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QED-Net: Quantum Emotional Dynamics Synthesis
Network for Sentiment Analysis in Medical IoT

Kamran Ahmad Awan, Member, IEEE, Mueen Uddin, Senior Member, IEEE,
Meshari Huwaytim Alanazi, Member, IEEE, Muhammad Shahid Anwar, Member, IEEE,
Khursheed Aurangzeb, Member, IEEE, and Xiaochun Cheng, Senior Member, IEEE

Abstract—The increasing reliance on IoMT systems highlights
the need for efficient sentiment analysis, emotion tracking, and
multimodal data fusion to enable real-time decision making
in dynamic environments. Existing frameworks struggle with
integrating diverse data modalities and managing temporal
complexities in emotional and behavioral patterns. This study
aims to address these gaps by proposing QED-Net, a quantum-
inspired deep learning framework designed to improve IoMT
applications. The framework introduces novel modules, including
Quantum-Driven Sentiment Amplification (QSA) for precision
in sentiment analysis, the Temporal Emotion Evolution Graph
(TEEG) for tracking dynamic emotional transitions, and the
Hyper-Dimensional Quantum Tensor Fusion (HD-QTF) for ro-
bust multimodal data integration. In addition, the Emotion-to-
Medical Ontology Encoder (EMOE) maps emotional states to
actionable medical insights in real time. The simulation results
demonstrate the superiority of QED-Net, achieving 93. 2%
sentiment precision, 92. 3% emotion tracking precision, and 91.
6% multimodal fusion robustness, which confirms its potential
for real-world IoMT applications.

Index Terms—Medical Internet of Things, Quantum Comput-
ing, Emotion Dynamics, Sentiment Analysis, Graph Modeling.

I. INTRODUCTION

THE study of emotion detection and sentiment analysis
has advanced significantly, driven by the growing use

of machine learning and artificial intelligence [1]–[3]. These
technologies enable systems to interpret human emotions from
text, speech, facial expressions, and physiological signals.
Applications range from social interaction analysis to med-
ical diagnostics, where understanding emotional states can
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provide valuable information on mental and physical well-
being [4]. Similarly, the Internet of Medical Things (IoMT) has
gained prominence for its role in integrating wearable devices,
sensors, and communication networks to deliver real-time
healthcare solutions [5]. Current emotion recognition systems
often fail to handle multimodal data effectively, particularly
when they involve diverse sources such as EEG signals, facial
expressions, or textual input [6], [7]. Similarly, sentiment
analysis models frequently misinterpret nuanced emotions,
such as sarcasm or blended emotional states, reducing their
reliability in practical applications [8].

The motivation for this research lies in the need for an
approach that addresses these limitations and bridges the
gap between theory and application. The inability of exist-
ing models to process complex multimodal data or operate
efficiently in IoMT scenarios presents a compelling problem
statement [9]. The primary objective of this study is to design
a novel framework that can accurately detect, interpret, and
use emotional and sentiment data in real-time medical settings
[10]. The proposed Quantum Emotional Dynamics Synthesis
Network (QED-Net) introduces a framework to address the
challenges in emotion detection and sentiment analysis. QED-
Net operates on a foundation of quantum-inspired principles,
modeling emotions as dynamic wave functions through the
Emotion Particle Wave Function (EPWF). It employs Hyper-
Dimensional Quantum Tensor Fusion (HD-QTF) for multi-
modal data integration, preserving the integrity and correla-
tion of diverse modalities such as EEG, speech, and facial
expressions. Additionally, the Temporal Emotion Evolution
Graph (TEEG) ensures time-sensitive modeling of emotional
patterns. The model is also supported by a real-time emotional
behavior feedback loop (REFL), which introduces adaptive
interventions within IoMT systems. The key contributions of
this study can be summarized as:

1) Quantum-inspired mechanism that models emotional
states as wave functions, capturing both intensity and
superposition, enabling the representation of blended
emotions that are unachievable by existing approaches.

2) Novel data integration framework that utilizes quantum
tensor mathematics to maintain hierarchical and intrinsic
correlations across multi-modal inputs.

3) Graph-based modeling paradigm that tracks emotion
progression over time, capturing gradients and recurrent
patterns to predict future emotional states.

The structure of this article can be summarized as follows:
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Section II explores existing research. Section III details the
proposed QED-Net approach. Section IV presents the simula-
tion environment and evaluates the performance of the model
using various metrics. Finally, Section VI concludes the article.

