THE JOURNAL OF SYMBOLIC Logic, Page 1 of 35

THE WEAKNESS OF FINDING DESCENDING SEQUENCES
IN ILL-FOUNDED LINEAR ORDERS

JUN LE GOH"®', ARNO PAULY"*, AND MANLIO VALENTI

Abstract. We explore the Weihrauch degree of the problems “find a bad sequence in a non-well quasi
order” (BS) and “find a descending sequence in an ill-founded linear order” (DS). We prove that DS
is strictly Weihrauch reducible to BS. correcting our mistaken claim in [18]. This is done by separating
their respective first-order parts. On the other hand, we show that BS and DS have the same finitary and
deterministic parts, confirming that BS and DS have very similar uniform computational strength. We
prove that Konig’s lemma KL and the problem wlist,n ., of enumerating a given non-empty countable
closed subset of 2" are not Weihrauch reducible to DS or BS, resolving two main open questions raised
in [18]. We also answer the question, raised in [12], on the existence of a “parallel quotient™ operator, and
study the behavior of BS and DS under the quotient with some known problems.

§1. Introduction. Linear and quasi-orders are ubiquitous structures that play
an important role in all areas of mathematics. Computability theory has been
successfully applied to highlight the difference between classical and effective
properties of orders. A well-known example is that the simple fact that every
infinite linear order contains an infinite ascending sequence or an infinite descending
sequence is not computably true. A more extreme example is the existence of
computable ill-founded linear orders with no hyperarithmetic descending sequence
(see, e.g., [26, Lemma II1.2.1]). These orders have been extensively used and studied
in reverse mathematics (under the name of pseudo-well-orders) [27]. We refer the
reader to [11] for a more comprehensive presentation of computability-theoretical
results on linear and partial orders.

The natural generalization of well-orders in the context of quasi-orders is the
notion of well quasi-orders: formally, a quasi-order (Q, =) is called well quasi-order
(abbreviated wqo) if, for every infinite sequence (g,),cn of elements of Q, there are
i, j with i < j such that ¢; <¢ ¢;. This can be restated by saying that a quasi-order
is a wqo if it contains no infinite bad sequences, where a (possibly finite) sequence
(gn)n is called bad if ¢; A¢ ¢; for every i < j. Equivalently, wqos can be defined as
quasi-orders that contain no infinite descending sequence and no infinite antichain.
There is an extensive literature on the theory of wqos. For an overview, we refer the
reader to [22].

Received October 3, 2024.
2020 Mathematics Subject Classification. Primary 03D30, Secondary 03D78, 06A75.
Key words and phrases. Weihrauch reducibility, linear orders, quasi-orders.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use. distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/js1.2025.10160

_ N

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at = for
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160 updates

https://orcid.org/0000-0002-0487-7358
https://orcid.org/0000-0002-0173-3295
https://orcid.org/0000-0003-0351-3058
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2025.10160
https://crossmark.crossref.org/dialog?doi=10.1017/jsl.2025.10160&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

2 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

In this article, we continue our investigation (started in [18]) of the uniform
computational strength of the problems:

e given a countable ill-founded linear order, find an infinite Descending Sequence

in it (DS), and

e given a countable non-well quasi-order, find a Bad Sequence in it (BS).

A suitable framework for this is given by Weihrauch reducibility (see [3] for a
self-contained introduction). Several results on the Weihrauch degree of DS were
proved in our previous work, where we showed, e.g., that, despite the fact that DS
is not a hyperarithmetic problem, it is rather weak from the uniform point of view,
as it only computes the limit computable functions. In the language of Weihrauch
reducibility, this can be stated as Det(DS) =w lim. We also explored how the uniform
computational strength changes when working with I'-presented orders, where I’
is a Borel pointclass, or Aj. £{. or ITj. Other results on the Weihrauch degree of
principles related to well-orders and wqo are obtained in [7]. The computational
strength of descending sequences was also independently explored in [6, Section 4].

This article is organized as follows: in Section 2. we introduce the notation
and provide a brief overview of the necessary background notions on Weihrauch
reducibility.

In Section 3, we refute the claim, falsely stated in [18, Proposition 4.5], that
DS =w BS. In fact, we obtain the separation DS <y BS (Theorem 3.1) by proving
a separation between the respective first-order parts.

The following is a list of the results in [18] that are affected:

e [18, Proposition 4.5];

o [18, Corollary 5.4] and [18, Corollary 5.16]: these are one-line relativizations

of [18. Proposition 4.5];

e [18, Corollary 5.13]: the equivalences HZ—DS =w A2+1-DS =w 22+1-DS are

unaffected, but the reductions involving Hg-BS and Ag H-BS were obtained
using [18, Corollary 5.4] and transitivity.

We are not aware whether all the above-mentioned claims admit a counterexample.

All the other results in [18] do not use [18, Proposition 4.5]; they either deal only
with DS or are standalone results about BS which are not affected by the above
error. In particular, [18, Theorem 5.3], [18, Theorem 5.14], [18, Proposition 5.15],
[18, Theorem 5.23] and [18, Corollary 5.24] are correct to the best of our knowledge.
This list of errata is also available in the arxiv version of [1§].

The rest of the article is devoted to better understanding the Weihrauch degrees
of DS and BS. More precisely, in Section 4, we answer (negatively) two main open
questions raised in [18, Questions 6.1 and 6.2], namely whether KL and wlList,y -,
are Weihrauch reducible to DS (Corollaries 4.5 and 4.6). Both results follow from a
more general characterization (Theorem 4.3), stating that

lim Ewrgax{f : m x [<w DS} Ewl’1’<1aX{f : A/C-C\N x f <w BS}.
>wW =W

In other words, even though A/CC\N is fairly weak (in particular it is below lim, KL,
and DS), neither DS nor BS can compute ACCy x S if f Lw lim.

In Section 5, we show that, despite DS and BS not being Weihrauch equivalent,
their finitary and deterministic parts are in fact the same (Theorem 5.3 and

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 3

Corollary 5.5). In other words, it is necessary to consider a non-finitary,
non-deterministic problem (such as 'BS) in order to separate BS and DS.

Section 6 contains a short detour where we answer another question that was
left open in our previous paper [18, Question 3.5], namely whether the first-
order part and the deterministic part commute. We answer this question by
constructing an explicit counterexample for which the two operations do not
commute (Theorem 6.6).

In Sections 7 and 8, we analyze the following question: Is the restriction of
BS to trees stronger than DS? This question is very natural when considering
that, when proving that BS £w DS, we construct a “tree-like structure” (a partial
order admitting a tree decomposition, see Definition 3.3). In Section 7 we obtain
some technical results on the degrees of the problems IT>— ACC; and I19— ACCy.
In Section 8, we show that the restriction BS|pe. of BS to trees with infinite
width is much weaker than BS by proving that Fin(BS|tree) =w Det(BS|twee) =w id
(Corollary 8.3) and that 'BS|ree is equivalent to the problem that maps a tree
with infinite width to some v € T that belongs to some infinite antichain in 7'
(Proposition 8.5).

Finally. in Section 9 we observe that one of our main technical tools (Theorem 4.3)
provides an example of a “parallel quotient” [12, Remark 1], namely a specific case
where

max{h : h x g <w [}
<w

is defined. Whether this max exists for all choices of f and g was asked in
[12, Remark 3.11]. We answer their question by showing that this operator is always
defined when g # 0 (Definition 9.1 and Proposition 9.9). We conclude the article by
analyzing the behavior of BS and DS under the quotient with some known problems.

§2. Background. We now briefly introduce the relevant notions in Weihrauch
complexity. For a more thorough presentation, we refer the reader to [3]. We end
this section with the observation that BS is equivalent to its restriction to partial
orders (Proposition 2.2).

A represented space X = (X,dx) consists of a set X and a (possibly partial)
surjection dx :C N — X. Many spaces of interest can be represented in standard
ways. such as NV, N, and N<V initial segments of N, the set of binary relations on N,
and the set of I'-definable subsets of N where I' is a pointclass in the arithmetic or
projective hierarchy, countable Cartesian products, and countable disjoint unions
of represented spaces. For the formal definitions of the representation maps of these
spaces, we refer the reader to [3], or to our previous paper [18].

A problem f is a (possibly partial) multivalued function between represented
spaces X and Y, denoted f :C X =Y. For each x € X. f(x) denotes the set
of possible outputs (i.e., f~solutions) corresponding to the input x. The domain
dom(/') is the set of all x € X such that f(x) is non-empty. Such an x is called an
J-instance. If f(x) is a singleton for all x € dom(f), we say f is single-valued and
write £ :C X — Y. In this case, if y is the f-solution to x, we write f(x) = y instead
of (the formally correct) f(x) = {y}. A function F :C NN — NV is a realizer for a
problem f if whenever p is a name for some x € dom(f'), then F(p) is a name for

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

4 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

an f-solution to x. We say a problem is computable (resp., continuous) if it has a
computable (resp., continuous) realizer.

A problem f is Weihrauch reducible to a problem g, written f <y g, if there are
computable maps @, ¥ :C NN — NN such that if p is a name for some x € dom(f).
then

(1) ®(p) is a name for some y € dom(g). and
(2) if ¢ is a name for some g-solution of y, then ¥(p.¢) is a name for some
f-solution of x.

If ® and Y satisfy the above, we say that f <w g via ®, ¥. We sometimes refer
to ® and ¥ as the forward and backward functionals, respectively. We say that f
is strongly Weihrauch reducible to g, written f <w g. if the above holds but with
¥(p, q) replaced by W(g) in (2). For us, strong Weihrauch reducibility is only of
occasional technical interest.

Weihrauch reducibility forms a preorder on problems. We say f and g are
Weihrauch equivalent, written f =w g.if f <w gand g <w f.The =w-equivalence
classes (Weihrauch degrees) are partially ordered by <w. Among the numerous
algebraic operations in the Weihrauch degrees, we consider:

e for problems f; :C X; =2 Y;, the parallel product
fox f1:SXoxX; =Yy x Yy defined by (xg.x1) — folxg) x f1(x1).

i.e., given an f-instance and an fj-instance, solve both;
e for a problem f :C X =Y, the (infinite) parallelization

f:C XN = YN defined by (x;); nf(xi),

1
i.e., given a countable sequence of f-instances, solve all of them.

These operations are defined on problems, but they all lift to the Weihrauch
degrees. Parallelization even forms a closure operator. i.e., /' <w [, / <w g implies

f <w g.and f =w f We also briefly mention two further operations on Weihrauch
degrees, respectively, called compositional product and implication, characterized
by fxg=max< {FoG : F<w fANG<wg}tand / = g =minc,{h : g <w
f = h}. Both are total operations. The compositional product can be equivalently
described as follows: let (@), v be an effective enumeration of all partial
continuous functionals NN — NN with G5 domain. For every f :C X =Y. g :C
U =2V, the domain of f « g is the set

{(w.u) € N¥ x dom(g) : (Vv € g(u))(Vp, € 6y () (6x P (p,) € dom(/))}.

Given as input a pair (w,u), f *g produces a pair (y,v) with v € g(u) and
y € foxPy(p,) for some p, € 5! (v). If f.g are problems on the Baire space,
f * g is simply the problem that maps (w,u) to a pair (y,v) with v € g(u) and
y € f(v). For details, we refer to [4, 29].

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 5

The Weihrauch degrees also support a number of interior operators, which have
been used to separate degrees of interest (see, e.g.. [28, Section 3.1]). For any problem
f and any represented space X, the problem

Detx(f) :=max<,{g <w f : g has codomain X and is single-valued}

exists [18, Theorem 3.2]. We call Dety (') the deterministic part of f and denote it by
Det(/) for short. We say that a problem is deterministic if f =w Det(f), i.e.,if f'is
Weihrauch equivalent to a single-valued function on Baire space. This terminology
is motivated by the observation that the treatment of multi-valued functions in
computable analysis inherently corresponds to a non-deterministic computation
point of view.

Observe that [18, Proposition 3.6] can be generalized slightly.

—

ProPOSITION 2.1. Det(f) <w Dety(f). (2 is the two-point space with the discrete
topology.)

PROOF. Suppose g is single-valued. has codomain NV, and g <w f. Define a
single-valued problem /1 with codomain 2 as follows: Given n, m € Nand a g-instance
x. produce 1if g(x)(n) > m, otherwise produce 0. It is easy to see that g <w /s and

h <w f. The latter implies 1 <w Dety(f) and so g <w 7 <w Deta(f). -
For any problem f and X = N or k, it is also known that
max<y {g <w f : g has codomain X}

exists. For X = N we call it the first-order part of f [13, Theorem 2.2], denoted by
! £, while for X = k we call it the k-finitary part of f [10, Proposition 2.9], denoted
by Finy (/). We say that a problem is first-order if f =w ' f. It is immediate from
the definitions that Dety(f) <w 'f and Dety(f) <w Fini(f) <w ' f.

Before providing examples of problems of interest, we shall specify our notation
for sequences and trees. A string or sequence is a function ¢ from an initial segment of
N to N, with length denoted by |a|. The set of finite (resp., infinite) strings of natural
numbers is denoted by N<N (resp.. NV). Likewise. we use n<" and n", respectively.
for the sets of finite or infinite strings with range in {0, ..., n — 1}. In particular, the
sets of finite and infinite binary strings are denoted 2<% and 2V, respectively.

