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Summary

The thesis centres on multi-scale modelling of heterogeneous solids, where the macroscopic behaviour is
intricately linked to the microscopic structure. To manage the substantial memory and computational
power demands of multi-scale modelling, a discrete Representative Volume Element (RVE) boundary
approach based on a finite element model of the microstructure is employed. RVE refers to a small unit
of a material that represents the whole material in terms of structure and properties. A new
homogenisation method is explored in this research, and subsequently, the results obtained from this
approach are rigorously compared to analytical methods using multiple verifying examples. This
comparative analysis provides insights into the accuracy and reliability of the multi-scale modelling
technique in predicting material behaviours across different scales.

Homogenous, isotropic and transversely isotropic 3D solids are investigated. Then, a homogenisation
tool employing the least squares method is used to determine the effective elastic properties of the
composite. A more advanced tool, a Neural Network, utilises data from the least squares method to
predict the elastic properties of the composite without the necessity of re-modelling the RVE and
conducting additional tests.

The trained neural network, which utilises data derived from least squared method plays a crucial role
in predicting elastic properties of composites with very high accuracy. By integrating the neural
network’s predictions with an optimisation algorithm, they can effectively tailor materials to meet
specific criteria such as cost-efficiency and lightweight construction. This integrated approach not only
enhances design precision but also reduces the need for extensive re-modelling of the RVE and
repetitive testing. Ultimately, it fosters the development of innovative materials that strike an optimal
balance between performance and resource utilisation in various engineering applications.



Declarations

1. This work has not previously been accepted in substance for any degree and is not being concur-
rently submitted in candidature for any degree.

(candidate)

2. This thesis is the result of my own investigations, except where otherwise stated. Other sources
are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed ........... - (candidate)

3. I hereby give consent for my thesis, if accepted, to be available for electronic sharing

Signed ...........] - ......... (candidate)

4. The University’s ethical procedures have been followed and, where appropriate, that ethical ap-
proval has been granted.



Table of Contents

1 Introduction 7
1.1 Motivation . . . . . . . .. e e 8
1.2 Literature Review . . . . . . . . . . . L 10
1.3 Methodology . . . . . . . 12
1.4 Layout of Thesis . . . . . . . . . e 14

2 Mechanics of Solid Materials 15
2.1 Linear Elasticity . . . . . . . . . e 15
2.2 Orthotropy . . . . . . . . 18
2.3 Transverse Isotropy . . . . . . . . . L 19
2.4 Isotropy . . . ..o 20
2.5 The relationship between Engineering constants and mathematical constants . . . . . . 20
2.6 The Finite Element Method . . . . . . . . .. ... . . . o 23

3 Multi-Scale Modelling 29
3.1 Representative Volume Element . . . . . . .. .. . oL oo 29
3.2  Automated Mesh Generation . . . . . . . . .. ... 36
3.3 Using RVEs . . . . . o e 40
3.4  Example 1: Homogeneous Block . . . . . . .. ... . . o oo 42
3.5 Example 2: Spherical Inclusions . . . . . . . . .. ... 43
3.6 Example 3: Matrix and Fibres . . . . . . .. .. .. L oo o 45

4 Homogenisation 48
4.1 Isotropic Elasticity . . . . . . . . . .. L 49
4.2 Transversely Isotropic Elasticity . . . . . . .. .. .. oo o 51
4.3 Analytical Models . . . . . .. 53
4.4  Example 1: Homogeneous Block . . . . .. ... .. ... oL 58
4.5 Example 2: Spherical Inclusions . . . . . . .. ..o 58
4.6 Example 3: Matrix and Fibers . . . . . . . . . ... L 60

5 Machine Learning Enhanced Homogenisation 64
5.1  Objective and Outline of Methodology . . . . . . . . ... ... ... .. ... .... 64
5.2  Feedforward Neural Networks . . . . . . . . . . . . . ... ... . ... ... .. ..... 65
5.3  Parameterisation of Micro-Structure . . . . . ... ... L L oo 69
5.4  Example 1: Isotropic Elastic Material . . . . . . . . ... ... . ... ... ....... 70
5.9 Example 2: Transversely Isotropic Material . . . . . . . .. .. ... ... ... ... 76

6 Optimisation 85
6.1 Objective and Outline of Methodology . . . . . . . .. .. ... ... ... 85
6.2  Multi-objective Optimisation . . . . . . . . . . . .. L 86
6.3  Example 1: Spherical Inclusions . . . . . . . . . ... Lo 89
6.4  Example 2: Discontinuous Fibres . . . . . . . . . .. ... o oo 94

7 Conclusions 102

A GEO and Mpap3 Output Files 104
A.1  Example of a Gmsh Geometry File . . . . . .. . ... L oo 104
A.2  Example of FEM Output File . . . . . . . . .. .. . 105



TABLE OF CONTENTS

B

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

C.1
C.2
C.3
C4
C.5
C.6

MATLAB Codes

Code 1: Isotropic Homogenisation . . . . . . . . .. ... ... .. ...
Code 2: Transversely Isotropic Homogenisation . . . . . . ... ... ... ... .....
Code 3: FEM Output File Stress/Strain Extraction . . .. .. ... ... .. ... ...
Code 4: Isotropic Assembly Script For Elastic Properties . . . . . . . .. ... ... ...
Code 5: Transverse Isotropic Assembly Script For Elastic Properties . . . . . .. .. ..
Code 6: Neural Network Training . . . . . . . . . . ... o ..
Code 7: Cost Function 1 script . . . . . . . . . . .
Code 8: Cost Function 2 . . . . . . . . .. L
Code 9: gamult optimiser code . . . . . . . . . ...
C++ Codes
Code 1: Main FEM Program . . . . . . . . ... ...
Code 2: Cube Geometry file Generator . . . . . . . .. .. ... ... ...
Code 3: Cube With spherical-inclusion Geometry file Generator . . . . . . . . . ... ..
Code 4: Cube With spherical voids and inclusion Geometry file Generator . . . . . . . .
Code 5: Cube With Cylindrical inclusion Geometry file Generator . . . . . .. ... ..
Code 6: Cube With Cylindrical Discontinuous inclusion Geometry file Generator . . . .

107
107
108
108
112
114
116
117
118
119

121
121
122
125
129
133
137



6 TABLE OF CONTENTS

Acknowledgments

This research was made possible through the generous funding provided by the Government of
Botswana, for which I am sincerely grateful. I would like to express my deepest appreciation to my
supervisors, Prof. W. Dettmer and Prof. D. Perié¢, whose guidance, help and support have been
valuable throughout the course of this project. Their insightful feedback and encouragement were
crucial in shaping this work.

I would also like to thank Prof. W. Dettmer, for sharing his code ,his friendship ,assistance and
support during difficult times. His contributions and efforts were instrumental in the completion of this
thesis.

I would also like to thank E. Alhayki and E. M. Zvala for their help and for providing valuable insights
when necessary.



Chapter 1

Introduction

Reinforced composite material is defined as a material made from two or more components with
different physical or mechanical properties. Usually the behaviour or the properties of the composite is
improved as compared to the individual components. The constituents combine to produce a material
with better characteristics such as superior strength, enhanced durability or lighter weight. This has
emerged as a significant innovation in material science.

According to Ngo [34], Mar-Bal [29], Johnson [24], CompositesLab [6] reinforced composites date back
to ancient times as back as before 25 B.C where people used lime and mortars for construction.
Mar-Bal [29] indicated that Egypytians and Mesopotamians builders used straws to reinforce mud and
bricks, pottery and boats. The introduction of straws to mud and bricks improved the mechanical
properties of the mixture compared to the individual components. This helped them create strong and
durable buildings. Another evidence of composites existence was the use of glued wood at different
angles to create plywood. Since ancient times builders and engineers continued to improve composites
for more complicated usage.

CompositesLab [6] and Mar-Bal [29] indicated that in the 1200A.D Mongols developed their composite
bows from bones, horns, bamboo, cattle tendon, wrapped with silk and sealed it with pine resin. The
bows were powerful, accurate and could hit far targets during military operations. From these bows we
learn that more materials properties such as overall weight, without compromising the strength, were
considered during design.

In the 1800’s chemical revolutions changed composite material. Resins were transformed from liquid to
solid state through a process of polymerisation which lead to plastic developments in 1900’s. Plastics
such as vinyl, polystyrene and polyesters were better than single resins derived from nature. Plastic on
its own does not have the strength to be used for other structural purposes as a results reinforcement
was required for strength which led to Owens Corning introducing glass fibres in 1935 which were
strong and light in weight. This resulted in the birth of the Fibre Reinforced Polymer (FRP) industry.
The industry continued to grow with pultrusion, vacuum bag moulding and filament winding. Morden
day carbon fibres were also developed in 1950s which revolutionised aerospace, automotive, sporting
goods and consumer goods.

Composite material continued to grow with developments in ultra-high molecular weight polyethylene
and other advances in aerospace components, structures, motor assemblies, electrical braks and other
applications. This lead to more cost effective replacements of traditional materials like metal.
Advanced manufacturing techniques, where two or more manufacturing process are combined such as
computer numerical control and additive processes, may provide solutions where high accuracy and
machine speed are required Patel and Kilic [37]. There are also other developments in nano-structured
composites where nano-materials are incorporated into composites to enhance mechanical properties
Dong [10], Ghamsari [15]. Smart multifunctional composites such as material with sensors embedded or
self-healing capabilities offer wide range of functions and find applications in aerospace, automotive and
structural engineering as explained by Dulal et al. [11], Therriault and Farahani [48]. Other recent
studies involve bio-based and sustainable composites which are renewable and biodegradable
composites. The field of composite materials continue to grow.

7
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Figure 1.1: Honeycomb core for Sandwich

Sandwich panels are structural materials used in various industries where strength to weight ratio ,
stiffness and durability are important. This material is made of the outer face sheets and the light core
structure normally with a honeycomb pattern as shown by Figure 1.1. The face/outer material can be
an aluminium alloy, reinforced plastic, heat resistant material. Materials and geometry of the core may
vary with the honeycomb as the most familiar type of the core Petrovic and Lazarevic [39]. The core
material and cell size can be varied to tailor the panel’s properties to specific needs. The core mainly
separates and keeps external faces at a given distance from each other in order to resist buckling. This
gives flexibility to use other material as sandwich cores for heat resistance, insulation and many more.

There are different sandwich core designs in sandwich panels, these cores may include but are not
limited to wood core, foam cores, honeycomb cores and corrugated cores Ramly et al. [41]. These
different cores make them different in terms of their overall mechanical behaviour. Sandwich composites
are advantageous as they are excellent in abosorbing acoustic sound making it useful to isolate sound
for passengers and cabin comfort Ramly et al. [41]. These sandwich composite panels are less
susceptible to corrosion and fatigue compared to metallic structures, resulting in reduced maintenance
requirements. Some of the composite material designed in this research can be used for sound proofing
as inspired by the honeycomb structures’ ability to control composite material properties from the
honey comb parameters Leone et al. [25], Petrovic and Lazarevic [39] and Essaadaoui et al. [12] .

The impact of composite material is profound across industries such us aerospace where lightweight
materials are used to reduce aircraft weights and improve fuel efficiency. For marine and construction
industries composites are used for corrosion resistance and higher strength to weight ratio of
composites. From the economical view point optimisation of fibre reinforced composites reduces
manufacturing costs and the enhance sustainability through improved efficiency and reduced carbon
footprint compared to unoptimised composites.

1.1 Motivation

This research is driven by motivation to advance composite material technology by reducing
experimental iterations and minimising scraps, thereby lowering environmental impact. Optimisation
techniques lead to developments of superior composites which are beneficial in enhancing fuel efficiency,
sustainable construction and reducing environmental impacts.

This study is motivated by the principle of the rule of mixtures, which indicates that when two
materials, one possessing superior properties, are combined, the resulting composite’s properties will
fall within the bounds of the two constituent materials, as further detailed by Figure 1.2.

When the composite micro-structure’s constituents (matrix and inclusions) mechanical properties are
closely matched, the range for potential improvements in the composite material becomes narrower.
This reduced scope for development is illustrated in Figure 1.3.
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Figure 1.2: Parallel and series model for the elastic property limits of a composites material
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Figure 1.3: Fibre and matrix with Young’s Modulus 29G Pa and 25G Pa respectively

A significant difference in mechanical properties between the matrix and fibres expands the scope for
development, as demonstrated by the Figure 1.4. This disparity drives the study, as the fibres under
consideration possess substantially better mechanical properties compared to the matrix. Introducing
voids and varying the fibre volume ratio, aspect ratio, and fibre spacing at the microscopic level can
result in the development of superior composites that optimise resource utilisation. This gives scope for
optimisation of the micro-structure to get design parameters such as fibre volume ratios and aspect
ratios.

The work is supported by a grant from the government of Botswana which is a developing country and
looking for greener and sustainable industrial development. Botswana takes pride in its environment as
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Figure 1.4: Fibre and matrix with Young’s Modulus 290G Pa and 29G Pa respectively

it is dependent on tourism and wildlife hence the interest in sustainable development. As new
infrastructures are built better techniques have to be used for sustainable infrastructure development.
The primary focus of this research is computational modelling and analysis to predict and optimise
micro-structure in line with development of lightweight, cost effective and yet strong composites for
different applications. The applications include but not limited to sandwich cores, insulators, partition
walls, sound proofing and more. This study involves setting objectives and employing advanced
optimisation techniques to the micro-structure to achieve better materials. This research is computer
based and is conducted in Swansea University facility equipped with the tools for computational
modelling. Working from this facility with colleagues and supervisors fosters innovation and facilitate
the exchange of ideas.

The study faces several technical challenges, including modelling complex meshes, handling extensive
computational workloads and converting natural problem into a numerical objective function for
optimisation. Composite material with desired properties and yet lightweight or cheaper costs will
contribute to the composite material industry by providing practical solutions. The long term goal is to
further explore sustainable material and enhance the performance of composites to drive continuous
innovation in the field.

1.2 Literature Review

In manufacturing the most studied voids are defects often from processing of fibre reinforced composite.
Voids formation, causes and control differ for all manufacturing techniques due to thermodynamic and
rheological phenomena happening in the processes of composites manufacturing. Mehdikhani et al. [32]
shows that voids may be due to mechanical air entrapment during resin flow, gases from chemical
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reactions and nucleation of dissolved gases. Voids can be formed at macro or micro levels where micro
voids are between fibres and macro voids are observable to the naked eye. Macro void refers to a zone
that has not been inmpregnated by macroscopic resin yet, this may be due to irregular flow patterns or
irregular permeability of the preform or presence of insects or ribs in the mold Mehdikhani et al. [32].
Voids can be characterised by density characterisation that is void volume fraction, microscopy by
means of optical and microscopic techniques, ultrasonic testing where reflecting/scattering of ultrasonic
pulse depends on the void and fibre volume fraction and X-ray micro-CT. Furthermore voids can be
characterised by shape, size, location ,void content and distributions. Void content is most commonly
used and can be measured using any of the methods above. The void content in composite materials
can be controlled through means of controlled temperature, pressure and vacuum levels Mehdikhani

et al. [32].

Discontinuous fibres Wang et al. [51] have superior mechanical properties compared to continuous fibre
hence promoting their use in engineering applications. Composites are also prone to process - induced
defects hence affecting their mechanical properties. Other factors that influences composite properties
are the fibre length, fibre shape and fibre orientation. Mechanical properties can be tailored by
controlling fibre direction. Al-Maharma et al. [1] carried out a research on the effects of porosity on the
mechanical properties of additively manufactured components and how undesired effects of voids can
be removed. For engineered porosity that is where voids are introduced intentionally and are controlled
for a particular function, Al-Maharma et al. [1] indicated that this porosity’s physical properties
including size, dimension, shape can be controlled through fabrication processes. Al-Maharma et al. [1]
also explained that porosity in lattice structures and scaffolds can be tailored to certain mechanical
properties and biodegradation behaviour required in biological field for carrying nutrients delivery
which decreases overall weight without affecting the loading capabilities.

Micro-porosity can be spherical from powder containing entrapped gas or keyholes from wrong
processing parameters as explained by Al-Maharma et al. [1] due to incomplete melting induced
porosity, lack of fusion with unmelted particles inside large irregular pores and cracks Sola and Nouri
[45]. There are many other process induced pores/defects as described in details with their solution
[45]. Changing the structure, bulk and cellular materials, the mechanical properties can be can be
achieved through graded pores and units cells. For larger porosity-graded light weight lattices finite
element is used for design and analysis Terriault and Brailovski [47].

Carrera et al. [5] evaluated the influence of voids on a 3D representative volume element (RVE) of
fibre-reinforced polymer composites and concluded that void arrangement influences the stress fields.
That is, a cluster of voids results in high stress mean values. Carrera et al. [5] also found out that
although void distribution influence mechanical properties void content is the fundamental property to
consider independent of void arrangement. Jiang et al. [23] investigated the effects of voids on carbon
fibre fabric reinforcement and found out that flexural strength and modulus decreases by 23M Pa and
2.17GPa for each 1% increase in void fraction respectively. That is flexural properties reduces
significantly with small amount of void content increment.

Other research have been also carried out to develop longer discontinuous carbon fibres for higher
performance Yang et al. [52]. Pressure and temperature can be controlled and to remove unwanted
porosity Li et al. [26].

Some research have been done on cheaper and environmentally friendly composites made from natural
fibres. Venkatarajan et al. [49] investigated mechanical properties of natural cellulose fibre reinforced
polymer composite and concluded that these fibres may give comparable property levels and they are
freely available at lower costs saving industries such as plastic ,packaging and automotive. Although
they may have lower mechanical properties they are encouraged by cost reduction and environmental
conditions. This type of composites may also have other attributes such as chemical resistance. Jawaid
et al. [22] studied chemical resistance of, void content and tensile properties of oil palm/jute fibre
reinforced polymer hybrid composites. From these experiments it was observed that matrix and all the
composites showed better chemical resistance and better adhesion to the matrix.

Praveena et al. [40] studied experimentally density and volume fraction of voids and mechanical
characteristics of Areca nut leaf sheath fibre reinforcement and found out that efficiency of composites
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are considerably affected by these voids. High void content leads to lower fatigue resistance and higher
chance of penetration and weathering when subjected to moisture content. Depending on the matrix
replaced by the fibres, composites are found to substitute traditional metals for their limited densities.
This Areca composite can be used as a construction material for automotive, marine, etc where high
stress with less weight is required.