II. BACKGROUND RESEARCH ANALYSIS

The domain of sentiment analysis in IoMT and health-
care systems has seen significant advancements, driven by
diverse methodologies and frameworks. Adversarial learning
has shown potential to improve the robustness of sentiment
analysis models, especially when dealing with noisy or per-
turbed data in IoMT systems, as shown in [11]. Similarly,
the application of recurrent neural networks, particularly Long
Short-Term Memory (LSTM) networks, has been effective in
analyzing multimodal data, such as online educational content
within the IoT framework [12]. In healthcare-specific appli-
cations, convolutional networks combined with knowledge
graphs have enabled enhanced drug recommendation systems
by integrating user sentiments and drug interactions [13].
In addition, cutting-edge methods for sentiment-based pain
detection in smart healthcare frameworks continue to refine
patient monitoring systems [14].

Various machine learning frameworks have addressed
domain-specific challenges in sentiment analysis. For example,
models that integrate Word2Vec embeddings with boosting al-
gorithms have improved the precision of drug recommendation
systems by emphasizing semantic relationships [15]. Efforts in
the domain of health diagnostics, such as analyzing sentiments
related to diabetes using classification models, underscore
the necessity of extracting actionable insights from patient
narratives [16]. Sentiment-guided approaches to medical image
classification have highlighted the relevance of linguistic cues
in augmenting non-textual data analysis [17]. Furthermore,
facial sentiment analysis using deep convolutional neural net-
works has achieved notable precision in identifying human
emotions, particularly when semantic feature extraction tech-
niques are employed [18]. Finally, semi-supervised methods
for biomedical sentiment analysis have emerged as a promising
direction, leveraging limited labeled data for health insights
based on social networks [19].

The proposed approach addresses limitations inherent in
existing methodologies by introducing novel components. Tra-
ditional models struggle to represent complex emotional states,
accurately fuse multimodal data, and adapt to dynamic real-
time IoMT environments. These gaps are mitigated through
the EPWF, which captures blended emotions; HD-QTF, en-
suring robust multimodal integration; and the TEEG, enabling
predictive emotional modeling (see Table I).

III. PROPOSED QED-NET APPROACH

The QED-Net introduces a framework that redefines emo-
tion and sentiment analysis through novel quantum-inspired
methodologies. By integrating EPWF, HD-QTF, and TEEG,
the model achieves advanced emotional representation, robust
multimodal fusion, and predictive temporal modeling.

TABLE I
ANALYSIS OF LIMITATIONS AND THEIR ADDRESSAL IN THE PROPOSED

QED-NET APPROACH

Identified Limitation Addressed by Proposed Approach

Inability to represent com-
plex emotional states

Emotion Particle Wave Function (EPWF)
for blended emotion representation

Limited effectiveness in
multimodal data fusion

Hyper-Dimensional Quantum Tensor Fusion
(HD-QTF) for robust data integration

Challenges in modeling
time-sensitive emotional
dynamics

Temporal Emotion Evolution Graph
(TEEG) for predictive and dynamic
emotional modeling

Difficulty in adapting
to real-time IoMT
constraints

Real-Time Emotion-Behavior Feedback
Loop (REFL) for adaptive interventions

A. Workflow of QED-Net

The workflow begins with the EPWF, where emotional
states are modeled as quantum-inspired wave functions, en-
capsulating both intensity (amplitude) and dynamic transitions
(frequency). Subsequently, the QSA module refines sentiment
signals employing entanglement-based mechanisms to dynam-
ically amplify or suppress contextually significant features.

The temporal dynamics of emotions are captured and
modeled by the TEEG. This component employs graph-
based structures to represent emotion trajectories over time,
incorporating gradients of change and recurrent emotional
patterns. The EMOE bridges emotional states with medical
data by mapping sentiments to physiological signals, thus
generating a structured ontology. For data integration, the
HD-QTF layer processes multi-modal inputs simultaneously,
ensuring the preservation of intrinsic correlations and hier-
archical relationships between data modalities. This fusion
mechanism enables robust and real-time analysis, critical for
IoMT’s computational constraints. Finally, the REFL provides
adaptive feedback based on detected emotions and predicted
behaviors. This loop enhances the interactivity of the IoMT
system by offering actionable interventions, thereby trans-
forming passive monitoring into a dynamic and responsive
process. The comprehensive workflow of the proposed QED-
Net framework is illustrated in Figure 1, highlighting its
modular design for emotion detection and sentiment analysis
within IoMT systems.

B. Emotion Particle Wave Function (EPWF)

The EPWF introduces a novel mathematical framework to
model complex and mixed emotional states using quantum-
inspired principles. By incorporating amplitude to represent
emotion intensity and frequency to encode dynamic emotional
transitions, EPWF achieves an advanced representation of
emotional complexities beyond conventional models.

