respectively. The membranes were allowed to dry overnight in a thermostatic chamber at 30°C. Two series
 121 of membranes were prepared: the first was coated with a layer of silicone solution to heal any eventual defects
 122 and used for permeation tests, and the second series was kept uncoated and used for physical characterizations.
 123 The silicone solution was prepared by mixing the two components of the PDMS Elastosil M4601 in the weight
 124 ratio 9:1, based on the supplier's instructions, and dissolved in n-Hexane at 25 wt%. A thin film of PDMS
 125 solution was deposited onto the membrane surface through dip-coating, followed by a 24-hour resting at room

126 temperature to ensure complete crosslinking. The list of the membranes and their characteristics is provided in
127 Table SI 1.

128 *2.3. Physicochemical Characterizations*

129 The chemical structure of cellulose acetate, particularly its degree of substitution (DS) with acetate groups,
130 was determined by ^1H (500 MHz) and ^{13}C (125 MHz) NMR spectroscopy, using an Avance Bruker DPX 500
131 (500 MHz) instrument. The NMR analysis was performed on a sample solubilised in DMSO-d6. All the spectra
132 were acquired and processed with TopSpin 3.5 on a Linus PC and analysed with the software Mnova on a
133 Window PC.

134 The apparent molar mass of cellulose acetate was determined by Gel Permeation Chromatography (GPC),
135 using a Shimadzu Prominence-i GPC System, equipped with a refractive index (RI) and a UV detector. The
136 polymers concentration was set as 2 mg mL $^{-1}$. Tetrahydrofuran (THF) was used as the eluent and the flow rate
137 was set up at 1.0 mL min $^{-1}$. The samples were eluted on a Phenogel (5 μm , 10E3 Å) column at 40 °C for 30
138 minutes. The calibration curve was prepared with polystyrene standards up to 100K.

139 The crystallinity of the CA raw material and the CA membranes was evaluated via powder X-ray diffraction
140 (PXRD) analysis on a Bruker D2 PHASER diffractometer (2nd generation, Germany), using CuK α radiation (λ
141 = 1.54056 Å). Two CA samples were selected as reference: one sample was kept at ambient temperature, while
142 the other was dried at 100 °C overnight before testing. Data were collected at room temperature in the 2 θ range
143 of 2–40°.

144 The thermal properties of the polymer and the membranes were studied using thermogravimetric analysis
145 (TGA), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC). TGA and DTG
146 measurements were carried out on a Perkin Elmer TGA 8000 thermogravimetric analyser. Samples of 10-15
147 mg of the CA membrane, the pure ILs, and the IL-CA MMMs were analysed in the temperature range from
148 25 to 850°C at a scan rate of 10°C/min, under a dry nitrogen atmosphere. DSC measurements were performed
149 using a Pyris Diamond differential scanning calorimeter (Perkin-Elmer) equipped with an Intra-cooler
150 refrigeration system. To conduct this, 18–20 mg of the samples were weighted and wrapped in a small disk of
151 aluminium foil (~ 6-7 mg), followed by a heating-cooling-heating cycle between 0 °C and 250 °C at a rate of
152 15 °C min $^{-1}$. The temperature and heat flow were previously calibrated with indium and zinc standards.

153 Tensile tests on the membranes were performed by a Zwick/Roell, Universal Testing Machine model Z2.5,
154 single column tensile tester, equipped with a 200 N load cell and curved pneumatic clamps, at 23-25°C, RH:45-
155 50%. The strips were cut with an effective size of 3 cm x 0.5 cm (distance between the clamps and sample
156 width) at a relative deformation rate of 100% min $^{-1}$ for the Young's modulus determination followed by 500%
157 min $^{-1}$ until breakage. The clamp surface and the end parts of membrane strips were covered with adhesive
158 rubber and paper, respectively, to avoid slipping or damaging the softer samples with high IL content.

159 2.4. Gas transport properties

160 Gas permeation tests were conducted using a fixed-volume pressure increase device, designed by HZG and
 161 built by Elektro & Elektronik Service Reuter in Geesthacht, Germany, as previously discussed [60]. The tests
 162 were conducted on the membrane with an effective area of 13.84 cm² at ambient temperature, 25 °C, and a
 163 feed pressure of 1 bar. Prior to the measurements, the membranes were thoroughly outgassed to eliminate all
 164 adsorbed species. This was achieved using a combination of two membrane pumps and a turbo molecular
 165 pump (Pfeiffer), ensuring a high-quality and oil-free vacuum (<< 10⁻³ mbar). Moreover, between subsequent
 166 measurements, the absorbed gas was totally removed by evacuating the membrane, for a period of at least 10
 167 times the time lag of the previous gas. The permeability of gases was tested in the order of O₂, N₂, CH₄, CO₂,
 168 C₃H₆, and C₃H₈.

169 The measurements were performed via the so-called time lag method, in which the entire permeation curve is
 170 recorded to determine the diffusion coefficients (D) from the initial transient phases via the time lag (Θ), and
 171 the permeability coefficient from the steady state pressure increase rate, thorough the intersection of the
 172 extrapolated steady state curve with the horizontal axis according to the equation:

$$D = \frac{l^2}{6 \cdot \Theta} \quad \text{Eq. 1}$$

173 where l is the membrane thickness. The permeability (P), in Barrer (1 Barrer = 10⁻¹⁰ cm³_{STP} cm cm⁻² s⁻¹
 174 cmHg⁻¹), was obtained through the slope of the stationary part of the time-lag curve, *i.e.* the curve of the
 175 permeate pressure, p_t , as a function of time, as described previously [60]:

$$p_t = p_0 + \left(\frac{dp}{dt} \right)_0 \cdot t + \frac{RT}{V_p \cdot V_m} \cdot A \cdot l \cdot p_f \cdot S \times \left(\frac{D \cdot t}{l^2} - \frac{1}{6} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \exp \left(-\frac{D \cdot n^2 \cdot \pi^2 \cdot t}{l^2} \right) \right) \quad \text{Eq. 2}$$

176 Where p_0 is the starting pressure, which should be negligible, and $(dp/dt)_0$ is the baseline slope representing
 177 the instrumental leak flow rate, which should be small but may not be completely negligible for very slow
 178 permeating membranes, or in the case of pinhole defects the baseline slope should show Knudsen diffusion
 179 and thus depend on the molar mass of the gas alone. p_f indicated the feed pressure, l is the thickness, A shows
 180 the exposed surface area of the membrane, and S corresponds to the solubility coefficient. While V_p is the
 181 permeate volume, V_m represents the molar volume of the penetrant gas in standard conditions, and R and T are
 182 the universal gas constant and the absolute temperature, respectively. In the pseudo-steady state, where $t \gg \Theta$, Eq. 2 reduces to:

$$P = \frac{V_p \cdot V_m \cdot l}{RT \cdot A \cdot p_f} \cdot \frac{dp}{dt} \quad \text{Eq. 3}$$

184 This enables the direct calculation of the permeability coefficient. Considering the validity of the solution-
185 diffusion model, in which the pressure and concentration are independent transport parameters, the solubility
186 S ($\text{m}^3 \text{STP m}^{-3} \text{ bar}^{-1}$) can be indirectly obtained via the ratio of permeability and the diffusion coefficient:

$$S = \frac{P}{D} \quad \text{Eq. 4}$$

187 **3. Results and Discussions**

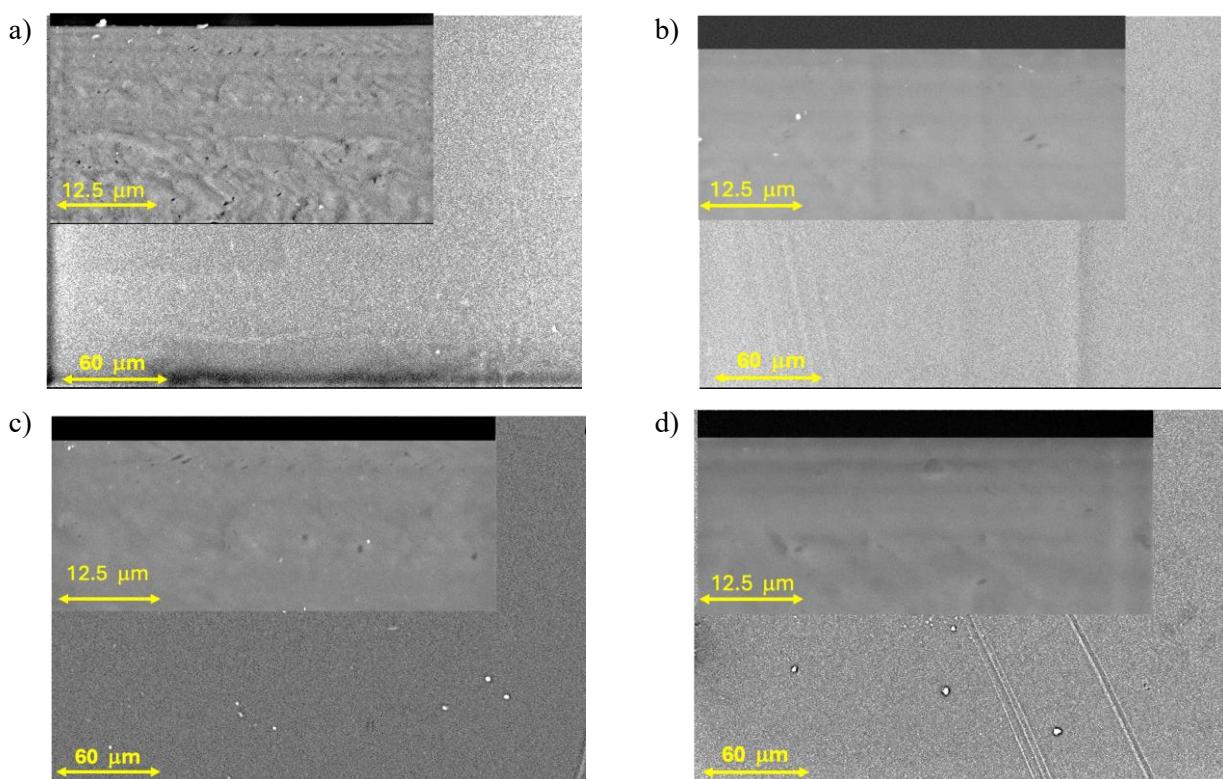
188 *3.1. Membrane preparation*

189 3.1.1. Nuclear magnetic resonance (NMR) spectroscopy and Gel Permeation Chromatography (GPC).

190 Before preparation of the membranes, the degree of acetylation of cellulose acetate was determined by NMR
191 spectroscopy and the molar mass of the polymer was determined by GPC. Figure SI 1a shows the ^{13}C NMR
192 spectrum of the pristine CA powders while Figure SI 1b shows the quantitative ^1H spectrum, displaying the
193 integral values for both ^1H regions. Based on Figure SI 1a, the observed peaks at 99.71 and 62.98 ppm could
194 be correlated to C_1 and C_6 , as reported in the literature [61]. The spectral peaks at 78–70 ppm represent the C_2 –
195 C_5 resonances but cannot be further assigned because they exhibited complicated and overlapped spectral lines.