Academic advancement in composite materials involves multi-scale and hierarchical modelling, which
couples micro-scale fibre-matrix interactions with meso-scale damage evolution, enabling more accurate
life performance predictions and estimations Sayam et al. [43]. Data-driven machine learning
techniques are increasingly being used to accelerate the determination of material parameters. Beyond
modelling and monitoring, academic research has also made significant progress in failure analysis and
digital integration. Considerable work has been done on natural fibre composites to promote
sustainable alternatives, although the long-term durability of these materials remains in question.
Additionally, ongoing studies are providing unprecedented insights into failure patterns through in-situ
imaging techniques Ghadarah [14]. With the integration of digital tools and machine learning
frameworks, academic approaches are increasingly aligning with industrial needs.

Industrial adoption of composites has primarily focused on improving weight-to-performance ratios.
This trend is especially evident in industries such as aerospace and wind turbine manufacturing, where
product quality, certification, and durability are critical. The automotive sector also utilises
composites, particularly where impact resistance and tolerance are essential. Fuel efficiency and
processing costs can be optimised through careful selection of composite materials. Case studies
conducted Hamzat et al. [18] show that the choice of composites in various industries also depends on
factors such as supply chain considerations, maintenance requirements, and long-term durability.

Industries are increasingly focusing on the sustainability of composite materials. There has been some
use of bio-based resins, which have shown promising results in reducing the overall carbon footprint.
However, translating these lab-scale recyclable processes into industrial-scale applications presents
challenges, particularly in terms of economic feasibility and alignment with industry standards Maiti
et al. [28].

Even though extensive research is ongoing, a significant gap remains between academic studies and
industrial application. Key challenges include the validation of multiscale models, full-scale component
testing under real-world conditions, addressing manufacturing variabilities, and integrating structural
health monitoring systems into certified maintenance protocols. Bridging this gap requires controlled
experiments and pilot-scale industrial trials Hassani et al. [19].

This thesis contributes to the feasibility assessment of multi-scale predictive framework for
fibre-reinforced composites, supporting both material design and practical structural applications. In
particular, it evaluates how variations in fibre and matrix properties influence the overall mechanical
behaviour, thereby providing guidance for experimental validation and industrial design. This approach
enables the development of optimised materials and structural designs, improving manufacturability
and reducing reliance on costly physical prototyping.

To strengthen industrial relevance, future work should incorporate life cycle analysis and recyclability
when proposing new materials, and quantify uncertainties arising from process variability to provide
robust design guidance. These steps are essential for bridging the gap between academic research and
industrial practice.

1.3 Methodology

This research study is a computer-based modelling and analysis of reinforced composites to optimise
the micro-structure. The study creates RVE meshes using software known as Gmsh, which is a
three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. The
quality of these meshes is controlled and tailored to achieve the desired accuracy in the results. This
approach allows for more precise simulations as a contribution towards the development of advanced
composite materials. A block of a homogenous material, a cubic block with spherical inclusions, cubic
block with continuous fibres and one with discontinuous fibres are all created to represent the
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micro-structure of the composite using Gmsh. Figure 1.5 show the steps undertaken for this study.

Range of parameters
describing the
micro-structure

l
‘ Geometry file generation (.geo) ‘
1
Gmsh
Mesh generator
- 1
Test Strain vector € Mpap3
x5 FEMpsolgtware szl (s (el ‘
l
Output Stress vector o
x5
{
2 Elastic Properties
a8 For each RVE
o l
a Neural
E Network
= Training
1
Trained
Network

Optimisation

Optimal Micro-structure
(volume ratios and geometry)

Figure 1.5: Procedural Methodology Utilized

Dettmer’s Mpap3 (Multi Physics Analysis Program) is utilised to handle an arbitrary number of 3D
RVEs which uses the mesh generated by Gmsh. Each RVE is subjected to five different test strain
vectors as a means of improving the accuracy of the results. Mpap3 uses the finite element method to
generates the output stresses which can be used to predict the effective composite material’s elastic
properties.

Using a built-in Mathworks function 1sqr, a least square method is employed to generate the
homogenised elastic properties of the composite. As part of this study, a MATLAB code was
specifically developed to carry out the homogenisation of both isotropic and transversely isotropic
materials.. This is an iterative method which works by reducing the normal residuals. By comparing
this method to Halpin Tsai and Hashin Rosen, this approach ensures a more detailed and accurate
analysis, contributing to the development of superior composite materials.

The results of the least square homogenisation are used to train a neural network, which in turn, can
predict the elastic properties of the composites without the need to re-model its RVEs. This trained
network produces accurate results, proving to be a reliable tool. The trained network, together with
MATLAB built-in function gamult, which is an optimisation tool, are used to optimise the composite’s
micro-structure based on the desired objectives. Combination of this tools enhances the efficiency and
precision of developing advanced composite materials.
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1.4

CHAPTER 1. INTRODUCTION

Layout of Thesis
Chapter 1
Covers mechanics of solid materials: The stress state of a point in a continuum is defined by 81
elastic parameters. Using material symmetry and geometry these parameters are reduced.
Orthotropic material is then defined with 21 constants, transverse isotropy with 9 constants and
isotropic material with 2 constants. Hooke’s law equations are then utilised for the continuum.
The mathematical constants are then related to engineering constants which translates to
Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio which are used to define a
material and consequently they can also be used to compute other elastic constants. This chapter
also covers a brief review of the finite element method.

Chapter 2

Multi-scale Modelling: This chapter focuses on creating Representative Volume Element of a
macro-continuum. The RVE is modelled in micro scale and different boundary conditions are
discussed here. The effective use of this RVEs is looked into as well to get better results from
tthem. The chapter also shows how the meshes were generated.

Chapter 3

Homogenisation based on the least square method is developed here. The transversely isotropic
and isotropic equations developed in Chapter 1 are solved using the least square method for the
effective composites’ elastic constants using a MATLAB function that is already a built-in
algorithm by MathWorks. Results from this method are compared to Halpin Tsai and Hashin
Rosen approaches referred to as analytical methods in this chapter.

Chapter 4

Machine Learning Enhanced Homogenisation, this chapter focuses on training a neural network
using the elastic properties obtained from Chapter 3 as training data. Since experiments carried
out in chapter 3 are finite, this chapter trains a network such that elastic properties of the
macro-structure can be estimated without the need to re-modelled the RVE.

Chapter 5

Optimisation: A trained network from Chapter 4 is subjected to objectives functions and the
optimisation tool is used to optimise the micro-structure such that a balance between
performance and resource utilisation is achieved. Objectives are developed as functions of
material property (shear modulus and bulk modulus) and resource utilisation such as cost or
weight. This chapter converts natural problems that is resource utilisation into mathematical
problems. A multi-objective algorithm is used here to solve for multiple objectives. The purpose
of this chapter is to identify this trade-offs and provide optimised values of the parameters which
describe the micro-structure namely aspect ratio, void volume ratio and fibre volume ratio.



Chapter 2

Mechanics of Solid Materials

Mechanics of solid material is the study of the response of solid bodies under loading. The stresses and
strains within the body are studied in order to enable the design of elements that will not fail within
their service life. This chapter uses equations developed by Daniel and Ishai [7] to describe mathematical
constants which are in turn related to Engineering constants/physical quantities. Engineering constants
include the Young’s modulus, Shear modulus, Poisson’s ratio etc. The solids considered here are assumed
to have continuous properties over a region of interest. This chapter will cover elasticity of an isotropic
material and a transversely isotropic material. Mechanics of solids is a very important part of design in
various fields such as civil, mechanical and aerospace hence understanding solid mechanics is crucial for
safety and performance.

2.1 Linear Elasticity

In general, the stress state of a point in a continuum can be represented by Figure 2.1.

013

N,
o1 / 12

32

023
o
33 La 022
021
o
031

Figure 2.1: State of stress at a point in a continuum

Using a small cube of material, each of the three planes has a stress o;;, where (j,7 = 1,2, 3), applied in
the 1, 2, and 3 directions as shown above. The strain state at this point can also be obtained in a
similar manner. Using the generalised Hooke’s law, stresses and strains can be related using Equation
2.1 as Daniel and Ishai [7] showed.

15
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In index notation the above equations can be represented as

Oi5 = Uijkl€kl (2'2)

with 4,7,k,0 = 1,2,3 and Cjjx; as the stiffness matrix. It is therefore deduced that 81 elastic constants
are required to fully describe the material. From the symmetry of the stress and strain tensor this 81
constants required can be reduced to 36 constants Daniel and Ishai [7]. That is

O'ij = O'ji (23)

€ij = €ji 2.4)

therefore from Equation (2.3) and (2.4) it follows that

g11 = 01 (25)
022 = 02
033 = 03

023 = 04 = T23 = T4

031 =05 =731 = T5s

€11 = €1
€22 = €2
€33 = €3

2693 = €4 =723 =14
2631 = €5 = Y31 = V5
2e12 = €6 = Y12 = V6-

For the stiffness matrix repeated subscipts can be put together and the C-matrix/Stiffness matrix is
reduced as follows

Ciijj = Cij. (2.6)

Therefore substituting Equations (2.3), (2.4) and (2.6) into Equation (2.1) the following reduced
equation which represents the stress-strain relationship for anisotropic material is obtained.

o1 Cii Cip Ciz3 Ciy Ci5 Cyg €1
o2 Oy Oy O3 Cag Co5 Oy €2
o3 C31 O3 C33 (O34 O35 Csp €3
T4 Cy Cap Cy3 Cyy Cys Cyg Y4
5 Cs1 Cs2 Cs3 Csy Cs5 Csg Vs
Te Cs1 Ce2 Coz3 Ces Cos Cog Y6

In index notation



2.1. LINEAR ELASTICITY 17

g; = Cij&'j (2'8)

where 4,5 = 1,2,...6. Anisotropy of a material refers to its property to change or assume different
properties in different directions as opposed to isotropy. These properties involve Youngs modulus,
shear modulus etc. Examples of anisotropic materials include wood, carbon fibres, graphite etc. Using
the energy considerations, strain energy density (per unit volume) can be represented by the area under
the stress-strain curve as shown in Figure 2.2.

g

Figure 2.2: Stress-strain curve for a linear elastic material subjected to uniaxial loading.

Therefore the work done per unit volume can be presented as

1
W= 5Ee? (2.9)

g

Since the Young’s modulus, £/ = £ and expressing o in a similar manner as in Equation (2.8). The
work done can be expressed as

1
W = §C¢je,~sj. (2.10)
With the property
ow
i = 2.11
%= e (211)

It can be deduced that the strain energy density W is a quadratic function of strain . Materials with
the above properties are called elastic materials. Similarly W can also be expressed as

1
W = §Cji5j€i (2.12)
therefore Equation (2.10) minus Equation (2.12) should be zero,

0= (Cij - Cji)EjEi. (2.13)

From Equation (2.13) there is a property C;; = Cj; which implies that this two matrices should be
symmetric. That is the stiffness matrix can be expressed as

Cii Ci2 Ciz Cuu Cis Cis
Coy Coz Coy Cys Cop
C33 Csy C35 Csg

C;i = 2.14
I Cu Cus Cyus (2.14)
Cs5  Cse
Cése

so that the number of constants required to fully describe the stress state of an anisotropic material at
a point in continuum is further reduced to 21 constants.
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2.2 Orthotropy

An orthotropic material with three planes of symmetry has a stiffness matrix fully described by a 6x6
matrix in Equation (2.14). However, the elastic constants are reduced to 9 constants due to the
orthotropic nature of the material and the similarities in the stiffness matrix as explained Daniel and
Ishai [7]. Therefore, Equation (2.7) is reduced to

o1 Cni Cipo Ciz3 0 0 0 €1
lop) Ca1 Cy Ca3 O 0 0 €2
o3|  |Cs1 Csp Cs3 0 0 0 €3
- 0 0 0 Cyu 0 0 “ (2.15)
T 0 0 0 0 C55 0 5
T6 0 0 0 0 0 066 Y6
and
€1 S11 Sz Sz 0 0 0 o1
) Sa1 Saz Saz 0 0 0 (op)
ez| |83 Ss2 S3z3 0O 0 0 03
wlTlo 0o 0 S o0 o |X|n (2.16)
Y5 0 0 0 0 555 0 T5
Y6 0 0 0 0 0 566 T6

where S is the inverse matrix of the stiffness matrix. Orthotropic material under plane stresses,
laminae are used with a condition that stress components in direction 3 are all zero. Daniel and Ishai
[7] reduced Equation (2.15) reduced to

o1 Ci Cio Ciz3 0 0 0 €1
lop) Co1 Cop Co3 0 0 0 €2
0 C31 032 053 0 0 0 €3
ol"lo o 0 Cu 0 0 “ (2.17)
0 0 0 0 0 055 0 5
T6 0 0 0 0 0 066 Y6
and expanding Equation (2.17) gives
Ci3C C13C
o1 =(C11 — 13213 Je1 4+ (Cra — 12, 2 ez = Quie1 + Qr2e2 (2.18)
33 33
Co3C Cy3C
o2 = (Ci2 — 21 )e1 + (Caz — Sk Je2 = Qr2e1 + Q2262
Css Cs3

76 = Ce676 = Q6676

which can also be expressed as

o1 Quu Q12 O €1
o2 = |Qiz2 Q22 0 | X |e2 (2.19)
T6 0 0 Qes Y6
where
Ci3C
Qij = Cyj — 533 (2.20)
33

and 7,j = 1,2..6. For in-plane stress, the constants are further reduced to 4. However, the out-of-plane
strain e3 is related to o7 and o9 through Ci3 and Cs3. Therefore, two more constants are required to
describe the in-plane stress-strain relation.
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2.3 Transverse Isotropy

This is a material property characterised by anisotropy, in which elastic properties exhibit symmetry

about an axis perpendicular to the primary axes. For transversely isotropic materials, properties may
vary with direction but remain unchanged along the plane perpendicular to the primary axes. These

planes are called planes of isotropy. Therefore it can be deduced that

Ci2 = Cis (2.21)
Cag = C33

while also subscripts 5 and 6 are interchangeable so that

Cs5 = Cee (2.22)
Ss5 = Se6-

Using the stress transformation on the plane of isotropy of a transversely isotropic material as
illustrated by Figure 2.3, it can be shown that Cy4 is not independent.

03 = —To 02 = To
N e S
o o
® 0 O o o o

oo o *.°
S EN

TU Y
(b) Equivalent stress state of Figure 2.3a, rotated
a) Transversely isotropic material under pure 45°, subjected to axial tensile and compressive
Yy J
shear. loading.

Figure 2.3: Stress transformation of a transversely isotropic material.

Therefore under pure shear 79 = 723 and ¢ = €23 and from Equation (2.15)

Ty = T23 = 044’723 = C44’Y4 =T0 (2-23)
02 = To
03 = —To
resulting in
E9r = —E€3r = % (2.24)
g1 = 0

hence from Equation (2.15)
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091 = 02/2/82/ + 02/3/63/ = 02262/ — 02352/ (225)
oy = €9/(Cap — C3) = %(022 — Ca3)

Since Cyor = Ca9 and Cy3. = Cag by combining Equations (2.23) and (2.25), we obtain
Cu = (CV”%“) Therefore, the stress-strain relations of a transversely isotropic material can be

described as

o1 Cn Ci2 Ci2 0 0 0 €1
o9 Cia O O3 0 0 0 €9
o3| _ |Ciz Caz Ca 0 0 0 €3
n| "o 0 0 ©Cwoo g ||y (2.26)
T5 0 0 0 0 Css 0 V5
T6 0 0 0 0 0 Css Y6

hence 5 elastic constants are required to to fully describe stress state of a transversely isotropic
material.

2.4 Isotropy

An isotropic material is fully described by 2 elastic constants which are independent. All directions are
equivalent therefore

Ci1 = Cy2,C% = C33,C33 = C11 (2.27)
Ci3 = C23,C13 = C1,C = Cs1
Cus = Cs5,Cs5 = Cgg, Cos = Cua

which means

o1 Cii Ciz Ciz 0 0 0 £
02 Ciz Cin Ciz 0 0 0 €9
: Cia Cr2 C 0 0 0 .
iz _ 62 52 81 e, 0 0 x ii (2.28)
T5 0 0 0 0 CuCz 0 Vs
To 0 0 0 0 0 Lot Y6

2.5 The relationship between Engineering constants and mathe-

matical constants

For a material subjected to uniaxial loading see Figure 2.4 , where o7 is nonzero, and o2 and o3 are
zero , from constitutive relations in Equation (2.16), we obtain

g1 = 5110'1 (229)
€2 = S1201
€3 = S1301

Y4 =7 =% = 0.

With relation to Engineering constants the Youngs modulus in direction 1 is defined by

o1
= —. 2.30
=g (2.30)

The Poisson’s ratio v15 and 13 are given by
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V12
_ _ 2.31
2= 5o (2.31)
o s,
3 7!
Y4 =7 =7 = 0.
From the constitutive relations by Daniel and Ishai [7], we can establish a relationship that
Sy = — (2.32)
" E '
V12
S1e = ——=
O
V13
Siq = — 23
N
The same procedure can be applied to a material subjected to uniaxial loading in the other two
directions and the following relations are obtained
1 = 5120'2 = —%02, €1 = 5130'3 = —VE—QZ?O'g (233)
€2 = Sop03 = —222, €2 = So303 = ——15503
V23 03
€3 2302 B, 02, €3 3303 Es
Ya=7=7% =0
from which
V21 V31
S12 = ——, Sz = —— 2.34
TR, BT R, (2:34)
1 V33
Sog = — Soq = — o=
22 E2 ) 23 E3
V91 1
Soz = —— S33 = —
23 B, 33 7,

For a material subjected to pure shearing as shown in Figure 2.5, when 74, 75, 01, 02 and o3 are all

zero so that

(2.35)
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Figure 2.5: Material under simple pure shear

See 1s given by

1
N 2.36
Se6 O (2.36)

Applying similar procedure to the out of plane shear 74 and 75 on 2-3 and 1-3 plane respectively Sss
and Sy4 can be give as

1 1
Sy = —— Sy = — 2.37
M7 G 7 Ghs (2:37)

Equation (2.16) in Engineering constants can be expressed as

1 v v T
al o E R TR o o . |
€9 —ﬁ Fz _1E%,2 0 0 0 D)
e _|-H B om0 00 o3 )
o B O 0 0 & 0 o0 g (2.38)
5 0 0 0 0 &= 0 Ts
Y6 0 0 0 0 0 &= 6

As a results of the symmetry of the S;; matrix, we obtain the following relationship between Poisson’s
ratios and Young’s modulus

Vij Vji
— = = 2.39
B (2.39)

For transversely isotropic material Fs = E3,G12 = G13 and v12 = v13. In case of an isotropic material
the stiffness matrix in Equation 2.28 where Cyy = u, C12 = X and C1; = A + 2u can be expressed as

(2.40)

OOO>/>/+
OOoO®T OO O
O®" OO OO
T oo oo

and by taking the inverse of the above matrix to get the constants of a compliance matrix we get
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det = (A +2u)% + 223 — 3A2(\ 4 2u) = 4p® (3N + 211) (2.41)
SH:(A+2u)Q+A2: Ap 1
42BN+ 2p)  p(BA+2u) FE
312:A(A+2u)2+A2:_ A _ v
402 (3\ + 2p) 2u(3\ + 2p) E
Syq = i = 21 ;V

Where ) is termed elastic moduli, p is lame coefficient, E is the Young’s modulus and v is the
Poisson’s ratio we have the relation

(2.42)

E:M(3/\+2,u) 5 A
A

therefore 2 elastic constants either A and p or E' and v are required to describe an isotropic material
fully.