The constant sequence with value n and length i is denoted by n’. For i = 0,
this is the empty string e. We use n® for the constant infinite string with value n.
The concatenation of strings ¢ and 7 is usually denoted by ¢” t. For the sake
of readability, we omit the concatenation symbol whenever we are concatenating
constant strings (e.g., we use 01/ in place of 0'"1/). The prefix relation on strings
is denoted by C.

For each p € N¥and i € N. p[i] denotes the string obtained by restricting p to i.
A subtree of N<N (resp.. 2<V) is a subset T'C N<N (resp.. 2<N) which is closed
downwards under prefix. We picture trees growing upwards, i.e., the root ¢ lies at
the bottom.

We now list some well-studied computational problems that will be useful.

e LPO: Given p € 2V, produce 1 if there is k € N such that p(k) = 1. otherwise
produce 0.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

6 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

e C;: Given p € (k 4+ 1)N such that (3n < k)(n + 1 ¢ ran(p)). find n < k such
that n + 1 ¢ ran(p).

e Cy: Given p € NN such that (3n)(n + 1 ¢ ran(p)). find n such that n +1 ¢
ran(p).

e lim: Given a convergent sequence (p,),en in NV, find its limit.

e KL: Given an infinite finitely branching subtree of N<V, find an infinite path
through it.

The problems C; and Cy are examples of choice problems, as they can be rephrased
as “given a non-empty co-c.e. closed subset of k (resp., N), find a point in it”. Choice
problems are pivotal in the study of Weihrauch reducibility, as they provide a useful
benchmark to describe the Weihrauch degrees of other problems. For this reason,
many variations of choice problems have been introduced in the literature. For
example, we denote with UCy the restriction of Cy to co-c.e. closed singletons (or,
equivalently, to sequences p such that there is exactly one nsuch thatn + 1 ¢ ran(p)).
Itis known that Cy =w UCy [2, Theorem 3.8], hence Cy is a deterministic, first-order
problem. Another variant that plays an important role in this article is all or co-unique
choice: if X is k or N, ACCx is the problem “Given an enumeration of a set 4 C X of

size at most 1, find a number not in 4”. It is known that A/CC\N <w lim <w KL (see,
e.g.. [3]).

Another important family of problems comes from Ramsey’s theorem for n-tuples
and k-colors. In this article, we only deal with colorings of the natural numbers.
We define RT}. a.k.a. the pigeonhole principle. as the total multi-valued function
that maps a coloring ¢: N — k to the set of all infinite c-homogeneous sets, i.e.,
the set of all infinite H C N such that ¢ is constant on H. Many well-known facts
about the Weihrauch degrees of Ramsey principles can be found in [5]. We only
mention that (in terms of Weihrauch reducibility) we can equivalently think of RT}
as the problem that, given ¢, produces the color of a c-homogeneous solution. It is
known that j < k implies RT} <w RT,'C and that RT% =w KL. In particular, KL is
parallelizable (as the parallelization is a closure operator).

To study the problems DS and BS from the point of view of Weihrauch reducibility,
we need to introduce the represented spaces of linear orders and quasi-orders.
We only work with countable linear orders/quasi-orders with domain contained
in N. We represent a linear order (L.<;) with the characteristic function of the
set {(n.m) : n <, m}. Likewise, we represent a quasi-order (Q.=<¢) with the
characteristic function of the set {(n,m) : n <o m}.

We conclude this section by observing a fact about BS which was implicit in [18].

ProrosITION 2.2. BS is Weihrauch equivalent to its restriction to partial orders.

ProoOF. Given a non-well quasi-order (Q. jQ) where Q C N, compute the set
S:={a€Q: (Vb<ya)la £gborb Aga)}. The restriction (S, =<p) is a non-
well partial order because it is isomorphic to the partial order of <p-equivalence
classes. -

Henceforth we will use Proposition 2.2 without mention.

§3. Separating BS and DS. We shall separate BS and DS by separating their
first-order parts.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 7
THEOREM 3.1. 'BS £w DS and so DS <w BS.

Recall from [18, Theorem 4.10] that 'DS =w H%f Bound, which is the problem of
producing an upper bound for a finite subset of N (given via a IT}-code). Observe
that TT}— Bound is upwards closed. i.e..if n € g(x) then m € g(x) for all m > n.

LEmMMA 3.2. Let f be a problem with codomain N. The following are equivalent:

(1) there exists an upwards closed problem g with codomain N such that f <w g:

(2) there is a computable procedure which takes as input any x € dom(f) and
produces a sequence p, € NN of guesses for f-solutions to x which is correct
cofinitely often.

ProoF. For (1) = (2). let g be upwards closed with codomain N and assume
f <w g via ® and ¥. Given x € dom(/). run the computations (¥(x,m)),ex in
parallel. Once some W¥(x,m) halts, we output its result and cancel ¥(x, n) for all
n < m. This produces a sequence of numbers. The fact that g is upwards closed
guarantees that cofinitely many elements of this sequence are elements of f (x).

For the converse direction, for every x € dom(f). let p, € N¥ be as in the
hypothesis. Define M, := max{m : p,(m) ¢ f(x)}andletg(x) :={n : n> M,}.
Clearly g is upwards closed. The fact that /' <w g follows from the fact that x — p,
is computable. -

Given a non-well quasi-order (Q. <¢). we say that a finite sequence o is extendible
to an infinite <-bad sequence (or, more compactly, o is <p-extendible) if there is
a <p-bad sequence (¢,)nen such that (Vi < |a|)(a(i) = ¢;). We omit the subscript
whenever there is no ambiguity.

Observe that 'BS can compute the problem “given a non-well partial order
(P, <p). produce an element of P that is extendible to an infinite bad sequence”.
In light of Lemma 3.2, to prove Theorem 3.1 it suffices to show that one cannot
computably “guess” solutions for BS. In other words, given a computable procedure
which tries to guess extendible elements in a non-wqo, we want to construct a non-
wqo P on which the procedure outputs a non-extendible element infinitely often.
This would imply that !BS Zw l'lif Bound. The non-wqos P we construct will be
“tree-like” in the following sense.

DEFINITION 3.3. A tree decomposition of a partial order (P, <p) consists of a tree
T € 2<Nand a function :: T — P such that:
(1) Ifwy. wy € T and wy is a proper prefix of w, (written w; T w»), then 1(wy) <p
l(’wz).
(2) P is partitioned into finite P-intervals, where each interval has the form
(w™bl={veP:i(w)<pv<pit(w™b)}

for some vertex w™bh € T (with final entry b), or (¢] = {i(e)} (where €
denotes the root of 2<N). For v € P let [v] € T be uniquely defined by
v € ([v]].

(3) If wy,ws € T are incompatible, so are 1(w;) and 1(w,) (i.e., they have no
common upper bound in P).

The following lemma is straightforward.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

8 JUN LE GOH, ARNO PAULY, AND MANLIO VALENTI

LemMa 3.4. If1: T — P isa tree decomposition, then P has no infinite descending
sequences. Moreover, T is wqo (i.e., it has finite width) if and only if P is wqgo. In other
words, T has an infinite antichain iff so does P.

ProOOF. The fact that every partial order that admits a tree decomposition does
not have an infinite descending sequence follows from the fact that if (v,),cy is
an infinite descending sequence in P, then since every interval ([v,]] is finite, up
to removing duplicates, the sequence ([v,]),en would be an infinite descending
sequence in 7.

If (w,)nen is an infinite antichain in T then, by definition of tree decomposition,
(1(w,))nen is an infinite antichain in P. Conversely, if (v,),cx is an infinite antichain
in P, then for every n, for all but finitely many m, [v,] is C-incomparable with [v,, |.
In particular, we can obtain an infinite antichain in 7" by choosing a subsequence
(vn;)ien such that, for every i # j. [v,,] and [vn; | are C-incomparable. 4

LEMMA 3.5. There is no computable procedure that, given as input a non-well partial
order which admits a tree decomposition, outputs an infinite sequence of elements of
that partial order such that cofinitely many elements in the output are extendible to a
bad sequence.

We point out a subtle yet important aspect regarding Lemma 3.5: The procedure
only has access to the partial order, not to a tree decomposition of it.

Proor. Fix a computable “guessing” procedure g that receives as input a
partial order (admitting a tree decomposition) and outputs an infinite sequence
of elements in that partial order. We shall build a partial order P together with a tree
decomposition z: 7" — P in stages such that, infinitely often, g outputs an element
of P that does not extend to an infinite bad sequence.

Start with Ty = {e} and P, having a single element v., with 1o(¢) = v.. In stage s,
we have built a finite tree decomposition z;: 7y — P, and wish to extend it to some
Iy41: Ty11 — Psy1. The tree Ty, will always be obtained by giving each leafin 75 a
single child, and then adding two children to exactly one of the new leaves. To decide
which leaf gets two children, say a finite extension Q of Py is suitable fori;: Ty — P
if for every v € Q \ P;. there is exactly one leaf w € T such that 1,(w) <¢ v. Pick
the left-most leaf o of T with the following property:

There is some suitable extension Q of P, such that, when given Q,
the guessing procedure g would guess an element of Q which is
comparable with 1,(c).

To see that such ¢ must exist, consider extending P, by adding an “infinite comb”
(i.e., acopy of {0"1' : n € N,i € {0,1}}) above the 1,-image of a single leaf in T}.
The resulting partial order O is non-wqo, admits a tree decomposition (obtained by
extending T, and i, in the obvious way). and its finite approximations (extending P)
are suitable for i;. Hence, by hypothesis, g eventually guesses some element, which
must be comparable with z;(o) for some leaf ¢ € T (because all elements of O are).

Having identified o, we fix any corresponding suitable extension Q of P,. In order
to extend ;. we further extend Q to Q' by adding a new maximal element v,, to Q
for each leaf w € T; as follows: v, lies above all v € @ \ Py such that 1;(w) <p v,
and is incomparable with all other elements (including the other new maximal

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 9

FIGURE 1. Schematic representation of the construction used in the proof of
Lemma 3.5. The dashed box contains the partial construction up to stage s. The
gray boxes contain intervals in the partial order P. For simplicity, each interval up
to stage s only contains one point (i.e., the partial order P; is isomorphic to a tree),
but this need not be the case in general. The black nodes are those in the range of
the (partial) tree decomposition z;. The square gray node is the node guessed by g
at stage s + 1 (which identifies :(¢') and 1(¢"0)).

elements v,). To extend Ty, we add a new leaf t70 to T for each leaf 7, obtaining a
tree T'. We extend 1, to yield a tree decomposition i/: T’ — Q' in the obvious way.

Finally, we add two childrentos ™ 0in 7", i.e., define T,y := T' U {c700,6"01}.
We also add two children vy, v> to i/(¢7°0) in Q' to obtain Py, and extend ¢’ to
1,41 by setting 7,1 (670i) := v;. This concludes stage s.

It is clear from the construction that : : 7 — P is a tree decomposition. Let us
discuss the shape of the tree 7. In stage s, we introduced a bifurcation above a leaf
a5 of Ty. These are the only bifurcations in 7. Observe that, whenever s’ < s, gy
is either above or to the right of o/, because every suitable extension of Py is also
a suitable extension of Py, and, at stage s’. the chosen leaf was the left-most. This
implies that the sequence (o,), converges to a path p € [T]. i.e., for every n there is
a stage s such that for every s’ > s, p[n] C o,/. This also implies that p is the unique
non-isolated path (if 7 [Z p then there are only finitely many bifurcations above 7).
Observe also that a vertex w in T is extendible to an infinite antichain in 7 if and
only if it does not belong to p.

We may now apply Lemma 3.4 to analyze P. First, since 7 is not wqo, neither is P.
Second, we claim that if v <p 1(o) for some vertex o on p. then v is not extendible to
an infinite bad sequence. To prove this, suppose v is extendible. Then so is 1(a). The

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

10 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

proof of Lemma 3.4 implies that [i(g)] = o is extendible to an infinite antichain
in 7. So ¢ cannot lie on p, proving our claim.

To complete the proof, observe that our construction of : ensures that for each
s, g(P) eventually outputs a guess which is below (¢, 0). Whenever o, 0 lies
along p (which holds for infinitely many s), this guess is wrong by the above claim
(Figure 1). -

We may now complete the proof of Theorem 3.1.

PrROOF OF THEOREM 3.1. Suppose towards a contradiction that 'BS <w
1‘[%, Bound. Since the problem of finding an element in a non-wqo which extends
to an infinite bad sequence is first-order, it is Weihrauch reducible to H%— Bound
as well. Now, l'[i— Bound is upwards closed, so there is a computable guessing
procedure for this problem (Lemma 3.2). However such a procedure cannot exist,
even for partial orders which admit a tree decomposition (Lemma 3.5). -

§4. Separating KL and BS. In this section, we answer two of the main questions
that were left open in [18, Questions 6.1 and 6.2], namely whether the problems
KL and wlList,n ., are Weihrauch reducible to DS. We already introduced KL in
Section 2, while wlistyn ,, is the problem of enumerating all elements (possibly
with repetition) of a given non-empty countable closed subset of 2. This problem
was introduced in [17. Section 6] and was also studied in [9].