196 The ^1H NMR spectrum is available in Figure SI 1b, showing a complex convolution of peaks corresponding
197 to the acetyl protons. There are three main peaks at 2.07, 1.94 and 1.87 ppm, and some additional ones, due to
198 the different possible acetylation positions, could be observed in this region. This is in agreement with the
199 report of Goodlett et al., who assigned the peaks at 2.09, 1.99, and 1.94 to the acetyl group in the 6-position,
200 and the hydroxyl groups in the 2- and 3- positions, respectively [62]. In addition, the resonances (or peaks)
201 observed in the region between 5.1 and 3.7 ppm correspond to the 7 protons within the anhydroglucoside unit
202 [62]. Using this value as a reference, it was determined that the area of the peaks in the acetyl region accounts
203 for 7 protons. Therefore, considering that each acetyl group has 3 protons, the average number of acetyl groups
204 per ring unit is 2.34 (7/3), which corresponds to a DS of 2.34. This method was precisely reported in Ref. [63].

205 GPC analysis of the polymer in THF and with polystyrene calibration standards revealed a rather narrow
206 molecular weight distribution (Figure SI 2) with the following characteristics: apparent $\text{Mn} = 79.9 \text{ kg mol}^{-1}$,
207 $\text{Mw} = 92.0 \text{ kg mol}^{-1}$, $\text{Mz} = 102.7 \text{ kg mol}^{-1}$, Dispersity (D) = $\text{Mw}/\text{Mn} = 1.15$.


208 3.1.2. Membrane preparation and appearance

209 All the prepared membranes showed a transparent and homogenous appearance (Figure SI 3). Compared to
210 the neat CA membrane, the IL-blended CA membranes showed higher flexibility, and they were removed
211 more easily from the glass plate once the membrane formation was completed. The latter means a lower risk
212 of introducing defects by mechanical stresses needed for peeling the membrane from the support, which
213 occasionally occurs during the separation of the membranes from the glass support. This indicates the

effectiveness of the ILs in decreasing the rigidity of the CA membrane, especially for those containing [BMIM]⁺[Tf₂N]⁻. Figure 1 shows the SEM top and cross-section images of the neat CA and 30% IL-CA blended-membranes. All membranes exhibited a quite uniform, dense, and defect-free appearance, except for the neat CA membrane, which shows a few localized pores in its cross-sectional area (Figure 1a). The slightly porous morphology of this neat CA membrane could originate from the rigid structure of CA that may not have tolerated the tensions imposed during the membrane preparation for SEM analysis. Instead, the sample with 30% [BMIM]⁺[BF₄]⁻ exhibited a completely uniform appearance (Figure 1b) and felt almost rubbery. The same effect was also observed in the case of 30% [BMIM]⁺[OTf]⁻-CA and 30% [BMIM]⁺[Tf₂N]⁻-CA blended-membranes (Figure 1b-c) confirming the plasticizing effect of these ILs.

3.2. Membrane characterization

Crystallinity provides thermal and mechanical stability to polymers but also resistance to gas transport, as crystalline regions are usually not permeable or less permeable than the amorphous phase of polymers, with very few rare exceptions such as syndiotactic polystyrene [64,65] and poly(2,6-dimethyl-1,4-phenylene) oxide (PPO) [66]. Therefore, these properties are all highly important for the evaluation of gas separation membrane performance.

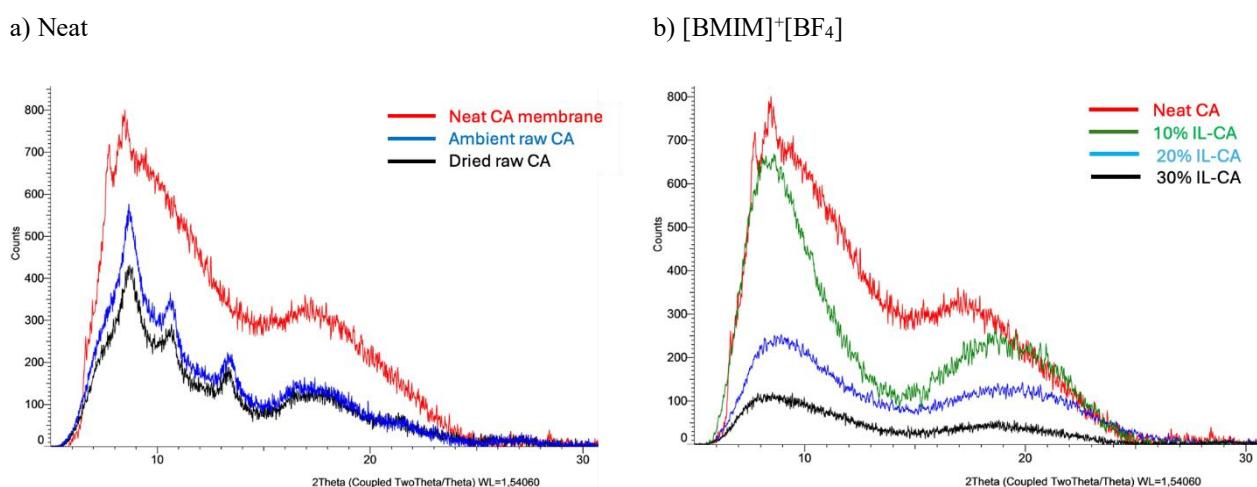
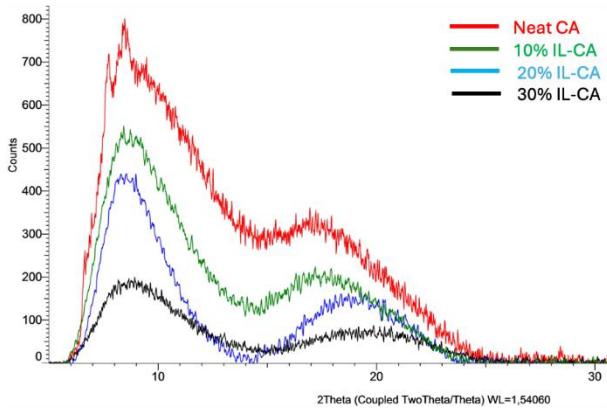
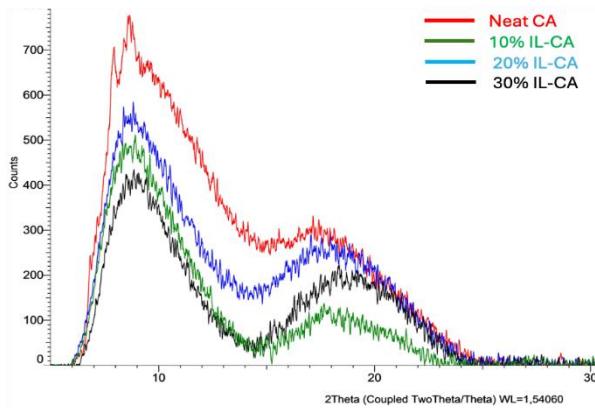


Figure 1. Top and cross-sectionals (inset) SEM images of a) neat membrane, b) 30% [BMIM]⁺[BF₄]⁻-CA c) [BMIM]⁺[OTf]⁻-CA and d) [BMIM]⁺[Tf₂N]⁻-CA blended-membranes. The cross-section images and top surface images were captured at 3000x and 500x magnifications, respectively.


229 3.2.1.X-ray diffraction (XRD)

230 Figure 2 illustrates the XRD pattern of pure CA and that of the membranes with different contents of IL
 231 investigated in this study. According to the literature [67], the XRD pattern of a raw CA consists of three
 232 distinct peaks at $2\theta = 7.5^\circ$, 11° , and 14° , representing the crystalline domains, and a broad peak at around $2\theta =$
 233 18° , relating to the amorphous phase. However, a comparison between the neat membrane spectrum and that
 234 of the raw CA powder samples reveals that the membrane fabrication process shifted the semi crystalline
 235 structure of CA powders to an almost amorphous form, as indicated by the presence of two broad peaks at $2\theta =$
 236 7.5° and 18° , corresponding to the crystalline and amorphous fractions of CA, respectively [21,68,69]. This
 237 could be attributed to the physical stresses that CA underwent during casting or, more likely, to the effects of
 238 the solvent (acetone), which promoted the formation of new interactions between CA functional groups (acetyl
 239 groups) and acetone, delaying the crystal nucleation and growth. This idea confirms the dissolubility theory of
 240 semi-crystalline CA in a solvent that follows two steps: (1) cellulose collapse to an amorphous polymer and
 241 (2) disentanglement of the polymer chains for dissolution in the solvent [70].


242 Figure 2b-d illustrates the inclusion of the ILs within the CA polymeric matrix, which further reduced its
 243 crystallinity, as illustrated by the two broader peaks with weakened intensity. This is suggestive of the
 244 disruption of essential bonds, such as hydrogen bonds among the OH, esters, and ether oxygen groups
 245 [23,47,59] of CA chains. Likely, the formation of new weak interactions established between the CA polymeric
 246 matrix and the ILs disrupts the interchain interactions active in the pristine CA, leading to the transition of the
 247 CA structure from semi-crystalline to amorphous. Compared to $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ which caused minimal
 248 changes, increasing the IL content in the $[\text{BMIM}]^+[\text{BF}_4]^-$ and $[\text{BMIM}]^+[\text{OTf}]^-$ containing membranes resulted
 249 in a constant reduction in peak intensity compared to neat CA, maintaining the structure amorphous.

c) $[\text{BMIM}]^+[\text{OTf}]^-$

d) $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$

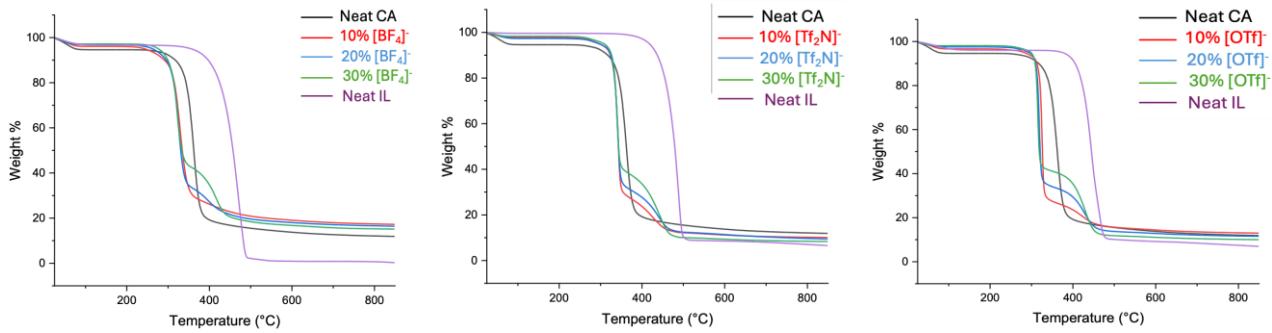
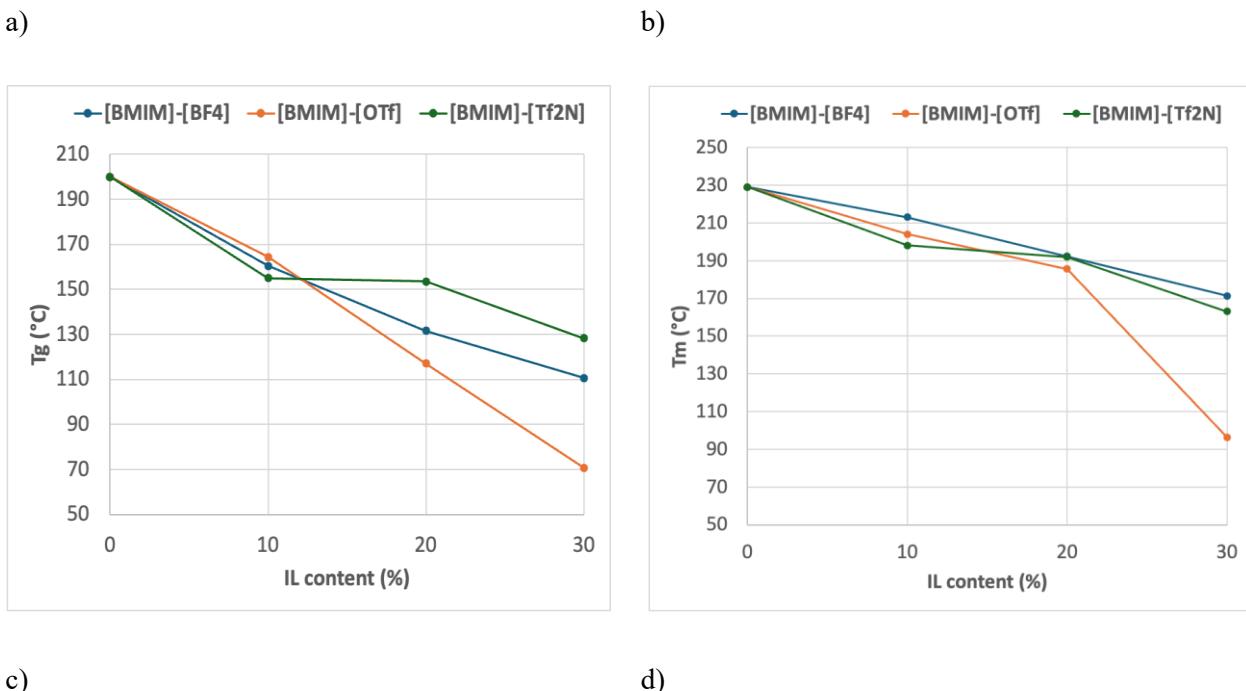