2.6 The Finite Element Method

3D Finite element commonly consist of 4-noded tetrahedron and 8-noded hexahedron however this
elements can contain more nodes. For this study, a simple finite element with 4 or 10 nodes see Figure
2.6 and 2.7, often referred to as a tetrahedral element, is considered.

4

Figure 2.6: A 4-node tetrahedron element

Figure 2.7: A 10-node tetrahedron element
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For a 4-noded tetrahedron the approximatiom of linear nodal displacement takes a form

u(x,y,z) = a1 + aor + azy + asz (2.43)
v(x,y,2) = as + agr + gy + gz

w(z,y,2) = ag + o + @11y + @122

The notations and equations from Zienkiewicz and Taylor [53] were adopted, do let the displacement at
any point within the element be a vector with

u=d=Y Nait& =[Ny, Na,....]{ . » =Ni® (2.44)

u from Equation (2.44) is the movements of a typical node a, within an element and N, is the nodal
shape function. For a 3D case elastic stress element with k& nodes, with cartesian nodal displacement
Ug, Vg, W, associated with node a displacements are expressed as

u(z,y, 2)
u =4 v(z,y,2) (2.45)
w($7 y’ Z)
k
u(xayvz) = ZNa(fﬂay,Z)Ua (246)

We now express the internal nodal displacements in terms of shape function. Consider a point p with
coordinates (x,y, z) within an element which create 4 volumes (V;, V5, V3, Vy), and V will represent the
volume of the element made by node 1,2, 3,4 then a new set of coordinates system Lj can be defined
where

V=Vi+V+Vs+V, (2.47)

Lk:% for k=1,23,4.

If point p correspond to node 1 we find that V; =V and Vo, = V3 = V4, = 0 such that Ly =1 and

Ly =Ls=L4=0 at node 1. As p moves away from node 1 V; decreases linearly and L, is constant on
any plane parallel to the base triangle of nodes 2,3,4. Lj exhibits characteristics similar to those of a
nodal function, it has a value of 1 at node k£ and zero on other nodes. Therefore nodal shape functions
N at node k within an element can be written as

Np =Ly (2.48)

b d
N, =27 ’“xgvc’“f“ 2 for k=1,2,3,4

where
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1z y1 o=
1 22 42 2o T2 Y2 22
6V = det 1 25 s a; =det |23 y3 23 (2.49)
3 Yz 23
1 24 ya 2 S
1 y2 2 o 1 2 T2 Y2 1
by =det |1 ys =23 cp =det [z3 1 25 dy =det [zs y3 1.
1 ya 2z x4e 1 24 zg ys 1

More detail on high order tetrahedron elements is explained in details by Zienkiewicz and Taylor [53]
and Equation (2.50) can be to used to integrate any polynomial of these shape functions.

Ibleld!
LOLYLELY d dy dz = @y 6V 2.50
/// Loabs b Gy O = T  d + 3) (2.50)

vol

Where a, b, ¢ represent, degrees of basis functions in each coordinate direction and V is the total volume
of the element. Hence the displacements are interpolated as

4 4 4
U:ZNkuk U:ZNkvk w:ZNkwk (251)
k=1 k=1 k=1

In matrix form this can be expressed as

Z = [N] {u} (2.52)

where [IN] is diagonal matrix of snape function and w is the nodal displacement such that

{u} = [U1 V1 W1 U2 V2 W «vv vvn ... Ug Vg w4}
[IN] 0 0
N=|0 [N] 0]. (2.53)
0 0 [N

It should be noted that each [N] is a 1 x 4 row matrix of interpolation functions and lots of zero values.
For an 8 noded prism the product of linear lagrange polynomials in x,y,z are used, a detailed derivation
can be found in Hutton [21]. From the displacement in Equation (2.44) the strains can be obtained as

e=Su (2.54)

where S is the linear differential operator the Equation (2.54) can be approximated as

€ = é = Bii® (2.55)

The strains can be related to displacements (v, u,w) in the x,y, z directions, which will also defines the
operator S where
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ou o]
ox oz 0 0
v o
y 0 3 0
€
€y dw o o 2
€ Oz Oz u
— z — —
{6} B Yy IR 9 N d i) Y
U U
=+ 5 = < 0 w
Yyz ox Jy ox Jy
Va2 v | dw 9 8
oy T o 0 3 2
ow ou o) o
9: T oo 0 &

With the shape function known from Neto et al. [33] and Hutton [21] for 4 noded tetrahedron element,
internal strains can be deduced as

ON; Ny
N0 0 L . 0
ON ON U1
0 0 .o .. 0 0| [y,
w1
0 0o M . .. ... 0 0 9N
1 Oz Oz ce
6V | any,  oNg 0 ANy 9Ny 0
o By Ce e e By
Ug
3N1 8N1 8N4 6N4 v,
O 8y 82 O 8y 82 4
w4
ON; 0 ON; ONy 0 ON4
o 7NN S

hence

{e} = Bl{u} (2.57)
If an element is subjected to initial strains, stresses will be induced within the element. Assuming

linear elastic behaviour, these stresses can be added to the deformation, and the stress-strain
relationship will take the form

{o} =D({e} —€0) + a0 (2.58)

1—v 1% v 0 0 0
v 1—v v 0 0 0
E v v 1—v 0 0 0
D=mroa-—2y| 0 o o =2 o o (2.59)
0 0 0 0o =2 9
0 0 0 0 0 1—2v

whereas elasticity matrix D for a transversely isotropic material is taken as
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r E V12 E vis B
1—1}22 17}/212523 1*}/3;2523 0 0 0
V12é2 E; via2Fo O O 0
1—viav03 1—152 1_VE1‘2D23
vi3 E. v
D = 1711312323 1711212323 173%2 0 O O (2.60)
0 0 0 G2 0 0
0 0 0 0 Gz 0
L0 0 0 0 0 Gal

Consequently, the nodal forces equivalent to the boundary stresses and distributed body forces on an
element can be defined as

’U,i bac
Nodal forces qg = < vy body forces b =< b, (2.61)

where u, v, w represents the directions x,y, z respectively and while b, by, b, are the body forces per
unit volume. Following this definition, the total potential energy of an element, as described by Hutton
[21] subjected to direct nodal forces can be expressed as

n-v.-w = [[[{e D - () (a) (2:62

Where U, is the total strain energy and W is the work done by applied nodal forces. As the element is
a portion of a large structure total energy of an element need to be minimal. Hence with the relations
that

{f} = {u}"{q} (2.63)

Equation (2.63) takes the form

{KHu} = {f} (2.64)
Where {K} = [B]T[D][B]V and is the stiffness matrix. Equation (2.64) forms the foundation of the
finite element method, and a large system of linear equations is solved to determine the nodal
displacements. For an element with distributed edge loadings {f(?)} and body forces{f(®} and direct
nodal forces {f} a general Equation (2.65) below can be used

{KHu} = {£ D} + {£®} + {£} (2.65)
where

x

by d
(F®)} = / IN]T by | avand (FDy = /A IN]” dy | da. (2.66)

For a general 3D continuum as explained by Zienkiewicz and Taylor [53], the equilibrium equations of
an elementary volume in terms of cartesian stress tensor can be described as

V-o+b=0 (2.67)
T
U:[O'w Oz Oz Tzy Tyz Tzz]
Let 5 5 5
5 T oyt s The
{Ay = G+ G+ G by =0 (2.68)

0Tz 0Ty do .
ox + oy + 0z +bz
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therefore using virtual work, we look for a function w such that it satisfy a set of differential equation
A(u) =0 in a domain 2 with boundary conditions B(u) on boundaries I'. Since strain is a function of
displacements

]T

u = [u v w]T, weight function v = du = [5u v 5w]T, b= [bw b, b (2.69)

after introducing the weight function a weak form can be obtained and the integral over the domain
can be written as

/ suT A(u) dQ = 0 (2.70)
Q
/ [%‘?aw + (65“ + %‘?)Tw + e — dub, — dvby — 5wbz} dQ — / [5utm + dvty, + 6wtz] dlr=0
Q r
hence
/ Selad — / SuTbdQ — / SuTtdl' =0 (2.71)
Q Q r

where de = Sdu and t = [tm ty tZ]T is the tractions acting per unit area of external boundary
surface. For linear elastic behaviour we substitute in Equation (2.6) into Equation (2.71) with
condition that displacements are known at each point on the boundary as u = 4 on I' according to
Zienkiewicz and Taylor [53]. Equation (2.71) is written as

Z 5e” [D(e — €o) + 7o) dQ — Z JuTbd) — Z SuTEdl = 0 (2.72)

Qe
Z§u V BT (D(Byi, — €0) + 00) dQ2 — /NbdQ Ntdl“}zo

where Q¢ and I'¢ represent element domain and tractions respectively. The above equation can be
written in the form K.,y + f, = 0 where the stiffness matrix and load matrix are

K, = Z / BIDB,dQ (2.73)
e Qe

fa=> / _[Bi(o0 —Deo) — Nab] d2 -} | 5 N,&dr
€ e t



Chapter 3

Multi-Scale Modelling

Multi-scale modelling of composite materials entails the integration of models across different scales to
predict the behaviour and properties of composites. This involves the micro-scale, where the composite’s
microstructure is analysed, such as matrix and fibre interactions. At this level, the mechanical and
physical behaviour of individual components, such as the matrix and fibres, is analysed to determine the
overall behaviour of the composite. Clusters of fibres and some parts of the composite may be studied
as well. At the macro-scale, the micro-scale information is used to predict the overall performance of
the composite under loading. This comprehensive approach allows for a more accurate understanding of
composite behaviour. Ultimately, multi-scale modelling enhances the design and optimisation of com-
posite materials for various applications.

Range of parameters
describing the
micro-structure

|

Geometry file generation (.geo) ‘

|

Gmsh
Mesh generator

|

Test Strain vector € Mpap3
38 FEM software 4——1 Mesh file (.msh) ‘

l

Output Stress vector o
X9

Figure 3.1: Procedural Methodology Utilized

3.1 Representative Volume Element

Multi-scale modelling process discussed in this chapter uses concepts and format borrowed from Peric
et al. [38] and de Souza Neto and Feijoo [8] which uses the assumptions that material at point « of the
macro-scopic continuum is associated to a local RVE with domain €, which is made of solid part €2},
and void part €2, with boundary 9€,. It is also assumed that the characteristic length of the RVE [, is
much smaller than the length of the [ of the macro-continuum. Therefore, a Representative Volume
Element (RVE) see Figure 3.2 is a small local sample of a material. By analysing the RVE, we can
understand the material’s macroscopic behaviour based on its microscopic details.

Q, = uQ, (3.1)

29
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Macro-continuum

©0 0000
© 00000

© 0000000

Figure 3.2: Macro-continuum containing micro continuum RVEs. Where red and blue represents different
inclusion within an RVE

Assuming strain and stresses at arbitrary point x,, in the macro continuum is equivalent to the volume
average of the microscopic strain and stress tensor field respectively over the local microscopic RVE
domain associated with z,,. The strain tensor €y, at point z,, of the macro continuum is expressed as

1 1
em = 7 /Qu €, dV = v /QH Viu,dV (3.2)

where V®u,, is the gradient of the microscopic displacement field u,, of the RVE. The process in which
a microscopic quantity distribution is translated into a macroscopic quantity over the Representative
Volume Element (RVE) is referred to as homogenisation. Equation (3.2) places constraints on the
possible displacement fields of the RVE and therefore only displacements fields that satisfy Equation
(3.2) are kinematically admissible. This constraints can be expressed as u,, € %, minimally
constrained set of kinematically admissible microscopic displacements where

‘%/u* = {v, sufficiently regular | fQ“ VivdV = Vﬂem} (3.3)
which can also be expressed in terms of unit normals n to the RVE boundary as
%* = {'u, sufficiently regular | faﬂu v R ndA = Vuem} . (3.4)

The microscopic displacement field u,, can be divided into linear displacement in y as €,y and
microscopic displacement fluctuations ,, as

Uy (Y, 1) = €m (2, ) y + @y (Y, 1) - (3.5)

Similarly the decomposed microscopic strain field constant in y concurrent with the macroscopic strain
and a field representing strain fluctuations, can be expressed as

€u (Y1) = €m (@,1) + €m (y, 1) (3.6)

where

€m = V°uy, (3.7
that typically changes as a function of y. Taking into account the condition that uw, € £ and
constraints in Equation (3.4), the final constraint set can be given as u,, € " such that

A= {’v, sufficiently regular | fam v ®s ndA = 0} . (3-8)

The virtual work variational framework imposed here requires a set of kinematically admissible RVE
displacement %, C " with the virtual space as ¥, = %, C J. Some examples of such constraints
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which satisfy Equation (3.8) include periodic boundary condition where the macrostructure should be
replicated by stacking together replicas of the RVE. For this case the boundary consists of the sum of
mirror image sets subsets 907 and 92~ and unit normals n* and n~ such {n™ = —n"|Vy € 90} as
illustrated by Figure 3.3 and Figure 3.4. However It should be emphasised, as noted by Guedes and
Kikuchi [16], the entirety of the macroscopic continuum does not necessarily entail the repetition of a
single Representative Volume Element (RVE). The constraint periodic space is

T = € A | Ayt = auyT) V{yTyT) € o) (3.9)
Nt
Q
ot o0~
nt eyt Yy e—n~
o0~

Figure 3.3: RVE for periodic boundary condition

(a) Undeformed shape (b) Deformed shape

Figure 3.4: Periodic boundary condition

The linear boundary deformation model assumes displacement fluctuations are negligible over the
boundary see Figure 3.5 so that the linear virtual space is defined as

vin={a, e X | Gu(y)=0 Vyeon} (3.10)

This means the displacements in in y direction are linear meaning u(y) = €(y)y on 99,. Figure 3.5
shows 2D linear deformation of an RVE with long continuous inclusions. In the case of uniform

(a) Undeformed shape (b) Deformed shape

Figure 3.5: Linear boundary condition

boundary traction the model is defined with the assumption of minimum kinematical constrain space

Yt = (3.11)



32 CHAPTER 3. MULTI-SCALE MODELLING

The state of equilibrium within the Representative Volume Element (RVE) subjected to body forces b
per unit volume and external traction field t per unit area on its external boundary 0f2, at each
instant at point x, of the RVE is said to be in equilibrium if

J

where the (u) donates the microscopic continuum, the variational equations are valid at time t, where
#,, represents the space of virtual displacements of the Representative Volume Element (RVE) with
constraints above. In a manner similar to macroscopic strains, the macroscopic stress tensor o, at
point x,, of the macro continuum is described as the homogenisation of the microscopic tensor field o,
of the RVE associated with that point as

o, VindV —/Q b.ndV — /89 tmdA =0 (3.12)

Vnev,

s
n

1
Om = — o,dV. 3.13
V;L Q“ H ( )

Equation 3.13 can be expressed in terms of of body forces b and boundary traction t using a tensor
relations as

2 2
— o,dV=— o, JIdV 3.14
ViJa, " Vi Jo, (314

1
KISy
1 1
= / (opn) @ ydA — v (divey,) ® ydV
wJoQ, Qs

1 1
+ — / (oun) ® ydA — —/ (dive,) ® ydV.
Vi Joqy, Vo

v
I

Combining Equation (3.14) and the equilibrium equation with the consideration that the body force
acting on 2V for all values of y on this void domain is zero the stress tensor can be expressed as

o — VL [Jon, 6@ ydA = fo, e, ydv]. (3.15)
o

The Hill Mandel Principle principle states that the macroscopic stress power is equal to the volume
average of the microscopic stress power for any kinematically admissible motion of the RVE. This can
be given as

1
Om : €m = —/ o udV (3.16)
Vi Ja

I

for kinematically admissible microscopic strain rate €é,, where ¥}, is the kinematically admissible
fluctuation velocity space such that

éu = Vo, = ém + Vi, Uy € Y. (3.17)

Therefore Equation (3.16) can be reduced to

1 1 .
V/ oy €dV = V/ o (€m + Vo)AV (3.18)
I Q[L 12 Q[L

1 .
:o-m:ém—i——/ oyt Viu,dVv
Vi Ja,

hence
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1 .
7/ o Vi, dV =0 (3.19)
u JQ,

for Equation (3.16) to stand. When considering strong form of equilibrium equation and assuming that
body forces acting on the void domain are neglected, Equation 3.19 can also be expressed as

/ t-i,dA— [ b-@,dV=0 Vi,c¥, (3.20)
o, Q5
Since 7, is a vector space the variational Equation (3.20) only holds when
/ b.ndV =0 and t.ndA =0 Vnev,. (3.21)
Qs

a9,

For the uniform boundary traction constraint #»“" imposed by the boundary of the RVE, body forces
are relative to the constraints and are zero over the domain. In other words

b(y)=0 Vyeq, (3.22)
t(y) =o(y)n(y) =on(y) Vye€oQ,.

Similarly the periodic boundary condition ¥?¢"does not have body forces over the domain of the RVE
and from Equation (3.21) anti-periodic traction t is obtained on the boundary as

b(y)=0 Vye, (3.23)
tly)=—(y ) Vpairs{yT,y"} € 09,.

