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Abstract In a variety of industrial applications, modelling compressible inelastic free-surface 
flows remains a numerical challenge. This is largely due to the physical phenomena involved and 
the computational cost associated with the simulations of such flows. In particular, the die-swell 
benchmark problem is characterised by specific features. These are related to the presence of a 
sharp separation point at the die-exit, the location and the shape of the free-surface, and 
additionally the consideration of fluid compressibility under various forms of material modelling. 
In this article, a time-marching pressure-correction scheme is considered to solve both 
incompressible and compressible inelastic flows. This is achieved via a pressure-based approach 
within a finite element framework employing efficient high-order time-stepping schemes. A 
Tait-type model is utilised to express the equation of state that links density to pressure, so that 
pressure is retained as a primary variable. Various material models are considered in this 
numerical study for the die-swell problem, where the material rheological characteristics have a 
direct impact upon the location and form of the free-surface. Initially, unyielded material is 
considered through Newtonian and power-law assumptions. Further complication is then 
introduced through the Bingham model, where fluid yield stress is taken into account. More 
general rheological modelling is constructed via the Herschel–Bulkley model, combining 
inelastic behaviour with yield stress presence. This is complimented by relaxing incompressible 
assumptions, allowing the effects of compressibility to enter the problem. Results are presented 
for steady and transient flow scenarios and numerical solutions are validated against published 
data. There is Focus upon on the effect of variation in compressibility parameter setting, inertia 
level, power-law index and yield stress level, with regard to the evolving shape/location of the 
free-surface and the response in extrudate swell. Extrudate swell is observed to decline with 
decrease in power-law index. With increase in Reynolds number, extrudate swell decreases 
before finally reaching a plateau at high Reynolds number, in agreement with experimental 
results. Swelling also decreases with rise in yield stress levels. The combination of these 
parameters within the compressible Herschel–Bulkley model renders it difficult to predict, a 
priori, the outcome in terms of die-swell behaviour. 

Keywords: Die-Swell, Inelastic, Power-Law, Bingham, Herschel–Bulkley Model, Yield Stress. 

1. Introduction 

Nowadays, extruded materials include metals, ceramics, polymers, paints, coatings 
and food products. Much research has focused attention on low-pressure, high-flow 
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extrusion processes in an effort to better understand and prevent interfacial 
instabilities. The die-swell problem naturally introduces free surface modelling, 
provocative transient evolution states, material rheology and influence of com-
pressibility. In spite of a variety of industrial applications, modelling compressible 
free surface flows itself remains a numerical challenge, largely due to the physical 
phenomena involved. For example, the free surface of the jet introduces mixed-
type boundary conditions on the flow. Various slip (velocity) conditions may be 
pertinent on the tube wall, while the jet itself supports traction (or stress) boundary 
conditions. This local and sudden change in the type of boundary conditions will 
generate a singular stress field, accompanied with steep velocity gradients. There 
are many approaches to treat free surface computations, such as the volume of 
fluid technique (VOF), marker and cell method (MAC) and the arbitrary Lagrangian 
Eulerian (ALE) scheme. Most studies have assumed incompressible flow and 
unyielded material through Newtonian or power-law model. A yield stress response 
may be adapted through the Bingham model, or with inelastic effects, through the 
Herschel–Bulkley model. To date, the extrusion problem has attracted much interest 
within the literature. Beverly and Tanner [1] analysed the effects of yield stress on 
extrudate swell in a tube, and found that yield stress inclusion reduced the degree 
of swell. Mitsoulis and co-workers [2] studied entry and exit flows of Bingham 
fluids, observing the presence of unyielded regions within the flow. Compressible 
viscoelastic domain remains relatively uncharted in the literature, Georgiou [3] 
has addressed non-Newtonian inelastic fluid modelling for compressible flows, 
expressing interest in slip effects. In addition, compressible flow computations 
were covered by Webster and co-workers [4, 5]. 

2. Governing equations 

For compressible Newtonian fluid flow under isothermal setting, the governing 
equations may be expressed in non-dimensional form as: 

( ) 0=⋅∇+
∂
∂ u 

t
ρρ  (1) 

p-uu t
t
u

∇∇⋅−⋅∇=
∂
∂ ReRe  (2) 

where field variables are ρ , u, τ , p, for density, velocity, stress and pressure, 
respectively. 00 /Re μρ lU ⋅=  represents the conventional dimensionless Reynolds 
number. 

Stress is related to field kinematics through a constitutive law, which is defined 
for compressible Newtonian fluids as: 
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( )( )ijijij ud δμτ ⋅∇−= 32  (3) 

where μ is the viscosity (constant or function of shear-rate, see on), δij is the 
Kronecker tensor, Tuud ∇+∇=2 is the rate of deformation tensor, and the 2/3 
term vanishes under incompressible assumptions. Further equations are necessary 
(see below), relating to free surface computation, material modelling and 
compressibility considerations. 