Figure 2. PXRD curves of a) CA powder samples (the one kept at an ambient temperature and that dried at 100°C, overnight) and the neat CA membrane; MMMs consisted of b) $[\text{BMIM}]^+[\text{BF}_4]^-$, c) $[\text{BMIM}]^+[\text{OTf}]^-$ and d) $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ series.

250 3.2.2.Thermal Properties (TGA, DSC analysis)

251 Analysis of the thermal stability of the neat CA, the pure ILs and the CA/IL membranes by TGA measurements
252 (Figure 3) reveals that the grade of neat CA used in this work degrades above 250 °C. The TGA trace shows
253 a small weight loss below 100°C (Figure SI 4a), most likely due to the loss of humidity and/or residual casting
254 solvent contained within the membrane. These two steps (dehydration and thermal decomposition) occur
255 analogously in the spectra of the pure ILs, except for $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$, for which the first dehydration step is
256 not appreciable (Figure SI 4b-d). This is probably due to a more hydrophobic nature of the $[\text{Tf}_2\text{N}]^-$ anion [71]
257 compared to $[\text{BF}_4]^-$ and $[\text{OTf}]^-$, which in turn impart a less hygroscopic character to the IL [70]. Moreover, the
258 ILs showed higher thermal stability than CA with a decomposition temperature above 440°C and the onset of
259 degradation above 350°C.


260 TGA traces of IL-CA membranes (Figure 3 and Figure SI 5-Figure SI 7) display three successive processes
261 which related to the dehydration of the membrane, the decomposition of CA, and the decomposition of the
262 ILs, particularly their imidazolium ring [23], respectively. As a general trend, compared to the neat CA
263 membrane, the ILs slightly decreased the onset of the dehydration process, which is also accompanied by a
264 slight decrease in the percentage of the sample weight lost, due to a reduced amount of the entrapped water
265 molecules within the ILs doped membranes. For all three series, the additives slightly reduced the thermal
266 stability of CA, possibly by a weak catalytic action of the ionic species that accelerate degradation reactions,
267 combined with a reduction of the internal cohesion forces between the polymeric chains (i.e. most probably
268 the interchain H-bonds, the dispersion interactions and hydrophobic effects) [72]. As previously stated, the last
269 registered step on all IL-doped -CA membranes related to the decomposition process of the IL dopant, and its
270 corresponding weight loss agrees with the molar ratio of the dopant utilized. In any case, the onset of
271 degradation takes place at much higher temperature than that at which the membranes would normally be used
272 in practical applications, and therefore the thermal stability of the membranes should not be a problem.

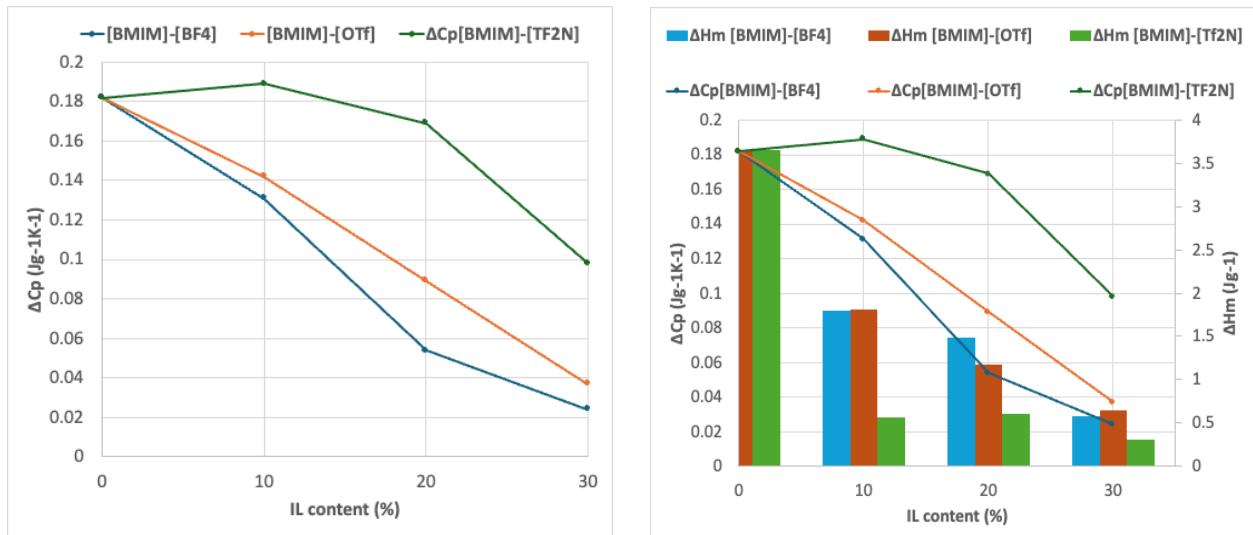


Figure 3. Overview of the TGA results of the CA/IL blend-membranes in comparison with the neat polymer and the pure ILs.

273 In addition to the TGA results, DSC analysis revealed a plasticizing effect of the ILs on the CA structure. The
 274 results are summarized in Figure 4 and Figure SI 9. The glass transition temperature (T_g) of the present grade
 275 of CA is ca. 190-195 °C, in agreement with the literature [73], and it has a small melting peak with a maximum
 276 at ca. 225°C, being in line with the weakly crystalline character observed by XRD. Figure 4a and b show a
 277 consistent decrease in T_g and T_m as the IL content in the blended membranes increases. A similar decreasing
 278 trend is observed in the graph of ΔC_p (specific heat) and ΔH_m (melting enthalpy) versus the IL content, Figure
 279 4c-d. This reflects the disrupting effect of these ILs, previously observed in XRD, indicating that the presence
 280 of the IL gives rise to membrane less crystalline and more disordered.

281

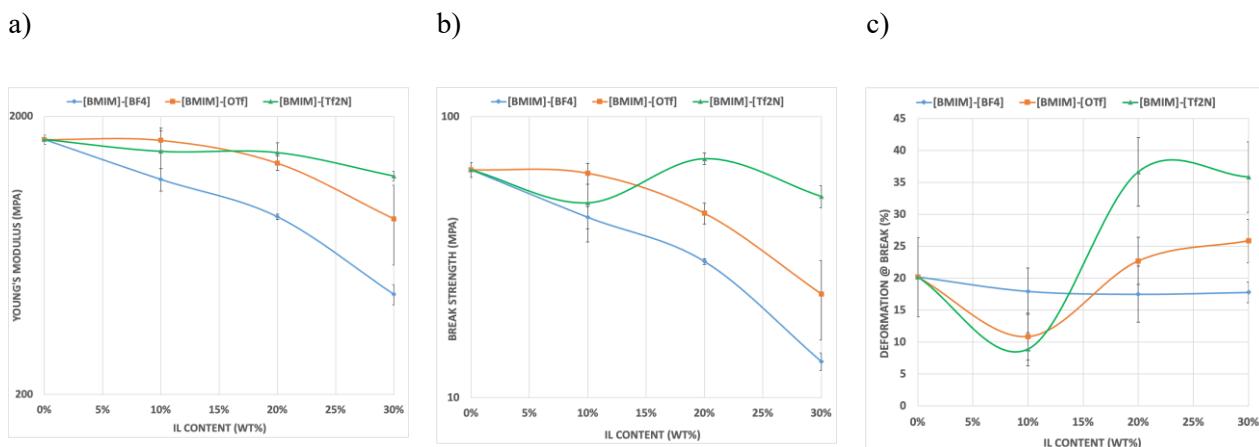

Figure 4. Overview of the thermal properties of the MMMs in comparison with the neat polymer, a) T_g , b) T_m , c) ΔC_p , d) ΔC_p and ΔH_m . Only the characteristics of first heating is provided. The T_g is reported as the value at half ΔC_p .

Figure SI 9 and Table SI 2 illustrate the changes in thermal properties of each IL-CA membrane based on the IL content for the first heating, first cooling, and second heating cycles. Similar trends have been observed for several other blends of ILs in glassy and semi-crystalline polymers [73,74], and this is a typical effect of ILs, for instance in poly (VDF-*co*-HFP) [75], Pebax [76,77], and PEOT-PBT [78], where the ILs were explored to increase the permeability of the original polymer. Summarizing, for all the IL-containing membranes, the T_g and T_m of the CA membranes gradually decreased with increasing IL content with the largest decrease for $[\text{BMIM}]^+[\text{OTf}]^-$ and the smallest for $[\text{BMIM}]^+[\text{TF}_2\text{N}]^-$. At the same time also the overall crystallinity of the sample decreased. Interestingly, it must be noted that all as-prepared samples, as well as the original CA powder, showed a large endothermal peak around 50-100 °C (Figure SI 8), related to the evaporation of absorbed humidity or residual solvent, up to 220 Jg⁻¹. Considering an enthalpy of vaporization of water equal to 2.26×10^3 Jg⁻¹ at its boiling point, and somewhat higher at lower temperatures and likely even higher for water trapped inside the membrane matrix, this corresponds to less than 10% water in the samples. This is not far from the 6% weight loss of pure CA membranes determined experimentally by TGA measurements. The humidity could be easily removed by vacuum drying of the sample (Figure SI 8b). An important conclusion from this study is that for the final application of the membrane, the glass transition temperature will be the limiting factor rather than the chemical stability determined by TGA, because above T_g the samples will lose most of their mechanical stability, unless the membranes will be applied as thin film composites on a resistant porous substrate.