For the case of linear boundary condition 7! the boundary traction t are a response to 7" and
described earlier and the body forces over the domain is also zero. The Hill- Madel principle discussed
in Equation (3.16) reduces Equation (3.19) to

/ o, :VindV =0 (3.24)
o

Vn eV,

Assuming that at any time ¢ the stress at point y of the RVE is given by generic constitutive function ¢
of strain history efL (y) along with the equilibrium equation above, for a given macroscopic strain €, (t)
RVE equilibrium problem is defined such that a displacement fluctuation function u, € ¥, hence

o(y,t) =Y (e, (y)) (3.25)

G(em(t) + Viu,(y))t: VindV =0 Vnev,.
Q;,

The finite element approximation of periodic boundary conditions involves finding a discrete solution
version consisting of finding a vector @, € ”1/; of global nodal displacement fluctuations so that

G"() = [ Joyr BT 6y (e + B )dV] =0 v e s (3.26)

where B is the global discrete gradient matrix € is the microscopic strain components and 7 is global
nodal virtual displacement vector of the RVE and ”//: donate finite dimensional space of virtual nodal
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displacement vectors of mesh h and microscopic domain domain §2j,. The arbitrary space of fluctuations

and virtual displacement with periodicity on the boundary are defined as follows by Peric et al. [38]

Vs
7/; ={v=|vy| vy =v_p, (3.27)
v_

Where v;, vy and v_ represent vectors containing degrees of freedom of RVE interior and the portions
Q4 and Q_ of RVE boundary respectively. Uniform RVE boundary traction arbitrary space of
fluctuations and virtual displacement are defined as follows by Peric et al. [38]

U
yh = {v = LJ | Jop, Novy ®s ndA = o} (3.28)

Where vy is boundary degrees of freedom Ny is the global interpolation matrix associated with the
boundary nodes of the discretised RVE. The integral constraints vy can also be expressed in matrix
form as

C’Ub =0 (329)

In which C is the constraint matrix. Where C' is an elementary matrix which in 2D, for an element
with m nodes on the intersection of the RVE boundary and the element boundary is given as

er NﬁnldA 0 er annldA 0
ce = 0 Joe N§nodA ... 0 Jope N nadA (3.30)
er Nfl)ngdA er N‘inldA er NfﬂngdA er annldA

It is therefore prominent that v should be split in order to handle Equation (3.29) as

vy
Vp = | Vg (3.31)
Up

where f,d and p are the free ,dependent and prescribed degrees of freedom of the boundary of the RVE
respectively. Hence the global constraint matrix can be expressed as

C=[Cy Cq Cp] (3.32)
hence Equation (3.29) can be written as
Uy
[Cf Cd Cp] Val| = 0. (3.33)
Up

By removing the rigid body displacement in 3D we have 6 scalar equations and 3m — 6 variables where
m is the number of nodes on the boundary. hence the number of dependent variables is 6 therefore
constraint equation can be reduced to

vp =0 (3.34)

so that
[C; Cd [52 ] =0 (3.35)
and after manipulation of Equation (3.35) vgq can be expressed in terms of vy as
Vg = QUf (3.36)

and
- —Cd_ICf (3.37)
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Taking the above into account, the discrete space of fluctuation and virtual displacement of the RVE
are defined by
u;
ho_ _ —
Vi=qv=|uf||ug=avy . (3.38)
Uq

Considering Equation (3.38) and splitting the corresponding vetors and tangental stiffness matrix as
per the above analogy

k-1 k—1 k

R; ki kiy  kia Ot; u
Ry + |k kyr kpg (5’1720 |l mp | =0 Vn,ng (3.39)
Ry kai ko  Kaa adty any
which results in
k;; kif + kg hl ou; g . R; ket (3 40)
kfi + adei kff + kfda =+ adef + aded 5’&]@ - Rf + aTRd ’

after some manupulations. For linear boundary displacement that is where degrees of freedom
(fluctuations) of the boundary is zero the solutions follows the general linear solid mechanics problem.
Elastic materials are those that deform reversibly under applied loads and return to their original
shape once the load is removed. Therefore, the stress field depends on the small strain tensor, leading
to the formulation of a constitutive function o,, where

om =0 (€) (3.41)

From Equation (3.1) we get the boundary value problem an equation with kinematically admissible
deformation 7 € %, as
/

The set n and ¥, are replaced by finite element discritisised subsets as explaind earlier in Section 2.6
Such that the boundary value problem is reduced to global internal and external force vectors T, F
respectively such that,

o:VindV — b.ndV — / tndA =0 (3.42)
fL Qi BQH

Vne,.

R=T-F=0 (3.43)

where global forces are given by the finite elements where the virtual work for each element at node 1
element 1 is given by

T] = / oVN;dV (3.44)
vl

F%:/ ledV+/ tN;dA
vl v

Summation of all nodal forces {1,2,3,...,n} for all elements {1,2,3,...,e} containing node 1 and
subsequently assembling these nodal forces to formulate the global virtual work equation, where

T = O i:T;l (3.45)

j=1i=1

F-ULr

j=1i=1
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Newton-Raphson Solution is an iterative technique used to solve a system of non-linear equations due
to non-linear materials like plastic material, elasto-plastic, visco-elastic and for large strain analysis,
however when dealing with complex geometric shapes non linearity may also arise. This method works
by providing the initial guess of the solution and correction factor to adjust the guess. As a result
Equation (3.46) may results in a set of residuals as the solution converges quadratically.

sul+) — _g(®

©)
K G+1) T T TG+

(i+1) With solution : ul"t) = 4" )+ sultty) (3.46)

G+ T @+ (+D)

Where K is the global tangent stiffness matrix made up of nodal force change T? and F% from node 1
to Ty and F5 in node 2 which can be broken further into the constitutive K¢ , and initial stress K¢ ,
components where,

Ki, =K;,, +K; (3.47)

012

C12

K. = / VN; DV N,dV
v

K. = / VN; - 0V N2dV

012

Where N is the shape function associated with that node and D is the elastic matrix of material
properties such that contribution of all node connections co {co1, cos, cos, ...co, } is given by

n €
K=[]) K, (3.48)
co=11i=1
For linear boundary displacement that is where degrees of freedom (fluctuations) of the boundary is zero
the solutions follows the general linear solid mechanics problem, for periodic Boundary condition and
minimally constrained models as explained by Peric et al. [38] the boundary condition of the RVE are
non-conventional.

3.2 Automated Mesh Generation

For mesh auto-generation, a geometry file (.geo) like the one in Appendix [A.1] is created in C++ based
on the steps explained below by Figure (3.6).

Meshing algorithm

a. Choose Kernel Vi
b. Add 1|>oints
c. Add (llurves
d. Add Sl‘,urfaces
|

e. Add Volumes Repeat
| For N
f. Mesh Size Control RVEs

I
g. Mesh Quality control
|
h. Physical Groups
|
i. Save geo file
I

j. Save as msh file )

Figure 3.6: Algorithm Steps for Meshing



3.2. AUTOMATED MESH GENERATION 37

This geometry code file is constructed from a loop which varies a particular RVE parameter (like radii
of voids) to generate different RVEs, each file is saved with a different name. One of the loops used for
generating the RVE geometry in this study involves specifying the radii of spherical inclusions, with
separate loops for voids and inclusions. For RVEs with long cylindrical fibres, an additional loop is
employed to define both the fiber radius and the fibre spacing in the longitudinal and transverse
directions. See the Appendix [C.2, C.3, C.4, C.5, C.6] for further details . The final stage is to get a
mesh file (msh) for each RVE by systematically passing a geometry file to the Gmsh software, which
then automatically generates the corresponding mesh file from the geometry. Geometry file is created
using SetFactory ("OpenCASCADE") kernel at the top of the file. This kernel provides libraries and
tools for constructing and manipulating geometries. The geometry of the model is then built from
Points, Lines, Surfaces as described by Figure 3.6 as per Geuzaine and Remacle [13].

Point ( tg ) = {x, y, 2z, 1lc} where lc represent the mesh size around that point and z,y, z
represent the coordinates of the points. tg represents the tag number of the point. It’s noteworthy to
mention that the last entry lc, is optional and may be omitted, considering that there are alternative
methods for controlling the mesh size, as we will explore later. Figure 3.7 shows how the points appears
in the preview.

Point3 Point 6
Point 2 APOint. 7
Point 1 .Point 8

Point 4 .Point 5

Figure 3.7: Edge Nodes of the RVE with their tag numbers

Line ( tg ) = {Pig1, Pigo} where tg represent the line tag number while P4, and P40 are the tag
numbers of the two points connected. For example 1ine(1)={1,2} connects Point 1 and 2 to form Line
1 in Figure 3.8a.

Point 3 Line 11 Point 6
Line 2 ine 7
Point 2 Line 12 oint
Line 3|Line 1 Line 8|Line 6
Point 1 Line 10 Point 8
ine 4 Ling 9
oint 4 Line5 Point 5
(a) Edges of the microscopic RVE (b) Connected Edges of the RVE

Figure 3.8: Geometry generation of the RVE

Circle ( tg ) = {x, y, 2z, ... 1} and tg defines the circle arc tag number while x, y, and z
represent the start point tag number, centre point tag number, and end point tag number, respectively.
But if 4 or 6 expressions are given the first 3 will be the coordinates of the centre of the circle followed
by the radius while the next 2 (which are optional) indicate the angles at the start and end.
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Curve Loop ( tg ) = { tag-list } command create a closed loop where tg gives the tag number of
the curve loop and tag-list provide a list of all curves to be used in a closed wire. This curve loop is
used to create surfaces. In Figure 3.8 Lines 1 to 4 can be connected together as Curve Loop(2) = {1,
2, 3, 4} to form plane surface 2 in Figure 3.9. All lines must be converted to curve loops as
demonstrated by Figure 3.8b .

Plane Surface ( tg ) = {tag-list}, this creates a plane surface where tag number tg is created
from a list of curve loops. The first curve loop in the list describes the outer frame of the surface while
the the following curve tags in the list are considered voids in this boundary. For a plane surface
defining a void or inclusion, it should be defined separately since it has no common curves with the
external surface. In Figure 3.9a Plane Surface(2) = { 2 } since the surface has no voids. Other
plane surfaces of the RVE were created in a similar manner.

(a) Plane Surfaces of the RVE (b) RVE shell/wire

Figure 3.9: RVE Surface Generation

Surface Loop ( tg ) = {tag-list} create a shell for a surface loop with tag number tg from a list
of plane surfaces to make a desired shell. Surface loops are in turn used to create volumes. Figure 3.9b
was created by connecting all the plane surfaces in Figure 3.9a as Surface Loop(12) = { 2, 3, 8 ,
9, 10 , 11}

Volume ( tg ) = {tag-list} This command generate a volume with tag number tg from shells/
surface loop provided in the list. Similar to plane surfaces the first tag in the list represent the outer
domain while the rest will represent voids for this volume. Volumes representing inclusions are defined
separately. Figure 3.10a shows a volume created from surface loops.

Sphere ( tg ) = { x, y, 2z, r...} in which tg is the sphere tag number,z, y, and z are the centre
coordinates of the sphere with radius r. Figure 3.10b represents an RVE with a spherical inclusion.

(a) Elementary Volume to be assigned Phys-
ical Name "matrix" (b) RVE with a spherical inclusion

Figure 3.10: RVE Volumes

In Figure 3.10b The inclusion’s surface loop is defined separately and given name tag 13 such that the
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matrix’s volume is defined as Volume(2) = {12, 13} where the 13 is the sphere’s surface loop tag
number, 12 is the cube or the outer domain surface loop tag number.

Cylinder ( tg ) = { x, y, z, dx, dy, dz, r...} this command creates a cylinder with the
centre coordinates of the first circular face as (z,y, z) followed by the 3 numbers dz, dy and dz defining
its axis ,then the radius of the circular face. Extra expressions can be added or left out to describe the
opening angle.

(a) Before Boolean Command (b) After Boolean Command

Figure 3.11: Boolean operation for trimming the RVE

Boolean operations are used for creating intersections, unions, or differences as shown by Figure 3.11
where the command used BooleanIntersection{Volume{tg};Delete;}{Vulume{tag}

....... ;Delete;} was used to trim unwanted volumes. The first list is identified as the tool, while the
second list is the object. With deletion, either the tool or the object can be removed, thereby creating
new volumes, surfaces, or curves. This operation is used to trim unwanted surfaces or volumes. Mesh
size control is crucial for determining the appropriate element size in finite element analysis. There are
several ways the mesh size can be controlled, with five options explained fully by Geuzaine and
Remacle [13].

One of the Gmash operation used in this chapter is Mesh.MeshSizeFromPoint and
Mesh.MeshSizeFromBoundary. These involve specifying the desired mesh size at the desired nodes of
the geometry. The mesh is then interpolated around the point or boundary. The
Mesh.MeshSizeFromCurvature is one of the alternatives used in this study. This gives the number of
elements per 27 radians based on the curvature of the underlying geometry. Normally it is set to zero
by default in Gmsh. Using the Mesh.MeshSizeExtendFromBoundary operation the mesh sizes are
determined by interpolating from the surfaces or volumes of the geometry. Other mesh control
operations considered in this study involves using mesh size fields. This method specifies a general
target mesh size which can be donated Box, Distance, MathEval, PostView and Min.

°i"‘ 3 point 6

Point2 o
X

S\
\%“W«

(a) Mesh size from point (b) Mesh size field

Figure 3.12: 3.12a lc = 0.1 at point 2 and lc = 0.05 at point 4 and lc = 0.2 elsewhere, In Figure 3.12b
field[1]=Box where the box is the RVE with a uniform mesh size 0.2

For rectangular or triangular meshes Transfinite Line and extrusion commad generates triangles
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by default and quadrangles after using recombine. The Transfinite Line command produces a
structured mesh for a 4-sided shape after specifying how many grid points in the two opposite faces. A
commad Using Progression 1 can be used for uniform grading. Then each surface is specified to be a
structured mesh using Transfinite Surface and then recombine is used to get quadrilaterals.

Pomt 6

anr
Vi
i
Am

Jn
7

(a) Transfinite command (b) Recombine command

Figure 3.13: Hexahedron Mesh

Mesh quality and optimisation help to smoothen out the mesh by removing ill-shaped elements, some
of the commands used for quality control of the mesh include: Mesh.ElementSizeFactor which is used
to control global element size factor relative to the geometry, Mesh.CharacteristicLengthFactor
characteristic length of mesh element can be controlled using this commad. Mesh.OptimiseQuality is
switched on or off to enable the Gmsh default to get improved elements hence improving quality.
Mesh.Smoothing, using this command the number of iteration to improve element quality can be set.
Gmsh software offers various meshing algorithms that can be selected to improve mesh quality,
Mesh.Algorithm is used to choose from the likes of Delaunay, Frontal etc. There are other several ways
to improve mesh quality, all of which are fully explained by Geuzaine and Remacle [13].

Elementary entities (spheres, lines, points, surface and volumes etc) are combined to get the required
physical groups (inclusion, voids and matrix). All this provides the RVE domain required for the
problem and all this is handled by Gmsh’s geometry module. However by Gmsh default some file formats
such as mesh file only contain the elements that belongs to the specified Physical group. Therefore,
voids can be created by omitting certain entities when defining physical groups..

3.3 Using RVEs

Dettmer’s Mpap3 (Multi Physics Analysis Program) is utilised to handle an arbitrary number of 3D
RVEs which uses the mesh generated by Gmsh. The Mpap3 interface allows for the meshes to be
converted from 4-noded elements to 10-noded elements, hence improving the results further as
10-noded(quadratic elements) are better when accuracy and curved geometry representation matter
while the 4-noded (linear) elements are faster but less accurate. Mpap3 uses the finite element method,
and when small strains are applied to the RVE, the software generates the output stresses which can be
used to predict the effective composite material elastic properties. Figure 3.16 and 3.15 demonstrate
how the mesh size and order of an RVE can influence the results. It should be noted that the accuracy
of the results is not crucial at this stage. This analysis aims to illustrate the significant impact that
varying mesh sizes and order on the Young’s modulus, providing insights into the sensitivity of the
model to these parameters. Understanding these influences is essential for refining the modelling
approach and optimising future simulations. Figure 3.14 shows the two meshes used to illustrate the
influence of mesh size on the elastic properties.

Figure 3.15 shows the variation Young’s modulus with mesh size as fibre volume ratio to the matrix
increase while Figure 3.16 shows the variation of Poission’s ratio with mesh size with is a comparison
between 10-noded and 4-noded elements.
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(a) Fine mesh (b) Coarse mesh

Figure 3.14: A slice through a mesh of the RVEs with spherical inclusion used for experimentation
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Figure 3.15: Linear boundary analysis of an RVE with spherical inclusion

Four noded linear elements tends to overestimate the values of the Young’s modulus as illustrated by
Figure 3.16 and underestimates the Poisson’s ratio as shown by Figure 3.16. At very high fibre volume
ratios the accuracy tends to decrease as compared to lower fibre volume ratios. For lower volume ratios
both 4 noded and 10 noded tetrahedrons tends to give similar results. However a 10 noded coarse mesh
with quadratic elements tends to be superior to a 4 noded fine mesh with linear elements. Since the
fine 10 noded meshes generate more accurate results, a 10 noded element with fine mesh is used for the
following computations throughout the study.
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How w» changes as as fibre volume ratio increases
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Figure 3.16: Linear boundary analysis of an RVE with spherical inclusion

3.4 Example 1: Homogeneous Block

A homogeneous block of material of bulk modulus K of 100GPa and Shear modulus 10G Pa was used
for this example. The block is subjected to five experiments and the Youngs modulus £ and Poisson’s
ratio v were calculated. That is five sets of different strain vectors € are used to generate the
corresponding five set stresses o. 4-noded coarse and fine meshes and 10-noded coarse and fine meshes
are used to compute o. The results are then compared in order to select the right mesh. Figure 3.17
shows the RVE used for experiments.

Figure 3.17: A mesh of a homogeneous RVE block
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The homogeneous RVE block gave a value of 29.03G Pa for Youngs modulus and Poisson’s ratio of
0.4516, crucially this is the same values obtained from the general Hooke’s law equation. The RVE
produced same results for both fine and coarse meshes as well as for both 4 and 10 noded (linear and
quadratic ) elements. The size of the RVE does not affect the either the Young’s modulus or Poisson’s
ratio.

