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Abstract

Healthcare professionals frequently manage complex, under-represented clinical events that
challenge established diagnostic and decision-making pathways. These include infrequently
diagnosed conditions, early-stage deterioration, and diseases with heterogeneous manifesta-
tions, where low prevalence, variable presentation, and limited structured data introduce sig-
nificant uncertainty. Clinicians apply deep expertise to interpret these cases, often under con-
straints of time, information, and documentation. This thesis examines how high-fidelity clini-
cal data can be analysed using machine learning (ML) techniques to support clinical judgement.
It explores how computational models might surface latent patterns, identify early risk signals,
and make complex data more interpretable in settings defined by imbalance, variability, and

diagnostic ambiguity.

Across a series of empirical studies, the thesis addresses technical challenges common
to rare or complex event prediction: class imbalance, missingness, temporal variation, and
heterogeneity in clinical presentation. The first case study focuses on sepsis, a common but
acutely time-sensitive condition. While sepsis is well recognised, the rapid progression of the
disease limits the availability of temporally labelled pre-onset data. Using intensive care unit
(ICU) records, the thesis develops preprocessing pipelines and tests attention-based temporal
models to support early warning in a moderately imbalanced context, where timely prediction

is critical and observational data are sparse.

With the advent of COVID-19, a fast-spreading and clinically disruptive condition, under-
standing the factors that lead to hospitalisation became a pressing research need. While early
studies primarily focused on symptom onset and complications, less attention was paid to the
early signals embedded in longitudinal health records. This study draws on primary care data
that capture patients’ health trajectories over time, enabling analysis of events leading up to
hospitalisation. Within this broader population dataset, hospital admission occurs in approxi-
mately 10% of cases, resulting in a naturally imbalanced outcome. Class-sensitive objectives

and temporally structured features are applied to surface early risk markers that may inform
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triage decisions and support timely intervention.

Building on the hospitalisation study, the thesis further explores how injecting structured
clinical knowledge into models can improve the representation of infrequent manifestations
within the same imbalanced primary care setting. Medical ontologies are integrated into lan-
guage models to enhance the embedding of rare clinical terms and improve classification per-
formance. This approach is applied to two additional prediction tasks using the same dataset.
COVID-19-related mortality ( 1%) serves as a highly imbalanced clinical outcome for evalu-
ating model sensitivity to low-signal, high-risk events, whilst stroke ( 30%) is used as a more
common benchmark for assessing generalisability across conditions of varying prevalence and
complexity. Together, these tasks extend the modelling framework to uncover how structured
knowledge improves the encoding of infrequent clinical features and contributes to more robust
and generalisable prediction across diverse diagnostic contexts.

Grounded in the clinical utility of differentiating hypertrophic cardiomyopathy (HCM)
from Fabry disease, a rare metabolic disorder frequently misdiagnosed due to overlapping
cardiac features, this final case study extends the thesis’s exploration of imbalance to include
disease heterogeneity and population-level rarity. A novel multimodal dataset was collected
from hospital cardiac records, including echocardiography, ECG, and Holter monitoring data
from genetically confirmed Fabry patients and matched HCM controls. Traditional ML classi-
fiers trained on this dataset showed promising discriminatory ability using routinely acquired
clinical measurements. These findings suggest that standard diagnostic tools may help raise
earlier consideration of rare conditions in everyday practice when modelled with care and clin-
ical insight.

Together, these studies propose a generalisable approach to modelling rare and under-
represented clinical events using ML. The thesis focuses on structuring and improving the
quality and utility of clinical data, surfacing patterns of clinical relevance, and supporting
decision-making in diagnostically uncertain environments. The final clinical interface is de-
signed as a practical tool to assist interpretation and integrate predictions into clinical work-
flows and as a space to understand better how models behave in context. These contributions
are made with deep appreciation for the complexity of clinical decision-making and the exper-
tise of those who carry it out. The work aims to support that expertise by offering tools and

insights that are transparent, interpretable, and aligned with real-world care.
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Preamble

Living with a genetic disease like Fabry disrupts life in profound and often invisible ways. For
some, it means a shortened life expectancy; for others, it means confronting daily obstacles,
including loss of motor function, deteriorating memory, muscle atrophy, breathing difficulties,
and progressive organ damage. The stories of patients like Cheryl and Bob highlight the human
stakes behind rare diseases and the continued need for better tools, knowledge, and systems to

support those affected.

Cheryl’s journey reflects the immense physical, emotional, and social difficulties often
faced by people with rare conditions. Growing up, she experienced symptoms such as burning
pain in her hands and feet, frequent fevers, fatigue, and neurological issues. Despite this, she
was initially diagnosed as a carrier at 16, reflecting that knowledge of Fabry disease manifesta-
tion in females was scarce at the time. It took years of suffering, numerous tests, and multiple
consultations before the full impact of Fabry disease on her life was recognised. Cheryl also
speaks to the mental toll and isolation that many patients experience, noting how difficult it can
be for others to understand symptoms that are not always visible. She emphasises the value
of patient communities, advocacy groups, and clinicians whose expertise and compassionate
approach help patients feel heard, supported, and understood—and ultimately, move toward a
diagnosis.

Bob’s diagnostic journey was similarly complex. Over a decade of unexplained health
issues and visits to 12 specialists across five NHS hospitals preceded his diagnosis in 2005.
By then, Fabry disease had already caused significant damage to his kidneys and heart. His
nephrologist explained that his kidney function had dropped to 15%, requiring urgent place-

ment on the national donor list.

Bob’s wife stepped forward as a donor. But the emotional and physical strain coincided
with a sudden collapse in his remaining kidney function, leading to daily dialysis. Three

months later, Bob received a kidney transplant from his wife. Yet complications followed:

X1X
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his wife had CMV, a common but potentially serious virus, and despite preventive efforts, Bob
contracted the infection shortly after the transplant. The resulting illness caused some of the
most severe pain he had experienced.

Bob’s life after diagnosis was marked by further complications—bleeding from port sites,
mini-strokes, brain aneurysms—along with near-death experiences and ongoing anxiety about
what might happen next. Managing a full-time job as a general manager, he pushed through
the pain to provide for his family. Yet the disease took its toll. On one occasion, he experienced
severe chest pain during an all-employee meeting and had to be rushed to the emergency room.

These stories reflect the reality that rare diseases are inherently difficult to diagnose and
manage, often requiring the expertise of many to form the clinical picture. Fabry disease,
like many other rare conditions, presents variably and often mimics more common disorders.
Delays in diagnosis often result from overlapping symptoms, low prevalence, and the absence
of clear early markers.

Throughout these journeys, the contributions of healthcare professionals—from general
practitioners to nephrologists, cardiologists, geneticists, and transplant specialists—have been
vital. Cheryl and Bob’s care depended on the ongoing efforts of committed clinicians nav-
igating diagnostic uncertainty, coordinating multi-specialist care, and responding to life-
threatening complications. Their experiences underscore the importance of not only better
education and tools for rare disease identification but also sustained support for the clinical
teams who work tirelessly to care for these patients.

Approximately 1 in 17 people in the UK—over 3.5 million individuals—Ilive with a rare
disease [2]. In an already pressured system, the volume of patients means that access to spe-
cialised knowledge and coordinated care remains limited. Cheryl’s and Bob’s stories are pow-
erful reminders of both patient resilience and clinician dedication. They call for greater invest-
ment in rare disease research, better integration of care, and more resources to ensure that no
patient’s condition goes unrecognised or untreated for lack of information.

In recognising the complexity of rare disease diagnosis and care, we acknowledge both the
suffering that often accompanies these conditions and the ongoing commitment of those work-
ing to improve outcomes. Cheryl’s and Bob’s experiences are a call to action—not to replace
clinical expertise, but to support it through better tools, more structured data, and integrated
systems. This thesis responds to that call by exploring how computational approaches can
help surface earlier signals, improve access to clinical information, and support more timely,

informed decisions in the care of rare and under-represented conditions.
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1.1 Motivation

1.1.1 Personalised Healthcare: A Transformative Vision

Imagine a healthcare system where every medical decision is tailored to a patient’s genetic
makeup and environment. This is the vision of personalised medicine, a paradigm shift that
promises early, accurate diagnosis of rare diseases, prompt recognition of atypical presenta-
tions, and the prevention of adverse drug reactions. By adapting care to each patient’s unique
needs, personalised medicine can improve outcomes across the entire system.

The NHS faces increasing pressures due to an ageing population and rising healthcare com-

plexity. Traditional models, focused on reactive responses to symptoms, are proving insuffi-
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cient. The COVID-19 pandemic underscored these limitations, highlighting the importance of
early detection and proactive management, especially for conditions that deviate from common

clinical patterns [3].

1.1.2 The Cost of a Reactive Healthcare System

The prevailing healthcare model has long been characterised by a reactive approach [4-6],
where interventions typically occur only after symptoms have developed or diseases have pro-
gressed. However, this approach is increasingly straining the healthcare system in an ageing
society like the UK. For example, in Wales, the proportion of the population aged 65 and
over rose from 18.4% in 2010 to 20.6% in 2020 [7]. This demographic shift is accompanied
by higher rates of chronic diseases and long-term conditions such as cardiovascular disease,
diabetes, and dementia [8], all of which require complex, ongoing care.

The limitations of reactive care are particularly apparent in chronic disease management.
Conditions like type 2 diabetes often go undetected until patients present with complications
[4], while cardiovascular interventions frequently begin only after significant events such as
heart attacks, despite the existence of early warning signs [5]. Cancer care similarly reflects a
reactive model, where interventions typically follow symptom onset rather than proactive, risk-
based screening [6]. This delay in detection leads to poorer outcomes and increases treatment
costs significantly. For example, delays in the early detection of heart failure cost the NHS
£400 million for admissions [9].

The COVID-19 pandemic further exposed these vulnerabilities. Delays in treatment, for
example, a four-week delay in cancer care, were associated with an increased risk of death of
6% to 13% [10]. These systemic shortcomings make clear the need for more preventive and

flexible models of care.

1.1.3 Rare Diseases, Diagnostic Delays, and Data Imbalance

Conventional diagnostic models, which rely on rule-based reasoning and established clinical
pathways, are effective for common conditions. These approaches rely on standard symptom
clusters and predefined diagnostic routes, which work well when patients present with typical
patterns. However, they face limitations when rare diseases or atypical symptoms deviate from
these norms, often resulting in misdiagnosis or diagnostic delay.

Rare diseases frequently present with non-specific or atypical symptoms, making them

difficult to diagnose using standard clinical pathways. The widely taught medical heuristic,

2
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"When you hear hoofbeats, think horses, not zebras," illustrates a systemic bias toward com-
mon conditions [2], which can further complicate diagnosis.

The under-representation of rare diseases in research and clinical training further com-
pounds these challenges. Small sample sizes and data sparsity limit the evidence base, hinder-
ing accurate and timely clinical decision-making [3,11].

This diagnostic journey, known as the "diagnostic odyssey" [12], often results in long de-
lays and uncertainty, which are reflected in clinical datasets as imbalanced, sparse, and tem-
porally inconsistent records. These characteristics complicate the development of reliable ma-
chine learning models and highlight the broader issue of class imbalance, where rare or atypical
conditions are systematically underrepresented in training datasets.

As a result, patients with rare diseases often face a prolonged path to diagnosis, involving
multiple referrals, inconclusive tests, and frequent misdiagnoses. On average, it takes between
5.6 and 7 years to reach an accurate diagnosis [13]. This delay imposes significant physical,
emotional, and financial burdens on patients and their families, postpones treatment, increases

healthcare costs, and reduces the potential for positive health outcomes.

1.1.4 Moving Toward Proactive, Value-Based Health Care

In response to these challenges, Value-Based Healthcare (VBHC) has emerged as a forward-
looking framework. Unlike volume-based models that reward service quantity, VBHC priori-
tises health outcomes, quality of life, and long-term care effectiveness. This approach aligns
closely with the goals of personalised medicine, as it supports prevention, early diagnosis, and
interventions that reflect patient-specific needs [14].

VBHC offers particular value in managing complex and rare conditions, where focusing
on outcome metrics can help shift attention to underserved patient groups. It encourages a
whole-system view that considers continuity of care, patient satisfaction, and sustainable cost
management [11]. In Wales, national strategies such as "A Healthier Wales" and the "Rare
Disease Implementation Plan" explicitly advocate for early diagnosis and integrated care mod-
els [15, 16].

1.1.5 The Role of Machine Learning

Machine Learning (ML) offers opportunities to support more proactive and personalised
healthcare by enabling earlier and more accurate detection of disease patterns [17]. ML ex-

cels at analysing large-scale, high-dimensional data—including genomic information, imag-
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ing, clinical records, and real-time sensor inputs—to identify patterns that may not be readily
apparent to human observers.

Importantly, ML should not be viewed as a replacement for clinical expertise but as a com-
plementary tool. These tools can identify rare or atypical presentations, assist in risk stratifica-
tion, and provide decision support aligned with VBHC objectives. Integrating ML into clinical

workflows enables a shift from reactive responses to anticipatory care pathways [3, 18].

1.1.6 Challenges of Modelling Imbalanced Clinical Data and Rare Events

Despite its promise, ML faces notable limitations when applied to clinical datasets, particularly
those involving rare events. Data imbalance remains a core challenge: rare conditions are
underrepresented in most training datasets, which can skew model performance and reduce
its reliability [11]. Traditional algorithms often overfit to the majority class and fail to detect
low-prevalence conditions.

Beyond class imbalance, rare events often exhibit high variability, making them harder
to model using conventional techniques. Developing robust models requires methodological
innovations such as synthetic oversampling, transfer learning, or uncertainty quantification.
Moreover, metadata describing rarity, prevalence, and data provenance are essential for im-
proving model transparency and interoperability.

These challenges highlight the need for domain-specific datasets and techniques that ad-
dress the unique features of rare medical conditions. In particular, it is essential to consider
imbalanced datasets, where statistical rarity, clinical heterogeneity, and low coding prevalence
combine to create additional modelling challenges. Without careful design, there is a risk
that data-driven tools could unintentionally reinforce diagnostic inequities instead of reducing
them [19].

Integrating ML into clinical practice in a way that aligns with the principles of VBHC may
help healthcare systems move toward providing more equitable and effective care. This thesis
explores how data-driven methods can improve diagnostic accuracy and address the systemic
and structural challenges that currently limit healthcare delivery for rare disease patients and

others at the margins of existing models.

1.2 Contributions

The key contributions of our study can be summarised as follows:
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Understanding the Patient Journey in the Digital Age
A comprehensive overview of how digital transformation reshapes the patient journey
within the UK healthcare system. By examining the roles of primary, secondary, and
tertiary care, this study highlights the complexities and delays in diagnosing rare diseases
and atypical presentations, underscoring the need for data-driven approaches to support

earlier and more accurate interventions.

Reviewing Data-Driven Methods for Rare Event Detection
A structured review of machine learning techniques for rare event detection in healthcare
that clarifies the distinction between statistical imbalance, clinical rarity, and atypicality.
It provides the conceptual foundation for the thesis’s methodology and synthesises cur-

rent limitations and opportunities in the field.

Addressing Data Imbalance and Missingness in Clithesis’sttings
A clinically informed preprocessing pipeline for intensive care datasets with moderate
class imbalance and high missingness. Feature selection draws on clinician collabora-
tion, while patterns of missingness are characterised to inform future data collection.
By evaluating multiple deterioration endpoints, the study demonstrates how predictive
features shift depending on the clinical score and identifies a novel physiological marker

that may support earlier detection of subtle decline.

Enhancing Rare Event Detection through ML
Temporal representations and self-attention mechanisms are applied to model COVID-
19 hospitalisation risk using longitudinal primary care data with pronounced class im-
balance. The modelling approach demonstrates improved performance through event
sequencing and timing. Feature attribution highlights the predictive value of underex-
plored clinical signals, such as nutrition referrals, offering insight into early deterioration

in community settings.

Integrating Structured Medical Knowledge into Language Models
Structured clinical ontologies are embedded within pretrained language models using
diverse embedding aggregation techniques. This method improves the representation
of infrequently coded clinical conditions and supports low-data prediction tasks such as
COVID-19 mortality and stroke classification from unstructured notes, while enhancing

interpretability in clinical decision-making.
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Building a Rare Disease Dataset for Diagnostic Research
A multimodal dataset is assembled containing cardiac test results from patients with
Fabry disease and HCM, in partnership with hospital clinicians. This resource enables
comparative studies of disease presentation, supports the development of data-driven

diagnostic tools, and facilitates broader clinical research into rare cardiac conditions.

Differentiating Complex Cardiac Diseases with Similar Presentations
Machine learning models are developed to distinguish FD from HCM, two conditions
with overlapping phenotypes but differing prevalence and underlying causes. By treating
heterogeneity as a diagnostic challenge rather than a class imbalance issue, the analysis
highlights the role of data-driven tools in supporting differential diagnosis where stan-

dard pathways may fail.

Augmenting Predictive Models with Language-Based Explanations
A prototype risk calculator pairs machine learning predictions with natural language
explanations generated by large language models. The interface enables interactive in-
spection of patient-specific risk factors and highlights variables most influential to each
prediction. Prompt engineering methods refine the clarity and clinical usefulness of ex-
planations. Although only one round of clinician feedback was completed, the prototype

demonstrates how interpretability techniques align model logic with practitioner reason-

ing.

These contributions span data handling, method development, and clinical application.
Collectively, they aim to advance more equitable and proactive healthcare through data-driven

tools that are technically rigorous, clinically relevant, and practically implementable.

1.3 Thesis Overview

This thesis explores the critical intersection of data-driven approaches and healthcare, focus-
ing on detecting and managing rare events. In an era where big data and Artificial Intelli-
gence (Al) are transforming numerous sectors, healthcare stands to benefit significantly from
these advancements. However, the unique challenges of imbalanced clinical scenarios, whether
due to heterogeneity or rarity, require innovative solutions beyond conventional data analysis

techniques.
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The remainder of Chapter 1 outlines the document structure and its contributions to the
wider knowledge base. The thesis is structured into several chapters, each addressing a specific

facet of this complex problem:

Chapter 2, "Anomalies Amidst a Sea of Data", examines the role of ML and Deep Learning
(DL) in rare event detection. It discusses modelling techniques, the challenges of predicting
low-frequency events, strategies for addressing class imbalance, and the latest developments in
the field. This chapter sets the stage for understanding the broader problem space and the need
for advanced analytical approaches, contributing to more robust methods for identifying rare

conditions and atypical presentations.

Chapter 3, "Data-Driven Approaches for Rare Event Detection in Healthcare", explores
essential preprocessing and feature engineering processes for building"effective ML models.
It addresses the challenges posed b" healthcare data, including heterogeneity, high dimension-
ality, and unstructured formats. By evaluating techniques for data cleaning, feature selection,
dimensionality reduction, and the integration of domain knowledge, this chapter highlights the
importance of data readiness. The use of medical ontologies further supports the interpretabil-

ity and effectiveness of predictive models.

Chapter 4, "Navigating Imbalance and Missing Data in Clinical Settings", focuses on the
case of sepsis—a condition often challenging to detect due to its s"btle onset. It explores the
limitations of existing diagno"tic scores and the challenges posed by missingness in Intensive
Care Unit (ICU) data, presenting a clinically informed approach to data preprocessing. This
chapter contributes to developing more reliable and actionable predictive models that better

handle real-world imbalance and data quality issues.

Chapter 5, "Mining Temporal Patterns in a Pandemic", shifts attention to COVID-19 and
the use of primary care data to assess hospitalisation risk. It introduces temporal modelling
using self-attention and examines opportunities to capture risk progression from community-
level records. This chapter underscores the role of temporal pattern mining in anticipating

patient deterioration and contributes strategies for proactive care during public health crises.

Chapter 6, "Ontological Osmosis: Infusing Structure into Language Understanding", ex-
plores how structured clinical knowledge can be embedded in unstructured" text representa-
tions. It examines the use of language models and graph neural networks and proposes a
method for integrating medical ontologies into deep learning frameworks. This chapter con-
tributes techniques for improving model coherence and performance, especially in low-data or

sparsely coded conditions.
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Chapter 7, "Decoding Rarity: ML to Distinguish Complex Cardiac Diseases with Similar
Presentations", investigates how machine learning can aid the differential diagnosis of FD and
HCM—two phenotypically overlapping cardiac conditions. It discusses the development of a
bespoke dataset and evaluates the performance of models trained on multimodal cardiac test
data. This chapter offers insights into the diagnostic challenges of disease heterogeneity and
explores data-driven tools to support clinical reasoning.

Chapter 9, "Conclusion and Future Work", summarises the thesis’s main contributions and
suggests future directions. It reflects on the work’s practical, technical, and clinical implica-
tions to enhance the design and deployment of data-driven systems for rare event detection.

Together, these chapters advance the design, development, and evaluation of methods
for identifying rare, underrepresented, and atypical clinical events in imbalanced healthcare
datasets. The thesis contributes to an emerging vision of healthcare that is more personalised,
proactive, and equitable—one in which data-driven tools can assist clinicians in delivering

timely and informed care, even in the face of uncertainty or rarity.
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2.1 The Digital Transformation of the NHS

The United Kingdoms (UKs) NHS is one of the largest publicly funded healthcare systems

globally. Established in 1948, it provides universal healthcare free at the point of use through a

tiered structure comprising primary, secondary, and tertiary care services [20]. This framework

ensures patients receive appropriate care, from routine consultations to complex specialist in-

terventions.

In recent years, the NHS has undergone a digital transformation, adopting Electronic

Health Records (EHRs), telemedicine, online appointment systems, and algorithmic diagnostic

9



2. The Patient Journey in the Digital Age

Primary Care

Q
(%

General Practice Community Pharmacy

Community Health

6 B
& g

Health Visiting

&

Sexual Health Services

Patients

@
26

Child Health Services

Secondary Care

Planned / Elective Care

®
A

Mental Health Care

Bo

Urgent &
Emergency Care

Tertiary Care

QO
(S

Neurosurgery Transplants
-"0 m

Plastic Surgery  Secure Forensic Mental
Health Services

Figure 2.1: Structure of the NHS healthcare system [1]

tools [21]. These innovations offer significant efficiencies and expand access to care. As the

volume of patient data grows, so does the potential to research and understand the evolving

health needs of the population [22].

Yet despite the ever-increasing volume of data, data on rare diseases remains limited com-
pared to other common ailments. Sporadic data on rare diseases highlight the challenges of
data fragmentation [23]. Diagnosing these conditions is often hindered by sparse structured
data and inherent diagnostic uncertainty. Moreover, clinical knowledge is recorded across in-
dependent data sources like unstructured notes, diagnostic codes, laboratory results, and frag-
mented care records, making it difficult for clinicians to access the full spectrum of information

necessary for accurate diagnoses [24]. Furthermore, inconsistent coding systems and a lack of

standardisation across different stages of care exacerbate these issues.

This fragmentation often results in delays and misdiagnoses, particularly for rare diseases,
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where the absence of clear diagnostic criteria can lead to prolonged diagnostic odysseys [12].
While AT and ML hold promise for identifying rare diagnostic patterns to serve as a clinical de-
cision support tool, these technologies must address existing data integration and interpretation
limitations to be genuinely effective.

This chapter explores the digitalisation of the NHS, examining how data fragmentation,
inconsistent coding systems, and imbalanced clinical data create barriers to accurate diagnosis
and timely care. It sets the stage for subsequent discussions on how data-driven approaches

can improve the diagnosis and management of rare and atypical conditions.

2.2 Patient Data Types

This section examines how data is collected throughout a patient’s journey in the NHS. This
is especially pertinent as our research draws on multiple data sources—both structured and
unstructured—to develop robust methods for distinguishing between rare diseases, such as
FD and HCM [25], and for early detection of conditions that present heterogeneously, such as
sepsis. Understanding the data sources available, their potential biases and limitations, and data
quality is vital to determine appropriate methods for preprocessing the data before applying Al
techniques.

When individuals seek care within the UKs NHS, they enter a system that is at once com-
prehensive in its ambition and constrained in its delivery. Patient journeys typically begin in
primary care, with progression to secondary or tertiary services depending on the complexity,
persistence, or severity of the condition [26].

Patient data is recorded digitally as EHRs and is typically segmented into structured (e.g.,
coded diagnoses), semi-structured (e.g., tick-box consultation templates), and unstructured
(e.g., free-text notes) forms. Unstructured data sources provide valuable insights often ab-
sent from structured datasets, offering opportunities to enhance existing knowledge bases and
enrich data for more comprehensive health research [27]. For instance, open-ended doctors’
notes from the initial patient assessment can supplement longitudinal laboratory, clinical, and

survey data. The following sections detail the different data gathered in each level of care.

2.2.1 Primary Care

Structured fields (e.g., SNOMED CT, Read Codes) are recorded for billing and audit pur-

poses. However, the more nuanced aspects—symptom evolution, patient intuition and social

11
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context—are often confined to free-text notes or omitted entirely. This results in data that are
fit for billing but may not fully reflect patients’ health status. General Practices (GPs) may
hesitate to use specific codes when unsure of the diagnosis [28], which is often the case in
the early stages of rare diseases. As a result, the early stages of atypical conditions are under-
represented in the patient’s digital footprint. Therefore, estimates suggest that over 70% of
diagnostic detail is embedded in unstructured notes [29]. However, this content is difficult to
extract or analyse, especially across care boundaries. For patients with rare diseases, the criti-
cal early signals may be recorded in inaccessible formats or not at all, skewing both individual

care and population-level insights.

2.2.2 Secondary Care

Secondary care settings, including general hospitals and specialist clinics, collect a wide range
of data during patient interactions, investigations, and treatments. This data is crucial for di-
agnosis, treatment planning, and ongoing patient management for common and moderately

complex conditions.

Structured Data

* Patient demographics and admission details
* Vital signs and regular observations (e.g., blood pressure, heart rate, temperature)

 Standard laboratory test results (e.g., complete blood count, liver function tests, elec-

trolytes)
* Medication administration records
* Diagnostic codes for common and moderately complex conditions
* Procedure codes for routine interventions
* Appointment and attendance records

» Length of stay for inpatient admissions

Semi-structured Data

* Clinical assessment forms for each speciality (e.g., Cardiology, Gastroenterology)

12
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* Nursing care plans and daily notes
* Discharge summaries following standardised templates

* Patient-reported outcome measures (PROMs) for common conditions

Unstructured Data

* Clinical notes from specialist consultations

* Surgical notes for common procedures

» Radiology reports for standard imaging (e.g., X-ray, CT, basic MRI)
* Pathology reports for routine biopsies

* Patient history and symptom descriptions

Qualitative Data

* Specialist’s observations on patient progress for common treatments
* Notes on patient’s quality of life related to common conditions
* Basic psychological assessments

* Patient’s reported experiences with standard treatments

Imaging and Signal Data

* Standard radiological images (X-rays, basic CT scans)
¢ Common ultrasound images and videos (e.g., abdominal, cardiac)

* Basic electrocardiogram (ECG) recordings

Specialised Test Results

* Common endoscopy findings
 Standard biopsy results
* Routine microbiology and culture results

13
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* Basic immunology test results (e.g., autoantibody screens)

The range of data collected in secondary care provides a more comprehensive picture of a
patient’s condition, particularly for common and moderately complex cases. It enables special-
ists to make informed decisions about diagnosis and treatment for a wide range of conditions

that do not require highly specialised tertiary care interventions.

2.2.3 Tertiary Care

As the pinnacle of medical specialisation, tertiary care centres collect highly specialised and
complex data often unavailable in primary or secondary care settings. This data is crucial for
managing rare diseases, complex conditions, and cases that require cutting-edge treatments or

technologies.

Structured Data

* Advanced genetic test results (e.g., whole genome sequencing, exome sequencing)
* Specialised biomarker measurements for rare diseases

* Detailed immunological profiles

* Advanced neurophysiological measurements (e.g., complex EEG patterns)

* Specialised organ function tests (e.g., advanced cardiac output measurements)

* Clinical trial enrolment and protocol adherence data

* Rare disease registries data

Semi-structured Data

* Multidisciplinary team meeting records for complex cases
 Specialised assessment forms for rare conditions

* Detailed treatment protocols for experimental therapies

* Long-term follow-up plans for complex chronic conditions
* Research study participation records

14
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Unstructured Data

* Detailed clinical notes from sub-specialist consultations

* Complex surgical notes for highly specialised procedures

* Advanced imaging reports (e.g., functional MRI, PET-CT fusion imaging)
* Molecular pathology reports for rare cancers or genetic disorders

* Case reports for novel or unusual presentations of diseases

Qualitative Data

* Patient-reported outcomes for experimental treatments

Quality of life assessments for rare or complex conditions
* Psychological impact evaluations for novel therapies
* Family genetic counseling session notes

* Patient experiences with cutting-edge medical devices or prosthetics

Imaging and Signal Data

* Advanced neuroimaging (e.g., tractography, perfusion imaging)

* Molecular imaging data (e.g., PET scans with novel tracers)

* High-resolution microscopy images for rare cellular abnormalities
* Complex cardiac imaging (e.g., 4D flow MRI)

* Intraoperative imaging from robotic or computer-assisted surgeries

Specialised Test Results

* Results from novel diagnostic tests for rare diseases
* Pharmacogenomic profiling data
 Specialised tissue and organ function tests
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* Advanced immunotherapy response measurements

* Metabolomic and proteomic analysis results

This highly specialised data collected in tertiary care settings provides unprecedented in-
sights into complex and rare conditions, enabling personalised treatment plans and advancing
medical knowledge. Managing this data presents unique challenges, such as the need for so-
phisticated integration systems, ensuring interoperability, and maintaining privacy for sensitive
genetic and molecular data. Tertiary care data often contributes to national and international
research collaborations, advancing global understanding of rare diseases and complex condi-
tions. This data-driven approach is crucial for pushing the boundaries of medical science and

offering hope to patients with the most challenging health conditions.

2.2.4 Fragmentation Across Levels of Care

In the NHS, patient data is scattered across different care settings. Primary care records typi-
cally focus on patient history and initial presentations, while secondary care adds more detailed
investigations and diagnoses. Tertiary care, on the other hand, contributes advanced diagnos-
tics, specialist insights, and genetic data. However, these records are often stored in separate
systems that don’t communicate well with each other.

Fragmentation of data creates persistent silos within the system. For instance, a clinician
may receive a genetic diagnosis in tertiary care, but it may never be added to the patient’s
primary care record. Discharge summaries also tend to oversimplify complex care pathways.
A multi-year journey through rheumatology, neurology, and genetics, for example, might be
condensed into something like "patient under specialist review," which masks the complexity
and difficulty of the diagnostic process. When records don’t flow seamlessly across the system,
neither does the knowledge, and it’s often up to individual clinicians—or the patient—to try to

piece it all together.

2.2.5 Data Imbalance in the Patient Journey

As patients move through different tiers of care, several types of data imbalances accumulate,

shaping diagnostic outcomes:

* Class imbalance: Rare diseases are statistically under-represented in EHR datasets,

skewing diagnostic algorithms towards more common conditions [4,11].
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Feature imbalance: Key features—such as genetic markers or specialist assess-
ments—are typically confined to tertiary care and may be absent from earlier records
[13].

Temporal imbalance: Data clusters around acute episodes or hospital visits; early, sub-

tle symptom data is sparse or missing [11].

Contextual imbalance: Social and behavioural data, often crucial for diagnosis and

management, are inconsistently captured and rarely structured [30].

Volume imbalance: Tertiary care centres, which generate some of the richest diagnostic
data, deal with fewer patients overall, limiting the data available for training robust Al

systems [3].

Format imbalance: High-value data is often stored in static documents, PDFs, or non-
standardised formats that hinder integration into larger datasets or decision-support tools
[11].

Overlap-Induced Diagnostic Ambiguity: Conditions with highly similar phenotypes
(e.g., a rare disease and a more common condition) occupy overlapping regions in the
feature space, causing diagnostic ambiguity. This overlap leads to challenges in distin-
guishing between conditions, despite their clinical significance. Unlike class imbalance,
this issue arises not from data frequency but from the similarity in symptom profiles,

which blurs the decision boundaries of diagnostic algorithms [31, 32].

These imbalances are cumulative and systemic, reflecting broader issues in documenta-

tion practices, time constraints, and system design. Their impact is especially pronounced

for patients who fall outside typical diagnostic trajectories—those with rare, multi-system, or

socially complex conditions.

2.3 The Diagnostic Odyssey in Rare Diseases

For many patients, particularly those with rare, complex, or multi-system conditions, the jour-

ney to a correct diagnosis is long, uncertain, and emotionally taxing [2]. With thousands of

rare diseases, each affecting fewer than 1 in 2,000 people in the UK, it is unrealistic to expect

GPs to be familiar with all these conditions and the diverse ways they may present [2].
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When a rare disease is suspected, securing the appropriate referral becomes a diagnostic
hurdle in itself [12]. Referral pathways are structured around explicit criteria to manage spe-
cialist demand. However, rare diseases often do not conform to these early-stage criteria, and
referrals may be delayed or rejected.

When patients eventually enter secondary or tertiary care, they often encounter further
challenges. Rare diseases frequently span organ systems and medical domains, necessitating
multiple specialist referrals across hospital departments or healthcare trusts [12].

Managing these complex care pathways requires both clinical insight and substantial ad-
ministrative effort. For example, a patient referred to multiple clinics may discover that each
department maintains separate electronic health records with limited access to prior consulta-
tions or test results. As a result, clinicians may unknowingly duplicate investigations or miss
critical longitudinal clues—delays that frustrate patients and can directly impact care qual-
ity and safety, such as through redundant imaging, medication conflicts, or missed diagnostic

connections [33].

