

Exploring the potential of hydrothermal waxes derived from polyethylene: Product characterization and insights from solvent effects

3

4 Guocheng Wang¹, Haoyu Xiao¹, Małgorzata Sieradzka², Zuzanna Prus², Małgorzata Wilk²,
5 Aneta Magdziarz², Yingquan Chen¹, Haiping Yang¹, Jiawei Wang³, Yang Yang^{1*}

6 Affiliation

⁷ *¹State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology,
8 Wuhan, Hubei 430074, China*

9 ²AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland

10 ³School of Engineering and Applied Sciences, Swansea University, Swansea SA1 8EN, UK

11 *Corresponding author, e-mail: y.yang100@outlook.com (Y. Yang)

12 **Abstract**

13 The accumulation of plastic waste poses a serious environmental challenge, and traditional
14 disposal methods have become insufficient. The autoclave hydrothermal processing method,
15 employing supercritical water as a solvent, offers notable advantages for plastic pyrolysis,
16 including high conversion efficiency and superior product yield. The main objective of this
17 study is to enhance the characterisation of wax products from the hydrothermal conversion of
18 LDPE plastic, thereby facilitating research into heavy hydrocarbons outside the gasoline and
19 diesel range. Thus, the impact of temperature and polar solvent on the product distribution has
20 been profoundly examined. The findings demonstrate that at temperatures below 420°C, the
21 hydrothermal wax displays a hardness comparable to paraffin and is insoluble in conventional
22 solvents. The solid wax product yield reached 98.8% at 425 °C, representing the optimal result
23 among all tested conditions. The addition of polar solvents enhanced the efficiency of LDPE
24 chain scission, whereas the presence of oxygen broadened the product distribution. Adding
25 100% C₂H₅OH solvent results in 78% liquid phase and 22% gas phase, while adding 100%
26 CH₃COOH results in a reduction of carbon chains from 22.2 to 15.33. Ethanol-induced
27 chemical cyclisation in the hydrothermal wax resulted in the formation of liquid aromatic
28 compounds (25.96%). In contrast, acetic acid led to further cracking of the wax, leading to the
29 production of a higher proportion of light hydrocarbons (83.2%).

30 **Keywords:** plastic recycling, hydrothermal conversion, hydrothermal wax, heavy
31 hydrocarbons

32

33

34

35

36

37 **1. Introduction**

38 The versatile properties of plastic materials, such as durability, light weight, chemical
39 resistance, and relatively low cost of manufacture, made them applicable in many different
40 industrial branches, especially in engineering, packaging and automotive sectors (Andrade and
41 Neal, 2009). Polymer materials are primarily derived from natural resources such as crude oil
42 and natural gas. Therefore, their formation contributes to serious environmental concerns, such
43 as depletion of non-renewable natural resources, greenhouse gas emissions, and the pollution
44 from plastic waste (Nayanathara Thathsarani Pilapitiya and Ratnayake, 2024). In 2022, the
45 worldwide production of plastics exceeded 400.3 million tonnes, which is 2.4% higher than the
46 previous year and 200 times more than in the 1950s (Statistica, 2024). As both the production
47 and the use of plastic materials over the past few decades have significantly increased, so have
48 the environmental issues associated with plastics. Moreover, a growing number of studies
49 highlight increasing environmental contamination by microplastics (Prus and Wilk, 2024),
50 especially in marine habitats, as around 85% of marine litter originating from land sources is
51 plastic (Derraik, 2002). It has been proven that microplastics can adversely affect organisms'
52 life processes, causing a long-term risk to the ecosystem (Chang et al., 2022; Sarma et al., 2022).
53 From another point of view, the chemical and physical properties of plastics might suggest their
54 usefulness in terms of energy recovery.

55 The Higher Heating Value (HHV) of synthetic polymers ranges from 20 to 46 MJ/kg (Al-
56 Salem and Lettieri, 2010; Barbarias et al., 2018a), which confirms their significant energy
57 content. This makes plastics a valuable feedstock for waste-to-energy (WTE) technologies,
58 where they can be processed to generate electricity or heat. Considering the increasing market
59 size of plastic materials, there is a need to develop an effective plastic recycling technology,
60 with beneficial energy recovery for economic and ecological sustainability (Wang et al., 2023).

61 The primary methods of plastic waste disposal are landfill and incineration. However, the
62 inherent stability of plastics makes them challenging to degrade naturally due to the fact that
63 during their incineration a significant number of particles and organic derivatives are generated
64 that contribute to atmospheric pollution, such as gaseous hydrocarbons, carbon monoxide (CO),
65 carbon dioxide (CO₂), and toxic volatile organic compounds (VOCs) (Zhang et al., 2021).
66 Although numerous regulations have been implemented and proposed, the mechanical
67 recycling rate for plastics remains relatively low, amounting to less than 7% in the US, which
68 generates the most plastic waste on a global scale (Hendrickson et al., 2024; Khatun et al.,
69 2021). Consequently, identifying a technological pathway to efficiently process substantial
70 quantities of plastic waste has emerged as a prominent research topic (Maqsood et al., 2021).

71 Currently in use, conventional treatment methods, including incineration, landfill, and
72 mechanical recycling, are insufficient and inadequate for converting plastic waste into high-
73 value-added products, unlike thermal conversion (Al-Salem and Lettieri, 2010).
74 Thermochemical treatment of plastics, such as hydrothermal conversion, has gained significant
75 attention in recent years due to its ability to produce high-value products under relatively mild
76 conditions while avoiding the formation of gaseous pollutants like dioxins (Ni et al., 2016). It
77 enables obtaining products with a concentrated carbon number distribution by controlling the
78 reaction conditions (e.g. temperature, reaction time, or catalyst) (Cheng et al., 2023; Fivga and
79 Dimitriou, 2018). Products from the hydrothermal conversion of plastic encompass gaseous
80 hydrocarbons, light oils and hydrochars (Shen, 2020). In addition, product enrichment can be
81 enhanced by introducing specific catalysts like for example zeolite beta (Munir et al., 2020),
82 K₂CO₃ (Martínez-Narro et al., 2024) or iron-based (Shen et al., 2022), facilitating the
83 production of high-value-added products, including fuel oil and carbon nanotube materials (Liu
84 et al., 2023; Yang et al., 2024). However, plastics initially yield heavy hydrocarbons (> C₂₀)
85 during the chain-breaking process, which are cracked into products such as small molecule

86 gases and carbon deposits. In addition, at ambient temperature, heavy hydrocarbons tend to
87 solidify into hydrothermal waxes (Artetxe et al., 2013). It has been demonstrated that elevated
88 temperatures and pressures can facilitate efficient cleavage of the polymer chain, thereby
89 increasing the yield of short hydrocarbon chains and the conversion rate of the process (Goto
90 et al., 2006; Ha et al., 2024). Hydrothermal processing has garnered significant attention due to
91 its efficiency in converting plastics into diverse products, utilizing subcritical or supercritical
92 water as a reaction medium under heated, pressurized, and oxygen-free conditions (Dave et al.,
93 2025). The introduction of supercritical water, defined as water at a pressure greater than 22.12
94 MPa and a temperature greater than 374.3 °C, has been demonstrated to enhance the cleavage
95 of polymer bonds within synthetic materials (Zhang et al., 2022). Subcritical and supercritical
96 conditions alter key physicochemical properties of water—such as dielectric constant, density,
97 specific heat capacity, and viscosity—transforming it into a non-polar solvent. This facilitates
98 the dissolution of diverse organic compounds, thereby accelerating reaction rates (Lachos-Perez
99 et al., 2017). In contradistinction to conventional thermal degradation, supercritical conditions
100 facilitate enhanced control over reaction pathways, thereby minimising undesirable by-products
101 and promoting the formation of targeted hydrocarbon products (Wang et al., 2021).

102 In hydrothermal conversion processes, the choice of reaction medium plays a crucial role
103 in shaping reaction pathways and product characteristics. Beyond water, which commonly
104 serves as the base medium, additional solvents can be introduced to modify the chemical
105 environment and enhance polymer degradation (Peng et al., 2022). Polar protic solvents such
106 as ethanol can facilitate hydrogen transfer, cyclization, and the formation of aromatic
107 compounds (Echaroj et al., 2023). Mild acids like acetic acid promote acid-catalyzed cleavage
108 of polymer chains, leading to the formation of shorter hydrocarbons. Reactive oxidants such as
109 hydrogen peroxide generate oxygen species under hydrothermal conditions, enabling oxidative
110 degradation and broadening the product distribution (Wang et al., 2018). The use of such

111 solvents provides opportunities to selectively tune the composition, structure, and molecular
112 weight of the resulting products, offering greater control over the valorization of plastic waste.

113 The primary components of plastic-derived, hydrothermal waxes are long-chain
114 hydrocarbons, including paraffin and olefins, which result from the thermal decomposition and
115 restructuring of polymers under high-temperature, high-pressure water conditions (Ding and
116 Hesp, 2021). These compounds are commonly utilized as an industrial filler in asphalt to lower
117 the asphalt compaction temperature and as feedstock in refineries for fuel and chemical
118 production (Bray et al., 2020). Plastic waxes also contain small amounts of alcohols, acids,
119 esters, and olefins and are in a solid state at room temperature. A specific type of hydrothermal
120 wax is made from polyolefins, such as Polyethylene (PE) and Polypropylene (PP), the main
121 components of which are olefins. With high thermal stability and low manufacturing cost, PE-
122 waxes can be used as additives to blend with asphalt to reduce asphalt viscosity and enhance
123 composites' high-temperature performance and ageing resistance (Abdy et al., 2022). However,
124 these investigations remain confined to laboratory-scale experiments, with no large-scale
125 demonstration reported to date. They can also be used as feedstock in the cracking process of
126 refineries for the production of fuels and chemicals, which is conducive to the realization of
127 waste utilization and the reduction of environmental pollution (Li et al., 2023). PE-waxes
128 contain lighter hydrocarbon molecules (boiling point range of 150–200 °C), unsaturated bonds
129 and aromatic compound components that are highly irritating to the skin, which limits the
130 application of waxes. Although lighter hydrocarbons are removed during the distillation
131 process, further upgraded utilization of hydrothermal waxes still needs to be explored (Patil et
132 al., 2024).

133 In general, plastic-derived waxes are readily produced during hydrothermal conversion.
134 Still, the lack of separation methods of oil and solid phases, as well as high-value application
135 pathways, are the major concerns of this technology. The research on hydrothermal waxes

136 concentrates on increasing product yields and complex processes, especially for LDPE
137 conversion. The mechanism of plastic hydrothermal conversion indicates that high-yield waxes
138 can be produced without requiring high-temperature environments or metal-loaded catalysts
139 (Al-Salem and Dutta, 2021). Nevertheless, current research lacks the characterisation of plastic
140 hydrothermal waxes and exploration of solvent effects in hydrothermal conversion.
141 Conventional analytical methods, like GC-MS, HT-GC (High-Temperature Gas
142 Chromatography), TG and DSC (Differential Scanning Calorimetry), can only measure the
143 relative content of each heavy hydrocarbon in hydrothermal waxes. However, they are not
144 sufficient to quantify the individual substance products, let alone understand their structure and
145 carbon chain length.