3.5 Example 2: Spherical Inclusions

The study investigates only one type of inclusions, modelled as spheres with same radii embedded
inside the matrix. The number of inclusions is varied hence a diverse range of Representative Volume
Elements (RVEs) of increasing size are generated. Each RVE undergoes five distinct experiments that
is each RVE is exposed to five different strains, and a total of six RVEs were considered. The

manipulation of the size of the cube allows for precise control of inclusion volume ratio which was kept
constant throughout this experiment. It’s noteworthy that inclusions enhance the composites’ strength.
In this experiment, inclusions are assigned higher bulk and shear moduli compared to the matrix. For
this part of research, we focus on six key parameters, inclusion radius, and center-to-center spacing, as
illustrated in Figure 3.18. Additionally, we set specific values for the remaining four parameters, matrix
shear modulus G, and bulk modulus K,, were assigned values of 10GPa and 100G Pa, respectively,
while inclusion shear modulus Gy and bulk modulus Ky were assigned values of 100G Pa and

1000G Pa, respectively.

center
to

center
spacin

Figure 3.18: Parameters of interest from the RVE.

Figure 3.19 below shows RVE models for spherical inclusions in a matrix used in this experiment.
Figure 3.20 illustrates the application of linear analysis to study the variation in elastic properties as
the Representative Volume Element (RVE) size increases, focusing on spherical inclusions. The graphs
reveal that larger RVEs yield larger overage stresses consequently more accurate results while using the
linear boundary condition. The convergence is quicker, and the graph remains nearly horizontal with
larger RVEs. However, it is essential to note that larger RVEs come at a cost, as the calculations
become more time-consuming.

It takes about 24 hours to run a larger RVE that for a 10-noded element for five experiments.
Therefore, achieving a balance is crucial in optimising computational efficiency. From the graphs in
Figure 3.20 , Figure 3.20b depict the variations in Poisson’s ratio v with increasing inclusions. In this
experiments, the volume ratio of fibres was maintained at a constant value of 0.053.

Figure 3.20 shows how the size of the RVE affects the elastic properties of the composite.

It can be inferred that the Poissoin’s ratio values increase and eventually plateau as the Representative



44 CHAPTER 3. MULTI-SCALE MODELLING

(a) Undeformed mesh (b) RVE Slice Through The Mesh

(c¢) Inclusion Arrangement After Cut-
ting (d) Deformed shape

Figure 3.19: The RVE of a isotropic block with spherical inclusions

Volume Element (RVE) size increases. Regarding Figure 3.20a, 3.20c and 3.20d, which represent
Young’s modulus F, Shear modulus G and Bulk Modulus K respectively, the values start at a higher
magnitude and decrease before levelling off at a lower values. Consequently, it can be concluded that
larger RVEs can yield more accurate elastic properties for this specific experimental setup.

As the RVE increases in size the results improve because a small one may include few inclusions not
enough to represent the microstructure, as RVE grows it includes more heterogeneities giving a more
statistically representative sample of the material. Smaller RVEs are strongly influenced by boundary
conditions while larger RVEs reduce this impact on the overall response so that the results approach
bulk behaviour. For Larger RVEs local fluctuations average out hence the calculated effective
properties tend to converge towards the true homogenised value of the material. In general increasing
the number of macrostructural features inside the RVE makes average response more stable and less
noisy hence improving accuracy.
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Figure 3.20: How increasing RVE size by increasing number of spherical inclusions in the RVE affect
mechanical properties

3.6 Example 3: Matrix and Fibres

This example explores long cylindrical isotropic inclusions that extend throughout the entire RVE.
These lead to a transversely isotropic composite, with inclusions modelled as cylinders with the same
radii. The number of inclusions is varied, resulting in different Representative Volume Elements
(RVESs). Each RVE undergoes five distinct experiments, with a total of six RVEs considered. The
inclusion volume ratio is kept constant throughout this example. No voids are considered in this
experiment, and the inclusions are assigned higher bulk and shear moduli compared to the matrix.

For this transversely isotropic RVE, we focus on six key parameters namely the inclusion radius and
center-to-center spacing, as previously illustrated in the diagram in Figure 3.18. Matrix shear modulus
G, and bulk modulus K, were assigned values of 10GPa and 100G Pa, respectively, while inclusion
shear modulus G ¢ and bulk modulus Ky were assigned values of 100G Pa and 1000G Pa, respectively.
Figure 3.21 below illustrates the RVE model for cylindrical inclusions with the matrix.

Figure 3.22 investigation into the Influence of RVE size on Elastic Properties. From Figure 3.22, Figure
3.22a, 3.22b, 3.22c and 3.22d represent the variations in elastic properties namely the longitudinal
Young’s modulus F4, transverse Young’s modulus Fs, longitudinal shear modulus G12, and transverse
shear modulus Ga3 with an increasing RVE size, respectively. In this example, a constant fibre volume
ratio of 0.373 was maintained. For these first four Figures 3.22a, 3.22b, 3.22c and 3.22d, it can be
deduced that both Young’s modulus and shear modulus exhibit an initial faster decrease from higher
values, followed by a slower decrease, eventually levelling out as the RVE size increase.
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Figure 3.21: Slice through the RVE

This observation aligns with the notion that larger RVEs contribute to more accurate results. How-
ever there is last point in 3.22b appears to be slightly above which may be due to some calculation
errors. As for 3.22e representing longitudinal Poisson’s ratio the graph remains constant as the RVE size
has no impact on the Poisson’s ratio in longitudinal direction because the response in this direction is
dominated by the continuous fibres within the matrix which carry most of the load and dominates the
longitudinal behaviour. Increasing the RVE add more repeating microstructure, but the longitudinal
behaviour is already fully captured even in a small RVE. Figure 3.22f, representing transverse Poisson’s
ratios v13 indicates that the values start at lower magnitudes and gradually increase, forming a plateau.
Consequently, it can be deduced that larger Representative Volume Elements (RVEs) can produce more
accurate and better elastic properties for this specific experimental setup.
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Figure 3.22: Linear boundary analysis of an RVE with cylindrical inclusions
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Chapter 4

Homogenisation

This chapter focuses on treating materials within a composite with different constituents or similar
constituents as a homogeneous material with effective properties.This process determines the
macroscopic or effective elastic properties such as Young’s modulus F and Poisson’s ratio v which are
based on the distribution and properties of the microscopic constituents. This process tend to simplify
the analysis and design of materials. Homogenisation may in general include determining effective
thermal conductivity or electrical conductivity however in this chapter the focus is only on effective
elastic properties. The method used in this chapter uses the Representative Volume Element (RVE)
sample of the material together with FE method to develop homogenisation technique for the overall
elastic properties using the least square method to solve equations in Chapter 2.

Various models have been developed previously to predict macroscopic composite elastic properties
empirically such as those explained by Daniel and Ishai [7], Halpin and Kardos [17].The methods uses
fibre volume fraction, matrix and fibre properties and ignores the shape and distribution in the RVE
hence better predictions are made in the longitudinal direction but they underestimate the transverse
properties Daniel and Ishai [7]. Huang et al. [20], Sun and Vaidya [46] indicated that the prediction of
transverse properties using these empirical models produces scattered results. These methods normally
use regular shapes to make predictions even though the use of irregular fibres is becoming more
common. The most commonly used technique to determine the effective elastic properties of composite
is through experimental methods which is expensive and difficult since mechanical properties depend
on geometry therefore finite element method has been used as an alternative method as varies
geometries can be analysed quicker and simpler Huang et al. [20].

The method implemented in this chapter is an iterative method in the MATLAB built-in background
algorithm to approximate the solution. The values of the Young’s modulus and the Poisson’s ratio are
a good approximation provided the residual is greatly reduced. Least square method provides accurate
results, can handle larger data sets and the implementation is easier using MATLAB package than
other programming languages. The method is quicker than other homogenisation methods which are
already in use and very easy to understand.

The MATLAB function used in this chapter is an already developed built in function in MathWorks.
The function used, 1sqr, is not looked into deeper details in this study rather a summary of an
algorithm used to solve equations of the type Ax = rhs is discussed briefly before making use of the
built in function. The equations described in Chapter 2 are rearranged and expressed in the in the
form Az = rhs to solve for the unknown parameters Poisson’s ratio v and Young’s modulus £ which
are constants in the elements of vector x. rhs represents a vector containing the strains € and A
represent a matrix constructed from stresses o output of the corresponding strains from FE method.
Matlab scripts files are then developed for the isotropic and transverse isotropic material to compute
the effective Youngs modulus F and the Poisson’s ratio v of the macrostructure in longitudinal and
transverse directions. Figure 4.1 shows steps followed towards this homogenisation.

48
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Figure 4.1: Homogenisation Methodology Utilized

4.1 Isotropic Elasticity

From Equation (2.38), it follows that the stress-strain relation for an isotropic material can be
expressed as

£1 £+ —L -2 0 0 0 o1
€2 -2 L - 0 0 0 o2
v v 1
€3 _ - E - E 0 0 0 03
Y4 0 0 0 L o0 0 |“|n (41)
Y5 0o 0 0 0 & 0 T5
Y6 o 0 0 0 0 & T6

From Equation (4.1) above, we obtain six equations to solve for two unknowns. Therefore, only one
experiment should be sufficient. The following relations are obtained

v v
=01—= — — 03— 4.2
€1 01E 02E 03E ( )
1 v v
62—0’25—015—035
1 v v
€0 = Oa— Z s
3 U3E UlE GQE
_9 1+v
Y4 = 4Ty E
1+v
=2
5 T5 E
1+v
=2
Ve T6 E

Equations (4.2) can be rewritten further as
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1
€1 :0'15—[0'2-1-0'3]% (43)
62—0’2E 01 g3 E
— l [ + ]Z
63—0'3E g1 g9 E
1+v
74 = 27—~
1+v
¥s = 275] E J
1+v
=2 .
Y6 76 B ]

Hence, we can generate a 6 x 2 matrix A for which the columns are multiplied by a vector made of
coeflicients containing % and fZrespectively, which can be used together with the 1sqr method after
several experiments to solve for v and FE. Least Square QR (LSQR) is a mathematical technique used
to solve linear least squares problems. The method is well-suited for large, sparse linear systems where
traditional direct methods may not be suitable due to memory constraints. This iterative method
works by minimising the 2-norm residuals at each step. This system of equations takes the form

o1 02+ 03 €1

o2 01+ 03 1 €2

o3 o1+o0 E €
3 1 2 % _ 3 (44)

T4 T4 v Y4

T5 T5 B 75

T6 T6 V6

which can also be written as

Ax = rhs. (4.5)

where z is a vector of unknowns relating to input vector rhs, and A is a matrix made of known
outputs, the LSQR algorithm tries to solve the Equation (4.5) for x using least squares to minimise the
normal residual r if A is consistent. Otherwise, the method solves a least squares solution for x that
% after several iterations for inconsistent coefficients of A. A consistent system has a

solution while inconsistent system has no solution in the column space of A.

minimises

r=rhs — Ax (4.6)

|lrhs — Ax||
[rhs||

From the [x, flag, r] = 1sqr(A, rhs) in MATLAB codes above x is the solution vector
representing the solution of unknowns in Equation (4.4), flag is used to show convergence status of
1sqr algorithm while r is the residual. The matlab built in function 1sqr uses the algorithm which is
fully explained by Paige and Saunders [36]. Algorithm 1 have been borrowed from Paige and Saunders
[36] and these are the steps followed by the MATLAB built in function 1sqr to solve Equation (4.5).
This chapter does not focus on full details of the procedures, rather a summary of the algorithm is
provided . Paige and Saunders [36], MathWorks [31], Barrett et al. [2] provided a more detailed
methodological protocol .

minimase

From Algorithm 1, v is a sequence of vectors and « and 3 are scalars such that A is a triagonal form.
Paige and Saunders [36] explained that this scalars are chosen such that a; > 0 and 5; > 0 such that
l|lui|| = [Jvs]| = 1 where ajv; = ATu; means v7 = ATy, oy = ||v1]] and v1 = (1/aq1)v;. rhs is the the
starting vector and is used with A in the first bidiagonalisation to generate quantities which will be
used to solve min||rhs — Az|| . This quantities eventually lead to a natural least square problem
min||f1e1 — Bryg|| which is explained in details by Paige and Saunders [36]. The algorithm is continued
until a certain tolerance achieved where
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Algorithm 1 1sqr algorithm

Initialise -
Biui = rhs,cnv1 = ATuy, w1 = vy, 20 = 0,p1 = a1, ¢1 = fi.
For : = 1,2, 3,....repeat steps 4-
Continue Bidiagonalization.
Bit1uiv1 = Avy — aqug
iy10ip1 = ATuy — Bigav;
Construct and apply next orthogonal transformation
1
pi = (p7 +Bi)?
C; = Li

Pi
B'i+1
Pi
: 9i+1 = Si041
D Pitl = Gy
¢i = cidi
Pit1 = 5iP;
: Update x and w
Ty = Ti—1+ (%)wz
Oit1
Pi

—
<

S; —

e T e e
@ Tk Y

._.
3

Wi41 = Vi1 — ( )wz

EXIT

=
i

|lrhs — Ax||
tol sl (4.8)
Normally the MATLAB default’s tolerance is set to 1 x 1078 however this can be adjusted to improve
the accuracy. From the experiments where the material is subjected to strains and out comes the
stresses, matrix A is constructed from the stresses o and the rhs is constructed from the strains e
values hence the values of the Young’s modulus F and poisson’s ratio v can be approximated using this
method above. However this algorithm is already built in MATLAB functions (1sqr) hence a script file
is developed to carry out the computations in MATLAB with stresses and strains as inputs data from
the experiments. Although to completely solve this problem one experiment might be enough, five
experiments that is five sets of stress and strains vectors were used to further improve the accuracy.
This was done to average out random errors to better estimate the true value. Carrying out more than
one experiment help to detect and handle outliers hence improving reliability.
Using the MATLAB command 1sqr, the best approximation of v and E can be found by solving
Equation (4.1) for the lowest normal residual. The solution is achieved by providing strains and their
corresponding output stresses from experiments carried out using the finite element method and using
those results as input data. This process is summerised in the MATLAB code file in Appendix B.1.

4.2 Transversely Isotropic Elasticity

For a transversely isotropic material, Es = E3, G12 = G135 and v12 = 113 therefore equation (2.38)
provides the stress-strain relation

1 v v T
€1 @ _IE% El‘zz 0 0 0 o1
£2 ﬁ Es ﬁ 0 0 0 D)
s|_ |- B & 0 0 0 o3
wlTlo 0 0 & o0 o | Yn (4.9)
Vs 0 0 0 0 & 0 75
Ve 0 0 0 0 0 &= 6

where Goz = from Equation (4.9), we obtain six equations to solve for six

Eo
2(1-v23)”’
unknowns. Therefore, a minimum of one experiment sufficient. Expanding Equation (4.9) the relations
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1 V12 V12
€1 = 01— — Oy — g3 =2 4.10
1 01E1 U2E2 USE2 ( )
g g 12 e
2 5, 1B, 38,
g g V12 V23
3 55, 1B, 2
27’4
Y4 =S5
Gas
27’5
V5= A
G2
27—6
Y6 = ~—
G2
are obtained. Equations in (4.10) can be rewritten further as
1 V12
=01— — — 4.11
€1 =01 B, (o2 + 03] o (4.11)
e — gL g2 Vs
2 25 B, 5T,
S S (B |
3 5, B, 2 E,
27’4
V4 = By
2(1—va3)
27’5
V5= A
G2
27—6
Y6 = S
G2

hence, we can generate a 6 x 5 matrix A where the columns represent coeficients to E%

1 vio Va3

v By’ Ey 0 Fp

and G%z respectively contained in each equation. This matrix can be used together with the lsqr
function after an experiment to solve for vy9, V23, E1, Fa, G12, and Gas. Therefore Equation (4.9) can be

rearranged as

o1 0 09 + 03 0 0
0 () g1 g3 0
0 o3 o1 o 0
0 27y 0 —214 0
0 0 0 0 75
0 0 0 0 76
Equation (4.12) can also be written in the form
Ax = rhs.

S
E
S|
E> €9
x| B =2 (4.12)
Y4
Va3
E> V5
1
Go V6
(4.13)

Using the MATLAB command 1sqr, the best approximation of v15, va3, E1, Ea, G2, and Ga3 can be
found by solving Equation (4.12) for the lowest normal residual. Appendix B.2 summarises this

computations in a MATLAB code.



4.3. ANALYTICAL MODELS 93

4.3 Analytical Models

According to Daniel and Ishai [7], analytical method try to describe the overall/effective elastic
properties of an RVE as a function of its geometry and its inclusion’s elastic properties. Several
methods have been developed the majority of which are good in predicting longitudinal properties
however these methods may not be good in transverse directions as they do not take into account the
shape and distribution of fibres in this direction. This section uses models developed by Daniel and
Ishai 7] . Equation (4.14) expresses the effective property of a composite as function its constituents
that is

Ccr :f(CFaOmanaSaA) (414)
where
c* is the average composite stiffness
Cy,Cn is the fiber and matrix stiffness respectively
Vy is fiber volume ratio
S, A is the geometric parameters describing the shape and alignment of the fibres respec-

tively.

The following elastic properties were analysed using this method.