In fact, we prove something stronger, namely that neither KL nor wList,n
are Weihrauch reducible to BS. The core of the proofs rests on the following two
technical results.

DErFINITION 4.1. Given a fixed partial order (P, <p). we define the following
quasi-order on the (finite or infinite) <p-bad sequences:

a <’ = a=por(3Fi<lal)(Vj<[B)(ali) <p B()).
We just write < when the partial order is clear from the context.

LemMma 4.2. Let (P. <p) be a non-well partial order and let o, be finite <p-bad
sequences. If a < f and o is extendible to an infinite <p-bad sequence, then so is . If
« is not extendible then there is an infinite < p-bad sequence B € NN such that o < B.
(Hence oo < B for every initial segment 8 of B.)

ProofF. To prove the first part of the theorem, fix o < f and let 4 € NN be an
infinite <p-bad sequence extending «. Let also i < |a| be a witness for o < f. For
every j > i and every k < |B|. f(k) £p A(j) (otherwise A(i) = (i) <p B(k) <p
A(j) would contradict the fact that 4 is a <p-bad sequence), which implies that
is extendible.

Assume now that « is non-extendible and let F € NN be a <p-bad sequence. We
show that there is i < || and infinitely many k such that (i) <p F (k). This is
enough to conclude the proof, as we could take B as any subsequence of F with
a(i) <p B(k) for every k (ie..a < B).

Assume that, for every i < |a| there is k; such that forevery k > k;, a(i) £p F (k)
(since P is a partial order, there can be at most one k such that a(i) = F(k)). Since
«a is finite, we can take k := max,.|o| k; and consider the sequence which extends o
by the tail F(k + 1), F(k +2), ... of F. We have now reached a contradiction as this
is an infinite <p-bad sequence extending «. o

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 11

THEOREM 4.3. Let f'be a problem. The following are equivalent:
(1) f <w lim:

(2) m x f <w lim:

(3) ACCy x f <w DS:

(4) ACCy x f <w BS.

This theorem provides another example of a “parallel quotient” (cf. [12, Remark
3.11]). See Section 9 for details.

ProoF. The implication from (1) to (2) holds because ACCy x lim =y lim. The
implications from (2) to (3) and from (3) to (4) hold because lim <w DS <w BS
[18, Theorem 4.16]. For the implication from (4) to (1), we consider a name x for an
input to f together with witnesses ®, ¥ for the re/du\ction to BS. We show that, from

them, we can uniformly compute an input g to ACCy together with an enumeration
of the set W of all finite sequences ¢ in the (non-well) partial order P built by ®
on (g. x) such that ¢ does not extend to an infinite bad sequence. We can then use
lim to obtain the characteristic function of W. Having access to this lets us find an
infinite bad sequence in P greedily by avoiding sequences in . From such a bad
sequence (and (g, x)). ¥ then computes a solution to f for x.

It remains to construct ¢ = (g,),cn and W to achieve the above. At the beginning,
W is empty, and we extend each ¢, in a way that removes no solution from its
ACCy-instance. As we do so, for each ¢ ¢ W (in parallel), we monitor whether the
following condition has occurred:

o is a bad sequence in P (as computed by the finite prefix of (¢, x)
built/observed thus far), and there is some (finite) bad sequence 7
in P such that:
[W §1P T;
e the functional ¥, upon reading the current prefix of (¢, x) and =,
produces some output m for the ACCy-instance indexed by o.

Once the above occurs for o (if ever), we remove m as a valid solution to ¢, by
enumerating it. This ensures that 7, and hence ¢ by Lemma 4.2, cannot extend to an
infinite bad sequence in P. We shall then enumerate ¢ into W. This completes our
action for ¢, after which we return to monitoring the above condition for sequences
notin W.

It is clear that each ¢, is an ACCy-instance (with solution set N if the condition is
never triggered, otherwise with solution set N'\ {m}). Hence P := ®(g, x) is a non-
well partial order. As argued above, no ¢ € W extends to an infinite bad sequence
in P. Conversely, suppose o is a bad sequence in P which does not extend to an
infinite bad sequence. Since P is non-wqo, by Lemma 4.2 there is an infinite bad
sequence r such that ¢ < r. Then P has to produce all ACCy answers upon receiving
(¢, x) and r, including an answer to ¢,. By continuity, this answer is determined by
finite prefixes only. In particular, after having constructed a sufficiently long prefix
of ¢, some finite prefix t of r will trigger the condition for ¢ (unless something else
triggered it previously), which ensures that o gets placed into W. This shows that W
contains exactly the non-extendible finite bad sequences in P, thereby concluding
the proof. -

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

12 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

In other words, this theorem can be restated saying that lim is the strongest
problem such that its parallel product with ACCy is reducible to either lim, DS, or
BS. In symbols,

lim =w max<,{h : A/CC\N X h <w lim}
=w max<, {h : ACCy x h <y DS}
=w max<y {/ : EC\N x h <w BS}.
This characterizes the “parallel quotient” of DS and BS over A/CC\N . The parallel

quotient will be discussed more extensively in Section 9.

—~

COROLLARY 4.4. If f is a parallelizable problem (i.e.. f =w f) with ACCx <w
f <w BS, then f <w lim.

Proor. Since ACCy <w f <w BSandf is parallelizable, we haveA/C-C\N X [<w
f <w BS. By the previous theorem, f* <y lim. -

The negative answer to [18, Question 6.1] is an immediate consequence of the
following result.

COROLLARY 4.5. KL #w BS.

ProOOF. Recall that KL is parallelizable, ACCy <w KL, yet KL fw lim, hence the
claim follows from Corollary 4.4. -

Similarly, the negative answer to [18, Question 6.2] can be obtained as follows.
COROLLARY 4.6. wlistyn ., Zw BS.

PrOOF. Asproved in [17, Propositions 6.12 and 6.13], wList,n ., is parallelizable
and ACCy <w lim <w wlListyx .. On the other hand. wListyy o, £w lim [17.
Corollary 6.16], hence the claim follows from Corollary 4.4. -

Continuous Weihrauch reducibility (<3,) is a variant of Weihrauch reducibility
defined via continuous functions in place of computable functions. Using a recent
result of Pauly and Solda [25], we can characterize the parallelizations of first-order
problems which are reducible to DS up to continuous Weihrauch reducibility.

COROLLARY 4.7. Iff <} DS. then' f <}, Cn. Therefore. for any first-order f.
f <& DS ifandonlyif f <% Cu.
Proor. If 1f is continuous, the conclusion of the first statement is satisfied.
Otherwise, ACCy <5, f by [25. Theorem 1]. The relativization of Theorem 4.3 then

implies f <, lim. We conclude !/ <}, 'lim =y Cy. The second statement then
follows from Cy =w lim <w DS. -

§5. The finitary part and deterministic part of BS. In this section, we show
that BS and DS cannot be separated by looking at their respective finitary or
deterministic parts. Recall from [18, Theorems 4.16 and 4.31] that Det(DS) =w lim

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 13

and Fin,(DS) =w RT;. Since both the deterministic and the finitary parts are
monotone, this implies that lim <w Det(BS) and RT}(<w Fing(BS), so we only
need to show that the converse reductions hold.

Let (Q. <o) be a countable quasi-order. We call a subset A C Q dense if for every
w € QO there is some u =¢ w with u € 4. We call it upwards-closed if w € A and
w <o u implies u € A. By ¥!- DUCC we denote the following problem: Given a
(non-empty) quasi-order (0. <¢) and a Ei-code for a dense upwards-closed subset
A C Q, find some element of 4. We can think of a Zi-code for A as a sequence
(Tw)neo of subtrees of N< such that T}, is ill-founded if and only if n € A.

PROPOSITION 5.1. 'BS <w X|— DUCC.

ProoOF. Let f be a problem with codomain N and assume f <w BS via @, ¥. Fix
x € dom(f). Let (P.<p) denote the non-well partial order defined by ®(x). We
say that a finite <p-bad sequence f is sufficiently long if ¥(x.) returns a natural
number in at most |f| steps.

Consider the non-empty Z}"x set of sufficiently long finite extendible bad
sequences. To show that / <w El— DUCC, it is enough to notice that Lemma 4.2
implies that the aforementioned set is dense and upwards-closed with respect to the
quasi-order <I¥ (Definition 4.1). -

LEMMA 5.2. El-DUCC =y Z!-DUCC(2<N,.), where the latter denotes the
restriction of the former to 2<N with the prefix ordering C.

Proor. Clearly, we only need to show that Z}— DUCC <w Zi— DUCC(2<N,.).
Suppose we are given as input a countable quasi-order (Q. =) and a Zi-code
for a set 4 C Q which is dense and upwards-closed. We shall define a labelling
4: 2<N — O which is computable uniformly in (Q. <p). such that 2(4) is dense
and upwards-closed. This suffices to prove the claimed reduction, as the preimage
of A via A is uniformly X} relative to the input and, given ¢ € 271(A4), we may
use the input (Q. <) to compute i(g) € 4.

The labelling 4 : 2<N — Q is defined via an auxiliary function 10 ><_2<N =0
(useful to describe A in a recursive manner). First, for every i € N, A(x,07) :=
A(x,0'1) := x. To evaluate 4 on other strings, we fix a standard Q-computable
enumeration (x,), of Q and define, recursively:

M(xi.o) ifb=1andx =<0 X;

Ax.01167g) :={Z)
Mx,0) ifb=0o0rx Zp x;.

We then define A(g) := A(xg.0). It is clear that A is total and it is uniformly

computable in (Q, =<p). Rephrasmg the definition, we can observe that, for

every x and o, A(x,0'107¢) = A(x. o). Besides, A(x,01117¢) = A(A(x.0'11),0).

In particular,

iy i ~ I Is f < i
T 0117g) = A1) ifx Zox
AMx,0) otherwise.
Intuitively, A guides the construction of an ascending <p-sequence from x,. Indeed.
we will show that 4 is weakly monotone, and therefore each ¢ induces a finite

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

14 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

ascending <-sequence from x, to A(g). At the same time, the labelling is designed
to be highly redundant, which we use to prove that /' (A4) is dense.

To show that /! (A)is upwards-closed, we claim that forevery o, 7 € 2<N J(o) = 0
/(6" 7). The claim is proved by first using structural induction on ¢ to show that for
allx € 0. wehavex <o A(x,). Using this fact. one can perform another structural
induction on ¢ to show that for all x and 7, we have A(x, o) <0 A(x.07 7). Taking
x = xgyields A(a) <o A(6" 7). Since 4 is upwards-closed in Q. it follows that A~ (4)
is upwards-closed in the prefix ordering.

To prove that 27'(4) is dense, fix p € 2<N and assume A(p) ¢ 4. Since A4 is
dense, there is some 7 such that A(p) <o x, € A. Observe that A(A(p).0"11) =
J(xn.€) = x,. so it suffices to find some p’ 3 p such that A(p’) = A(4(p).0"11). The
construction of p’ depends on the form of p (all the following claims can be proven
by structural induction on p):

e if p ends with 0, then A(x,p"1077) = A(A(x.p).7). so A(p”10"+111) =
Z(2(p).0711); _ -

e if p ends with an odd number of 1s, then A(x,p”077) = A(A(x.p). 7). so
Ap70m 1) = 2(A(p). 0711):

e otherwise, p is either € or ends with a positive even number of Is. Then
AMx, p" 1) = A(A(x, p).1). 50 A(pT0"11) = A(A(p),0"11).

In all cases, we have found an extension of p which maps to x,,, as desired. =

THEOREM 5.3. Fing(BS) =w Fing (E}— DUCC) =w Fin,(DS) =w RT, for
every k.

PROOF. We have RT. =y Fing(DS) <w Fing(BS) <w Finy (2}7 Ducc)
by [18, Theorem 4.31] and Proposition 5.1. It remains to show that
Fink(>:} DUCC) <wRTL. By Lemma 52, it is enough to show that

Finy, (2%7 DUCC(2<Y, .)) <w RTL.

Let / be a problem with codomain k and assume f <y Zj— DUCC(2<VN..) via
®.¥. Observe that every x € dom(f) induces a coloring ¢: 2<N — k as follows:
run W(x. o) in parallel on every o € 2<N. Whenever we see that W(x. o) returns a
number less than k, we define ¢(7) := ¥(x. o) for every t C ¢ such that c(7) is not
defined yet. By density of the set coded by ®(x), c is total.

By the Chubb-Hirst-McNicholl tree theorem [8]. there is some p € 2<% and some
color i < k such that i appears densely above p. We claim that such i would be an
f-solution to x. To prove this, fix (by density) some p’ 3 p which lies in the set coded
by ®(x). Then fix some t 3 p’ with color i. Finally, fix some ¢ 3 7 such that c¢(t)
was defined to be W(x, o). Now o lies in the set coded by ®(x) (by upwards-closure),
so W(x, o) is an f-solution to x. Since ¥(x. o) = ¢(r) = i, we conclude that i is an
f-solution to x.