2.3.1 Compounding Challenges and Their Effects on Data Imbalance

For patients with rare diseases, this filtering effect is even more pronounced. Their symptoms
often defy tidy categorisation, emerge gradually, or interact across body systems. Early en-
counters may be under-recorded, mistranslated into common diagnoses, or left as vague notes
that do not meet referral thresholds. Without clear codes or integrated longitudinal records,
these patients risk becoming invisible within their records. Beyond delays and fragmentation,
rare disease patients face additional structural and lived challenges that further entrench diag-
nostic inequity and contribute to long-standing data imbalances:

Patient-Led Coordination: In the absence of integrated care systems, many patients be-
come their case managers—tracking appointments, test results, and care plans while facilitating
communication between multiple specialists. These interactions often go undocumented in for-
mal records, creating blind spots in the healthcare data landscape that hinder care coordination,
obscure symptom evolution, and complicate longitudinal case analysis. The lack of visibility
into these informal exchanges and patient-led insights can result in missed diagnostic oppor-
tunities, fragmented treatment plans, and safety risks due to untracked medication changes or
duplicated investigations.

Polypharmacy and Medication Complexity: Managing a rare disease often involves

multiple medications prescribed across specialities. This increases the risk of drug interactions
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and places a greater burden on patients to maintain a coherent treatment plan. The nuances
of these regimens—timing, side effects, off-label uses—are rarely recorded in full, leading to
underestimation of their impact on clinical care and data analysis.

Barriers to Diagnosis and Treatment Eligibility: Diagnostic pathways often include
strict approval thresholds tied to treatment subsidies or care eligibility. Access may be delayed
or denied for patients whose presentations do not meet these thresholds, whether due to early-
stage symptoms, non-conforming test results, or atypical demographic markers. The high cost
of many orphan drugs further intensifies this gatekeeping, creating disincentives for formal
diagnosis unless necessary.

Invisibilised Histories and Demographic Skew: Many rare diseases have historically
been diagnosed in populations with greater access to specialist care. This has led to diagnostic
archetypes that reflect narrow demographic norms, potentially obscuring how rare diseases
present in underrepresented groups, by race, gender, age, or geography. As a result, diagnostic
algorithms and training materials may be biased toward majority-population data, perpetuating
underdiagnosis in minority communities.

Together, these challenges compound rarity with complexity, reinforcing the systemic lim-
itations outlined earlier in the NHS’s structural design. The fragmented flow of information,
rigid referral criteria, and inconsistencies in documentation become even more consequential
in the context of rare diseases. These factors delay individual diagnoses and impede the gener-
ation of reliable population-level data, limiting the healthcare system’s capacity to learn from
and respond to the needs of rare disease patients. This underscores the urgency of design-
ing data systems, clinical workflows, and governance models that account for—and actively
address—this compounded complexity. In a data-driven era, such exclusions are not just clini-

cal—they shape the evidence base for future diagnoses.

2.4 Summary

The challenges patients face while navigating the NHS, particularly those with rare, complex,
or atypical conditions, are systemic but not immutable. These include rigid referral thresholds,
fragmented records, inconsistent coding practices, and narrow diagnostic archetypes, often ex-
cluding patients who do not conform to expected clinical trajectories. For rare disease patients,
these structural limitations are compounded by data invisibility, demographic bias, and the

burden of self-managed care.
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Addressing these challenges requires more than merely upgrading digital infrastructure. It
demands a deliberate focus on improving data quality, interpretability, and integration through-
out the patient journey. This includes acknowledging and preserving early, ambiguous, or in-
complete clinical signals, addressing underrepresentation in coding systems, and better using
unstructured notes and under-coded conditions. The research that follows focuses on precisely
these fronts: identifying clinical patterns within imbalanced and temporally sparse data, devel-
oping self-attention methods to detect overlooked presentations, and exploring how intelligent
risk calculators and Large Language Models (LLMs) can work in tandem to enhance inter-
pretability, contextualisation, and diagnostic support.

By building systems that recognise complexity rather than filter it out, we can begin to
redress diagnostic inequities and support more timely, accurate, and inclusive care. This work
lays the foundation for developing clinical tools and data governance frameworks that are tech-

nically robust and socially and ethically responsive to the realities of rare disease care.
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3.1 Introduction

Building upon the previous chapter’s exploration of the UKs NHS and the challenges of diag-
nosing rare and complex conditions, this chapter shifts focus to the computational challenges
posed by data imbalances in healthcare. Specifically, it investigates how imbalances—resulting
from low-prevalence events like rare diseases, adverse drug reactions, or emerging infectious
outbreaks—complicate predictive modelling and clinical decision-making [4,11].

Rare events in healthcare are typically defined not only by their infrequency but also by
their clinical impact [34]. Rare diseases or adverse drug reactions deviate from typical clinical
patterns, making early identification difficult. The scarcity of data for rare events leads to im-
balanced datasets, where the minority class (e.g., rare diseases) is underrepresented compared
to the majority class (e.g., non-rare disease individuals). Although class imbalance is the most
commonly studied form, imbalances also arise due to gaps in feature availability, temporal
inconsistencies, and incomplete or inconsistent documentation across care levels [34]. These
issues skew model predictions and increase the risk of misdiagnosis and delayed intervention.
Addressing these imbalances is crucial to improving the detection of rare events, as timely
and accurate identification can enable earlier interventions, targeted care, and better patient
outcomes [13,34].

One of the primary challenges in healthcare is the diagnosis of rare diseases. Rare diseases
collectively affect approximately 3.5% to 5.9% of the global population, translating to over 260
million people worldwide [2]. Despite the individual rarity of these diseases, the cumulative
impact is profound, with over 7,000 distinct rare diseases identified [2]. However, the diag-
nostic process for these conditions is often complex and resource-intensive, with significant
delays in diagnosis due to symptom overlap with more common diseases and limited clinician
expertise [2].

In this context, computational methods, particularly those grounded in ML, offer signifi-

cant promise for overcoming the challenges of data imbalance. When developed responsibly
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and integrated into clinical workflows, these techniques can augment human expertise, synthe-
sise high-dimensional data, and uncover patterns that may go unnoticed. However, applying
these methods to rare event detection requires addressing challenges that are not as pronounced
in more balanced datasets. In its various forms, imbalance compounds the difficulty of de-
tecting rare events, affecting the model’s generalisability and diminishing predictive accuracy.
Challenges such as high dimensionality, data heterogeneity, temporal inconsistencies, and the
ambiguity between what constitutes a rare event and what is an anomalous case (especially
when early symptoms overlap with more common conditions) further complicate detection
efforts [3, 11].

Thus, the interplay between data imbalance and rare events necessitates a nuanced ap-
proach to predictive modelling. Rare events often create imbalanced datasets by class and fea-
ture availability, historical data, and the lack of contextual data. This chapter presents a com-
prehensive overview of rare event detection, framed within the context of imbalanced datasets.
It begins by characterising the nature of rare event data and discussing the various sources of
imbalance that affect model performance. The chapter then reviews the strategies employed
to mitigate these imbalances, including data-level techniques (e.g., oversampling and under-
sampling), algorithmic approaches (e.g., cost-sensitive learning), and ensemble methods (e.g.,
combining multiple models to improve prediction accuracy). The chapter also highlights the
importance of using specialised evaluation metrics for imbalanced data, as traditional metrics

may provide misleading conclusions in such contexts [35].

The chapter further examines the importance of interpretability in ML models, especially
in healthcare, where decision-making based on model predictions can have significant con-
sequences. Clinician trust is critical, and understanding the reasoning behind a model’s pre-
dictions is key to ensuring its acceptance in clinical practice [19]. The chapter concludes by
identifying research gaps and emerging directions in rare event detection, setting the stage for
the following chapters, which delve into case studies of rare disease prediction using NHS-
linked data.

By framing the computational challenges of rare event detection within the broader context
of data imbalance, this chapter builds upon the patient-centric and systemic focus introduced
earlier. It is a conceptual and methodological reference for the data-driven approaches explored

throughout our work.
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3.2 Rarity Levels in Healthcare Data

Understanding the varying rarity levels in healthcare data is essential for developing effective
rare event detection strategies. Rarity is not a binary concept; it exists on a spectrum, with
events ranging from those that occur rarely to those that are still uncommon but occur more
frequently. Recognising these levels allows for tailored detection methods that better address

the challenges posed by each category.

Rarity in healthcare events can be classified into four levels, based on the work of Shyalika

et al. (2024) [36]:

* R1 - Extremely Rare (0-1%): These events are exceedingly rare, accounting for 0-1%
of occurrences in the dataset. In healthcare, examples include extremely rare genetic
disorders or adverse reactions to treatments that affect only a small fraction of the popu-

lation.

* R2 - Very Rare (1-5%): Events in this category occur more frequently than R1 events
but still represent a small proportion of the dataset (1-5%). These may include rare can-
cers or certain orphan diseases that, although uncommon, require specialised detection

methods.

* R3 - Moderately Rare (5-10%): These rare events (5-10%) are more common than R1
and R2 but still infrequent. They may include certain autoimmune diseases or genetic

syndromes affecting a larger portion of the population.

* R4 - Frequently Rare (10+%): While considered rare in some contexts, these events
occur more frequently than other rare conditions (more than 10%). Examples might

include specific mental health disorders or less rare genetic mutations.

This classification of rarity helps guide the selection of rare event detection methods. By
aligning detection techniques with the event’s frequency, the approach can be better suited to
handle the specific challenges posed by each rarity category, ultimately improving diagnostic

accuracy and patient outcomes.
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3.3 Understanding Rare Event Data: Characteristics and

Challenges

Rare events manifest across various domains, each with unique characteristics that necessitate
specialised detection strategies. In fields like finance, events such as the "Black Monday" crash
of 1987 illustrate how infrequent occurrences can trigger global crises, leading to widespread
economic impacts [37]. Similarly, the insurance industry faces challenges from rare but catas-
trophic natural disasters such as hurricanes and volcanic eruptions [38].

In healthcare, rare events similarly carry significant implications. The emergence of novel
pathogens like HIV/AIDS highlights how rare events can escalate rapidly, turning from iso-
lated occurrences into global health crises [39]. Similarly, rare diseases—by their very defini-
tion—pose complex diagnostic challenges, often sharing symptoms with more common con-
ditions and leading to diagnostic delays or misdiagnoses [40].

These examples underscore the multifaceted nature of rare events, where rarity is often
compounded by complexity. Effective rare event detection requires understanding the data’s
inherent characteristics and the challenges in accurately capturing those events.

Particularly for rare diseases, the need for vigilance is heightened. Despite affecting over
300 million people globally, rare diseases often go undiagnosed or misdiagnosed due to symp-
tom overlap with more common diseases, compounded by the limited data available for these
conditions [2,41]. This scarcity of data adds an additional layer of difficulty, demanding more

sophisticated techniques for accurate prediction and identification.

3.3.1 Class Imbalance and Rare Events

At the core of rare event detection lies the challenge of class imbalance, which arises directly
from the event’s rarity. This imbalance occurs when the majority class (e.g., common diseases)
vastly outnumbers the minority class (e.g., rare diseases), skewing predictive models. These
models develop a bias toward the majority class, resulting in poor sensitivity for the minority
class and delaying the detection of rare events.

A clear example of this is the diagnosis of Hutchinson-Gilford Progeria Syndrome (HGPS),
an extremely rare genetic disorder with an incidence of about 1 in 18 million live births [42].
Developing accurate diagnostic models for such rare conditions is inherently difficult due to the
scarcity of positive instances. Similarly, detecting rare adverse drug reactions (ADRs) amidst

the majority of non-adverse events introduces another layer of class imbalance [43].
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Advanced techniques, such as oversampling (e.g., SMOTE), undersampling, and synthetic
data generation, help mitigate this imbalance by adjusting the dataset distribution [44, 45].
Moreover, cost-sensitive learning and anomaly detection algorithms prioritise rare events dur-

ing model training, ensuring they receive sufficient attention despite the class imbalance [46].

3.3.2 High Dimensionality and Heterogeneity

The challenges of high dimensionality and heterogeneity in rare event data further complicate
detection efforts. In healthcare, particularly in rare diseases, datasets often contain thousands
of variables spanning clinical notes, lab results, and imaging studies. However, only a small
subset of these features may be relevant to identifying a particular rare disease, leading to an
excess of irrelevant or redundant data that introduces noise into the model.

Additionally, the heterogeneity of rare disease symptoms adds another layer of complexity.
Conditions like Behget’s disease, a multi-systemic disorder that presents with a wide range of
symptoms across different organ systems, make developing a unified diagnostic model more
difficult [47].

The diversity of data sources—ranging from EHR and medical imaging to wearable de-
vices—further complicates data integration. Each source has its format, scale, and reliability,
which challenge creating a consistent, unified model.

To address these challenges, researchers use dimensionality reduction techniques, such as
Principal Component Analysis (PCA) and autoencoders, to reduce the high-dimensional data
while retaining key features. Feature selection methods like LASSO regression and random
forests help identify the most relevant variables. Multimodal data fusion and transfer learning

techniques combine information from diverse sources, enhancing model performance.

3.3.3 Temporal Properties

Another challenge in rare event data is the presence of complex temporal patterns. Some rare
diseases exhibit seasonal variations, and the incidence of certain conditions may change over
long-term trends, requiring models that can adapt to non-stationary data. Epidemic outbreaks
or rare events may also occur in bursts or clusters, requiring spatial-temporal analysis and
cluster detection algorithms.

For example, Kawasaki disease, a rare paediatric vasculitis, shows seasonal patterns and

occasional outbreaks, which must be captured in diagnostic models [48]. Similarly, rare in-

26



3.3. Understanding Rare Event Data: Characteristics and Challenges

fectious diseases such as the Nipah virus emerge in clusters, and early detection relies on
identifying these unusual patterns in space and time [49].

To model these temporal dependencies, time series analysis techniques such as ARIMA
[50], recurrent neural networks [51], and transformer-based models [52] are increasingly being
used. These advanced methods can account for exogenous variables and long-term dependen-

cies, critical for rare event data analysis.

3.3.4 Importance of Metadata

The importance of metadata compounds the challenges posed by class imbalance, high di-
mensionality, and temporal complexity. In healthcare, metadata such as patient demograph-
ics, medical history, and environmental exposures can offer crucial insights for detecting rare
events. Researchers can enhance diagnostic accuracy by integrating metadata with clinical data
through multimodal fusion techniques, especially for rare diseases.

In rare genetic disorders, metadata such as family history, parental consanguinity, ethnic
background, and geographical location can provide crucial clues for diagnosing rare diseases.
Certain conditions, for instance, are more prevalent in specific ethnic groups, and knowing this
can increase the probability of early detection [53, 54].

Effective metadata integration requires expertise in domain knowledge and advanced data
integration techniques. Knowledge graphs, hierarchical modelling, and transfer learning are

essential for incorporating this contextual information into predictive models [55].

3.3.5 The Broader Perspective

Context is paramount in rare event analysis, and the evolving healthcare landscape further im-
pacts the detection and prediction of rare events. Factors such as changes in diagnostic criteria,
increased public and clinical awareness, and the introduction of new screening programmes
can alter how frequently rare events are observed or recorded.

For example, expanding newborn screening programmes has significantly increased the
detection of rare metabolic disorders, largely due to the incorporation of Next-generation se-
quencing (NGS). Technology advancements have enabled earlier detection and interventions,
ultimately improving patient outcomes [56]. Similarly, recognising rare autoinflammatory syn-
dromes has increased due to international collaboration and improved diagnostic criteria [57].

Incorporating contextual factors such as societal changes, environmental influences, and di-

agnostic shifts requires interdisciplinary approaches that combine data science with expertise
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from fields like epidemiology, environmental science, and sociology. This broader perspec-
tive is crucial for developing effective strategies to detect, predict, and manage rare events in

healthcare.

The challenges associated with rare event data, compounded by data imbalances, highlight
the need to address data quality, accuracy, and validation issues. Misclassification of rare
events can significantly skew analysis results, underscoring the necessity for robust validation
and verification processes. Data quality initiatives, such as expert review and cross-validation,

are essential for ensuring the integrity and reliability of rare event detection models.

In the healthcare domain, rare event data characteristics present challenges and opportuni-
ties. The class imbalance in rare disease diagnosis, the high dimensionality of clinical data, and
the complex temporal patterns of disease progression all contribute to the difficulty of detect-
ing and managing rare health events. For instance, in clinical trials for rare diseases, ensuring
data accuracy is critical due to small sample sizes, and methods such as bootstrapping are often
employed to assess the stability of findings [58].

In summary, challenges from class imbalance, high dimensionality, temporal complexity,
and contextual factors create a dynamic landscape for rare event detection. Addressing these
challenges through innovative data processing techniques, better analysis methodologies, and
improved data quality is essential for advancing our ability to detect, predict, and manage rare

events in healthcare and beyond.

3.4 Data Processing for Rare Event Detection

Improving the performance of rare event detection models, especially with high-dimensional
data, relies heavily on effective feature engineering and selection. These processes focus on se-
lecting meaningful features and identifying the most relevant ones, enhancing model efficiency
and interpretability. According to Guyon and Elisseeff (2003), feature selection reduces dimen-
sionality, alleviates the curse of dimensionality, and improves model performance—critical

factors in rare event detection [59].

3.4.1 Data Cleaning

Data cleaning is critical in preparing datasets for predicting rare clinical events. The rarity and

complexity of such events often mean that the available data may be sparse, imbalanced, and
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contain errors or inconsistencies. High-quality, reliable data are essential to developing robust

models that predict these uncommon occurrences accurately.

In rare clinical events, data sifting and filtering refine large volumes of clinical data to
identify the most relevant information. This process involves removing duplicate records, ex-
cluding irrelevant data entries, and selecting cases that meet specific inclusion criteria. For
instance, Liu et al. (2018) emphasised the importance of filtering out irrelevant records to fo-

cus on significant predictors of postoperative complications in colorectal surgery [60].

While imputation is a common strategy for handling missing data, it is essential to note
that over-reliance on simplistic imputation methods (e.g., mean imputation) can introduce bias
into the data, especially when dealing with rare events. More sophisticated techniques, such
as MICE or k-NN imputation, can provide better estimations, considering the relationships

between variables and improving model performance.

Handling missing data through imputation is crucial, as rare events often have incomplete
datasets due to their infrequency. Simple imputation methods, such as replacing missing values
with the mean or median, may not be adequate. Advanced imputation techniques like Multiple
Imputation by Chained Equations (MICE) or k-Nearest Neighbours (k-NN) imputation pro-
vide more accurate estimations by considering the relationships between variables [61]. For
example, Rafsunjani er al. (2019) utilised MICE to address missing values when predicting

failures in clinical equipment [62].

Noise removal is critical to eliminate erroneous or irrelevant data that could obscure im-
portant patterns associated with rare clinical events. Techniques such as the Edited Nearest
Neighbours (ENN) method help remove noise by eliminating instances that differ significantly
from their neighbours. Ashraf er al. (2023) applied ENN to improve the detection of wrong-

way driving incidents—a rare but critical event—by cleaning the dataset of noisy entries [63].

Text-based cleaning techniques are vital for textual data, particularly in clinical narratives
and patient records. Processes such as converting text to lowercase, removing punctuation,
stop words, and numerical values, and stemming and lemmatisation help standardise the text
data. Wong (2016) demonstrated the use of these techniques to preprocess clinical text data
when detecting rare medication errors [64].

Similarly, when working with imaging data used in diagnosing rare conditions, image pro-
cessing techniques are necessary to improve image quality and enhance the performance of DL
models. Salvi et al. (2021) provided a comprehensive review on the impact of pre- and post-

image processing techniques within DL frameworks for digital pathology image analysis [65].
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Their work underscores the importance of applying preprocessing methods like normalisation,
artefact removal, and image enhancement to optimise the input for deep neural networks, which

is critical to detect rare anomalies accurately.

By meticulously cleaning the data, researchers can reduce errors and biases that might dis-
proportionately affect the prediction of rare clinical events. This ensures that subsequent steps
in the data processing pipeline, such as feature selection and model training, are based on the
most accurate and relevant information possible. Effective data cleaning directly contributes to
developing reliable predictive models, ultimately aiding in early detection and intervention for

rare clinical events.

3.4.2 Feature Selection

After preprocessing, feature selection becomes pivotal in identifying the most informative pre-
dictors of rare clinical events. This step reduces dimensionality and enhances model efficiency,

which is crucial when dealing with high-dimensional medical data.

Feature selection methods can be broadly categorised into unsupervised and supervised
approaches. Unsupervised methods, such as correlation-based feature selection, aim to remove
redundant variables by analysing the relationships among independent variables without using
the target variable. For instance, correlation coefficients can identify and eliminate highly cor-
related features, reducing multicollinearity and simplifying the model. Liu et al. (2018) utilised
correlation-based feature selection to improve the prediction of postoperative complications in

colorectal surgery, enhancing model interpretability and performance [60].

While imputation is a common strategy for handling missing data, it is important to note
that over-reliance on simplistic imputation methods (e.g., mean imputation) can introduce bias

into the data, especially when dealing with rare events.

Supervised methods leverage the target variable to identify and eliminate irrelevant or less

important features. These methods are divided into three categories:

* Wrapper-based methods use predictive models to assess subsets of features and se-
lect the combination that optimises model performance. Recursive Feature Elimina-
tion (RFE) is a popular wrapper method. Jiang et al. applied RFE with support vector
machines to identify critical predictors of complications in patients after mitral valve

surgery, resulting in enhanced predictive accuracy [66].
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* Filter-based methods rely on statistical measures to evaluate the relevance of features
with respect to the target variable. Techniques such as the sliding window method,
wavelet analysis, and Discrete Wavelet Transform (DWT) have been employed to ex-
tract statistical features from time-series data. Mao et al. (2019) utilised these methods
in machinery fault diagnosis, improving the detection of early faults by capturing essen-

tial time-frequency characteristics [67].

* Intrinsic methods incorporate feature selection within the model training process. De-
cision tree-based algorithms, such as Random Forest (RF) and Gradient Boosting (GB),
inherently perform feature selection by selecting optimal splits based on feature impor-
tance. Huang et al. (2024) used decision trees and Lasso regression to identify factors
associated with in-hospital mortality in patients with acute aortic dissection, effectively

reducing overfitting by penalising less important features [68].

Feature importance methods also rank features according to their influence on model pre-
dictions. For example, the Gini importance measure from Random Forests and feature impor-
tance scores from XGBoost help identify key factors in rare event prediction. These techniques
detect complex relationships and interactions among variables, which are critical in medical

data, where interactions may signify important clinical insights.

Dimensionality reduction techniques, such as Principal Component Analysis (PCA), are
crucial when dealing with high-dimensional datasets. PCA transforms correlated variables
into a set of uncorrelated principal components, capturing the most variance in the data with
fewer components. Lever et al. (2017) explained how PCA can uncover hidden structures in
clinical datasets, aiding in the early detection of rare clinical events and reducing computational
complexity [69]. Additionally, t-distributed Stochastic Neighbourhood Embedding (t-SNE)
effectively visualises high-dimensional data while preserving local structures, making it useful

for analysing complex patterns leading to rare adverse events [70].

By thoughtfully applying these feature selection and engineering techniques, researchers
and clinicians can significantly enhance the performance and interpretability of models predict-
ing rare clinical events. This approach paves the way for more accurate and efficient diagnostic
and prognostic tools. The choice of specific methods depends on the data’s nature, the rare

event’s complexity, and the computational resources available.
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3.4.3 Handling Imbalanced Data

Imbalanced data occurs when the distribution of classes within a dataset is skewed, mean-
ing one class (typically the majority class) significantly outnumbers the other class (minority
class). In the context of rare event detection, this imbalance is especially pronounced since
rare diseases or events, which constitute the minority class, occur far less frequently than more
common conditions. This disparity can cause machine learning models to be biased toward
predicting the majority class, resulting in poor performance on the minority class, where the
rare events reside.

To address this challenge, various sampling techniques can be used to modify the dataset
and achieve a more balanced class distribution, thereby improving the effectiveness of model
training and rare event detection.

A common approach is to oversample the minority class. However, duplicating existing
instances may lead to overfitting, causing the model to learn patterns specific to the replicated
data rather than generalisable features. More sophisticated methods like the Synthetic Minor-
ity Over-sampling Technique (SMOTE) generate synthetic examples by interpolating between
existing minority class instances. This technique creates a more nuanced augmentation that
reduces overfitting risk and helps the model generalise better to unseen data [44]. Adaptive
Synthetic Sampling (ADASYN) further refines this by focusing on harder-to-learn examples,
tailoring the oversampling process to areas where the model struggles the most.

Further oversampling techniques include Borderline-SMOTE, which generates synthetic
samples only in the borderline regions of the minority class, and Cluster-Based Over-Sampling
(CBO), which performs oversampling within clusters of the minority class to preserve the
inherent structure of the data [71].

Conversely, undersampling reduces the number of majority class instances, potentially dis-
carding valuable information. Techniques like Cluster Centroids aim to preserve essential in-
formation by replacing clusters of majority samples with their centroids, thus maintaining the
dataset’s integrity while addressing imbalance [72].

Advanced undersampling methods further enhance the handling of imbalanced data. Edited
Nearest Neighbours (ENN) removes the majority class samples that differ from their nearest
neighbours, cleaning the dataset by eliminating noisy or mislabelled instances [73]. Neigh-
bourhood Cleaning Rule (NCL) extends this by removing misclassified majority class samples
and certain minority class examples to clean overlapping areas between classes [74]. NearMiss

selects the majority class samples close to minority class samples, thereby preserving critical
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borderline examples [75].

One-Sided Selection (OSS) combines undersampling with cleaning methods to focus on
the most informative majority class examples, reducing the class imbalance while maintaining
critical information [76]. Similarity Majority Undersampling Technique (SMUTE) selects ma-
jority class samples based on their similarity to minority class instances, aiming to retain those

that contribute most to distinguishing the classes [77].

Other sampling strategies include Time Series Subsampling, which involves selecting
balanced subsequences from time series data to ensure equal representation of classes over
time [78,79]. Data framing divides audio signals into frames for balanced representation dur-
ing model training [80].

Uncertainty Sampling is employed in active learning scenarios, where the model selectively
queries instances on which it is least sure, often those near the decision boundary. This method
focuses labelling efforts on the most informative samples, which is particularly beneficial in

rare event prediction [81].

Choice-Based or Endogenous Sampling involves intentionally oversampling the minority
class during data collection or analysis. In econometrics, this approach adjusts for the bias
introduced by sampling choices and is applicable when the occurrence of rare events can be

influenced or observed selectively [82].

Advanced methods such as Importance Sampling (IS) alter the sampling distribution to in-
crease the occurrence of rare events during simulations, enhancing the estimation of rare event
probabilities. Standard IS changes the probability measure to focus on critical regions where
rare events are more likely to occur. However, this method may require extensive computation,
especially in high-dimensional spaces [83]. To address computational challenges and handle
complex systems, Mansur et al. [84] introduced the Deep Probabilistic Accelerated Evalua-
tion (DeepPrAE) framework, which integrates DL into IS. DeepPrAE efficiently estimates rare
event probabilities even in black-box systems, offering statistical guarantees where traditional
IS might fail.

Bayesian methods provide another avenue for handling imbalanced data by incorporating
prior knowledge with observed data. The Bayesian Updating of Rare Event Probabilities (BUS)
framework, discussed by Straub et al. [85], updates rare event probabilities using Bayesian
inference, combining prior information with new data for improved estimation. Similarly,
Rao et al. [86] described using ML to solve Bayesian inverse problems, informing the biasing

distribution for IS and reducing computational costs in high-dimensional settings.
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Other advanced simulation techniques enhance the efficiency of rare event estimation.
The Accelerated Failure Identification Sampling (AFIS) method constructs a Gaussian pro-
cess model to efficiently identify rare failure points, iteratively refining probability estimates
with fewer simulations [87]. Additionally, cross-entropy methods optimise the sampling distri-
bution by identifying low-dimensional structures within high-dimensional problems, as Uribe
et al. (2021) [88] highlights.

Choosing the appropriate sampling technique depends on factors such as the nature of
the data, system complexity, and available computational resources. Oversampling methods
like SMOTE, ADASYN, and CBO are effective when synthetic data generation can enhance
model learning without introducing significant overfitting [44, 89]. Undersampling methods
such as ENNs, NCL, NearMiss, OSS, and SMUTE are beneficial when cleaning the majority
class and focusing on informative examples is crucial. Importance Sampling and its advanced
variants are ideal for probabilistic estimation in complex models, particularly when dealing
with high-dimensional data or black-box systems. Bayesian methods are advantageous when
prior information or continuous data collection allows for ongoing model updating.

By addressing class imbalance through these sophisticated sampling strategies, models
become more sensitive to the minority class, improving detection rates of rare events while
maintaining overall performance. Integrating these techniques with effective data preprocess-
ing and feature engineering creates a robust framework for rare event detection in the context
of rare diseases. However, it is essential to apply these methods judiciously, considering model
interpretability and collaborating with domain experts to ensure clinical relevance and trust-

worthiness in decision-making processes [90].

3.4.4 Feature Engineering

Feature engineering involves crafting new variables that better capture underlying data patterns,
which is particularly important for detecting rare diseases. Leveraging domain knowledge can
uncover relationships that are not immediately apparent. For instance, transforming time-series
EHRs into meaningful features has significantly improved the prediction of patient outcomes.
Harutyunyan et al. (2019) developed a benchmark dataset from ICU records and demonstrated
that extracting relevant features from time-series data enhanced the prediction of in-hospital
mortality and other clinical outcomes [91].

Creating interaction features between environmental exposures and genetic factors im-

proves detecting rare respiratory conditions linked to specific exposures. Patel et al. (2010)
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highlighted that modelling gene-environment interactions uncovers significant associations in

diseases like asthma, where genetics and environment play critical roles [92].

Extracting temporal features from wearable device data has proven effective in detecting
rare cardiac events. Analysing irregular heart rate variability over time improves early detection
capabilities, showcasing the value of dynamic pattern recognition. Tison et al. (2018) showed
that wearable devices could passively detect atrial fibrillation by monitoring heart rate patterns,
aiding in the early identification of this serious condition [93].

Combining multiple clinical measurements into single risk scores or deriving features from
unstructured data, such as text-mining clinical notes, also shows promise in capturing subtle
patterns across diverse data sources. Rajkomar et al. (2018) discussed how DL models utilising
various data types, including unstructured notes, improved predictive accuracy in healthcare

settings [94].

3.5 Rare Event Detection Methods

The field of rare event detection has witnessed significant advancements in recent years, driven
by the increasing availability of data and the development of sophisticated machine learning
(ML) techniques. Data-driven approaches have emerged as powerful tools for identifying and
predicting rare events, particularly in healthcare, where early detection of rare diseases can pro-
foundly impact patient outcomes. In this section, we explore various data-driven approaches
to rare event detection, focusing on their applications in healthcare and their potential to revo-

lutionise the diagnosis and management of rare diseases.

3.5.1 Statistical Techniques

Statistical techniques provide the foundation for many approaches to rare event detection, fo-
cusing on inferring relationships based on assumptions about the data’s underlying distribution.
These methods typically rely on probability theory and statistical inference to identify patterns
indicative of rare events. One of the most widely used statistical techniques in healthcare is
logistic regression, which models the probability of a binary outcome (e.g., the presence or
absence of a rare disease) as a function of one or more predictor variables. Logistic regres-
sion has been successfully applied to identify risk factors for rare diseases, such as genetic and

environmental factors associated with rare neurodegenerative disorders [95].
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Another important statistical technique is time series analysis, which models and forecasts
temporal patterns in data. Time series methods, such as auto-regressive integrated moving
average (ARIMA) models and exponential smoothing, have been used to detect rare events in
various healthcare applications, including the early detection of infectious disease outbreaks
and the identification of adverse drug reactions [96]. These methods are particularly effective
in capturing temporal dependencies, which are crucial in understanding how rare events unfold

over time.

3.5.2 Machine Learning (ML) Techniques

Machine Learning (ML) techniques differ from traditional statistical methods by not requiring
explicit assumptions about data distribution. ML models learn patterns and relationships from
data, improving as they are exposed to more examples. These methods can be classified into
three main categories: supervised, unsupervised, and semi-supervised learning.

Supervised learning techniques, such as support vector machines (SVM) and decision trees,
learn from labelled data, mapping input features to output labels. These models are widely used
for rare disease classification, where the goal is to predict the presence or absence of a disease
based on patient data. For example, SVM has been used to detect patients with undiagnosed
rare diseases based on clinical data [31].

Unsupervised learning techniques, such as clustering and anomaly detection, aim to find
hidden patterns in data without labelled examples. These methods are beneficial for detecting
rare events when labelled data is scarce or unavailable. Clustering algorithms like k-means
and hierarchical clustering can identify rare events by grouping similar instances and spotting
anomalies in the data. For example, anomaly detection based on k-means clustering has been
used to identify rare heart diseases from clinical data [97].

Semi-supervised learning techniques combine both labelled and unlabelled data to improve
model performance. These techniques are instrumental in healthcare applications, where ob-
taining labelled data for rare events is expensive or time-consuming. For example, co-training
and self-training methods have been employed to improve the performance of rare disease

classification models by leveraging unlabelled data [98,99].

3.5.3 Deep Learning (DL) Approaches

DL is a subset of machine learning that focuses on hierarchical feature learning through mul-

tilayered neural networks. DL models are highly effective at handling large-scale, complex
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datasets, particularly unstructured data such as images, text, and time-series data. DL mod-
els like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and

transformer-based models have shown remarkable success in rare event detection.

CNN s are highly effective for detecting rare events in medical imaging. These models excel
at capturing spatial hierarchies within images, which is crucial for identifying subtle anomalies
indicative of rare conditions. For example, CNNs have been successfully applied to detect rare

genetic disorders from facial photographs [100].

RNNs, especially Long-Short Term Memory (LSTM) networks, are well-suited for mod-
elling temporal dependencies in sequential data. RNNs have been used in healthcare to de-
tect rare events in time-series data, such as monitoring patient vitals or analysing EHRs. For
instance, LSTM networks have been applied to model disease progression in patients with

amyotrophic lateral sclerosis (ALS) [101].