Ey, By, B3 Young’s moduli
Gi2,Ga3,G32 shear moduli
V12, V23, U32 Poisson’s ratio

Parallel model (Voigt) and series model (Reuss) are the approaches used in the mechanics of materials
to describe the elastic properties of composites with the assumption that both the matrix and inclusion
undergo uniform strain. Hence parallel model with the relation

C* = VeCr + Vi Gy (4.15)
is obtained where C*, Cy, Cy, is the composite, fibre and matrix stiffnesses respectively. In compliance
form

S*=ViSp+ VS, (4.16)

where S*, Sy, Sy, is the compliances, composite fibre and matrix stiffness respectively. Since the

compliance matrix is the inverse of the stiffness then it is true to assume S* = = . Hence we are left

=& .
with series model where

1
* fr—
C —_— m- (4.17)
c; T Cn
In practice stresses and strains in a composite material are not uniform therefore upper and lower
bounds of the stiffness are normally used as the solution lies between these bounds. As a results the
following limits as provided by Daniel and Ishai [7] are used

1

Vi Vi
Cy Cm

<C*< Vfo + Vi Con. (4.18)

Halpin Tsai relations interpolate between lower and upper bounds. The Halpin Tsai equations are
based on self-consistent micro-mechanics model. Halpin Tsai developed a reduced and simpler method
that accommodate a variety of geometries by showing that materials can be modelled mathematically
as laminated systems. Therefore the relations can be rearranged to give the following simpler relations
for a generalised elastic property P* as explained by Daniel and Ishai [7] and Halpin and Kardos [17].
This relations can also be used to determine the properties of composites with discontinuous fibres
orientated in the loading direction Vinod and Aradhya [50]. This relations can be summarised as
P 1+ (nVy

= 4.19
P, 1—nV; ( )

where
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_ Pf/Pm—l
Pf/Pm+<

P* represents the composite properties for example Fy, G192, Ga3, V12 and many more while the
subscript m and f represent matrix and fibres respectively while V; is the fibre volume ratio. ¢ is a
reinforcing efficiency and depends on fibre geometry, distribution and loading condition. The properties
of a unidirectional lamina depend on the fibre volume ratio, which in turn depends on the packing
order of the fibre. Figure 4.2a shows examples of some generalised packing geometries and their
relationship with inclusion volume ratio in terms of spacing and inclusion radius.

n (4.20)

2R;
- 2R
s
| | | |
L P —
2r 2R 2r 2R
(a) Rectangular Packing (b) Square Packing (c¢) Hexagonal Packing

Figure 4.2: Packing Order Geometries

Vi = () mRg) (rectangular packing)
Vi = (% %T(%)Q (square packing)
V= ( ® \/3))(%)2 (hexagonal packing)

The direction parallel to the fibres is referred to as longitudinal direction see Figure 4.3. Fibres tend to
enhance the effective properties of the composite when the loading is parallel to the fibres. A parallel
model also known as rule of mixtures results in Equation (4.21) and (4.21) below from Daniel and Ishai
[7] with the assumptions that there is no slipping in the matrix to fibre interface. Using the parallel
model, the longitudinal Poisson’s ratio and longitudinal modulus are

vi2 = Vyvigy + Vipum, (4.21)
E = VfElf + Vi En, (4.22)

where vy is the longitudinal Poisson’s ratio of the fibres and v, is the Poisson’s ratio of the matrix.
For isotropic material Ey and viay are taken as Erand vy respectively. It should be noted that these
mathematical models for longitudinal properties of unidirectional composite is quite accurate Sun and
Vaidya [46]. Using the self-consistent method, which involves strain-displacement, constitutive
relations, continuity conditions at the fibre-matrix interface, and regularity conditions at the centre of
fibres, Daniel and Ishai [7]| derived a more accurate expressions for the longitudinal modulus and
Poisson’s ratio as

4(1/m - Vlgf)szKmeVme
KiK,, + Gm(Vfo + Vi Kin)
(Vm — v1ag)(Km — Kp)GmVin V)
KiK,, + Gm<Vfo + Vme)

FEi = VfElf + Vo B + (4.23)

Vig = Vfl/lgf + vam + (424)

where k; is the bulk modulus of the inclusions and k,, is the bulk modulus of matrix. For most of
composites the last term of the two equations above is not important hence making the rule of
mixtures a good approximation. In case of an isotropic material with Young’s modulus £ and Poisson’s
ratio v, its plane bulk modulus can be expressed as shown by Equation (4.25).
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01
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Figure 4.3: Longitudinal loading.

G E E E
Ke= Kt 3 =502 " 6(i+0) ~ 201+ 0)(1—20)) (4.25)

Transverse elastic properties refers to the direction that is perpendicular to the fibre direction as
illustrated by Figure 4.4 . The fibres considered here are assumed to be of uniform diameter and
properties. The equations developed here assumes a model made from a layer of fibre and matrix
material where each layer is perpendicular to the direction of loading with each layer carrying equal
load Sun and Vaidya [46]. Using the series model and assuming the layers deform elastically the
transverse modulus is

1 _ Vy Vin

_ Y Ve 4.26
E> Esy Ep (4.26)

02

T

|

02

Figure 4.4: Transverse loading.

that is
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E2fEm
Ey= ———7— 4.27
2" ViEpm + Vi Eoy (4.27)
where Eyy is the transverse modulus of fibres. Daniel and Ishai [7] indicated that E,, is usually
replaced by
’ Em
E (4.28)

mT = v2,
where v, is the Poisson’s ratio of the matrix. This is intended to account for limitations imposed on

the matrix by the fibres in the fibres direction. However, this equation tends to underestimate the
transverse modulus hence Halpin-Tsai relations are introduced

B (14 (V)

Fy=—7-—>"77 4.29
= B (429)
Where
Eyy — En
== -m 4.30
"= By 1 B (4.30)

( is the curve fitting parameter obtained experimentally on values of Fs. ( is usually between 1 and 2.
For hexagonal packing ¢ is assumed to be 1 and 2 for square arrays. Sun and Vaidya [46] indicated that
¢ of 2 may be used for fibres with circular and square cross sections. Therefore when ¢ = 1 the
equation for Fy above can be written as

(14 Vy)Eop + Vo, By
Es=F,,

In special case of isotropic fibre Fs; can replaced by Ef As results transverse modulus as function of

(4.31)

fibre volume ratio can be obtained by Halpin Tsai method. Where m = %, Figure 4.5 shows the
variation of the in-plane Young’s modulus with fibre volume ratio for 3 coﬁaposites with m =1, m =10
and m = 20. This plot illustrates how the relative stiffness of the fibre and matrix, combined with fibre
content, influences the overall stiffness of the composite and guides efficient, optimised design.

20 fibre ratio vs Modulus ratio
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m=20 [

16 .

14

(modulus ratio)

m
o
T

E,/E
[op]

0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1
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Figure 4.5: Modulus ratio vs fibre ratio
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Using the self-consistent model, the transverse modulus can be related to the bulk and transverse shear
modulus as explained by Daniel and Ishai [7] as

1
By = — — (4.32)
1K, + 4G23 + By

where

Kzf + Gm)Km + (Kzf — Km)Gme
(Kop 4+ Gm) — (Kop — K Vy

Ky = (4.33)

and

G23 _ Gm(Km(Gm + G23f) + 2G23me + Km(GZ?)f - Gm)vf) (4 34)
Km(Gm + ngf) + Qngme — (Km + 2Gm)(G23f — Gm)Vf '

Also the transverse Poisson’s ratio vo3 can be related to Ko, E1, Es and vy by

Fy 5 Eo
Vo3 =1 — —— — 2uiy—.
2 2K, V2R
For materials with transverse isotropy in planes 2 and 3, it has already been proven that the transverse
shear can be calculated as

(4.35)

2(1 —|— V23) ’
In the context of shear modulus, one can use a similar series model based on the mechanics of
materials, involving an interchange between the matrix and fibre. However, it is noteworthy that in the
case of shear deformation vi2¢ and +,,, the dominance leans more towards the matrix +y,,. Therefore
the average RVE shear deformation 715 as indicated by Daniel and Ishai [7] is given as

Gas (4.36)

M2 = 712f Vs + YmVim (4.37)
or
T12 T12 T12
T2 T2y T2y 4.38
Giz  Guy ' Gm (4.38)
hence

1 Vy Vin
- 4 4.39
G2  Giay Gp (4.39)

Equation (4.39) can be written as

GIQme

G = . 4.40
2 ViGr + Vi, Gaay (4.40)
From Halpin Tsai relations
Gm(l + CUVf)
Gpo=—7—"2—+- 4.41
= Sl (L41)
where
Gap — G,
=_= ™ 4.42
"= Gy + G (4.42)
Therefore when ¢ =1
(G12 + Gm) + Vf(G12f - Gm) (1 + Vf)Guf + VinGm
Gi2 = Gy =Gn 4.43
2 (Gi2f + Gm) — V§(Gi2f — Gr) VinGizy + (1 4+ V5)Gyy, ( )
and from the self-consistent model
1
Gy = Gy S VD Gr2s + VG (4.44)
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Interchanging matrix and fibre designations gives the following bounds

(l + Vf)Glgf + Vi G
"VinGi2s + (1 + V)G,

(14 V)G + ViGiag

G
ViGm + (14 V) Groy

< G2 < Gray (4.45)

4.4 Example 1: Homogeneous Block

This is an example of an homogeneous RVE block with uniform properties throughout the RVE see
Figure 4.6, that is the matrix only of bulk modulus of 100G Pa and a shear modulus of 10GPa. The
purpose of this experiment is to compare the results from the least squared (1sqr) method and
analytical method.

Figure 4.6: Homogeneous Block RVE mesh

Remarks

The Youngs modulus of exactly value of 29.03G Pa together with Poisson’s ratio of 0.4516 was
recovered using the least square method. By using the elastic moduli for homogeneous isotropic
material formula, 29.03G Pa and 0.4516 were also recovered. For 1sqr method the Young’s modulus
and shear modulus were achieved at a very low residual value of 5.7902 x 10~'6. Changing the size of
the mesh or using larger/smaller elements had no effect on the values of E and v. The use of either 4
noded elements or 10 noded elements also had no effect of the final values of E' and v. For each
experiment carried out the same values of E and v were recovered. The residual correspond to the
machine tolerance and the exact parameters F and v are recovered as expected.

4.5 Example 2: Spherical Inclusions

Figure 4.7 shows a slice of an isotropic block made of two materials being the matrix of bulk modulus
K of 100GPa and shear modulus G of 10GPa. The isotropic block is made up of matrix and spherical
inclusions with K of 1000GPa and G of 100G Pa. The inclusion are arranged in a square packing such
that elastic properties are similar for both longitudinal and transverse directions. A 4 x 4 x 4
arrangemeant was used for this test. A total of six representative volume elements (RVE) were used
where each RVE has inclusions of a specific radius to give a specific desired inclusion volume ratio.
Each RVE is then subject to five different tests to give corresponding stresses. The results from the
least square analysis are compared to the Halpin Tsai which takes the ( to be between 1 and 2 as
indicated by Daniel and Ishai [7] and the results are shown in Figure 4.8.
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99

Figure 4.7: A Slice Through Microscopic -RVE with inclusion volume ratio 0.2

Figure 4.8 shows a comparison between the least squares method employed and the analytical methods.
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Figure 4.8: Comparing the experimental results to Analytical methods for an isotropic material

Figure 4.9 shows how the residuals change as the radii of inclusions increases, all the residuals are
smaller and within 5% accuracy hence supporting the reliability of the results.
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How the residual changes as volume ratio increases
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Figure 4.9: Residual as volume ratio increases

Remarks

The results for the Youngs modulus in Figure 4.8a is within the bounds of the halpin Tsai relations. At
very low volume ratios the least squared method has produced the results which are within 0.5%
accuracy as shown in Figure 4.9. These results support the example in Section 4.4 because at lower
volume ratios the diameter of the inclusions are so small to an extent of being unnoticeable hence the
material approaches state of being completely dominated by the matrix. In Figure 4.8 as volume ratio
increases the Young’s modulus in Figure 4.8a and shear modulus in Figure 4.8b of the composite
increases. The poisson’s ratio of the inclusions and the matrix are equal as results it is expected that v
of the composite to remain within 0.4516 as the volume ratio increases as shown in Figure 4.8b.
Increasing the volume ratio results in an increase in the nominal residuals from the least squared
method developed. The inclusions becomes noticeable within the matrix hence normal residual
increases. An increase from volume ratio of 0.01 to 0.3 lead to 1.8% increase in normal residual. Figure
6.14 shows how the residuals changed as the volume ratio changes. The comparison between the
developed homogenisation method and the corresponding analytical methods demonstrates good
agreement as the values consistently lie within the theoretical upper and lower bounds. Furthermore
the results are achieved at lower normal residuals, indicating both accuracy and stability of the
solution. This results validate the reliability of the adopted approach and confirm its capability to
capture the expected behaviour within analytical limits.

4.6 Example 3: Matrix and Fibers

For this example a transverse isotropic block of an RVE is considered. The RVE is made of long
cylindrical fibres that run from one side to the opposite side and are embedded in the matrix. To
control volume fraction ratio the radius of the fibres is varied to get six different volume fraction ratios
hence six RVEs were generated. For each experiment in order to improve accuracy five experimental
tests were carried out. The constituents has similar elastic properties as in Section 4.4. A square
packing order was also used for this experiments and the results of the least square method are
compared to analytical methods in Section 4.3.Figure 6.14 below. show the arrangement of continuous
fibres in the RVE used for this example.
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Figure 4.10: Slice through an RVE whose volume ratio is varied between 0.1 and 0.75

Remarks

As explained by Daniel and Ishai [7] mechanics of materials predictions are adequate for longitudinal
properties that E; and vq5 for unidirectional continuous fibre composite as longitudinal properties are
not sensitive to shape or packing of the fibres. However this method tends to underestimate transverse
properties Gio3 and FEs as they are sensitive to shape and distribution of fibres. Figure 4.11b and 4.11e
shows how well this analytical method coincides with the least square method for the longitudinal
properties, however for the graphs for transverse properties as shown by Figure 4.11a, 4.11d, 4.11f and
4.11e these least squared method results are higher than those obtained using Section 4.3. Therefore
the shape and distribution of fibres play an important role in transverse direction.

Unidirectional fibres are used in marines, aerospace and automotive. Composite microstructure is
dependent on volume fraction, fibre and matrix types such that any change in this properties results in
a completely new composite with different properties Huang et al. [20].Carrying out experiment in the
laboratories is time consuming and expensive as the properties depends on so many parameters such as
shape and size of both fibre and matrix. Sun and Vaidya [46] indicated that the overall behaviour of
composite depend also on both physical and chemical interactions therefore one set of experimental
measurement results in properties of a fixed fibre matrix system. Sun and Vaidya [46] also indicated
that semiempirical methods may not be reliable for component design as the presents difficulties in
predicting transverse properties of unidirectional composite. Hence this computer modelling of
composites may be the solution.

Huang et al. [20] concluded that when the fibre shape becomes irregular the geometry of the fibres
becomes even more important in determining transverse elastic properties. The study went on to
propose three geometry parameters namely the square root of ratio of fibre perimeter to fibre cross
section, fibre width in the loading direction and fibre width in the non loading direction. It was found
out even though higher values of the other two parameters increases the value of transverse properties,
higher values of fibre width in non loading direction had a negative influence. Huang et al. [20]
concluded that shape should be considered to provide correct transverse modulus.

The residuals are observed to increase as the volume ratio increases. Although there is an increase in
the normal residual the accuracy remains within 10% hence reasonable enough to be used as a
homogenisation tool for effective elastic properties. Although in Section 4.6 the transverse isotropic
material considered has only one orientation there are other factors which my influence both the
longitudinal and transverse strength and stiffness. The distribution of the load between the matrix and
the fibres is affected by orientation of the fibres. Since inclusions in this study are assumed to have
superior properties compared to the matrix, they tend to be effective when they are parallel to the
loading loading direction. Fibres strength and stiffness also play a role in the overall composite effective
properties. Interfacial conditions also influences the mechanical properties and performance of
composites as they regulate the load transfer between the fibres and matrix. There are many other
factors which influences the behaviour and effectiveness of composites in reality including but not
limited to discontinuous fibres and residual stresses in the constituents and at the interface Sun and
Vaidya [46].
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E2 Comparison: Experimental vs Analytical
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E1 Comparison: Experimental vs Analytical
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Figure 4.11: Experimental results vs Analytical methods for a transversely isotropic material
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63



Chapter 5

Machine Learning Enhanced
Homogenisation

5.1 Objective and Outline of Methodology

The study aims to utilise neural networks to determine the elastic properties of composites using the
homogenisation results obtained from Chapter 4 so that effective properties from any combination of
different parameters of the RVE can be determined without the need to create a new representative
volume element and repeating the procedures in Chapter 4. Neural network can learn complex
relationships and nonlinear behaviours directly from the data. Their strength in pattern recognition
and prediction enables application across diverse fields of engineering which makes them a perfect
choice for enhanced homogenisation compared to traditional modelling approaches. Subsequently, an
optimisation tool which utilises this trained neural network is used to design a better material as
elaborated in the subsequent chapter. The objective of this enhanced homogenisation is to provide a
faster and simpler solution as it reduces computational cost and time consumptions compared to least
square homogenisation technique in Chapter 4 which provide elastic properties for particular RVE with
specific geometric parameters. The elastic properties here are estimated by this trained network rather
than going through the FE method and least squared homogenisation method over again so that more
RVEs can be analysed for optimisation in later stage. With this trained network, optimal design
parameters can be selected to enhance the elastic properties of the composite in relation to cost,
weight, or any parameter of interest.

An automated geometry file (.geo file) is generated using a C++ code file with loops to control the RVE
geometry. Any change in RVE geometry/parameter creates a different RVE. The RVE generated has
specific elastic properties for that particular geometry and fibre distribution/packing. The geometry file
is then systematically loaded into another software called Gmsh, which converts the geometry file to a
mesh file (.msh file). Mesh file is loaded into Dettmer’s Multi Physics Analysis Program software
(Mpap3), which uses the finite element method where small strains € are applied to the RVE to generate
the corresponding stresses o. Each RVE is subjected to five experiments and the corresponding output
stresses from Mpap3 are written to a file. Using MATLAB codes in Appendix [ B.3, B.4, B.5], stresses
and strains values are converted to effective elastic properties for each RVE such as bulk modulus K
and shear modulus G.

Section 5.4 in this chapter considers two radii combinations (spherical void and inclusions) to generate
different RVEs for training. These radii are converted to volume ratios then used as inputs together
with their corresponding K and G as output to train a network so that homogenised properties within
that particular radii combination ranges can be estimated. Section 5.5 considers discontinuous
cylindrical fibres arranged in a brick like pattern. Non dimentionalized spacing (spzy,. = *%) between
bricks in the x,y, z directions and the aspect ratio (o = é) are varied to generate several RVEs. These
four parameters are then used as inputs while their corresponding elastic properties are used as outputs

to train a neural network.

With the results validated in Chapter 4 through comparison with other methods, the subsequent steps
will involve neural network training. This training aims to extrapolate the elastic properties for the

64
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RVE geometry that were not included in the experimentation. However, it is imperative to acknowledge
that the attainment of optimal results is constrained within the bounds of the training data’s geometry
parameters. For instance, if the minimum and maximum radii of voids and inclusions are set at 1 and 5
units respectively in the training dataset, then the trained network will perform optimally within the
range of 1 <r < 5. Consequently, the trained model can estimate properties for void radii, such as 1.2
units, and inclusion radii, such as 4.05 units, which were not experimentally tested. This trained neural
network can be saved and be used over and over again without the need to train the network again.
Neural network tends to produce accurate results and has emerged as powerful tool in engineering. The
procedure followed in this chapter can be summarised by the Figure 5.1.