3.2.3. Mechanical Properties

For a further evaluation of the mechanical stability of the membranes, tensile tests were performed on all samples. Figure 5 illustrates the results for Young's modulus, the tensile strength and the maximum deformation as a function of the ionic liquid content. Somewhat analogous to the T_g , Young's modulus and

304 the tensile strength of the blend membranes containing $[\text{BMIM}]^+[\text{BF}_4]^-$ and $[\text{BMIM}]^+[\text{OTf}]^-$, show a similar
 305 gradual decrease (Figure 5a-b, respectively). Furthermore, in agreement with the DSC and XRD observations,
 306 there is a much smaller decrease in Young's modulus of the $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ -CA blend-membranes than that
 307 of the membranes with other ILs, particularly $[\text{BMIM}]^+[\text{BF}_4]^-$. Therefore, up to 30% of $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ caused
 308 almost negligible changes in the rigidity of the membranes. Noteworthy, the conditions under which
 309 mechanical properties and glass transition temperatures are measured differ significantly, since tensile tests
 310 are performed at room temperature and 45-50% RH, while DSC is conducted under an N2 flow at temperatures
 311 above 180 °C. This difference in temperature and in RH strongly influences the CA-CA, CA-IL and CA-H2O
 312 interactions (especially polar interactions and hydrogen bonds), which, in turn, affect the thermal and
 313 mechanical properties. In addition, these methods probe different aspects of the material: mechanical tests
 314 reflect bulk elasticity, while T_g represents molecular-level segmental mobility. This explains why ILs may
 315 affect them differently and why results from the two techniques may not directly correspond. In any case, even
 316 at the highest IL content of 30 wt%, all membranes exhibit an elastic modulus of several hundreds of MPa, in
 317 the typical range of stiff glassy polymers.

Figure 5. a) Young's modulus, b) tensile strength and c) maximum deformation of the CA/IL samples with different amounts of $[\text{BMIM}]^+[\text{BF}_4]^-$ (●), $[\text{BMIM}]^+[\text{OTf}]^-$ (■) and $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ (▲). Averages and standard deviation of 4-6 samples. The lines are indicated as a guide to the eye.

318 The tensile strength shows roughly the same trend as Young's modulus. Thus, although the IL does indeed
 319 plasticize the polymer to some extent, the membranes are expected to withstand high pressures without major
 320 problems. The absolute value of the elastic modulus and tensile strength depends mostly on the affinity of the
 321 IL with the CA polymer matrix. This is generally good for all three ILs, giving visibly homogenous transparent
 322 films (Figure SI 3d), but the difference between the three series depends on the delicate balance between the
 323 polymer-polymer, the polymer-IL and the IL-IL interactions. Figure 5c shows the maximum deformation,
 324 which represents the mechanical resistance to stretching or the elasticity of the blended-membranes versus the
 325 IL content. This illustrates a relatively stable deformation at break by increasing $[\text{BMIM}]^+[\text{BF}_4]^-$ content,
 326 indicating that the ductility of the material remains similar, regardless of the increasing IL content. In contrast,

327 [BMIM]⁺[OTf]⁻-CA and [BMIM]⁺[Tf₂N]⁻ exhibited a significant oscillation. If this is truly representative for
328 these materials is not clear, because in this range the stress-strain curve is nearly horizontal, and a slightly
329 higher or lower tensile strength determines a major change in maximum deformation. This may be due to
330 subtle differences in the sample morphology, or to the presence of imperfections in the test specimen, such as
331 micro-bubbles included during casting, or roughness introduced into the test sample during cutting, which may
332 trigger early rupture.

333 In summary, the results of the physical characterizations indicate that the addition of the ILs led to a reduction
334 in CA's thermal stability, stiffness, and crystallinity while it generally increased the flexibility and elasticity
335 of the blend-membranes. This can be attributed to the plasticizing effect of the ILs and the associated changes
336 in the CA structure, as also reported in the literature [79].

337 It is widely accepted that the crystallization of CA chains is driven by supramolecular forces such as hydrogen
338 bonds and van der Waals forces [17]. ILs can act as good electron-donor and hydrogen bond acceptors upon
339 interaction with the oxygen and hydrogen atoms of CA-OH, the anion of IL generally acts as a proton acceptor,
340 whereas the cation behaves as an electron acceptor [80,81]. The collapse of the crystalline domains is most
341 likely due to the breaking of the hydrogen bonding interactions among the CA chains [81]. On the other hand,
342 the IL molecules could act like lubricants among CA chains, facilitating the mobility of CA [82]. This
343 mechanism is evident in the membranes containing [BMIM]⁺[BF₄]⁻ molecules which possess spherical shape
344 and less polar structure, the lowest molecular weight (MW), and the highest viscosity, compared to the other
345 studied ILs, observable in Table SI 1. On the other hand, [BMIM]⁺[Tf₂N]⁻ possesses the most branched and
346 polar structure compared to the other two ILs. It also possesses the highest MW and the lowest viscosity which
347 make it a good candidate for forming slightly stronger and more intimate interactions with CA molecules.
348 Moreover, based on the free volume theory [83], [BMIM]⁺[Tf₂N]⁻ can extend the free volume in the CA 3D
349 network by dedicating more end groups and side chains to the CA structure. This could be intensified by its
350 low viscous characteristics as it could move better among CA chains and can access more unbonded functional
351 groups that act as a plasticizer at more diluted solutions of CA and [BMIM]⁺[Tf₂N]⁻, 30%.

352 Furthermore, [BMIM]⁺[OTf]⁻ showed intermediate performance compared to these two ILs since it benefits
353 from both possessing relatively small molecules that facilitate its performance as a lubricant, obvious from its
354 T_g and good mechanical flexibility, which was mostly close to [BMIM]⁺[BF₄]⁻ behavior. It contains more
355 functional groups and a more polar structure than [BMIM]⁺[BF₄]⁻ but less than [BMIM]⁺[Tf₂N]⁻, which
356 candidate it to increase the number of weak interionic interactions with CA molecules especially when its
357 content increased from 10% to 30% wt.

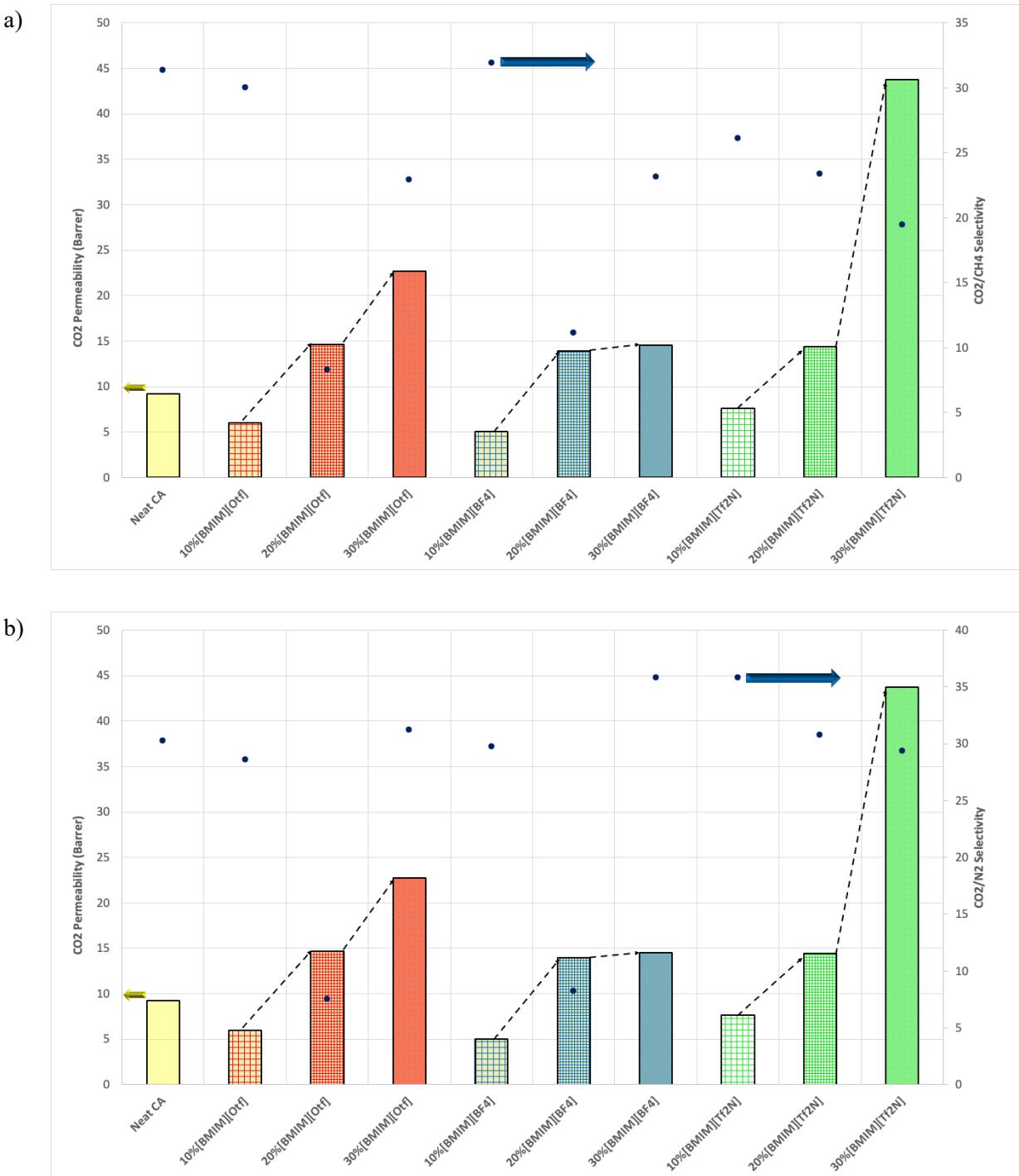
358 3.3. Gas Permeation Analysis

359 The transport properties of the membranes were evaluated by pure gas permeability measurements in the time
360 lag mode, which continuously records the permeate pressure from the initial exposure of the membrane until
361 achieving a steady state in the gas permeation. Due to the low intrinsic permeability of CA and thus the very

362 low permeate flow rate, the leak flow rate (instrumental and through pinholes) was not completely negligible
363 (e.g. Figure SI 10-b) and in some cases even dominant (e.g. Figure SI 10-a). Therefore, the membranes were
364 routinely coated with silicone sealant. This resolved the problem of the pinholes (Figure SI 10-c,d) but for
365 gases such as propene and especially propane with an extremely low permeability and very slow diffusion,
366 and thus very long measurement times, even after silicone coating the baseline slope was not completely
367 negligible because of the low but measurable instrumental leak flow (Figure SI 11-c,d). The residual baseline
368 was measurable accurately and could, fortunately, be completely corrected by subtracting the term and $(dp/dt)_0$
369 in Eq. 2. Assuming the validity of the solution-diffusion model, the solubility (S) and diffusivity (D)
370 coefficients are two intrinsic transport properties of the membrane that identify the permeability coefficient
371 (P) by their product and thus determine the overall potential of gas molecules to permeate through the
372 membrane [84]. Figure SI 12 follows the changes in P , D , and S of the studied gases during their permeation
373 across the CA-based blended-membranes based on the IL content. With increasing content of all three ILs, the
374 permeability shows a generally increasing trend for all gases (CO_2 , N_2 , CH_4 , C_3H_6 , and C_3H_8), which is mainly
375 due to the increase in diffusivity, whereas the solubility tends to decrease at higher IL content (Figure SI 12).
376 A somewhat more detailed discussion on the CO_2/CH_4 , CO_2/N_2 and $\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ separations is reported below.