Transformer-based models, such as BERT, have revolutionised the field of natural language
processing (NLP) and are now increasingly applied to rare event detection in unstructured
clinical text data. These models are pre-trained on large corpora and fine-tuned for specific
tasks with limited labelled data, making them effective for rare disease detection in clinical

narratives and EHR [102, 103].

A key challenge in applying DL to rare event detection is the scarcity of labelled training
data. DL models generally require large amounts of data to generalise effectively. Techniques

like transfer learning and data augmentation are commonly used to mitigate this challenge.

Transfer learning involves leveraging knowledge from a related task or domain to improve
model performance on a target task with limited labelled data. For example, a DL model
trained on common diseases can be fine-tuned for rare diseases, allowing the model to leverage

learnt features and representations [104].

Data augmentation aims to artificially increase the size of the training dataset by generat-
ing modified versions of existing samples. Generative models such as Generative Adversarial
Networks (GANs) and Variational Auto-Encoders (VAEs) have been used to generate synthetic

examples of rare events, improving the robustness of DL models [105].

In addition, semi-supervised and unsupervised DL approaches, such as autoencoders and
deep clustering, have been used to detect rare events with minimal labelled data. These models
can learn representations from unlabelled data, proving useful when labelled examples are

scarce.
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3.5.4 Hybrid Approaches

Hybrid approaches combine multiple data-driven techniques to enhance the performance and
robustness of rare event detection models. These approaches leverage the strengths of differ-
ent methods, addressing challenges such as class imbalance, high dimensionality, and limited
labelled data.

A promising hybrid strategy combines DL with transfer learning, which helps improve
performance in data-scarce domains. For example, fine-tuning a DL model trained on common
diseases with a smaller dataset of rare diseases can enhance detection performance [106].

Another noteworthy hybrid approach integrates ML with expert knowledge to improve
model interpretability and reliability. For instance, decision trees can combine data-driven
features with expert-defined rules to provide transparent and interpretable models, essential in
clinical applications [107].

Hybrid models that combine multiple techniques, including CNN and RNN in healthcare,
have shown promising results. These models capture both spatial and temporal patterns in data,
leading to improved performance and robustness. For example, a hybrid model using CNNs
and RNNs was successfully applied to detect rare adverse drug reactions from EHRs [108].

As the field of rare event detection continues to evolve, hybrid approaches are expected to
play an increasingly important role in addressing the unique challenges of rare events. Combin-
ing multiple data-driven techniques and incorporating domain-specific knowledge can provide
more accurate, reliable, and interpretable models for rare event detection in healthcare and

beyond.

3.6 Evaluation Techniques for Rare Event Detection Models

Evaluating the performance of rare event detection models is crucial, given the unique chal-
lenges of imbalanced datasets, such as class imbalance and limited positive examples. Spe-
cialised evaluation metrics and techniques are necessary to assess the model’s effectiveness in
accurately identifying rare events.

General evaluation methods, like cross-validation and hold-out validation, should be used
cautiously to avoid bias towards the majority class [109]. Rare event-specific evaluation metrics
were developed to address these challenges. The Area Under the Receiver Operating Char-
acteristic curve (AUC-ROC) measures the trade-off between true positive and false positive

rates, providing a comprehensive view of the model’s performance across different classifica-
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tion thresholds [110]. Other metrics include precision, which measures the proportion of true
positives among all positive predictions; recall, which measures the proportion of true positives
among all actual positive instances; the F1 score, which is the harmonic mean of precision and
recall; and the Matthews correlation coefficient, which takes into account all four elements of

the confusion matrix [111].

Choosing the right evaluation metric depends on the specific requirements of the task. For
example, in healthcare applications where missing a rare event (false negative) is costly, a met-
ric that emphasises recall (e.g., F1 score or AUC-ROC) is appropriate. Other considerations
when evaluating rare event detection models include stratified sampling to ensure a represen-
tative proportion of rare events in the evaluation dataset, using multiple evaluation metrics for
a comprehensive understanding of the model’s performance, and assessing model calibration

using reliability diagrams and calibration plots [112].

Model calibration is critical to evaluating rare event detection models, as it ensures that
the predicted probabilities align with the observed event frequencies. Well-calibrated models
provide reliable estimates of the likelihood of rare events, essential for decision-making in
high-stakes domains like healthcare. Reliability diagrams, also known as calibration plots, are
graphical tools used to assess model calibration by comparing the predicted probabilities with
the observed event frequencies across different probability bins [113]. These diagrams visually
represent the model’s calibration performance, with a perfectly calibrated model following
the diagonal line. Calibration metrics, such as the Expected Calibration Error (ECE) and the
Maximum Calibration Error (MCE), quantify the degree of miscalibration by measuring the

average and maximum deviation from perfect calibration, respectively [112].

Techniques for improving model calibration include Platt scaling, which uses logistic re-
gression to transform the model’s outputs into well-calibrated probabilities [114], and isotonic
regression, which applies a non-parametric monotonic transformation to the predicted proba-
bilities [115]. These methods can help align the predicted probabilities with the observed event

frequencies, enhancing the reliability and interpretability of rare event detection models.

Cost-sensitive learning methods are particularly relevant for rare event detection, as they
account for the varying costs associated with different types of misclassifications [116]. These
methods aim to minimise the total misclassification cost by modifying the training data or the
learning algorithm. One approach is to assign different weights to different classes, giving
more importance to the rare class. This can be achieved through loss weighting, where the loss

function is modified to assign higher weights to the misclassification of rare events. Another
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approach is to use focal loss, which down-weights the contribution of easy examples and fo-
cuses on complex examples during training. Focal loss effectively handles class imbalance and
improves the model’s performance on rare events [117].

Fine-tuned evaluation metrics for rare event scenarios include the Precision-Recall curve
(PR curve) and Area Under the Precision-Recall curve (AUPR). Precision measures the pro-
portion of true positives out of all positive predictions, while recall (sensitivity) measures the
proportion of true positives out of all actual positives. The PR curve visualises the trade-off
between precision and recall at different thresholds, and AUPR provides a single value sum-
marising this trade-off. These metrics are more sensitive to class imbalance than AUC-ROC,
making them particularly useful for rare event detection tasks [118]. Another metric is the
Normalised Discounted Cumulative Gain (NDCG), which assesses the model’s ability to rank
instances based on their likelihood of being rare events. NDCG is particularly useful when the
goal is to prioritise the identification of rare events, as it assigns higher weights to correctly

identifying rare instances at the top of the ranked list [119].

3.7 Interpretability and Explainability in Clinical Models

The importance of model interpretability and explainability cannot be overstated in the context
of rare event detection, particularly in high-stakes domains like healthcare. Interpretability and
explainability are often used interchangeably, but they have distinct meanings. Interpretability
refers to the ability to understand how a model works and how it arrives at its predictions. At
the same time, explainability provides insights into why a model made a particular decision.

Interpretability techniques in ML are generally categorised into model-intrinsic and post-
hoc explanation methods. Model-intrinsic interpretability refers to inherently interpretable
models due to their simple structure or the transparency of their decision-making process.
These models allow clinicians to directly understand the reasoning behind each prediction
from the model’s structure. Examples of model-intrinsic interpretability include linear models,
decision trees, and rule-based models.

Linear models, such as logistic regression, provide coefficients for each feature, indicat-
ing the strength and direction of the relationship between the feature and the outcome. These
models allow for easy interpretation and validation against existing medical knowledge in clin-
ical settings. For instance, Lundberg et al. (2018) developed a logistic regression model to
predict the risk of a rare cardiovascular event that provided clear insights into the most influ-

ential risk factors, such as age, blood pressure, and specific biomarkers, enabling clinicians
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to understand the model’s decision-making process and validate it against established clinical

guidelines [120].

Decision trees offer a flowchart-like structure that is easy to follow and understand. Each
node in the tree represents a decision based on a feature, leading to a clear path from input
to prediction. Clinicians can trace the decision-making process step by step, ensuring trans-
parency. An example of a decision tree model in rare disease diagnosis is the work by Caruana
et al. (2015), which developed a decision tree to identify patients with a rare genetic disor-
der based on clinical features and family history. The model’s structure allowed clinicians to

understand the key decision points and validate them against their domain knowledge [121].

Rule-based models generate a set of if-then rules for prediction, which can be directly
interpreted. These models are beneficial for encoding and validating clinical guidelines and
protocols. For instance, a rule-based model developed by Tonekaboni et al. (2019) for the
early detection of a rare infectious disease outbreak provided a set of clear, interpretable rules
based on patient symptoms, travel history, and other relevant factors. Public health experts
could easily understand and validate these rules, facilitating the model’s integration into clinical

decision-making processes [122].

Post-hoc explanation methods are used to interpret complex models that are not inherently
interpretable. These methods aim to provide insights into the model’s behaviour after training.
Feature importance methods, such as permutation importance, assess the impact of each fea-
ture on the model’s predictions. By understanding the most influential features, clinicians can
gain insights into the model’s decision-making process. In a study by Lipton (2017), permu-
tation importance was used to identify the most critical features in a DL model for detecting
rare adverse drug reactions. The analysis revealed that specific patient demographics, medica-
tion history, and laboratory results were the most influential factors, providing clinicians with

valuable insights into the model’s behaviour [123].

Partial Dependence Plots (PDPs) show the relationship between a feature and the predicted
outcome, averaged over the distribution of other features. They help visualise how changes
in a feature affect the model’s predictions. Partial Dependency Plots (PDPs) have been used
to interpret ML models in various healthcare applications, including rare disease diagnosis.
For example, in a study by Janizek et al. (2021), PDPs were used to visualise the relationship
between specific biomarkers and the predicted risk of a rare autoimmune disorder, providing
clinicians with insights into the model’s decision-making process and guiding further clinical

investigations [124].
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Local Interpretable Model-Agnostic Explanations (LIME) is a popular post-hoc explana-
tion method that explains individual predictions by approximating the complex model locally
with an interpretable one. It is particularly useful for describing specific clinical cases, which
can aid in understanding unexpected or high-risk predictions. Local Interpretable Model-
Agnostic Explanations (LIME) has been applied in various healthcare settings, including rare
disease diagnosis. In a study by Ribeiro et al. (2016), LIME was used to explain the predictions
of a ML model for identifying patients with a rare genetic disorder. The explanations provided
by LIME helped clinicians understand the key factors contributing to each patient’s diagnosis,

facilitating more targeted clinical interventions and improving patient outcomes [125].

SHapley Additive exPlanations (SHAP) is another powerful post hoc explanation method
that provides a unified measure of feature importance based on game theory. SHapley Additive
exPlanations (SHAP) values offer global and local explanations, indicating how much each
feature contributes to each prediction. SHAP has been applied in various healthcare settings,
including rare disease diagnosis. For instance, in a study by Lundberg et al. (2017), SHAP
was used to interpret a ML model for predicting the risk of a rare neurodegenerative disorder.
The SHAP values revealed the most influential risk factors, such as age, genetic markers, and
environmental exposures, providing clinicians with valuable insights into the model’s decision-

making process and guiding further clinical research [126].

In the clinical context, the choice of interpretability technique depends on the specific ap-
plication and the needs of the healthcare professionals. Model-intrinsic methods are preferred
when simplicity and direct interpretability are required, such as in developing clinical guide-
lines or when the model must be transparent for regulatory approval. Post-hoc explanation
methods are more suitable for complex models where high predictive accuracy is necessary
and the model’s intrinsic structure does not lend itself to straightforward interpretation. These
methods can help bridge the gap between model complexity and the need for interpretability,

allowing clinicians to trust and understand the predictions made by advanced ML models.

However, achieving interpretability and explainability in complex ML models can be chal-
lenging. There is often a trade-off between model performance and interpretability, as sim-
pler, more interpretable models may not capture the intricate patterns and relationships in the
data. Researchers and practitioners must strike a balance between model complexity and inter-
pretability, depending on the application’s specific requirements. For instance, in rare disease
diagnosis, where the consequences of misdiagnosis can be severe, it may be more important to

prioritise model interpretability over marginal gains in predictive performance. On the other
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hand, in applications where the cost of false negatives is high, such as in the early detection of
rare cancer subtypes, more complex models with higher predictive accuracy may be preferred,
with post hoc explanation methods used to provide insights into the model’s decision-making
process.

Striking the right balance between model complexity and interpretability is critical in de-
veloping clinical decision support systems for rare disease diagnosis. It requires close collab-
oration between ML experts, clinicians, and other stakeholders to ensure that the models are

accurate, transparent, trustworthy, and aligned with clinical knowledge and ethical principles.

3.8 Translating Models into Clinical Practice

Translating interpretable and explainable Al models into clinical practice is a complex, multi-
disciplinary endeavour that requires close collaboration among data scientists, healthcare pro-
fessionals, IT experts, and policymakers. This process involves not only the technical aspects
of model development and deployment but also the integration of these models into existing
clinical workflows, acceptance by healthcare professionals, and adherence to regulatory stan-
dards.

Developing Al models for clinical decision support is a challenging task that requires a
deep understanding of the clinical domain, the limitations of the available data, and the ethical
implications of Al-driven decisions. To ensure the successful translation of these models into
practice, adopting a human-centred design approach that involves healthcare professionals and
patients throughout the development process is essential. Key principles of human-centred
design that should be considered include empathy, collaboration, iteration, transparency, and
adaptability.

Several interpretable and explainable Al models, such as the Early Warning Score (EWS)
system and the IDx-DR diabetic retinopathy diagnostic system (IDx-DR) system, have been
successfully integrated into clinical practice, although with some limitations. The Early Warn-
ing Score (EWS) system uses ML algorithms to predict patient deterioration based on vital
signs and other clinical data, offering explanations for its predictions. However, clinicians may
find these explanations difficult to interpret, and there is a risk of over-relying on the system’s
predictions without accounting for other clinical factors. Similarly, the IDx-DR system, an Al-
based tool for detecting diabetic retinopathy from retinal images, provides interpretations of its

findings [127]. While it has received regulatory approval, its explanations may not fully cap-
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ture the underlying disease mechanisms, and there is a potential for false positives or negatives

in certain cases.

These examples highlight the challenges of translating interpretable and explainable Al
models into clinical practice. Key issues to address include the complexity of explana-
tions, over-reliance on predictions, integration challenges, incomplete understanding of disease

mechanisms, and the potential for false positives and negatives.

Moreover, general challenges and gaps in the translation process include ethical and legal
issues surrounding accountability, the lack of contextual information available to AI models,
and the risk of over-reliance on diagnoses made by Al. These challenges are further amplified
when dealing with rare clinical events or diseases, as the scarcity of data and limited expert
knowledge make it harder to develop and validate Al models that can accurately predict and
diagnose these events. The heterogeneity of rare diseases and the variability in their presenta-
tion and progression also pose significant challenges to the generalisability and adaptability of
Al models.

Addressing these challenges requires ongoing research, multidisciplinary collaboration,
and a focus on human-centred design principles to ensure these tools are effective and trust-
worthy in real-world clinical settings. Ensuring that model explanations are clinically meaning-
ful, actionable, and easily understood by healthcare professionals is a critical goal, but harder
to achieve when dealing with less common conditions. Improving the generalisability and
adaptability of these models across different healthcare settings and patient populations is an
ongoing area of research, with rare diseases presenting unique challenges due to their inherent

variability and the limited availability of data and expertise.

In healthcare systems, the balance between false positives and early detection is crucial,
especially for rare diseases. While minimising false positives is essential to avoid unnecessary
interventions and patient anxiety, the ability to catch rare diseases early can significantly im-
prove patient outcomes and reduce healthcare costs in the long run. However, achieving this
balance is particularly challenging for rare conditions, as the limited data and understanding
of these diseases make it harder to develop Al models that can accurately distinguish between

true positives and false positives.

Ultimately, successfully translating interpretable and explainable Al models into clinical
practice requires a nuanced understanding of the trade-offs between false positives and early
detection, particularly in rare diseases. By engaging healthcare professionals, patients, and

other stakeholders in the development process, Al researchers can work towards finding the
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optimal balance that maximises patient benefits while minimising unintended consequences.
This collaborative approach, combined with ongoing research and investment in interpretability
and generalisability, is crucial for realising the full potential of Al in healthcare and improving

patient outcomes, especially for those affected by rare conditions.

3.9 Research Gaps and Future Directions

Despite the significant progress in rare event detection, several research gaps and challenges
remain. Addressing these gaps is crucial for advancing the field and developing more effective
and reliable rare event detection models.

One of the main gaps in the literature is the lack of standardised datasets for rare event de-
tection, which makes it difficult to compare the performance of different models and techniques
effectively. Future research should focus on developing comprehensive, domain-specific
datasets that accurately represent the challenges of rare event detection across various fields,
including healthcare, finance, and cybersecurity. The development of such datasets will be a
key focus in the upcoming chapters, particularly in Chapter 7, where we explore the creation
of a rare disease dataset tailored explicitly for the UK healthcare system.

Emerging research trends focus on leveraging advanced learning methods for rare event de-
tection, such as DL. These methods have shown promising results in various domains, but their
application in rare event detection is still in its early stages. Future research should investigate
DL architectures optimised for imbalanced datasets and transfer learning techniques to lever-
age knowledge from data-rich domains to improve rare event detection in data-scarce areas.
This thesis will explore the use of DL techniques, namely self-attention mechanisms (Chapter
5) and graph neural networks (Chapter 6), in moderate and severely imbalanced datasets.

Another promising direction is the integration of domain knowledge into prediction mod-
els, which can help improve both the interpretability of the model and the accuracy of predic-
tions. Future research should focus on developing frameworks for seamlessly incorporating ex-
pert knowledge into ML models, creating hybrid models that combine data-driven approaches
with theory-based models. Chapter 6 proposes a novel approach for infusing medical ontolo-
gies into language models to improve their understanding of infrequently coded conditions and
their relationships.

As data generation continues to accelerate, developing methods for streaming data be-
comes increasingly important. Future research should address algorithms capable of adapting

to changes in the underlying distribution of rare events over time. While this is not a primary
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focus of this thesis, we will briefly discuss the potential of online learning algorithms for rare
disease detection in the context of the UK healthcare system in Chapter 8.

Given the scarcity of labelled data in many rare event scenarios, unsupervised and semi-
supervised learning methods offer promising avenues for future research. This includes devel-
oping robust anomaly detection algorithms to identify novel types of rare events. Chapter 7 will
delve into applying unsupervised learning techniques for distinguishing rare cardiac diseases
with similar presentations.

Future research in rare event prediction is directed towards developing more sophisticated
models, leveraging advancements in computational power, and expanding data availability.
Researchers are also focusing on improving the interpretability and usability of models to fa-
cilitate their adoption in real-world settings. Throughout this thesis, we will emphasise the
importance of model interpretability and usability, particularly in the context of clinical deci-
sion support systems for rare disease diagnosis (Chapters 7 and 8).

It is important to continue researching and developing new techniques for rare event de-
tection. By addressing these identified gaps and challenges, we can advance the field and
contribute to more effective, reliable, and ethically sound rare event detection models that can

be confidently applied across various domains.

3.10 Summary

This chapter provided a comprehensive overview of data-driven approaches in rare event detec-
tion, focusing on healthcare applications. It began with examining the unique characteristics
and challenges of rare event data, including class imbalance, high dimensionality, temporal
complexities, and the importance of contextual information. These challenges necessitate spe-
cialised data preprocessing and feature engineering techniques to improve data quality and
model performance.

Next, the sections explored various data-driven methodologies for rare event detection,
highlighting the role of statistical techniques, ML, and DL approaches. It was discussed how
ML techniques, including supervised, semi-supervised, and unsupervised learning, have been
applied to detect rare diseases and adverse events in healthcare. The advancements in DL,
particularly convolutional neural networks and recurrent neural networks, have shown promise
in capturing complex patterns in high-dimensional data. There was an emphasis on the poten-
tial of transfer learning to leverage knowledge from data-rich domains and improve rare event

detection in data-scarce areas.
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The evaluation of rare event detection models was discussed, focusing on specialised met-
rics and techniques to assess model performance accurately. The importance of model calibra-
tion was highlighted, and tools that ensure predicted probabilities align with observed event
frequencies were introduced. These evaluation techniques are crucial for developing reliable

models that can be confidently applied in high-stakes domains like healthcare.

A significant emphasis was placed on interpretability and explainability in clinical mod-
els. We discussed the importance of model-intrinsic interpretability and post-hoc explanation
methods, providing examples specific to the healthcare domain. The trade-off between model
performance and interpretability was explored, underscoring the need to strike a balance de-
pending on the application’s requirements. Practical and trustworthy clinical decision support
systems for rare disease diagnosis can be further developed by leveraging the strengths of in-

terpretable models and advanced explanation techniques.

Furthermore, we delved into the challenges of translating these models into clinical prac-
tice. Adopting a human-centred design approach was highlighted as essential for successful
integration, involving healthcare professionals and patients throughout development. We dis-
cussed practical aspects such as understanding user needs, fostering stakeholder collaboration,
iteratively refining models based on feedback, ensuring transparency in Al decision-making,
and adapting models to changing clinical contexts. The EWS and IDx-DR systems demon-
strated the potential of implementing interpretable and explainable Al models in clinical set-
tings.

Despite progress, several research gaps and challenges remain in rare event detection. We
identified the need for standardised datasets, improved uncertainty quantification, advanced
learning methods tailored for imbalanced data, and the integration of domain knowledge into
prediction models. Addressing these gaps is crucial for advancing the field and developing

more effective, reliable, and ethically sound rare event detection models.

Throughout our work, these challenges in the context of the UK healthcare system will be
explored with a focus on rare disease diagnosis. Data scarcity (Chapter 4) will be discussed,
as will model interpretability (Chapters 7 and 8) and the integration of domain knowledge
(Chapter 6), leveraging advanced ML techniques such as DL (Chapters 5 and 6), Bayesian
methods (Chapter 4) and unsupervised learning (Chapter 7). By developing novel approaches
and frameworks, our work contributes to advancing rare event detection and improving patient

outcomes.

Moving forward, it is essential to prioritise the development of robust, reliable, and eth-
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ically sound rare event detection models that can be confidently applied in clinical practice.
By addressing the key challenges of interpretability, model deployment, and stakeholder en-
gagement, it is possible to harness the power of Al to predict better and manage rare events,
ultimately improving outcomes for individuals and society. This chapter serves as a foundation
for the remainder of this thesis, highlighting the key challenges and opportunities in rare event

detection and setting the stage for detailed investigations to follow.
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4. Navigating Imbalance and Missing Data in Clinical Settings

4.9  Connecting the dots and remembering thewhy . . . . . .. ... ... .. 72

4.1 The silent killer

Sepsis is a life-threatening condition that arises when the body’s response to infection causes
widespread inflammation and organ dysfunction [128]. It is a silent killer, often progressing
rapidly and leading to high mortality rates if not promptly and effectively treated [129]. In
2017, an estimated 48.9 million sepsis cases were reported worldwide, and it was responsible

for 11 million deaths [129]. Sepsis is a concern, especially in ICUs.

A study examining 30 years of sepsis trends in the UK reported an increase in the propor-
tion of sepsis cases in the ICU from 7.6% between 1988 and 1990 to 19.6% between 2017 and
2019, an increase of 2.6-fold [130].

Patients in the ICU are especially vulnerable to sepsis due to their underlying conditions,
invasive procedures, and exposure to multiple risk factors. The rapid progression of sepsis in
these patients can lead to severe complications, such as septic shock, which is associated with
a mortality rate of up to 50% [131,132]. The complexity of sepsis, combined with its heteroge-
neous presentation and the imbalanced nature of clinical data, presents unique challenges for

developing predictive models that are both accurate and clinically applicable.

Early detection of sepsis is crucial for improving patient outcomes and reducing the burden
on healthcare systems [133]. However, the imbalanced nature of clinical data, where non-
septic instances far outnumber septic cases, poses challenges for developing accurate predictive
models. Addressing this issue requires sophisticated ML techniques and a deep understanding

of the clinical context and dynamics of ICU data.

This chapter further explores ML techniques for early detection of sepsis within the ICU,
with the use of the Medical Information Mart for Intensive Care-IV (MIMIC-1V) dataset. The
primary focus of this study is to enhance the interpretability and reliability of ML models
designed for early sepsis prediction during an ICU stay. By developing accurate and clinically
applicable models, we contribute to the knowledge base, provide insights that could improve

sepsis outcomes and present a diagnostic support tool to facilitate early sepsis detection.
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4.2 Diagnostic Scores and Pathways and their pitfalls

Diagnosing sepsis can be challenging due to its complex and heterogeneous presentation [130].
Various diagnostic scores and pathways have been developed to aid in the identification of
sepsis. However, a systematic review evaluating the performance of the individual scores found
that it ranged between poor and acceptable at best [134]. Different combinations of these scores
may be better for accurately detecting sepsis.

Standard sepsis detection scoring systems, such as the Sequential Organ Failure Assess-
ment (SOFA) and the Systemic Inflammatory Response Syndrome (SIRS) criteria, are easily
accessible and calculated. Still, each has limitations [135]. The SOFA score relies on organ
dysfunction and measurements from the ICU, which is less valuable when detecting sepsis in
its earlier stages [135]. SIRS, on the other hand, was critiqued for being non-specific.

Moreover, these diagnostic scores and pathways do not capture the full spectrum of sepsis
presentations. They do not account for atypical signs or symptoms, especially among the
elderly population, or the dynamic nature of the condition [136]. Hence, relying solely on these
tools can lead to missed or delayed diagnoses, compromising patient care and outcomes [137].

EHRs allows for more efficient patient monitoring and early identification of sepsis by
leveraging key biomarkers and clinical data. ML algorithms can be applied to EHRs data,
enabling automated and real-time sepsis prediction without additional clinician input.

A key challenge when using ML for any analysis is the imbalanced nature of clini-
cal datasets, where non-septic instances far outnumber septic cases, as noted in these stud-
ies [138—140]. This can lead to biased models that fail to accurately identify critical sepsis
cases. Addressing this requires sophisticated techniques to balance the data and adjust the al-
gorithm to ensure the models’ accuracy and sensitivity in detecting early signs of sepsis in the
imbalanced dataset.

Another challenge is the scepticism of healthcare professionals to trust decisions made by
ML tools, which are usually unfamiliar with the underlying algorithms and how such tools
achieve certain conclusions. These can be addressed by incorporating interpretability and ex-
plainability into the design of ML tools that aid in decision-making [141].

In sum, diagnostic scores and pathways previously aided in sepsis detection have unique
limitations. The complexity and heterogeneity of sepsis presentation and the imbalanced nature
of data within EHRs require a more comprehensive approach that leverages the power of ML.
Therefore, we aim to develop clinically aligned models that consider a wide range of data and

provide interpretable results to improve early sepsis detection and support clinical decision-
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making in the ICU as a decision support tool.

4.3 Confronting data gaps in critical care

Recent statistics show that between 25%-30% of individuals with sepsis die from it and hospital
mortality from septic shock is between 40% -60% [128]. Despite improvements in diagnostic
criteria over time, diagnosing sepsis promptly, especially in its early stages, remains a challenge
[130]. This is primarily due to the lack of formal diagnostic criteria, especially for early sepsis,
as it is often multifactorial and heterogeneous in presentation [142]. This resulted in most
sepsis research focusing on validating existing diagnostic criteria and discovering diagnostic
markers [137,143-148].

Misra et al. identified lactic acid as a key diagnostic marker where increased concentra-
tions were associated with progression to septic shock and death [149, 150]. Misra, Wardi and
researchers [151, 152] achieved high accuracy performances of at least 85% in their complex
algorithms.

Besides identifying key diagnostic features, it is vital to provide a way for healthcare pro-
fessionals who are unfamiliar with the models to understand how conclusions were reached
[141]. This concern has been addressed briefly in recent studies using sophisticated libraries,
including SHAP. SHAP is a quantitative measure of feature importance by comparing accura-
cies in prediction with and without the feature.

Li et al. pioneered explainability tools by using SHAP values to display the importance
of selected key features and provide visual quantitative insights on their effect in the model’s
decision for the patient’s diagnostic status. An example showcases the combined effect of
temperature and ICU length of stay (ICU LOS) on the risk of diagnosing sepsis. It suggests
that the risk of sepsis is relatively low at lower temperatures, regardless of ICU Lenght Of
Stay (LOS). The opposite is true, with longer ICU LOS indicating higher susceptibility to
sepsis [147]. The insight demonstrated the usefulness of including visual aids and SHAP to
help algorithm users better understand the models’ decisions.

The examples above illustrate that many studies have contributed valuable insights into
sepsis diagnosis and intuitive decision-making tools for early sepsis detection [150, 153, 154].

However, investigation into the data preparation methods shows that most studies apply
the same set of methods to handle missing data across the complete set of features; some
removed records which had a proportion of missing values above a predefined threshold, in

which Misra et al. excluded variables with 40% or more missing values. Yuan et al. ex-
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cluded records with missing vital sign values, and Bloch et al. and Saqib et al. only used
fully completed records [150, 155-157]. Few did not apply any imputation, while others used
forward-fill variations or imputation to complete the dataset [158—160]. While these methods
apply to well-balanced datasets, they may not be the most suitable for rare diseases, as they
incorrectly treat all measures equally. For instance, vital signs like heart and respiratory rate,
blood pressure and body temperature are taken more frequently than laboratory tests, which

are ordered circumstantially.

Therefore, this study aims to answer the following questions:

1. How does a clinically informed model perform compared to existing models in sepsis

detection?

2. How clinically aligned are the most impactful features generated by the model?

4.4 Designing a clinically aligned approach to modelling ICU

data?

4.4.1 Data source

This study uses data from the Medical Information Mart for Intensive Care IV (MIMIC-1V
version 1.0) database from 2008 to 2019 [161]. MIMIC includes over 40,000 ICU patients
admitted to Beth Israel Deaconess Medical Centre (BIDMC) and has a 1:3 ratio of sepsis
to non-sepsis patients. We accessed MIMIC through Google BigQuery using data extraction
codes from https://github.com/MIT-LCP/mimic-1v. Modifications were made to
include additional parameters in the blood gases, cardiac markers and enzyme assay tables.
The study used 137 features in the dataset, including administrative details, vital signs, comor-

bidities and other diagnostic tests.
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Figure 4.1: Flow chart illustrating the data preparation process. (A) Cohort selection where yellow
boxes represent exclusion criteria and blue boxes indicate successive versions of the complete dataset
until stratified by diagnosis point. (B) Preprocessing, where orange boxes refer to data modification
steps, red boxes indicate data removal, and green boxes indicate an imputation step. Throughout each
imputation stage, a version of the dataset (blue boxes) is extracted later to assess the impact on perfor-
mance and clinical validity.

4.4.2 Case Ascertainment
Sepsis-3 criteria were used for case definition and to understand prodromal symptoms [162].

Records were included if they met the following criteria:

* The patient is aged 18 and above:
By restricting the cohort to adults, the study focuses on the population most likely to

encounter sepsis in ICU settings. Paediatric sepsis differs in presentation, management,
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and prognosis, requiring distinct protocols for assessment [163]. Limiting the study to

adults ensures the findings apply to most ICU patients [162].

* The episode was an index ICU stay:
Including only the first ICU admission per patient minimises confounding from recurrent
admissions, which can involve multiple comorbidities, complications, and treatments
that may obscure the early markers of sepsis. This approach helps maintain the homo-
geneity of the study cohort and reduces bias due to the complexity of multi-episode ICU

admissions [162].

* Sepsis developed after 2 hours of ICU admission:
Sepsis typically develops after admission to the ICU, often as a result of invasive proce-
dures, infections, or underlying conditions worsened by critical care treatments. Exclud-
ing patients who already had suspected sepsis upon admission isolates those in whom
sepsis developed as a consequence of ICU or previous care. This avoids confounding

factors related to patients suspected of having sepsis at the time of admission [146, 162].

* The episode was 21 days or less (i.e., 500 hours between ICU admission and hospital
discharge):
Sepsis is most commonly acute, and limiting the study to patients with ICU stays <21
days ensures a focus on early-stage sepsis. Longer ICU stays often involve multi-organ
failure and chronic conditions, making sepsis diagnosis more complex. By capping the
stay at 21 days, we capture patients with a typical sepsis trajectory, providing a more
accurate reflection of early sepsis detection. This 21-day threshold is consistent with
ICU sepsis definitions and helps to avoid the complexity of long-term ICU admissions,

where sepsis may be secondary to other complications [146,162].

4.4.3 Data pre-processing

Diagnosis points of sepsis were chosen using the Third International Consensus Definitions for
Sepsis (sepsis-3), also used by Nemati et al. [146].

The diagnostic times identified are the following (Figure 1):

* Suspected infection (tsuspicion): Earliest time an antibiotic was given, followed by a blood

culture being taken no more than 24 hours after a blood culture was taken, then an an-
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tibiotic being administered within 72 hours. This diagnostic point reflects the clinician’s

suspicion that infection is present and needs to be treated.

* Sepsis-3 (tsepsis): an episode of suspected infection with a two- or more-point change in
the SOFA score (tsora) from up to 24 hours before to up to 12 hours after the tyyspicion

(tsora+24h>tguspicion>tsora-12h).

This refers to the most recent sepsis criteria that require organ dysregulation in addition

to a suspected infection for diagnosis.

* Onset (tonser): the earliest time point, judged in retrospect, once sepsis is diagnosed, that
organ dysfunction was assumed to be caused by sepsis; either the point at which infection

was suspected (tsuspicion) Or the point at which tsora changed if that is earlier.

Our work focuses on detecting tgepsis as it resembles the current gold standard. Predic-
tive performances of the algorithm on tyspicion and tonser Were given for completeness and to

facilitate comparison with existing literature.