146 This study addresses a critical yet underexplored route of plastic waste valorisation by
147 investigating the wax products obtained from the hydrothermal conversion of PE plastics—a
148 major component of post-consumer plastics. While most previous studies have focused on
149 thermal or catalytic conversion, this work investigates a solvent-assisted hydrothermal
150 conversion to modulate product characteristics. By introducing a variety of selected solvents
151 (H_2O_2 , C_2H_5OH , CH_3COOH) at different concentrations and reaction temperatures, this
152 research unveils the impact of solvent and their concentration influence the composition,
153 molecular structure, carbon chain distribution and physicochemical properties of the wax
154 products. This approach provides a novel route for tuning product quality during hydrothermal
155 plastic conversion and extends current understanding of how solvent-mediated reactions can be
156 leveraged to optimise value recovery from polyolefin waste. The findings also offer practical
157 insights for the design of more selective and controllable upcycling processes in plastic waste
158 management

159 **2. Materials and Methods**

160 *2.1. Materials*

161 Pure Polyethylene (PE) was used as the main feedstock for the hydrothermal conversion.

162 It was selected due to its extensive usage in the manufacture of plastic packaging, such as films

163 and shopping bags, which subsequently enter the marine environment, contributing to the

164 accumulation of marine waste plastics. The LDPE raw material was purchased from Ruixiang

165 Plasticizing Co. Ltd. to ensure consistent quality and purity for the experimental trials. It has a

166 HHV of 46MJ/kg (Irgolič et al., 2024) and a bulk density of 0.89g/cm³. The results of TGA and

167 DSC analyses are shown in Figure S2. Chemicals: Ethanol (C₂H₅OH), Hydrogen peroxide

168 (H₂O₂), and Acetic acid (CH₃COOH) were purchased from China National Pharmaceutical

169 Group Chemical Reagent Co. Ltd. 0.22 μm filters were provided by General Electric

170 Biotechnology Co. Ltd.

171 Raw material and produced waxes were subjected to elemental analysis using a Vario

172 Micro cube elemental analyser (purchased from Elementar, Germany) in accordance with the

173 Chinese national standard (GB/TGB/T 18338.2-2001).

174 *2.2. Hydrothermal conversion*

175 A Parr 4566 autoclave reactor with capacity of 500 mL was employed to conduct

176 hydrothermal conversion under operating pressures up to 34.5 MPa and temperatures up to 500

177 °C. It is equipped with a pressure meter, safety rupture discs, inlet and outlet gas valves, valves

178 for sampling liquid, cooling coils, and thermocouple sleeves with J-joints. The scheme of the

179 reactor is depicted in Figure S1.

180 Previous studies indicate that LDPE subjected to hydrothermal processing at 425 °C for

181 30 minutes yields approximately 97% wax (Jin et al., 2020). However, further increases in

182 temperature or reaction duration promote the conversion of wax into liquid oil. Therefore, the

183 reaction time in this study was 30 min and the following temperatures were selected for the

184 hydrothermal conversion: 410, 420, 425, 430, 435 and 440 °C. In each experimental trial, 20 g
185 of LDPE and 40 mL of deionised water or solvent were used. In order to investigate the impact
186 of diverse solvents on the wax production from PE, several solutions were studied at a reaction
187 temperature of 425°C. C₂H₅OH was employed as a polar solvent for washing and potentially
188 dissolving certain impurities (Pan et al., 2013). H₂O₂ was utilised due to its well-documented
189 oxidative properties, facilitating the removal of organic contaminants or enabling specific
190 reactions during the post-treatment phase. CH₃COOH was used as a mild acid with the potential
191 to act as a process catalyst or neutraliser, depending on the requirements of the reaction. To
192 investigate the impact of diverse solvents on wax production, a series of experiments were
193 conducted, wherein the following percentages of solvents were employed: 1%, 20%, and 100%.

194 Following the assembly of the reactor, three purges with argon were conducted to
195 eliminate residual air within the kettle. Thereafter, the pressure was adjusted to 0.62 MPa.
196 Heating proceeded at 8 °C/min until reaching target temperatures (410-440 °C), requiring 50-
197 55 minutes depending on the set point, with a holding time of 30 minutes. During heating,
198 system pressures reached 15.31, 15.86, 16.55, 16.89, 17.24, and 17.58 MPa, respectively.
199 Maximum pressures at 425°C varied by solvent: 22.75 MPa (100% C₂H₅OH), 22.06 MPa
200 (100% H₂O₂), and 23.44 MPa (100% CH₃COOH). Post-reaction cooling achieved 300°C within
201 10 minutes via water quenching, with full cooling to ambient temperature requiring 120
202 additional minutes. The densities of the plastic-containing mixtures with pure water, C₂H₅OH,
203 H₂O₂, and CH₃COOH in the reactor were determined to be 0.96, 0.82, 0.97, and 1.01 g/cm³,
204 respectively."

205 Once the process was completed, the cooling water valve was opened in order to reduce
206 the temperature of the reactor to room temperature rapidly. The pressure was recorded, and then
207 the exhaust port was opened to allow the collection of the gas products. The kettle was
208 transferred to a beaker and weighed. The liquid and solid hydrothermal products were separated

209 by filtration with filter paper, with special care taken to avoid compressing the waxy solids due
210 to their adhesive properties. Retained wax was carefully recovered using a microspatula, with
211 residual material removed with cotton and weighed. Residual oil retained on the filter paper
212 was dissolved in minimal dichloromethane and allowed to evaporate to constant mass in a
213 ventilated fume hood under dark conditions and weighed. The water and oil phases were
214 separated by a glass separatory funnel. The oil that had formed a film on the inside of the funnel
215 was carefully removed with cotton and weighed. This measure was included in the final oil
216 weight.

217 Gas quantification was performed through a three-step analytical procedure: First, the
218 molar quantities of initial argon and product gases were calculated from pre- and post-reaction
219 temperature/pressure measurements using the ideal gas law (Equation S1). Second, gas
220 chromatography data provided species-specific molar percentages, enabling calculation of total
221 gas production via argon mass balance. This approach served to validate the termination gas
222 quantities derived from ideal gas law calculations. Finally, the mass of each gas was calculated
223 separately and added up to give the total gas yield (Chen et al., 2019). All the experiments were
224 repeated three times to take the average.

225
$$Ms = \frac{Ws}{Wr} \times 100 \quad (1)$$

226
$$Mg = \frac{\sum m \times xi \times Mi}{Wr} \times 100 \quad (2)$$

227
$$My = 100 - Ms - Mg \quad (3)$$

228 Where Ms is the solid yield (wt.%); Mg is the gas yield (wt.%); My is the liquid yield
229 (wt.%); Ws is the mass of collected solid (g); Wr is the mass of raw material (g); m is the total
230 molar number of gas calculated by Formula S1 (mol); xi is the molar percentage of gas
231 component provided by gas chromatography (%); Mi is the relative molecular mass of gas
232 component (g/mol); i is the gas species index (e.g., H₂, CO, CH₄).

233 *2.3. Analytical methods*

234 The characteristics of hydrothermal wax were analysed using thermogravimetric analysis
235 (TG), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared
236 spectroscopy (FTIR), proton nuclear magnetic resonance (^1H NMR) and carbon nuclear
237 magnetic resonance (^{13}C NMR). Finally, the molecular formulas were validated through the use
238 of heteronuclear multiple bond correlation (HMBC) spectroscopy.

239 *GC-MS*

240 The liquid products were subjected to analysis by gas chromatography/mass spectrometry
241 (7890B/5977A, Agilent). For the purpose of sample preparation, 50 mg of the sample was
242 dissolved in 5 mL of dichloromethane, mixed and filtered through a 0.22 μm filter membrane.
243 The GC-MS injector was maintained at 280 $^{\circ}\text{C}$ with a split ratio of 20:1. The samples were
244 separated using an HP-5 MS capillary column (30 m \times 0.25 mm \times 0.25 μm , Agilent). The oven
245 was set to maintain a temperature of 40 $^{\circ}\text{C}$ for 2 min, after which it was heated to 200 $^{\circ}\text{C}$ at a
246 heating rate of 5 $^{\circ}\text{C}/\text{min}$. Finally, the oven was heated to 280 $^{\circ}\text{C}$ at a heating rate of 10 $^{\circ}\text{C}/\text{min}$
247 and maintained for 2 min. The products were identified according to the National Institute of
248 Standards and Technology Mass Spectral Library 2017 Version (NIST17.L library).

249 *NMR*

250 Nuclear magnetic resonance (^1H NMR and ^{13}C NMR) spectroscopy was performed using
251 deuterobenzene at 600 MHz on a Bruker Avance II 600 spectrometer with relaxation times of
252 2 s and 5 s and 128 and 1024 scans, respectively. Heterogeneous Multiple Bond Correlation
253 (HMBC) was employed for the detection of the wax product's structure. The analysis was
254 performed in deuterated benzene on a Bruker Avance II 600 spectrometer at 600 MHz with a
255 relaxation time of 2 s and 16 scans. For each sample, 100 mg of wax was dissolved in 0.6 mL
256 of deuterated benzene and filtered through a 0.22 μm PTFE syringe filter.

257 *FTIR*

258 Identification of functional groups in wax samples was conducted using Fourier transform
259 infrared spectroscopy (FTIR) manufactured by a PerkinElmer ATR-FTIR (Thermo Nicolet IS5)
260 with a spectral range of 4000-600 cm⁻¹ and 256 scans with a resolution of 4 cm⁻¹. Samples were
261 homogenized with anhydrous potassium bromide (KBr) at a 1:100 (wax:KBr) mass ratio and
262 compressed into translucent pellets under vacuum. Before sample analysis, background spectra
263 were acquired using pure KBr pellets to account for environmental moisture and instrumental
264 baselines.

265 TG

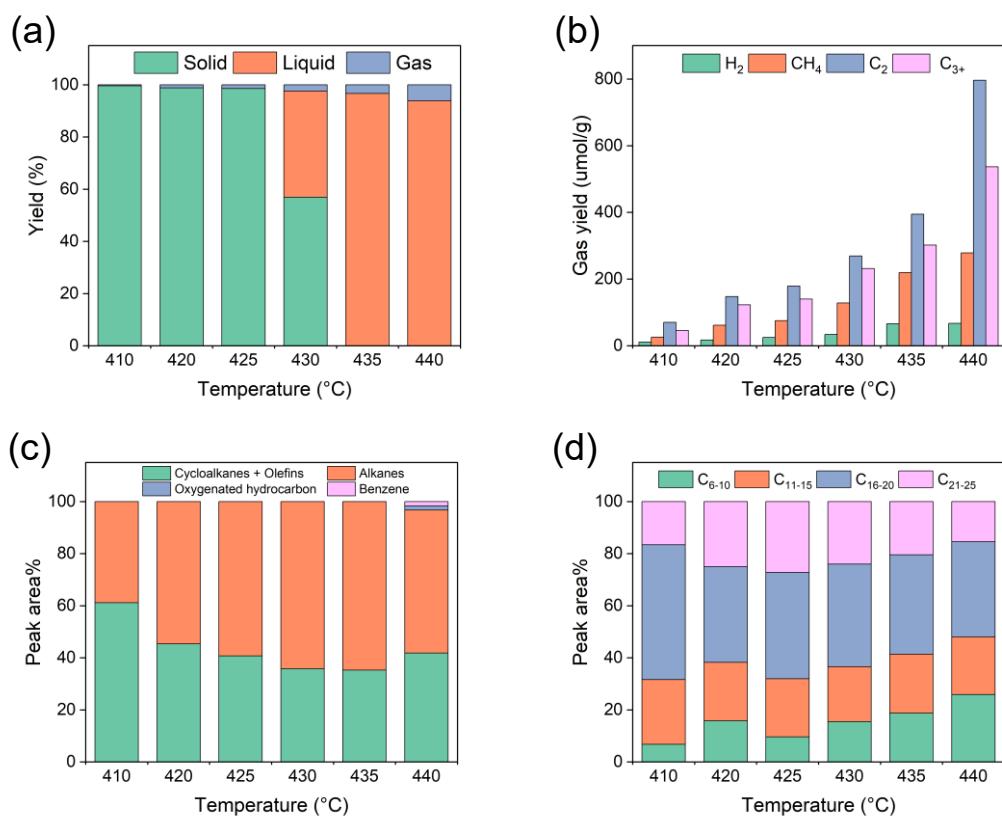
266 The thermal stability of hydrothermal waxes and oils was analysed using a
267 thermogravimetric (TG) analyser (STA-449F3 NETZSCH). Approximately 10 mg of each
268 sample was placed in crucible and then placed in the open oven to be heated from 20 °C to 550
269 °C at a rate of 10 °C/min in a nitrogen rate of 60 ml/min.