377 3.3.1. Pure gas permeability and ideal selectivity of the CO_2/CH_4 and CO_2/N_2 gas pairs

378 While Figure SI 12 illustrates the changes in the transport properties of the desired gases in CA blended-
379 membranes as a function of the IL content, Figure 6a and b shows the CO_2 permeability and CO_2/CH_4 and
380 CO_2/N_2 ideal selectivities of the blended-membranes. Compared to the neat CA membrane, adding
381 $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ up to 30% resulted in a constant enhancement in the CO_2 , CH_4 , and N_2 permeability but
382 CO_2/N_2 and CO_2/CH_4 selectivity reduction (Figure SI 12 and Figure 6a-b). This obvious plasticization effect
383 is correlated with other physical characteristics.


384 Analogously, adding $[\text{BMIM}]^+[\text{BF}_4]^-$ and $[\text{BMIM}]^+[\text{OTf}]^-$, up to 20%, generally enhanced the permeability of
385 all the studied gases, mainly because of their diffusivity improvement, but decreased the CO_2/CH_4 and CO_2/N_2
386 ideal selectivity according to the well-known trade-off behaviour. This usual plasticization effect of the ILs is
387 in agreement with the lower T_g and lower Young's modulus, observed via DSC and tensile tests. Nevertheless,
388 adding more of these ILs led to only CO_2 permeability increase but declined CH_4 and N_2 permeability and
389 diffusivity (Figure SI 12), leading to a jump in CO_2/CH_4 and CO_2/N_2 ideal selectivity at 30% $[\text{BMIM}]^+[\text{BF}_4]^-$
390 and $[\text{BMIM}]^+[\text{OTf}]^-$, compared to what achieved by 20% content. It must be noted that the transport
391 parameters are the effective values, and since the crystalline phase is generally not permeable, the effective
392 permeability, P_{eff} , is lower than that of the continuous amorphous phase, P_d , according to the Maxwell
393 equation:

$$P_{\text{eff}} = P_c \left[\frac{P_d + 2P_c - 2\Phi_d(P_c - P_d)}{P_d + 2P_c + \Phi_d(P_c - P_d)} \right] \quad \text{Eq. 5}$$

394 where Φ_d is the volume fraction of the dispersed phase, i.e. the crystallinity. Φ_d was calculated with an
395 impermeable dispersed phase, where $P_d = 0$.

$$P_{eff,min} = P_c \left[\frac{1 - \Phi_d}{1 + 0.5\Phi_d} \right] \quad \text{Eq. 6}$$

396 Similarly, also the diffusion coefficient is lower than that of the amorphous phase although situations may
 397 exist where the apparent diffusion coefficient is, by time lag measurements, higher in MMMs with
 398 impermeable particles than in the neat polymer [85]. Therefore, the final trend depends on the crystallinity, the
 399 degree of plasticization and changes in gas solubility, and the trend may not be fully linear and predictable.
 400 Indeed, in many polymers the increased CO_2 permeability is attributed to a higher solubility of CO_2 in the
 401 polymer matrix, but this is not observed in this case. Besides the possibly inaccurate indirect calculation of the
 402 solubility, by the reasons outlined above, the very strong affinity of the polar ILs with the CA, reduces the
 403 solubility of the lighter gases in the latter. Normally, the affinity of CA to absorb CO_2 is attributed to the -OH
 404 groups in cellulose molecules, providing adsorption sites for enhanced carbon capture [86]. Interaction with
 405 the dipole moments of polar functional groups such as -OH groups and carbonyl (C=O) and ester groups in
 406 the CA structure induce a dipole in the quadrupolar CO_2 molecules which generally leads to higher absorbance
 407 and enhanced permeance of CO_2 compared to CH_4 and N_2 . Investigating the effect of different ILs, Muldoon
 408 et al. [86] expressed that both cations and anions effectively control the CO_2 solubility in the ILs, although the
 409 anion plays the most critical role. They showed that in BMIM^+ -based ILs at 60 °C, the order of CO_2 solubility
 410 is $([\text{NO}_3^-]) < ([\text{BF}_4^-]) < ([\text{DCA}^-]) \sim ([\text{PF}_6^-]) \sim ([\text{TfO}^-]) < ([\text{Tf}_2\text{N}^-]) < ([\text{methide}^-])$. This subject was also
 411 supported by Kanakubo et al. [87] via performing X-ray diffraction study, suggesting that the anions with the
 412 most fluorinated fluoroalkyl groups have the highest CO_2 solubilities. Aki et al. came to a similar conclusion
 413 for a series of [alkylimidazolium][Tf_2N] and [alkylimidazolium][Methide] ionic liquids where the increase in
 414 the alkyl chain length on the cation affects the CO_2 solubility only marginally, compared to the effect of the
 415 anion [88] while Hojniak et al found a stronger effect of the RTIL cation on the CO_2/N_2 and CO_2/CH_4
 416 selectivities in SILMs, in particular when comparing dicationic and monocatonic ILs [89]. This is in agreement
 417 with the results obtained in this work as the CO_2 solubilities which obtained via the time-lag method showed
 418 $1.32 \text{ cm}^3_{(\text{STP})} \text{ cm}^{-3} \text{ bar}^{-1}$ for 30% $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$, in contrast to $1 \text{ cm}^3_{(\text{STP})} \text{ cm}^{-3} \text{ bar}^{-1}$ for 30% $[\text{BMIM}]^+[\text{BF}_4]^-$.
 419 Summarizing, the effect of the ILs on the transport of light gases is a complex combination of specific
 420 microstructural and physico-chemical properties for each IL. Generally, the incorporation of ILs leads to
 421 decreased crystallinity and increased chain mobility, evidenced by a reduction in glass transition temperature
 422 (T_g) and Young's modulus. While the effect at 10 wt% or 20 wt% may be ambiguous, at 30 wt% the
 423 plasticization dominates the permeability and especially the diffusivity, which are always higher than that in
 424 the neat CA. Similar results were observed in the literature [21,25,90]

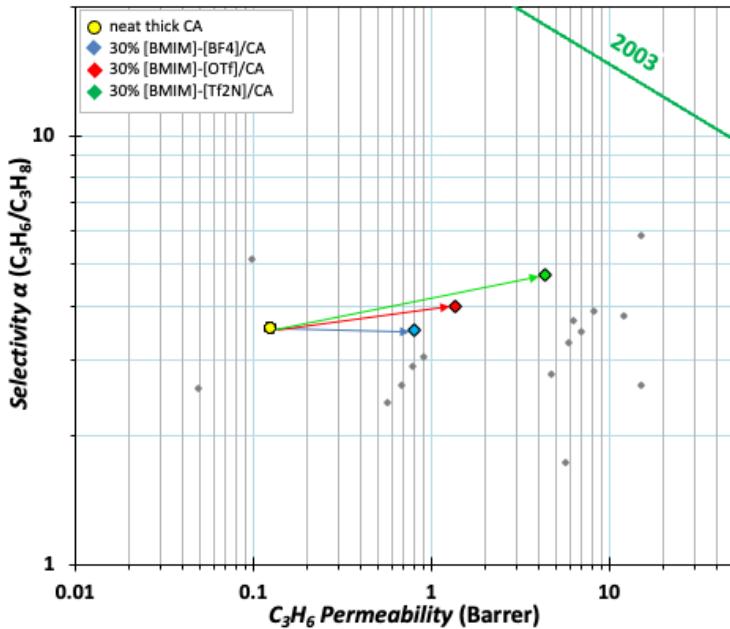


Figure 6. Permeability (bar chart, left axis) and ideal selectivity (blue dots, right axis) of CA-based membranes with different contents of the ILs for a) CO_2/CH_4 and b) CO_2/N_2 gas pairs. The gas transport data of membranes represented by (yellow for the neat, red for $[\text{BMIM}]^+[\text{OTf}]^-$, blue for $[\text{BMIM}]^+[\text{BF}_4]^-$, and green for $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$).

429 content led us to measure nevertheless the C_3H_6 and C_3H_8 transport properties of the MMMs containing 30%
430 of the ILs. As illustrated by the Robeson plot in Figure 7, the ILs have a very positive effect on the permeability
431 of C_3H_6 in all membranes compared to the neat CA, with a nearly 50x increase for $[BMIM]^+[Tf_2N]^-$. Moreover,
432 except for the $[BMIM]^+[BF_4]^-$ -CA blends, which showed the same selectivity as the neat CA membrane, the
433 membranes with both the other ILs interestingly achieve a higher C_3H_6/C_3H_8 ideal selectivity, particularly that
434 with $[BMIM]^+[Tf_2N]^-$. This is observable in Figure SI 13, displaying the time lag curves of 30%ILs-CA
435 blended-membranes which confirms the improvement of the permselective properties of the membranes is
436 mainly due to enhanced diffusivity. All the ILs significantly showed shorter time-lag periods for both gases,
437 in the order of $[BMIM]^+[Tf_2N]^- < [BMIM]^+[OTf]^- < [BMIM]^+[BF_4]^- \ll$ Neat CA membrane. The 30%
438 $[BMIM]^+[Tf_2N]^-$ -CA blended membrane achieved a time lag of 103s and 243s for propene and propane,
439 respectively, corresponding to 73x and 65x faster diffusion compared to the neat CA. This could be attributed
440 to the “gas carrier” characteristics of the ILs, which enhance the gas transfer solution-diffusion mechanism.
441 Here, as illustrated in Scheme 1 and Table SI 1, $[BMIM]^+[Tf_2N]^-$ contained the largest anion and exhibited
442 better performance in improving the gas transport. The higher propene/propane selectivity achieved by
443 $[BMIM]^+[Tf_2N]^-$ (~5), compared to other ILs, 4 for $[BMIM]^+[OTf]^-$ and 3.5 for $[BMIM]^+[BF_4]^-$, was also
444 reported by Wang et al. [91], who worked on a nonporous composite polymer made from thermoplastic
445 polyurethane (TPU) and several silver salts with ILs, and Vu et al., who studied a system of IL-layered ZIF-
446 67 particles incorporated into 6FDA-durene polymer [92].

447 This plasticization effect of the ILs, particularly the branched $[BMIM]^+[Tf_2N]^-$, can be also observed in Figure
448 SI 12, which depicts an enhanced permeability and diffusivity of both propene and propane. The membranes,
449 nevertheless, maintained significant size-selective characteristics to favour the smaller diameter of the C_3H_6
450 molecules than C_3H_8 molecules, resulting in a shorter time lag (Figure SI 12) *i.e.* faster diffusion of propene
451 compared to propane (Figure SI 12b,e,h). Furthermore, propene possesses π -bonds, which boosts its affinity
452 towards CA and ILs, leading to efficient separation of this gas from propane by the present membranes due to
453 a higher solubility (Figure SI 12c,f,i).