4.4.4 Data completeness

Respiration Rate

Clinical Observations/Ventilator
Settings

Ventilator

Vital Signs

Sodium Laboratory Blood Gasses Renal Function
Temperature Clinical Observations Blood Gasses Vital Signs
Oxygen Saturation Laboratory/Clinical Observations Vital Signs Blood Gases

Clinical Marker Category Rank 1 Rank 2 Rank 3
Bicarbonate Laboratory Blood Gases Renal Function
Chloride Laboratory Blood Gases Renal Function

Haematocrit Laboratory Complete Blood Count Blood Gases

Haemoglobin Laboratory Complete Blood Count Blood Gases

Fraction of Inspired Laboratory/Ventilator Settings Ventilator Blood Gases

Oxygen (FiO2)

Glucose Laboratory/Point of care Plasma glucose (lab) Blood Gases Point of care glucometer
PEEP Clinical Settings/Laboratory Blood Gases Ventilator

Potassium Laboratory Blood Gases Renal Function

Oxygen flow Clinical Observations Ventilator Blood Gases

Tidal Volume Ventilator Settings Blood Gases Ventilator

Table 4.1: Feature ranking of biomarker measurements and feature type. Rank 1 being the most clini-
cally specific and Rank 3 being the least.

Having defined diagnosis points, the focus was on improving data quality. Initially, biomark-

ers with more than one measurement technique were ranked by clinical specificity 4.1. For
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example, blood glucose measured with a glucometer is taken more frequently. Still, it is less
accurate than using an arterial blood gas (ABG) analyser [164] and much less precise than
laboratory-tested samples.

Where at least two measures are available, laboratory results would supersede an ABG
result, which would supersede the glucometer measurements.

Missing data, on the other hand, requires more interventional methods. The most popular
methods of handling missing data are combinations of 1) interpolation with mean imputation
[144,158] and 2) forward-fill or carry-forward imputation with mean imputation [147, 154].

Extending from these methods, features with less than 0.05% available values were ex-
cluded (Figure 4.3). Additionally, most clinical tests were only requested at set intervals or
upon clinical suspicion [165], a frequency analysis was done for insights on data missingness.
Continuous variables were then filtered to retain between predefined clinically possible ranges.
Administrative features were forward-filled while others were interpolated. Refer to Appendix
table A.1

Three test datasets were created using varying methods of handling missing data:

1. Numerical values were scaled to 0-1, and categorical variables were converted into indi-

vidual columns with binary vectors (one-hot encoded).

2. Preceding method: If there were two or more values for a biomarker in a patient'ICU
stay, the missing values in the middle would be a product of the interpolation between

both existing values.

3. The preceding method was used with the addition of stratifying patients by their ad-
mission SOFA score. Excluding administrative and categorical variables, features were
assigned into static SD < 0.1 or dynamic categories. 0.1<SD < 1. Static features were
imputed with the admission SOFA group median scores, while dynamic features were
forward-filled.

Subsequently, three diagnosis points were allocated to each dataset: 1) At the original
diagnosis time point according to Sepsis 3 criteria, 2) 6 hours before and 3) 12 hours before
the original diagnosis time. This ensures that data patterns identified were not from the natural
variation in missingness between septic and non-septic patients, also allowing for early sepsis
diagnosis of up to 12 hours. The non-imputed full-feature data with the original diagnosis point

was used as the baseline dataset.
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4.4.5 Machine Learning Model Selection and Evaluation

Our work used ML techniques to predict healthcare outcomes, leveraging increasingly avail-
able complex clinical datasets. ML methods offer substantial advantages in predictive perfor-
mance and identifying previously undetected subpopulations, which is especially beneficial for
improving patient care and outcomes in clinical environments [166]. Below is an outline of our
model development process, including the rationale for the choices and relevant literature that

informed these decisions.

Hyperparameter Tuning

The first step in model optimisation involved hyperparameter tuning, which was carried out
using Optuna with Hyperband optimisation. Hyperparameter tuning is crucial for optimis-
ing model performance, as emphasised in multiple studies, including Stevens et al. [167], who
highlight the need for careful hyperparameter selection in clinical ML applications to ensure
generalisability. Optuna was selected for its ability to efficiently explore large hyperparame-
ter search spaces using Bayesian optimisation, a method known for balancing exploration and
exploitation during the search process [168]. Additionally, Hyperband dynamically allocates
resources during the optimisation, making it particularly efficient in selecting hyperparameters

when computational resources are limited [169].

For the classifier, XGBoost was chosen for its strong performance with structured data,
particularly in clinical research. XGBoost has been shown to outperform other models in
numerous healthcare prediction tasks, as discussed by Venkatesan and Yamuna [170]. The
specific hyperparameters optimised were learning rate, maximum tree depth, and the number
of estimators, which are crucial for achieving optimal model performance in clinical applica-
tions. These hyperparameters were optimised using logarithmic loss as the objective function

to ensure the best possible model performance for classification tasks in clinical applications.

The hyperparameter tuning process was conducted over 100 iterations to find the optimal
set of hyperparameters. During this process, stratified K-fold cross-validation with 5 folds was
employed to ensure that the data was evenly distributed across each fold while maintaining the
class distribution in each subset. This approach provided a robust evaluation of the model’s
performance during the hyperparameter optimisation, helping to prevent overfitting by validat-
ing across multiple data splits. The results from the cross-validation guided the selection of the

best hyperparameter configuration for further model training and evaluation.
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Model Training and Validation

After hyperparameter tuning, the final model was trained using a train-validation-test split.
The dataset was divided into 60% for training, 20% for validation, and the remaining 20%
for testing. This split allowed the model to learn from a sufficient portion of the data while
retaining separate subsets for validation and testing. The validation set was used to tune the
model during training and assess its performance, ensuring it generalised well to unseen data

and reducing the risk of overfitting during training.

Test Set Evaluation

The trained model was then evaluated on the remaining 20% of the dataset, serving as the
test set. The test set provided an unbiased estimate of the model’s ability to generalise to
new, unseen data, which is essential in clinical applications, where predictions must be made
for future patient populations [167]. Performance metrics such as accuracy, precision, recall,
and F1-score were computed to assess the model’s effectiveness, particularly given the class
imbalance often present in healthcare datasets [171]. These metrics were chosen for their
ability to evaluate different aspects of model performance, especially in imbalanced datasets,

where traditional accuracy measures may not reflect true predictive power.

Model Interpretability

Given the importance of model interpretability in clinical decision-making, SHAP (Shapley
Additive Explanations) values were employed to elucidate how each feature influenced the
model’s predictions [172]. SHAP values, based on cooperative game theory, provide a clear
explanation of the contribution of each feature to the model’s output [126]. Stevens et al. [167]
discuss the importance of interpretability for clinical practitioners, as ML models must be
transparent for integration into clinical decision-making. This transparency allows healthcare
providers to trust and understand the model’s predictions, which is critical for adoption in

clinical practice.

Additional Considerations and Rationale

The choice of XGBoost was driven by its predictive performance and strong interpretabil-
ity features, making it a practical choice for healthcare applications where decision support

systems must be transparent. Using SHAP aligns with the guidelines presented by Stevens et
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al. [167], who emphasise the importance of making model outputs understandable to clinical
end-users. The validation of these results using external test sets was also a key strategy to en-
sure that the model’s performance was not overestimated due to overfitting, per best practices

for ML evaluation [173].

Feature Selection and Interpretation

The model was trained first on the complete feature set, and performance metrics were recorded
from predictions on the test set. Features with an importance gain of 0.1 and above were
extracted using the XGBoost importance function. Next, features were removed sequentially
in descending order of importance gain, and a new model was trained. This was repeated until
a sharp decrease in accuracy was observed. The corresponding performance metrics were then
recorded to showcase the diagnostic importance of a reduced set of features in comparison with

other studies that utilised a subset of frequently recorded features [150, 153,154,158, 174].

A common approach to select key features is through the importance gain ranking, which
determines the impact of each feature by its effect on correctly classified samples. However,
the usefulness of importance gain is being debated. A strong criticism was its inconsistency
when looking for general trends in the data. This means additional tools or alternate metrics
should be considered to evaluate feature importance. Tree SHAP, part of the Shapley library
(SHAP) [120], is mathematically equivalent to averaging the differences in predictions over all
possible orderings of the features, rather than just the ordering specified by their position in
the tree, which is the approach of importance gain. This research aims to validate the clinical

relevance of its findings with the use of Tree SHAP as done in Liu et al. [147].
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4.5 Highlighting known patterns and novel markers

Missing  Overall Control Case
Number of 48048 37086 10962
Patients
Age, mean (SD) 0 63.7 (17.6) 63.3 (17.7) 65.1(17.1)
Ethnicity, n AMERICAN 0 91 (0.2) 68 (0.2) 23(0.2)
(%) INDIAN/ALASKA
NATIVE
ASIAN 1431 (3.0) 1112 (3.0)  319(2.9)
BLACK/AFRICAN 5454 (11.4) 4273 (11.5)  1181(10.8)
AMERICAN
HISPANIC/LATIN 1906 (4.0) 1471 (4.0) 435 (4.0)
o
OTHER 2186 (4.5) 1683 (4.5) 503 (4.6)
UNABLE TO 482 (1.0) 359 (1.0) 123 (1.1)
OBTAIN
UNKNOWN 3965(8.3)  2995(8.1) 970 (8.8)
WHITE 32533 (67.7) 25125(67.7) 7408 (67.6)
Gender,n (%) F 0 21938 (45.7) 16982 (45.8) 4956 (45.2)
M 26110 (54.3) 20104 (54.2) 6006 (54.8)
Weight, mean 2153 82.4(25.9) 82.0(25.6) 83.4(27.1)
(SD)
First hospital  False 0 10849 (22.6) 7949 (21.4) 2900 (26.5)
stay, n (%) True 37199 (77.4) 29137 (78.6) 8062 (73.5)
Max heart rate, 11 103.1(18.2) 100.8 (17.6) 110.7 (17.8)
mean (SD)
Charlson 0 53(3.0) 5.1(3.0) 5.8 (3.0)
comorbidity
index, mean
(SD)
SOFA 24h, 0 3629 3.1(2.6) 533.2)
mean (SD)

Table 4.2: MIMIC-IV population descriptive statistics, stratified by septic and non-septic patients.

4.5.1 Population analysis

The cohort comprised 48048 patients, 26.0% of whom had a sepsis diagnosis according to
sepsis-3 criteria during their first ICU stay. Table 4.2 provides key information on the study
population used to train the model and validate findings. The ratio of sepsis to non-sepsis
instances at each predetermined time point was similar. There were 41.4% septic instances at

the sepsis-3 diagnostic point, which rose to 43.2% and 44.0% at 6 and 12 hours before.
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In terms of ethnicity, the majority of the cohort were White (67.7%) followed by Black-
/African American (11.4%), with the smallest minority as American Indian/Alaska Natives

(0.2%). The ethnicity distribution between cases and controls was similar.
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Figure 4.2: Count of septic patients by hour intervals and sepsis diagnostic criteria.

Of note, the average age of 63.7 years suggests that most of the population in the study
cohort were elderly patients. Septic patients were on average 2 years older than non-septic
patients. Cases had higher maximum values for heart rate, systolic and diastolic blood pressure,
comorbidity indexes and SOFA scores compared to controls. Patients with multiple hospital
admissions before their first ICU triage were more likely to suffer from sepsis than those who
were triaged to ICU during their first hospital admission. Figure 4.2 shows that a notable 82.1%
of cases developed sepsis within 24 hours of their ICU admission. Half of the sepsis diagnoses
occurred within the first 6 hours of ICU stay, and the second half in the subsequent 6 hours.

The following section discusses the distribution of missingness found in the data and during

the data processing stage.
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Figure 4.3: Shows the change in percentage missingness of each feature with successive data imputation techniques. The green bar indicates the rate
of missingness of the original dataset. After step 2 of the imputation methods, the missingness of each feature is reduced to the orange level. Finally,

with the last stratification and imputation step, we are left with missingness levels indicated by the blue bars on the bar chart.
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Vital signs had the most complete measurements, with fewer than 15% of values missing,
which was further reduced to below 5% after imputation. The blood gases biomarker, however,
exhibited a higher level of missingness, ranging from 94.4% to 99.3%. After imputation, the
missingness decreased to less than 50%.

Laboratory results generally had the highest proportion of missing data, likely due to the
selective nature of testing in critical care. Laboratory tests are typically ordered based on the
patient’s immediate clinical needs, with only certain tests being prioritised at any time. As a
result, many laboratory measures may not be consistently recorded for all patients, contributing
to higher missingness. After imputation, the missingness for most laboratory measures fell to
below 5% (Figure 4.3).

The Glasgow Comma Scale (GCS) and its components are typically measured upon ad-
mission and at 4-hour intervals. This rate of assessing GCS resulted in 75% missingness of
the data. Nonetheless, the proportion of GCS missingness fell to 10% after interpolation and
decreased to under 5% after forward-filling.

Overall, interpolation has had the highest impact on reducing missingness, except for the

blood gases measure, in which the highest impact was attributed to the final imputation step.

4.5.3 Model performance

Diag. Dat Full Set of Features N. Feat Reduced Set of Features
point  aset Accuracy AUROC Sensitivity  Specificity Selected Accuracy AUROC Sensitivity Specificity
tyepsis 1 89.91%  89.05% 84.10% 94.01% 16 75.02% 72.87% 60.41% 85.33%
2 95.80%  95.18% 91.61% 98.76% 16 84.00% 81.92% 69.91% 93.93%
3 99.40%  99.35% 99.07% 99.62% 12 93.14% 92.22% 86.88% 97.56%
tsepsis - 1 93.29%  92.89% 89.94% 95.84% 13 73.06% 71.50% 60.11% 82.90%
6 2 95.57% 95.08% 91.50% 98.65% 15 82.47% 80.70% 67.79% 93.60%
3 98.88%  98.78% 98.04% 99.53% 16 93.08%  92.36% 87.04% 97.67%
tsepsis - 1 93.69%  93.37% 90.59% 96.14% 13 72.60% 71.33% 60.45% 82.20%
12 2 95.46%  95.06% 91.50% 98.62% 16 81.55% 80.08% 67.26% 92.89%
3 98.86%  98.77% 98.01% 99.53% 14 91.90% 91.19% 85.21% 97.17%

Table 4.3: Model Performance across diagnosis points, point O (sepsis-3 diagnosis time), 6 (6 hours
before point 0) and 12 (12 hours before point 0) and for full and reduced feature sets. The best perfor-
mances are highlighted.

As expected, more levels of imputation resulted in better diagnostic performance (Table 4.3).
The average AUROC for models trained on non-imputed data, models with interpolation and
models with the addition of forward-filling/median imputation were 91.8%, 95.1% and 99.0%,
respectively. Adding levels of imputation improved accuracy by 10% for diagnosing sepsis

at the original time. Models trained on the complete feature set that have undergone all three
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stages of imputation performed best at predicting sepsis at teepsis (99.4% accuracy), with per-
formance decreasing by only 0.6% when using earlier diagnosis times.

The AUROC of the worst model was 71.3%, which was trained on non-imputed data with
a reduced set of features and a diagnosis point set to 12 hours before sepsis-3 diagnosis. The
same feature-reduced dataset at tyepsis had a 17.7% increase in Area Under the Receiver Oper-
ating Characteristic curve (AUROC).

Each successive imputation step improved the diagnostic performance in feature-reduced
models by an average of 10% in AUROC per step. The model trained on the complete set of
features with no imputation achieved 89.1% AUROC, similar to other studies using the same
diagnostic criteria [150-152, 158].

Emphasis was placed on evaluating the model’s performance at the earliest possible di-
agnosis point, tonser. In rightly classifying cases at tonset, the model achieved an AUROC of
99.53% using data that has undergone all stages of modification. This increased slightly by
0.04% when the diagnosis point was set to tyuspicion-

Overall, ranked in the order of highest sensitivity and specificity, the best performances
were achieved with suspected infection, followed by onset and finally Sepsis-3. Performance
of evaluating the model at the different clinically relevant diagnosis points and stages of impu-
tation is recorded in Appendix Table A.2.

The following section explores the features identified within the models used in this study.

4.5.4 Correlation and Feature Importance

Figure 4.4 presents the correlation matrix for the top 12 features at the #y,;s diagnosis point.
The correlations ranged from -0.93 to 0.66, reflecting a range of relationships between these
clinical variables. The following analysis focuses on the top five correlations, which provide
critical insights into sepsis management and patient prognosis.

The strongest negative correlation observed was between GCS verbal scores and ICU
length of stay (LOS), with a coefficient of -0.93. This suggests that patients with lower GCS
verbal scores, which indicate more severe neurological impairment, tend to have longer ICU
stays. This inverse relationship highlights the intensive care needs of neurologically compro-
mised patients, who often require prolonged respiratory support, continuous monitoring, and
management of multiple organ systems, resulting in their ICU stay being longer.

A significant positive correlation (0.69) was found between GCS verbal scores and inva-

sive ventilation. This indicates that patients with lower GCS verbal scores are more likely to
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Figure 4.4: Correlation plot of the top 12 features.

require invasive ventilation, as compromised neurological function often necessitates mechani-
cal ventilation. However, this relationship also points to a clinical challenge: intubated patients
usually cannot respond verbally, which could artificially lower their GCS verbal scores. This
presents a difficulty in assessing neurological status in ventilated patients, further complicating

the use of GCS verbal scores as a reliable measure in such contexts.

The correlation between Fraction of Inspired Oxygen (FiO,) and spontaneous respiration
rate (0.67) suggests a compensatory mechanism in critically ill patients. As the need for oxygen
increases (reflected by higher FiO; levels), the spontaneous respiration rate also rises, likely
as the body attempts to improve oxygenation. This correlation underscores the dynamic na-

ture of respiratory response to critical illness and the interplay between oxygen delivery and
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spontaneous breathing efforts.

The relationship between FiO, and observed tidal volume (0.54) further emphasises the
interdependency of respiratory parameters. As FiO, increases, adjustments to tidal volume are
often necessary to ensure that the patient receives adequate ventilation. This highlights the
importance of carefully managing oxygen levels and ventilation volume, as optimising these
parameters is essential for maintaining patient stability, particularly in patients with respiratory
compromise.

A moderate positive correlation (0.47) between lactate levels and observed tidal volume
suggests that metabolic acidosis, typically caused by tissue hypoxia or ischaemia, may influ-
ence ventilatory settings. Higher lactate levels indicate impaired tissue perfusion, which can
necessitate adjustments in ventilation, including tidal volume, to improve oxygenation and
acid-base balance. This relationship highlights the interconnectedness of metabolic and respi-
ratory responses in critically ill patients.

These correlations were also reflected in the feature importance analysis. GCS verbal
scores and invasive ventilation status were integral in predicting sepsis in our models. Mod-
els trained on non-imputed data tended to prioritise invasive ventilation, GCS verbal scores,
and ICU length of stay, underscoring their importance in sepsis prediction. After imputation,
however, the focus shifted to variables such as FiO, and GCS verbal, aligning more closely
with clinically relevant diagnostic criteria. The final imputation step further highlighted GCS
verbal as a key diagnostic biomarker and emphasised other vital markers, including lactate,

respiration rate, and partial pressure of oxygen (Figure 4.6).

4.6 Contextualising clinical findings

With the availability of Electronic Health Records (EHR) and advancements in modelling ap-
proaches over recent years, many have identified key biomarkers for accurate sepsis diagnosis
and created opportunities for early diagnosis using complex algorithms. However, without ap-
preciating the nuances in missingness in healthcare data, some have oversimplified the methods
of handling missing data during the data preparation stage.

Missing values in clinical data, such as the MIMIC-IV dataset, are not arbitrary and should
be handled meticulously. Studies applying generic data imputation methods (e.g., [153, 159])
have limited applicability in clinical settings. Hence, our work applies clinically informed
methods of handling data that account for the complexities of ICU data and evaluate model

performance compared to similar studies.
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0 hours before 6 hours before 12 hours before
Scaled & Interpolated Forward Fill | Scaled & Interpolated Fl;m’srrd Scaled & Interpolated Forward Fill
Feature Encoded 2) or Median | Encoded 2 Median Encoded 2) or Median
(1) (3) (1) 3) (1) (3)
Invasive ventilation 0.0031 0.0037 0.0036
GCS verbal 0.0337 0.0377 0.0356 0.0398 0.0297 0.0410
Length of hospital stay 0.0281 0.0206 0.0131 0.0234 0.0189 0.0149 0.0221 0.0189 0.0140
Tracheostomy ventilation 0.0230 0.0017 0.0242 0.0152 0.0237 0.0042
Unable to obtain GCS 0.0157 0.0038 0.0020 0.0051 0.0044 0.0021 0.0149 0.0052 0.0033
Fraction of inspired oxygen 0.0156 0.0199 0.0155 _ 0.0151 0.0163 _ 0.0164
Spontaneous respiration rate 0.0013 0.0253 0.0307 0.0012 0.0114 0.0330 0.0011 0.0159 0.0290
Lymphocytes 0.0011 0.0235 0.0082 0.0021 0.0235 0.0096 0.0022 0.0230 0.0097
Oxygen pressure in the blood 0.0018 0.0199 0.0014 0.0201 0.0218 0.0012 0.0133 0.0216
Lactate 0.0011 0.0065 0.0298 0.0014 0.0065 0.0277 0.0014 0.0059 0.0262
Observed tidal volume 0.0013 0.0040 0.0216 0.0014 0.0049 0.0195 0.0012 0.0053 0.0186
Severe liver disease 0.0152 0.0179 0.0116 0.0174 0.0184 0.0153 0.0150 0.0199 0.0143
Spontaneous tidal volume 0.0026 0.0153 0.0057 0.0016 0.0315 0.0059 0.0022 0.0133 0.0058
Inter-Cranial Pressure (icp) 0.0106 0.0174 0.0221 0.0105 0.0169 0.0194 0.0105 0.0186 0.0211
Set respiration rate 0.0024 0.0075 0.0095 0.0018 0.0068 _ |1N0I044200 0.0017 0.0077 0.0438

Figure 4.5: Feature importance scores for the top 15 features at 0, 6, and 12 hours before sepsis-3
diagnosis. Darker shades indicate higher importance in predicting sepsis.

The baseline model trained on the complete feature set was compared before and after
the elaborate data preprocessing steps were applied. Overall, data imputation steps improved
sepsis detection at tsepsis. The AUROC, specificity, and sensitivity respectively increased from
89.05 t0 99.35%, 94.01% to 99.62%, and 84.10% to 99.07%. The successive imputation steps
were significant, transitioning the model from a diagnosis relying heavily on invasive ventilator
status to one that assessed the patient’s verbal response and oxygenation levels (as shown in
Table 4.5). The models performed well in diagnosing sepsis 6 and 12 hours before, suggesting
that early sepsis diagnosis is possible. The highest AUROC achieved was 99.35% when the

diagnosis point was set by Sepsis-3 criteria, outperforming similar studies.

The high importance of artificial ventilation can be attributed to the cohort’s average age
of 63.7 years. This is consistent with the findings of Farzan et al. [175], who found that older
patients were twice as likely to require invasive ventilation. Beyond age, the use of ventilation
indicates a patient’s deteriorating condition. The use of a ventilator suggests that the patient
may be on the verge of respiratory failure or suffering from severe hypoxaemia, which are
known manifestations of sepsis.

A key aspect of this study’s novelty is the decomposition of the Glasgow Coma Scale
(GCS), which is typically aggregated in sepsis models and diagnostic tools. This research is
the first to decompose GCS into its components. By doing so, the model found that GCS verbal
scores were a key prognostic marker for sepsis. This granular approach offers a more precise

prediction than previous models that treated GCS as an aggregated score.

Further, the study found that the FiO, and Partial Pressure of Oxygen (PaO,) were critical
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in assessing the patient’s susceptibility to hypoxaemia, a key early sign of sepsis. Hypoxaemia
results from the hypoperfusion of oxygen in the blood and can lead to long-term organ damage
and potential mortality if left untreated [176]. Hypoxaemia in the brain often results in an im-
paired level of consciousness, contributing to sepsis-associated delirium. Patients with delirium
often struggle to follow verbal commands and exhibit slurred or confused speech [177, 178].
These observations further validate the importance of monitoring the verbal component of the

GCS as a potential early indicator of sepsis.
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Figure 4.6: Violin plot that offers insight into the distribution of values in each feature and its impact on
the patient’s assessment. The hue axis indicates high values recorded for the specific feature. Positive
impact indicates that patients are more likely to be diagnosed with sepsis, and vice versa.

Tree SHAP was used to ensure the validity of feature importance metrics. These values

provided profound insights into the effect of key features on the model’s prediction. As shown
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in Figure 4.6, the distribution of the most important features, represented in red and blue as high
and low values, validated the significance of GCS verbal as a prognostic marker. Low GCS
verbal scores were correlated with a higher likelihood of a sepsis diagnosis (positive SHAP
values). Additionally, the model identified the impact of other vital biomarkers, suggesting
that extended hospital stays before ICU admission, high respiration rates, and tidal volume
contributed to diagnosing sepsis [176]. Interestingly, low lymphopenia was another indicator
that influenced the model’s decision, corroborating findings in Drewry et al. (2014) that low
lymphocyte counts are linked to sepsis mortality [179].

Beyond the other predictors, this study reinforces that early detection of sepsis can be
achieved by observing changes in the patient’s level of consciousness, which can occur well
before invasive interventions like ventilation are necessary. Early diagnosis could translate to
reduced mortality rates, higher sepsis survival rates, and fewer patients experiencing the long-
term sequelae of severe sepsis. Further clinical research and analysis are needed to substantiate
these findings. Moreover, the methods for handling missing data employed in this study could
serve as a framework for future research in healthcare data, once the findings are validated

further.

4.6.1 Limitations/Assumptions

The MIMIC dataset used in this study only includes data from one hospital, which means
the findings may be more relevant to the population demography specific to that institution.
Thus, the results may not be fully generalisable to other clinical settings or populations. The
study’s scope is limited to ICU patients, so the conclusions may not extend to patients in other
healthcare environments.

While widely accepted, the Sepsis-3 criteria used for diagnosis may have limitations in
cases where patients have a shorter ICU stay, potentially affecting diagnostic accuracy. There-
fore, the findings in this study are dependent on the reliability of the Sepsis-3 criteria itself,
which has been noted in the literature for its reduced diagnostic performance in short-term
ICU patients [137].

Key assumptions in this study include:

e The admission SOFA score was assumed to be based on the biomarker levels from the
hospital stay before ICU admission. For patients without prior hospitalisation, the SOFA

score was derived using vital signs taken upon ICU admission.
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* The importance metrics derived from the machine learning (ML) models were assumed
to accurately reflect the clinical markers that have the most significant impact on the

early diagnosis of sepsis.

4.7 Summary

This study aimed to answer two key questions: 1) How does a clinically informed model per-
form compared to existing models in sepsis detection, and 2) Are the most impactful features
aligned with our clinical understanding of sepsis? By leveraging advanced data processing
methods, specifically clinically informed handling of missing data, the models achieved supe-
rior performance in sepsis detection compared to existing models, enabling early detection up
to 12 hours before the Sepsis-3 criteria diagnosis point. Models trained on the complete feature
set outperformed those using reduced features by at least 20% in AUROC. This demonstrates
that sepsis diagnosis requires a comprehensive set of features, even for real-time or advanced
detection.

One of the key innovations in this work lies in the clinically informed preprocessing
pipeline for ICU markers, which proved essential for enhancing the predictive power of the
models. Furthermore, by decomposing the GCS into its components, the study highlighted
the importance of the GCS verbal score as a key prognostic marker in sepsis detection. This
approach, which contrasts with traditional aggregated GCS models, provided valuable insights
into early sepsis prediction.

Additionally, the study employed TreeSHAP to ensure the interpretability and explainabil-
ity of the models. This makes the results more accessible to clinicians, addressing concerns
about using complex ML tools in critical care settings. The models identified key indicators of
sepsis, such as multiple hospitalisations before ICU admission, invasive ventilation, and GCS
verbal score. While existing literature supports the relevance of these features, the study further
establishes their importance in sepsis detection and highlights the need for further exploration

of these associations.

The study successfully applied domain expertise to improve data handling techniques, de-
veloped highly accurate diagnostic models, and made significant strides in understanding the
importance of early biomarkers like GCS verbal scores and FiO,. These contributions lay
the foundation for future work applying Al in clinical settings, particularly improving sepsis

outcomes in ICU.
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4.8 Future Work

Future work will focus on validating GCS verbal and ventilation settings in other ethnic groups,
including minorities, and obtaining databases from a range of hospital ICUs.

Additionally, further interpretability techniques and other ML techniques can be explored
to validate the importance and generalisability of the identified key diagnostic biomarkers.
This may lead to exploring the use of SHAP as a real-time interpretability tool for clinicians
to utilise in making informed decisions in ICUs. This will require user trials on clinicians
using these tools in fast-paced environments and iterative improvements to ensure the tool is

optimised for real-time, clinical settings.

4.9 Connecting the dots and remembering the why

The primary focus of this research has been to improve the interpretability and reliability of
ML models designed to predict sepsis at an early stage during an ICU stay. This endeavour is
motivated by the urgent need to improve sepsis outcomes and the broader goal of advancing the
integration of ML in healthcare. Effective and early sepsis detection can significantly improve
patient prognosis, reduce mortality rates, and alleviate the burden on healthcare systems. This
work contributes to the growing evidence that Al and ML models can play a crucial role in

clinical decision support, particularly in high-stakes environments like the ICU.
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The Emergence of COVID-19: Mining

Temporal Patterns

Contents

5.1 A World caughtoffguard . . ... ... ... ... .. ... ... .... 74
5.2 Thefirstlineof Defence . . . ... ... ... ... .. ... . ... . 75
5.3 The advent of Self-Attention . . . . . . . ... ... ... ... . ... . 75
5.4  Current Challenges and Opportunities . . . . . . . .. ... ... ..... 76
5.5 Integrating advanced approaches to hospitalisation risk modelling . . . . . 77
5.5.1 StudyDesign . . . ... ... 77

5.52 DataStructure . . . . . . . .. ... 78
5.5.2.1 Per-event risk assessment . . . . . ... ... ... 79

553 RetainEXT . ... ... ... 79
5.5.3.1 Stacked and Deeper Architecture . . . . . ... .. .. 81

5532 RaggedTensors . . . ... ............... 81

5.5.3.3 Rareeventweighting . . .. ... ... ........ 82

5.54 Interpretability . . . .. ... ... ... . 82
5.54.1 Localattention . . . .. ................ 82

5.54.2  Global feature importance . . . . . . ... ... ... 82

5.54.3 Statistical Testing for Model Comparison . . . . . .. 83

5.6  Profiling risk enhancingevents . . . . . . ... ... ... ... 84
5.6.1 Model Performance . . . . . . .. ... ... .. ... .. 84



5. The Emergence of COVID-19: Mining Temporal Patterns

5.6.2  Global Feature Importance . . . . . ... ... ... .. ..... 86
5.6.3  Limitations . . . . . . ... ... 87
57 Summary . . ... e e e 88
5.8  Connecting the dots and remembering the why . . . . . .. ... ... .. 88

5.1 A World caught off guard

The year 2020 will forever be marked in history as the year the world was caught off guard by
the emergence of a novel coronavirus, SARS-CoV-2, causing the disease known as COVID-
19. Starting from Wuhan, China, in late 2019, the virus quickly spread across the globe,
leading the World Health Organisation to declare a pandemic in March 2020 [19]. The virus’s
rapid spread, its high transmission rate and the severity of symptoms in many cases, resulted
in COVID-19 quickly becoming an unprecedented global health crisis. Countries worldwide
scrambled to respond, implementing measures ranging from travel restrictions and lockdowns
to mass testing and contact tracing efforts. Despite these efforts, the virus continued to spread,
overwhelming healthcare systems and leading to a significant number of deaths [19].

While the COVID-19 pandemic has affected millions of people worldwide [180], hospital-
isations due to severe COVID-19 cases can be considered a rare event, particularly in the early
stages of the pandemic. Most individuals infected with the SARS-CoV-2 virus experienced
mild to moderate symptoms and did not require hospital care [181]. However, the small per-
centage of cases that did require hospitalisation had a profound impact on healthcare systems,
leading to overwhelming strain on resources and, tragically, a significant number of deaths. In-
vestigating the early manifestations of COVID-19, including signs and symptoms that could be
identified in primary care settings, became crucial in predicting which patients were at higher
risk of developing severe complications. By focusing on these early indicators, healthcare
professionals aimed to identify and closely monitor high-risk patients, facilitating timely inter-
ventions and resource allocation. Predicting and managing these rare but consequential events
through recognising early warning signs in primary care became a critical challenge in the fight
against COVID-19.

The pandemic exposed the vulnerabilities of even the most robust healthcare systems, high-
lighting the need for improved disease surveillance, early detection, and rapid response capa-

bilities [182]. The emergence of COVID-19 served as a stark reminder of the ever-present
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threat of emerging infectious diseases and the need for ongoing research and preparedness to

respond to such threats effectively.

5.2 The first line of Defence

As the pandemic unfolded, GPs found themselves at the forefront of the battle against COVID-
19. GPs play a crucial role in the healthcare system, often serving as the first point of contact for
patients [183]. In the context of the COVID-19 pandemic, their role became even more critical
in identifying and managing potential cases while ensuring continuity of care for patients with
chronic conditions and other health concerns.

They had to balance the need to protect these patients from potential exposure to the virus
while ensuring they received the care and support needed [183]. Moreover, GPs were instru-
mental in recognising early warning signs and identifying patients at higher risk of developing
severe complications, enabling timely interventions and referrals to specialist care when nec-
essary.

As the virus spread and hospitals became overwhelmed, GPs were tasked with triaging
patients by determining who needed immediate hospital care and who could be safely managed
at home [184]. They had to quickly adapt to new ways of working, with many consultations
moving online or over the phone to reduce the risk of transmission. Further, GPs played an
instrumental role in the rollout of the COVID-19 vaccines by administering them and providing

information and reassurance to patients [183].