270 GC

271 The composition of the gaseous products was identified using a dual-channel gas
272 chromatograph (Panna A91, Panna Instruments). The gas chromatography was equipped with
273 a thermal conductivity detector (TCD) and a flame ionization detector (FID), where the
274 following carrier gases were introduced: helium (He) and nitrogen (N₂), respectively. The TCD
275 separated the following compounds: H₂, N₂, O₂, CO₂, CH₄ and CO on a Porapak molecular
276 sieve column and a 5A zeolite molecular sieve column, while olefins and alkanes were
277 separated on an Al₂O₃/KCl capillary column in FID. The column temperature was 80 °C and
278 held for 4 min, then heated to 150 °C at a heating rate of 10 °C/min and held for 6 min. The
279 lower heating value (LHV) of syngas was determined based on the compositional content (in
280 mass percentage) measured by gas chromatography according to Equation S2.

281 **3. Results and Discussion**

282 *3.1. Influence of process temperature on wax production*


283 The hydrothermal transformation of polyethylene (PE) was first investigated across a
284 temperature gradient (410, 420, 430, and 440°C) using deionized water as the sole solvent to
285 evaluate temperature effects on wax yield and product characteristics systematically. The
286 hydrothermal experiments produced temperature-dependent phase distributions: white solid
287 waxes were predominantly obtained at 410-430°C, while only yellow liquid oils formed at
288 440°C. These results are consistent with previous reports in the literature (Hou et al., 2023).
289 After collecting and observing the wax/oil products from these initial tests, additional
290 experiments at 425 °C and 435 °C were conducted. The product derived at 425 °C gave the
291 most visually satisfactory results, indicating a more favourable conversion and product
292 consistency. That is why this particular product, LDPE wax produced at 425 °C, was chosen
293 for further analysis. Figure 1 shows the wax/oil products generated from the hydrothermal
294 experiments at all selected temperatures.

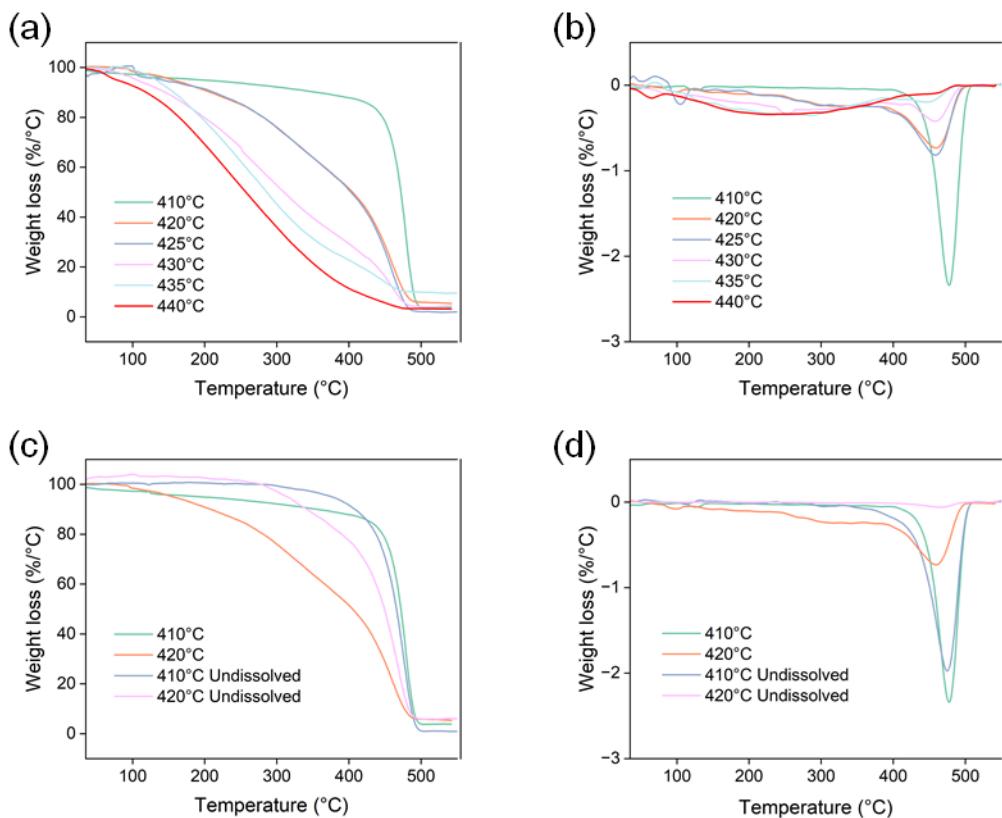
295 Figure 1. Wax products from the hydrothermal conversion of LDPE plastic at different
296
297 temperatures.

298 The yields of the solid, liquid and gas products for all studied temperatures are shown in
299 Figure 2a. Almost only solid products were obtained for the temperature of 410 °C, and no gas
300 was detected. The solid products consist mainly of wax, and no liquid products were identified.

301 As the temperature increased, the liquid products were produced. For instance, at 435 °C and
 302 440 °C, the products consisted of 96.7% and 93.9% liquid, respectively, where no wax was
 303 made. The solid yields of the products derived at 420 °C and 425 °C were similar to each other
 304 and amounted to 98.8%. Based on visual inspection of the consistency of the sample produced
 305 at 425 °C, this one was chosen as the most satisfactory. In conclusion, 425 °C was proven to be
 306 the most suitable process temperature for wax production. Figure 2b illustrates the effect of
 307 process temperature on gas production. According to the presented results, C₂ hydrocarbons
 308 were the primary gas components, with the highest yield determined for the sample derived at
 309 440 °C, with an amount of 796.2 μmol/g, and the lowest found for the sample produced at 410
 310 °C, with an amount of 70.2 μmol/g. It might be concluded that an increase in process
 311 temperature favours the formation of gas components, which indicates that higher process
 312 temperature provides the release of higher amounts of volatiles from raw material. The total
 313 LHV of the produced gas was measured to be 46.2-47.1 MJ/kg within the reaction temperature
 314 range of 410-440°C.

315

316 Figure 2. Characteristics of hydrothermal conversion of LDPE at different temperatures: (a)
317 product yield; (b) gas composition; (c) distribution of products by structure; (d) distribution of
318 products by carbon number.


319 The GC-MS results are presented in Figure 2c, d. It is observed that liquid samples contain
320 hydrocarbon chains ranging from C₆ to C₂₅. It can be seen that the liquid oils are of good quality
321 and have a distinct carbon number distribution, which can be classified into the following
322 groups: C₆-C₁₀, C₁₁-C₁₅, C₁₆-C₂₀ and C₂₁-C₂₅. Additionally, the results were categorised into the
323 following groups: cycloalkanes plus olefins, alkanes, oxygenated hydrocarbons and benzene. It
324 is worth noting that the solid samples produced at 410 and 420 °C could not be fully dissolved
325 in dichloromethane. Therefore, the results at these two temperatures could not be used for
326 comparison, and additional TG analyses were performed for the undissolved solids. As shown
327 in Figure 2c, the waxes/oils obtained above 420 °C consisted mainly of chain alkanes,
328 cycloalkanes and olefins, ranging from 35.3 – 41.8 wt.%. Sample of 410 °C have the highest
329 percentage of cycloalkanes and olefins (59.2%). Small amounts of toluene and eicosanol were
330 observed to be produced at 440 °C, with 1.6 wt.% and 1.7 wt.%, respectively. These results are
331 consistent with previous reports (Jin et al., 2020), demonstrating that elevated temperatures or
332 prolonged reaction times promote the conversion of cycloalkanes and olefins to aromatic
333 compounds, albeit with limited conversion efficiency. As shown in Figure 2d, the waxes at 425
334 °C were mainly composed of heavy hydrocarbons with yields of 37.6 wt.% and 25 wt.% for
335 C₁₆-C₂₀ and C₂₁-C₂₅, respectively, and only 8.9 wt.% for C₆-C₁₀. As the temperature increases
336 to 440 °C, the yield of C₂₁-C₂₅ gradually decreases to 15.4 wt.% and the yield of C₆-C₁₀
337 gradually increases to 25.9 wt.%. Results for compounds up to C₂₀ can be categorised as double-
338 bond olefins. Some compounds from C₇ to C₁₇ are single-bond paraffins (Norouzi et al., 2024).
339 This product distribution reflects the progressive chain shortening phenomenon observed across
340 the 410-440°C temperature range. Notably, while waxes produced at 410-420°C exhibited only

341 partial solubility in dichloromethane, complete dissolution was achieved for the 425°C
342 products, coinciding with the maximum concentration of C₂₁-C₂₅ compounds at this optimal
343 temperature.

344 The thermal cracking of waxes at different temperatures and waxes insoluble in
345 dichloromethane at 410 and 420 °C were additionally investigated via TG (Figure 3).
346 Decomposition of samples occurred in a one broad step, starting at 100 °C and ending at 500
347 °C (Figure 3a, b). The initial weight loss up to 100 °C may be related to the release of water
348 from the sample. As shown in Figure S2, the weight loss of the initial LDPE starts at 430 °C
349 and ends at 500 °C, with a mass loss of 56.5% at 477 °C. For most studied cases, except samples
350 435 °C and 440 °C, the main weight loss occurred in a temperature range of 380 – 510 °C,
351 related to the decomposition of coke residue (Kongngoen et al., 2023). The highest weight loss
352 rate was observed at temperature 476 °C with 58.6 % weight loss for 410 °C sample, 458 °C
353 with 80.2% weight loss for 425 °C sample, 459 °C with 78.1% weight loss for 420 °C sample,
354 458 °C with 98.2% weight loss for 430 °C sample, 286 °C with 54.3% weight loss for sample
355 435 °C and 230 °C with 41.1% weight loss for 440 °C sample. Samples of 410 °C, 425 °C, 420
356 °C and 430 °C decomposed at higher temperatures due to the higher degree of crystallinity and
357 the presence of a long-chain polymer structure in comparison to other samples (Norouzi et al.,
358 2024). The higher processing temperature resulted in a material with a more fluid consistency,
359 as evidenced by the photographic documentation of the samples. This phenomenon led to an
360 increased weight loss during thermogravimetric analysis. Consequently, the thermal stability of
361 these samples is lower than that obtained at lower temperatures.