Range of parameters
describing the
micro-structure

Geometry file generation (.geo) ‘

Gmsh
Mesh generator

Test Strain vector € Mpap3
4—{ Mesh file (.msh
x5 FEM software esh file (.msh) ‘

Output Stress vector o
b

Elastic Properties
For each RVE

Neural
Network
Training

|

Trained
Network

MATLAB CODES

Figure 5.1: Procedural Methodology Utilized

5.2 Feedforward Neural Networks

A neural network is a computational tool inspired by the information processing mechanisms of the
human brain, which mimic how neurones in the brain signal each other. It consists of an input layer,
one or more hidden layers, and an output layer, each composed of several neurons or nodes. Neurons in
one layer are connected to all neurons in the next layer, facilitating the forward transmission of
information. This structure is referred to as a feedforward neural network. Neural networks have
emerged as powerful tools with multiple applications, ranging from pattern recognition to classification
and optimisation. Figure 5.2 below shows feed forward neural network with inputs V,, and V;
representing the volume ratios of voids and inclusions respectively and output elastic properties G and
K for example in Section 5.5 while z; is to indicate that there could be more inputs in general.

From Figure 5.2 the following expressions, w, z,a, K and G, and ¢0 represent the weight functions,
input raw data, bias, output, and ¢0 is the activation function. Note that the notation ¢V was used, as
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Input Layer (1) Hidden Layer (2) || Hidden Layer (3)

Raw Data @ vj = O =
P iwiga] + az)) | | ¢ (3, [wirv,] + ask)

Outputs

Figure 5.2: Neural Network procedure

different layers may use different activation functions. The output of a neutron in a hidden Layer (2)
from Figure 5.2 , can be written as

v; =P [wija] + ) (5.1)

%

According to Simon. [44], the bias agy; provides the affine mapping to the linear combiner ), [w;;x;].
a; can be positive or negative and it is an external parameter applied to neurone j in Layer 2 of
Figure 5.2. w;; is described as the synaptic weight of neuron j. It is noteworthy that neurons are
activated only when the input signal exceeds a predetermined threshold, which regulates the network’s
behaviour and information processing capabilities.

Activation function ¢ determines the output of a neuron in relation to v;, where v; = >, [w;jz;] + ;.
This function regulates whether a neuron should be activated or not. It decides whether the neuron
input is sufficient enough for decision making. Examples of this functions which are explained full by
Simon. [44] include the threshold function where

¢(U)={1 when v >0 (5.2)

0 whenv <1

Equation 5.2 is an example of a threshold function, it means that the output of the neuron will either
be a one or zero. Sigmoid functions which are an increasing function with the ability to map input
values to a continuous range between one and zero. For example

o(v) = — (5.3)

T l—ew’

The are several activation function including the transig, logsig purelin and many more . In supervised
learning, the training process entails utilising raw data samples that are pre-classified, a method
commonly known as error back-propagation algorithm. This approach involves training the network
using input-output samples, where errors are meticulously computed and subsequently leveraged to
fine-tune synaptic weights. According to Sathya and Abraham [42], the error back-propagation process
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unfolds in two distinct passes. Forward pass, the input signal is passed forward through the neuron of
the network, and the error is calculated between the desired output and the actual output as

e =d; — vy (5.4)

Backward pass process propagates the error back through the network from the output layer, and free
parameters are adjusted either example by example basis or using epoch-by-epoch where each epoch
contain an entire set of training examples. Network parameters are adjusted step by step under a
combined influence of the training vector and error signal. w;; is adjusted using the delta rule, as

A’U}Z‘j = T](Sjl‘i (55)
where
Change in synaptic weight between neurones ¢ and j: Aw;
Learning rate: n
Error signal associated with neuron j : d;
Input from neurone i to j: T;

During this process environmental information is transferred to the network and stored in form of w;;
and remains as a long term memory. The stored information can then be used on itself independent of
the sample. Supervised learning is a powerful tool employed to tackle both linear and non-linear
problems, including predictive tasks. The aim of this chapter is to train this network given the outputs
T = [K, G| and input P = [V, V;], where V,,, V;, G and K represent void volume ratio, inclusion
inclusion, shear modulus and bulk modulus respectively. The function approximation model adopted
here is the same as Simon. [44] which assumes input-output mapping described by the functional
relationship

T = ¢(P) (5.6)

where P is a vector of inputs,/ design parameters and T is a vector of outputs elastic properties. Since
@(.) is unknown we have a set of labelled examples

¢={(P, T}, (5.7)

The aim is to train a network such that the approximation ®(.) mapping of input-output is close
enough to ¢(.) in Euclidean sense over all inputs as given by

|®(P) — ¢(P)|| <e VT. (5.8)

Since we have so many unknowns, a larger sample of size IV, that is more RVEs will be required to
solve for all of the unknown parameters, then the approximation error e can be made small enough for
the task. The mapping is approximated in two ways, one being system identification where the
difference between T; associated with P; and the output of the network ®(P;) provide an error signal
e;, this signal is then used to adjust free parameters to minimise the squared difference and is
calculated over the entire sample £. Second way being the inverse modelling where the model produces
a vector P in response to vector T'. This can be represented as

P=¢"NT) (5.9)

Where ¢~1(.) is the inverse of ¢(.) and T is the input and P is the desired output in this case. The
program is already built-in to MATLAB, and Algorithm 2 code utilises this program.

From Algorithm 2 step 3 a and b are the size of the hidden layers in a neural network see Appendix
B.6. a represents number of neurones in first hidden layer while b represent number of neurones in
second hidden layer. For data categorisation, MATLAB organises input data at random to be used for
training, validation and testing. Levenberg-Marquardt (LM) is used by the MATLAB built in program
to update synaptic weights and bias. According to Lv et al. [27] LM algorithm is derived from the
Newton’s method for minimising functions that are sums of the squares of the nonlinear fuctions.

Which states that for F'(z)
Thtl = Tk — Alzlgk (5.10)
Ay, = A?F(2)|oma,
gr = AF(2)|2=a,
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Algorithm 2 Neural Network Training with Two Inputs and Two Outputs

Require: V,,V; Inputs

Require: K,G Outputs

. Initialize T' = [K G]

Initialize P = [ Ty n-]

Create a feedforward neural network 'minet’ with hidden layer sizes a and b
Configure the neural network ‘minet’ with inputs P and targets T

Train the neural network 'minet’ with inputs P and targets T

Save the trained neural network model to 'my_neural network model.mat’

where A2F(x) is the Hessian matrix and AF(x) is the gradient. Therefore the weight functions are
updated as
wit1 = wi — nAe(wg) (5.11)

where Ae is the error function and 7 is the learning rate. Figure 5.3 illustrates how these parameters
are updated.

Q2 Qs

.% Hidden Layer }EC».

Loss functiop:
mse = (T —1T)?

Figure 5.3: Gradient descent updating weight functions and bias in a neural network

Synaptic weights and biases are adjusted to optimise performance. According to ? | where we have a
set of inputs and outputs

(Pl Ty}, { Py, Ty} { P, T ).

The mean square error is calculated as

mse = —

M=
CBl\')

N
Z Te — Tr)% (5.12)
k=1 k:

Figure 5.4 shows an example of a default Matlab feedforward network where a =5 and b =1
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Figure 5.4: Matlab default neural network diagram

5.3 Parameterisation of Micro-Structure

For this investigation, a Representative Volume Element (RVE) counsisting of spherical inclusions and
voids, and cylindrical discontinuous fibres respectively are used together with their varying geometric
parameters such as spacing and radii to generate N samples of RVEs which are analysed and used to
generate the training data (elastic properties). Fibres are arranged in patterns as shown by the Figure
6.11a.

(a) Spherical inclusions (b) Discontinuous long cylindrical fibres

Figure 5.5: RVEs For Training

During this experimental set up inclusions and voids are arranged in a hexagonal packing, while
discontinuous cylindrical fibres are arranged in square packing manner as explained in Figure 4.2b and
4.2c. The RVE represents the microscopic structure of the composite and this chapter aims computes
elastic properties of any possible combination of volume ratios for this particular inclusion
arrangements.

The example in Section 5.4 exhibits isotropic properties, whereas RVEs in Section 5.5 with
discontinuous fibres convey transversely isotropic characteristics. It is assumed that there is no slip
between the matrix and fibre. The RVEs containing discontinuous fibres is assumed to be devoid of any
voids. Linear boundary conditions were employed during the training process for both RVE
configurations. The bulk modulus of 100G Pa for matrix K,, and 1000G Pa for fibres K; the shear
modulus of 10G Pa for matrix G, and 100G Pa for fibres G ¢ are used for this experimental set up.
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From Figure 5.6a similar parameters are considered in this chapter. The center-to-center spacing
between inclusions/fibers is kept constant for Section 5.4 with a range of 0.1 < r < 0.5 used for the
radii for both the inclusion and the voids. For Section 5.5 the length of the discontinuous inclusions is
varied to generate aspect ratio 6 < o < 18, inclusion spacings in x,y, z directions are varied to generate
test RVEs. At no point are the inclusions allowed to overlap or touch.

5.4 Example 1: Isotropic Elastic Material

Analysis of a Representative Volume Elements (RVEs) featuring voids and inclusions arranged in a
regular pattern. The radii for both voids and inclusions are varied independently to produce several
RVEs. Throughout these experiments each group of inclusions are of same radius for each RVE. Voids’
radius can be of same value as the inclusion radius however they are varied independently. A radius
range 0.1 < r < 0.5 was used for neural network training. The radii of voids and inclusion are varied
independently within this same range. The experiment in Chapter 4 can only be done for some
preselected radii combinations. In order to be able to estimate K and G for any possible combinations
within this range a neural network is trained to handle the computations. The other alternative will be
to perform the calculations for each possible combinations using Chapter 4 which is time consuming.

The parameters that controls the geometry of the RVE are centre to centre spacing which remains
constant throughout the experiments. The radius of voids and radius of inclusions are varied to
produce 36 different RVEs. Each RVE is subjected to 5 different sets of test strains € and through
Mpap3 the corresponding sets of stresses o are obtained. Homogenisation is then applied to each RVE
to yield 36 pairs of elastic constants (K, G) with their respective radii combinations. The Figure 5.6
summarises the parameters of interest in the RVE.

center _ _
to
center o
spacing - ~ iinclusion radius
N
void radius
(a) Parameters of interest from the RVE. (b) A slice of an isotropic RVE for experiments

Figure 5.6: RVE parameters

The two radii are varied independently to create different RVEs for testing for cost reduction purposes.
The overall composite is expected to exhibit similar properties in all directions, both longitudinally and
transversely, due to the arrangement of voids and inclusions in the microstructure.

The following contour maps from Figure 5.7 and 5.8 shows how the Youngs modulus and Poisson’s
ratio varies with changes in both voids and inclusion ratio. As indicated by Figure 5.7 an increase in
inclusion volume ratio increases the Young’s modulus E while the voids reduces E. These results below
are obtained using the techniques in Chapter 4 and they will be used to train a neural network.

Figure 5.8 shows how the Poisson’s ratio changes with the void and inclusion ratio.
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Figure 5.7: Variation of E with voids and inclusions volume ratios
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Figure 5.8: Variation of v with voids and inclusions ratio

Trial tests will be performed in order to choose a suitable network.The number of hidden layers and
neurons in a layer will be varied in order to get a better network. Figure 5.9 shows a representation of
the neural network used for the first trial training using the results obtained from Figures 5.7 and 5.8.
For neural network training the results from Figure 5.7 and 5.8 are converted into G and K for every
point in the graphs. A trained network is used to estimate G and K for any point chosen at random
within the graphs above. The accuracy of the trained network depends on several things such as the
number of neurones and number of hidden layers as indicated by Figure 5.10 and 5.11.
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Input

2

4 | Hidden

' 1 Output )

Figure 5.9: One neuron and one hidden layer network diagram

The networks under investigation are a one neuron network consisting of a single hidden layer and
another one hidden layer network with ten neurons. The input to the network is comprised of two row
vectors, Input 1 [Vuy, Vg, ..., Vusg] and Input 2 [Viy, Via, ..., Visg], where Input 1 is the void volume
ratio and Input 2 is the inclusion volume ratio each containing 36 elements. These input vectors are fed
into the network’s single neuron network and processed by the hidden layers to generate outputs. The
network then produces two corresponding output row vectors shear modulus and bulk modulus,
Output 1 [G1,Ga,...,G56) and Output 2 [K;, Ko, ..., K36], each containing 36 predicted values. This
structure allows for efficient mapping of the input vectors to the desired outputs through a
single-neuron neural network model.

Figure 5.10 shows the approximations made by a network in Figure 5.9 which has one neuron, one
hidden layer while Figure 5.11 is the approximation of a similar network but with ten hidden layers.

Neural plot(G,K) vs Actual plot(G,K)
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Figure 5.10: One neuron and one hidden layer approximation

A one neuron network leads to linear weight functions and it produces poor results, increase in number
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Figure 5.11: One neuron and ten hidden layer approximation

of hidden layers or the use of a sigmoid activation function does not improve the results. Therefore one
neuron cannot be used to train this particular network. This takes us to another trial test which
explores a neural network with 10 neurons and 1 hidden layer see Figure 5.12 and one network with 10
neurons and 10 hidden layers.

Input
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Figure 5.12: Diagram of a ten neurons and one hidden layer network
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Figure 5.13 shows the approximations made by the neural network with ten neurons and one hidden
layer in Figure 5.12 while Figure 5.14 shows the same results’ approximations using a similar network
but with ten hidden layers.
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Figure 5.13: Ten neurons and one hidden layer approximation
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Figure 5.14: Ten neurons and ten hidden layer approximation

When more than one neurons are used for network training, results accuracy improved as compared to
the test with just one neurone. Ten neurone with one hidden layer network without an activation
function still leads to linear weight functions however it can produce good results after training the
neural network several times until most point coincides. Introduction of a sigmoid function will results
in non linear weight functions hence better approximations. A ten neuron network with ten hidden
layers results in a non linear network hence capable of modelling complex patterns. Therefore nonlinear
weight functions (using more than one neurones) can yield better and accurate approximations.
Figures 5.15 and 5.16 further evaluates the performance of a ten neurons network with ten hidden
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layers which resulted in better approximation in Figure 5.14.

. Best Validation Performance is 0.085169 at epoch 35
10% & :

Train
Validation
Test

------ Best

Mean Squared Error (mse)

1
0 5 10 15 20 25 30 35 40
41 Epochs

Figure 5.15: The mean squared error with respect to epoch for the network

Figure 5.15 shows MSE variation concerning the epoch for training , validation and testing. One epoch
refers to using the entire data set to perform both backward and forward propagation only once.
Figure 5.15 indicates that the performance on both the training and validation sets is satisfactory, that
is the final mean square error is small and shows optimal validation performance found at epoch 41
with best validation MSE 0.085 and best training performance of 0.355 at 35 epoch. Validation error is
greatly reduced at 35 epoch and the weight and biases were used for the trained network. Test and
validation set has similar characteristics and there is no overfitting before epoch 35 where the best
performance occurs.

Figure 5.16 gives the correlation between targets that is G and K from least squared method in
Chapter 4 and the output generated by the trained network. Data categorization for this process is
done at random by MATLAB’s built-in algorithms. The regression lines are used to monitor the fitness
of the approximations. A perfect fit occurs when the R-value is one, indicating that the network has
mapped the data accurately, including any background noise, fluctuations and and outliers the data
may contain. This ensures that the model’s predictions are both reliable and robust in handling various
data complexities.
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Figure 5.16: Ten neurons -One hidden layer fitting plots

R-value of 0.99 for training was obtained and 1 was obtained for validation and 1 for testing. For a
perfect fit data should fall along a 45° angle line with R-value of 1 however R-values above 0.93 are
considered accurate enough by Beale et al. [3], Ocampo et al. [35]. The numbers shown next to the
target values on the y-axis in Figure 5.16 indicate the deviation of the actual outputs from their
corresponding target values. The results of this training are then saved, that is weight and biases of
this these network are saved and the network is now considered to be trained. With the weights and
biases known any input that is combination of radii in range 0.1 < r < 0.5 can be given to the network
and out comes the effective elastic properties G and K. This trained network can then be used for
other purposes such as optimisation as explained in Chapter 6 ahead.

5.5 Example 2: Transversely Isotropic Material

This is an example where fibres are arranged in a discontinuous brick like pattern with a changing
spacing between the fibres. A varying non-dimensionalised fibre spacing in the longitudinal direction
sp/d and transverse direction sp;/d together with a changing fibre length for varying the aspect ratio
a =1/d are used to generate sample microscopic RVEs. Five different lengths of inclusions [ and five
values each for sp; and sp; were experimented with, resulting in 125 test RVEs. This larger sample size
allows for all weights and biases to be determined. It is noteworthy that the longitudinal spacing sp; is
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parallel to the fibre length [ while the transverse spacing sp; is perpendicular to the fibre length
[.Figure 6.11 shows the arrangement of discontinuous fibres used in this example.