Ψ(t, x) = A(t) sin
(
ω(t)x+ ϕ(t)

)
(1)

The wave function Ψ(t, x) in (1) defines emotional states as
a function of time t and spatial variable x, with amplitude
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Fig. 1. Workflow of the QED-Net Framework: QED-Net integrates
quantum-inspired modules for IoMT, modeling emotions as Ψ(t, x) =

A(t) sin(ω(t)x + ϕ(t)) with A(t) = exp
(
− t2

2σ2

)
and ω(t). Fusion uses

T =
⊗n

k=1Mk , with temporal modeling via Gt+1 = (Vt+∆V,Et+∆E)
and ontology mapping through f(ei, sj) = exp

(
−α · ||ϕ(ei)− ψ(sj)||22

)
.

A(t) and phase evolution ϕ(t) controlling the intensity and
dynamics.

A(t) = exp

(
− t2

2σ2

)
(2)

ω(t) = ω0 +

∫ t

0

∂Ω(u)

∂u
du (3)

The amplitude A(t) in (2) describes the emotional intensity,
while the frequency ω(t) in (3) evolves based on temporal
modulation.

ϕ(t) = ϕ0 + α

∫ t

0

Ψ′(t, x) dt (4)

Ω(u) = β cos
(
γu2

)
(5)

Ψ′(t, x) =
∂Ψ(t, x)

∂t
(6)

The phase ϕ(t) in (4) integrates the wave derivative Ψ′(t, x),
enabling dynamic adjustments influenced by frequency mod-
ulation Ω(u) in (5). The derivatives in (6) provide the foun-
dation for analyzing emotional transitions.

Ψk(t, x) =
n∑
i=1

Ai(t) sin
(
ωi(t)x+ ϕi(t)

)
(7)

Equations (7) extend the single emotional state Ψ(t, x) into a
multi-dimensional construct, where Ψk(t, x) models multiple
emotions.

Φ(t) =
n∏
i=1

cos
(
ψi(t)

)
(8)

ψi(t) =

∫ t

0

Ψ′
i(t, x) dt (9)

Blended emotional states are represented by the phase Φ(t) in
(8), constructed using the derivatives ψi(t) from (9).

Ablend(t) =

√√√√ n∑
i=1

A2
i (t) (10)

Ψblend(t, x) = Ablend(t) sin
(
ωblend(t)x+ ϕblend(t)

)
(11)

The blended amplitude Ablend(t) in (10) and the corresponding
wave function Ψblend(t, x) in (11) allow seamless synthesis of
complex emotional states.

ωblend(t) =
1

n

n∑
i=1

ωi(t) (12)

The frequency ωblend(t) in (12) averages over multiple states,
ensuring consistency across modalities.

Ψsuper(t, x) =
m∑
k=1

ckΨk(t, x) (13)

Superposition of emotional states is achieved in (13) by
combining multiple states Ψk(t, x) weighted by ck.

ck =
exp(−λkt)∑m
k=1 exp(−λkt)

(14)

H(Ψsuper) = −
m∑
k=1

ck log(ck) (15)

The weights ck in (14) are dynamically adjusted, and the
entropy H(Ψsuper) in (15) quantifies the complexity of the
emotional distribution.

Ψadapt(t, x) = Ψsuper(t, x) + δ(t, x) (16)

δ(t, x) = ϵ cos
(
ηt+ κx

)
(17)

Real-time adaptability is introduced via the perturbation δ(t, x)
in (16) and (17), allowing dynamic adjustments to emotional
states.

C. Quantum-Driven Sentiment Amplification (QSA)

The QSA module introduces a quantum-inspired mech-
anism to adaptively amplify or suppress sentiment signals
utilizing entanglement principles. This process dynamically
links contextual and multimodal input, optimizing sentiment
representation through enhanced accuracy and interpretability.
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S(t, x) =
n∑
i=1

ciψi(t, x) (18)

ci =
exp(−λix)∑n
j=1 exp(−λjx)

(19)

ψi(t, x) = Ai(t) sin
(
ωi(t)x+ ϕi(t)

)
(20)

∆S(t) =

∫ t

0

∂S(t, x)

∂t
dt (21)

Q(S) =
n∑
i=1

∣∣ci · ψi(t, x)∣∣2 (22)

Equation (18) models sentiment signals S(t, x) as a superposi-
tion of contextual inputs ψi(t, x), with weights ci determined
dynamically using (19). Each input ψi(t, x) is represented as
a quantum wave function in (20), incorporating amplitude,
frequency, and phase information. The change in sentiment
signal ∆S(t) over time is calculated using (21), while the
quantum amplification Q(S) in (22) quantifies the entangled
contributions of all inputs. Further refinement is achieved
through contextual dependencies and their corresponding im-
pact on sentiment scores.