This implies that reduces to the problem “given a k-coloring of 2<V, find i such
that, for some g, i appears densely above ¢”. We claim that the latter can be solved
using RT,I(. This follows from the fact that, as shown in [24, Corollary 42], RT}<
can solve the problem (c(7)L)i defined as “given a k-coloring a: Q — k, produce
i < k such that, for some interval / with rational endpoints, a! (i) is densein I”.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 15

We introduce the order < on 2<N defined by settingg 0"t < ¢ < ¢ 17 p for all
0.7, p € 2<N. This is a computable dense linear order with no endpoints, therefore
there is a computable order isomorphism ¢ between (2<V, <) and (Q. <).

Every open interval in (Q, <) contains the ¢-image of an upper cone in (2<V, <)
and vice versa. Specifically, the interval (¢(o). ¢ (7)) contains the image of the cone
above 671 if 671 is not a prefix of 7, and the image of the cone above 0 if 61
is a prefix of 7. Thus, by translating the coloring along ¢ to Q, we find that a color
which appears densely in an interval in Q also appears densely in a cone in 2<V. This
means we can use (c(r7)L)« to find a color appearing densely in a cone. -

It is immediate from the previous theorem that the finitary parts of BS and DS in
the sense of Cipriani and Pauly [10, Definition 2.10] agree as well. Finally, we shall
prove that the deterministic parts of BS and DS agree.

LEMMA 5.4. IfFiny(f) <w RT). then Det(f) <w lim.

PrOOF. By algebraic properties of Det(-), Fing(-), and the parallelization, we
have

Det(f) <w Detz(f) <w Flnz(f) <w RTé
Since Det(f') is deterministic, it remains to show that Det(RTé) <w lim. This is

known, but for completeness we give a proof using results from the survey of Brattka,
Gherardi, and Pauly [3]:

RT; =w @ [3, Theorem11.8.11, Proposition11.6.10]
=w (G)’ [3. Proposition11.6.12]
=w Cn [3. Theorem11.7.23]
=w G * lim [3, Propositionl1.7.6, Proposition11.6.14].

By choice elimination (see [3, Theorem 11.7.25] or [I8, Theorem 3.9]).
Det(Cy * lim) <w lim. Therefore Det(RT;) < lim. H

Since Det(BS) >w Det(DS) =w lim [18, Theorem 4.16], we conclude that:
COROLLARY 5.5. Det(BS) =w Det(DS) =w lim.
COROLLARY 5.6. Dety(BS) =w Cy.

Proor. Since N computably embeds in NN, for every problem f we have
Detn(f) <w Det(f). In particular, by Corollary 5.5, Dety(BS) <w Det(BS) =w
lim. Since !lim =y Cy ([2. Proposition 13.10], see also [28, Theorem 7.2]), this
implies Dety(BS) <w Cy. The converse reduction follows from the fact that
Cy =w Dety(DS) [18, Proposition 4.14]. =

We remark that for establishing Finy (Ei— DUCC) <w RT} in Theorem 5.3 it

was immaterial that the set of correct solutions was provided as a Xj-set. If we
consider any other represented point class I which is effectively closed under taking
preimages under computable functions, and define I'- DUCC in the obvious way, we
can obtain the following.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

16 JUN LE GOH. ARNO PAULY. AND MANLIO VALENTI

COROLLARY 5.7. Finy (I'— DUCC) <w RT;.

This observation could be useful, e.g., for exploring the Weihrauch degree of
finding bad arrays in non-better-quasi-orders (cf. [14]).

PROPOSITION 5.8. Cy =w Det(IT{— Bound) =w Det('BS) =w Det(X{— DUCC).

PrROOF. The reductions Cy <w Det(IT\— Bound) <w Det('BS) <w Det(Z!
—DUCC) are straightforward: the first one follows from Cy=w UCy and
Cy <w H}f Bound, the second one follows from H}f Bound <w 'BS, and the last
one follows from Proposition 5.1. It remains to show that Det(Z{f DUCC) <w Cy.
In light of Lemma 5.2. it suffices to show that if f/ :C N¥ — NN is such that
f <wZl-DUCC(2<N..) via ®.¥ then f <w Cy. Given x € dom(f). we can
compute the set

X :={oc 2N : (Vro.7y Jo)(Vn €N)
(P(x.70)(n) L AP(x,71)(n) |) = P(x.70)(n) = P(x,71)(n))}.

Observe that thisis a H?’x subset of 2<N and it is non-empty: indeed, letting 4 C 2<N
be the set described by ®(x), the fact that f is deterministic implies that 4 C X. We
can therefore use Cy to compute some o € X. Observe that, by the density of 4,
there is 7 J o such that t € A. In particular, ¥(x.0) = ¥(x.7) € f(x). 4

Corollary 5.5 and Proposition 5.5 imply that ! Det(BS) =w 'lim =w Cy =w
Det('BS). In general, ! Det(f) <w Det(" /) [18. Proposition 3.4]. Goh. Pauly. and
Valenti [18, Question 3.5] asked if there is some problem f such that ! Det(f) <w
Det(' /). The next section is devoted to an affirmative answer (Theorem 6.6).

§6. Godelization. In this section, we show that the first-order part operator and
the deterministic part operator do not commute, answering our earlier question [18,
Question 3.5]. For this, we introduce a dual to the first-order part, the Godelization
operator, defined below. Our starting point is Dzhafarov, Solomon, and Yokoyama
[13, Theorem 1.6] which asserts that a problem is computably true (i.e., for every
instance p there exists a solution ¢ with ¢ <t p) if and only if it is Weihrauch
reducible to some first-order problem. The construction in their proof shows even
more:

THEOREM 6.1. If g is a problem which is computably true, then

n<1in{f >w g . f isfirst-order}
<w

exists and is represented by

g°(p)={eeN: d.(p) cglp)}

Proor. Notice dom(g®) = dom(g) since g is computably true. It is clear that
g <w g©. Next, suppose / has codomain N and g <w % via I" and A. To reduce
gC to h. observe that if p € dom(g®©). then I'(p) € dom(h). and if n € h(I'(p)).
then A(p.n) € g(p). Using an index for A, we can define a functional ¥ such
that ®y(,,) (p) = A(p.n) for every p € N¥ and n € N. Then if n € h(T(p)).

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 17

we have W(p.n) € g(p) as desired. (Indeed ¥ does not even need access to p.
SO gG gsW h) 4

Therefore, every problem g which is computably true but not first-order lies in
an interval with no first-order problems, bounded below by its first-order part g
and above by g©. We choose to call g€ the Gédelization of g, inspired by the Godel
numbering problem G studied by Brattka [1].

PROPOSITION 6.2. Ifg is computably true, single-valued, and g© is not deterministic
(i.e.. Weihrauch equivalent to a single-valued function with codomain NY), then
' Det(g€) <w Det(g®).

PrOOF. Since g is single-valued and g <w g©. we have g <w Det(g®) <w g°.
So Det(g®) cannot be first-order, by Theorem 6.1. We conclude that ! Det(g®) <w
Det(g®). .

In Proposition 6.5, we shall construct such g using the following two ingredients.

PrOPOSITION 6.3. If f is deterministic, then it is Weihrauch equivalent to one of its
realizers.

PrOOF. Suppose i :C NV — NN satisfies / =w h. Fix ® and ¥ witnessing that
f <w h. Wedefine r :C N¥ — NN by r(x) = ¥(x. h(®(x))). By construction, r is a
realizer of £, thus it in particular holds that / <w r. Also by construction, r <w A.
Since & =w f. it follows that r =w f. -

The second ingredient is the following Rice-like result, which forms the recursion-
theoretic core of our construction. For each ¢ € N, let ¢, denote the e-th partial
computable function on N. Let Tot denote the set of e € N such that ¢, is total.

LEMMA 6.4. There is no computable F :C N — N such that whenever e, e’ € Tot,
then F(e) = F(e') if and only if ¢, = .. In fact, fix ey € Tot and define A = {e €
N 1 ¢o = ¢, }. Then no c.e. set containing A is disjoint from Tot \ A.

PrOOF. Suppose towards a contradiction that U D 4 is c.e. and disjoint from
Tot \ 4. Then we can compute halting as follows. Given e, compute an index f (e)
such that ¢ () copies ¢, until ¢,(e) halts (if ever). after which ¢, flips each
output of ¢,,. Notice if ¢.(e) halts, then f(e) € Tot\ 4. else f(e) € 4 C U. So
we can compute whether ¢, (e) halts by waiting for it to halt, or for f (e) to appear
in U. —

PROPOSITION 6.5. There is a problem g: N — NN which is computably true and
single-valued, such that g€ is not deterministic. (In particular, g cannot be first-order,
else g€ =w g is deterministic.)

PrOOF. We shall construct a sequence of computable reals (g,),en such that
for every pair of Turing functionals I and A (which form a potential Weihrauch
reduction from some realizer of g€ to g€ itself), one of the following holds:

(1) some I'(n) is not a name for a natural number (i.e., an instance of g as defined

below);

(2) there are n. e, ¢’ € N such that ®,(I'(n)) = gr(,) = ®./(I'(n)) but A(n.e) #

A(n,e');
(3) there are n, e € N such that ®,(I'(1)) = gr(,) but @,) (1) # gn.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

18 JUN LE GOH. ARNO PAULY. AND MANLIO VALENTI

If we then define g: N — NV by g(n) := g,. we see that g is single-valued.
computably true. and g€ is not Weihrauch equivalent to any of its realizers (hence
not deterministic, by Proposition 6.3).

We shall construct (g,),en in stages. At each stage, we handle a single pair T’
and A by defining at most two new computable reals g,. We assume that for every
n € N, I'(n) names a natural number (otherwise no action is needed). Consider the
following cases.

Case 1. For some n € N such that I'(n) # n. g, has not been defined. By defining
gr(») if necessary, we may fix some e such that ®,(I'(r)) = gp(,). Since I'(n) # n, we
may then define g, to be a computable real which differs from ®,, .)(n) (regardless
of whether the latter is total), ensuring (3).

Case 2. Fix some n € N such that g, is not defined. Since Case 1 fails, ['(n) = n.

Case 2a. There are e,e¢’ € N such that ®,('(n)) = ®,(I'(n)) and A(n,e) #
A(n,e’) (this includes the case where either or both sides diverge). We define
gr(n) = Pc(I'(n)). ensuring (2).

Case 2b. If there is some e € N such that ®,(I'(n)) is total and not equal to
@) (n). we define g, = @, (I'(n)). This ensures (3).

To complete the current stage of the construction, we shall show that the above
cases encompass all possibilities. Suppose otherwise. Since Case 2b fails, for all
e € N, whenever @, (I'(n)) is total, so is @,) (n) and they must be equal. Since Case
2a fails, whenever ®@,(I'(n)) = ®,/(I'(n)), we have A(n,e) = A(n, e’). We deduce
that whenever ®,(I'(n)) and ®,/(I'(n)) are total, A(n,e) = A(n, e¢’) if and only if
®,(I'(n)) = ®,(I(n)). This contradicts Lemma 6.4: Define F :C N — Nby F(d) =
A(n, e), where ®, upon input I'(n) merely simulates ¢,.

This completes the current stage of the construction. Observe we have ensured
that one of (1)—(3) hold for I" and A. =

We may now answer [18, Question 3.5] in the affirmative.
THEOREM 6.6. There is a problem f such that ' Det(f) <w Det(' f).

Proof. By Proposition 6.5, fix a problem g which is computably true and single-
valued., such that g€ is not deterministic. By Proposition 6.2, ! DetggG) <w Det(g®).
Let f = g€ Then' Det(f) =w ' Det(g€) <w Det(g®) =w Det(' /). where the last
equivalence holds because f is first-order and Det(-) is degree-theoretic. !

§7. l'[g— ACC; and Hg— ACCy. A crucial role in the separation between BS and
DS in Section 3 is played by partial orders that admit a tree decomposition. It is
therefore natural to ask what is the strength of the restriction BS|t of BS to trees.
In order to present our results about the first-order and finitary parts of BS| e we
first prove some results about l'[g all or co-unique choice, Hg— ACCy. This problem
has also been studied in [25] in the context of continuous Weihrauch reducibility.

DEFINITION 7.1. The problem TI9— ACC; receives as input a IT>-subset 4 C k
with | 4| > k — 1 and returns some i € A. The problem I)— ACCy receives as input
a IMy-subset 4 C N with [N\ 4| < 1 and returns some i € 4.

The relevance of these problems to BS|p. will be explained in Section 8.
Rather than having to reason directly with IT>-subsets, we can use the following
more concrete characterization of the problem.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 19

PROPOSITION 7.2. Let X € {k,N} for k > 2. Then y— ACCyx is equivalent to the
problem “Given some p € XN, output some n € X such that n # im;_,. p; (which we
understand to be true if the limit does not exist)”.

ProOOF. Given some p € XY, we observe that {n € X : n # lim; ,o, p;} is a
Hg"’ -set omitting at most one element. That shows that TTI9— ACCx can solve the
problem of finding a non-limit point.

Conversely, let A be a IT)-subset of X with |X \ 4| < 1. We can A-compute ¢: X x
N — 2 such that, for each n € X, ¢(n. -) contains infinitely many 1s iff n € 4. We
define a sequence p € X" as follows: for each n € X and k € N, let M, == |{j <
ki q(n. j) =0}

For the sake of readability, we distinguish the cases where X is finite or not. If
X = k. we define

pii=min{n <k : (Vm <k)(M,; > M,;)}.