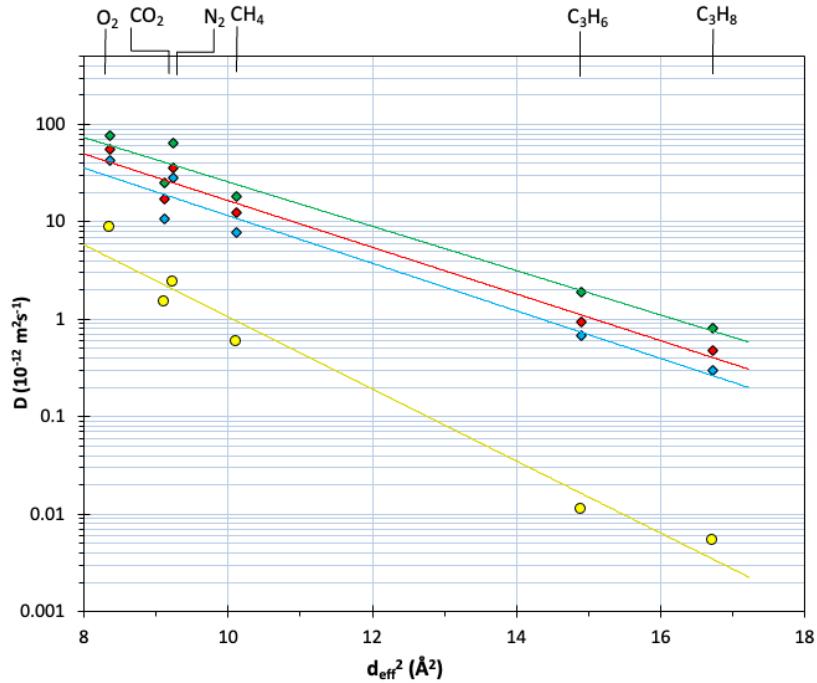

454 Figure 7 provides the Robeson plot [1], and Table SI 3 lists the numerical permselectivity data of this work in
455 comparison with other cellulosic polymers reported in the literature [16,51,52,54,93,94]. To evaluate the
456 performance of our membranes we used the Robeson upper-bound reported by Koros et al. for this separation
457 [1]. Based on that, for the 30 wt% $[BMIM]^+[Tf_2N]^-$ /CA blended-membrane displayed amongst the highest
458 selectivities of cellulosic polymers, while maintaining a reasonable permeability for C_3H_6 . This is a noticeable
459 result, suggesting that by employing an appropriate concentration of a compatible IL, it is possible to tailor the
460 CA structural, thermomechanical and transport properties, to achieve both an enhanced C_3H_6 permeability and
461 a higher C_3H_6/C_3H_8 selectivity. It is worth to highlight again that it is very challenging to achieve an
462 improvement in both the propene permeability and its selectivity over propane because of their close kinetic
463 diameter, particularly when a glassy polymer such as CA is employed, which normally shows low propene
464 permeability and trade-off perm-selectivity behavior.

Figure 7. Perm-selectivity trade-off (Robeson plots) for different couple of gases of CA-based membranes with 30% contents of the ILs. The gas transport data of membranes represented by (yellow for the neat, blue for 30% $[\text{BMIM}]^+[\text{BF}_4]^-$, red for 30% $[\text{BMIM}]^+[\text{OTf}]^-$, and green for 30% $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$). The gray points refer to values for cellulosic polymers from the literature [16,51,52,54,93,94]

465 3.3.3. The correlation of Diffusivity based on an Effective Diameter

466 To gain a clearer understanding of the gas permeation mechanism in the blended membranes, Figure 8 shows
 467 the relationship between a gas diffusivity and its effective diameter. It has been established that the diffusion
 468 coefficient (D) of the penetrant correlates with the square of the effective gas diameter, the smaller the gas
 469 effective diameter the faster the gas diffusivity [95], especially for highly rigid polymers [96]. This trend was
 470 observed in all the gases studied and only CO_2 showed a small negative deviation from the trend, which could
 471 be related to the specific affinity of CO_2 for the polymer matrix. The correlation with the square of the effective
 472 diameter is explained by the fact that the resistance to transport depends on its cross-sectional area.
 473 Accordingly, among the gases analysed, propene and propane exhibited the lowest diffusivity, because they
 474 have the largest molecular sizes. Furthermore, Figure 8 shows that the addition of the ILs increased the D
 475 values, indicating that IL-CA blended-membranes could facilitate the gas permeation, especially for C_3
 476 hydrocarbons, with the order of 30% $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ >30% $[\text{BMIM}]^+[\text{OTf}]^-$ >30% $[\text{BMIM}]^+[\text{BF}_4]^-$. The
 477 reduction of the slope of the trend line upon the addition of the IL confirms that the size-selectivity decreases.

Figure 8. Correlation of D and d_{eff}^2 for CA with a) $[\text{BMIM}]^+[\text{BF}_4]^-$, b) $[\text{BMIM}]^+[\text{OTf}]^-$, and c) $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$. The diffusion data of the neat CA membrane are shown by yellow circles (●) while diamonds represent the membranes with 30% of the ILs. Color code: red (◆) for $[\text{BMIM}]^+[\text{OTf}]^-$, blue (◆) for $[\text{BMIM}]^+[\text{BF}_4]^-$, and green (◆) for $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$, respectively.

478 4. Conclusions

479 This paper explored the feasibility of tailoring the gas transport properties of CA membranes by incorporating
 480 three distinct concentrations (10%, 20%, 30% wt.) of ILs, including $[\text{BMIM}]^+[\text{BF}_4]^-$, $[\text{BMIM}]^+[\text{OTf}]^-$, and
 481 $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$. Various physicochemical characterization methods such as SEM, NMR, XRD, TGA, DSC,
 482 and tensile tests were employed to assess the fabricated MMMs. This revealed a complex effect of ILs that
 483 directly affect the transport through the affinity with the gas, and indirectly via changes in the crystallinity and
 484 polymer stiffness and co-plasticization by traces of residual humidity. The results confirmed that the addition
 485 of ILs, generally, shifted the CA's rigid semi-crystalline structure towards a more amorphous and rubber-like
 486 material, as evidenced by reductions in the glass transition temperature and Young's modulus. All in all, those
 487 contained $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ exhibited the lowest decline in crystallinity, and thermal and mechanical stability
 488 but reasonably kept the balance by enhancing CA's flexibility and elasticity of the CA. This can be attributed
 489 to the IL's more branched structure, lower molecular weight, and viscosity, which enhanced the effect of weak
 490 interactions with the CA polymeric matrix. Moreover, adding $[\text{BMIM}]^+[\text{Tf}_2\text{N}]^-$ showed a stable and increasing
 491 trend in the transport properties of N_2 , CO_2 , and CH_4 , compared to $[\text{BMIM}]^+[\text{BF}_4]^-$ and $[\text{BMIM}]^+[\text{OTf}]^-$, due
 492 to its consistent plasticizing effect without inducing CO_2 swelling. The decrease in Young's modulus and
 493 crystallinity causes a radical increase in diffusivity, with the strongest effect for the largest propane and

494 propene molecules thanks to the increased chain mobility which reduces the size-selectivity. While the
495 Robeson plot confirmed a trade-off in CO₂/N₂ and CO₂/CH₄ separations, the separation performance for the
496 C₃H₆/C₃H₈ pair was highly promising. The blended-membranes containing 30% [BMIM]⁺[Tf₂N]⁻ not only
497 improved C₃H₆ permeability but also enhanced the selectivity of this pair compared to the neat CA membrane.
498 This provides deeper insights into the continued development and application of the CA/IL blend membranes
499 in the demanding propene/propane separation process. In summary, the precise effect of the IL on the transport
500 properties of the CA/IL blend membranes is a complex combination of many different factors and this may
501 lead to unclear trends at low IL content, while it creates a systematic increase in permeability and decrease in
502 selectivity at higher concentrations of IL.

503 **CRediT authorship contribution statement**

504 **Pegah Hajivand:** Writing – original draft, Writing – review & editing, Investigation. **Mariagiulia Longo:**
505 Writing – review & editing, Investigation. **Teresa Fina Mastropietro:** Writing – review & editing,
506 Investigation. **Nicolas Godbert:** Writing – review & editing, Investigation. **Marcello Monteleone:** Writing –
507 review & editing, Investigation. **C. Grazia Bezzu:** Writing – review & editing, Investigation. **Donatella
508 Armentano:** Writing – review & editing, supervision, Funding acquisition. **Johannes C. Jansen:** Funding
509 acquisition, Resources, Conceptualization, Writing – original draft, Writing – review & editing, Investigation,
510 Supervision.

511 **Acknowledgements**

512 This research was partially funded by the European Union—NextGeneration EU from the Italian Ministry
513 of Environment and Energy Security POR H2 AdP MMES/ENEA with involvement of CNR and RSE,
514 PNRR—Mission 2, Component 2, Investment 3.5 “Ricerca e sviluppo sull’idrogeno”. CUP B93C22000630006

515 **Declaration of competing interest**

516 The authors declare no conflicts of interest.

517 **Data statement**

518 The data that support the findings of this study are available on request from the corresponding authors.

519

520 **References**

521 [1] R.L. Burns, W.J. Koros, Defining the challenges for C₃H₆/C₃H₈ separation using polymeric
522 membranes, *J Memb Sci* 211 (2003) 299–309.

523 [2] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, *Nature* 532 (2016) 435–437.

524 [3] C. Staudt-Bickel, W.J. Koros, Olefin/paraffin gas separations with 6FDA-based polyimide membranes,
525 *J Memb Sci* 170 (2000) 205–214.

526 [4] R.J. Swaidan, B. Ghanem, R. Swaidan, E. Litwiller, I. Pinna, Pure-and mixed-gas propylene/propane
527 permeation properties of spiro-and triptycene-based microporous polyimides, *J Memb Sci* 492 (2015)
528 116–122.

529 [5] K.-S. Liao, J.-Y. Lai, T.-S. Chung, Metal ion modified PIM-1 and its application for propylene/propane
530 separation, *J Memb Sci* 515 (2016) 36–44.

531 [6] C. Zhang, K. Zhang, L. Xu, Y. Labreche, B. Kraftschik, W.J. Koros, Highly scalable ZIF-based mixed-
532 matrix hollow fiber membranes for advanced hydrocarbon separations, *AIChE Journal* 60 (2014) 2625–
533 2635.

534 [7] S. Park, M.R. Abdul Hamid, H.-K. Jeong, Highly propylene-selective mixed-matrix membranes by in
535 situ metal–organic framework formation using a polymer-modification strategy, *ACS Appl Mater
536 Interfaces* 11 (2019) 25949–25957.

537 [8] S. Fischer, K. Thümmler, B. Volkert, K. Hettrich, I. Schmidt, K. Fischer, Properties and applications
538 of cellulose acetate, in: *Macromol Symp*, Wiley Online Library, 2008: pp. 89–96.

539 [9] E. Akbarzadeh, A. Shockravi, V. Vatanpour, High performance compatible thiazole-based polymeric
540 blend cellulose acetate membrane as selective CO₂ absorbent and molecular sieve, *Carbohydr Polym*
541 252 (2021) 117215.

542 [10] D. Nikolaeva, K. Verachtert, I. Azcune, J.C. Jansen, I.F.J. Vankelecom, Influence of ionic liquid-like
543 cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO₂ separation,
544 *Carbohydr Polym* 255 (2021) 117375.

545 [11] D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, H. Xiao, Superhydrophobic modification of cellulose
546 and cotton textiles: Methodologies and applications, *Journal of Bioresources and Bioproducts* 5 (2020)
547 1–15.

548 [12] X. Miao, J. Lin, F. Bian, Utilization of discarded crop straw to produce cellulose nanofibrils and their
549 assemblies, *Journal of Bioresources and Bioproducts* 5 (2020) 26–36.