H(S) = −
n∑
i=1

ci log(ci) (23)

A(t, x) = α

n∑
i=1

(
ψi(t, x)− ψ̄(t, x)

)2
(24)

ψ̄(t, x) =
1

n

n∑
i=1

ψi(t, x) (25)

F(t) =

∫ t

0

A(t, x) dx (26)

Equation (23) measures the entropy of sentiment signals, pro-
viding insights into their interpretability. The variance A(t, x)
in (24) quantifies the deviation of individual sentiment signals
from their mean ψ̄(t, x), calculated in (25). The signal fidelity
F(t) in (26) ensures consistency and reliability across dynamic
inputs. Finally, the entangled sentiment representation is fine-
tuned for multimodal fusion.

Sfused(t, x) =

m∑
k=1

Q(Sk) ·Wk (27)

Wk =
1

Z
exp

(
− µkSk

)
(28)

Z =
m∑
k=1

exp
(
− µkSk

)
(29)

L(t) =
m∑
k=1

∣∣Sfused(t, x)− Sk(t, x)
∣∣2 (30)

Equation (27) defines the fused sentiment signal Sfused(t, x)
as a weighted combination of amplified signals, with weights
Wk determined through (28) and normalized using (29). The
loss function L(t) in (30) optimizes the fidelity and accuracy

Algorithm 1: Temporal Emotion Evolution Graph
(TEEG)
Input: Initial graph Gt = (Vt, Et) at time t, temporal

increment ∆t, coefficients κ, λ
Output: Updated graph Gt+1, consistency loss C(t)

1 Initialization: Set Vt, Et for initial graph Gt;
2 while time t ≤ T do

// Update vertices and edges based
on temporal gradients

3 Compute ∆V using (39);
4 Compute ∆E using (40);
5 Update graph: Gt+1 = T (Gt,∆t) using (37);

// Recurrent feedback for loop
consistency

6 Compute vertex loss L(t) using (41);
7 Compute edge loss R(Gt) using (42);
8 Calculate combined loss C(t) = L(t) +R(Gt)

using (43);
// Adjust vertices and edges

dynamically
9 Update vi(t) and eij(t) based on feedback;

10 return Gt+1, C(t)

of the fused sentiment representation, ensuring alignment with
contextual and multimodal inputs.

D. Temporal Emotion Evolution Graph (TEEG)

The TEEG introduces a novel mathematical framework to
model the dynamic progression of emotions over time. As de-
scribed in Algorithm 1, the TEEG uses temporal gradients and
recurrent feedback to dynamically update the graph structure.

By incorporating gradients, temporal dependencies, and
recurrent loops, TEEG provides a structured and interpretable
representation of emotional states, surpassing traditional meth-
ods in capturing time-sensitive patterns.

Gt = (Vt, Et) (31)
Vt = {vi(t) | i = 1, . . . , N} (32)
Et = {eij(t) = f(vi(t), vj(t)) | i, j ∈ Vt} (33)

vi(t) = Ψi(t) + α
∂Ψi(t)

∂t
(34)

eij(t) = β · cos
(
γ · dij(t)

)
(35)

dij(t) = ||vi(t)− vj(t)||2 (36)

In (31), the graph Gt represents the emotional state at time t
with vertex set Vt and edge set Et. Each vertex vi(t) in (32)
corresponds to an individual emotional state, incorporating
temporal changes as shown in (34). The edge eij(t) in (33)
quantifies the relationship between emotional states based on
a weighted cosine function of their distance dij(t), defined in
(36). To capture temporal dynamics, TEEG evolves through
successive states using graph transformations.
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Gt+1 = T (Gt,∆t) (37)
T (Gt,∆t) = (Vt +∆V,Et +∆E) (38)

∆V = {δvi | δvi = κ · ∂vi
∂t

·∆t} (39)

∆E = {δeij | δeij = λ · ∂eij
∂t

·∆t} (40)

In (37), the graph evolves dynamically through the transfor-
mation T , which updates vertices and edges based on their
temporal gradients as shown in (38). The changes ∆V and
∆E in (39) and (40) are computed using the derivatives of
vertex and edge values over time, scaled by their respective
coefficients κ and λ. The TEEG framework also incorporates
feedback loops to capture recurrent emotional patterns and
loops.

L(t) =
N∑
i=1

∣∣vi(t)− vi(t− τ)
∣∣2 (41)

R(Gt) =
∑

(i,j)∈Et

∣∣eij(t)− eij(t− τ)
∣∣2 (42)

C(t) = L(t) +R(Gt) (43)

The loss function C(t) in (43) combines vertex loss L(t) in
(41) and edge loss R(Gt) in (42) to quantify the consistency of
emotional patterns over time. This recurrent feedback ensures
that TEEG effectively captures loops and gradients in emotion
evolution.