If X =N, at each stage i, for each n < i we only see j(n)-many elements of the
sequence (¢(n, j))jen. where j(n) is least such that (n, j(n)) > i. In this case, we
define

pi = mln{n <i: (vm < l)(Mnj(n) > Mm«j(m))}‘

Observe that, in both cases, if 4 = X\ {m} for some m, then lim;_,, p; = m,
hence any n # lim;_,, p; is a valid solution for Hgf ACCx(A4). -

Observe that IT9— ACC; can be equivalently thought of as the restriction of RT}
to colourings where at most one color does not appear infinitely often. In particular,
)~ ACC, =w RT).

While in some sense l'[gf ACCy is a very weak principle — after all, there is just
one single incorrect answer amongst all of the natural numbers — it is at the same
time not particularly easy to solve, as evidenced by the following result.

ProPOSITION 7.3. Hg— ACCy Lw lim.

PROOF. As IT9— ACCy is a first-order problem, TI)— ACCy <w lim would already
imply Hg— ACCy <w Cy. The characterization in Proposition 7.2 shows that
Hg— ACCy is a closed fractal. By the absorption theorem for closed fractals
[20, Theorem 2.4], this means that l'lgf ACCy <w Cy in turn would imply that
19— ACCy is computable, which is readily seen to be false. =

The diamond operator [23, Definition 9] roughly captures the possibility of using
a multi-valued function as oracle an arbitrary but finite number of times during a
computation (with the additional requirement of having to declare, at some finite
stage, that no more oracle calls will be made). It can be equivalently defined in terms
of the following reduction game.

DEerFINITION 7.4 [16, Definitions 4.1 and 4.3], see also [28, Definition 6.1]. Let
f.g :C NN = NN be two partial multi-valued functions. We define the reduction
game G(f — g) as the following two-player game: on the first move, Player 1 plays
xo € dom(g). and Player 2 either plays an xo-computable y, € g(xo) and declares
victory. or responds with an xo-computable instance z; of f.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

20 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

For n > 1, on the n-th move (if the game has not yet ended), Player 1 plays a
solution x, | to the input z, | € dom(f). Then Player 2 either plays a (xo, ..., X, 1)-
computable solution to xy and declares victory, or plays a (xo. ..., x,_)-computable
instance z, of f.

If at any point one of the players does not have a legal move, then the game ends
with a victory for the other player. Player 2 wins if it ever declares victory (or if
Player 1 has no legal move at some point in the game). Otherwise, Player 1 wins.

We define f/© :C N x NV = (NV)<N a5 the following problem:

e dom(/) is the set of pairs (e, d) s.t. Player 2 wins the game G (f — id) when
Player 1 plays d as his first move, and @, is a winning strategy for Player 2;
e a solution is the list of moves of Player 1 for a run of the game.

Observe that g <w f° iff Player 2 has a computable winning strategy for the
game G(f — g). i.e., if there is a Turing functional ® such that Player 2 always
plays ®(x, {x1, ..., X, 1)), and wins independently of the strategy of Player 1.

We described the game assuming that f. g have domain and codomain NY. The
definition can be extended to arbitrary multi-valued functions, and the moves of the
players are names for the instances/solutions.

PROPOSITION 7.5. Fing (Hg— ACCy +2) = id for every k.

PrOOF. Let g :C NN = k be such that g <w Il)- ACCj,, and let ® be the
computable functional witnessing the winning strategy for Player 2 for the game
G = G(I)- ACCy,» — g). For each input x € dom(g). we can build the c.e. tree T
of all possible runs of the game G where Player 1 starts by playing x. More precisely,
forc € (k +2)<Nandi < k + 2. weenumerate ¢ i € T ifs € T and Player 2 does
not declare victory on the (|a| + 1)-th move. Moreover, if Player 2 declares victory
on the (Jo| + 1)-th move, we enumerate " (k + 2, ®(x,)) in T and commit to
never extend this branch further. Intuitively, if Player 2 declares victory then we
reached a leaf of the tree, and the leaf has a special label that contains the last Player
2’s move, i.e.. the solution to g(x) obtained using ® when the oracle answers are
a(0),....a(la| - 1).

Observe that, each non-leaf ¢ € T has exactly k + 2-many children, and at least
k 41 of them correspond to valid Player 1 moves (i.e., possible Hgf ACCy -
answers). Observe also that the tree T need not be well-founded and not all the
leaves are necessarily labelled as such. Indeed, the hypothesis that Player 2 has a
winning strategy only guarantees that the subtree S C T corresponding to valid
runs of the game is well-founded (and it is computable to tell if a string in S is a
label).

By unbounded search, we can compute a well-founded tree S C 7' such that,
€ € S, each non-leaf ¢ € S has exactly (k + 1)-many children, and each leaf of
S is of the form 7 (k + 2, ®(x, 7)) for some 7 € (k +2)<N and ®(x,7) < k. To
compute a solution for g(x) we proceed recursively on the (finite) rank of S: each
leaf t7 (k + 2, ®(x, 7)) of S is simply labelled with ®(x, 7). To compute the label of
a non-leaf o, observe that, by the pigeonhole principle, we can choose i < k such
that at least two of the k + 1 children of ¢ are labelled with i. We can then label o
with 7 and move to the next stage.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 21

We claim that the label of € is a valid solution for g(x). Indeed, assume 7 € S
corresponds to a valid run of the game, namely foreachi < ||, 7(i) isavalid (n + 2)-
th move for Player 1 when Player 2 plays according to ® and the first (n + 1) moves
of Player 1 are x,7(0)....,7(i — 1). By induction, any such 7 receives a label i < k
such that i € g(x). The statement follows from the fact that € always represents a
valid run of the game. =

Note that the previous proof only uses that Hgf ACCy ., is a problem with
codomain k + 2 having at most one incorrect answer for every input. Therefore, for
every pointclass I' € {Z9. 119, A}, X1 TT}. A} }. we immediately obtain the following.

COROLLARY 7.6. Fing (F fXC\CkH) =w 1d for every k > 1.

Proor. This can be proved observing that, for every f. Fini(f) <w 'f. and
therefore Fing (/) =w Fing (' /). as Fing (/') is the strongest problem with codomain
k that is reducible to f. This implies that

Finy (r_fc?k”) —w Fink(l (F_TCTM)) <w Fin (T- ACC} ;) <w id,

where the second inequality follows from the fact, for every first-order f, lf <w f°
(see [28, Theorem 5.7 and Proposition 6.3]). The last inequality is the statement of
Proposition 7.5. -

COROLLARY 7.7. Det (llmﬂ) =w id for every k > 2.

PrOOF. Proposition 2.1 and the definitions of deterministic/k-finitary part imply
that, for every f and every k > 2,

—_

Det(f) Sw Detk(f) SW Flnk(f)

Letting f = F*ﬁk+2, the claim follows from Corollary 7.6. -

We observe that Proposition 7.5 cannot be improved to show that
Finy (Hg— ACCy +1) is computable.

PROPOSITION 7.8. ACC; <w Fing (ng— ACCk+1) for every k > 2.

PrOOF. We use the equivalent formulation of l'[g— ACCj,, introduced in
Proposition 7.2. For every A € dom(ACC;), we uniformly compute a sequence
p € NN as follows:

i if i is enumerated outside of 4 by stage s
pls) = .
k otherwise.

Letn < k + 1 be such that n # lim,_, . p(s). If n = k then A # k. therefore we can
computably find (by unbounded search) the unique m € k \ 4. Conversely, if n # k
then it follows by the definition of p that n € 4. =

The following proposition shows that for k > 2. the degree Finy (Hg— ACCkH)

escapes a “nice” characterization. The exceptional case of Finz(l'[gf ACC3) is
covered in Corollary 7.10 below.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

22 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

PrOPOSITION 7.9. Let N :=NU{L} be the represented space where L is
represented by 0 and every n € N is represented by any p # 0° such that n + 1
is the first non-zero element of p.

For every k > 2, Fing (H;L ACCkH) is equivalent to the problem F defined as
follows: given A € dom(IT)— ACCy) and n € N with the assumption that:

en=_L1if|Al=k:
eifneNthenn € A,

find m € TI9— ACC.(A).

ProOF. We shall use the characterization of TI)- ACC, introduced in
Proposition 7.2, i.e., we can assume that a name for 4 € dom(l'[gf ACCy) is a
sequence p € k" such that if lim, p(n) exists then it is the unique i < k not in 4.

Let us first show that F <y IT>— ACCi,;. Let (p.¢) be a name for (4.n) €
dom(F). We define a sequence r € (k + 1)N as follows: as long as ¢(i) = 0, let
r(i) := k. 1f q(i) # 0 for some i, then, for every j > i, r(j) := p(j).

Clearly, r is a (name for a) valid input for 112— ACC, . Observe that if ¢ is not
constantly 0 then |A4| < k, hence the sequence p has a limit / < k. In particular,
r always has a limit. We claim that, given m # lim;_,., 7(i). we can uniformly
compute a valid solution for F(A4,n). Indeed, if m < k. then m € A. This follows
from the fact that if ¢ is constantly 0 then | 4| = k. Conversely, if ¢ is not constantly
0 then m # lim; p(i), and therefore m € A. On the other hand, if m = k then ¢ is
not constantly 0, so, by hypothesis, if ¢(i) is the first non-zero element of ¢ then
q(i) — 1 € A. This shows that F <w I9— ACCy ;.

Assume now that f :C NN = k is such that /' <w II3— ACCy, via @, ¥. For
the sake of readability, we can assume that ¥ has codomain N. To reduce
f to F, suppose we are given some x € dom(f). In parallel, we can simulate
the computations W(x,i) for every i < k 4+ 1. We can uniformly compute two
sequences p.q € k" as follows: we wait until we either find i < j < k + 1 such that
Y(x,i) = ¥(x,j) = norweseethat |{¥(x,i) : i < k + 1}| = k (by the pigeonhole
principle, at least one of two cases must happen). If we first find i < j < k + 1 such
that W(x,i) = ¥(x, j) = n, we define p, g so that 0°(n + 1) C ¢ for some s and p
is any convergent sequence with lim p # n. On the other hand, if we first see that
{W(x,i) : i <k + 1} = k. we proceed as follows: we keep searching for i < j as
above. If they are never found, we let ¢ := 0® and p be any non-convergent sequence.
Conversely, if they are found, we define g so that 0°(n + 1) C ¢ for some s. Moreover,
we let p be a convergent sequence with lim p # n such that if lim, ¥(x. ®(x)(¢))
exists and is different from » then lim p = lim, ¥(x, ®(x)(¢)). This can be done by
computing ¥(x, ®(x)(¢)) and replacing each occurrence of n with some m # n.

Observe that (p, ¢) is a valid name for an input (4, n,) of F. Indeed. ¢ is constantly
0 iff p is not convergent, i.e.. iff p is a name for the input 4 of I)— ACC; with
|A| = k. Moreover, if ¢ is not constantly 0 then it is a name for some n € N
with »n # lim p. Given m € F(A4,n,), we can uniformly compute a solution for
f(x) as follows: we wait until we see that ¢ is the name for some n # L or
that [{W(x,i) : i <k + 1}| = k. If the former is observed first, then n € f(x),
as there are i < j with ¥(x,i) = ¥(x, j) = n, and either i or j is a valid solution
for TI)— ACCy (®(x)). Conversely, if we first see that [{¥(x.i) : i <k + 1}| =k,

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 23

then any m € F(A,n,) is a valid solution for f(x). Indeed, if |f(x)| < k then
the (unique) wrong solution is lim ¥ (x, ®(x)) (as Iy~ ACCj; (®(x)) has at most
one wrong solution). By construction, m # lim p = lim ¥ (x, ®(x)). and therefore
m € f(x). Observe that, in this case, ¢ is not the constantly 0 sequence (if ¢ is
constantly 0 then every i < k + 1 is valid solution for f(x)). =

COROLLARY 7.10. Finy (l'lg— ACC3) =w C,.

Proor. As ACC; =w C;, one direction follows from Proposition 7.8. That
Fin, (Hg— ACC3> <w C, follows from Proposition 7.9 by observing C, can solve

the task “Given n € N, compute some b € {0, 1} such that if n € {0,1}, then
b=n". 4

§8. Finding antichains in trees. We turn our attention to trees as a special case of
partial orders, where we identify a tree with its prefix relation. We observe that a tree
is a wqo iff it has finite width; in particular, being wqo is merely a 22-property for
trees rather than 1'[} as for general quasi-orders. While trees can only avoid being wqo
by having an infinite antichain, being a bad sequence is a weaker notion than being
an antichain. However, a given infinite bad sequence in a tree can be computably
thinned out to yield an infinite antichain. We let BS|t. denote the restriction of BS
to subtrees of N<N, and think of it as the problem that receives as input a tree of
infinite width and returns an infinite antichain in it. How BS|ry and its first-order
part relate to other principles, in particular those discussed in the previous section,
is depicted in Figure 2.