2.1. Compressibility considerations 

Under compressible flow settings, the modified two-parameter (B,m) Tait equation 
[6], is considered to relate density to pressure. Thus, 

( ) mBBp ρ=+  (4) 

By differentiating the equation of state, one gathers [4]: 

( )
( )
2

,txcBpmp
=

+⋅
=

∂
∂

ρρ
 (5) 

where ( )txc , is the derived speed of sound. Such dependencies have influence upon 
transient evolution. 

2.2. Free surface considerations 

Under the extrusion flow problem, no-slip boundary conditions are assumed along 
the wall, and free kinematic conditions on the free surface. This generates a singular 
stress field at the die-exit. On the free surface, zero normal velocity, zero shear 
stress and normal stress are set. We appeal to the evolving free surface equation: 

z
hu

t
h

zr ∂
∂

−=
∂
∂ υ  (6) 

where ( ) ( )tz/ trv uu zr ∂∂∂∂== ,/, is the velocity vector and h=h(x,t) is the radial 
height. The die-swell ratio is defined as χ= hf /h0, where hf and h0 are the final 
extrudate radius and die radius, respectively (see Fig. 1). 

An ALE-technique is performed to radially adjust mesh. 
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2.3. Material modelling considerations 

The so-called ‘yield stress τ0’ (first introduced by [7]), governs the transition from 
solid-like to liquid-like response. It is the presence of yielded and unyielded 
regions across the domain, which provides the intrinsic discontinuity within the 
model. To overcome this deficiency, several modifications have been proposed 
(see on). The power-law model allows for a degree of deviation from Newtonian 
behaviour (n = 1). Thus, shear-thinning is observed for n < 1, and n > 1 corresponds 
to shear-thickening. The generalised Herschel–Bulkley (HB) model provides further 
rheological richness, incorporating both power-law type and Bingham type. 

2.4. Flow equations 

For non-Newtonian fluids, the viscosity is considered as a nonlinear function of 
the second invariant (Πd) of the rate-of-strain tensor (dij), which modifies (3) 
accordingly. A Bingham material remains rigid when the shear-stress is below the 
yield stress τ0, but flows like a Newtonian fluid when the shear-stress exceeds τ0: 

γτμτ &⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Π
+=

2
1

0

2 d

 for 2
0ττ >Π ; and 0=γ&  for 2

0ττ ≤Π  (7) 

Papanastasiou [8] proposed a modified Bingham model, by introducing a 
regularisation stress growth exponent (m) to control the rate-of-rise in stress, in the 
form: 

γτμτ &⋅
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Other rheological derivations to accommodate for shear characteristics, may be 
considered through power-law model: 

( ) γγτ && ⋅⋅= −1nk  (9) 

where k is the consistency parameter. 

It is the Herschel–Bulkley (HB) model that incorporates both a yield stress  
and shear behaviour. To address the shortcoming of infinite apparent viscosity at 
vanishing shear-rates, Mitsoulis [9], Alexandrou et al. [10] introduced the modified 
HB-model, viz: 

428 



The Dynamics of Compressible Herschel–Bulkley Fluids in Die-Swell Flows 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Π

−
+Π=

Π−−

2
10

2
1

1

d

mn

d

de k ττ  for 2
0ττ >Π ; and 0=γ&  for 2

0τ τΠ ≤  (10) 

3. Numerical discretisation 

A time fractional-staged Taylor-Galerkin incremental pressure-correction (TGPC) 
framework is considered (see [4, 5] for derivation). The first phase involves a 
predictor-corrector doublet (Lax-Wendroff ) for velocity and stress. The second 
phase is a pressure-correction scheme that ensures second-order accuracy in time. 
A third phase recaptures the velocity field at the end-of-time step loop. Triangular 
tessellation is employed based on a quadratic velocity and linear pressure 
interpolations. For density, a piecewise-constant interpolation is employed, with 
recovered density gradients, over an element. The discrete compressible TGPC 
may be expressed via Eqs. (11–14). Note, the equations for compressible and 
incompressible flows differences appear mainly under the continuity equation (13). 
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4. Numerical results and discussion 

Our approach is to start by analysing an incompressible Newtonian fluid and then 
systematically introduce further complexity through inertia, compressibility, genera-
lised Newtonian and HB representation. The capillary radius is held constant 
(unity) and only half of the die-swell domain is analysed (symmetry). Applied 
boundary conditions and die-swell dimensions are supplied in Fig. 1. 

P =0

Ur=0,  
Vz (p) 

P =0R Ur=Vz =0 

Ur= Vz =0 

Z 

hf lfs lw h0 
Three meshes:  
M2-4  lw=2, lw=4 
M4-6  lw=4, lw=6 
M2-10  lw=2, lw=10
 

 
Fig. 1. Die-swell schema 

4.1. Newtonian case 

4.1.1. Effect of die-swell design and mesh consistency analysis 
Effects of mesh refinement, extrudate length and capillary length on the swelling 
ratio are analysed. During the transient development, one observes a common 
maximum swelling at the same location followed by different swelling ratio steps 
in the jet, being larger with longer jet-lengths. 

Once a steady development is achieved, swelling height reaches the ratio of 
1.13, independent of the level of refinement used. The transient pressure response 
is achieved instantaneously, following a linear development trend in pressure-drop. 