E. Emotion-to-Medical Ontology Encoder (EMOE)

The EMOE introduces a structured framework that directly
maps recognized emotional states to physiological signals, cre-
ating a robust ontology for IoMT applications. This approach
establishes a seamless bridge between emotion recognition
and actionable medical insights, enabling precise and real-time
healthcare interventions.

O =
{
(ei, sj) | i ∈ E , j ∈ S, f(ei, sj) > θ

}
(44)

The ontology O in (44) is defined as a set of emotion-signal
pairs (ei, sj) where the similarity function f(ei, sj) exceeds
a threshold θ.

f(ei, sj) = exp
(
− α · ||ϕ(ei)− ψ(sj)||22

)
(45)

ϕ(ei) =

∫ t

0

Ai(t) sin
(
ωi(t)x+ ϕi(t)

)
dt (46)

Equation (45) measures the alignment between the emotion
embedding ϕ(ei) in (46) and the signal embedding ψ(sj).

ψ(sj) =

m∑
k=1

βks
k
j (47)

The loss of reconstruction R ensures fidelity of the mapping
process.

Algorithm 2: Emotion-to-Medical Ontology Encoder
(EMOE)
Input: Emotion embeddings ϕ(ei), signal embeddings

ψ(sj), threshold θ, temporal increment ∆t
Output: Updated ontology O(t+ 1), overall medical

insight I
1 Initialization: Compute initial ontology O using (44);
2 while time t ≤ T do

// Update ontology with new data
3 Compute similarity function f(ei, sj) using (45);
4 Update ontology: O(t+ 1) = O(t) + ∆O using

(49) and (50);
// Refine embeddings

5 Update emotion embeddings ϕ̇(ei) using (51);
6 Update signal embeddings ψ̇(sj) using (52);

// Quantify relevance and compute
medical insights

7 Compute weight W(ei, sj) for each pair using
(53);

8 Calculate overall medical insight I using (54);

9 return O(t+ 1), I

R =
∑

(ei,sj)∈O

∣∣f(ei, sj)− f̂(ei, sj)
∣∣2 (48)

To ensure real-time functionality, EMOE employs temporal
transformations to dynamically update the ontology as new
data arrives.

O(t+ 1) = O(t) + ∆O (49)

The ontology update O(t + 1) in (49) incorporates changes
∆O as shown below:

∆O =
{
(ei, sj) | f(ei, sj , t+ 1) > θ

}
−

{
(ei, sj) | f(ei, sj , t) ≤ θ

}
(50)

Gradients ensure dynamic adjustments to embeddings based
on new input data.

ϕ̇(ei) =
∂ϕ(ei)

∂t
+ η · ∇ϕ(ei)R (51)

ψ̇(sj) =
∂ψ(sj)

∂t
+ η · ∇ψ(sj)R (52)

EMOE quantifies the relevance of each mapped pair within
the ontology for targeted medical applications.

W(ei, sj) =
exp(−γ · f(ei, sj))∑

(ek,sl)∈O exp(−γ · f(ek, sl))
(53)

The overall medical insight is computed as:

I =
∑

(ei,sj)∈O

W(ei, sj) · g(sj) (54)
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Algorithm 3: Hyper-Dimensional Quantum Tensor
Fusion (HD-QTF)
Input: Modality tensors Mk for k = 1, . . . , n, tensor

weights wk, quantum operator parameters
αij , βij

Output: Fused tensor T , hierarchical correlation Chier,
intrinsic correlation I

1 Initialization: Compute modality tensors Mk using
(56);

2 Step 1: Compute fused tensor:
3 begin
4 Compute element values x(i,j)k for each modality

using (57);
5 Compute the fused tensor T using (55);
6 Calculate the weighted tensor F using weights wk

in (58);

7 Step 2: Apply quantum-inspired transformation:
8 begin
9 Compute the quantum operator Q using (61);

10 Apply the transformation to obtain H(T ) using
(60);

11 Step 3: Quantify and optimize correlations:
12 begin
13 Compute hierarchical correlation Chier using (62);
14 Compute its gradient Lhier for optimization using

(63);
15 Compute intrinsic correlation I using (65);
16 Calculate its gradient Lintr using (66);

17 return T , Chier, I

The weight W(ei, sj) in (53) represents the significance of
each emotion-signal pair, while (54) aggregates signal contri-
butions weighted by their importance.