5.3 The advent of Self-Attention

The advent of self-attention mechanisms, particularly in transformer models, has revolu-
tionised the field of ML [185]. These mechanisms allow models to focus on different parts
of the input sequence when making predictions, providing a form of context-awareness that
was previously difficult to achieve [186].

In the context of the COVID-19 pandemic, self-attention mechanisms have shown great
promise in various applications. For instance, they have been used to analyse temporal patterns
in the spread of the virus [187], helping to predict future outbreaks and inform public health
responses.

Self-attention mechanisms have also been used to analyse EHR, helping to identify patients

at high risk of severe outcomes from COVID-19 [188]. By focusing on relevant parts of a
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patient’s history, these models can make more accurate predictions, helping to guide clinical
decision-making.

Moreover, the interpretability of self-attention mechanisms makes them particularly useful
in healthcare settings. By visualising the attention scores, clinicians can gain insights into the

model’s decision-making process, which could help establish trust in the model’s decisions.

5.4 Current Challenges and Opportunities

Despite COVID-19 prevention and risk mitigation efforts, hospital resource utilisation remains
a significant concern. Although the hospitalisation rate has reduced from 36.7 to 8.2 per
100,000, UKs healthcare system still faces 25% of the strain felt during the first wave [189].
With the resurgence of COVID-19 and its variants, patients at risk of hospitalisation due to the
virus must be rapidly identified for early intervention and risk mitigation.

Numerous studies developed Al predictive tools to identify patients at risk of severe out-
comes due to COVID-19. These tools utilise highly interpretable ML algorithms, such as
decision trees [190-192], gradient boosting decision trees [193—195] and logistic regression
[196,197]. These models yielded Area Under the Curve (AUC) scores between 0.74 and 0.92
and discovered critical prognostic markers essential for predicting a patient’s COVID-19 out-
come, including white cell differential count, creatinine phosphate and lymphocyte proportion.

However, identifying risk factors leading to COVID-19 hospitalisation proved difficult for
ML models, primarily when large populations and multiple comorbidities are involved. Wil-
lette et al. used a permutation-based linear discriminant analysis to predict COVID-19 and
hospitalisation risk [198]. When trained on a subset of participants with an antibody titer, their
models achieved an AUC of 0.969 (95% CI 0.934-1.000), but when trained on a more signif-
icant portion of the population, the AUC dropped to 0.803 (95% CI 0.663-0.943). Similarly,
Wollenstein et al. [196] only achieved 61% accuracy predicting COVID-19 hospitalisations.

RNNs are known for modelling long temporal sequences in heterogeneous patient data
[199-201]. Besides a lack of interpretability, DL models like RNNs are limited in handling
dimensionally varying or missing data. These constraints have led to using 1D Convolutional
Neural Networks (1D-CNNs), which generates feature importance similar to logistic regression
models. 1D-CNNs cannot model temporal patterns well and often underperform RNNs.

This study aims to employ the capabilities of RNNs in predicting COVID-19 hospital-
isations whilst providing interpretability and improving on REverse Time AttentloN model

(Retain), an interpretable RNN [200] and its successor REverse Time AttentloN EX model
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(RetainEX) [201]. Retain and RetainEX adopt a temporal attention generation mechanism to
learn the importance of each GP visit and each medical code. However, they lack architectural
depth, visit-level risk scores and the ability to learn from imbalanced datasets.

Therefore, this study aims to improve the predictability and interpretability of the Retain
models and demonstrate an enhanced version of the model, RetainEXT. Study findings may
aid in identifying individuals with a high risk of hospitalisation from the virus, thereby allowing
for early interventions to mitigate risks of post-infection complications. This study hopes to
show the feasibility of applying interpretability methods to RNN models, hoping to encourage
their use in similar rare event detection algorithms.

This chapter begins with the study design and population and a description of RetainEXT
in Section 5.5, followed by evaluating and comparing the results and feature importance ex-
trapolated from the best-performing RetainEXT model in Section 5.6. Finally, it concludes and

elaborates on future works in Section 5.7.

5.5 Integrating advanced approaches to hospitalisation risk

modelling

5.5.1 Study Design

The study design was a retrospective longitudinal Self-Controlled Case Series (SCCS). Data
sources used were the Welsh Demographic Service Data (WDSD), primary care GP data using
the Welsh Longitudinal General Practice (WLGP) dataset and secondary care data using the
Patient Episode Data for Wales (PEDW) dataset, all held within the Secure Anonymised Infor-
mation Linkage databank [liteLyons2009. The SAIL databank contains over EHR of 80% of
the Welsh primary care data, making it an ideal data resource. Analysis was conducted within
SAIL’s Research Environment. We followed the patient’s history between 2009 and 2020 from
their earliest interactions with the NHS up to and including their first COVID-19-related hos-
pitalisation.

Patients were included if they had 1) a minimum of 2 GP interactions in the data collection
period, 2) were aged 18 and above at the start of the data collection period, and 3) had a hospital
admission where, within 14 days of admission, they received a positive COVID-19 test taken
during the hospitalisation episode.

To limit confounding factors, we excluded medical codes, including COVID-19 infection

or hospitalisation, collected within the 14 days before a positive test result.
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5.5.2 Data Structure

Similar to the structures used by Choi et al. [200], we modelled each patient’s EHR as En-
counter Sequence Modelling (ESM) [199], where the sequence of patient visits is represented
by a varying number of medical codes d',...,d!, where [ is the number of diagnosis codes per
GP visit. Here, x; represents the visit, and d’ is the j’h code from the dictionary of all codes,
D. Therefore, the total number of possible codes is r = |D|.

Traditionally, ESM models each visit x; € {0, 1}|D | as a binary vector, where the value 1 in
the j'* coordinate indicates that ¢/ was documented in the " visit. Given a sequence of visits
X1,...,x7, with T as the total number of visits, the goal of ESM is to predict the codes occurring
at the following visit x, ..., X741, with the number of labels y = |D|.

As |D| contains 27,317 unique read codes, it would be resource-heavy and impractical to
train a model on large binary vectors. Instead, we decided that a patient’s record, x;, should
only include the medical codes recorded during that visit.

Raw medical codes contain a mixture of alphanumeric characters; therefore, we decided
to encode |D| into sequential numerical values with arbitrary meaning. Having defined each
patient’s visit as x; = dy, ..., ds, we set the model to predict the patient’s risk of hospitalisation,
v, at each visit, x;.

Following each visit, x, was passed through an embedding layer to learn the representation
and later visualise any clusters of medical codes. This generates v; for each x;, then concate-
nates to the patient’s age and gender. Both variables were included at every time step due to
the patient’s varying age and possibly gender.

Furthermore, the model’s comprehension of the time between visits is vital to determining
the risk of hospitalisation at each visit. For instance, a series of visits to the GP over a short
period may indicate comorbidity or severe illness. Long hibernation may suggest good health
and influence the model to predict lower risk scores. To harness temporal information, we
incorporate visit dates as an additional feature.

Given a sequence of T events 71,1, ...,t7 , we obtain At; =1; —t;_| for each successive visit.
We assume that the first visit is unaffected by time constraints by fixing A#; to 1. We explored
the benefit of additional representations of time, which are (1) A¢; the time interval between
visits) [200], (2) 1/A¢; (its reciprocal value) [202], and (3) 1/loge + Af; (an exponentially
decaying value) [202]. These values are concatenated to the embedding v, for each x;, to
enrich the information for our model.

While handling the data, we found a critical improvement necessary to improve the epi-
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demiological study design of Retain and RetainEX.

5.5.2.1 Per-event risk assessment

Retain and RetainEX both utilise an Learn to Diagnose (.2D) [203] approach and are limited
to predicting a risk score for each patient. This suggests that both case and control groups were
used to learn high-risk markers, hindering clinicians from evaluating outcome severity at each
GP visit. Thus, our study modified the algorithm’s output to model a risk score at each GP visit
using an SCCS study design.

The SCCS is a case-only method in which confounders are automatically controlled for
[204]. This allows us to investigate the association between a transient exposure and an out-

come event, helping clinicians make better-informed decisions.

5.5.3 RetainEXT

Fig. 5.1 (A) shows our model takes in a patient visit sequence as C dimensional vectors
x1,x2,....xT. An embedding matrix W,,,;, € R™*C is used to convert all 27,317 unique medical
codes linearly into a matrix of size m x C, where m is the number of units in the embedding
layer, resulting in v, = W,,,,;, - ;. The patient’s age and gender, n,, are also appended to v, at each
visit and passed through a dropout layer to improve the model’s generalisability. Additionally,
each successive visit generates a set of representations that characterise the time between visits,
Af', to offer additional insight into the patient’s state; this is concatenated to v, and n;.

Following the structure of Retain and RetainEX, we computed two attention types, ¢ and
B. Fig. 5.1 (B) and (C) represent the stacked Bi-LSTM network that takes in the age, gender
and time-attached visit representations and returns attention values (e.g., contribution scores).

o is a single value representing the importance of each GP visit. 3 is an m-dimensional
vector that quantifies the significance of each medical code within a specific visit. To benefit
from both visit and feature-level importance requires a separate stacked Bi-LSTM to compute
each attention class.

For each [v;;n;; Ar'], the stacked o-Bi-LSTM computes the forward and backward hidden
states of the first «—Bi-LSTM, then passes it on to the second ¢-Bi-LSTM. The final hidden
state vectors, g{ % and g??, are concatenated into a single m-dimensional vector, which is passed
on to a dense layer.

The parameter wy, € R*™ was used to compute a scalar value for each time step as ¢; =

f2. b2 1

we [g]7;8"%]. Next, the softmax function is applied to all scalar values {e,...,e”} to obtain
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Figure 5.1: Overview of RetainEXT. (A) Using a single embedding layer, a binary vector x; is rep-
resented as embedding vectors v;, with time interval information appended to the former. (B, C) v; is
input into two Bi-LSTM layers to obtain scalar o and vector 3 attention weights. (D) o, 8 and v, are
multiplied over all time steps, and then each time step is passed through a dense layer. (E) Output from
the first dense layer is dimensionally reduced into a single output per time step. (F) Each time step
output is non-linearly transformed to a risk score .
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{ai,o,...,or}, adistribution of attention values that sum to one. Similarly, the concatenated
hidden state vectors generated by the stacked -Bi-LSTM are multiplied by wg € R™2M and

1" visit as B, = wg 8/%: 82

return an m-dimensional vector f3; for the
After obtaining both a; and J3; values, we performed element-wise multiplication with the
concatenated array [v;;n,;At'], and passed it through a dense layer with weights w! (Fig. 5.1D).

The output is then passed to the final dense layer with weights w2. The additional dense layer

!

increased the complexity of providing interpretability; thus, we defined w!,

. as each event’s
aggregated and combined weight. In mathematical terms, w!, = Eng w})’g . wiz, where U is

the number of units in the 2"/ dense layer.

Lastly, the contribution score for each visit was computed, s; = w’,, -0!. The ' visit is
passed through a dense layer with sigmoid activation to dimensionally reduce the vector at
each time step, allowing us to compute a normalised prediction value, ¥;, ranging between 0
and 1 where w/,, € R™. The predicted value indicates the patient’s risk of hospitalisation in that
particular visit, with a value closer to 1 indicating a higher risk. We trained our model to min-
imise binary cross-entropy loss and conducted hyperparameter tuning for a fraction of dropout,
regularisation, embedding and stacked LSTM units. Here, we found improvements needed to

limit the input data to only relevant medical codes and improve performance, especially when

modelling rare events.

5.5.3.1 Stacked and Deeper Architecture

The original implementations of Retain and RetainEX lacked depth in their architectures.
Stacked Bi-LSTM have increased the capacity to identify complex nested patterns in patients
that single-layer networks may overlook. Using an additional dense layer before the output
layer also facilitates understanding non-linear patterns in the dataset. However, the added lay-
ers increase training time. Section 5.6 compares the models’ performance gain and training

times before and after including the additional layers.

5.5.3.2 Ragged Tensors

Another novelty of this study is the adoption of ragged tensors to compute patients with a
variable number of visits and medical codes in each visit. This eliminates the need for padding
and masking or binary encoding of medical codes, reduces training time, and improves model

performance.
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5.5.3.3 Rare event weighting

RetainEXT implements the use of sample weighting, which not only attributes a single weight
to a patient but also at each visit. Hospitalisation is considered a rare event as only 1.59% GP
visits of the entire dataset of medical codes are related to hospitalisation due to COVID-19.
Thus, rare event weighting helps the model learn significantly more from a few samples. In

contrast, the preceding Retain and RetainEX models struggle to model an imbalanced scenario.

5.5.4 Interpretability

The backbone of Retain and RetainEX is their long-standing ability to provide feature- and
visit-level importance scores. With this foundation, we focused on understanding the global
feature importance, which is an information-rich measure of how clinically aligned our model

i8.

5.5.4.1 Local attention

RetainEXT and its predecessors achieve its transparency by multiplying the final layer of the
stacked Bi-LSTM generated attention weights ¢ and fB; to the visit vectors v, to obtain the
context vector o], which are used instead of the Bi-LSTM hidden state vectors to make predic-
tions. Each input vector x; has a linear relationship with the final contribution score, S. Thus,
we derive an equation that measures the contribution score of the code d at time step ¢ to S
by reformulating the equations above as S¢ = oW (Wemp|d, ] - B;), where W, [d,:] is the d'"
row of W,,,.p.

Additionally, we generate a visit-level contribution score S; by aggregating contribution

scores of codes for each visit as S; = Xyey, S?.

5.5.4.2 Global feature importance

Retain and RetainEX perform dimensionality reduction on the embedding weight of all clinical
markers to visualise possible clusters in the data. However, Kwon ef al. [201] mentioned that
limitations exist in visualising clusters if numerous patients or codes are fed in, limiting our
ability to understand critical high-risk medical codes.

ML researchers have used global feature importance [205] to assess the model’s ability

to mimic a clinician’s diagnostic pathways. Leveraging on the linear relationship between
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the embedding space and the context vector, the global feature importance is defined as S =
(X o) Wour Wempld,:] - (E By))-

5.5.4.3 Statistical Testing for Model Comparison

Following the training and development of RetainEXT, we performed a rigorous statistical
comparison between the newly developed RetainEXT and its predecessor RetainEX. To ensure
that observed performance differences were robust and statistically significant, we employed
the 5x2 cross-validation combined F-test, a method proposed by Alpaydin [206]. This test
was specifically chosen due to its suitability for comparing two models under cross-validation

settings, providing a more reliable and robust alternative to traditional paired t-tests.

The 5x2 F-test procedure begins by randomly splitting the dataset into two halves. Each
model is then trained and tested five times using different data splits. In each iteration, the
models are evaluated on distinct subsets of the data, and their performance metrics are recorded.
This method tests the model’s performance but also reduces the bias that can arise from using

a single training-test split.

The F-statistic, which is the output of this procedure, follows an approximate F-distribution
under the null hypothesis that there is no difference in performance between the two models.
A critical value of o = 0.05 was chosen as the significance threshold. If the resulting p-value
is smaller than this threshold, we reject the null hypothesis, indicating that the models exhibit
significantly different performance. This approach is particularly effective when comparing
models with varying numbers of parameters or degrees of freedom, as is often the case with

deep learning models.

In this study, the 5x2 F-test was applied to assess the statistical significance of differences
across key performance metrics: Sensitivity, Specificity, AUROC, and F1-Score. These metrics
were chosen as they provide a comprehensive view of the model’s ability to predict hospitalisa-
tion risk, accounting for both the model’s y and its ability to classify both positive and negative

cases correctly.

The results of the 5x2 F-test, including the calculated F-statistics and corresponding p-
values, are reported in Section 5.6, where we present a comparison of model performance.
This detailed statistical analysis ensures that the observed improvements in RetainEXT are not

due to random chance but are instead reflective of the model’s predictive power.
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Table 5.1: RetainEXT and baseline performances on predicting risk of hospitalisation due to COVID-19

Cascading| 1D- RetainEXT RetainEXT (3-Time Diff.) RetainEX | RetainEXT | F-Test Best
LSTM CNN + (1-Time [201] (Extra RetainEX
[207] LSTM Diff.) Emb) vs EXT
Emb. Units 200 200 200 128 128 128, 128 128,128
LSTM 64,64 64,64 64, 64 64,64 | 128,128 128 128,128
Units
Dense 1 1 50, 1 50,1 50,1 1 50,1
Units
Sensitivity 55.97% | 46.66% 44.83% 58.79% | 62.67% | 66.03% | 56.19%| 62.10% 54.10% 0.63
Specificity 88.92% | 73.25% 99.23% 98.92% | 99.24% | 98.77% | 99.17%| 98.65% 99.32% 243
Positive 40.60% | 19.11% 52.71% 51.02 | 61.44% | 50.71% | 56.44%| 46.74% 60.25% 1.39
Predictive
Value
AUROC 72.00% | 59.96% 72.03% 78.86% | 80.96% | 82.40% | 77.68%| 80.37% 76.71% 0.65
F1 Score 0.47 0.27 0.48 0.55 0.62 0.57 0.56 0.53 0.57 0.96
Run-time 12 3 10 10 12 12 25 13 32
(Min/e-
poch)

Table 5.1 illustrates the performance metrics for RetainEXT, its predecessor, RetainEX and
other state-of-the-art temporal classification models. The smaller embedding space with 128
units significantly improves model sensitivity. Additionally, F-test scores for AUROC are be-
low the F-score at the 0.05 critical value, which suggests the null hypothesis can be rejected
and we can assume a significant difference between RetainEX and our model, RetainEXT.

5.6 Profiling risk enhancing events

The study cohort comprised 2,277 female and 2,071 male patients with an average age of 69.7
years. Overall, the high-performing risk prediction model was able to identify patients suscep-
tible to hospitalisation due to COVID-19 before being hospitalised and suffering from life-long
morbidities. Using ten years of historical GP interactions and a large sample of heterogeneous
EHR, our interpretable Temporal Neural Networks (TNN), RetainEXT, shows statistically sig-
nificant improvements in AUROC, F1 score, sensitivity, and specificity compared to RetainEX
and other state-of-the-art TNN. Of note, without sample weighting, the compared models

severely over-fit; hence, we trained all models with sample weighting.

5.6.1 Model Performance

Insights from previous Retain iterations helped set a hyperparameter space for optimisation
using a hyperband tuner.

The findings show that excluding dropout and L2 regularisation significantly improved
model performance. Iterations of RetainEXT with 0 and 0.4 dropout resulted in a 0.17 reduc-

tion in F1 score, indicating the data may be very heterogeneous and thus weighting of features
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is sparse. The model requires multiple features to assess risk. Similar to the original implemen-
tation, convergence on local minima occurred quickly, and dropout required a longer training
time to work best. This indicates the possibility that the model is stuck at a local minimum and

needs longer to diverge.

In table 5.1, the cascading LSTM [207] has been shown to perform well in imbalanced sce-
narios, albeit less interpretable. Its sensitivity is comparable to RetainEX and the RetainEXT
models, where the only models surpassing it have deeper architectures. The cascading LSTM
was trained for 200 epochs compared to 20 epochs for the RetainEXT model, which further

emphasises the significance of the attention pathways in the convergence of optimal features.

The 1D-convolutional LSTM leverages both spatial and sequential learning, and its inter-
pretability is facilitated by extracting the kernel weights. However, despite training for over
200 epochs, the F1 score remains relatively low. This suggests that the model’s approach of
successively aggregating medical codes with a fixed kernel size overlooks the broader trajec-
tory of the patient’s condition, assuming that each visit is isolated and failing to account for the

potential long-term impact of those medical codes.

Further, adding two extra time representations to the time input layer results in a 5.5%
increase in sensitivity, increasing the model’s ability to pick up patterns in the interval between
GP visits. Including time, features normalised between O and 1 generate smaller weight updates

on back-propagation, which drives the model closer to the global/local minima.

We also note that RetainEXT outperforms RetainEX in both stacked bi-LSTM configura-
tions, achieving a 0.09 higher F1 score in the optimal configurations. The added LSTM and
dense layers allowed the RetainEXT model to understand complex non-linear patterns in the
patient’s EHR. Both models had similar sensitivity, specificity and AUROC. To determine if
the improved performance of RetainEXT significantly differs from other models, we conducted
a 5x2 Cross-Fold F-test and calculated an F-score for each evaluation metric. DL models tend
to have higher degrees of freedom; hence, a critical value of 0.05 was chosen, and the F-score

threshold was set at 1.00.

Sensitivity, AUROC and F1-Score all produced an F-value below the threshold of 1.00,
which suggests our implementation of RetainEXT is significantly different from RetainEX.
Both Positive Predictive Value and specificity yield an F-score that surpasses the threshold,
As the Positive Predictive Value (PPV) and specificity of both models produce F-scores that
exceed the threshold, they are within a margin of error in these metrics. This suggests both

models have a similar capability to learn low-risk features present before hospitalisation. In
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contrast, RetainEXT is more sensitive to high-risk visits or medical codes, allowing for early
intervention and possibly reducing the risk of hospitalisation.

The increase in performance between RetainEX and our model is mainly attributed to the
stacked LSTM layers and the time-interval representations. RetainEXT provides the added
ability to understand the patient’s risk after each GP visit, which is critical for the frequency
analysis. Our improved model discovered that patients with multiple secondary care referrals
are at high risk of being hospitalised due to COVID-19. Additionally, the sample weights have

assisted in learning from instances that make up 1.59% of the dataset.

5.6.2 Global Feature Importance

Previous studies have reported that older age and underlying comorbidities, such as hyper-
tension, diabetes and cardiovascular diseases, are risk factors for patients admitted due to
COVID-19 [208]. Congruent with their findings, the average patient age in our dataset is
69.8 years, and care home administrative codes were observed in the global feature impor-
tance. Elderly patients have poorer immune responses and experience an increased number of
age-related comorbidities and therefore are at higher risk of hospitalisation from COVID-19 or
other infections [209,210].

The most important and prevalent category of markers was the hospital service utilisa-
tion group, which could include anything from receiving a letter from a specialist to seeing
a respiratory physician (see Fig. 5.2). This suggests the importance of administrative codes
in understanding the patient’s journey through the healthcare system, where the quantity and
frequency of referrals may reflect the severity of the condition.

Interestingly, the involvement of a nutritionist or the use of supplements also helped predict
hospitalisation risk. This could be due to the correlation between nutrition and immunity [211].
The supplement ferrous fumarate, a prescription for anaemia, was also strongly associated with
hospitalisation. It is established that anaemia leads to severe outcomes, which is exacerbated
due to COVID-19 [212,213].

Features in the Physician Diagnostic Thinking (PDT) group are clinical tests to assess the
patient’s state resulting from a clinician’s suspicion. These tests are generally conducted when
a physician suspects an infection without knowing the cause.

Consistent with literature [190, 191], we identified white cell differential count, creatinine
phosphate and lymphocyte proportion as important markers. A patient usually undergoes a

Full Blood Count (FBC) just before admission or during the hospital stay. As a result, these
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Figure 5.2: Global grouped feature importance for predicting the risk of hospitalisation due to
COVID-19. HSU group features are significantly more important as the patient will have multiple
interactions with the NHS before being hospitalised. Of note, the high importance of Nutrition & Sup-
plements may relate to the patient’s diet playing a vital role in mitigating the risk of adverse outcomes.

markers are strongly associated with hospitalisation.

Finally, the frequency analysis showed that most patients have had telephone interactions

with NHS staff or have received a specialist’s letter before being hospitalised. This underscores

the significance of the Health Service utilisation group markers.

5.6.3 Limitations

* The available data is not well documented, hence, confounding codes may be present in

the prediction model and overestimate feature importance.

* The models compared with RetainEX were trained using an encoded binary vector for

each visit and may differ in performance and time to convergence.

* The use of global feature importance requires all embedding dimensions to be added to-
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gether. This resembles an estimate of the significance of the feature, and further analysis

of the latent space would be required for deeper insights into the value of features.

5.7 Summary

From the initial phases of the pandemic, COVID-19-related hospitalisations have heavily over-
whelmed the healthcare systems, whose effects are still felt today. With the resurgence of
COVID-19 infections and reinfections globally, healthcare resources must be used effectively.
Currently, the state-of-the-art model only achieves a 61% accuracy in predicting hospitalisa-
tions due to COVID-19.

We conducted fundamental improvements on an interpretable TNN, RetainEX, and pro-
vided additional tools to learn from imbalanced EHRs when predicting the risk of adverse
outcomes. We leveraged the predictive power of RNN and combined it with a sophisti-
cated attention generation process. This resulted in a better performing model than the cur-
rent best;RetainEXT achieving 82.40% AUROC on assessing risks of hospitalisation due to
COVID-19. The model identified key features, including the importance of telephone calls
with patients to assess their severity, poor GI conditions and low levels of ferrous fumarate,
indicating anaemia, consistent with existing literature. Additionally, PDT pathways provide
valuable insights into possible infections associated with hospitalisation due to COVID-19.

In sum, besides outperforming existing models in predicting COVID-19 hospitalisations,
our model was equipped with an additional layer of interpretability, allowing clinicians to use
the algorithm for insights on which features were important in the model’s predictions.

Future work includes developing visualisation tools to better interpret and apply the find-
ings to more diverse medical records. This increases the model’s reliability and helps under-
stand other rare diseases. Additional improvements include using a cascading architecture and
custom loss functions that reward early diagnosis. We believe the lessons from this study can
guide future researchers in building interpretable recurrent neural network models and con-

tribute to existing literature.

5.8 Connecting the dots and remembering the why

The research presented in this chapter forms a crucial part of our work, contributing to our
understanding of how Al and data mining techniques can be applied to address real-world

health crises, including the COVID-19 pandemic.
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Using self-attention mechanisms to analyse EHRs and predict COVID-19-related hospital-
isations represents a significant advancement in the field. Not only does this approach improve
the accuracy of predictions, but the interpretability of self-attention mechanisms also provides
valuable insights into the factors contributing to these predictions. This can potentially guide
clinical decision-making, optimise resource allocation, and improve patient outcomes.

Furthermore, this research shows the importance of collaboration between medical experts
and Al scientists. This collaboration ensures that the models we develop are technically sound,

clinically relevant, and usable in practice.
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6.1 Hidden medical knowledge

6.2 Language models and their clinical utility

Language models, such as the Transformer architecture and its variants, have demonstrated
remarkable success in various natural language processing tasks, including text classification,
sentiment analysis, and question answering. These models learn and generate human language
by training on vast amounts of text data, capturing intricate patterns and relationships within
the language. In recent years, the application of language models in the clinical domain has
gained significant attention due to their potential to extract valuable insights from unstructured
medical data, such as clinical notes, discharge summaries, and patient reports.

With a significant proportion of EHR being recorded as unstructured text, language mod-
els are especially relevant and valuable for processing and analysing large volumes of text.
Through such models, healthcare professionals can now access and analyse the wealth of infor-
mation stored within medical text data that was previously resource and time-intensive [214].

Language models have transformed medical text analysis, offering healthcare profession-
als valuable insights for improved patient care and research. These models support clini-
cal decision-making, patient risk stratification, pharmacovigilance, and clinical trial recruit-
ment [215]. They extract relevant information from patient records, including medical history,
prescriptions and test results, to identify at-risk individuals, monitor adverse drug events, and
match candidates to clinical trials [216]. Additionally, language models contribute to person-
alised medicine by integrating diverse data sources to suggest appropriate interventions [217].
This comprehensive approach enhances diagnostic accuracy, treatment efficacy, and research
progress, particularly beneficial for rare disease management.

Despite the promising applications of language models in the clinical domain, some chal-
lenges need to be addressed, primarily the interpretability of these models [218]. Despite the

growing complexity of language models, there has not been much advancement in making the
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inner workings of the models more transparent to end users. Therefore, understanding how
they arrive at specific predictions or decisions remains difficult, especially for the intended end
users of the model. This lack of transparency can hinder trust and adoption among health-
care professionals, who require clear explanations for the recommendations provided by these
models [219].

Another challenge is the potential for bias in language models. If the training data contains
biases, such as under-representing specific patient populations or historical biases in medical
records, the models may perpetuate these biases in their predictions [219]. Hence, ensuring
fairness and equity in applying language models in healthcare is crucial to prevent disparities
in care and maintain public trust.

Furthermore, integrating language models into clinical workflows requires careful consid-
eration of data privacy and security [218,219]. Medical data is highly sensitive, and strict
regulations govern its use and sharing. Developing language models that can operate within
the constraints of data protection laws and ethical guidelines is essential to ensure patient con-
fidentiality and maintain the integrity of the healthcare system [218,219].

Despite these challenges, language models have unprecedented potential to revolutionise
healthcare delivery. By harnessing the power of these models, healthcare professionals can
access valuable insights from unstructured medical data, enabling earlier detection of diseases,
more accurate diagnoses, and personalised treatment plans. As research advances, it is crucial

to address these challenges to realise the benefits of language models in clinical practice.

6.3 Graph Neural Networks and their role in modelling structure

Graph Neural Networks (GNN) have emerged as a powerful tool for modelling complex re-
lationships and dependencies in structured data [220]. Unlike traditional neural networks that
operate on fixed-size inputs, GNN can handle graph-structured data, where nodes represent
entities and edges represent the relationships between them. This makes GNN particularly
well-suited for capturing the intricate patterns and interactions in various domains, including
molecular structures, classifying diseases and knowledge graphs [220].

In healthcare, GNN have shown great promise in modelling the complex relationships be-
tween medical concepts, such as diseases, symptoms, medications, and patient characteris-
tics [221]. By representing medical knowledge as a graph, GNN can learn the underlying
structure and dependencies, enabling more accurate and interpretable predictions. GNN offer

significant advancements in healthcare and rare disease management by processing structured
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data as graphs. This capability enables more accurate predictions and personalised care, mak-
ing GNN increasingly valuable in bioinformatics and medical research, particularly for rare
disease diagnosis and treatment.

One of the key advantages of GNNs is their ability to capture both the local and global
structure of a graph [222]. GNNs can learn the local patterns and dependencies between neigh-
bouring nodes by applying convolutional operations on the graph. Additionally, the iterative
nature of GNN architectures allows for the propagation of information across the entire graph,
enabling the model to capture long-range dependencies and global patterns [222].

Another critical aspect of GNNS is their ability to handle a variety of data types [223].
Healthcare data often comes from diverse sources and in various formats, including structured
health records, unstructured clinical notes, and imaging data. GNNs can integrate these dif-
ferent data types by representing them as nodes and edges in a unified graph structure. This
allows for the joint modelling of multiple modalities and the discovery of cross-modal rela-
tionships [224].

However, as evidenced, the application of GNNs in healthcare also faces challenges, a
key problem of being not interpretable by non-technical users [224]. As research in this field
advances, it is crucial to address the challenges of interpretability to fully realise the benefits

of GNN in healthcare applications.

6.4 Augmenting rarity with ontologies

Rare diseases pose a significant challenge in healthcare due to their low prevalence, complex
manifestations, and the scarcity of available data [225]. Patients with rare diseases often face
delayed diagnoses, misdiagnoses, and limited treatment options, leading to poor health out-
comes and reduced quality of life. This is primarily due to the lack of comprehensive data,
knowledge and understanding of rare diseases.

Medical ontologies [226], which are formal, structured representations of medical concepts
and their relationships, can play a crucial role in augmenting the understanding and manage-
ment of rare diseases. These structured representations of medical knowledge enable improved
disease characterisation, facilitating the identification of similarities and differences between
rare conditions, and can help bridge the gap between the available information and the clinical
decision-making process. Ontologies also promote data sharing and collaboration among re-

searchers and clinicians by providing a common language for describing rare disease concepts.
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A significant challenge is the integration of ontologies into clinical workflows and deci-
sion support systems. Seamless integration of ontologies into the tools and platforms used by
healthcare professionals can provide them with easy access to relevant knowledge and guid-
ance at the point of care. This requires the development of user-friendly interfaces and the
integration of ontologies with existing EHR systems and clinical decision support tools.

Furthermore, adopting ontologies in managing rare diseases requires a shift in the mind-
set and practices of healthcare professionals. Training and education initiatives are necessary
to raise awareness about the value of ontologies and to equip clinicians with the skills and
knowledge needed to effectively utilise these resources in their daily practice.

Despite these challenges, the potential of ontologies to revolutionise the management of
rare diseases is significant. By augmenting the understanding and knowledge of these condi-
tions, ontologies can contribute to earlier and more accurate diagnoses, developing targeted
therapies, and improving patient outcomes. As research advances, it is crucial to foster collab-
oration between ontology developers, researchers, and clinicians to fully realise the benefits of

ontologies in understanding and diagnosing rare diseases.

6.5 The need for structure in language

The COVID-19 pandemic has exacerbated and exposed challenges and limitations in global
healthcare systems, such as the rapid stratification of patient risk, data interoperability for real-
time insights, and swift adaptation to surges in patient volume [227]. There remains an urgent
need for proactive approaches in preventative medicine, particularly the development of inter-
pretable risk stratification tools for early identification of high-risk individuals in primary care
settings [94, 166, 228,229]. Such tools facilitate early intervention, which holds the potential
to significantly reduce premature mortality and alleviate the strain on healthcare systems by
reducing the demand for secondary care.

ML models have evolved to become diagnostic tools for identifying high-risk patients and
predicting outcomes, such as for COVID-19 [230]. However, such models were not known to
be capable of capturing the complex interdependencies between medical conditions and the pa-
tients’ evolving medical status. Nonetheless, part of the challenge comes from the fragmented
data landscape resulting from non-standardised coding systems nationally and globally, espe-
cially in primary care settings [231,232].