Even though the instances of BS|t.. are arbitrary subtrees of N<N of infinite
width, we show below that its strength comes already from the pruned subtrees of
2<N (a tree is pruned if it has no leaves). Compare this with the problem Cyn of
finding an infinite path through a given ill-founded subtree of N<N: Its restriction to
ill-founded pruned trees is of course computable, and its restriction C,y to subtrees
of 2<N is known to be much weaker (see [3. Figure 11.2]). This is unsurprising given
the difference in the complexity between “7 is wqo” and “7T is well-founded”.

PROPOSITION 8.1. BS|ywee is Weihrauch equivalent to its restriction to pruned
subtrees of 2<N.

ProOF. Given a tree T C N<V of infinite width, we shall uniformly compute
a pruned tree S C 2<N, also of infinite width, together with a surjective labelling
function £: S — T, such that if £(v) C £(w) then v C w. The image of any infinite
S-antichain under £ would then be an infinite 7-antichain.

Our construction proceeds in phases, where at the end of phase n, we commit
to S N 2<" and the corresponding restriction of £. Throughout the construction we
will respect the constraint that £(v) C £(w) implies v C w. At the end of phase #,
all leaves in .S will have height at least n, so S will be ultimately be a pruned tree.

During phase 0, we simply add the root to S and label it with the root of 7. Fix
an ordering of the vertices of T (with order-type @) which agrees with C. In phase
n, start by considering the first vertex u € T that is not yet enumerated in ran(¢).
Our constraint on £ implies that the set {v' € S : £(v’) C u} forms a path in S, say
with final vertex v’. (Observe that £(v’) is the parent of u.) Let v be the first vertex of

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

24 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

M)- ACC, =w KL

k

M)~ ACC, =w RT} ACGC, =w Cn

\

- ACC,
ACC =w G 7
Y- ACC, ACC, - ACCy.,,
e
" e sl
ACC, IT,— ACCy 4 ACCj 4 BS'Tree

by
!

'BS|Tree /
R

- ACCy ACCy

- ACC
ACCy.. 2

\

ACCr

FIGURE 2. The figure shows all reductions between the depicted principles up to
transitivity, with the potential exception that we have not ruled out being BS|ree <w

—

Hg— ACCy. The diagram can be thought of as a cube whose vertical edges have
decreasing chains parameterized by k > 2 on them, and the bottom corners are
labelled by degrees which are below the ones on the edges for all k.

height at least n — 1 such that v’ C v and either v"0 ¢ S or v 1 ¢ S. Such v exists
because all leaves in S have height at least n — 1. We then add a child to v (i.e., put
v 0in Sifv70 ¢ S, else put v 1 in §) and label the child with w.

If we now have both v"0 and v 1 in S, we conclude phase n by adding a child to
each vertex in S which was in S at the beginning of phase n and is currently a leaf
in S. Each such child is labelled the same way as its parent in S. This ensures every
leaf in S has height at least n. Notice that this action maintains our constraint on £.

On the other hand, if only one of v 0 and v 1 liein S, we consider the nextu € T
that is not in ran(¢) and repeat the above steps. To see why this process terminates,
observe that if it did not, then there must be some u € T first considered in phase

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 25

n which has multiple children. Suppose we acted for u by adding v"0 to S and
defining £(v"0) = u. Let u’ denote the first child of u to be considered in phase .
Then v~ 0 would be the first vertex of height at least # — 1 which extends every v’
with £(v") C u', because the highest vertex v’ with £(v") T u’ is precisely v 0, which
has height at least n. Therefore we would add v"00 to S and define £(v"00) = u'.
Similarly, if " denotes the second child of u to be considered in phase 7, then we
would add v"01 to S and define £(v"01) = u”. We would then conclude phase 7,
contrary to assumption.

This completes the description of our construction. We have ensured that S
contains infinitely many vertices v with v"0,v71 € S, so S has infinite width.
The other requirements are directly enforced by the construction. -

Next, we shall characterize the finitary parts and deterministic part of BS|yree. If
(T.C) is a tree and v is a vertex in 7, define [v]r = {w € T : v C w}. We omit the
subscript 7' if the tree in question is clear from context.

—

PROPOSITION 8.2. BS|ree <w Hgf ACCy, for every k > 2.

PrOOF. Given a tree T C N<V with infinite width, we consider all antichains
(vg, v1. ..., vr1) of size k in it. For each such antichain, at most one vertex v; must
be avoided when building an infinite antichain, which happens if 7"\ [v;] has finite
width. We can use TT1)— ACC; to select a suitable choice amongst the v;. We can then
greedily build an infinite antichain from the selected vertices. -

COROLLARY 8.3. Fing (BS|mee) =w id for every k > 1. Therefore, Det(BS|tree) =w
id.

Proor. For the first part of the statement, fix £ > 1. By Proposition 8.2 and
Corollary 7.6,

Finy (BS|tee) <w Finy (ng ACCHZ) =w id.

Similarly, the second part of the statement then follows from Det (Hg— ACCk+2) =w
id (Corollary 7.7). 4

We now turn our attention to the first-order part of BS|w. The following first-
order problem clearly reduces to BS|ryee.

DEermNITION 8.4. Let ExtVer denote the problem taking a tree 7 of infinite width,
and returning a vertex v € T such that T \ [v] still has infinite width, i.e., a vertex
that is extendible to an infinite antichain.

The construction employed to prove Proposition 8.1 also shows that for ExtVer it
is immaterial whether we consider countably-branching or binary trees, and whether
we assume the trees to be pruned or not.

PROPOSITION 8.5. ExtVer =w 'BS|tyee.

PrROOF. We only need to show that 'BS|tee <w ExtVer. An instance of ! BS|tye is
atree T of infinite width together with a notion of “sufficiently large finite antichain”
(more formally, the latter is a computable functional which, when given T and an

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

26 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

infinite T-antichain, must halt on some initial segment thereof). A solution is a
sufficiently large finite antichain which is extendible to an infinite one. We shall
compute a tree T’ C N<N of infinite width such that each vertex v € T (other than
the root) is labelled with a sufficiently large finite antichain 4, in T, and if v extends
to an infinite 7’-antichain, then A4, extends to an infinite 7-antichain. For clarity,
we shall use Greek letters (o, 7) to denote the vertices of T, and Roman letters (v, w)
to denote the vertices of 7'.

The tree 7' is defined recursively as follows. Start by putting the root in 7”. The
children of the root will each be labelled with a sufficiently large finite antichain A;
in T. Specifically, the i-th child of the root is defined recursively as follows: First
search for 4pand A in T, disjoint and each sufficiently large, such that 4o U 4 forms
an antichain. Since T has infinite width, this search is successful and we label the first
child with 4, and the second child with 4. Then search for 4, sufficiently large and
disjoint from 4y U A; such that 49 U 4, U 4, forms an antichain. If found, we label
the third child with A4,. Proceed to search for 43, and so on. Note that (4;); may
not be infinite. The reason why we start by searching for two antichains 4y and 4,
and then continue by searching one extra antichain at a time (first 4,, then 43, and
so on) is to guarantee that if a node has a child, then it has at least two incomparable
children. More generally, if v € T’ is not the root, then we define the children of v
by searching as above among the sufficiently large antichains B such that B >7 4,
(i.e., thereis some ¢ € A, such that ¢ C 7 forall = € B). Note that for certain v, this
search may turn up empty. This completes the construction of T’, excepting a final
modification to ensure that 7" is computable (uniformly in T'): Each child of a vertex
in T’ shall encode the stage at which its corresponding T-antichain was found.

We claim that 7" has infinite width. If any vertex has infinitely many children, we
are done. Otherwise, we shall prove by induction that at each level of T’ (beyond
the root), there is some vertex v and some ¢ € A, such that [¢]7 has infinite width.
This would imply that v has at least two children, allowing us to conclude that
T’ has infinite width. The inductive step proceeds as follows: Suppose v € T’ and
g € A, are such that [¢]r has infinite width. Say the children of v are labelled by
the antichains Ay, A4;..... A;. Then Ay U --- U A, 1s not extendible to an infinite
antichain in J,c 4 [plr (else v would have additional children), but the latter
contains [o]r and thus has infinite width. So there is some i and some p € A4; such
that [p]r has infinite width. The base case proceeds similarly; simply consider the
children of the root in 7’ and use the assumption that 7" has infinite width.

Next, we claim that if vy, v; € T’ are incomparable, then any oy € 4,, and
any o € A,, are T-incomparable. This would imply 4,, and A4,, are disjoint and
Ay U A, is a T-antichain. To prove the claim, let w € T’ denote the longest
common ancestor of vy and v;. Let wy C vy and w; C vy be children of w. By
construction, 4,, and 4,, are disjoint and 4,, U 4,, is a T-antichain. Also by
construction, for i = 0, 1, there is some 7; € A,, such that 7; E o;. Since 7y and 74
are T-incomparable, so are gy and o;.

The above claim implies that if v € T' is extendible to an infinite 7'-antichain
(v;);. then A4, is extendible to an infinite 7-antichain, namely | J; 4,,. Since every 4,
is sufficiently large. this yields a Weihrauch reduction from !BS|r to ExtVer. -

Similar to Proposition 8.2, we shall obtain an upper bound for 'BS|ree. Let
|_|k22 Hgf ACC; denote the following problem: Given a sequence (py)recn Where

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 27

each py is an IT)— ACCy-instance, find (k.i) € N? such that i € IT)— ACCi(py).
Observe that [+, M)- ACC; <w ACC, for every £. The operation (f,)nen —
[Nsen fn is a generalization of the binary meet to countably many problems.
However, it is known that the Weihrauch degrees are not a Ny-complete meet
semilattice ([15]. see also [21]).

PROPOSITION 8.6. ExtVer <w [, - ACC,.

Proor. First, we prove the reduction. Given a tree 7 of infinite width, search
for antichains of each finite size. Within each antichain, at most one vertex is not
extendible to an infinite antichain in 7. Since extendibility is a Hg property (relative
to T'), for each k we can build an input for Hg— ACC; to identify one vertex in the
antichain of size k which is extendible. Then a solution for any of the IT)— ACCy-
instances yields an ExtVer-solution to 7.

To show that the reduction is strict, assume towards a contradiction that
[Mi>> l'[g— ACC; <w ExtVer. Apply the reduction to the “neutral” input to

[Mi>» Hg— ACC. i.e., where every j < k is a solution. If the resulting tree 7" contains
incomparable vertices vy and v; which yield the same output j < k under the
reduction, we may fix a finite prefix which determines this fact, then render j
wrong in the TT19— ACCy-instance by enumerating it. This leads to a contradiction
because either vy or v; must be a valid ExtVer-solution. On the other hand, if
incomparable vertices in 7" always yield different outputs under the reduction, by
the pigeonhole principle, there must be incomparable vertices vy and v; which yield
outputs for different k. Say v; determines the output j; < k;. Once again this fact
is determined by a finite prefix of the neutral input. We then render j; wrong in the
Hg— ACCy, -instance for i = 0, 1 after said finite prefix. Since either vy or v; must be
an ExtVer-solution, we reach a contradiction. -

It turns out that ExtVer is sandwiched between IT9— ACCy and [] k2 - ACC,.

PROPOSITION 8.7. TTh— ACCy <w ExtVer.

ProOF. Given some p € NV, we shall build some 7' C 2<N of infinite width such
that from any vertex in 7' which is extendible to an infinite antichain, we can compute
some n such that p doesnotend in n® (i.e., if lim; p; exists, it is not n). We can assume
without loss of generality that p; < i. The tree is constructed level by level. After
each level is constructed, each newly added vertex is labelled by the least natural
number which has yet to be used as a label, in order from left to right. When building
level s, first consider the leftmost leaf which extends the vertex with label p,. Such
a vertex must exist because 7' already has more than s > p, vertices. Add both
children of said leaf to T. Then, for every other leaf in T (excluding the children just
added). add its left child to 7.

As we have a bifurcation on every level and no dead-ends, T has infinite width.
Moreover, if p ends in n®, then the subtree of 7 not extending the vertex with label
n has finite width, i.e., the vertex with label # is not extendible. -

The following proposition is stated for 112— ACCy but can be easily generalized to
any pointclass I'.

ProPOSITION 8.8. ExtVer £ Hg— ACCy.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

28 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

PrOOF. Since [Ty~ ACCy £w lim (Proposition 7.3), it suffices (by Proposition 8.7)
to prove that if ExtVer <y Hgf ACCy, then ExtVer <w lim. We will in fact reduce
ExtVer to LPO.

Observe that the forward functional of a putative reduction ExtVer <y Hgf ACCy
constitutes a computable procedure for producing a sequence of vertices (v;);en in
a given tree of infinite width such that there is at most one vertex v; which is not
extendible (to an infinite antichain). To reduce ExtVer to LPO, ask LPO if there are
J.k with v; T . If so, then v; must be extendible because (1) at most one v; is not
extendible and (2) if v; is extendible, so is vx. On the other hand, if (v;);en is already
an infinite antichain, then vy is extendible. =

To summarize:

COROLLARY 8.9. TI9— ACCy <w ExtVer =y 'BS|1ee <w [] Ih— ACCy.
k>2

COROLLARY 8.10. ACCy x ACCy £w BS|tee. In particular, 'BS|tree <w
1BSlTree X 1BS‘Tree: and BS|Tree <w BS|Tree X BS|Tree-

Proor. By Proposition 8.6, ACCy x ACCy <w BS|1e implies ACCy x
ACCy <w l'[g— ACGC; =w RT;, which is easily seen to be false. The rest of the
statement follows easily from the fact that BS|tee X BS|tree <w BS|tree implies
'BS|Tree X 'BS|Tree <w 'BS|Tree (see. e.g.. [28, Proposition 4.1]), which, in turn,
implies ACCy x ACCx <w BS|rice- -

We end this section by drawing attention to the following open question.
OPEN QUESTION 8.11. Does BS|tree <w DS?