362 The weight loss of insoluble waxes in dichloromethane at 410 and 420 °C occurs at 280
363 °C, as presented in Figures 3c and 3d. The GC-MS results (Figure 2c, d) demonstrate a
364 distribution of products up to C₂₅, while one of the main components is alkanes. Usually, wax
365 decomposition at temperatures lower than 225 °C is attributed to degradation of alkanes with

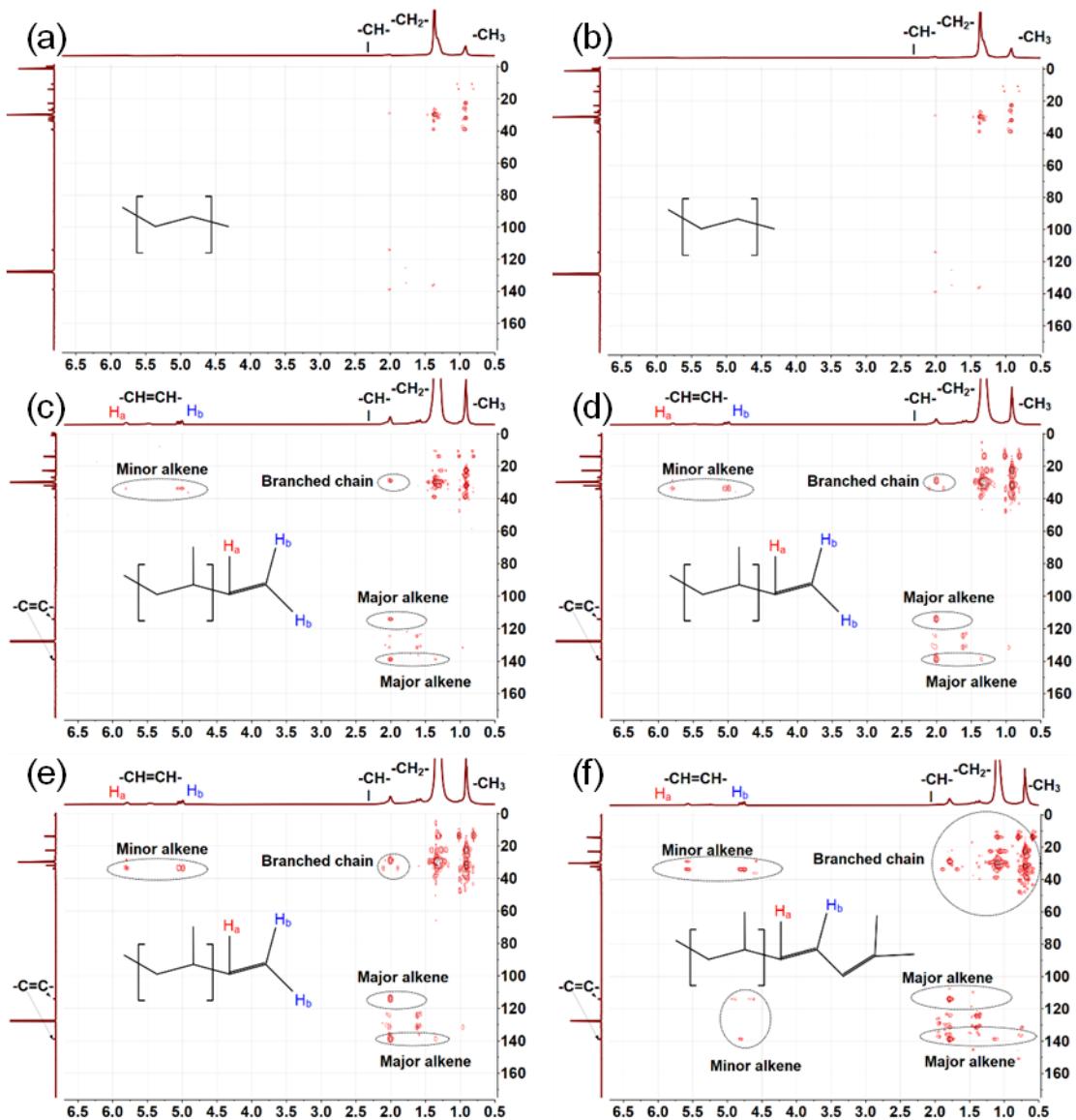
366 low molecular mass (Kongnoen et al., 2023). The undissolved wax samples obtained at 410
 367 °C and 420 °C exhibited significant mass losses of 92.8 wt.% and 80.2 wt.%, respectively, with
 368 peak decomposition occurring at 480 °C. Consequently, the samples obtained at lower
 369 temperatures were mainly hard, heavy fractions insoluble in methylene chloride, which
 370 confirms the experimental records.

371
 372 Figure 3. TG and DTG curves of wax products: (a), (b) in different temperatures; (c), (d) 410
 373 and 420 °C wax samples insoluble in methylene chloride.

374 The GC-MS results do not accurately reflect the percentage of unsaturated bonds in the
 375 olefins and the carbon number distribution of the products. Therefore, waxes and oils were
 376 analysed using ¹H NMR to determine the changes in the distribution of unsaturated H,
 377 methylene H, and methyl H content with temperature and the structural formulae were
 378 determined by heteronuclear multiple bond correlation (HMBC). As shown by the GC-MS
 379 results, almost no benzene was produced at all temperatures, so deuterated benzene was chosen

380 as the solvent. The peak positions of aromatic H and aliphatic H were 6–9 ppm and 0.5–6 ppm,
381 respectively, and the solvent peak position of deuterobenzene was 7.16 ppm (Babij et al., 2016).

382 The ^1H NMR analyses of the products at all temperatures are presented in Figure S3, which
383 shows only the aliphatic part. The peak positions of $-\text{CH}_3$ substituents were in the range of 0.5–
384 1 ppm, $-\text{CH}_2$ -substituents were in the range of 1–1.5 ppm, $-\text{CH}$ -substituents were in the range
385 of 1.8–2.3 ppm, and $-\text{CH}=\text{CH}-$ substituents were in the range of 1–2 ppm (Rudyk et al., 2023).
386 The relative amount of each substituent was obtained by integrating the peaks over the peak
387 area and averaging the carbon chains, employing a modification of the Cookson and Smith
388 method (Speight et al., 2011). Carbon chain length was determined as the ratio of the intensity
389 of the peak area of the 3-fold methylene group to that of the methyl group, plus the number of
390 methyl groups at each end. This method can only be used for straight-chain alkanes, so the
391 products were elementally analysed before the calculations, as shown in Table S1. The products
392 contain minimal quantities of oxygen (O) and nitrogen (N), with the majority of their
393 composition consisting of carbon (C) and hydrogen (H). The mole ratios of C and H for the
394 products at LDPE and 410–440 °C are 0.47:1, 0.47:1, 0.48:1, 0.55:1, 0.47:1, and 0.54:1,
395 respectively. The mole ratios of C and H for the products at LDPE and 410–440 °C are 0.47:1,
396 0.47:1, 0.48:1, 0.55:1, 0.47:1, and 0.54:1, respectively, which suggests that straight-chain
397 alkanes are preferred to branched-chain, cycloalkane, and aromatics at the presented
398 experimental condition.


399 The results of the FTIR analysis of the studied waxes are presented in Figure S4. The
400 primary peaks identified in the FTIR analysis for each studied sample were observed at
401 wavenumbers of 2920, 2850 and 1460 cm^{-1} . These peaks indicate long-chain aliphatic
402 hydrocarbons, which are the main components of wax (Missau et al., 2018; Movasaghi et al.,
403 2008). The analysis indicated that the absorption frequencies were consistent with those
404 observed in common alkanes, thereby demonstrating similarities between the obtained samples

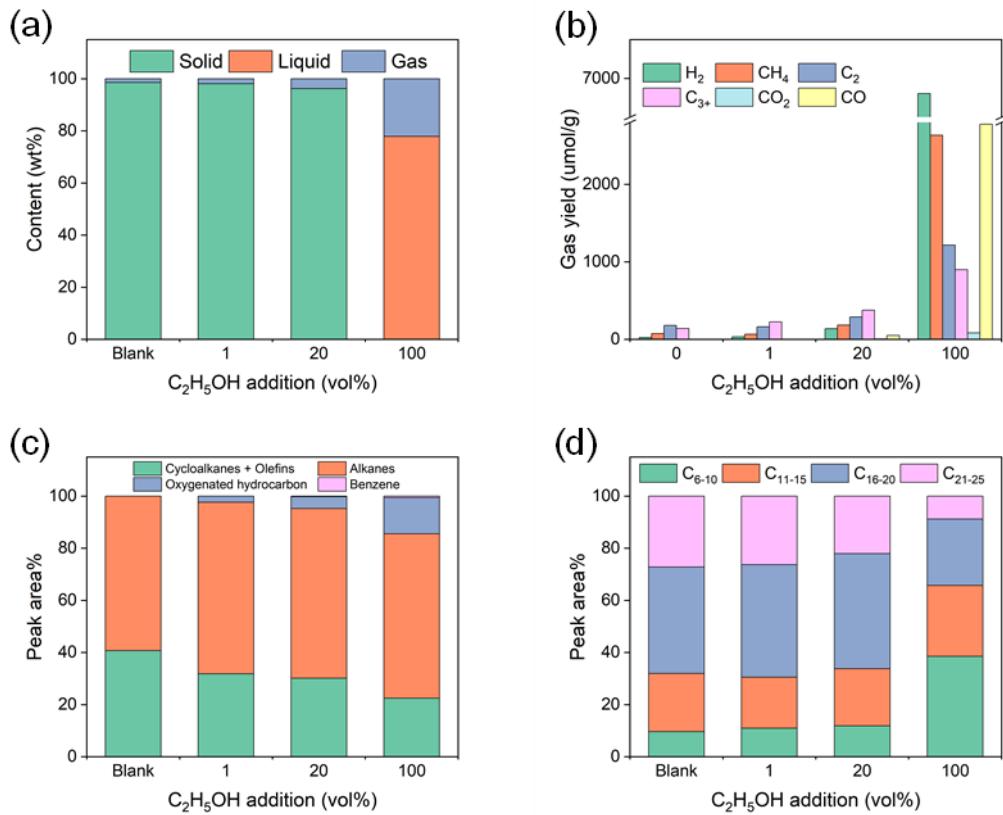
405 and paraffin waxes (Missau et al., 2018). The absorption bands at 2955, 2870, and 997 cm^{-1}
406 correspond to $-\text{CH}_3$ vibrations, the absorption bands at 2917, 2852, and 910 cm^{-1} correspond to
407 $-\text{CH}_2-$ vibrations, and the absorption bands at 1462, 1377, and 720 cm^{-1} correspond to $-\text{CH}-$
408 vibrations. These three absorption bands correspond to asymmetric stretching vibration,
409 symmetric stretching vibration, and out-of-plane rocking vibration, respectively. In addition,
410 the absorption bands at 1640 and 972 cm^{-1} correspond to $\text{C}=\text{C}$ and $\text{C}-\text{C}$ vibrations, respectively
411 (Jung et al., 2018). As the process temperature increased, the intensity of the peaks diminished.
412 The highest intensity was observed in the 410 $^{\circ}\text{C}$ sample, while the lowest intensity was
413 observed in the sample obtained at 440 $^{\circ}\text{C}$. This indicates that the quantity of identified
414 compounds has decreased, which is consistent with the results obtained by ^1H NMR.

415 The results of the NMR parameters of hydrothermal waxes calculations are shown in Table
416 S2. Notably, as the temperature increases from 410 to 440 $^{\circ}\text{C}$, the methylene content decreases
417 from 82.82% to 71.48%, while the olefinic, hypromellitic, and methyl content all increase.
418 Therefore, the rise in temperature was favorable to increase the degree of branchedness of the
419 product. The highest carbon chain length of 22.2 was found at 425 $^{\circ}\text{C}$, the shortest at 440 $^{\circ}\text{C}$
420 was 14.83, and the carbon chain lengths of 20–22 at 410 and 420 $^{\circ}\text{C}$ were attributed to the fact
421 that the samples obtained at these temperatures dissolved through fully deuterated benzene.

422 The wax products were analysed by HMBC to clarify further their structure, which
423 provides additional information by correlating hydrogen and carbon nuclei separated by 2–3
424 covalent bonds. As shown in Figure 4, the upper axis is the ^1H spectrum and the left axis is the
425 ^{13}C spectrum. For the ^{13}C spectrum, the peak at 127.7 ppm has the highest intensity as a solvent
426 peak for deuterobenzene, the peaks between 10–40 ppm have the next highest intensity
427 associated with methyl and methylene, and the peaks at 114.2 and 138.9 ppm have the lowest
428 intensity associated with olefins (Cookson et al., 1985). The position of the peaks can be
429 determined by their position in the carbon chain. Figure 4a, b shows that the ^1H peaks at 0.9

430 ppm and 1.36 ppm were strongly correlated with the ^{13}C peaks at 20–40 ppm and weakly
431 correlated with the ^{13}C peaks at 114.2 and 138.9 ppm. This indicated that the dissolved wax
432 was a straight chain with little branched chains and olefins present. However, it was observed
433 that the ^1H peaks at 2.0 and 5.8 ppm were correlated with the ^{13}C peaks at 28.9 and 33.6 ppm,
434 respectively, suggesting the presence of olefins and branched chains in the HMBC plots of
435 waxes at other temperatures. It was noteworthy that the ^1H peak at 5.8 ppm showed a weak
436 correlation with the ^{13}C peak at 33.6 ppm due to the low content of the H atom. The position of
437 the olefin in the carbon chain was determined according to the strength of the correlation
438 between the two olefin H. In addition, the ^{13}C peaks at 14.2 and 138.9 ppm showed a stronger
439 correlation with the ^1H peak at 1.35–2.0 ppm, especially the strongest correlation with the ^1H
440 peak at 2.0 ppm. This finding further validated the presence of olefins and suggested the
441 presence of branched structures near the unsaturated carbon on the carbon chain. The waxes at
442 425–435 °C have similar structures. Still, an additional ^1H peak at 5.0 ppm can be observed in
443 the 440 °C waxes associated with ^{13}C peaks at 114.2 and 138.9 ppm, suggesting the presence
444 of two unsaturated carbon structures in the carbon chain. The correlation between the peaks at
445 0.9 ppm and 1.36 ppm in the ^1H spectrum and the ^{13}C peaks at 20–40 ppm was further
446 strengthened, indicating increased branching.