To address these challenges, recent advancements combined Natural Language Process-

ing (NLP) with ML using unstructured clinical texts in EHR to further collaborative under-
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standing of the conditions [233]. However, complex black-box predictions raise concerns
around reliability and fairness in high-stakes medical decision-making. Including structured
ontological knowledge to regularise learning has shown promise for improving predictive ac-
curacy and enabling the interpretation of model behaviour in relation to formal relationships.
NLP in ML adds layers of reasoning that look beyond the codes used and into more pre-
cise, human-understandable descriptions in its analysis and output. Furthermore, GNN have
expanded the capabilities of data analysis in healthcare by modelling complex relationships
and dependencies among clinical concepts within EHR, which allows the creation of concept-
specific graphs [234]. These graphs learn from the hierarchical nature of medical codes and
capture evolving patient conditions over time, offering a more profound understanding that
traditional models lack [235].

Building upon these advancements, this chapter introduces a novel architecture that syn-
ergises GNN with a pre-trained language model, TinyBERT, to maximise the utility of EHR
by exploiting GNN to induce structured embeddings of medical concepts. This enriches Tiny-

BERT’s general analysis capabilities with specialised medical domain knowledge.

6.6 The domain of structure in medical language

Decision trees [190-192] and logistic regression [196, 197] offer interpretability for clinical
prediction tasks but are limited in using the breadth of information recorded in EHR [196,198].
Most techniques rely solely on structured inputs like demographics, medications, and diagnosis
codes for training predictive models [236] while ignoring valuable signals from unstructured
free text in written notes and clinical code descriptions. The deep EHR method addressed
this [237] by effectively using both structured and unstructured data for EHR analysis to com-
prehensively analyse patient data.

Recent ML developments seek to capture complex hierarchical relationships between med-
ical concepts. Choi implemented Directed Acyclic Graph (DAG) to model such relationships
explicitly using a static approach [238]. However, DAG poorly represent the nuanced correla-
tion between related medical concepts within the hierarchy and offers limited interpretability
into the importance of ancestral codes. Graph convolutional networks (GCNs) take a more
flexible approach through neighbourhood aggregation but still assume consistent local transi-
tions.

More advanced Graph Attention Networkss (GATs) allow adaptive, non-linear weighting

of edges based on learned relevance between concepts, offering greater flexibility in mod-
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elling the relationships between nodes. This provides greater representational power to model
the precise importance of specific diseases to their ancestors. However, unconstrained atten-
tion risks losing generalisability. In contrast, Graph Convolutional Networks (GCN) enforce
an equality-based smoothing that aids in higher-level abstractions along broad taxonomy di-
mensions. Therefore, finding the right balance between precisely modelling local ontological
nuances with GAT and smoothing out their global categorisation with GCN is crucial for ad-

vancing clinical modelling [239].

Since then, NLP has been incorporated to leverage unstructured clinical text and improve
model generalisability. Knowledge graphs generated using GNN map connections between
medical codes based on expert-defined ontologies have improved model generalisation and ro-
bustness compared to traditional feature-based methods [240]. Combining knowledge graphs
with large pre-trained language models like BERT [241] has further improved by enabling
models to ingest and analyse unstructured data. Nonetheless, they have scarcely been adopted,
as large transformer models are computationally intensive. An alternative is to use less compu-
tationally intensive models like TinyBERT [242], though this lacks inherent clinical knowledge

capabilities.

However, despite these advancements, current approaches still have limitations. Recent
literature highlights that these techniques have focused narrowly on medication or procedure
prediction rather than risk assessment and screening applications [243, 244]. Furthermore,
the graph constructions often rely on predefined taxonomies rather than data-driven learning
of flexible concept correlations [245,246]. This highlights the need for more comprehensive
approaches to address risk assessment and screening while incorporating data-driven learning

of concept correlations.

This study proposes a novel inductive graph representation learning technique to address
these limitations. By combining GAT and GCNs, we aim to induce medical concept embed-
dings that encode ontological relationships within TinyBERT. This approach integrates struc-
tured knowledge graphs with an efficient pre-trained model, potentially overcoming the com-
putational limitations of larger transformer models while retaining clinical knowledge capabil-
ities. Furthermore, adhering to the Bidirectional Encoder Electronic Health Records Repre-
sentations from Transformers (BEHRT) training scheme [247] enables the joint use of primary
care Read codes and their definitions for predictive tasks, potentially facilitating early diagno-
sis and interventions. This innovative approach seeks to bridge the gap between computational

efficiency and comprehensive risk assessment in clinical applications.
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6.7 Modelling medical hierarchies in deep learning

This study uses a retrospective longitudinal case-control design following patient journeys in
primary care data from the Secure Anonymised Information Linkage (SAIL) databank [248].

SAIL contains approximately 80% coverage of the Welsh population’s primary care records.

6.7.1 Cohort creation

Using the primary care data in SAIL, 3 datasets were created: COVID-19 hospitalisation,
COVID-19 mortality, and stroke (Table 6.2). Patients were included if they were aged between
18 and 100 at the start of the study period (01/06/2017) and had at least two GP interactions
during the study period (01/06/2017 to the event date). Features extracted included diagnosis,
procedural and medication codes, demographics, and inter-visit times.

Patients who died within 15 days of hospitalisation were excluded from the COVID-19
hospitalisation and added into the COVID-19 mortality dataset [180]. Patients who had stroke-
related diagnoses within the study period were included in the stroke dataset. These datasets
provide diverse aspects and scales of healthcare data for robust model evaluation.

The event date is unique for each dataset. It refers to the hospitalisation date that is followed
by a positive antibody or Polymerase Chain Reaction (PCR) test for the COVID-19 hospitali-
sation dataset; the mortality date after a hospitalisation accompanied by a positive antibody or
PCR test for the COVID-19 mortality dataset; and, the earliest date of stroke-related diagnosis
within the study period for the stroke dataset.

For each dataset, the read codes were filtered to have a minimum of 5 occurrences, reducing
noise. Longitudinal primary care data up to the event date was used, along with Read codes,
demographics like age and gender, and the number of days between visits as features. The data
was split 80/20 into training and hold-out testing sets, respectively. Cases and controls were

determined by read codes (available upon request).

Stroke Dataset and Configuration The stroke dataset used in this study is specifically de-
signed to evaluate the model’s performance on a real-world clinical scenario. For this dataset,
we explored configurations with pre-trained embeddings from TinyBERT, using text-based
and graph-based representations of the medical data. Table 6.1 provides a detailed breakdown
of these configurations, showing the interplay between pre-trained embeddings, textual infor-
mation, and graph representations in improving classification performance for stroke-related

outcomes.
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6.7.2 Stratified K-Fold

Stratified k-fold cross-validation is employed by dividing the training data into 10 class-
balanced subsets, each used once as a validation fold while training on the other 9 aggregated
folds. This controls for sampling bias and provides more reliable generalisation estimates than
conventional splits. Evaluation metrics are computed on the validation folds and an initially
held-out test set, then averaged across folds to reduce variance. By assessing many com-
binations of data subsets, k-fold cross-validation provides a regularised evaluation of model
robustness while final testing on new data measures real-world applicability. The multi-fold

averaging provides reliability superior to single train-test passes [249].

6.7.3 Modelling

An extensive ablation study evaluated multiple TinyBERT model configurations on the three
datasets. Each configuration selectively incorporated the following parameters: 1) Pre-trained
vs newly initialised word embeddings for general prior knowledge, 2) additional graph em-
beddings encoding medical ontology relationships for domain-specific clinical insights and 3)
diagnosis/medication code embeddings vs textual definition embeddings for interpretability.
The ablation study shows the individual and combined effects of the parameters on the model’s

predictive performance and determines the best combination to maximise model performance.

6.7.4 Model Architecture

The study uses a novel architecture which combines a language model, TinyBERT, with a
sophisticated GCN and Graph Attention v2 Convolution (GATv2Conv). This architecture is
designed to manage the complexity of healthcare data, including unstructured clinical text and

structured medical entities such as diagnoses and medication codes.

6.7.4.1 Hierarchical Embeddings

The diagnosis and medication ontology graphs have nodes, Vyiqg and V.4, representing unique
medical conditions and medicine codes, and edges, Eyj,e and E,,.q4, capturing hierarchical re-
lationships between the codes based on established taxonomies.

Parent-child connections directly linking medical conditions are modelled using

GATv2Conv, which allows flexible connectivity patterns. This enables selectively highlight-
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ing the most pertinent local relationships for targeted encoding into diagnosis embeddings Ey;qe
and medicine embeddings E,,. .

However, when modelling multi-hop ancestor relationships, GCN are leveraged, which
smooth over lineages through uniform neighbour aggregation schemes to regularise the ab-
straction of medical concepts in Eg;qe and Eyeq.

By combining these complementary strategies, we simultaneously distil precise semantic
connections and higher-order taxonomic knowledge into the diagnosis embeddings Eyj,e €
R!Vaias| ¥D injecting domain structure into the learned representations. This can be formulated

as:

Egiag = 6(GATV2ConV(Vyiag, Ediag) + GCNConV(Vyiag, Ediag)) 6.1)

Where o is an activation function and D is the embedding dimensionality.

6.7.5 Journey of Patient Data through the Algorithm

Tokenization and Data Preparation Drawing inspiration from the BEHRT model [247],
each patient visit is tokenised into a sequence including clinical text, diagnosis, and medica-
tion codes. The sequence is prefixed with a [CLS] token and suffixed with a [SEP] token.
Mathematically, a visit V with N tokens is:

V =[CLS,t1,1a,...,ty,SEP] (6.2)

Multitude of Embeddings The tokenized sequence is enriched by a variety of embeddings:

* Word Embeddings, E,, * Token-Type Embeddings, E;
¢ Diagnosis Embedding, Egiag * Age Embeddings, E,
* Medicine Embedding, Ey,cq * Gender Embeddings, E,

Embedding Aggregation Several techniques for embedding aggregation were explored, in-
cluding gated fusion, bilinear pooling, concatenation, and attention fusion. The final token-

level representation generated was:

Eioken = AggregationFunction(E,,, Egiag, Emed, Et, Ea, Eg) (6.3)
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Processing through TinyBERT The token-level embeddings Eoen Were processed through
the TinyBERT model, a lightweight yet powerful language model. The model applied self-

attention mechanisms, yielding the output O:
O = Self-Attention(Ejoken) (6.4)

These outputs were aggregated to produce the patient-level representation Epagient:

n
Epatient = Z O, (65)
i=1

6.7.6 Fine-tuning for the Classification Tasks

An advantageous decision shown by the ablation study was to use the pre-trained embeddings
from TinyBERT in the model to provide a rich representation of each GP visit. This is vital

when working with sequential multi-visit data, especially in classification tasks.

Leveraging TinyBERT’s Pre-trained Embeddings The model capitalises on the existing
pre-trained Transformer encoder, TinyBERT, removing the need to manually pre-train the
model. This encoder adeptly captures the nuances of individual medical visits, producing the

visit-level embedding, v;, at time 7.

From Visit-Level Representation to Classification Using the visit-level embeddings, v}
derived from TinyBERT, we construct a comprehensive representation for the entire patient
history, symbolised as Epagene. This representation is then processed through a fully-connected

layer with dropout, and a class label is derived using the softmax function:

Class Label = Softmax (Fully-Connected(Epagient) ) (6.6)

Technical Contributions The contributions of this work include the novel integration of em-
bedding aggregation layers and the use of metrics based on distance to evaluate the proximity
of augmented infrequently coded terms. This novel approach allows better model interpretabil-
ity and relevance to clinical decision-making. Additionally, combining TinyBERT, GCN, and
GATv2Conv enhances the model’s ability to process unstructured and structured healthcare

data, bridging the gap between large language models and clinical knowledge.
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6.7.7 Interpretability

Multiple complementary approaches provide transparency into the predictive modelling of pa-
tient trajectories.

Class Activation Maps (CAM) visually highlights influential terms in the sequence-based
transformer predictions. The highlighted medication usage and risk factors align with expected
clinical indicators for the target conditions. This supports qualitative accountability regarding
the model’s data-driven rationales.

Additionally, graph edge attention analysis quantifies the relevance of medical code re-
lationships, indicating a predominance of local parental dependencies in the model’s reason-
ing. The attention flows exhibit limited global propagation across broader ontology categories.
Self-loops indicate reliance on specific individual codes independent of their ancestors or de-
scendants.

Lastly, subgroup evaluation of metrics across age bands and gender categories helps au-
dit for potential unwanted correlations outside the core hierarchy encoding. Monitoring for
emerging biases will remain critical as clinical understanding evolves amidst new evidence on
risk factors.

Through combining sequence relevance tracing, modular graph accountability, and algo-
rithmic fairness analyses, these interpretation methods improve trust in model rationales based
on causal mechanisms rather than spurious correlations. The layered insights enhance trans-

parency of the model’s decision-making process.

6.7.8 Implementation

The model was trained using the PyTorch DL framework. The GATv2Conv was implemented
using the PyTorch Geometric library using a 2-layer GATv2Conv with hidden dimensions set
to 32. The TinyBERT model was initialised with pre-trained weights from the HuggingFace
library [250]. Adam optimiser was used with a learning rate of 0.001 and weight decay of 5e-4.
Finally, each model variation was fine-tuned on each dataset for 10 epochs with a learning rate

of 5e-5 and a Cosine scheduler with a batch size of 8.

6.8 Results and Evaluation

A total of 977, 18,766, and 47,132 patients were included in the COVID-19 Hospitalisation,
COVID-19 Mortality, and Stroke datasets, as shown in Table 6.2.
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Table 6.1: Best Performing Models on Different Datasets

CV19 Hospitalisation CV Death Stroke
Pre-trained Yes Yes Yes Yes Yes Yes
Text No Yes No Yes No Yes
Graph Yes No Yes No Yes Yes
Loss 0.76+0.02 0.72£0.01 0.25+0.01 0.27+0.01 0.60+0.02 0.59+0.01

Accuracy 0.52+0.00 0.52£0.00 0.90+0.01 0.90+£0.01 0.71+£0.00 0.71£0.00
Precision 0.53£0.00 0.53+0.00 0.89+0.01 0.89+0.01 0.73+0.00 0.73+0.00
Recall 0.62+0.03 0.59+£0.03 0.89+0.01 0.87+0.02 0.72+0.01 0.71+0.01
F1 0.56+0.01 0.55+£0.01 0.89+0.01 0.88+0.01 0.724+0.00 0.72+0.00
Runtime  6.814+0.14 4.50+£0.12 0.294+0.01 0.40£0.00 17.98+0.07 17.80+0.07

Table 6.2: Summary of Datasets

CV19 Mortality CV19 Hosp. Stroke
Control Case Control Case Control Case
Male 23.95% 18.12% 18.74% 19.28% 27.05% 28.57%
Female 30.81% 27.12% 30.53% 31.45% 21.65% 22.73%
Avg Age 79.93 82.12 48.26 48.30 70.97 71.51
Total 977 18,764 47,132

The impact of pre-trained embeddings, text, and graph structures on three different medical
datasets (COVID-19 Hospitalisation, COVID-19 Mortality and Stroke) was evaluated during
the assessment of model performance with various configurations.

The summarised results of the best-performing models on these datasets are shown in Table
6.1. Overall, the models employing graph structures consistently achieve a lower loss than their
counterparts using text. This demonstrates the significance of graph embeddings in improving
classification capabilities. The accuracy remained consistent across datasets irrespective of the
use of text or graph structures. Notably, the highest accuracy achieved (approximately 0.90)
was in predicting COVID-19 mortality. The precision and recall figures were relatively similar
across the three datasets, with the F1 score reflecting these values, suggesting balanced false
positives and false negatives. In terms of runtime, predicting for stroke was more computation-
ally intensive (estimated 18 seconds), irrespective of using text or graph structures.

Incorporating graph structures for the COVID-19 hospitalisation dataset improved the loss
metric from 0.76 to 0.72 while other metrics remained consistent. This suggests that while
the model’s overall accuracy and predictive capabilities remained the same, the certainty of its

predictions improved with the inclusion of graph structures. Models employing graph struc-
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tures for the COVID-19 mortality dataset demonstrated a marginal improvement in loss and
recall, while other metrics remained consistent. The high accuracy of approximately 0.90 for
both model configurations highlights the robustness of the models in predicting COVID-19
Death. Similar to COVID-19 hospitalisation, the use of graph structures for the stroke dataset
improved the model’s loss from 0.60 to 0.59. Other metrics remained consistent, suggesting a

minor enhancement in the model’s prediction certainty.

6.9 Discussion

This study offers novel insights into classifying patients with various health outcomes using a
transformer-based model fine-tuned on patient sequences encompassing clinical text, diagno-

sis, and medication codes.

Emergency treatment _Days from prev visit: 0
O/E - rate of respiration O/E - blood pressure reading Indirect encounter _Respiratory
monitoring O/E - method fever registered Depth of GIT examination Tiredness symptom Candidiasis

MICONAZOLE [SYSTEMIC] ZOPICLONE DOXYCYCLINE [SEP] Days from prev visit: 0

Causes of injury and poisening Musculoskeletal and connective tissue diseases AMLODIPINE ZOPICLONE
CITALOPRAM METFORMIN HYDROCHLORIDE DIGOXIN SODIUM VALPROATE
SENNA APIXABAN FUROSEMIDE ALLOPURINOL LINAGLIPTIN BISOPROLOL FUMARATE

DOXAZOSIN CARBOCISTEINE COMPOUND PROPRIETARY ANTACIDS M-Z LANSOPRAZOLE GLYCERYL
TRINITRATE [GENERIC ADDITIONS] SALBUTAMOL [INHALATION PREPRATIONS 2] [SEP] Days from prev visit: 18
Other medication management [V]Specified procedures and aftercare HYOSCINE HYDROBROMIDE [CENTRAL
NERVOUS SYSTEM USE] WATER FOR INJECTION MIDAZOLAM CYCLIZINE DIAMORPHINE HCL [ANALGESIC]
[SEP] Days from prev visit: 18

Causes of injury and poisoning Musculoskeletal and connective tissue diseases AMLODIPINE COMPOUND
ANALGESICS A-L METFORMIN HYDROCHLORIDE CITALOPRAM BUPRENORPHINE DIGOXIN SODIUM
VALPROATE SENNA APIXABAN OXAZEPAM FUROSEMIDE ALLOPURINOL BISOPROLOL FUMARATE
DOXAZOSIN CARBOCISTEINE COMPOUND PROPRIETARY ANTACIDS M-Z CHLORAMPHENICOL [EYE]
LANSOPRAZOLE GLYCERYL TRINITRATE [GENERIC ADDITIONS] SALEUTAMOL [INHALATION PREPRATIONS 2]
[SEP] Days from prev visit: 18

Administration Respiratory system diseases Pattern of pain Mental disorders INSULIN GLARGINE [SEP] Days
from prev visit: 18

Figure 6.1: CAM Salience over the words of each visit. Red denotes a feature that increases the risk of
mortality for patients with COVID-19

The model demonstrated varying performances when classifying patients with COVID-19
hospitalisation, COVID-19 mortality, and stroke. The fine-tuned transformer showed improve-
ments with accuracy reaching up to 0.90 +0.01 which suggests the model’s ability to under-
stand complex patient data. It was evident that including text and graph-based data improved

the model’s understanding of the context, resulting in improved performance.
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Using CAM correctly associated medications and clinical indicators aligned with the health
outcomes. For instance, Bisoprolol Fumarate, often used to manage hypertension, suggests
possible cardiovascular issues in the stroke dataset [251]. While a medication does not confirm
a diagnosis, it may be an early indicator of a diagnosis, requiring and enabling early clinical
interventions.

Additionally, using [SEP] at the end of each visit allows the model to perceive and dis-
play the aggregated risk of that visit, considering all the conditions and medication previously
analysed. Nonetheless, model interpretations should be supplemented with thorough clinical
evaluations. The fine-tuning process was instrumental in adapting the transformer model to the
specific nature and requirements of the data. By training on patient-specific visit sequences
and using token-level embeddings, the model captured intricate details and temporal patterns
inherent in the patient journey, highlighting the importance of tailoring pre-trained models to

domain-specific context.

6.10 Summary

This study presents a robust approach to predicting health outcomes using patient visit se-
quences. Through the integration of fine-tuning, multi-level embeddings, and careful interpre-
tation methods, a framework that can be adopted and adapted for various clinical prediction
tasks has been laid. While the journey through the maze of healthcare data is complex, tools
like the one developed illuminate possible paths, thus improving patient care and outcomes.
By leveraging on detailed patient trajectories, healthcare professionals can receive early
warnings or predictive insights into a patient’s potential health risks. Further, the model high-
lighted specific tokens that could aid clinicians in making timely and better-informed patient

interventions.

6.10.1 Limitations and Future Work

While the model performed well across the datasets, it is essential to consider potential biases
in data collection and representation. The datasets used in this study are derived from primary
care records, which may have limitations in terms of completeness, representativeness, and the
under-representation of certain populations, such as those with rare diseases or non-English
speaking backgrounds. Additionally, the data primarily consist of structured codes and clinical

text, which may lack some of the nuanced medical details that could influence predictions.
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External validation on diverse datasets, including data from different healthcare systems
or patient demographics, would help establish the model’s robustness across various clinical
contexts. Future work could also integrate more sources of patient data, such as imaging or
genomics, which could offer a richer understanding of patients’ medical histories and help
improve model performance by capturing complex biological factors that may not be fully

reflected in the clinical data alone.

6.11 Connecting the dots and remembering the why

This research aims to contribute to this ongoing transformation by harnessing the power of
data-driven approaches to detect and manage rare events in healthcare, while ensuring that the
methods used are clinically sound, interpretable, and actionable for healthcare professionals.

The importance of this research lies in demonstrating the potential of combining the
strengths of natural language processing, graph neural networks, and medical ontologies. This
study sought to develop a framework that effectively utilises the vast data available in EHRs to
enable earlier diagnosis and intervention.

By capturing the heterogeneity and variability of rare diseases at the individual patient
level, the proposed framework can support the tailoring of treatment strategies to each patient’s
specific needs and characteristics, which could improve patient outcomes. Finally, this study
considered ways to allow the output of the models to be more interpretable for clinicians, which
has been a challenge for ML models in the medical domain.

Reflecting on the clinical journey, it is important to acknowledge the invaluable work of
healthcare professionals in managing complex medical conditions. This study highlights the
importance of structured and interpretable tools that assist clinicians in making data-driven de-
cisions. Integrating advanced models like the one presented here can provide valuable insights
without replacing clinical judgement but complementing clinicians’ expertise. By situating
this work within the broader context of clinical practice, we aim to enhance decision-making
processes, particularly in rare diseases, by offering predictive insights and the interpretability
necessary for healthcare providers to trust and act upon the results.

In sum, this study met its objective of introducing a novel architecture that synergises GNN
with a pre-trained language model, TinyBERT, to maximise the utility of EHR by exploiting
GNN to induce structured embeddings of medical concepts while developing a way to improve

interpretability for clinical users.
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Findings of this study show the potential of using the said architecture in improving rare
disease diagnosis while demonstrating the feasibility of making complex models transparent

and interpretable for clinicians.
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7.1 Addressing Ambiguities in Diagnosis

Diagnosing rare diseases is challenging, especially when their symptoms overlap with more
common conditions. Symptoms such as fatigue, chest pain, and shortness of breath are of-
ten attributed to common conditions like coronary artery disease or HCM. However, these
symptoms may also indicate FD, a rare condition, often misdiagnosed or diagnosed too late
due to its ambiguous presentation. This phenomenon, known as ambiguity imbalance, occurs
when rare diseases are overlooked or misdiagnosed because their symptoms mimic those of

more common diseases, leading to diagnostic delays and inappropriate treatments that worsen

patient outcomes.

Ambiguity imbalance refers to the diagnostic challenge of distinguishing rare diseases from

more common conditions, especially when symptoms overlap. This imbalance can lead to
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a higher rate of misdiagnosis for rare diseases, resulting in delayed treatment and worsened
outcomes. In machine learning, addressing this imbalance involves improving the model’s
ability to accurately classify rare diseases amidst a preponderance of common conditions.

Research shows that patients with rare diseases often face years of diagnostic delays, being
passed between specialists and undergoing multiple tests before a correct diagnosis is reached
[12]. These delays not only prolong suffering but can result in misdiagnoses and harmful
treatments. Addressing the ambiguity imbalance with better diagnostic tools, such as machine
learning (ML), is crucial for improving diagnostic accuracy and patient outcomes.

Our research transitions from addressing class imbalances in datasets to tackling ambiguity
imbalance in rare disease diagnosis. FD, in particular, exemplifies the difficulty of distinguish-
ing it from other diseases, particularly HCM, which shares many symptoms. This chapter
discusses how ML can mitigate ambiguity imbalance by using routine cardiac tests and clin-
ical data to more accurately differentiate between FD and HCM, providing faster and more

reliable diagnoses.

7.1.1 A Zebrain a Herd of Horses

In medical training, *zebra’ denotes a rare disease, unlike the more common horses." The say-
ing "When you hear hoof beats, think of horses, not zebras" encourages clinicians to prioritise
common diagnoses when faced with typical symptoms [252]. While this approach works well
for most cases, it can be problematic when a rare disease, such as FD, presents symptoms that
overlap with more common diseases like HCM.

Focusing on common conditions can lead to misdiagnosis and delayed treatment for rare
diseases, the "zebras". Many FD patients are initially diagnosed with HCM due to overlapping
symptoms like left ventricular hypertrophy and arrhythmias. The real-world challenge is that
clinicians may overlook rare diseases like FD due to limited data, lack of awareness, and greater
familiarity with common conditions. The diagnostic process for FD requires special attention
to symptoms that could easily be misattributed to more common diseases. Machine learning
can help address this diagnostic imbalance by identifying "zebras" like FD earlier, enabling

clinicians to detect these rare conditions sooner.

7.1.2 Fabry Disease: A Rare and Overlooked Condition

FD is a rare genetic disorder caused by mutations in the o-galactosidase A gene (GLA) gene,

leading to deficient alpha-galactosidase A activity. It affects approximately 1 in 15,000 in-
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dividuals worldwide [253] and presents with a range of symptoms, including chronic pain,
fatigue, clouded vision, and cardiac complications such as arrhythmias and Left Ventricular
Hypertrophy (LVH). Despite these distinct symptoms, FD is often overlooked due to its rarity
and heterogeneous presentation.

A key diagnostic challenge with FD is its heterogeneity. Some patients exhibit classic
symptoms early in life, while others experience more subtle or intermittent symptoms that
are easily misattributed to other conditions. This variability complicates the standardisation
of diagnostic approaches, making it harder for clinicians to promptly identify FD. Moreover,
female patients may present with normal enzyme levels, making genetic testing essential for a
definitive diagnosis.

Detection of FD is further complicated by sporadic encounters in clinical practice and the
similarity of its symptoms to other conditions [254,255]. As a result, clinicians are more likely
to test for common diseases, leading to misdiagnosis or delayed treatment. The diagnosis of
FD can take anywhere from 3 to 15 years [256,257], which can lead to significant health dete-
rioration and increased treatment costs [258]. Early diagnosis is critical to prevent irreversible
organ damage. The scarcity of data on FD also complicates the development of diagnostic
algorithms, making it difficult to apply machine learning models to a broader population. ML
offers a promising solution by leveraging routine clinical data to differentiate FD from diseases

with similar presentations.

7.1.3 Hypertrophic Cardiomyopathy: A Common Misdiagnosis for Fabry

Disease

HCM is a common genetic heart condition, affecting approximately 1 in 500 individuals. Like
FD, HCM is characterised by left ventricular hypertrophy and arrhythmias, making it a frequent
misdiagnosis for FD. The challenge lies in the fact that HCM is better known to clinicians,
who are more likely to consider it first when patients present with symptoms like chest pain,
shortness of breath, or arrhythmias.

In contrast, FD lacks specific diagnostic markers and is often overlooked when symptoms
overlap with those of HCM. This results in misdiagnosis and delayed treatment, leading to
worse outcomes for FD patients. The misalignment between FD and HCM highlights a funda-
mental challenge in rare disease diagnosis: clinicians often prioritise more common diseases
due to well-established diagnostic tools. Machine learning can help address this challenge by

using routine clinical tests to differentiate between FD and HCM even when symptoms overlap
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significantly.

7.1.4 The Diagnostic Journey for Rare Disease Patients

The diagnostic journey for many patients begins with primary care visits, where common
symptoms like fatigue and chronic pain are often attributed to stress or anxiety. As a result,
diagnostic delays are common at this stage, as clinicians may not recognise these symptoms as
signs of a rare condition like FD. Patients are referred to cardiologists when cardiac symptoms
arise, but FD is still often overlooked due to its similarity with more familiar conditions like
HCM.

Only after extensive testing, including genetic testing, is FD typically diagnosed. This diag-
nostic process, which can take years, not only causes frustration for patients but also increases
the risk of irreversible organ damage. The diagnostic journey for FD underscores systemic
challenges in rare disease diagnosis, such as fragmented data and a lack of awareness among
clinicians. Patients are often passed between specialists, prolonging the time it takes to receive
a correct diagnosis. These challenges highlight the need for more efficient diagnostic tools to

identify rare diseases like FD earlier.

7.2 Data Collection and Standardisation Challenges

Data collection for FD diagnosis is complicated by fragmented healthcare systems and out-
dated legacy technologies. For example, ECHO reports are often stored as PDFs in various
formats, making extracting useful data for analysis difficult. Moreover, the software required
to visualise these reports was limited to a single terminal and required a significant fee to
convert the data into usable formats.

Fragmented healthcare systems often result in data that is difficult to standardise, hindering
machine learning models’ ability to train effectively. For example, ECHO reports stored in non-
uniform formats make it challenging to create a consistent dataset. Without standardised data,
ML models risk developing biases or missing key patterns that could be crucial for accurate
diagnosis. Addressing this fragmentation through custom data extraction tools is essential to
ensure that the data fed into ML algorithms is reliable and representative.

The lack of interoperability between healthcare systems and restrictions on data access cre-
ate substantial barriers to efficient data collection and analysis. Many healthcare systems still

rely on outdated technology, making it difficult to gather meaningful clinical data promptly.
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To address these challenges, we developed custom tools to automate data extraction and stan-
dardise data from fragmented sources. By ensuring data consistency, we aim to facilitate the
integration of clinical data into machine learning models, improving the diagnosis of rare dis-

eases like FD.

7.2.1 Control Case Matching

The challenge of diagnosing FD in the real world is reflected in the misdiagnosis of FD as
HCM. To address this, we selected HCM patients as the control group for this study, creating a
dataset that mirrors the challenges clinicians face in distinguishing between these two diseases
in real-world settings. The clinical teams at the University Hospital of Wales played a crucial
role in identifying FD and HCM patients based on routine clinical criteria, and data were
collected from three routine cardiac tests—echocardiograms, Holter monitors, and ECGs.
Using real-world data, we aim to improve our understanding of the limitations of traditional
diagnostic methods and demonstrate the utility of machine learning in diagnosing FD. The goal
is to improve diagnostic accuracy and provide clinicians with a reliable tool to differentiate

between FD and HCM in clinical practice.

7.2.2 Differentiating FD from HCM

There is a notable gap in evidence regarding FD, particularly in applying ML for its diagnosis.
Previous studies have explored ML for FD diagnosis, including the use of CNNs to identify
protein anomalies in urine samples [259], medical records [260, 261], and distinguishing FD
from HCM using ECG markers [262]. These studies reported classifier performances up to
0.87 AUC, demonstrating the potential of ML in FD diagnosis.

HCM, a common genetic heart condition, is frequently misdiagnosed as FD due to shared
symptoms such as left ventricular hypertrophy and arrhythmias [263,264]. This emphasises
the clinical challenge of differentiating between the two diseases. However, the small sample
sizes and limited control groups in existing studies, often consisting of healthy individuals or
generic medical records [259,260], have limited the generalizability of the findings.

Further complicating this issue, most studies rely on controls that differ significantly from
FD patients, resulting in an oversimplified differentiation. To address this gap, our study uses
HCM patients as the control group, better reflecting real-world diagnostic challenges where FD

is often confused with HCM. By leveraging routine clinical tests—echocardiograms, Holter
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monitors, and ECGs, we aim to improve the differentiation between FD and HCM with ML
tools that utilise a more extensive and realistic dataset.

In addition, while ML has proven effective in rare disease diagnosis, its application is
hindered by the "black box" nature of many models, which clinicians often struggle to trust
[265,266]. To address this, our study focuses on increasing model transparency and explain-
ability. This will allow clinicians to understand better and validate MLs decisions, ensuring
that the model’s pattern is clinically sound and fostering trust in its use for diagnosing complex
conditions like FD and HCM.

The ultimate goal of this study is to provide a reliable ML tool that improves diagnostic
accuracy for FD and HCM by analysing routine cardiac data. In doing so, we aim to fill the
evidence gap, enhance transparency, and assist clinicians in making more informed decisions

in clinical practice.

7.3 Bridging the Gap Between Rare and Common Diseases in

Diagnosis

7.3.1 Study Design and Recruitment

Existing research on FD using ML typically uses control groups consisting of either healthy
individuals [259] or generic medical records [260,261]. However, these groups differ signifi-
cantly from FD patients, artificially inflating classification accuracy. In clinical practice, FD is
frequently misdiagnosed as HCM due to overlapping symptoms [267-269]. Thus, this study
selected HCM patients as the control group, reflecting real-world diagnostic challenges.

The clinical teams at the University Hospital of Wales identified participants. Inclusion cri-
teria were a diagnosis of FD or HCM and being over 18 years old. Exclusion criteria included
acute illness or post-operative episodes during data collection. Cases of FD were confirmed
through genetic testing, while expert cardiologists verified HCM diagnosis based on standard
diagnostic criteria [270].