All lower bounds for BS|re. known to us are also below DS; this in particular
applies to the finitary, deterministic, and first-order parts of BS|gwee. On the other

hand, the best upper bound for BS |t we have is Hg— ACC;, (Proposition 8.2), which
in turn does not reduce to DS (or even BS) by Corollary 4.4. One natural attempt
to reduce BS| e to DS is blocked by the following observation.

PrOPOSITION 8.12. There is no computable procedure that receives as input any tree
T C 2<N and returns a linear extension (T, <) of the prefix relation on T such that
whenever T has infinite width, then < is ill-founded.

Proor. For the sake of a contradiction, assume there exists such a procedure.
We shall define a pruned binary tree 7" of infinite width on which the procedure
produces a well-ordering. At each stage, we define one new level of T as follows.
Start by putting the root, 0, and 1 into 7. Wait for the procedure to decide whether
0 < 1 or 1 < 0. While waiting, we extend 0 and 1 by 0s. Eventually, say at stage s,
the procedure decides wy € {0, 1} is the <-max of 0 and 1. We then add a split above
wo. i.€., put wy0%0 and wy"0%1 into 7. In general, if we added a split into T at
stage s, let A, denote the T-antichain of vertices which are currently 7-maximal.
We wait for the procedure to decide max~ 4,. While waiting, we extend each
T-maximal element by 0s. Once w, has been decided as max_ 4,,, we add a split
above w, ~0F where k is largest such that w, ~0% € T. We end the stage by extending
all other 7-maximal elements by 0.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 29

The construction adds infinitely many splits, so 7" has infinite width. To show that
(T, <) isawell-ordering, first observe that (w,), forms an increasing cofinal sequence
in (T, <). It therefore suffices to show that each w, lies in the <-well-founded part W.
Suppose towards a contradiction that there is some infinite <-descending sequence
S which begins with w,,. There must be some a € A, different from w,, such that
infinitely many elements of S are T-above a. This is because if x < b for every
b € A,, then x is a prefix of some of them. Then the subtree of 7' above ¢ must
contain splits; furthermore, some s € S lies T-above such a split (otherwise the
subsequence of S which is 7-above a forms a T-chain, which must have <-order
type w). However, by construction of T such a split occurs above some w,, where
m > n,so we have s > w,, > w,. This contradicts the fact that S begins with w,,. -

§9. The quotient relative to the parallel product. Theorem 4.3 implies that
max<y {h : h x ACCy <w BS}

exists and is equal to (the Weihrauch degree of) lim. The existence of such a
maximum (with different problems in place of A/CC\N and BS) was discussed in
[12, Theorem 3.7], which prompted them to ask about the extent to which the
“parallel quotient” operator

f/g =wmax<y{h : hxg<w/[}

is defined. While [12, Remark 3.11] says “We have no reason to think this operator
is total [...]”, we address their question by showing that the operator in question is
in fact total.

DrrmNITION 9.1, Given f, g :C NN = NN with g different from 0, we define their
parallel quotient f/g :C N x N x NN = NV as follows:

dom(f/g) :={(e.i. p) : (Vg € dom(g))[®.(p.q) € dom(/) and
(Vr e f(D(p.q)(D@i(p.q.r) € g(q)]}

flgle.i.p):={(q.r) : g €dom(g) A r e f(®c(p.q))}.
PROPOSITION 9.2, f/g =w max<,{h : h x g <w f}.

ProOF. Given a g-instance g and an f'/g-instance (e, i. p), consider the f-instance
®.(p.q).Givenanr € f(®,(p.q)), wemay compute (usinggande, i, p) ;(p.q.r).
which is a g-solution of ¢, and (g, r). which is an f'/g-solution of (e, i, p). This proves
flgxg<w/f.

Suppose % is a problem such that # x g <w f via ®,, ¥. We want to show that
h <w f/g. Let p be an h-instance. Observe that, in order to compute a solution for
h(p), we only need a g-input ¢ and any solution r € f(®.(p.q)).

Let i be an index for the functional which takes in input (p, ¢, r) and produces
the projection of W(p. ¢, r) to the second coordinate. Given the /-instance p, we
uniformly compute the f/g-instance (e, i, p). For every {(q.r) € f/g(e.i, p), the
projection of W(p, ¢, r) to the first coordinate is an /-solution to p. -

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

30 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

It follows that f/g is well-defined on all (non-zero) Weihrauch degrees, so we
may extend Definition 9.1 to all (non-zero) problems. The following proposition is
a straightforward consequence of the definitions.

ProposITION 9.3.

(1) If g is pointed, then /g <w f.
(2) If fo <w f1and go <w g1. then fo/g1 <w f1/go.

The parallel quotient is useful to describe to what extent a problem f is stable
under parallel product. If f is pointed and closed under product, then [/ f =w f. At
the same time, if f is not closed under product, the quotient f/ f* gives a quantitative
estimate of “the lack of closure of / under parallel product”.

The parallel quotient is an example of a residual operator. In general, for a fixed
operator -, it is interesting to investigate the existence of the following degrees:
max{h : f-h<wg} max{h : h-f <wg}, min{h : g <w f -h}, and min{/ :
g <w h - f}. A residual operator for - is one that witnesses the existence of one (or
more) of these maxima/minima. The existence of residual operators for the join
LI and the meet M in the Weihrauch degrees has been studied in [15]. Besides, the
existence of min{% : g <w f * i} hasbeen proven in [4] (resulting in the implication
operator —). The parallel quotient is a residual operator for x. A more thorough
study of the existence of residual operators for other choices of - is currently under
investigation. Further properties of the parallel quotient will be discussed in an
upcoming paper.

As already observed, Theorem 4.3 can be rewritten as

DS/ACCy =w BS/ACCy =y lim.

We now discuss the parallel quotient of DS and BS over other well-known
problems.

PrOPOSITION9.4. DS =w Cy x DS =w DS % Cy andBS =w Cy x BS =w BS % Cy.

Proor. The reductions DS <w Cy x DS <w DS % Cy are trivial. To show that
DS * Cy <w DS, let (w, p) € dom(DS * Cy). Without loss of generality, we may
view the (possibly finite) string produced by ®,, (1) as a linear order L,,. Clearly L,
need not be ill-founded if n ¢ Cn(p).

We shall uniformly compute a linear order L as follows: the elements of L will be
of the form (n. x, s), where

(n,x,s) <y (m,y.s") = n<mor(n=mand x <;, y).

The third component plays no role in the order and is only used to guarantee that
the resulting linear order is computable (and not just c.e.). The construction below
will guarantee that no two triples share the same third component.

Starting from # = 0, as long as n is not enumerated outside of Cy(p), we build an
isomorphic copy of L, at the top of L. More precisely we add (n, x, s) to L, where s
is the current step of the construction and x is the N-least element of L, which has
not been added.

If we ever see n ¢ Cy(p), we continue the above with n + 1 instead of n.

This completes the construction of L. Observe thatif # = min Cy(p) then, modulo
a finite initial segment, L is isomorphic to L,. In particular, L is ill-founded and,

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 31

given any infinite descending sequence through L, we can uniformly compute n» and
a descending sequence through L,,.
The very same argument works for BS in place of DS: just replace “linear order”,

“ill-founded”, and “descending sequence” with “quasi-order”, “a non-well quasi
order”, and “bad sequence”, respectively. -

LEMMA 9.5. Let g be computably true (i.e., every g-instance has a g-computable
solution). Suppose g <w f|x. where f|x is such that, for every x € X and every

vef(x).yZrx. Then f/g £w g.

PrOOF. Let (e.i, p) € dom(f/g) be such that p is computable and the maps
g ®.(p.q) and (q,r) — ®;(p,q.r) witness the reduction g <w f|x. Observe
that, by definition of f/g and (e, i, p), every solution of f/g(e,i, p) computes a
solution for f(®,(p. q)) for some input ¢ € dom(g). In particular, since ®,(p.q) €
X, f/g(e, i, p) does not have any computable solution.

If f/g <w g as witnessed by @, ¥, then for every ¢ € g®(e. i, p). ¥((e.i, p).1) €
f/g(e.i. p). Thisis a contradiction as g is computably true and therefore g®(e. i, p)
always contains a computable point.

PROPOSITION ~ 9.6. For f € {DS.BS}. II}- Bound <w f/IT}— Bound <w
J/RTS <w f.

ProOF. The reduction ITj— Bound <y DS/IT}— Bound follows from the fact
that TI!- Bound is closed under product (see, e.g., [28, Theorem 7.16])
and II}— Bound <w DS. To show that this reduction is strict, we shall
use Lemma 9.5. Let X be the set of ill-founded linear orders L with no
L-computable descending sequence. One can modify the reduction [18, Proposition
4.8] from Tj— Bound to DS to show ITj— Bound <w DS|y: Given a IT}— Bound-
instance (thought of as a sequence of trees (7},),). define a (T),),-computable
ill-founded tree S with no (7,),-computable path (this can be done in a
manner which is uniformly computable from (7},),). Then define a linear order
L =,{n} x KB(T, x S). Note that if 7, is well-founded. then so is T}, x S.
while if T, is ill-founded, then T, x S is ill-founded with no (7T},),-computable
path. So L is ill-founded with no L-computable descending sequence. The backward
functional works as in [18, Proposition 4.8]. It follows from Lemma 9.5 that
DS/I}— Bound #w IT;— Bound.

The reduction DS/IT;— Bound <w DS/RT} follows by the antimonotonicity of
the quotient operator. The reduction DS/RT) <w DS isimmediate as RT} is pointed.
The fact that it is strict follows from the fact that if DS <w DS/RT} then, by defini-
tion, RT; x DS <w DS. Thisisimpossible as, by Theorem 4.3, RT; X m <w DS.

Replacing DS with BS in the above argument shows that the statement holds for
BS as well. -

Notice that. in the proof of the previous result, we used the fact that both
DS/I}— Bound and BS/I}— Bound (and hence DS/RT; and BS/RT}) have
computable instances with no computable solutions. In particular, this implies that
none of them is a first-order problem. The following result provides a lower bound
for DS/RT} and BS/RT).

Let us denote with DS™E (resp., BSTE) the problem “given an ill-founded linear
order (resp., non-well quasi-order) X, compute a sequence that, cofinitely, is an

€

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

32 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

X-descending sequence (resp., X-bad sequence)”. We mention that DSFE and BS™E
can be characterized as Cy — DS and Cy — BS, respectively.

PROPOSITION 9.7. RT; x DSFE <w DS and RT; x BSFE < BS.

PROOF. We only prove that RT} x DSTE <y DS: the proof for BS can be obtained
analogously by adapting the following argument. Let (c. L) be an instance of
RTé x DSTE, where ¢: N — 2 is a 2-coloring and L = (x,),en is an ill-founded
linear order. We build a linear order M in stages. Intuitively, we want to build a copy
of L until we see that the current color changes. When this happens, we start building
a fresh copy of L at the top of the current linear order. However, to guarantee that
the resulting order will be ill-founded, we also build another copy of L at the bottom,
which gets expanded every time two color changes are observed.

Formally, we construct the order M as follows: elements are of the form (n, x, b, s)
and are ordered as

(n.x.b,s) <y (m,y,b'.s") <= n<mor(n=mand x <g y).

The third and fourth components play no role in the order M. The construction
below will guarantee that this is a linear order (rather than a quasi-order).

At stage 0, we add (1, xg.c(0).0) to M. We also define py :=— 1, g¢ := 0, and
ho := 1. Intuitively, p, stores the last position in the bottom copy of L and ¢, stores
the last position in the top copy of L.

At stage s + 1, we distinguish the following cases:

elf c(s+1) =c(s) =b. we add (hy.xg41.b.5 + 1) to M. We define ¢, :=
qs + 1, psy1 = ps, hyy1 = hs and go to the next stage.

elfc(s+1)=1and c(s) =0, we add (ks +1,x9.1,5 +1) to M. We define
gs+1:=0, psy1 = ps, hsyy1 = hg + 1 and go to the next stage.

olfc(s+1)=0and c(s) =1, we add (hs +1,x0.0.5 + 1) to M. We also add
(0.xp,41.2.5 + 1) to M. We define g,y :=0. pyi1:= ps + 1. hypy = hy + 1
and go to the next stage.

This concludes the construction.

Observe that if the coloring ¢ is eventually constant and lim, ¢(n) = b, then
M = N + L for some N € N (in particular it is ill-founded) and every descending
sequence through M is of the form ((n, y;,b,s;))ien for some n, where (y;);en is
an L-descending sequence. In particular, we can compute a solution for (RT% X
DSFE)(c. L) via projections.