F. Hyper-Dimensional Quantum Tensor Fusion (HD-QTF)

The Hyper-Dimensional Quantum Tensor Fusion (HD-QTF)
framework introduces a quantum-inspired approach to multi-
modal data integration, ensuring the simultaneous preservation
of intrinsic and hierarchical correlations across diverse modal-
ities.

T =

n⊗
k=1

Mk (55)

Mk =
{
x
(i,j)
k | i = 1, . . . , d1, j = 1, . . . , d2

}
(56)

In (55), the fused tensor T is computed as the outer product
of modality-specific tensors Mk, where each Mk in (56)
represents data from a specific modality, such as EEG, facial
expressions, or speech signals. The elements of each tensor
encode the properties of the respective modality.

x
(i,j)
k = Ak sin

(
ωkx+ ϕk

)
(57)

F =
n∑
k=1

wk · Mk (58)

wk =
exp(−λk · ||Mk||)∑n
j=1 exp(−λj · ||Mj ||)

(59)

The weighted fusion F in (58) combines modality tensors Mk

using dynamically computed weights wk, as shown in (59).
The elements x(i,j)k in (57) encapsulate amplitude, frequency,
and phase information specific to each modality. To capture
hierarchical correlations, HD-QTF applies a quantum-inspired
transformation.

H(T ) = T ◦ exp
(
Q · T

)
(60)

Equation (60) applies a nonlinear transformation to T using
the quantum operator Q.

Q =
{
qij | qij = αij · sin(βij · xij)

}
(61)

Chier =

∑
i,j |Hij − Tij |2∑

i,j |Tij |2
(62)

Lhier =
∂Chier

∂T
(63)

Hierarchical correlations Chier are quantified in (62), and their
gradients Lhier refine the tensor during optimization. Finally,
HD-QTF ensures the preservation of intrinsic correlations
through inner-product projections.

P = ⟨Mk,Ml⟩ (64)

The inner product P in (64) measures pairwise correlations
between modality tensors.

I =

∑
k ̸=l P(Mk,Ml)∑n
k=1 ||Mk||2

(65)

Lintr =
∂I
∂T

(66)

Intrinsic correlation I in (65) evaluates the overall alignment
of tensors, and the gradient Lintr in (66) fine-tunes the tensor
fusion for optimal preservation. This approach ensures robust
multimodal data integration for IoMT systems.

G. Real-Time Emotion-Behavior Feedback Loop (REFL)

The Real-Time Emotion-Behavior Feedback Loop (REFL)
establishes an interactive mechanism that dynamically adapts
behavioral interventions based on detected emotional states.
This innovative feedback loop ensures the real-time alignment
of emotional predictions with actionable recommendations,
fostering personalized and context-sensitive IoMT applica-
tions.

B(t) = F(E(t)) + ϵ(t) (67)
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In (67), the behavioral output B(t) is computed as a function
F of emotional states E(t), incorporating a noise term ϵ(t) to
account for real-world variability.

F(E(t)) =
n∑
i=1

wi · ϕ(ei) (68)

wi =
exp(−α · d(ei, g))∑n
j=1 exp(−α · d(ej , g))

(69)

Equation (68) calculates the behavioral recommendation as a
weighted sum of emotional contributions, with weights wi
dynamically adjusted using (69) based on distances to the
predefined goal g.

d(ei, g) = ||ϕ(ei)− ψ(g)|| (70)
ϵ(t) = β · sin(γt) (71)

The distance d(ei, g) in (70) quantifies the deviation of emo-
tional states from the target, while the noise ϵ(t) in (71) en-
sures realistic variations in feedback. To maintain consistency,
REFL incorporates a temporal correction mechanism.

B′(t) = B(t) + η ·∆B (72)

∆B =

∫ t

0

∂B(τ)

∂τ
dτ (73)

In (72), the refined behavioral output B′(t) is calculated by
integrating corrections ∆B over time as defined in (73).

E(B) =
1

2

n∑
i=1

∣∣B(t)−F(E(t))
∣∣2 (74)

The feedback error E(B) in (74) quantifies deviations between
predicted and recommended behaviors, serving as the founda-
tion for optimization.

∆F = ∇BE(B) (75)

Gradients ∆F in (75) are computed to optimize the feedback
loop, ensuring accurate behavioral adjustments. Additionally,
REFL supports adaptive learning to account for evolving
patterns in emotional and behavioral dynamics.

L(B,E) =
∂E(B)

∂E
+ κ · ∂E(B)

∂B
(76)

The learning loss L(B,E) in (76) integrates gradients of both
behavioral and emotional states for comprehensive system
updates.