Data were collected from three routine cardiac tests: echocardiograms (echo), Holter mon-
itors, and electrocardiograms (ECG). These tests provide critical cardiac data, such as volu-
metric heart information (echo), extended period heart rhythms (Holter), and short-term heart
rhythms (ECG). The data were anonymised and stored securely in compliance with data pro-
tection regulations as part of a retrospective review of anonymised clinical data. Consent was

not sought, as the study did not impact patient management.
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7.3.2 Data Acquisition and Processing

A total of 49 FD patients and 100 HCM patients were included in the study. Data were manu-
ally extracted from the Cardiff and Vale Electronic Clinical Portal, including clinical reports for
the three cardiology tests (echo, Holter, or ECG). The reports, stored as .pdfs, contained demo-
graphic, quantitative, and qualitative data filled in by cardiothoracic physicians. An automatic
document reader tool was used to extract data into a .csv format for analysis.

Only numeric data from these reports was used to train the models. Raw test data, such
as ECG waveforms and Echo images, were excluded. Gender and condition were encoded
numerically using standard one-hot encoding, and missing data were imputed using zero im-
putation.

A complete list of features extracted from each test modality (ECG, Echo, Holter) is pro-
vided in Table 7.1.

HCM Fabry P-Value
Patients 100 49
ECG 728 514
Echo-cardiogram 128 161
Holter 55 70
Investigation Periods 461 588
Age, mean (SD) 57.2(13.9) 455(17.4) <0.001
Gender, n (%) Male 367 (62.4) 187 (40.6) < 0.001

Female 221 (37.6) 274 (59.4)

ECG to Echo (Days), mean (SD) 18.0(21.2) 3.4(10.3) 0.505
ECG to Holter (Days), mean (SD) 239 (11.77) 24.7(13.3) 0.850

Table 7.1: Summary of the patient data used in the study.

7.3.3 Aligning Clinical Reports

Given this study’s limited number of patients, the data were divided into "investigation periods"
to create a suitable number of instances for conducting ML. An investigation period was
defined as a 45-day window that began from an ECG report in the extracted patient data and
included at least that ECG along with any other tests conducted within those 45 days, such as
echo or Holter. If multiple tests of the same type occurred within a 45-day period that was not
a repeat test from the same day, we separated those into distinct investigation periods. Each

investigation period was labelled as having come from an HCM or FD patient and was then
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treated as a separate instance in the final dataset. After the data were rearranged in this way,
there were 461 investigation periods associated with the HCM patients and 588 with the FD
patients (see Table 7.1). This was deemed to reflect the clinical procedures of the University
Hospital of Wales, where echo and Holter investigations are commonly conducted in response
to an ECG test that the assessing clinician believes requires further investigation. This allowed
for the data from the Holter and echo tests to be placed in the context of the ECG assessment

that triggered the referral for that investigation.

7.3.4 Modelling Approaches

This work extends the notion of rare event detection to explore an area of machine learning
(ML) that deals with the comparative analysis of relatively small sample sizes with high miss-
ing values in both case and control groups. Small sample sizes and skewed data increase the
likelihood of overfitting and impede generalisation to new patients.

To mitigate this, we tested both individual model optimisation and ensemble approaches.
Models included Random Forest, Extra Trees, Support Vector Machine (SVM), Stochastic
Gradient Descent (SGD) as an optimiser for linear classifiers, GB, eXtreme Gradient Boosting
(XGB), and neural networks. SGDClassifier is a linear model that uses SGD as an optimisation
method to update model parameters iteratively, making it suitable for large-scale datasets with
sparse features. Although SGD is not a model, SGDClassifier is a model that applies SGD for
parameter optimisation in classification tasks, such as SVM or logistic regression.

Ensemble techniques leverage these learning algorithms, aggregating predictions to create
more robust composites. By combining complementary models, bias and variance are reduced.
Specifically, we evaluated stacked ensembles and voting ensembles.

We further optimised ensembles through a cascading process, recursively removing models
and re-evaluating them to assess their incremental predictive impact. Models detracting from
metrics like the F1 score were eliminated, distilling the ensemble to an optimal combination
of complementary contributors that maximised collective accuracy. This empirical ensemble

distillation approach extracted core signals from the scarce heterogeneous data.

7.3.5 Statistical Analysis

Following aligning cardiac reports into discrete investigation periods, we conducted a univari-

ate statistical comparison of feature distributions between FD and HCM patients. This pre-
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liminary analysis aimed to identify features showing significant group-level differences before

model training. Our statistical approach follows the methodology employed by [271].

For each numeric feature, we first applied Levene’s test to assess the homogeneity of vari-
ances between FD and HCM groups. Levene’s test evaluates whether variance differs signif-
icantly between groups, informing the choice of subsequent statistical methods. Depending
on the outcome of this test, we selected the appropriate follow-up analysis: an independent
two-sample 7-fest, suitable when variances between groups are approximately equal and the
assumption of normality holds, or the non-parametric Mann—Whitney U test (also known as
the Wilcoxon rank-sum test), appropriate when equal variances or normality assumptions are
not satisfied. To quantify the magnitude of these group differences, we calculated effect sizes
using Cohen’s d for results derived from t-tests and rank-biserial correlation (r) for those from
Mann—-Whitney U tests. Features with statistically significant differences (p < 0.05) were re-

tained for further visualisation and interpretation.

7.3.6 Cross-Validation and Hyperparameter Optimisation

We also employed repeated stratified K-fold cross-validation. Cross-validation reduces re-
liance on individual splits by creating multiple train-test splits, preserving case/control dis-
tributions. It provides tighter estimates of real-world F1 performance compared to standard
train/test evaluation. We performed a 10-fold CV, repeated three times with different splits. F1
scores were averaged across all folds and repetitions to minimise variance and overfitting risks

posed by limited clinical data.

Tuning model configurations is critical for preventing overfitting with limited samples
[272]. We leveraged Bayesian optimisation methods, including Optuna, to efficiently find
well-suited hyperparameter combinations that maximised the repeated stratified K-fold cross-
validated F1 scores. Despite scarce, heterogeneous clinical time series data, the optimisations

produced a generalisable model.

7.3.7 Explainability

Clinically validating the model’s decisions and thresholds was central to our approach. The
techniques chosen below provide a coherent exploration of the model’s decisions to enlighten

clinical practice.
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7.3.7.1 Feature Importance

ML models like XGB, random forests, and other tree-based methods have built-in feature im-
portance calculations that score each input’s contribution to predictions. The calculation in-
volves several steps. Firstly, the "Split Gain" measures the impact of a feature when splitting
decision tree nodes, assigning higher importance to features leading to a more substantial re-
duction in the loss function. Secondly, "Cover" sums the relative quantity of data points within
a feature, emphasising features covering a larger portion of the dataset. "Frequency of Feature
Use" tracks how often each feature is utilised in decision-making across all ensemble trees,
prioritising features frequently used for splitting nodes. The final importance score sums each
feature’s split gains, cover values, and frequency of feature use, expressing these as a propor-

tion of the overall feature importance.

7.3.7.2 Permutation Feature Importance

In addition to the built-in feature importance, we also assessed permutation feature importance.
This technique evaluates a feature’s impact by randomly shuffling its values and measuring the
resulting decrease in the model’s performance. Features for which shuffling values significantly
decreases metrics like AUROC are deemed highly important. By focusing on key signals in

the small, heterogeneous dataset, this method helps corroborate other explanations.

7.3.7.3 SHAP Feature Importance

SHAP values offer a detailed exploration of each feature’s contribution, making them particu-
larly useful for complex models like XGB [126]. Rooted in cooperative game theory, SHAP
fairly distributes “credit” for a prediction among features by evaluating the impact of all pos-
sible feature combinations. This method generates comprehensive insights into global and
instance-level influences, addressing the limitations of built-in feature-importance techniques.
By revealing interactions and directionality that often go undetected in traditional approaches,
SHAP provides validated explanations for differentiating patterns within heterogeneous clini-

cal data.

7.3.7.4 Partial Dependence Plots

While feature importance scores provide a ranking of predictive influences, Partial Depen-

dency Plotss (PDPs) offer a more detailed view of how changes in a variable impact predic-
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tions. PDPs illustrate the marginal effect of a feature on predicted outcomes by averaging
model predictions across samples as the feature is varied. By creating visualisations of these
effects across the feature’s value range, even in non-linear models like neural networks, PDPs
help identify thresholds and reasonable value ranges for clinical variables. These insights can
inform personalised assessment and treatment decisions. We consulted with domain experts
for accurate interpretations in the analysis. Integrating multiple explanation techniques was

key to obtaining reliable insights, even with limited heterogeneous data.

7.4 Results and Evaluation

7.4.1 Data Distribution

There were twice as many HCM patients (N=100) as FD patients (N=49). Compared to FD
patients, HCM patients were older (mean age of HCM patients was 57 and 45 for FD patients)
and had more males (HCM males: 62%, females 38%; FD males: 40%, females: 60%). These
differences may have resulted from genetic and biological factors driving divergent disease
onset and severity between sexes [273].

Regarding aligned cardiac tests within investigation periods, a significantly lower 3-day
average delay between ECG and Echo for Fabry patients indicates more rapid multimodal pro-
filing compared to the 18-day average lag in HCM patients. However, comparable uniform
Holter intervals with 24-day lags between ECG and Holter for both diseases suggest consis-

tency on broader test alignment timescales between cohorts.

7.4.2 Statistical Analysis

To complement the model-driven analyses, we first assessed univariate differences between FD
and HCM patients across all numeric features. Of the total features tested, 24 were statistically
significant (p < 0.05). Figure 7.1 displays the corresponding effect sizes for these significant
features.

On average, features with positive effect sizes were higher in FD patients, while negative
values indicate higher means in HCM patients. T-axis, QTc, and age emerged as the most
distinguishing features favouring Fabry classification, while Left Ventricular Pulse Wave Du-
ration (LVPWd) and EDV (MOD-sp2) were more associated with HCM cases. These findings
offer an initial statistical grounding and are later compared with the features prioritised by

machine learning interpretability techniques.
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Effect Sizes and Statistical Significance of Features
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Figure 7.1: Effect sizes of statistically significant features comparing FD and HCM groups. Positive
values indicate higher values in FD patients.

7.4.3 Model Evaluation

Model performance was evaluated on held-out test data using key classification metrics as

shown in Table 7.2. Recursively eliminating underperforming methods resulted in a final voting

ensemble that comprised a group of tree-based and distance-based models, XGB, K-Nearest
Neighbors (KNN) and Endothelin (ET). The final ensemble achieved an F1 score of 0.90.
The stacking ensemble consisted of non-parametric, gradient-optimised learning models KNN,

SGDClassifier, and Multi-Layer Perceptron (MLP), which achieved a slightly better F1 score of

0.91. Both ensemble methods performed well but did not surpass the individual XGB classifier,

with an F1 score and AUC of 0.92.
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Figure 7.2: Confusion matrix of optimised XGB classifier for FD (1) and HCM (0).

While tree-based models tend to work better for this dataset, substantial gains from gradient
boosting and tuning XGB highlight the effectiveness of this approach in discovering complex,
rare disease patterns. Additionally, the tendency towards predicting Fabry disease and the lower
False Positive Rate (FPR) of 0.0734 vs a False Negative Rate (FNR) of 0.0891, highlights the
models has a high clinical utility at prompting patients suspicious of FD for genetic testing (see

7.2).

7.4.4 Feature Importance

Fig. 7.3 shows the most predictive marker overall as Left Ventricular Internal Dimension at
Systole (LVIDs), which indicates sensitivity to gross structural reshaping. Complementing
this are the Interventricular Septum at End-Diastole (IVSd) wall thickness and Left Ventricu-
lar Internal Dimension at Diastole (LVIDd) dimension, which together quantify the chamber
anatomy rearrangements through hypertrophy or glycogen infiltration.

Conduction metrics formed the next highest cluster, including repolarisation durations

(QTc) and depolarisation wavefront aberrations (T-axis), along with general speed (QRS du-
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Model Name Accuracy Precision Recall FI1 Score
Decision Tree (DT) 0.80 0.80 0.80 0.80
Random Forest (RF) 0.88 0.88 0.88 0.88
Extra Trees (ET) 0.81 0.82 0.81 0.81
K-Nearest Neighbors (KNN) 0.81 0.81 0.81 0.81
SGDClassifier 0.64 0.69 0.64 0.60
Naive Bayes (NB) 0.55 0.62 0.55 0.46
Logistic Regression (LR) 0.73 0.73 0.73 0.73
AdaBoost 0.80 0.81 0.80 0.80
Gradient Boosting (GB) 0.89 0.89 0.89 0.89
Extreme Gradient Boosting (XGB) 0.92 0.92 0.92 0.92
Multilayer Perceptron (MLP) 0.74 0.76 0.74 0.74
Stacking Ensemble 0.91 0.91 0.91 0.91
Voting Ensemble 0.90 0.90 0.90 0.90

Table 7.2: Test set performance of top models.

ration) and directionality (R-axis, P-axis) measurements. Together, these biomarkers track

functional excitation-contraction coordination.

Lastly, other influential markers include patient gender, baseline heart rate tendencies
(bradycardia), arrhythmia frequency metrics and relative age-of-onset with demographic fac-

tors likely related to risk and progression elements influencing disease manifestation.

7.4.5 Permutation Feature Importance

Beyond assessing feature strength, permutation analysis reveals the model’s reliance on specific
inputs by quantifying its performance when primary features are altered. Stress-testing each
variable by shuffling its values highlights the adaptable markers that anchor decisions amidst

uncertainty.

The T-axis stands out in the permutation analysis (refer to Figure 7.4), showing a pro-
nounced reliance on the morphology of repolarisation waves for distinguishing between con-
ditions when other cardiac indicators are varied. This aligns with previous findings that cardio-
vascular health is a predictor of Fabry disease [274]. Both age and gender also emerge as key

variables, consistent with existing literature.
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Figure 7.4: Bar graph of top 20 influential features in model prediction.
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The persistence of factors like conduction speed (QRS duration), the heart’s electrical con-
ductivity (R-axis), and the timing of electrical recovery (QT/QTc) suggests that complex wave
patterns are essential for diagnosis.

Other significant indicators included the frequency of irregular heartbeats (PVC counts),

the speed of blood flow in the heart (Ao/PA peaks), and general heart rate indicators.

7.4.6 Shapley Feature Importance

7.5 shows that lower values for age and T-axis were more associated with FD classification,
while higher values for gender (where 1 = male and 2 = female) were associated with FD (so
the model was more likely to assign a patient to FD if they were female).

QTc length only pushes predictions strongly toward abnormal extremes, acting as a tipping
point for some. Meanwhile, the ventricular rate maintains a fairly balanced directionality,
indicating less differential impact.

The multi-faceted perspective of SHAP analysis emphasises subtle and overt feature influ-

ences lost in summary statistical approaches.

7.4.7 Partial Dependence Plots

Partial dependence plots characterise how subtle changes in factors alter predicted condition
probabilities.

The relationship with age (Figure 7.7) showed that younger ages (especially under 38)
were associated with increased FD likelihood. At the same time, predictions skewed toward
HCM with growing age, especially beyond 65 years. Gender showed consistent likelihood
differences across ages, suggesting prolonged progression divergence.

Cardiac electrical markers also presented deterministic thresholds. Figure 7.6 indicates T-
axis patterns temporarily boosted FD likelihood up to 45 ms before predictions swung towards
HCM, reflecting potential changes in severity levels over time. QTc interval predictions were
consistent until 320, where the likelihood of FD increased slightly, but at 400 ms to 480 ms, a
step decline indicated a higher likelihood of HCM (Figure 7.8).

Additional factors like R-axis and P-axis exhibited oscillating relevance dips and spikes.
Functional elements demonstrated further delineations, with QRS duration increasing HCM
likelihood between 80-100 ms thresholds and then increasing rapidly after 100 ms, signalling a
higher risk of FD. While faster maximum heart rates increased the likelihood of HCM, metrics

like ectopy counts presented a high likelihood of FD between 0 and 3 beats.
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Figure 7.7: Partial dependence plot illustrating age impact on FD and HCM prediction.
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Figure 7.8: Partial dependence plot showing QTc interval’s effect on case differentiation.
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Figure 7.9: Partial dependence plot for Ventricular Rate’s role in predictions.

7.5 Discussion

FD is a rare condition that has long been understudied due to limited research and the scarcity
of data. The symptoms of FD can often be mistaken for those of more common conditions,
leading to significant diagnostic delays—sometimes lasting up to 15 years—while patients
are shuffled between specialists who rule out more prevalent diseases [256,257]. During this
time, irreversible complications such as neuropathy, nephropathy, and cardiomyopathy can
accumulate without being detected [253].

Although some studies have identified markers that differentiate FD from other conditions,
the choice of control groups in these studies often fails to reflect the real-world challenge
of misdiagnosis, particularly concerning diseases like Hypertrophic Cardiomyopathy (HCM),
which shares several clinical features with FD. The difficulty of distinguishing between these
two conditions presents a vital opportunity for improving diagnostic efficiency. Furthermore,
previous studies have been constrained by small cohort sizes and a lack of comprehensive
interpretability of the models, contributing to clinicians’ reluctance to apply these models in
clinical practice.

This study addresses these challenges by utilising a larger cohort and incorporating mul-
tisystem interpretability techniques such as SHAP to offer a transparent explanation of the

model’s decision-making process. We aim to solve the challenge of distinguishing between
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FD and HCM by employing multimodal cardiac data (ECG, Echo, and Holter) and machine
learning. By aligning these diverse data sources into longitudinal investigation periods, we
reveal phenotypic differences between FD and HCM that were previously difficult to de-
tect [262, 275, 276]. Using interpretable AI models improves upon earlier efforts, such as
electrocardiogram-based models, by offering clearer insights into why the model predicts one

condition over another, ensuring clinicians can trust and apply the model’s findings confidently.

7.5.1 Comparing Approaches

The algorithm we developed synthesises structural, electrical, and demographic data from mul-
timodal patient records, achieving an F1 score and AUC of 0.92 in differentiating between FD
and HCM.

The model reveals significant influences from subtle tissue-level shifts, such as T-axis
waveform deviations, which indicate early depolarisation disruptions—an early FD marker
often overlooked in conventional electrocardiographic analyses. Additionally, age and gender
cutoffs provide insights into demographic factors correlating with disease risk, reinforcing clin-
ical understanding of FD behaviour. Notably, this model’s findings go beyond current clinical
guidelines, which do not set explicit thresholds for suspecting FD or HCM in patients.

Our model improves upon Moura et al. ’s work, which used electrocardiogram data to
achieve an AUC of 0.87 in differentiating FD from HCM [262]. While their model highlights
disrupted depolarisation and excessive recovery risks, it was limited by low specificity (56%)
and a small, age-stratified cohort of just 64 patients.

The use of broader medical records in our model enables us to explore arrhythmia and
stroke risks, as seen in studies [275,276], which achieved an AUC ranging from 0.77 to 0.81.
However, these studies heavily rely on observational proxies such as palpitations or previously

confirmed events, limiting their ability to personalise risk stratification.

7.5.2 Clinical Insight

Our deep dive into the model’s decision-making process has uncovered critical patterns that
enhance our understanding of FD and provide early indicators that can be applied in clinical
practice. These patterns, derived from the model’s interpretable techniques, allow for a more
nuanced approach to identifying risk factors long before noticeable disruptions in heart rhythm

occur.
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One of the most prominent markers we identified is the T-axis, a key component in the
electrocardiogram (ECG) waveform. When analysed through techniques like SHAP and partial
dependence plots, this feature reveals that the likelihood of FD increases within specific 0-
25 millisecond aberrancy ranges. These deviations likely signal early electrical propagation
delays in the Purkinje fibres, which are essential for rapid conduction in the heart. These
fibres are damaged in FD patients due to glycosphingolipid accumulations, a disease hallmark.
However, these Purkinje fibres remain intact in patients with Hypertrophic Cardiomyopathy

(HCM), underscoring one of the key differences between the two conditions.

Alongside structural changes in the heart, such as ventricular hypertrophy, we observe tim-
ing disruptions within the ECG readings that point to cellular-level conduction issues emerging
early in FD progression. Techniques like SHAP values and permutation feature importance
help illuminate these disruptions, providing insights into the QTc interval—a measure of the
heart’s electrical activity. Our analysis reveals that FD patients diverge at the 400 ms QTc
threshold, indicating higher instability risks. In contrast, patients with HCM show minimal
disruption at this threshold, reinforcing that these two conditions share overlapping symptoms

and can be distinguished with nuanced electrical markers.

The use of many interpretability techniques, such as SHAP and permutation feature im-
portance, has allowed us to go beyond just identifying important features. It has enabled us
to understand how these features influence the model’s prediction for example, SHAP values
provide detailed insights into the individual contributions of each feature, such as gender, age,
and cardiac markers, to the likelihood of a diagnosis. This deep understanding of feature im-
portance allows clinicians to see which factors influence the model and validate them against

their clinical experience.

Moreover, PDPs visually represent how changes in specific variables—such as T-axis mea-
surements or QTc interval values—directly affect the model’s predictions. This helps clinicians
understand the thresholds at which key markers shift, making tracking early signs of FD and
HCM easier. For instance, the T-axis pattern, which temporarily boosts the likelihood of FD
within a narrow window, serves as an early diagnostic cue for FD, which can be distinguished
from HCM. The QTc interval divergence at the 400 ms threshold similarly marks a critical
distinction between the two conditions, helping clinicians identify FD earlier in the diagnostic

process.

This interpretability framework provides actionable insights that can be directly integrated

into clinical practice. Clinicians can now track key markers—such as T-axis variations, QTc
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divergence, and age—to identify early signs of FD, improving personalisation of care. These
markers offer early diagnostic windows that allow clinicians to intervene before irreversible
organ damage occurs. By personalising care based on these findings, clinicians can make
timely, informed decisions that may significantly improve patient outcomes.

Moreover, the SHAP values allow clinicians to understand the model’s predictions in real-
time, providing transparency and trust. When clinicians have a clearer view of why the model
makes specific predictions, they can confidently apply the findings. This explainable Al (XAI)
approach fosters trust in the model and encourages its use in routine clinical practice, enabling
early detection and differentiation between FD and HCM.

In summary, leveraging multisystem interpretability techniques in this study has enhanced
the model’s accuracy and provided clinically actionable insights. By focusing on nuanced fea-
tures such as T-axis variations and QTc interval divergences, we can now differentiate between
FD and HCM more effectively, empowering clinicians to diagnose earlier, personalise care,

and ultimately improve patient outcomes.

7.5.3 Limitations and Future Directions

Despite the multisystem interpretability framework enhancing model reliability, several limi-
tations remain. These include the retrospective study design, potential selection bias in control
groups, and challenges related to the small sample size. Future work could address these is-
sues by evaluating additional cardiac data modalities, such as genetic testing for variants in
MYH7, MYBPC3, and GLA genes. This may offer more molecular insights into the observed
electrical and anatomical patterns.

One limitation of identifying undiagnosed FD from clinical populations is that the condi-
tion often reaches a symptomatic stage before detection, as highlighted by Jeffries et al. [260].
The challenge remains to diagnose FD before irreversible damage occurs. However, as noted

earlier,

7.6 Summary

This work advances ML applications in healthcare by designing a robust XGB classifier to dif-
ferentiate between FD and HCM—a common misdiagnosis for FD. Our model leverages rou-
tine clinical data (ECG, Holter, echocardiograms) already collected in clinical settings, making

integrating it into real-world healthcare workflows easier. This marks a significant improve-
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ment over previous work, where ML models typically struggled to work with routine data and
required complex or rare datasets.

One of the key contributions of this study is the creation of a novel dataset explicitly tailored
for clinicians and researchers to use in diagnosing rare diseases like FD. This dataset, derived
from real-world clinical data, not only helps researchers build better models but also serves as
a valuable resource for education and further research in rare disease diagnosis.

In addition, we developed a custom data extraction tool that automates the process of ex-
tracting clinical data from non-standard report formats. This tool, which has already been
tested and proven useful across multiple health boards, simplifies data integration from legacy
systems, making it easier to work with fragmented data and improving data accessibility for
model training.

Our XGB classifier is designed to work with clinically collected data and can differentiate
FD from HCM with an impressive F1 score of 0.92. The model has been built with explainabil-
ity in mind, using techniques like SHAP values and PDPs to provide transparent, interpretable
predictions that clinicians can trust and easily integrate into their decision-making processes.

This approach represents a significant step beyond previous work on sepsis, where we fo-
cused primarily on understanding missingness patterns in ICU data and modelling them using
XGB. While the sepsis work also used SHAP for interpretability, it was primarily centred
around feature selection and data imputation, with a more limited focus on clinical applicabil-
ity. In contrast, this study offers a deeper clinical insight by identifying key features like T-axis
variations and QTc interval deviations and making these insights actionable in a real-world
clinical context.

In summary, this work demonstrates the potential of ML to support clinicians in diagnosing
rare diseases like FD by providing a clinically applicable model that integrates routinely col-
lected data, improves diagnostic accuracy, and enhances clinical decision-making. Adding the
new dataset and data extraction tool further solidifies the clinical utility of this work, making it
easier to implement in real healthcare environments. Future work will focus on comparing the
effectiveness of this classifier against expert clinicians to assess its impact on diagnostic speed

and accuracy in clinical cardiology settings.

7.7 Connecting the dots and remembering the why

As we advance in applying ML to diagnosing rare diseases, we must stay grounded in the

"why" behind these efforts. At the heart of this research is a commitment to improving patient
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outcomes by enabling earlier and more accurate diagnoses. The goal is not just to identify
rare diseases more efficiently, but to personalise treatment plans based on each patient’s unique
clinical profile, considering the disease and its broader context within their health journey.

In the case of FD, which has long been an understudied condition, our work serves as a
beacon for the potential of ML in clinical practice. By providing clinicians with tools that
distinguish rare diseases from common conditions and explain why these distinctions matter,
we empower them to make more informed decisions. This can lead to faster diagnosis, better-
targeted treatments, and, most importantly, improved patient care.

The long-term vision is to ensure that every patient, regardless of how rare their condition,
receives the timely diagnosis and tailored care they deserve. Through tools like the XGB
classifier and its interpretable features, we hope to bridge the gap between rare and common
conditions, fostering a healthcare ecosystem that recognises the complexity of all diseases and

uses ML to support clinical decision-making every step of the way.
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8.1 Introduction

ML models have made significant strides in identifying complex patterns within medical
datasets, such as imaging, genomics, and patient records. In recent years, MLs ability to assist
clinicians in diagnosing conditions with unprecedented speed and accuracy has been widely ac-
knowledged. However, rare diseases such as FD present unique challenges. FD is characterised
by its heterogeneous clinical presentation, making it difficult to distinguish from other more
common conditions, such as HCM, which shares similar cardiac symptoms. This often leads
to misdiagnosis or delays in diagnosis, contributing to severe complications like irreversible

organ damage and reduced quality of life for patients. Additionally, its rarity of FD means
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that clinicians have limited exposure to it, further compounding the difficulty in recognising its
early signs.

Incorporating ML into diagnosing rare diseases like FD holds great promise, but chal-
lenges remain, especially in real-world clinical integration. The lack of training data, model
transparency, and trust from clinicians is a major obstacle to the widespread adoption of Al in
healthcare.

This chapter addresses these challenges by proposing an innovative ML-LLM diagnos-
tic tool that integrates the FD-HCM ML model with an LLM-based chatbot to provide clear,
clinically relevant explanations. This tool provides accurate diagnostic predictions and aims
to enhance transparency and interpretability, making it easier for clinicians to understand and
trust Al-driven decisions.

FD is a rare, genetically inherited metabolic disorder that affects approximately 1 in 15,000
people worldwide. It is caused by a deficiency in the alpha-galactosidase A enzyme due to
mutations in the GLA gene, leading to progressive damage to the nervous system, kidneys, and
heart. The clinical presentation of FD is highly heterogeneous, with symptoms ranging from
chronic pain, fatigue, and clouded vision to severe cardiovascular events such as arrhythmias,
strokes, and kidney failure. These symptoms are often intermittent and mild, making it difficult
for clinicians to recognise the disease early. Furthermore, many of these symptoms overlap
with those of more common diseases, particularly HCM, a condition that shares similar cardiac
symptoms, such as left ventricular hypertrophy and arrhythmias.

Diagnosing FD is challenged by its rarity, heterogeneous presentation, and overlapping
symptoms with common diseases. These factors contribute to misdiagnosis and delayed treat-
ment, with patients often facing diagnostic delays ranging from 3 to 15 years. This delay in
diagnosis has significant consequences, leading to irreversible organ damage (particularly in

the kidneys and heart), reduced quality of life, and increased healthcare costs.

Key complexities of FD diagnosis include:

* Rarity of the Condition: As arare disease, FD is not commonly encountered in clinical
practice. Clinicians, therefore, have limited exposure to the condition, making it harder

to recognise and diagnose early.

* Overlapping Symptoms with Common Diseases: Many FD symptoms overlap with

more common diseases, such as HCM, coronary artery disease, and chronic fatigue syn-
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drome. This often leads clinicians to prioritise these more common conditions during

the diagnostic process, delaying the identification of FD.

* Heterogeneous Clinical Presentation: The symptoms of FD can vary greatly between
individuals. Some patients may exhibit severe symptoms early in life, while others may
experience more subtle or intermittent symptoms that are easily misattributed to other
conditions. This variability complicates the application of standardised diagnostic pro-

tocols.

* Sporadic Clinical Encounters: Due to the rarity of the disease, FD is often not consid-
ered in the differential diagnosis until other more common causes have been ruled out,

leading to significant delays in diagnosis and treatment.

» Data Scarcity: FD is a poorly studied disease due to its rarity, and consequently, there
is limited data available to support the development of diagnostic tools. The lack of

sufficient training data complicates the development of practical diagnostic algorithms.

These complexities highlight the necessity of the approach presented in this chapter. De-
spite the promise of ML in diagnosing rare diseases, a key barrier to its widespread clinical
adoption is the lack of interpretability. Many ML models function as "black boxes," offering
little insight into how predictions are made. This lack of transparency is particularly problem-
atic in the medical field, where clinicians must trust the model’s reasoning before applying it
to patient care.

To address this, we propose an innovative approach that integrates the FD-HCM ML model
with an LLM chatbot. This integration is designed to provide accurate predictions and offer
clear, actionable explanations of the model’s reasoning. The use of LLMs to augment ML
predictions addresses the transparency issue by enabling the model to generate natural language
explanations, making its decision-making process more understandable to clinicians.

This chapter describes the development of the ML-LLM diagnostic tool, which aims to
assist clinicians in the early diagnosis of FD by providing accurate predictions and a transparent
rationale behind those predictions. We also explore the clinical co-design approach to ensure
the tool’s relevance and usability in clinical settings. By improving the interpretability and
usability of the model, this tool has the potential to enhance the accuracy and speed of FD
diagnosis, ultimately improving patient outcomes through earlier interventions.

The following sections discuss the design considerations for integrating the ML model with

the LLM chatbot, including user interface design, clinical workflow integration, and evaluation
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of the prototype tool through a user study. We will also address the limitations, challenges,
and future directions for integrating ML and LLM technologies into clinical practice for rare
disease diagnosis.

The tool developed in this chapter can be accessed here: AI4Fabry Diagnostic Tool.

8.2 Designing Systems for Clinical Interpretability

8.2.1 Prompt Engineering for Clinically Relevant Explanations

Prompt engineering is designing and optimising the queries to guide LLM in generating clin-
ically relevant outputs [277]. Effective prompts balance the open-ended nature of natural lan-
guage and the specificity required in medical contexts. They should be clear, concise, and
structured to elicit responses that apply to the patient’s situation, incorporating relevant medi-
cal terminology and context [278].

Developing high-quality prompts is an iterative process that relies on clinician feedback.
Initial prompts are tested, and the LLM’s outputs are evaluated by healthcare professionals who
highlight areas for improvement in clarity, relevance, and accuracy. This process is repeated
until a set of optimised prompts is obtained. This collaborative feedback loop ensures that the
LLMs responses are aligned with clinical needs, merging the technical expertise of engineers
with the practical, patient-centred experience of clinicians.

In the context of our decision support tool for FD, prompt engineering will help ensure that
the chatbot explains selected features and its decision-making process in a clinically relevant

manner and can be easily understood by healthcare professionals.

8.2.2 Designing Intuitive User Interfaces

The user interface (UI) serves as a bridge between complex data algorithms and healthcare
professionals. Its design should prioritise ease of use and efficiency. A well-designed interface
reduces cognitive load, allowing clinicians to access and interpret model outputs seamlessly
while focusing on patient care. Key considerations include clear data visualisation, logical
information organisation, and streamlined workflows that mirror clinical processes. By en-
hancing the clinician’s ability to utilise the LLMs insights, an intuitive interface facilitates the
effective integration of Al-assisted tools into clinical practice.

Our diagnostic tool’s Ul has been designed with these principles in mind, focusing on

providing a seamless and intuitive experience for clinicians. The interface incorporates clear
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visualisations of the ML model’s predictions and the SHAP values, allowing clinicians to grasp
the key factors influencing the diagnostic suggestions promptly. The workflow has been op-
timised to align with clinical processes, ensuring that the tool can be easily integrated into

existing diagnostic protocols.

Fabry Disease (FD) Vs Hypertrophic Cardiomyopathy (HCM)

This s an tool currently under It has NOT been clinically validated and should this be used as a medical decision aid.

This app uses a machine learning model to prediict the likelihood that a patient has either FD or HCM from demographic, ECG, Echo and Holter tests.

Patient Data v HCM 022 078 FD

Patient History ~
Marker Importance ~
Does the patient have a family member diagnosed Fabry disease.

Yes v

Patient medical history

Feature

Please briefly describe the key details of the patient's medical history

ECG Report Data ~

40 050
Vent. rate QRS dur. P-axis R-axis T-axis Qr QTe BSA
Mean Absolute SHAP Value

70 90 60 60 60 350 420 170

Echocardiogram Data v Marker Contribution v

Holter Monitor Data v

Figure 8.1: Full diagnostic tool interface showcasing the patient data input sections, ECG report data,
risk prediction results, and marker importance.