447


448 Figure 4. NMR-HMBC plots under hydrothermal wax at different temperatures: (a)
449 (b) 410 °C, (b) 420 °C, (c) 425 °C, (d) 430 °C, (e) 435 °C, (f) 440 °C.

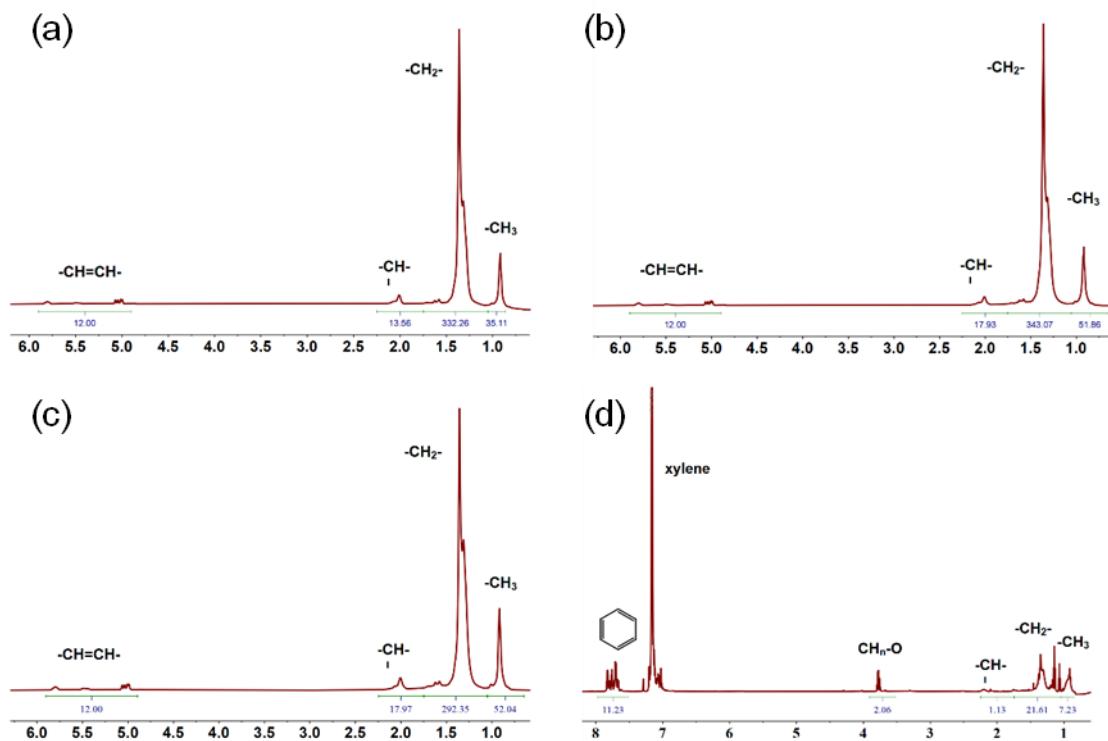
450 3.2. Influence of solvents additive on the wax production at 425 °C.

451 3.2.1. Hydrothermal conversion of LDPE in C_2H_5OH

452 The yields of the solid, liquid and gas products at different C_2H_5OH additions were shown
453 in Figure 5a. The higher gas yield was produced as the solvent addition increased. No solid
454 products were identified for the 100% C_2H_5OH addition, consisting of 77.8 wt.% liquid and
455 22.2 wt.% gas. The yield of products for 1% and 20% addition were similar, and the solid
456 products were 98.1 wt.% and 96.2 wt.%, respectively. However, the density of the 20% addition

457 sample was less than the 1% addition sample based on visual inspection. This analysis suggests
 458 that adding C₂H₅OH favours the hydrothermal conversion of plastics to lower molecular weight
 459 hydrocarbons.

460
 461 Figure 5. Hydrothermal conversion of LDPE at different concentrations of C₂H₅OH: (a)
 462 product yield; (b) gas composition; (c) distribution of products by structure; (d) distribution of
 463 products by carbon number.

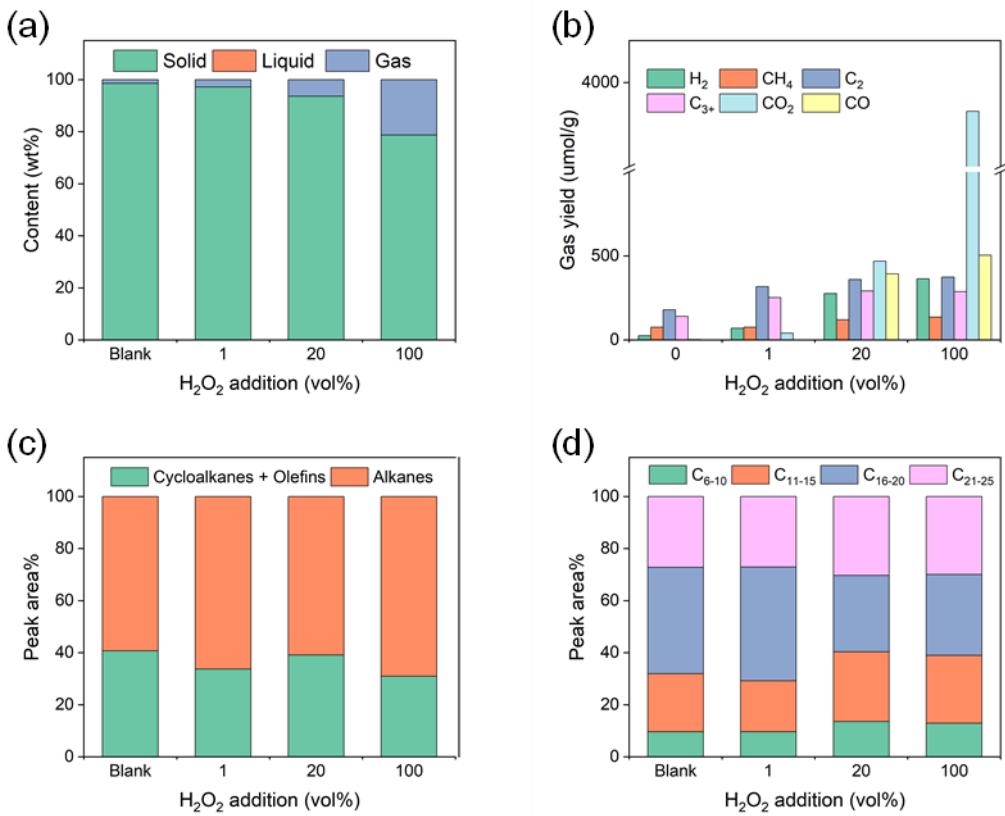

464 Figure 5b illustrates the effect of solvent addition on gas yield. It is worth noting that
 465 alcohol tends to decompose at high temperatures to produce H₂, CH₄ and CO. The results
 466 showed that the content of C₂ and C₃₊ hydrocarbons increased with increasing C₂H₅OH content,
 467 with yields of 1216.7 μmol/g and 898.8 μmol/g for the samples at 100% C₂H₅OH addition,
 468 respectively. The total LHV of this fraction of hydrocarbons was 55.23 MJ/kg. Oxygenated
 469 compounds appear in the wax/oil after the addition of C₂H₅OH as shown in Figure 5c. With the
 470 addition of alcohol up to 100 vol%, the oxygenate content gradually increased to 13.8%,

471 producing a small amount of aromatic hydrocarbons. The content of chain alkanes did not
472 change significantly, while the content of cycloalkanes and olefins gradually decreased. As
473 shown in Fig. 5 d, at 100% C₂H₅OH addition, the oil consisted mainly of light hydrocarbons
474 with yields of 38.5 % and 27.2 % for C₆₋₁₀ and C₁₁₋₁₅, respectively. However, below 20%
475 C₂H₅OH addition, there was almost no change in the main composition of the waxes, which is
476 consistent with the findings observed visually in the samples.

477 Samples with the C₂H₅OH addition had an irritant odour, especially in the case of 100%
478 additions. As a result, the curves for TG and DTG were not stable (Figure S6). It was worth
479 noting that the decomposition of the 100% C₂H₅OH sample, started at a temperature of 35 °C
480 and ended at 350 °C. The results obtained for this sample differed significantly from those
481 obtained for the others. The highest weight loss rate was observed at a temperature of 450 °C
482 with 86.2 wt% weight loss for 1% sample, 446 °C with 91.2 wt.% weight loss for 20% sample,
483 167 °C with 46.3 wt.% weight loss for 100% sample. Samples of Blank, 1% and 20% C₂H₅OH
484 additions, decomposed at higher temperatures due to the presence of a long-chain polymer
485 structure compared to 100% of C₂H₅OH in the sample. The higher addition of C₂H₅OH resulted
486 in a material with a more fluid consistency, which was in line with the photographic
487 documentation depicted in Figure S4.

488 The results of FTIR analysis of wax under different C₂H₅OH additions were presented in
489 Figure S7. Higher peak intensities at 1460 cm⁻¹ were observed for the samples with 1% and
490 20% of C₂H₅OH compared to the blank sample, while the relative intensities of other
491 characteristic peaks remained largely unchanged. This indicated that the addition of C₂H₅OH
492 caused an increase of the number of unsaturated bonds. It was noteworthy that the curve of the
493 sample 100% with C₂H₅OH addition exhibits additional peaks at 1120–1010 cm⁻¹, and 3100–
494 3600 cm⁻¹, corresponding to instrumental noise, O-H stretching vibration, and C-O stretching
495 vibration, respectively (Dutta, 2017).

496 According to the NMR spectra, the weaker peak intensity of $-\text{CH}_3$ and $-\text{CH}_2-$ was
 497 observed for the samples with 1% and 20% $\text{C}_2\text{H}_5\text{OH}$ additions compared to the blank sample
 498 in Figure 6. It is noteworthy that the additional peaks appear at 3.5-4 ppm and 7.5-8 ppm in
 499 sample with 100%, corresponding to H adjacent to oxygen and H on the benzene ring,
 500 respectively. This corroborated the GC-MS results. The relative content of each peak area of
 501 the ^1H NMR spectra of the samples at different $\text{C}_2\text{H}_5\text{OH}$ additions were shown in Table S3.
 502 The average chain length of the waxes decreased to 18.85 as $\text{C}_2\text{H}_5\text{OH}$ addition increased to
 503 20% and further declined to 10.97 at 100%, accompanied by a significant aromatic hydrogen
 504 proportion of 25.96%. The peak at 135 ppm in the ^{13}C NMR spectrum (Figure S8) corresponds
 505 to an aromatic structure, correlating with the peak at 7.5 ppm in ^1H NMR but not with the peak
 506 at 3.5 ppm. This suggested that the O atom was directly attached to the aromatic ring.
 507 Additionally, increasing the addition from 0% to 20% gradually enhanced each correlation
 508 signal in the HMBC spectrum, indicating that $\text{C}_2\text{H}_5\text{OH}$ promotes branching, cyclization, and
 509 arylation in the wax.