550 [13] A. Asad, D. Sameoto, M. Sadrzadeh, Overview of membrane technology, in: *Nanocomposite
551 Membranes for Water and Gas Separation*, Elsevier, 2020: pp. 1–28.

552 [14] H. Li, S. Xu, B. Zhao, Y. Yu, Y. Liu, The phase structural evolution and gas separation performances
553 of cellulose acetate/polyimide composite membrane from polymer to carbon stage, *Membranes* (Basel)
554 11 (2021) 618.

555 [15] V.K. Thakur, S.I. Voicu, Recent advances in cellulose and chitosan based membranes for water
556 purification: A concise review, *Carbohydr Polym* 146 (2016) 148–165.

557 [16] M. Doosti, R. Abedini, Polyethyleneglycol-modified cellulose acetate membrane for efficient
558 olefin/paraffin separation, *Energy & Fuels* 36 (2022) 10082–10095.

559 [17] B.Y. Gul, E. Pekgenc, V. Vatanpour, I. Koyuncu, A review of cellulose-based derivatives polymers in
560 fabrication of gas separation membranes: Recent developments and challenges, *Carbohydr Polym*
561 (2023) 121296.

562 [18] M. Guo, M. Kanezashi, Recent progress in a membrane-based technique for propylene/propane
563 separation, *Membranes (Basel)* 11 (2021) 310.

564 [19] Z. Dai, R.D. Noble, D.L. Gin, X. Zhang, L. Deng, Combination of ionic liquids with membrane
565 technology: A new approach for CO₂ separation, *J Memb Sci* 497 (2016) 1–20.

566 [20] G. Kontos, C. Tsioptsias, I. Tsivintzelis, Cellulose Acetate–Ionic Liquid Blends as Potential Polymers
567 for Efficient CO₂ Separation Membranes, *Polymers (Basel)* 16 (2024) 554.

568 [21] B. Lam, M. Wei, L. Zhu, S. Luo, R. Guo, A. Morisato, P. Alexandridis, H. Lin, Cellulose triacetate
569 doped with ionic liquids for membrane gas separation, *Polymer (Guildf)* 89 (2016) 1–11.

570 [22] A. Klemm, Y.-Y. Lee, H. Mao, B. Gurkan, Facilitated transport membranes with ionic liquids for CO₂
571 separations, *Front Chem* 8 (2020) 637.

572 [23] A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose, *Chem
573 Rev* 109 (2009) 6712–6728.

574 [24] A. Khakpay, P. Scovazzo, S. Nouranian, Homogeneous and biphasic cellulose acetate/room
575 temperature ionic liquid membranes for gas separations: Solvent and phase-inversion casting vs.
576 supported ionic liquid membranes, *J Memb Sci* 589 (2019) 117228.

577 [25] D. Nikolaeva, I. Azcune, M. Tanczyk, K. Warmuzinski, M. Jaschik, M. Sandru, P.I. Dahl, A. Genua,
578 S. Lois, E. Sheridan, The performance of affordable and stable cellulose-based poly-ionic membranes
579 in CO₂/N₂ and CO₂/CH₄ gas separation, *J Memb Sci* 564 (2018) 552–561.

580 [26] C.F. Martins, L. Neves, I.M. Coelhoso, F. Vaca Chavez, J.G. Crespo, P.J. Sebastião, Temperature
581 Effects on the Molecular Dynamics of Modified Nafion® Membranes Incorporating Ionic Liquids’
582 Cations: A ¹H NMRD Study, *Fuel Cells* 13 (2013) 1166–1176.

583 [27] A.M. Lopez, M.G. Cowan, D.L. Gin, R.D. Noble, Phosphonium-based poly (ionic liquid)/ionic liquid
584 ion gel membranes: influence of structure and ionic liquid loading on ion conductivity and light gas
585 separation performance, *J Chem Eng Data* 63 (2018) 1154–1162.

586 [28] L.C. Tomé, A.S.L. Gouveia, C.S.R. Freire, D. Mecerreyres, I.M. Marrucho, Polymeric ionic liquid-
587 based membranes: Influence of polycation variation on gas transport and CO₂ selectivity properties, *J
588 Memb Sci* 486 (2015) 40–48.

589 [29] D. Camper, J. Bara, C. Koval, R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based
590 room-temperature ionic liquids, *Ind Eng Chem Res* 45 (2006) 6279–6283.

591 [30] M. Fallanza, M. González-Miquel, E. Ruiz, A. Ortiz, D. Gorri, J. Palomar, I. Ortiz, Screening of RTILs
592 for propane/propylene separation using COSMO-RS methodology, *Chemical Engineering Journal* 220
593 (2013) 284–293.

594 [31] V. Mokrushin, D. Assenbaum, N. Paape, D. Gerhard, L. Mokrushina, P. Wasserscheid, W. Arlt, H.
595 Kistenmacher, S. Neuendorf, V. Goeke, Ionic liquids for propene-propane separation, *Chemical
596 Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-
597 Biotechnology* 33 (2010) 63–73.

598 [32] D. Camper, C. Becker, C. Koval, R. Noble, Low pressure hydrocarbon solubility in room temperature
599 ionic liquids containing imidazolium rings interpreted using regular solution theory, *Ind Eng Chem Res*
600 44 (2005) 1928–1933.

601 [33] S. Ramesh, R. Shanti, E. Morris, Employment of [Amim] Cl in the effort to upgrade the properties of
602 cellulose acetate based polymer electrolytes, *Cellulose* 20 (2013) 1377–1389.

603 [34] S. Ramesh, R. Shanti, E. Morris, Characterization of conducting cellulose acetate based polymer
604 electrolytes doped with “green” ionic mixture, *Carbohydr Polym* 91 (2013) 14–21.

605 [35] S. Ramesh, R. Shanti, E. Morris, Plasticizing effect of 1-allyl-3-methylimidazolium chloride in
606 cellulose acetate based polymer electrolytes, *Carbohydr Polym* 87 (2012) 2624–2629.

607 [36] S. Xu, H. Zhou, H. Jia, J. Xu, L. Ma, Y. Zang, P. Jiang, W. Ma, Y. Zhang, W. Zhao, Preparation and
608 high performance of cellulose acetate films by grafting with imidazole ionic liquid, *ACS Omega* 6
609 (2021) 12500–12506.

610 [37] D.Y. Xing, N. Peng, T.-S. Chung, Formation of cellulose acetate membranes via phase inversion using
611 ionic liquid, [BMIM] SCN, as the solvent, *Ind Eng Chem Res* 49 (2010) 8761–8769.

612 [38] H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose, *Chem Soc Rev* 41 (2012) 1519–
613 1537.

614 [39] B. Lam, M. Wei, L. Zhu, S. Luo, R. Guo, A. Morisato, P. Alexandridis, H. Lin, Cellulose triacetate
615 doped with ionic liquids for membrane gas separation, *Polymer (Guildf)* 89 (2016) 1–11.

616 [40] A. Pinkert, K.N. Marsh, S. Pang, Reflections on the solubility of cellulose, *Ind Eng Chem Res* 49 (2010)
617 11121–11130.

618 [41] A. Brandt, J. Gräsvik, J.P. Hallett, T. Welton, Deconstruction of lignocellulosic biomass with ionic
619 liquids, *Green Chemistry* 15 (2013) 550–583.

620 [42] K.M. Gupta, Z. Hu, J. Jiang, Mechanistic understanding of interactions between cellulose and ionic
621 liquids: A molecular simulation study, *Polymer (Guildf)* 52 (2011) 5904–5911.

622 [43] R.C. Remsing, G. Hernandez, R.P. Swatloski, W.W. Massefski, R.D. Rogers, G. Moyna, Solvation of
623 carbohydrates in N, N'-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy study, *J*
624 *Phys Chem B* 112 (2008) 11071–11078.

625 [44] J. Zhang, H. Zhang, J. Wu, J. Zhang, J. He, J. Xiang, NMR spectroscopic studies of cellobiose solvation
626 in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids, *Physical*
627 *Chemistry Chemical Physics* 12 (2010) 1941–1947.

628 [45] R.S. Payal, R. Bharath, G. Periyasamy, S. Balasubramanian, Density functional theory investigations
629 on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: Gas phase and
630 cluster calculations, *J Phys Chem B* 116 (2012) 833–840.

631 [46] T.G.A. Youngs, C. Hardacre, J.D. Holbrey, Glucose solvation by the ionic liquid 1, 3-
632 dimethylimidazolium chloride: A simulation study, *J Phys Chem B* 111 (2007) 13765–13774.

633 [47] H. Liu, K.L. Sale, B.M. Holmes, B.A. Simmons, S. Singh, Understanding the interactions of cellulose
634 with ionic liquids: a molecular dynamics study, *J Phys Chem B* 114 (2010) 4293–4301.

635 [48] B.D. Rabideau, A.E. Ismail, The effects of chloride binding on the behavior of cellulose-derived solutes
636 in the ionic liquid 1-butyl-3-methylimidazolium chloride, *J Phys Chem B* 116 (2012) 9732–9743.

637 [49] T.G.A. Youngs, J.D. Holbrey, C.L. Mullan, S.E. Norman, M.C. Lagunas, C. D'Agostino, M.D. Mantle,
638 L.F. Gladden, D.T. Bowron, C. Hardacre, Neutron diffraction, NMR and molecular dynamics study of
639 glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate, *Chem Sci* 2 (2011) 1594–
640 1605.

641 [50] B.D. Rabideau, A. Agarwal, A.E. Ismail, The role of the cation in the solvation of cellulose by
642 imidazolium-based ionic liquids, *J Phys Chem B* 118 (2014) 1621–1629.

643 [51] A. Ito, S.-T. Hwang, Permeation of propane and propylene through cellulosic polymer membranes, *J*
644 *Appl Polym Sci* 38 (1989) 483–490. <https://doi.org/10.1002/app.1989.070380308>.

645 [52] M. Naghsh, M. Sadeghi, A. Moheb, M.P. Chenar, M. Mohagheghian, Separation of ethylene/ethane
646 and propylene/propane by cellulose acetate–silica nanocomposite membranes, *J Memb Sci* 423 (2012)
647 97–106.

648 [53] W. Rattanawong, S. Osuwan, T. Rirksomboon, S. Kulprathipanja, The NaX-Zeolites/Cellulose acetate
649 mixed matrix membrane for olefin/paraffin separation: Membrane technology in petroleum,
650 petrochemical and gas processing, *Preprints-American Chemical Society. Division of Petroleum*
651 *Chemistry* 46 (2001) 166–167.

652 [54] S. Sridhar, A.A. Khan, Simulation studies for the separation of propylene and propane by ethylcellulose
653 membrane, *J Memb Sci* 159 (1999) 209–219. [https://doi.org/10.1016/S0376-7388\(99\)00061-7](https://doi.org/10.1016/S0376-7388(99)00061-7).

654 [55] R.D. Rogers, K.R. Seddon, Ionic liquids--solvents of the future?, *Science* (1979) 302 (2003) 792–793.

655 [56] A. Bendaoud, Y. Chalamet, Effects of relative humidity and ionic liquids on the water content and glass
656 transition of plasticized starch, *Carbohydr Polym* 97 (2013) 665–675.

657 [57] M. Murakami, Y. Kaneko, J. Kadokawa, Preparation of cellulose-polymerized ionic liquid composite
658 by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution, *Carbohydr*
659 *Polym* 69 (2007) 378–381.