4.1.2. Effect of inertia 
A generally accepted finding is that under incompressible assumptions, the jet 
swelling reduces as inertia (Re) increases, see Georgiou and co-workers [11]. This 
is clearly illustrated in Fig. 2, when based on mesh M2-4, we detect two distinct 
regions: below Re = 7.5, there is expansion through jet swelling, whilst, above this 
Re-level, we observe compression of the jet, reaching a plateau of χ = 0.91 at 
larger levels of Re > 40. There is a clear evidence of pressure-drop reduction as 
Re-increases. 
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4.1.3. Influence of compressibility 
For Newtonian fluids and various compressible settings (Ma =  0.0 to Mamax = 0.55), 
the free surface shape and extrudate swell-ratio are insignificantly affected by the 
three proposed die-swell designs and mesh refinements. This fact was also high-
lighted by Georgiou [12]. This is mainly due to the imposition of no-slip boundary 
conditions on the wall. Detailed analysis of various slip conditions is the subject of 
a future study. 

Re

χ

0 20 40 60 80

0.9

1

1.1

1.2

Jet expansion 

Jet compression 

Re=7.5  
Fig. 2. Inertial effect on jet swelling; incompressible, Newtonian 

4.2. Inelastic power-law representation 

4.2.1. Effect of power-index (n) 
The variation of swelling ratio with power-index is depicted in Fig. 3. , under 
k = 1.0. Here, a longer channel length (M4-6) is selected to allow for the full 
development of the velocity profile from its parabolic inlet state. In agreement 
with Mitsoulis [13] findings, the general trend is that die-swell increases with the 
increase of power-law index n, except in the range 0 < n < 0.2, where a slight 
contraction or negative swell is observed. 

n

χ%

0 0.5 1 1.5-5

0

5

10

15

20

25
Data
Mitsoulis (2007)

 
Fig. 3. Die-swell as a function of power-law index n for the power-law model 
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4.3. Viscoplasticity-Bingham yield stress 

We analyse the effect of yield stress on the flow based on the modified Bingham 
model. The (χ)-response against Bn is shown in Fig. 4. 

Bn

χ

10-6 10-5 10-4 10-3 10-2 10-1 100
2

4

6

8

10

12

14

Mitsoulis (2007)
Data

 
Fig. 4. Swelling ratio as function of yield stress with modified Bingham model 

We observe a substantial decrease of swelling for levels of yield stress above 
0.1, whilst there is a sustained plateau in swelling for Bn below 0.01, as in [13]. 
Similarly, the pressure-drop increase with increased yield stress, as the increase is 
more pronounce for Bn > 0.1, whilst, pressure remains relatively constant over the 
low Bn-range. 

4.4. Herschel–Bulkley modelling 

Swelling under the HB-model is governed by the variation of both power-law 
index n and yield stress τ0. At steady-state, the swelling under n = 0.9 and τ0 = 0.1 
reaches a level of χ = 1.1, as already observed under power-law modelling (Fig. 
3). This position is not affected by the yield stress level over this plateau range of 
Bn-value (see Fig. 4). Steady-state shear-rate and viscosity contour plots for n=0.9 
and two levels of Bn=10−3 and 10−1 are depicted in Fig. 5. The shear-rate contours 
are similar for both levels of yield stress, whilst there is a clear increase in the 
maximum viscosity attained at larger τ0 applied. 

 a) Bn=10-3 b) Bn=10-1 

 

1 1.02 1.04 1.06 1.08
μ μmax= 1.1

0.0 0.1 4.0 8.0 10.0
γ γmax= 19.2  

0.0 0.1 4.0 8.0 10.0
γ γmax= 19.9

1.00 1.02 1.04 1.06 1.08
μ μmax= 5.7

 
Fig. 5. Shear-rate and viscosity contours for a) Bn = 0.001 and b) Bn = 0.1 
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5. Conclusions 

The die-swell benchmark problem naturally introduces free surface modelling, 
sharp separation point at the die-exit, provocative transient evolution states and 
material modelling. Focus is placed on the jet shape dynamic evolution and the 
free surface location. Steady and transient flow situations are presented under 
incompressible and compressible assumptions, with findings validated against 
recent published data. Initially, unyielded material is considered through Newtonian 
and power-law assumptions. Further complication is then introduced through the 
Bingham model, where fluid yield stress is taken into account. Subsequently, a 
more rheological generalisation is built via the Herschel–Bulkley model. 

The study demonstrated that extrudate swell is unaltered by compressibility 
considerations under no-slip wall conditions. However, it is expected that this position 
will be altered under slip-wall settings. The swelling is observed to decline with 
decrease in power-law index. Swelling also decreases with rise in yield stress 
levels. Therefore, predictions remain difficult, a priori, under the parameters 
combination within the Herschel–Bulkley model. Further challenges posed will be 
elevated from its generalised Herschel–Bulkley model, to a novel visco-elasto-
plastic material modelling, permitting a direct comparison across regimes for 
compressible representation, ranging from viscoplastic, to viscoelastic, to visco-
elasto-plastic alternatives. 
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