511 Figure 6. ^1H NMR spectra of hydrothermal waxes obtained with different concentrations of

512 C₂H₅OH (a) 0%, (b) 1%, (c) 20%, (d) 100%.

513 3.2.2. *Hydrothermal conversion of LDPE in H₂O₂*

514 The yields of the solid, liquid and gas products at different H₂O₂ additions were shown in
515 Figure 7. All wax products were visually identified as solids. The wax yield decreased from
516 98.6% to 78.7 wt.% with 100% solvent addition. Although the thermal decomposition of
517 hydrogen peroxide generated oxygen, Figure 7 b revealed significant CO and CO₂ production,
518 indicating that the carbon source was PE. The CH₄, C₂, and C₃₊ hydrocarbons concentrations
519 remained stable at 136.3 μmol/g, 373.5 μmol/g, and 287.7 μmol/g, respectively, regardless of
520 the solvent addition. Conversely, H₂ yield increased with the increase of H₂O₂ addition, as the
521 solvent became a new source of H₂ released during hydrothermal conversion. The total LHV
522 of all combustible gases was 35.96 MJ/kg.

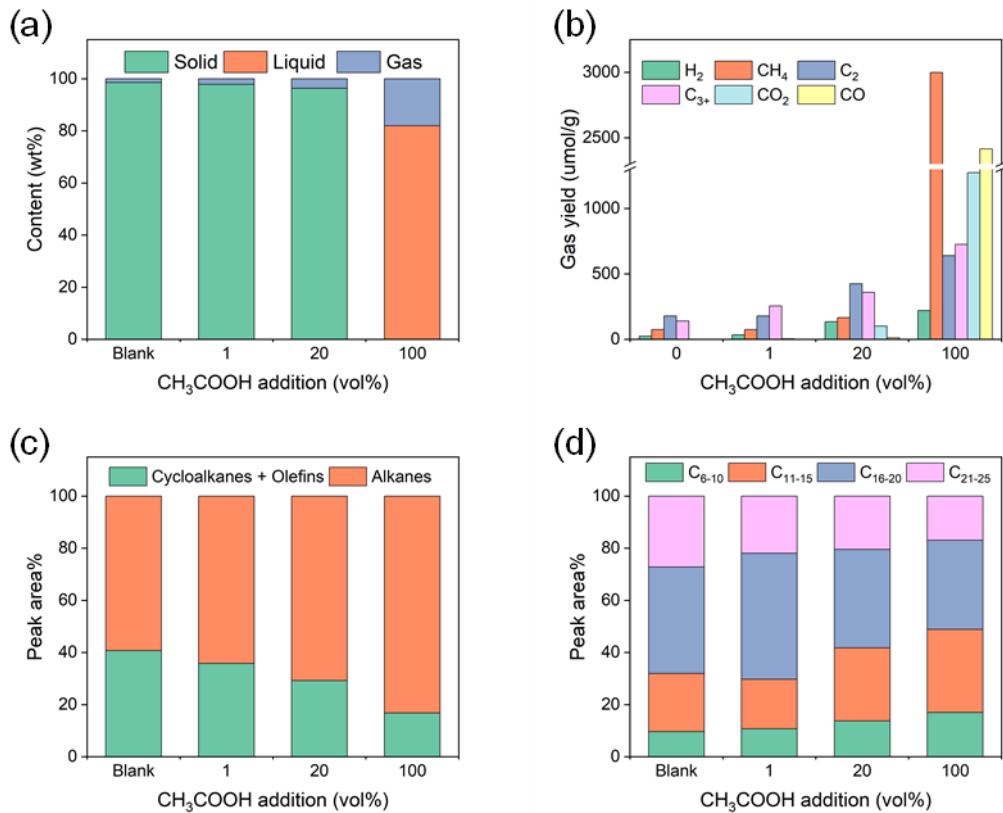
523 The addition of H₂O₂ did not significantly influence the structure of the wax products
524 (Figure 7c) but affected the carbon number distribution (Figure 7 d). The carbon number
525 distributions of the 20% and 100% samples were similar, with C_{16–20} converting to C_{11–15}
526 compared to the blank sample, this resulted in respective contents of 26.1% and 31%. This
527 suggested that oxygen presence led to a more disordered distribution of products below C₂₀,
528 consistent with previous studies' findings (Xu et al., 2023).

529

530 Figure 7. Characteristics of hydrothermal conversion of LDPE at different concentrations of
 531 H_2O_2 : (a) product yield; (b) gas composition; (c) distribution of products by structure; (d)
 532 distribution of products by carbon number.

533 The TG and FTIR analyses of the 20% and 100% samples showed high similarity (Figure
 534 S10, S11). The addition of H_2O_2 did not affect the thermal behaviour of the wax, as evidenced
 535 by the comparable shapes of the curves on the graph. While the FTIR spectra exhibit prominent
 536 peaks in similar regions, with varying intensities contingent on the solvent addition. Similarly,
 537 the relative peak areas of the characteristic peaks in the ^1H NMR spectra (Figure S12) exhibited
 538 minimal variation. Statistical results in Table S4 indicated that the addition of hydrogen
 539 peroxide reduced the carbon chain length of the wax product from 22.2 to 19.65 while
 540 maintaining a straight-chain structure. This was attributed to the presence of oxygen, which
 541 promoted the formation of hydrocarbons within the petrol and diesel range. Additionally, visual
 542 inspection revealed that the waxes produced with hydrogen peroxide were darker (Figure S9).

543 3.2.3. *Hydrothermal conversion of LDPE in CH₃COOH*


544 The images displayed in Figure S13 illustrate the waxes obtained through the addition of
545 varying quantities of CH₃COOH. The yields of the solid, liquid and gas products at different
546 CH₃COOH additions were shown in Figure 8 a. Similar to the previous trend, the gas yield
547 increased with higher solvent addition levels. Yields of 96.4 wt.% and 82 wt.% were obtained
548 for the 1% and 20% samples, respectively. Visual inspection revealed that the 20% sample was
549 darker in colour and less dense, while the 100% sample appeared as black liquids. This analysis
550 suggested that the addition of CH₃COOH promoted the hydrothermal conversion of plastics
551 into low molecular weight hydrocarbons.

552 Figure 8 b showed significant CH₄, CO₂, and CO production in the 100% sample, those
553 compounds originating from the hydrothermal conversion of CH₃COOH. C₂ and C₃₊
554 hydrocarbons, as the primary gas components, reached their highest yields at 100% addition,
555 measuring 640 µmol/g and 726 µmol/g, respectively, with a total LHV of 33.38 MJ/kg.

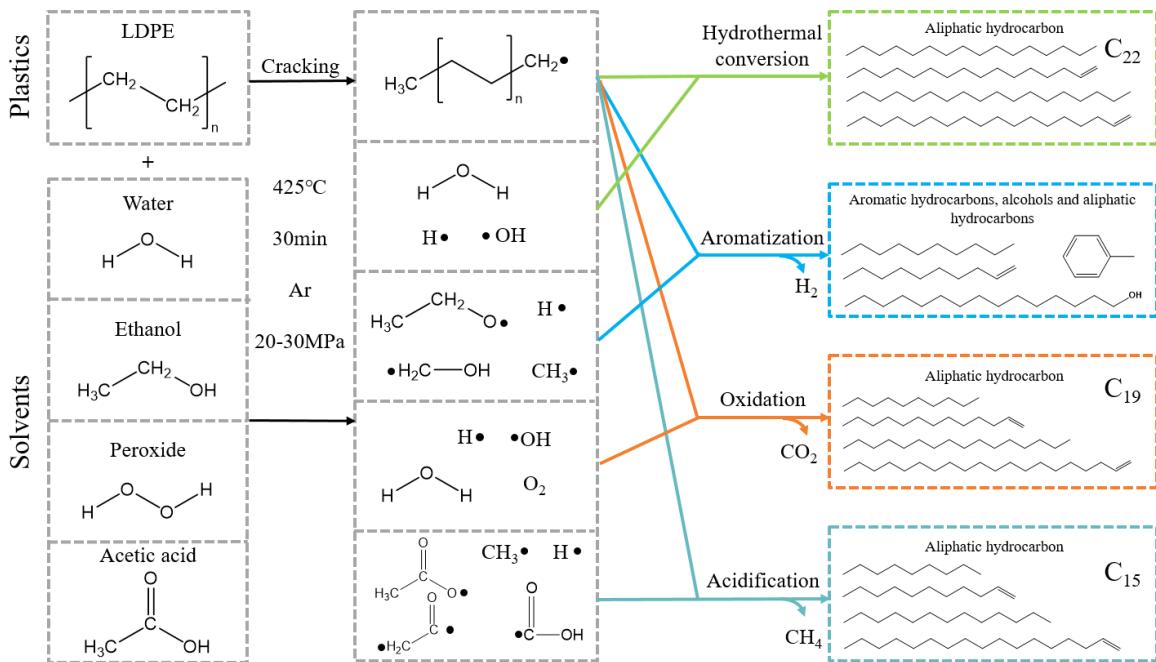
556 As shown in Figure 8 c, the addition of CH₃COOH did not lead to produce new
557 compounds, but increased the content of chain hydrocarbons from 59.3% to 83.2%. Figure 8 d
558 indicated that the 100% samples primarily consisted of light hydrocarbons, with yields of 17
559 wt% for C₆₋₁₀, 31.9 wt.% for C₁₁₋₁₅, and only 16.9 wt.% for C₂₁₋₂₅.

560 The thermal cracking of waxes at different additive levels was investigated, as shown in
561 Figure S14. The Blank sample exhibited the highest weight loss of 80.2% at 458 °C, followed
562 by 88% at 455 °C for the 1% sample, 92.1% at 444 °C for the 20% sample, and 44.7% at 239
563 °C for the 100% sample. The FTIR spectra of the samples were similar, indicating that the
564 addition of CH₃COOH did not alter the structure of the wax products (Figure S15). As
565 evidenced by Figure S16, the oligomer signal intensity exhibited a marked increase upon acetic
566 acid CH₃COOH, and a small number of carbonyl peaks appeared in 20% of the samples.
567 Statistics in Table S5 indicated that CH₃COOH reduced the carbon chain length of the wax

568 product from 22.2 to 15.33, for blank sample and 100% sample respectively, and increased
 569 branching. This was attributed to the chain scission of LDPE caused by the acidic environment
 570 of CH_3COOH .

571
 572 Figure 8. Hydrothermal conversion of plastics at different concentrations of CH_3COOH : (a)
 573 product yield; (b) gas composition; (c) distribution of products by structure; (d) distribution of
 574 products by carbon number.

575 3.3.4. Comparison of solvent effects


576 The influence of solvent composition and concentration on the hydrothermal
 577 depolymerization of LDPE at 425 °C revealed distinct degradation pathways, reflected in
 578 product phase distribution, carbon chain length, and molecular structure. Compared to the
 579 water-only system, which produced predominantly solid waxes with an average carbon chain
 580 length of 22.2, solvent-assisted systems exhibited enhanced chain cleavage and altered product
 581 profiles. In the presence of H_2O_2 , selective chain scission was induced via oxygen-driven
 582 radical mechanisms (Zhang et al., 2023). While the overall molecular structure remained largely

583 intact, the average carbon chain length decreased to 19.65, with a higher proportion of C₁₁–C₁₅
584 hydrocarbons, indicating partial oxidative cleavage without significant branching or cyclization
585 (Cui et al., 2017). Due to its moderate acidity, CH₃COOH facilitated catalyzed β -scission and
586 hydrolytic cleavage, leading to a marked increase in low-molecular-weight hydrocarbons
587 (83.2%) and a chain length reduction to 15.33. Structural analysis showed limited aromatization
588 but substantial cracking, consistent with classical acid-catalyzed degradation (Comisar et al.,
589 2008; Yang et al., 2021). Ethanol, a polar protic solvent, promoted hydrogen transfer and
590 radical-mediated pathways, resulting in the most pronounced transformation: complete
591 liquefaction, a carbon chain length reduction to 10.97, and the highest aromatic hydrogen
592 content (25.96%), indicating extensive cyclization and aromatization (Wu et al., 2021).