Ḃ(t) = −λ · ∂L(B,E)

∂B
(77)

Ė(t) = −µ · ∂L(B,E)

∂E
(78)

Equations (77) and (78) describe dynamic updates to behav-
iors and emotions, ensuring real-time adaptability in IoMT
scenarios.

IV. SIMULATION AND EVALUATION

The experimental simulations were performed using Python
3.9 with TensorFlow and PyTorch libraries on a system
equipped with an NVIDIA RTX 3090 GPU. The publicly
available SemEval-2019 Task 3 dataset was used as it is suit-
able to benchmark multimodal sentiment analysis approaches
[20]. Comparisons were made against state-of-the-art methods,
including AIoMT [11], LIoTs [12], KG-CNN [13], SPD [14],
XGBRS [15], DMLS [16], LMS [17], SCNN [18], and SSB
[19].

A. Emotion Detection Performance Analysis

Emotion detection accuracy evaluates the ability of the
proposed QED-Net framework to identify discrete and mixed
emotional states effectively. The evaluation scenario for this
evaluation is as: Discrete Emotion Detection, Blended Emo-
tion Detection, Temporal Emotion Transition, and Context-
Dependent Emotion Detection. The results of these scenarios
are illustrated in Figure 2. QED-Net achieved superior perfor-
mance in all scenarios. For discrete emotion detection, QED-
Net achieved an accuracy of 92.8%, outperforming KG-CNN
(88.1%) and AIoMT (85.6%). In blended emotion detection,
it achieved 89.3%, significantly better than SPD (81.5%) and
SCNN (79.2%). Temporal emotion transitions were accurately
modeled at 87. 9%, surpassing LMS (84. 2%) and LIoT
(82. 6%). Lastly, context-dependent accuracy reached 90.5%,
excelling over XGBRS (83.8%) and SSB (81.9%).

The Sentiment Analysis Precision and Recall evaluation
assesses the QED-Net framework’s ability to accurately detect
and retrieve sentiment signals within IoMT applications. Eval-
uation scenarios include positive sentiment precision, negative
sentiment recall, neutral sentiment handling, and the differ-
entiation of context-driven sentiment variation. The results of
these scenarios are summarized in Figure 2. QED-Net outper-
formed competing models in both precision and recall met-
rics. For positive sentiment precision (Scenario 1), QED-Net
achieved a precision of 93.2%, exceeding KG-CNN’s 88.7%
and AIoMT’s 86.3%. Negative sentiment recall (Scenario 2)
was recorded at 91.8%, outperforming SPD (84.5%) and SSB
(81.6%). For neutral sentiment handling (Scenario 3), QED-
Net achieved precision and recall values of 89.6% and 88.3%,
respectively, surpassing LIoTs and LMS. Contextual sentiment
differentiation (Scenario 4) showed significant improvements,
with precision at 92.4% and recall at 91.1%.

B. Emotion Evolution Tracking Efficiency

Emotion evolution tracking evaluates QED-Net’s capability
to monitor and predict temporal emotional changes using
the Temporal Emotion Evolution Graph (TEEG) module and
the SemEval-2019 Task 3 dataset. Scenarios include short-
term transitions, long-term trends, multimodal evolution, and
contextual emotion shifts, ensuring comprehensive assess-
ment. The results of these evaluations are illustrated in Fig-
ure 3. QED-Net consistently outperformed competing models
in tracking and predicting emotion evolution. In short-term
transitions (Scenario 1), QED-Net achieved 92.3% accuracy,
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Fig. 2. Emotion Detection Accuracy Across Evaluation Scenarios

surpassing AIoMT (84.7%) and KG-CNN (88.2%). For long-
term emotion trends (Scenario 2), the framework attained
91.6%, exceeding LMS (85.9%) and LIoTs (84.8%). Multi-
modal evolution tracking (Scenario 3) recorded an efficiency
of 90.7%, outperforming SPD (81.6%) and SCNN (79.8%).
Contextual shifts (Scenario 4) showcased 91.2% accuracy,
higher than XGBRS (82.5%) and SSB (80.9%).

C. Multimodal Data Fusion Robustness

Multimodal data fusion robustness evaluates QED-Net’s
effectiveness in integrating diverse IoMT data modalities using
the Hyper-Dimensional Quantum Tensor Fusion (HD-QTF)
module. Scenarios include fusion of textual and physiological
data, behavioral and physiological data, multimodal integration
under noise, and context-sensitive fusion. The results for these
scenarios are presented in Figure 4. In Scenario 1, QED-
Net achieved a fusion efficiency of 93.4%, outperforming
KG-CNN (89.2%) and AIoMT (85.9%). For Scenario 2, the
framework recorded 92.7%, exceeding LMS (87.4%) and
LIoTs (86.8%). Under noisy conditions in Scenario 3, QED-
Net maintained an efficiency of 91.6%, significantly higher
than SPD (82.3%) and SCNN (80.7%). For context-sensitive
fusion (Scenario 4), the model achieved 92.2%, outperforming
XGBRS (84.1%) and SSB (82.9%).