8.2.3 Developing a User-Friendly Streamlit Interface for Clinicians

Building systems on publicly available tools promotes the democratisation of healthcare tech-
nology and broadens its impact [279]. Open-source development encourages collaboration,
validation, and improvement of Al-assisted diagnostic tools across healthcare settings. It fa-
cilitates the standardisation of care quality, regardless of an institution’s resources, and fosters
innovation through the widespread adoption of best practices [280].

Our diagnostic tool has been developed using the open-source framework Streamlit, which
is freely available for anyone to use and modify. Streamlit is a lightweight and user-friendly
framework for creating web applications for data science. It has a clean and uncluttered layout,
apt for clinical decision-making, as shown in Figure 8.1. The simple and efficient interface
would allow clinicians to input patient data and receive risk assessments with minimal training

or technical knowledge.
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Fabry Disease (FD) Vs Hypertrophic Cardiomyopathy (HCM)

This is an experimental tool currently under development. It has been clinically validated and should this be used as a medical decision aid

This app uses a machine learning model to predict the likelihood that a patient has either FD or HCM from demographic, ECG, Echo and Holter tests.

Patient Data v HCM 055 0.45 FD
Patient History ~
Marker Importance ~

Does the patient have a family member diagnosed Fabry disease.

cencer |
ves 3 py—

wod
patient medical istory o

Feature
s
3

Please briefly describe the key details of the patient's medical history

o
s duaton
ECG Report Data -~ Frax
00 o010 020 030 040 050 050 070 080 080
Vent.rate  QRSdur.  P-axis Reaxis T-axis ot QT BSA
Mean Absolute SHAP Value
70 %0 60 60 60 400 420 170

Echocardiogram Data v Marker Contribution v

Holter Monitor Data v

Figure 8.2: Full diagnostic tool interface showcasing the patient data input sections, ECG report data,
and the risk prediction results, along with marker importance with modified risk to showcase change in
interface from Figure 8.1

Further, Streamlit’s accessibility helps ensure the broader healthcare community can eas-
ily share and improve our code and methodologies. The complete source code for our web
application is hosted on GitHub, a popular platform for open-source software development
and collaboration [281]. By making our code publicly available on GitHub, we encourage
other researchers and developers to build upon our work and create similar tools for different
diseases.

Additionally, our diagnostic tool utilises state-of-the-art language models streamed from
free instances on the Hugging Face Hub [282]. Hugging Face is a leading platform for open-
source ML models, providing a centralised repository where researchers can share their pre-
trained models with the community. Integrating these freely available models into our tool

ensures that users can access cutting-edge Al capabilities without incurring additional costs.

8.2.4 Ensuring Compliance with Data Privacy Regulations

We have implemented several mechanisms within the diagnostic tool to ensure compliance with
data privacy regulations. As this is a smart risk calculator, no queries or values input by users
are stored. The interface is specifically designed for manual input only, and the system does not

allow uploading identifiable patient files. This approach ensures that no sensitive patient data is
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retained, processed, or transmitted, mitigating potential privacy risks. Additionally, the system
fully complies with standard data privacy guidelines, including the General Data Protection

Regulation (GDPR).

8.3 Enhancing Clinicians’ Understanding of Model Predictions

8.3.1 Providing Clear Visualisations of the Model’s Predictions and

Explanations

Clear visualisations are essential for clinicians to quickly and effectively understand the pre-
dictions and explanations of ML models. Visualisations allow clinicians to grasp the most
important aspects of the data and models by simplifying complex concepts and highlighting
key insights. Our diagnostic tool employs SHAP values and LIME to show how input features

affect model predictions, making the decision-making process transparent.

By integrating these visualisations with tools like MLflow, we can ensure that they corre-
spond to specific model runs and states, providing consistency and accessibility for clinicians.
This integration also offers benefits such as persistent storage and provenance, which are cru-

cial for maintaining the integrity of the model analysis.

8.3.2 Enhancing Transparency with SHAP Values

SHAP values serve to allow for transparency by quantifying how each feature in a patient’s
data contributes to the diagnostic suggestion or risk assessment from the LLMs output [126].
By visualising SHAP values through bar plots or heatmaps, clinicians can quickly identify the
most influential factors driving the model’s predictions. This information can guide further

investigation and help clinicians make more informed decisions about patient care [283].

In addition to feature importance, visualising the data preprocessing steps through
flowcharts or diagrams can help clinicians understand the transformations the data undergoes
before being fed into the model. This transparency builds trust in the system and allows clini-

cians to assess the validity of the model’s inputs.
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8.3.3 Enabling Clinicians to Input Patient Data Seamlessly and Explore

Different Scenarios

We have designed an interface that allows clinicians to input patient data seamlessly and ex-
plore different patient scenarios by adjusting input variables, providing valuable insights into
how changes in patient data might affect the model’s predictions. This interactive exploration
helps clinicians understand potential outcomes and prepare for adverse clinical situations.

Our interface incorporates visual tools like partial dependence plots, illustrating how spe-
cific features influence predictions. These interactions allow clinicians to understand the
model’s logic better and perform scenario analyses. For instance, a clinician could adjust the
values of specific biomarkers or imaging features to see how the model’s risk assessment for

Fabry disease changes, providing a more comprehensive view of the patient’s condition.

8.3.4 Utilising the LLM Chatbot to Articulate Decision-Making Processes in a

Conversational Manner

One of our diagnostic tool’s key features is integrating a chatbot powered by an LLM. This
chatbot serves as an interactive guide, articulating the decision-making processes of the ML
model conversationally. By engaging with the chatbot, clinicians can ask questions and receive
explanations in natural language, making the information more accessible and understandable.

For instance, a clinician could ask the chatbot why a patient is classified as high-risk for
Fabry disease. The chatbot would then break down the key factors contributing to this clas-
sification, such as specific cardiac abnormalities or genetic mutations, and explain how these
factors influence the model’s prediction. This conversational approach helps demystify the

model’s outputs and provides a user-friendly means of engaging with complex data patterns.

8.3.5 Aligning Model Outputs with Clinical Expectations and Usability
Through Iterative Testing and Feedback

Through close collaboration and regular engagements with clinicians throughout the tool de-
velopment cycle, we refined the model and its interface to align with clinical objectives and
enhance usability. Regular testing sessions and feedback loops helped identify areas for im-
provement in the model’s performance, the clarity of its explanations, and the overall user
experience. This iterative approach ensures that the final product is accurate but also practical

and trustworthy in the eyes of healthcare professionals.
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Frequently Asked Questions:

How does the website make its predictions? ~

This website was designed by researchers at Swansea University, who have trained a machine learning model to predict whether a patient has Fabry disease or Hypertrophic Cardiomyopathy (HCM) based on ECG, Echo and
Holter scans. If you enter new patient data into the website, it will make a prediction on the likihood that the patient has either Fabry disease or HCM. This is represented by the bar on the right hand side of the page. You
can explore the reasons that the algorithm made its prediction by clicking on the "Marker Importance” and "Marker Contribution" boxes. Alternatively, you can ask the model to explain its decision making in natureal
language directly in the "Ask Away!" section.

What is XGBoost? ~

XGBoost is the method used to train the machine learning model. itis short for "Extreme Gradient Boosting" and is a machine learning algorithm designed for supervised learning tasks. It is particularly known for its

performance and speed in predictive modeling and has become a popular choice for a wide range of ions, from finance to Gradient boosting involves creating an ensemble of decision trees, where each

new tree corrects the errors of the previous ones. This iterative process improves the model’s accuracy incrementally. Each decision tree is a simple model that makes predictions based on a series of binary decisions.
XGBoost builds multiple trees, each focusing on the errors from the previous tree. XGBoost employs advanced optimization techniques and regularization, penalising model complexity, to prevent overfitting, This ensures

the model generalises well to new data.

Will the website store the information that | enter? ~

No. The website does not store any of the information that you enter and the information is not used to update the model in any way.
Can the website make predictions about other conditions? ~

No. Currently, the model is only trained on patients who either had a confirmed case of Fabry disease or HCM. However, the research team have plans to acquire additional data from other common cardiac conditions and
to retrain the model to include additional conditions.

Figure 8.3: The chatbot interface for Fabry disease diagnosis, displaying frequently asked questions
(FAQs) and the interactive feature that allows clinicians to explore the model’s decision-making process.

In summary, enhancing clinicians’ understanding of model predictions involves a multi-
faceted approach that provides clear visualisations enabling seamless data input and scenario
exploration, utilising conversational LLM chatbots for explanations, and aligning model out-
puts with clinical expectations through iterative testing and feedback. By implementing these
strategies, we aim to create a diagnostic tool that is transparent, interpretable, and truly useful

for clinicians in the context of Fabry disease diagnosis and management.

8.4 Integrating ML and LLMs

8.4.1 Incorporating a LangChain-Based LLLM Chatbot for Interpreting Model

Decision-Making Processes

To enhance the interpretability of the ML model’s decision-making processes, we integrated
a LangChain-based LLMs chatbot into the clinical risk calculator interface. This chatbot is
an interactive tool for clinicians to explore the reasoning behind the model’s predictions. It
enables clinicians to engage in a dialogue that provides clear, natural language explanations of
how the model arrived at its conclusions.

Through interactions with the chatbot, clinicians can probe the underlying factors influenc-

ing risk calculations. This helps them understand the model’s considerations and limitations,
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such as which patient characteristics (e.g., age, ECG findings) played the most significant role
in the model’s output. The LangChain framework facilitates the generation of context-specific,
intuitive explanations, allowing clinicians to navigate complex medical data with greater clar-
ity. By offering this natural language feedback, the LLM makes the decision-making process

more accessible, fostering clinician trust and comprehension.

8.4.2 Fine-Tuning the Model and Chatbot for Enhanced Decision Pathway

Interpretation

The ML model was iteratively trained on high-quality, diverse datasets to account for the het-
erogeneous nature of FD. This process included labelled patient data, such as clinical test
results, historical diagnoses, and longitudinal records, ensuring the model captured the com-
plexities of FDs clinical presentation. At the same time, the LLM chatbot’s responses were
fine-tuned to align with clinical reasoning, ensuring that the language generated by the model
matched medical terminology and was understandable in a clinical context.

The fine-tuning process was collaborative, involving continuous testing and feedback from
clinicians. This iterative approach allowed for the refinement of the model’s predictive accu-
racy and the chatbot’s ability to generate relevant, actionable explanations. The model and
chatbot were tailored to meet the specific needs of clinicians, making them both useful and
reliable tools in real-world clinical settings. This fine-tuning process ensured that the LLM

provided consistent, clinically appropriate explanations that clinicians would trust.

8.4.3 Validating the Model and Applying Explainability Techniques

We conducted rigorous validation tests using real-world clinical data and established bench-
marks to ensure that the FD-HCM ML model performs reliably in clinical settings. These
validation steps are vital for building clinician confidence in the model’s predictions and sup-
porting broader adoption.

In addition to performance validation, we employed explainability techniques such as
SHAP values and LIME to enhance transparency. SHAP values, for example, quantify how
each feature (e.g., ECG findings, patient age) contributes to the model’s predictions. This al-
lows clinicians to trace the most influential factors driving the model’s diagnostic suggestion.
Counterfactual explanations were also implemented to show how a change in input features

(e.g., if a patient’s age differed) would alter the model’s output.
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These explainability methods ensure clinicians can trust the model’s decisions by making
the underlying reasoning visible. This transparency is essential in clinical practice, where

healthcare professionals must understand the model’s predictions and their rationale.

8.4.4 Addressing Data Limitations and Biases

Addressing challenges such as data limitations and biases is essential in developing clinically
interpretable systems. High-quality, diverse datasets are critical for training robust Al systems;
however, they are often scarce, especially in rare diseases like FD, due to privacy concerns,
logistical hurdles, and the limited number of affected patients. Moreover, biases in training
data—such as underrepresenting certain demographic groups—can lead to skewed model out-

puts, exacerbating disparities in healthcare.

To mitigate these issues, our approach includes sourcing anonymised data from diverse
patient populations and implementing feedback mechanisms for continuous model refinement.
We also address potential biases by ensuring the data is representative and conducting regular
audits. Including expert feedback from anonymised clinical scenarios helps refine the chatbot’s
decision-making and ensures that its responses are unbiased and applicable to diverse patient

populations.

8.5 User Studies of the Prototype

To evaluate the effectiveness and usability of our Al-powered diagnostic tool for Fabry dis-
ease, we conducted a focus group study with cardiologists at The University Hospital of Wales
(UHW), Cardiff. The study aimed to gather valuable feedback on the tool’s features, explain-

ability, and potential role in the clinical workflow.

8.5.1 Study Design and Participants

We conducted a semi-structured group discussion with six cardiologists, including three con-
sultants and three junior doctors. The author facilitated the conversation using a Mentimeter
presentation with videos and photos of the prototype. Participants were encouraged to share

their views verbally and could post their opinions anonymously on a shared platform.
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8.5.2 Ethical Approval and Participant Consent

Ethical approval for this study was obtained from the relevant institutional review board at
the University Hospital of Wales (UHW), Cardiff. As the study was retrospective and based
on anonymised patient data previously stored within the NHS system, individual consent was
not required. Consent for using medical data in research had already been sought as part of
standard clinical practice. All data used in the study were anonymised to ensure confidentiality

and compliance with data protection regulations.

8.5.3 Feedback on Tool Features

The strongest feedback from participants indicated that manual data input was too time-
consuming, which would prevent them from using the tool, as shown in Figure 8.4. The
consultants reported that they would like to know the probability of a patient having Fabry
disease before seeing the interface, particularly in unexplained left ventricular hypertrophy
cases. They also felt that forecasting features to detect early cardiac involvement would be a

valuable addition, as this would influence the patient’s management.
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Figure 8.4: User interface of the Fabry disease diagnostic tool, showing input fields for patient data
and the model’s prediction output alongside the interactive chatbot for exploring the decision-making
process.
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8.5.4 Feedback on Explainability

The consultants indicated they would not use the chatbot feature to interrogate the data, as they
found it relied too heavily on stock "template’ responses, which diminished its trustworthiness.
The junior doctors reported that the chatbot language and the feature importance graphs were
clear. Still, they suggested that the SHAP values graph be renamed, as this term is unfamiliar

to a clinical audience.

8.5.5 Feedback on Workflow Integration

The consultants did not think they would use the tool, as they felt their expertise in identifying
suspected FD would not need confirmation from an Al tool, and they would not trust it if
it contradicted their judgment. However, the junior doctors reported that this tool would be
helpful in a secondary care setting if they were less familiar with the signs of FD, as it could
prompt another possible clinical pathway to consider. The consultants also suggested that such
a tool could be used in primary care settings to screen routine ECG scans in GP settings. They
felt that including information on Fabry disease’s other symptom profiles in neurology and

renal settings would be helpful.

8.5.6 Implications for Future Development and Research

The feedback from the focus group has important implications for the future development of
our Al-powered diagnostic tool. To address the concerns about manual data input, we plan to
include a feature that automatically populates input values from clinical reports, significantly
reducing the time required to receive a prediction.

While the feature importance table was interpretable by the clinicians and effective in ex-
plaining the tool’s prediction, the consultants did not see themselves interacting with the lan-
guage model despite its ability to provide further explanations. This highlights the need for
additional research on the role of language models in clinical decision-support tools and how
they can be designed better to meet the needs and expectations of experienced clinicians.

The varying opinions on workflow integration between consultants and junior doctors sug-
gest that the tool may be more beneficial for less experienced clinicians in secondary care
settings. Few studies have investigated the optimal integration of Al diagnostic tools into exist-
ing clinical workflows, and our findings underscore the importance of considering the specific

needs and preferences of different user groups.
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Although the focus group included an equal number of consultants and junior doctors,
the consultants dominated the conversation despite attempts to allow anonymous sharing of
opinions. This limitation and the potential for bias in a group discussion format highlight
the need for individual interviews to explore explainability and workflow integration in greater
depth, particularly with junior doctors who are most likely to benefit from the tool in secondary

care settings.

As we continue to develop and validate our Al-powered diagnostic tool, we remain com-
mitted to conducting rigorous user studies and incorporating feedback from healthcare profes-
sionals to ensure that it meets their needs and ultimately improves patient outcomes in manag-

ing Fabry disease.

8.6 Continuous Improvement, Limitations, and Future Directions

8.6.1 Incorporating User Feedback for Long-Term Effectiveness and Relevance

The focus group study conducted with cardiologists at The University Hospital of Wales
(UHW), Cardiff, provided valuable insights into the strengths and limitations of our Al-
powered diagnostic tool for Fabry disease. To ensure the long-term effectiveness and relevance

of the tool, we are committed to incorporating this feedback into future iterations.

A key area for improvement identified was the need for an automatic population of input
values from clinical reports, as manual data entry was seen as too time-consuming. We plan to
address this issue by developing a feature to extract relevant data from EHRs and automatically
populate the tool’s input fields. This will reduce the time clinicians need to receive a prediction

and streamline the tool’s use in clinical practice.

Additionally, user feedback revealed varying opinions on the chatbot feature and the inter-
pretability of the SHAP values graph. While junior doctors found the chatbot language and
feature importance graphs clear, consultants were less inclined to interact with the language
model. This highlights the need for further research on designing language models that better
meet the expectations of experienced clinicians. We plan to conduct additional user studies,
particularly with junior doctors, to explore the role of language models in clinical decision

support tools and optimise them for different user groups.
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8.6.2 Exploring Novel Approaches for Enhanced Explainability and Workflow

Integration

The feedback from user studies further underscores the importance of explainability and work-
flow integration when adopting Al-powered diagnostic tools. Although the feature importance
table was effective for clinicians in explaining the tool’s predictions, there is room for improve-
ment in how the tool communicates its reasoning.

One potential avenue for enhancing explainability is embedding counterfactual explana-
tions, which show how a model’s prediction would change if certain input features were dif-
ferent. This approach could help clinicians better understand the model’s sensitivity to patient-
specific characteristics and provide insights into areas for further investigation.

Another area for exploration is integrating the tool into existing clinical workflows. The
focus group study revealed differing opinions between consultants and junior doctors regarding
how the tool could be used in practice. Junior doctors saw more potential for the tool in
secondary care settings, while consultants were more cautious. To address these differences,
we plan to conduct additional user studies with a larger and more diverse sample of healthcare
professionals, including those in primary care and other specialities such as neurology and
nephrology. These studies will help us better understand the specific needs and preferences of
different user groups and inform the development of a tool that can seamlessly integrate into

various clinical settings.

8.6.3 Extending the Diagnostic Tool to Other Rare Diseases and Clinical
Settings

While the current focus is on improving the diagnosis of Fabry disease, we recognise the po-
tential for extending our Al-powered diagnostic tool to other rare diseases and clinical settings.
Feedback from the focus group study suggests that the tool could help screen routine ECG
scans in primary care settings and identify other symptom profiles of Fabry disease in neurol-
ogy and renal settings.

To extend the tool to other rare diseases, we plan to collaborate with experts in those areas
to curate high-quality, diverse datasets and develop models that can accurately identify the
specific diagnostic criteria and risk factors associated with each condition. This will require
careful consideration of the unique challenges and opportunities presented by different rare
diseases and the particular needs and preferences of the healthcare professionals who manage

them.
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By extending the tool to a broader range of rare diseases and clinical settings, we aim
to significantly impact the early detection and management of these conditions, ultimately

improving patient outcomes and quality of life.

8.6.4 Addressing Ethical Considerations and Potential Biases in AI-Powered

Diagnostic Tools

As we continue refining our Al-powered diagnostic tool, we are committed to addressing the
ethical considerations and potential biases that may arise in using such technologies. The
focus group study highlighted the importance of trust in adopting Al tools, with consultants
expressing reluctance to use a tool that contradicted their judgment.

To build trust in our tool, we will conduct rigorous validation studies to assess its perfor-
mance across different patient populations and clinical settings. We will also engage in ongo-
ing dialogue with healthcare professionals and patients to better understand their concerns and
expectations surrounding the use of Al in healthcare.

Another critical ethical consideration is the potential for bias in the training data and algo-
rithms used to develop our tool. To mitigate this risk, we will regularly audit our datasets and
models for potential sources of bias, ensuring they represent the diverse patient populations
we aim to serve. We will collaborate with bioethics and health equity experts to establish best
practices for the ethical development and deployment of Al-powered diagnostic tools.

By proactively addressing these ethical considerations and potential biases, we aim to build

trust in our tool and ensure it contributes to fair and equitable healthcare for all patients.

8.6.5 Limitations of the Study

While this study has contributed to developing an Al-powered diagnostic tool for Fabry disease,
several limitations should be considered. These limitations inform future development and
offer avenues for improvement.

One limitation is the small sample size of the user study, which included only six partici-
pants. A larger, more diverse group of clinicians from various specialities and experience levels
would improve the robustness of the findings and provide a more comprehensive understanding
of the prototype’s functionality across different clinical settings.

Due to logistical constraints, participants interacted with the prototype only via videos and

photos, rather than hands-on usage. This limited the ability to assess its usability and real-
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time performance. Allowing clinicians to interact with the tool directly would offer a better
understanding of how it integrates into clinical workflows and aids decision-making.

Furthermore, detailed demographic data about participants, such as their prior experience
with Al tools, was not collected, which limits the ability to analyse feedback based on different
levels of comfort with technology. Including direct quotes from participants could also have
strengthened the real-world perspective of the feedback.

The study did not include a comparative evaluation of the prototype against traditional
diagnostic methods, which makes it difficult to ascertain whether the tool improves diagnostic
accuracy or efficiency. Future work should include empirical evidence from clinical settings
that directly compares the tool with conventional methods.

While explainability features, such as SHAP values and the LLM-driven chatbot, were
integrated, more empirical evidence is required to demonstrate how these features build clin-
ician trust and adoption. A comprehensive evaluation, involving diverse clinicians using the
prototype in real clinical scenarios, is necessary to assess the tool’s effectiveness in improving
decision-making.

These limitations offer several opportunities for further research, including larger and more
diverse user studies, real-world hands-on evaluations, and comparative studies against tradi-
tional diagnostic tools. Addressing these limitations will enhance the diagnostic tool’s clinical

relevance, trustworthiness, and effectiveness.

8.7 Summary

We developed an Al-powered diagnostic tool that integrates ML and LLM to enhance clinical
decision-making in diagnosing FD. The tool uses ML techniques such as SHAP values and
LIME for feature importance and local explanations, alongside partial dependence plots to
visualise feature effects. Including a LangChain-based LLM chatbot provides conversational
explanations that highlight the most influential markers and offer clinical context, making the
model’s decision-making process more accessible to clinicians.

User studies showed that the tool effectively supported clinicians in understanding key
diagnostic markers, fostering greater confidence in clinical decisions. Clinicians found the
feature importance visualisations, particularly the SHAP values, helpful in understanding how
specific patient data influenced the model’s output. The tool also provided valuable insights
by explaining the decision-making process in a clear, understandable way, which allowed clin-

icians to apply this information in real-world scenarios.
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8.7. Summary

This approach emphasises the importance of explainability and interpretability in Al-
powered medical tools, enabling clinicians to trust and integrate the model’s predictions into
their clinical judgment. By highlighting influential markers and offering a transparent ratio-
nale, the tool supports more informed clinical decision-making, ultimately improving patient
care.

The tool represents a significant step forward in Al-assisted clinical decision support. We
plan to continue refining it, ensuring it aligns with clinical workflows and addresses challenges
such as bias and data privacy. Ongoing collaboration with healthcare providers will help opti-
mise the tool’s integration into practice, ensuring it provides valuable clinical support for rare

disease diagnosis and management.
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Conclusion and Future Work
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Our work has explored the challenges and opportunities of modelling high-fidelity clinical
data using interpretable ML techniques for tackling imbalance in healthcare datasets. Mo-
tivated by the pressing need to improve diagnostic processes for rare diseases and atypical
presentations, which often lead to prolonged patient journeys and sub-optimal outcomes, our
research has focused on developing novel methodologies to enhance early detection and clini-
cal decision support.

Through interdisciplinary studies, we have addressed critical gaps in the current state-of-
the-art. These include handling data imbalance and missingness in clinical datasets, incorporat-
ing temporal patterns and structured medical knowledge into predictive models, and integrating
large language models to augment interpretability. By applying these innovative approaches
to real-world clinical scenarios, such as the differentiation of Fabry disease from hypertrophic
cardiomyopathy, we have demonstrated the potential of ML to transform rare disease diagnosis
and management.

The insights and advancements presented in this thesis hold significant implications for
clinical practice, patient outcomes, and the efficiency of healthcare systems. By enabling ear-
lier and more accurate identification of rare conditions, our work contributes to developing

a more proactive, personalised, and data-driven approach to patient care, ultimately aiming
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to alleviate the burden of diagnostic odysseys and improve the quality of life for individuals
affected by rare diseases.

In this concluding chapter, we will first summarise the key contributions of our research,
highlighting the methodological innovations and their impact on the field. We will then reflect
on our work’s broader implications and future potential, discussing how it aligns with the
ongoing digital transformation of healthcare and the shift towards value-based, patient-centred
care. Connecting back to the motivating patient stories introduced at the outset of this thesis,
we will underscore the real-world significance of our findings and the urgent need for continued
advancements in rare disease diagnosis. Finally, we will outline promising avenues for future

research, building upon the foundation laid by this thesis to drive further progress in the field.

9.1 Contributions

The key contributions of this work can be summarised as follows:

Understanding the Patient Journey in the Digital Age
We offered a comprehensive overview of how digital transformation reshapes the patient
journey within the UK healthcare system. By analysing the roles of primary, secondary,
and tertiary care, we highlighted the complexities and challenges in diagnosing rare dis-
eases and atypical presentations, emphasising the need for data-driven approaches to

improve patient outcomes.

Addressing Data Imbalance and Missingness in Clinical Settings
Recognising that clinical datasets often suffer from imbalance and missing data, we de-
signed a clinically aligned approach to modelling ICU data. By implementing sophisti-
cated data preprocessing techniques and feature engineering, we improved the quality of

the datasets, enabling more accurate and reliable ML models for early sepsis detection.

Enhancing Rare Event Detection through ML
We developed novel ML models tailored for rare event detection, particularly focus-
ing on sepsis and COVID-19 complications. By incorporating temporal patterns and
self-attention mechanisms, our models demonstrated improved predictive performance,

enabling earlier and more accurate identification of at-risk patients.

Integrating Structured Medical Knowledge into Language Models

To improve the classification of rare diseases and enhance interpretability, we proposed
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a method for infusing ontological structures into language models. This approach lever-
aged medical ontologies to augment the representation of clinical terms, resulting in a

more nuanced understanding and better performance in rare disease detection tasks.

Differentiating Complex Cardiac Diseases with Similar Presentations
Focusing on FD and its similarities with hypertrophic cardiomyopathy, we applied ML
techniques to distinguish between these conditions effectively. Our models utilised high-
fidelity ECG and echocardiogram data, achieving significant accuracy and demonstrating

the potential for assisting clinicians in making more informed diagnostic decisions.

Augmenting ML Predictions with Large Language Models (LLMs)
We explored the integration of LLM to enhance the interpretability of ML predictions
for clinicians. By providing natural language explanations alongside risk assessments,
we improved the usability of predictive models in clinical settings, fostering greater trust

and facilitating their adoption in practice.

9.2 Broader Implications and Future Impact

The novel methodologies developed in this thesis for detecting rare diseases and atypical pre-
sentations using interpretable ML can potentially transform diagnostic processes and improve
patient outcomes on a larger scale. These approaches could significantly reduce the economic
burden on healthcare systems by enabling earlier and more accurate diagnoses.

Additionally, the techniques presented here for capturing the heterogeneity of rare diseases
at the individual patient level represent a crucial step towards advancing personalised medicine.
By accounting for the unique characteristics and progression patterns of rare conditions in each
patient, clinicians can tailor interventions and management strategies to optimise outcomes.

The continued refinement and expansion of these ML models to incorporate additional
data modalities, including genomics and imaging, could further enhance their predictive power
and clinical utility. Integrating these tools into EHR systems and clinical decision support
platforms would facilitate their adoption into routine practice, extending their impact to larger
patient populations.

Ultimately, the knowledge and insights gained from this work lay the foundation for a
paradigm shift in rare disease diagnosis from a reactive, fragmented process to a proactive,
data-driven approach that empowers clinicians to provide timely, targeted care to patients who

have historically faced significant challenges in receiving accurate diagnoses and appropriate
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treatments. By bridging the gap between cutting-edge ML research and real-world clinical

applications, our work paves the way for meaningful advancements in the field of rare diseases.

9.3 Connecting Back to Patient Stories

The stories of patients like Emily, who have navigated the complex and often frustrating jour-
ney of obtaining a rare disease diagnosis, were the driving force behind our work. For individ-
uals living with conditions like Fabry disease, delays in diagnosis can lead to irreversible organ
damage and significantly reduced quality of life.

The ML models and interpretability techniques developed here aim to address these chal-
lenges head-on by equipping clinicians with powerful tools to recognise the subtle signs and
atypical presentations of rare diseases earlier in the diagnostic process. Had such tools been
available during Emily’s diagnostic odysseys, her paths to receiving an accurate diagnosis and
appropriate care may have been significantly shortened, potentially mitigating the impact of
the disease on their life.

While the road ahead remains long, the advancements presented throughout our work rep-
resent tangible steps towards a future in which stories like Emily’s become the exception rather
than the norm. By harnessing the power of data and ML, while keeping the human element at
the forefront, we can work towards a healthcare system better equipped to identify and support
patients with rare diseases, ensuring they receive the timely, personalised care they need and
deserve.

In this way, the technical innovations detailed in this work are inextricably linked to the
lived experiences of patients, serving as a poignant reminder of the real-world impact that ad-
vancements in rare disease diagnosis can have on individuals, families, and communities. As
we look to the future, this connection between cutting-edge research and tangible improve-
ments in patient care will continue to drive progress in the field, bringing us closer to a world

where no patient’s story is defined by the challenges of navigating a diagnostic odyssey.

9.4 The Path Forward

As we look towards the future, it is clear that the groundwork laid by this thesis has opened
up many exciting possibilities for advancing the identification and management of rare phe-

nomena in healthcare through applying interpretable ML techniques. The potential impact of
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this research is far-reaching, promising to revolutionise how we approach rare diseases and

ultimately improve patient outcomes.

A key area for future exploration is expanding our models to incorporate multi-modal data
sources. By integrating diverse data modalities such as genetic information, imaging data, and
patient-reported outcomes, we can paint a more comprehensive picture of patient health and
enhance the performance and generalisability of our predictive models. However, this inte-
gration process is not without its challenges. Ensuring data preprocessing and standardisation
following clinical guidelines is crucial to maintaining the highest quality and integrity stan-
dards. This involves meticulous data cleaning, harmonisation, and validation to guarantee the
reliability and accuracy of the integrated datasets, which form the bedrock of our modelling

efforts.

Another possible advancement of our model is the real-time implementation and evalua-
tion of our model in clinical settings. Collaborating closely with healthcare providers to pilot
these models in real-world environments will provide invaluable insights into their practical
utility and highlight areas for refinement and optimisation. Investing in research initiatives that
explore novel methodologies, validate existing models, and rigorously assess their impact on
patient outcomes is essential to support this endeavour. This includes securing funding for
large-scale studies, pilot projects, and implementation research to comprehensively evaluate

the effectiveness and feasibility of our approaches across diverse healthcare contexts.

While leveraging patient data, we must remain vigilant in addressing ethical and privacy
concerns. Future research must prioritise exploring secure data handling methods, such as fed-
erated learning and differential privacy techniques, to safeguard patient information while en-
abling the powerful insights that drive our progress. Building a robust infrastructure for secure
data sharing, storage, and analysis is a fundamental prerequisite for facilitating collaboration

and accelerating advancements in this field.

Central to the success of using ML tools in clinical settings is placing greater emphasis on
the explainability and interpretability of the models. By creating models that provide clear, in-
tuitive explanations for their predictions and align seamlessly with existing clinical knowledge,
we can foster a deeper understanding and acceptance among healthcare professionals. Tech-
niques such as feature importance analysis, rule-based models, and visual explanations hold
great promise to enhance the interpretability of clinical models, making them more actionable

and valuable for clinicians in their daily practice.

Longitudinal studies and exploring temporal dynamics represent another frontier for future
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research. By investigating the evolution of disease progression and patient health over extended
periods, we can uncover more profound insights into the complex interplay of factors that
shape outcomes. Longitudinal studies enable our models to account for changes over time,
potentially unlocking new opportunities for early detection and intervention. This approach
resonates strongly with the principles of VBHC, which places patient outcomes at the centre
of all decision-making. As future models are being developed, we must incorporate patient-
centric metrics into our models and evaluate their contributions to improved quality of life and
care satisfaction.

Lastly, underpinning all these efforts is the importance of fostering interdisciplinary collab-
oration. The challenges of rare event detection and management are complex and multifaceted,
requiring the collective expertise of data scientists, clinicians, and domain experts. By bring-
ing together diverse perspectives and skill sets, future researchers could ensure that the models
developed are technically robust, clinically relevant, and actionable. Regular workshops, joint
research projects, and knowledge-sharing platforms are powerful catalysts for interdisciplinary
collaboration, promoting a shared understanding of the goals and challenges all stakeholders
face.

In conclusion, the future of rare phenomenon identification in healthcare is brimming with
potential, and this thesis has laid the foundation for a new era of innovation and progress. By
building upon the groundwork laid by this thesis, collaborating with interdisciplinary teams,
and relentlessly pursuing innovation, we can create a future where the early and accurate di-
agnosis of rare conditions is not the exception but the norm. Together, we can harness the
power of interpretable ML to illuminate the darkest corners of rare diseases, bringing hope and

healing to countless lives and shaping a brighter, healthier future for all.
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