593 At 100% concentrations of both ethanol and acetic acid, no solid waxes were recovered,
594 attributable to complete depolymerization and the absence of high-molecular-weight residues.
595 In contrast, solid waxes were preserved in the water-only and all H₂O₂ systems, where
596 degradation was less extensive. Intermediate concentrations (1% and 20%) of all solvents
597 revealed progressive effects: for ethanol and acetic acid, increasing concentration led to lighter,
598 less dense waxes with more pronounced chain scission and molecular rearrangement; for
599 hydrogen peroxide, chain shortening and color changes occurred gradually, with solid products
600 retained throughout.

601 Considering the findings, the addition of solvent and its concentration strongly dictates
602 both the extent and mechanism of LDPE degradation and wax formation under hydrothermal
603 conditions. Oxidizing (H₂O₂), hydrogen-donating (C₂H₅OH), and acidic (CH₃COOH) solvents
604 offer distinct pathways - oxidative cleavage, hydrogenolysis/aromatization, and acid-catalyzed
605 cracking, respectively, allowing for tunable control over product distribution (Figure 9). From
606 a product engineering perspective, ethanol is most effective for generating liquid aromatics,

607 acetic acid for maximizing light hydrocarbons via controlled cracking, and water-only treatment
 608 is preferred when targeting high-yield, long-chain solid waxes.

612 4. Conclusions

613 This study focuses on hydrothermal wax's characteristics using multiple analytical
 614 methods to determine its structural and chemical composition. The wax resembled hard paraffin
 615 at lower hydrothermal temperatures (410–420 °C) while it exhibited diesel-like characteristics
 616 at higher temperatures (430–440 °C). It was found that temperature significantly influenced the
 617 morphology and properties of hydrothermal wax from PE, even with a temperature variation of
 618 5 °C. The wax obtained at 425 °C showed optimal viscosity and solubility, facilitating further
 619 processing. That is why the addition of different solvents on the wax derived at 425 °C have
 620 been extensively studied. For instance, the addition of C₂H₅OH or CH₃COOH promoted LDPE
 621 chain splitting. In particular, C₂H₅OH addition specifically enhanced the cyclization, branching,

622 and aromatization of the products. In the case of H₂O₂ addition, which promoted an oxygen
623 environment, more disordered product distributions were obtained.

624 This work reported the hydrothermal conversion of LDPE for wax production, providing
625 a foundation for the quantitative analysis and upgrading of hydrothermal wax and addressing
626 the urgent challenge of plastic waste management. However, for waxes obtained at lower
627 temperatures, the characterization methods employed in this study could not fully reveal their
628 composition. These waxes, with morphology, structure, and hardness similar to paraffin, may
629 serve as raw materials for phase-change materials. For softer paraffin, applications could be
630 expanded by introducing oxygen-containing functional groups, enabling the production of
631 soaps, surfactants, and related products. The potential of these possibilities will be investigated
632 in greater depth in further research. In conclusion, the novel approach to plastic waste
633 management by employing an optimal hydrothermal conversion will reduce environmental risk.

634 **Declaration of Competing Interest**

635 The authors declare that they have no known competing financial interests or personal
636 relationships that could have appeared to influence the work reported in this paper.

637 **Acknowledgments**

638 This work was supported by the European Union HORIZON TMA MSCA Staff
639 Exchanges program (HORIZON-MSCA-2021-SE-01) under Grant Agreement No. 101086071,
640 as part of the project "CUPOLA – Carbon-neutral pathways of recycling marine plastic waste."
641 Financial support was further provided by the National Natural Science Foundation of China
642 (Grant No. 52125601). Additional funding was provided by the Ministry of Science and Higher
643 Education in Poland through the "PMW" program (Grant Agreement No. 5863/HE/2024/2,
644 Project No. The authors also acknowledge the technical assistance provided by the Analytical
645 and Testing Center of Huazhong University of Science & Technology (<http://atc.hust.edu.cn>).

646

647 **References**

648 Statistica, 2024. Annual production of plastics worldwide from 1950 to 2023.
649 <https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/>

650 Abdy, C., Zhang, Y., Wang, J., Yang, Y., Artamendi, I., Allen, B., 2022. Pyrolysis of polyolefin
651 plastic waste and potential applications in asphalt road construction: A technical review.
652 Resources, Conservation and Recycling 180, 106213.<https://doi.org/10.1016/j.resconrec.2022.106213>

653 Al-Salem, S.M., Dutta, A., 2021. Wax Recovery from the Pyrolysis of Virgin and Waste
654 Plastics. Industrial & Engineering Chemistry Research 60, 8301-
655 8309.<https://doi.org/10.1021/acs.iecr.1c01176>

656 Al-Salem, S.M., Lettieri, P., 2010. Kinetic study of high density polyethylene (HDPE)
657 pyrolysis. Chemical Engineering Research and Design 88, 1599-
658 1606.<https://doi.org/10.1016/j.cherd.2010.03.012>

659 Andrade, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical
660 transactions of the Royal Society of London. Series B, Biological sciences 364, 1977-
661 1984.<https://doi.org/10.1098/rstb.2008.0304>

662 Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., Olazar, M., 2013. Cracking of High
663 Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. Industrial &
664 Engineering Chemistry Research 52, 10637-10645.<https://doi.org/10.1021/ie4014869>

665 Babij, N.R., McCusker, E.O., Whiteker, G.T., Canturk, B., Choy, N., Creemer, L.C., Amicis,
666 C.V.D., Hewlett, N.M., Johnson, P.L., Knobelsdorf, J.A., Li, F., Lorsbach, B.A., Nugent, B.M.,
667 Ryan, S.J., Smith, M.R., Yang, Q., 2016. NMR Chemical Shifts of Trace Impurities:
668 Industrially Preferred Solvents Used in Process and Green Chemistry. Organic Process
669 Research & Development 20, 661-667.<https://doi.org/10.1021/acs.oprd.5b00417>

670 Barbarias, I., Artetxe, M., Lopez, G., Arregi, A., Bilbao, J., Olazar, M., 2018a. Influence of the
671 conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. Fuel
672 Processing Technology 171, 100-
673 109.<https://doi.org/https://doi.org/10.1016/j.fuproc.2017.11.003>

674 Barbarias, I., Artetxe, M., Lopez, G., Arregi, A., Bilbao, J., Olazar, M.J.F.P.T., 2018b. Influence
675 of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke.
676 171, 100-109.<https://doi.org/10.1016/j.fuproc.2017.11.003>.

677 Bray, D.J., Anderson, R.L., Warren, P.B., Lewtas, K., 2020. Wax Formation in Linear and
678 Branched Alkanes with Dissipative Particle Dynamics. Journal of Chemical Theory and
679 Computation 16, 7109-7122.<https://doi.org/10.1021/acs.jctc.0c00605>

680 Chang, X., Fang, Y., Wang, Y., Wang, F., Shang, L., Zhong, R., 2022. Microplastic pollution
681 in soils, plants, and animals: A review of distributions, effects and potential mechanisms. The
682 Science of the total environment 850, 157857.<https://doi.org/10.1016/j.scitotenv.2022.157857>

683 Chen, W.-T., Jin, K., Linda Wang, N.-H., 2019. Use of Supercritical Water for the Liquefaction
684 of Polypropylene into Oil. ACS Sustainable Chemistry & Engineering 7, 3749-
685 3758.<https://doi.org/10.1021/acssuschemeng.8b03841>

686 Cheng, Y., Ekici, E., Yildiz, G., Yang, Y., Coward, B., Wang, J., 2023. Applied machine
687 learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals
688 production. Journal of Analytical and Applied Pyrolysis 169, 105857.<https://doi.org/10.1016/j.jaap.2023.105857>

689 Comisar, C.M., Hunter, S.E., Walton, A., Savage, P.E., 2008. Effect of pH on Ether, Ester, and
690 Carbonate Hydrolysis in High-Temperature Water. Industrial & Engineering Chemistry
691 Research 47, 577-584.<https://doi.org/10.1021/ie0702882>

692 Cookson, D.J., Latten, J.L., Shaw, I.M., Smith, B.E., 1985. Property-composition relationships
693 for diesel and kerosene fuels. Fuel 64, 509-519.[https://doi.org/10.1016/0016-2361\(85\)90086-9](https://doi.org/10.1016/0016-2361(85)90086-9)

694

695

696 Cui, Y., Zhang, M., Du, F.-S., Li, Z.-C., 2017. Facile Synthesis of H₂O₂-Cleavable Poly(ester-
697 amide)s by Passerini Multicomponent Polymerization. *ACS Macro Letters* 6, 11-
698 15.<https://doi.org/10.1021/acsmacrolett.6b00833>

699 Dave, A., Kumar, P., Reddy, S.N., 2025. Hydrothermal liquefaction: Exploring biomass/plastic
700 synergies and pathways for enhanced biofuel production. *Science of The Total Environment*
701 969, 178909.<https://doi.org/10.1016/j.scitotenv.2025.178909>

702 Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review.
703 *Marine Pollution Bulletin* 44, 842-852.[https://doi.org/10.1016/S0025-326X\(02\)00220-5](https://doi.org/10.1016/S0025-326X(02)00220-5)

704 Ding, H., Hesp, S.A.M., 2021. Balancing the Use of Wax-Based Warm Mix Additives for
705 Improved Asphalt Compaction with Long-Term Pavement Performance. *ACS Sustainable
706 Chemistry & Engineering* 9, 7298-7305.<https://doi.org/10.1021/acssuschemeng.1c01242>

707 Dutta, A., 2017. Chapter 4 - Fourier Transform Infrared Spectroscopy, in: Thomas, S., Thomas,
708 R., Zachariah, A.K., Mishra, R.K. (Eds.), *Spectroscopic Methods for Nanomaterials
709 Characterization*. Elsevier, pp. 73-93.

710 Echaroj, S., Santikunaporn, M., Phan, A.N., 2023. Supercritical ethanol liquefaction of bamboo
711 leaves using functionalized reduced graphene oxides for high quality bio-oil production.
712 *Renewable Energy* 204, 848-857.<https://doi.org/10.1016/j.renene.2022.12.110>

713 Fivga, A., Dimitriou, I., 2018. Pyrolysis of plastic waste for production of heavy fuel substitute:
714 A techno-economic assessment. *Energy* 149, 865-
715 874.<https://doi.org/10.1016/j.energy.2018.02.094>

716 Goto, M., Sasaki, M., Hirose, T., 2006. Reactions of polymers in supercritical fluids for
717 chemical recycling of waste plastics. *Journal of Materials Science* 41, 1509-
718 1515.<https://doi.org/10.1007/s10853-006-4615-2>

719 Ha, D.T., Tong, H.D., Trinh, T.T., 2024. Insights into hydro thermal gasification process of
720 microplastic polyethylene via reactive molecular dynamics simulations. *Scientific Reports* 14,
721 18771.<https://doi.org/10.1038/s41598-024-69337-z>

722 Hendrickson, T.P., Bose, B., Vora, N., Huntington, T., Nordahl, S.L., Helms, B.A., Scown,
723 C.D., 2024. Paths to circularity for plastics in the United States. *One Earth* 7, 520-
724 531.<https://doi.org/10.1016/j.oneear.2024.02.005>

725 Hou, J., Lian, Y., zeng, Z., Luo, H., Wang, H., Sun, Y., 2023. Converting waste agricultural
726 film to polyethylene waxes: A mechanism and whitening study. *Polymer Degradation and
727 Stability* 216, 110484.<https://doi.org/10.1016/j.polymdegradstab.2023.110484>