660 [58] M. FitzPatrick, P. Champagne, M.F. Cunningham, The effect of subcritical carbon dioxide on the
661 dissolution of cellulose in the ionic liquid 1-ethyl-3-methylimidazolium acetate, *Cellulose* 19 (2012)
662 37–44.

663 [59] D.Y. Xing, N. Peng, T.-S. Chung, Investigation of unique interactions between cellulose acetate and
664 ionic liquid [EMIM] SCN, and their influences on hollow fiber ultrafiltration membranes, *J Memb Sci*
665 380 (2011) 87–97.

666 [60] S.C. Fraga, M. Monteleone, M. Lanč, E. Esposito, A. Fuoco, L. Giorno, K. Pilnáček, K. Friess, M.
667 Carta, N.B. McKeown, A novel time lag method for the analysis of mixed gas diffusion in polymeric
668 membranes by on-line mass spectrometry: Method development and validation, *J Memb Sci* 561 (2018)
669 39–58.

670 [61] H. Kono, H. Hashimoto, Y. Shimizu, NMR characterization of cellulose acetate: chemical shift
671 assignments, substituent effects, and chemical shift additivity, *Carbohydr Polym* 118 (2015) 91–100.

672 [62] V.W. Goodlett, J.T. Dougherty, H.W. Patton, Characterization of cellulose acetates by nuclear
673 magnetic resonance, *J Polym Sci A1* 9 (1971) 155–161.

674 [63] S. Nunes, F. Ramacciotti, A. Neves, E.M. Angelin, A.M. Ramos, É. Roldão, N. Wallaszkovits, A.A.
675 Armijo, M.J. Melo, A diagnostic tool for assessing the conservation condition of cellulose nitrate and
676 acetate in heritage collections: quantifying the degree of substitution by infrared spectroscopy, *Herit
677 Sci* 8 (2020) 1–14.

678 [64] D. Larobina, L. Sanguigno, V. Venditto, G. Guerra, G. Mensitieri, Gas sorption and transport in
679 syndiotactic polystyrene with nanoporous crystalline phase, *Polymer (Guildf)* 45 (2004) 429–436.
680 <https://doi.org/https://doi.org/10.1016/j.polymer.2003.11.009>.

681 [65] Y. Tamai, Effective and efficient transport mechanism of CO₂ in subnano-porous crystalline membrane
682 of syndiotactic polystyrene, *J Memb Sci* 646 (2022) 120202.
683 <https://doi.org/https://doi.org/10.1016/j.memsci.2021.120202>.

684 [66] V. Loianno, G. Guerra, B. Nagendra, G. Mensitieri, P. Musto, Unveiling the competitive diffusion of
685 binary gas mixtures in polymers: The case of carbon dioxide and alkanes in nanoporous-crystalline
686 polyphenylene oxide, *Sep Purif Technol* 341 (2024) 126953.
687 <https://doi.org/10.1016/j.seppur.2024.126953>.

688 [67] L. Jiang, X. Huang, C. Tian, Y. Zhong, M. Yan, C. Miao, T. Wu, X. Zhou, Preparation and
689 Characterization of Porous Cellulose Acetate Nanofiber Hydrogels, *Gels* 9 (2023) 484.

690 [68] A.C. Puleo, D.R. Paul, S.S. Kelley, The effect of degree of acetylation on gas sorption and transport
691 behavior in cellulose acetate, *J Memb Sci* 47 (1989) 301–332.

692 [69] H.S. Barud, A.M. de Araújo Júnior, D.B. Santos, R.M.N. de Assunção, C.S. Meireles, D.A. Cerqueira,
693 G. Rodrigues Filho, C.A. Ribeiro, Y. Messaddeq, S.J.L. Ribeiro, Thermal behavior of cellulose acetate
694 produced from homogeneous acetylation of bacterial cellulose, *Thermochim Acta* 471 (2008) 61–69.

695 [70] X. Hou, J. Liu, H. Nguyen, H. Lin, Doping Polymers with Ionic Liquids to Manipulate Their
696 Morphology and Membrane Gas Separation Properties, in: RSC Smart Materials, 2018: pp. 262–279.

697 [71] P. Yee, J.K. Shah, E.J. Maginn, State of hydrophobic and hydrophilic ionic liquids in aqueous solutions:
698 are the ions fully dissociated?, *J Phys Chem B* 117 (2013) 12556–12566.

699 [72] M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund, J. Wohlert, Cellulose and the role of
700 hydrogen bonds: not in charge of everything, *Cellulose* (2022) 1–23.

701 [73] R. Erdmann, S. Kabasci, H.-P. Heim, Thermal properties of plasticized cellulose acetate and its β -
702 relaxation phenomenon, *Polymers (Basel)* 13 (2021) 1356.

703 [74] K. Friess, P. Izák, M. Kárászová, M. Pasichnyk, M. Lanč, D. Nikolaeva, P. Luis, J.C. Jansen, A Review
704 on Ionic Liquid Gas Separation Membranes, *Membranes (Basel)* 11 (2021) 97.
705 <https://doi.org/10.3390/membranes11020097>.

706 [75] K. Friess, J.C. Jansen, F. Bazzarelli, P. Izák, V. Jarmarová, M. Kačírková, J. Schauer, G. Clarizia, P.
707 Bernardo, High ionic liquid content polymeric gel membranes: Correlation of membrane structure with
708 gas and vapour transport properties, *J Memb Sci* 415 (2012) 801–809.

709 [76] M. Longo, M.P. De Santo, E. Esposito, A. Fuoco, M. Monteleone, L. Giorno, J.C. Jansen, Force
710 spectroscopy determination of Young's modulus in mixed matrix membranes, *Polymer (Guldf)* 156
711 (2018) 22–29.

712 [77] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M.
713 Kačírková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel
714 membranes, *Sep Purif Technol* 97 (2012) 73–82.

715 [78] M. Klepić, A. Fuoco, M. Monteleone, E. Esposito, K. Friess, Z. Petrusová, P. Izák, J.C. Jansen,
716 Tailoring the thermal and mechanical properties of PolyActiveTM poly (ether-ester) multiblock
717 copolymers via blending with CO₂-phylic ionic liquid, *Polymers (Basel)* 12 (2020) 890.

718 [79] A. Xu, J. Wang, H. Wang, Effects of anionic structure and lithium salts addition on the dissolution of
719 cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems, *Green Chemistry* 12
720 (2010) 268–275.

721 [80] M. Lalitha, S. Lakshmi pathi, Interface energetics of [Emim]⁺[X]⁻ and [Bmim]⁺[X]⁻(X=BF₄, Cl, PF₆,
722 TfO, Tf₂N) based ionic liquids on graphene, defective graphene, and graphyne surfaces, *J Mol Liq* 236
723 (2017) 124–134.

724 [81] L. Feng, Z. Chen, Research progress on dissolution and functional modification of cellulose in ionic
725 liquids, *J Mol Liq* 142 (2008) 1–5.

726 [82] P.H. Daniels, A brief overview of theories of PVC plasticization and methods used to evaluate PVC-
727 plasticizer interaction, *Journal of Vinyl and Additive Technology* 15 (2009) 219–223.

728 [83] E.H. Immergut, H.F. Mark, *Principles of plasticization*, in: ACS Publications, 1965.

729 [84] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, *J Memb Sci* 107 (1995) 1–21.

730 [85] H. Wu, B. Kruczak, J. Thibault, A generalized model for the prediction of the permeability of mixed-
731 matrix membranes using impermeable fillers of diverse geometry, *J Memb Sci* 641 (2022) 119951.
732 <https://doi.org/10.1016/J.MEMSCI.2021.119951>.

733 [86] M.J. Muldoon, S.N.V.K. Aki, J.L. Anderson, J.K. Dixon, J.F. Brennecke, Improving carbon dioxide
734 solubility in ionic liquids, *Journal of Physical Chemistry B* 111 (2007) 9001–9009.
735 <https://doi.org/10.1021/jp071897q>.

736 [87] M. Kanakubo, T. Umecky, Y. Hiejima, T. Aizawa, H. Nanjo, Y. Kameda, Solution Structures of 1-
737 Butyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid Saturated with CO₂: Experimental
738 Evidence of Specific Anion–CO₂ Interaction, *J Phys Chem B* 109 (2005) 13847–13850.
739 <https://doi.org/10.1021/jp052354o>.

740 [88] S.N.V.K. Aki, B.R. Mellein, E.M. Saurer, J.F. Brennecke, High-pressure phase behavior of carbon
741 dioxide with imidazolium-based ionic liquids, *J Phys Chem B* 108 (2004) 20355–20365.

742 [89] S.D. Hojniak, A.L. Khan, O. Holloczki, B. Kirchner, I.F.J. Vankelecom, W. Dehaen, K. Binnemans,
743 Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs):
744 influence of the cation charge of the ionic liquid, *J Phys Chem B* 117 (2013) 15131–15140.

745 [90] J. Deng, L. Bai, S. Zeng, X. Zhang, Y. Nie, L. Deng, S. Zhang, Ether-functionalized ionic liquid based
746 composite membranes for carbon dioxide separation, *RSC Adv* 6 (2016) 45184–45192.

747 [91] Y. Wang, T.Y. Goh, P. Goodrich, M. Atilhan, M. Khraisheh, D. Rooney, J. Thompson, J. Jacquemin,
748 Impact of ionic liquids on silver thermoplastic polyurethane composite membranes for
749 propane/propylene separation, *Arabian Journal of Chemistry* 13 (2020) 404–415.

750 [92] M.-T. Vu, R. Lin, H. Diao, Z. Zhu, S.K. Bhatia, S. Smart, Effect of ionic liquids (ILs) on MOFs/polymer
751 interfacial enhancement in mixed matrix membranes, *J Memb Sci* 587 (2019) 117157.

752 [93] S. Bai, S. Sridhar, A.A. Khan, Recovery of propylene from refinery off-gas using metal incorporated
753 ethylcellulose membranes, *J Memb Sci* 174 (2000) 67–79.

754 [94] S.I. Semenova, Polymer membranes for hydrocarbon separation and removal, *J Memb Sci* 231 (2004)
755 189–207.

756 [95] V. Teplyakov, P. Meares, Correlation aspects of the selective gas permeabilities of polymeric materials
757 and membranes, *Gas Separation & Purification* 4 (1990) 66–74.

758 [96] A. Fuoco, C. Rizzuto, E. Tocci, M. Monteleone, E. Esposito, P.M. Budd, M. Carta, B. Comesaña-
759 Gándara, N.B. McKeown, J.C. Jansen, The origin of size-selective gas transport through polymers of
760 intrinsic microporosity, *J Mater Chem A Mater* 7 (2019) 20121–20126.

761 [97] M.-L. Ge, R.-S. Zhao, Y.-F. Yi, Q. Zhang, L.-S. Wang, Densities and viscosities of 1-butyl-3-
762 methylimidazolium trifluoromethanesulfonate+ H₂O binary mixtures at T=(303.15 to 343.15) K, *J*
763 *Chem Eng Data* 53 (2008) 2408–2411.

764 [98] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO₂
765 separations in imidazolium-based room-temperature ionic liquids, *Ind Eng Chem Res* 48 (2009) 2739–
766 2751.

767 [99] R.L. Gardas, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P.
768 Coutinho, High-pressure densities and derived thermodynamic properties of imidazolium-based ionic
769 liquids, *J Chem Eng Data* 52 (2007) 80–88.

770