Fig. 3. Emotion Evolution Tracking Efficiency Across Scenarios.

D. Real-Time Processing Latency

Real-time processing latency assesses QED-Net’s efficiency
in managing IoMT data within constrained timeframes, ensur-
ing minimal delay without sacrificing accuracy. Scenarios in-
clude single-modality data processing, multimodal data fusion
latency, batch processing efficiency, and real-time feedback
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Fig. 4. Multimodal Data Fusion Robustness Across Scenarios

loop delays. The results of these scenarios are presented in Fig-
ure 5. QED-Net demonstrated exceptional real-time efficiency
in all scenarios. In Scenario 1, the framework achieved a
latency of 12.4 ms, outperforming AIoMT (18.2 ms) and KG-
CNN (15.8 ms). For multimodal fusion (Scenario 2), QED-Net
recorded a latency of 24.7 ms, significantly lower than LMS
(32.1 ms) and LIoTs (29.8 ms). Batch processing efficiency
(Scenario 3) was measured at 18.3 ms, compared to SPD
(25.6 ms) and SCNN (27.2 ms). In real-time feedback loops
(Scenario 4), QED-Net achieved 15.9 ms latency, exceeding
XGBRS (22.4 ms) and SSB (20.7 ms).

V. DISCUSSION

The results of this study demonstrate the effectiveness
of the proposed QED-Net framework in addressing critical
challenges in IoMT systems, particularly in sentiment analy-
sis, emotion tracking, multimodal data fusion, and real-time
processing. Compared to state-of-the-art approaches such as
AIoMT, KG-CNN, and SPD, QED-Net consistently achieved
superior performance across diverse evaluation scenarios. For
instance, the integration of the Quantum-Driven Sentiment
Amplification (QSA) and Temporal Emotion Evolution Graph
(TEEG) modules provided advanced capabilities for capturing
complex sentiment patterns and temporal emotional transi-
tions. These outcomes validate the hypotheses that quantum-
inspired methodologies can enhance accuracy and efficiency
in sentiment analysis and emotion modeling, offering a sub-
stantial leap forward in IoMT technologies.

When interpreted in the context of prior studies, the find-
ings underscore QED-Net’s significant advancements in mul-
timodal data fusion and real-time latency optimization. Earlier
frameworks such as LIoTs and LMS demonstrated limitations
in handling noisy multimodal inputs and maintaining low
processing latency in dynamic environments. By leveraging
the Hyper-Dimensional Quantum Tensor Fusion (HD-QTF)
module, QED-Net effectively preserved intrinsic and hier-
archical correlations, outperforming existing methods under
challenging conditions. Moreover, the real-time feedback ca-
pabilities achieved through the Emotion-to-Medical Ontology
Encoder (EMOE) showcased the framework’s practical util-
ity in healthcare IoMT applications, where timely decision-
making is significant.

While QED-Net’s performance was validated using bench-
mark datasets, extending its evaluation to real-world IoMT
deployments would provide deeper insights into its scalability
and robustness. Additionally, integrating advanced machine
learning paradigms, such as self-supervised learning or feder-
ated architectures, could further enhance the system’s adapt-
ability and privacy preservation in distributed IoMT networks.
Future studies may also explore refining the quantum-inspired
modules to reduce computational complexity, ensuring broader
applicability across resource-constrained environments.

VI. CONCLUSION

This study explored the critical challenges in IoMT systems
by addressing sentiment analysis, emotion tracking, multi-
modal data fusion, and real-time processing. The proposed
QED-Net framework introduced quantum-inspired modules,
ensuring robust performance across these domains. The nov-
elty lies in the integration of innovative components such as
the Hyper-Dimensional Quantum Tensor Fusion (HD-QTF)
and Quantum-Driven Sentiment Amplification (QSA), which
offer advanced capabilities for real-time analysis. Practically,
this research provides significant improvements in IoMT ap-
plications, particularly in healthcare, where precise and timely
insights are essential. QED-Net achieved 93.2% sentiment
precision, 92.3% emotion tracking accuracy, and 91.6% multi-
modal fusion robustness, outperforming AIoMT and KG-CNN
by substantial margins. Additionally, its latency of 12.4 ms
in single-modality processing highlights its efficiency. Future
work may extend QED-Net’s applicability to real-world IoMT
deployments for enhanced scalability and adaptation.
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