728 Huang, H., Wang, X., Yu, J., Chen, Y., Ji, H., Zhang, Y., Rehfeldt, F., Wang, Y., Zhang, K.,
729 2019. Liquid-Behaviors-Assisted Fabrication of Multidimensional Birefringent Materials from
730 Dynamic Hybrid Hydrogels. *ACS Nano* 13, 3867-
731 3874.<https://doi.org/10.1021/acsnano.9b00551>

732 Irgolič, M., Čolnik, M., Kotnik, P., Čuček, L., Škerget, M., 2024. Hydrothermal recycling of
733 polyolefins as potential alternative method for fuel production. *Journal of Cleaner Production*
734 463, 142718.<https://doi.org/10.1016/j.jclepro.2024.142718>

735 Jin, K., Vozka, P., Kilaz, G., Chen, W.-T., Wang, N.-H.L., 2020. Conversion of polyethylene
736 waste into clean fuels and waxes via hydrothermal processing (HTP). *Fuel* 273,
737 117726.<https://doi.org/10.1016/j.fuel.2020.117726>

738 Jung, M.R., Horgen, F.D., Orski, S.V., Rodriguez C, V., Beers, K.L., Balazs, G.H., Jones, T.T.,
739 Work, T.M., Brignac, K.C., Royer, S.-J., Hyrenbach, K.D., Jensen, B.A., Lynch, J.M., 2018.
740 Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested
741 by marine organisms. *Marine Pollution Bulletin* 127, 704-
742 716.<https://doi.org/10.1016/j.marpolbul.2017.12.061>

743 Khatun, R., Xiang, H., Yang, Y., Wang, J., Yildiz, G., 2021. Bibliometric analysis of research
744 trends on the thermochemical conversion of plastics during 1990–2020. *Journal of Cleaner
745 Production* 317, 128373.<https://doi.org/10.1016/j.jclepro.2021.128373>

746 Kongngoen, P., Phetwarotai, W., Assabumrungrat, S., Phusunti, N., 2023. Possible use of spent
747 FCC catalyst for upgrading of wax from the pyrolysis of plastics to liquid fuel. *Journal of*
748 *Analytical and Applied Pyrolysis* 173, 106076. <https://doi.org/10.1016/j.jaat.2023.106076>

749 Lachos-Perez, D., Brown, A.B., Mudhoo, A., Martinez, J., Timko, M.T., Rostagno, M.A.,
750 Forster-Carneiro, T., 2017. Applications of subcritical and supercritical water conditions for
751 extraction, hydrolysis, gasification, and carbonization of biomass: a critical review %J *Biofuel*
752 *Research Journal.* 4, 611-626. <https://doi.org/10.18331/brj2017.4.2.6>

753 Li, C., Wang, H., Fu, C., Shi, S., Li, G., Liu, Q., Zhou, D., Jiang, L., Cheng, Y., 2023. Evaluation
754 of modified bitumen properties using waste plastic pyrolysis wax as warm mix additives.
755 *Journal of Cleaner Production* 405, 136910. <https://doi.org/10.1016/j.jclepro.2023.136910>

756 Liu, Q., Jiang, D., Zhou, H., Yuan, X., Wu, C., Hu, C., Luque, R., Wang, S., Chu, S., Xiao, R.,
757 Zhang, H., 2023. Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-
758 steel catalyst toward a circular economy. 120, e2305078120. <https://doi.org/doi:10.1073/pnas.2305078120>

759 Maqsood, T., Dai, J., Zhang, Y., Guang, M., Li, B., 2021. Pyrolysis of plastic species: A review
760 of resources and products. *Journal of Analytical and Applied Pyrolysis* 159,
761 105295. <https://doi.org/10.1016/j.jaat.2021.105295>

762 Martínez-Narro, G., Hassan, S., Phan, A.N., 2024. Chemical recycling of plastic waste for
763 sustainable polymer manufacturing – A critical review. *Journal of Environmental Chemical
764 Engineering* 12, 112323. <https://doi.org/10.1016/j.jece.2024.112323>

765 Missau, J., Rocha, J.d.G.d., Dotto, G.L., Bertuol, D.A., Ceron, L.P., Tanabe, E.H., 2018. Purification of crude wax using a filter medium modified with a nanofiber coating. *Chemical
766 Engineering Research and Design* 136, 734-743. <https://doi.org/10.1016/j.cherd.2018.06.031>

767 Movasaghi, Z., Rehman, S., ur Rehman, D.I.J.A.S.R., 2008. Fourier Transform Infrared (FTIR)
768 Spectroscopy of Biological Tissues. 43, 134 -
769 179. <https://doi.org/10.1080/05704920701829043>

770 Munir, D., Amer, H., Aslam, R., Bououdina, M., Usman, M.R., 2020. Composite zeolite beta
771 catalysts for catalytic hydrocracking of plastic waste to liquid fuels. *Materials for Renewable
772 and Sustainable Energy* 9, 9. <https://doi.org/10.1007/s40243-020-00169-3>

773 Nayanathara Thathsarani Pilapitiya, P.G.C., Ratnayake, A.S., 2024. The world of plastic waste:
774 A review. *Cleaner Materials* 11, 100220. <https://doi.org/10.1016/j.clema.2024.100220>

775 Ni, H.-G., Lu, S.-Y., Mo, T., Zeng, H., 2016. Brominated flame retardant emissions from the
776 open burning of five plastic wastes and implications for environmental exposure in China.
777 *Environmental Pollution* 214, 70-76. <https://doi.org/10.1016/j.envpol.2016.03.049>

778 Norouzi, O., Haddadi, S.A., Salaudeen, S., Soltanian, S., Bartocci, P., Arjmand, M., Dutta, A.,
779 2024. Catalytic upgrading of polyethylene plastic waste using GMOF catalyst: Morphology,
780 pyrolysis, and product analysis. *Fuel* 369, 131742. <https://doi.org/10.1016/j.fuel.2024.131742>

781 Pan, Z., Shi, Y., Liu, L., Jin, Z., 2013. Depolymerization of poly(butylene terephthalate) in sub-
782 and supercritical ethanol in a fused silica capillary reactor or autoclave reactor. *Polymer
783 Degradation and Stability* 98, 1287-1292. <https://doi.org/10.1016/j.polymdegradstab.2013.04.004>

784 Patil, P.B., Goswami, A.D., Pinjari, D.V., 2024. Development of industrial-grade grease from
785 waste pyrolysis wax. *Journal of the Indian Chemical Society* 101,
786 101190. <https://doi.org/10.1016/j.jics.2024.101190>

787 Peng, Y., Wang, Y., Ke, L., Dai, L., Wu, Q., Cobb, K., Zeng, Y., Zou, R., Liu, Y., Ruan, R.,
788 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. *Energy
789 Conversion and Management* 254, 115243. <https://doi.org/10.1016/j.enconman.2022.115243>

790 Qiao, Y., Xu, F., Xu, S., Yang, D., Wang, B., Ming, X., Hao, J., Tian, Y., 2018. Pyrolysis
791 Characteristics and Kinetics of Typical Municipal Solid Waste Components and Their Mixture:
792

795 Analytical TG-FTIR Study. Energy & Fuels 32, 10801-
796 10812.<https://doi.org/10.1021/acs.energyfuels.8b02571>

797 Rudyk, S., Ongarbayev, Y., Spirov, P., 2023. Feature selection in GC-MS, NMR and MALDI-
798 TOF spectra of tar sand bitumen. *Unconventional Resources* 3, 61-71.<https://doi.org/10.1016/j.uncres.2022.12.005>

800 Sarma, H., Hazarika, R.P., Kumar, V., Roy, A., Pandit, S., Prasad, R.J.E.S., 2022. Microplastics
801 in marine and aquatic habitats: sources, impact, and sustainable remediation approaches. 5, 39
802 - 49.<https://doi.org/10.1016/j.scitotenv.2022.157857>

803 Shen, X., Zhao, Z., Li, H., Gao, X., Fan, X., 2022. Microwave-assisted pyrolysis of plastics
804 with iron-based catalysts for hydrogen and carbon nanotubes production. *Materials Today*
805 Chemistry 26, 101166.<https://doi.org/10.1016/j.mtchem.2022.101166>

806 Shen, Y., 2020. A review on hydrothermal carbonization of biomass and plastic wastes to
807 energy products. *Biomass and Bioenergy* 134, 105479.<https://doi.org/10.1016/j.biombioe.2020.105479>

808 Speight, R.J., Rourke, J.P., Wong, A., Barrow, N.S., Ellis, P.R., Bishop, P.T., Smith, M.E.,
809 2011. ¹H and ¹³C solution- and solid-state NMR investigation into wax products from the
810 Fischer-Tropsch process. *Solid State Nuclear Magnetic Resonance* 39, 58-
811 64.<https://doi.org/10.1016/j.ssnmr.2011.03.008>

812 Wang, C., Wu, C., Zhang, H., Lai, J., Luo, X., Liang, Y., Tian, J., 2021. Hydrothermal treatment
813 of petrochemical sludge in subcritical and supercritical water: Oil phase degradation and syngas
814 production. *Chemosphere* 278, 130392.<https://doi.org/10.1016/j.chemosphere.2021.130392>

815 Wang, J., Ma, Y., Li, S., Yue, C., 2023. Study of HDPE plastic pyrolysis characteristics using
816 high pressure autoclave. *Journal of the Energy Institute* 108,
817 101244.<https://doi.org/10.1016/j.joei.2023.101244>

818 Wang, M., Ma, J., Liu, H., Luo, N., Zhao, Z., Wang, F., 2018. Sustainable Productions of
819 Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C-C
820 Bond. *ACS Catalysis* 8, 2129-2165.<https://doi.org/10.1021/acscatal.7b03790>

821 Wu, X., Ma, Z., Feng, T., Zhu, C., 2021. Radical-mediated rearrangements: past, present, and
822 future. *Chemical Society Reviews* 50, 11577-11613.<https://doi.org/10.1039/D1CS00529D>

823 Xu, Z., Munyaneza, N.E., Zhang, Q., Sun, M., Posada, C., Venturo, P., Rorrer, N.A., Mischall,
824 J., Sumpter, B.G., Liu, G., 2023. Chemical upcycling of polyethylene, polypropylene, and
825 mixtures to high-value surfactants. 381, 666-671.<https://doi.org/10.1126/science.adh0993>

826 Yang, W., Liu, R., Li, C., Song, Y., Hu, C., 2021. Hydrolysis of waste polyethylene
827 terephthalate catalyzed by easily recyclable terephthalic acid. *Waste Management* 135, 267-
828 274.<https://doi.org/10.1016/j.wasman.2021.09.009>

829 Yang, Y., Wang, G., Lei, S., Xiao, H., Yang, H., Chen, H., 2024. Coupling dechlorination and
830 catalytic pyrolysis to produce carbon nanotubes from mixed polyvinyl chloride and
831 polyethylene. *Waste Management* 178, 97-104.<https://doi.org/10.1016/j.wasman.2024.02.004>

832 Zhang, F., Li, Y., Liang, Z., Wu, T., 2022. Energy conversion and utilization in supercritical
833 water oxidation systems: A review. *Biomass and Bioenergy* 156, 106322.<https://doi.org/10.1016/j.biombioe.2021.106322>

834 Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., Ding, T., Chen, L., Chen, C.,
835 2021. Current technologies for plastic waste treatment: A review. *Journal of Cleaner Production*
836 282, 124523.<https://doi.org/10.1016/j.jclepro.2020.124523>

837 Zhang, Y., Wang, Q., Yalikun, N., Jiang, H., Wang, H., Wang, C., Hu, D., Hu, Y., 2023. Heterogeneous Catalytic Peroxide Oxidation Inducing Surface Reactions Toward Flotation
838 Extraction of Hazardous Poly(Vinyl Chloride) From Waste Plastics. *Industrial & Engineering*
839 *Chemistry Research* 62, 15136-15147.<https://doi.org/10.1021/acs.iecr.3c01608>

840

841

842

843