On the other hand, if ¢ is not eventually constant, then M = L + w. Every
descending sequence through M must eventually list elements of the initial segment
of M isomorphic to L. In particular, if ((n;, y;.b;.s;))ien is an M-descending
sequence then by € RT4(¢) (trivially) and (y;);en € DSTE(L). 4

Let Sort, : 2 — 2N be defined by Sorty(p) = 071¢ if there are exactly i-many n
such that p(n) = 0, otherwise Sort,(p) = 0“. While Sort, and RT} are quite weak
on their own, their parallel product does not reduce to BS.

ProPOSITION 9.8. Sort, xRT; Lw BS.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 33

PrOOF. Observe first of all that BS is a cylinder, i.e.. id x BS < w BS (this can
be easily proved by adapting the proof of [18, Proposition 4.6]). This means that it
suffices to prove Sort, x RT; Zsw BS (see [3. Proposition 11.3.5]).

Assume towards a contradiction that the functionals @, Wy, Y| witness the strong
reduction Sort, x RT% <sw BS (where ¥ and W; produce, respectively, the Sort, and
the RT} answers). We build an instance (p. ¢) of Sort, x RT} in stages as follows. At
each stage s, we have a finite string py, a finite coloring y, and a set D; of finite bad
sequences in the quasi-order <, produced by ®(p. y,) in s steps. Intuitively, the set
D, corresponds to the set of finite bad sequences that have already been forced to
be non-extendible. Recall the quasi-order < (Definition 4.1) on bad sequences.

We start with pg := y9 := € and Dy := 0. Atstage s + 1 = 2n + 1, we consider the
set M, of all the J-maximal bad sequences f§ in <, that are not in Dy and such
that:

o Wi (B)0) =k <2

o Py(B) did not commit to a finite number of zeroes for the Sort; solution (ie.
the string produced by Wo(f) in s + 1 steps is not of the form 0' " 1¢ for any i
oro).

For each such f, we search for a sufficiently large m € N such that there exists a
finite bad sequence o in ®(p, 17, y," (1 — k)™) such that < « and there is i such
that 0'1 C Wo(«) within s + 1 + m steps. In other words, we extend our finite input
of Sort, and finite coloring y, so as to force the forward functional to produce some
finite bad sequence o > f such that W (a) commits to a finite number of zeroes for
the Sort; solution. Observe that this needs to happen because § cannot be extendible
in ®(p, 19,9, (1 — k)®) (it is producing the wrong RT} answer) and hence, by
Lemma 4.2, there is a finite bad sequence a in ®(p, "1, y," (1 — k)®) as desired.
We diagonalize against o by extending p, 1" with (i + 1)-many zeroes. We then
add « and every bad sequence <-below « to D;. This concludes the action needed
for 5. Once all the bad sequences in M, have received attention, we go to the next
stage.

At stage s + 1 = 2n + 2, we consider the set M, of all the <-maximal bad
sequences f in <, that are not in Dy and such that, for some i, 0i1 C Yo(p). Let

Jj = max{i : (3,8 € MS+1)(0il C ‘Po(ﬂ))} + 1.

We can uniformly compute such j because M, is finite. We define p,,| := p,0/1
and y,.1 := 7,0. We also add the <-downward closure of M, into D, and go to
the next stage.

This concludes the construction. It is apparent that the strings p, and 7y, are
extended infinitely often. and therefore the pair (p.c¢) with p :={J, ps and ¢ :=
\J, 7s is a valid instance for Sort, x RT;. Let < be the non-well quasi-order defined
by ®(p.c) and let B € BS(®(p. c)). By continuity, let n be such that ¥;(B[n]) |
and let s + 1 be the first stage by which every element of B[n] enters <. We show
that there is a finite bad sequence « > B[n] which produces a wrong answer for
Sort, xRTé(p, ¢). This suffices to reach a contradiction, as, by Lemma 4.2, B[n]
being extendible implies that « is extendible.

Assume first that Wo(B[n])s+1 commits to finitely many zeroes. Let ¢ > s + 1
be even. Let o > B[n] be <-maximal in =; such that, for some i, 0'1 T ¥o(a);.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

34 JUN LE GOH. ARNO PAULY, AND MANLIO VALENTI

By construction, at stage ¢ we are adding more than i-many zeroes in p, therefore
Y, (a) is not the prefix of Sort,(p).

If ¥o(B[n])s,1 does not commit to finitely many zeroes, let ¥ > s + 1 be odd. Let
B > B[n] be <-maximal in =<, such that f € M,. At stage r, we forced the forward
functional @ to produce some « > f such that, for some i, 01 C Wo(«). and then
extended p, by adding more than i-many zeroes. In other words, ¥o(a) is not a
prefix of Sort,(p), and this concludes the proof. -

Observe that Sort, is one of the weakest “natural” problems that require infinitely
many mind-changes to be solved. The previous result shows that, roughly speaking,
while the quotient of DS (resp., BS) over RT; is capable of solving every problem that
can be solved with finitely-many mind changes (essentially because RT% X RTIIN =w
RTII\I <w DS, see [18, Proposition 4.24]). allowing infinitely-many mind changes
constitutes a critical obstacle. This leads to the following open problem.

OPEN QUESTION 9.9. Characterize DS/RT) and BS/RTS.

In an attempt to better understand the stability of DS and BS under parallel
products, we also highlight the following open question.

OPEN QUESTION 9.10. What are the degrees of DS/DS and BS/BS?

Observe that, as a consequence of Proposition 9.4 and Proposition 9.8, Cy <w
DS/DS < lim. Itis therefore natural to ask whether DS/DS <y Cy. A possible way
to separate DS/DS and Cy would be showing that DS is equivalent to its restriction
to inputs L with no L-computable solution. This can be rephrased as asking whether
NON x DS <w DS, where NON(p) := {¢g € N¥ : ¢ £ p}. The same observations
can be made by substituting DS with BS.

Acknowledgements. We are grateful to Takayuki Kihara for pointing out the
mistake in our previous article. We also thank Cécilia Pradic for comments which
greatly improved the presentation of some results. We thank the anonymous
reviewers for their careful reading of the article. This article extends the conference

paper [19].

REFERENCES

[1] V. BRATTKA, On the complexity of learning programs., Unity of Logic and Computation (G. D.
Vedova, B. Dundua, S. Lempp, and F. Manea, editors), Lecture Notes in Computer Science, 13967,
Springer, Cham, 2023, pp. 166-177.

[2] V. BRATTKA, G. GHERARDL and A. MARCONE, The Bolzano-Weierstrass theorem is the jump of
Weak Kénig's lemma. Annals of Pure and Applied Logic. vol. 163 (2012), no. 6, pp. 623-655.

[3] V. BRATTKA, G. GHERARDL and A. PauLy, Weihrauch complexity in computable analysis, Handbook
of Computability and Complexity in Analysis (V. Brattka and P. Hertling, editors), Springer International
Publishing, Springer, Cham, 2021, pp. 367-417.

[4] V. BRaTTKA and A. PAULY, On the algebraic structure of Weihrauch degrees. Logical Methods in
Computer Science. vol. 14 (2018). no. 4, pp. 1-36.

[5] V. BRaTTKA and T. RAKOTONIAINA, On the uniform computational content of Ramsey’s theorem.
The Journal of Symbolic Logic. vol. 82 (2017). no. 4, pp. 1278-1316.

[6] W. CALVERT, J. N. Y. FRANKLIN, and D. TURETSKY, Structural highness notions. The Journal of
Symbolic Logic. vol. 88 (2023). no. 4, pp. 1692-1724.

[7]1 L. Carrucct, L. MAINARDI, and K. ZDANOWSKI, Reductions of well-ordering principles to
combinatorial theorems, preprint, 2024.

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

THE WEAKNESS OF DS 35

[8] J. CHuBB, J. L. HirsT, and T. H. MCNICHOLL, Reverse mathematics, computability, and partitions
of trees. The Journal of Symbolic Logic. vol. 74 (2009). no. 1, pp. 201-215.

[9] V. CiprIANI, A. MARCONE, and M. VALENTL, The Weihrauch lattice at the level of IT 11 —CA(: The
Cantor-Bendixson theorem. The Journal of Symbolic Logic. vol. 90 (2025), no. 2, pp. 752-790.

[10] V. CrpriaNt and A. Paury, Embeddability of graphs and Weihrauch degrees, Journal of
Mathematical Logic, to appear. published online.

[11] R. G. DowNEY, Computability theory and linear orderings, Handbook of Recursive Mathematics,
vol. 2, (Y. L. Ershov. S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, editors), Studies in
Logic and the Foundations of Mathematics. 139, North-Holland, Amsterdam, 1998, pp. 823-976.

[12] D. D. DzHAFAROV, J. L. GoH, D. R. HIRSCHFELDT, L. PATEY, and A. PAuLY, Ramsey’s theorem
and products in the Weihrauch degrees. Computability. vol. 9 (2020). no. 2, pp. 85-110.

[13] D. D. DzHAFAROV, R. SoLoMON, and K. YOKOYAMA, On the first-order parts of problems in the
Weihrauch degrees. Computability. vol. 13 (2024), nos. 3-4, pp. 363-375.

[14] A. FrReUND, F. PAkHOMOV, and G. SOLDA, The logical strength of minimal bad arrays. Proceedings
of the American Mathematical Society. vol. 152 (2024). no. 12, pp. 4993-5005.

[15] K. HicucHI and A. PauLy, The degree structure of Weihrauch reducibility. Logical Methods in
Computer Science. vol. 9 (2013), no. 2. pp. 1-17.

[16] D. R. HirscHFELDT and C. G. JOCKUSCH, JR., On notions of computability-theoretic reduction
between Hzl principles. Journal of Mathematical Logic. vol. 16 (2016), no. 1. Article no. 1650002, 59 pp.

[17] T. KiHARA, A. MARCONE, and A. PAuLy, Searching for an analogue of ATR in the Weihrauch
lattice. The Journal of Symbolic Logic. vol. 85 (2020). no. 3, pp. 1006-1043.

[18]1J. L. GoH, A. Paury, and M. VALENTI, Finding descending sequences through ill-
founded linear orders. The Journal of Symbolic Logic. vol. 86 (2021). no. 2. pp. 817-854.
https://arxiv.org/abs/2010.03840.

[19] . The weakness of finding descending sequences in ill-founded linear orders, Twenty Years
of Theoretical and Practical Synergies (L. L. Patey, E. Pimentel, L. Galeotti, and F. Manea, editors),
Lecture Notes in Computer Science, Springer Nature Switzerland, Cham, 2024, pp. 339-350.

[20] S. Le Roux and A. PAuLy, Finite choice, convex choice and finding roots. Logical Methods in
Computer Science, vol. 11 (2015). no. 4, p. 4:6, 30 pp.

[21] S. LemPP, A. MARCONE, and M. VALENTIL, Chains and antichains in the Weihrauch lattice, preprint,
2024.

[22] A. MARCONE, WQO and BQO Theory in Subsystems of Second Order Arithmetic, Lecture Notes
in Logic, Cambridge University Press, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 303-330.

[23] E. NEUMANN and A. PAuLy. A4 topological view on algebraic computation models. Journal of
Complexity. vol. 44 (2018), pp. 1-22.

[24] A. PauLy, C. PraDIC, and G. SOLDA, On the Weihrauch degree of the additive Ramsey theorem,
Computability. vol. 13 (2024). pp. 459-483.

[25] A. Paury and G. SOLDA, Sequential discontinuity and first-order problems, Twenty Years of
Theoretical and Practical Synergies (L. L. Patey, E. Pimentel, L. Galeotti, and F. Manea, editors),
Springer Nature Switzerland, Cham, 2024, pp. 351-365.

[26] G. E. Sacks, Higher Recursion Theory, first ed.. Perspectives in Mathematical Logic, Springer-
Verlag, Berlin, 1990.

[27] S. G. SIMPSON, Subsystems of Second Order Arithmetic, second ed., Perspectives in Logic,
Cambridge University Press, Cambridge: Association for Symbolic Logic, Poughkeepsie, 2009.

[28] G. SoLDA and M. VALENTI, Algebraic properties of the first-order part of a problem. Annals of
Pure and Applied Logic, vol. 174 (2023). no. 7. Article no. 103270, 41 pp.

[29] L. B. WESTRICK. 4 note on the diamond operator. Computability. vol. 10 (2021), no. 2. pp. 107-110.

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
SINGAPORE

E-mail: gohjunle@nus.edu.sg

DEPARTMENT OF COMPUTER SCIENCE
SWANSEA UNIVERSITY
UNITED KINGDOM
E-mail: Arno.M.Pauly@gmail.com
E-mail: manlio.valenti@swansea.ac.uk

Downloaded from https://www.cambridge.org/core. Swansea University, on 18 Dec 2025 at 15:35:01, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/js1.2025.10160

https://arxiv.org/abs/2010.03840
mailto:gohjunle@nus.edu.sg
mailto:Arno.M.Pauly@gmail.com
mailto:manlio.valenti@swansea.ac.uk
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10160
https://www.cambridge.org/core

	1 Introduction
	2 Background
	3 Separating BS and DS
	4 Separating KL and BS
	5 The finitary part and deterministic part of BS
	6 Gödelization
	7 Π02-ACCk and Π02-ACCN
	8 Finding antichains in trees
	9 The quotient relative to the parallel product