Spi l
— —
d3 I

SPt I 1 d

(a) Transverse view of fibre arrangement (b) Longitudinal view of fibre arrangement

Figure 5.17: RVE parameters of interest

(a) Slice through discontinuous Fibre Microscopic (b) Same RVE But different view of the micro-
RVE structure RVE

Figure 5.18: RVEs For Training

The Figure 5.19 below demonstrates how the longitudinal Young’s modulus F; in MPa changes with
the fibre spacing and aspect ratio. Changes in aspect ratio were obtained by varying the fibre length
while the fibre diameter remained constant.
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Figure 5.19: Longitudinal Young’s Modulus

Figure 5.19 illustrates the relationship between Young’s modulus, aspect ratio, and transverse and
longitudinal fibre spacing. As shown by Figure 5.19, reducing the fibre spacing in both the transverse
and longitudinal directions increases the overall Young’s modulus of the composite. This is because the
fibre-matrix volume ratio increases, leveraging the superior properties of the fibres. Short, thicker fibres
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(lower aspect ratio) with lower fibre volume ratios are significantly affected by longitudinal spacing.
However, at higher aspect ratios, longitudinal spacing has less influence, as most of the load is carried
by the fibres. Figure 5.20 below presents the transverse Young’s modulus Fs as fibre spacing in both
transverse and longitudinal directions change with the aspect ratio.
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Figure 5.20: Transverse Young’s Modulus

Figure 5.20 results show that transverse spacing has a significant effect on the transverse Young’s
modulus across all tested aspect ratios, whereas longitudinal spacing only has a comparable impact at
higher sp; values and lower aspect ratios. This is because most of the load under transverse loading
direction is carried by the matrix, which has lower mechanical and elastic properties. As a result, the
transverse Young’s modulus is lower compared to the longitudinal Young’s modulus. Larger spacing in
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the transverse direction means a higher matrix volume ratio, which leads to a lower transverse Young’s
modulus. Figure 5.21 below displays how the tranverse shear modulus Gs3 changes with the aspect
ratio together with the longitudinal and transverse spacing of the fibres.
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Figure 5.21: Transverse shear Modulus

The transverse Young’s modulus is affected by the longitudinal spacing at lower test aspect ratios
because, in the transverse direction, most of the load is carried by the fibres under pure shearing.
Therefore, larger spacing reduces fibre efficiency. However, at high aspect ratios, these changes might
have minimal effects as shown by Figure 5.21d and 5.21c. Figure 5.21 below displays how the
longitudinal shear modulus G152 changes with the aspect ratio and the spacing in longitudinal and
transverse spacing of the fibres.
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Figure 5.22: Longitudinal shear Modulus

In Figure 5.22 longitudinal shear that is shear along the direction of fibres is less affected by the
longitudinal spacing for all test aspect ratios. As expected the longitudinal shear modulus tends to be
lower than transverse shear as shearing load in this direction is mostly carried by the matrix. As fibres
spacing sp is reduced in any direction composite properties get better. Using the data from Figure
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5.19, 5.20, 5.21, and 5.22 a neural network is trained for a given combination of aspect ratio r and
spacing sp in both longitudinal and transverse direction so that the elastic properties Fy, F5, G2 and
G3, can be approximated for other RVEs which were not tested on. The results in Figure 5.24 are of a
trained neural network using, row vector of aspect ratio , the longitudinal and transverse fibre spacing
as inputs. The row vectors of transverse and longitudinal shear modulus and Young’s modulus were
used as outputs for training. A tansig transfer function for hidden layer 1 and 3 and logsig for hidden
layer two were used. Five neurons in the first layer and third layer, fifteen neurons in second layer were
utilised for training. Figure 5.23 shows a neural network diagram used for this training.

i | Higkdun 2

[+]
®

| S S

Hegdden 3

] L

Figure 5.23: Network Diagram
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Figure 5.24: Scatter plot of Young’s modulus vs shear modulus for both longitudinal and transverse

directions

Figure 5.24 shows how well the neural network approximated the known data point. For both the
transverse and longitudinal directions the model performed well to approximate the results where red
and green points are known data point from the experiment for longitudinal and transverse directions
respectively and blue and black data points are the neural network approximations for longitudinal and
transverse directions respectively. A further performance analysis is carried out to see how well the
data fits before saving the trained network. Figure 5.25 and 5.26 shows how well the trained network

performed.

Mean Squared Error (mse)

Best Validation Performance is 0.0054005 at epoch 356

104
Train
Validation |
[ Test ]
103 Best

10-3 b 1 | 1 1 1 1

0 50 100 150 200 250 300
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Figure 5.25: MSE with respect to epoch
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Best validation performance was obtained at epoch 356 with a MSE of 0.0054 as indicated by Figure
5.25. The process then stops at epoch 362 and the best performance is used for the trained network.
That it is the epoch 356 weights and biases are stored and used for a trained network and can be used
to predict transverse/Longitudanal shear or Young’s modulus for a given combination of aspect ratio
and fibre spacing. Figure 5.26 shows how the validation, train and test fits with the targets that is
G132, Ga3, F1, E2 from the data provided for training.
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Figure 5.26: Five neurone-Three hidden layers results

R-value of all three graphs is graphs is 1 and all three graphs combined gave an R-value of 1 which
indicate a very strong fit. As a results the network training is complete and it can now be saved and be
used for other desired purposes. Neural network produce very accurate results in a shorter period of
time compared to other natural methods. A well trained network is a powerful tool which is trained
once and saved then be used for other purposes. Using more hidden layers or more neurones does not
always improve the outputs as a results the number of hidden layers and number of neurone in each
layer has to be chosen carefully to avoid overfitting or under-fitting. If the target/data does not fit well
with neural network results the training has to be carried out again to update the weights and biases
before using the saved trained network for other purposes. It should be noted that each training
produces different weights and biases that is two networks with same neurones numbers in a layer and
same number of layers can produce different fits. As a results training should be carried out carefully to
fit the data.



Chapter 6

Optimisation

6.1 Objective and Outline of Methodology

The goal of this chapter as summarised in Figure 6.1, is to optimise the microstructure by adjusting
parameters such as aspect ratio and fibre spacing to achieve the best possible elastic properties based
on a defined criterion such as the cost or weight of the material. This requires the optimisation of
conflicting objectives and therefore, there is no a solution that satisfy all the objectives hence their
trade-offs (know as Pareto-Optimal solution) becomes the solution to the multi-objective problem.
However, it’s crucial to maintain the integrity of the material properties throughout this process. This
means striving to achieve better material properties for all defined criterions. The method adopted for
this chapter uses techniques which are fully described by [4, 54, 9, 30]. This method uses the MATLAB
built in function gamultiobj algorithm outlined in details in MathWorks [30].

Range of parameters
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Figure 6.1: Procedural Methodology Utilized
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6.2 Multi-objective Optimisation

A multi-objective function is defined as a vector that maps a set of m decision variables to a set of n
objectives. Optimisation of this problem involves minimisation or maximisation of the objective vector
F(x) which can be written as follows:

min/max  F(z) = [f1(z), f2(z),....... , ()] (6.1)
subject to x = (', 2%, oo ,a") x eR™
1 whenm,<i<m

subject to constrain ¢;(x) = {0 hew i
when 7 < me

subject to bounds b <z < wub

y= (?Jl,yQ, ............... 7y7”) y € R™

Where x and y represent the decision and objective vectors within the space z € R™ and y € R™
respectively. The set of solutions of a multi-objective function consists of all decision vectors for which
the objective vector cannot improve in any dimension without compromising the other dimensions. An
increase in the number of objectives increases the complexity of finding or quantifying these trade-offs,
hence numerically and realistically formulated design problems address natural problems. These
optimal solutions are referred to as Pareto optimal solutions. This concept can be simplified and
explained by a domain I" in parameter space and x is an element of the n-dimensional real numbers
that satisfy all constraints and bounds.

I'={z eR"}. (6.2)

From this parameter region a correlative admissible domain A for the objective space can be obtained as

A={yeR™}. (6.3)

@
Y

| > ol > !

Figure 6.2: Parameter space into Objective Function Space

Non-dominant solution point x* where x* € I' can now be defined for some neighbouring solution of z*
where there is no Az such that (z* + Az) € I’ and

Fi(z* + Az) < Fiz* i=1,..m (6.4)
Fi(z* + Az) < Fig* for some j.
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F2

Figure 6.3: Noninferior Set of solution

Figure 6.3 shows a set of non dominant solution which lies on the curve between C' and D while A and
B are specific non inferior points on the curve. It can be shown that point A and B are non dominant
solutions as there is no increasing one objective Fl'without reducing the other objective F? as
explained by Equation (6.2). It should be noted that, any point in the domain T" that is not inferior
implies that improvements can be made in one or all of the objectives therefore, such points are of no
importance. The MATLAB built in procedure used for this non dominated solutions selections is
simplified in Figure 6.4.

Population Initialisation

Non-Dominated
Sorting

Crowding Distance
Sorting

Selection

Repeat process for generations
until stop criterion is met

‘ Recombining }7

End

Figure 6.4: Optimisation Procedure

The population is initialized according to the problem’s range and any associated constraints which can
be linear or non-linear. In order for point p to be considered dominant over point q for an objective
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function F the following conditions given by

Fi(p) < F'(q) Vi, (6.5)
Fi(p) < F'(q) Vj.

needs to be satisfied. Therefore, a non-dominant set ¢ among a set of points p is defined as the set in
which all points in g are not dominated by any point in p. For each solution we look for the domination
count /rank d., which refers to number of solutions which dominates solution p and a set of solution S,
that p dominates. The solution of non-dominant front will have a d., = 0 that is rank zero. For each
solution p with d., = 0 in ¢ of set S, visit each member of ¢ of set S, and reduce dominance count by
one. And if by any chance the rank of a member in ¢ is zero we put it in a list () and the set is used in
second non-dominant front.This process is repeated until all fronts are found. In general the second or
high order the non-domination count or rank can be expressed as k — 1 at most. The following
Algorithm 3 borrowed from Deb et al. [9] is used as part of the optimisation process in MATLAB built
in function gamultiobj.

Algorithm 3 Fast-Non-Dominated Algorithm

1: For eachpe P

2: Sp = This empty set will store all solutions dominated by p
3t dep =0 Initialisation number of solutions dominated by p

4: For each g € P

5: if ¢ > p then

6:  Sp,=5,U{q} Then combine ¢ and set of all solutions dominated by p
7. if p > q then

8: dep =dep +1  Increase the domination count of p

9: end if
10: end if
11: if d.p = 0 then
122 Prgne=1" Solutions p belong to rank 1
132 k=R U{P} Add p to update first front sent

14: end if

15:1=1 Initialise the front counter

16: while F; # do

7. Q # This non empty set will store members of the next front
18: foreach p € F;

19: foreach g€ S,
20 dep=dep—1 For each ¢ decrease the dominance count by one
21:  if d¢p = 0 then
22: Pronk =1+ 1 g is member of the next front
23: Q=QU{¢} Update the set Q with ¢
24:  end if
25 i=i+1 Update the loop counter
26 F1=Q Set @ is the next front

27: end while

Crowding Distance is computed as the average distance between two points surrounding a particular
solution in a population on either side along each objective function. In short, it measures how close
individuals are to each other. This is measured for members which belong to the same rank in the
objective function space. Individuals who are at boundaries, where solutions with the smallest or
largest function values are assigned, have an infinite crowding distance. For the rest of the individuals,
Algorithm 4 by Deb et al. [9] with little changes is used for the calculation of crowding distance in
MATLAB built in function gamultiobj.
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Algorithm 4 Crowding Distance Assignment

1 m=|I| Number of individuals or solution in

2: For each i, set I(i)4ise =0 Initialise the distance

3: For each objective n

4: I = sort(I,n)

5: I(1)gist = I(M)gist = 00 Boundary values assigned infinite crowding distance
6: i =2to (m—1) for all point

T

I(Daist = I(@)aist + (I(n, i+ 1) — I(n,i — 1))

The binary tournament selection is carried out using crowded comparison operator (<,,) at different
stages as follows towards the spread.

1. Non dominant rank p,q, for all Front F; are assigned prqnk = 1

2. Crowding distance Ig;s;
D <n ¢ if Prank < Grank Or p and ¢ belong to same front Fy and Igiap > Lgistq

In conclusion an individual with a lower rank is preferred followed by and individual with larger
crowding distance. We combine the offspring population with the current population, and selection is
performed. The population is sorted based on non-domination and assigned a rank equal to its
non-domination level. They are then added to the subsequent population until the population size
exceeds N. When this happens, the members of this front are selected based on crowding distance until
the population size is N. If the size of F; is smaller than N we choose all members to the next set.
This is summarised by [9] as shown in Algorithm 5.

Algorithm 5 Main Loop

1 R=PJQ: Parent and offspring combined

2: F = fast non dominated sort(R;) All dominated fronts of R

3: Pt+1:0andi:1

4: Until |Piyq| + |F5| <N All population should be filled

5. crowding distance assignment(F;)

6: Py =PiUF; Upadate the parent population
Ti=1+1

8: Sort (F;,<p) Use <, to sort in descending order
9: Poyy = Py UF[1: (N — |Piga])] choose the first (N — |Py11]) of F;
10: @;4+1 = make new population(FP;4+1) new population

1: t=t+1

The spread is used as the stopping criterion for the MATLAB function gamultiobj. It indicates how
the Pareto set is spread. This is determined by calculating the standard deviation of the crowding
distance of points within a finite distance.This can be calculated as

T+ 0o
T+ Qd

Spr = (6.6)
where T is the sum over m objective indices of the norm differences between current and previous
minimum value of Pareto points of that indeces. @ is the number of this points /solutions which are
within the finite distance with d as the average distance between this points.

6.3 Example 1: Spherical Inclusions

This section uses the trained Neural network from Section 5.4 to optimise the microstructure by
adjusting the radius of voids and inclusions. The network computes the bulk modulus K and and shear
modulus G from the varying combination of void and inclusion radii of the microstructure. The radii of
voids and inclusion (z! and 2?) also known as decision variables/vectors z are used to create objective
functions. One objective function f!(x) minimises the cost while the other objective function f2(z)
maximises the properties K and G as
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F'=V,,Cp + ViC; (6.7)

2 maz(0,K—Kpn maz(0,G—Gmn
F? = g [marOK Knn) 4 maz©0.C )] (6.8)
[K,G] = ann([z*, 2?]) (6.9)

Where V,,, and V; are the volume ratios of matrix and inclusions respectively which are functions of
their respective radii, C,, and C; are the relative costs of the matrix and the inclusion respectively.
K, and G, are the minimum design requirements for bulk modulus and shear modulus respectively.
a is a parameter which can be used to adjust the weight or contribution of the F? as compared to F'.
ann is the saved trained neural network which uses the decision variables to compute the elastic
properties. The objective functions are saved as a MATLAB code called Cost in Appendix B.7.

Algorithm 6 outlines the MATLAB code used to determining the optimal Pareto solutions. This code
uses the MATLAB built in function gamultiobj to evaluates the trade-offs between competing
objectives to identify the most efficient solutions. Each step in the algorithm contributes to the
refinement of the solution set, ensuring that the final results are Pareto optimal.

Algorithm 6 MATLAB code for Optimisation

Load the saved trained neural network: load(’my_neural_network_model.mat’)
2: Define the number of decision variables: nvars = 2
Define lower bounds for the decision variables: LB = [lby, 1bs]
4: Define upper bounds for the decision variables: UB = [uby, ubs]
Set the options for the genetic algorithm:
6: options = optimoptions(’gamultiobj’,
’SelectionFcn’, @selectiontournament, 50,
8: ’ConstraintTolerance’, le-6,
’CrossoverFraction’, 0.75,
10: ’PopulationSize’, 100,
’MaxGenerations’, 100,
12: ’PlotFcn’, @gaplotparetodistance)
Run the multi-objective genetic algorithm:
14: [b, fval, exitflag, output] = gamultiobj(@(x)cost(x, mlnet), nvars, [1, [1, [],
[1, 1b, ub, [1, optioms)
Display the optimized solution and objective function values:
16: disp(’Optimized void & incl radii Solution:’)
comb_of_ri_rv =b
18: disp(’0Objective Function Values [C1l and C2]:’)
disp(fval)

For this example there are two decision variables, void radius and inclusion radius from which the
volume ratios are calculated. Both decision variables have the same bounds which can be described as
0.1 <2 <0.5. The gamultiobj function in Matlab’s Generic Algorithm Toolbox is used for
multi-objective optimisation. The goal of this function is to find a set of non-inferior (Pareto optimal)
solution for trade off between conflicting objectives. The fitness function cost is defined by 2 objective
functions in a separate file.

Each objective function takes a set of decision variables (radii of voids and inclusions) represented as x!
and x2, as the input. These input are then passed through a trained Neural Network which is used by
the cost function to compute the corresponding objective values. The bounds constrains the decision
variable to remain within the desired bounds. For this example, bounds used were 0.1 < z < 0.5, which
was the same range as the radii used for inclusions in the test data training the neural network. Neural
networks tend to perform well when operating within the range of the training data.

Other options required include, population size, a parameter used to control the number of solutions in
each generation. Pareto optimal solutions are chosen from these individuals, crossover rate determines
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the rate at which the genetic material are exchanged to produce a new offspring between two
individuals. The higher the rate the higher the diversity among the solutions hence a good convergency
of the solutions can be obtained, the maximum generations parameter acts as the termination criterion
by setting the maximum number of iterations that the algorithm runs to produce these sets of
population sizes. Visualisation plots are used to monitor the optimisation progress. The process is
summarised by Figure 6.5.

Repeat
For N
Generations

Figure 6.5: Algorithm Steps gamultiobj

Parameters such as the population size, maximum generation and crossover rate are adjusted based on
the problem and the convergency behaviour of the solutions. This algorithm uses visualisation plots to
monitor the optimisation process. One of these plots is gaplotdistance, Figure 6.6 gives an idea on
the diversity of individuals and the convergence of the solution population by showing the distance
between individuals in a population. A decreasing trend indicate that the diversity of the population is
improving or it is maintained. Quick decrease towards lower value is undesirable as it may indicate
that the algorithm is stuck in a local optima or the solution space is not fully explored.

Average Distance Between Individuals

03, . ° *

o
)
o
T
.
.
.
.

Average Distance
o
N
:
.
..
.
.
.
.
.
.a
.
.
.

0.15 . .

0.1 I I I I I I I I I )
10 20 30 40 50 60 70 80 90 100

Generation
Figure 6.6: Distance between individuals

There is higher average distance indicating the diversity of the population and individuals are spread
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out in the decision variable space. The average distance between individual slowly decreases as number
of generation increases indicating the convergence towards a possible solution. The average distance
remain relatively higher which indicates that diversity is maintained. Figure 6.7 gives an idea into
whether the algorithm explores and maintains sufficient diversity with the solution space or if the plot
converges prematurely. Adjusting parameters such as crossover rate population size can help improve
the results. The gaplotparentodistance in Figure 6.7 visualises the distances between Pareto
solutions on the Pareto front. This help monitor how well Pareto fronts are explored as well as the
diversity among non-dominated solutions. Increase or fluctuations trend may be used as a measure of
diversity among non-dominated solutions. Rapid decrease towards lower values suggest that a further
exploration of solution space is required.
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Figure 6.7: Distance between Pareto solutions

Figure 6.7 gives an idea about the diversity and convergence of individuals in the Pareto front during
optimisation. The plot gives an insight into how well trade-offs are explored between the objectives.
The gaplotrankhist in Figure 6.8 show how individuals are distributed into ranks. A descending
trend from rank 1 to upper ranks is desirable as it indicates Pareto are well assigned into
non-dominated subset.
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Figure 6.8: individual ranks
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Figure 6.8 provides insight into selection pressure and convergence behaviuor based on fitness ranking.
It illustrates how the population is distributed across different fitness levels, which reflects the efficiency
of the selection process. The plot shows higher peaks at lower ranks, indicating that many individuals
have similar fitness values. This suggests good convergence toward an optimal solution. A positively
skewed histogram implies effective selection and propagation of high-quality solutions, further
supporting the idea that the algorithm is converging. The presence of high selection pressure is also
evident, which contributes to driving the population toward better solutions. The number of
generations the algorithm performed before the process was terminated was 100 acted as the
terminating criteria for the algorithm. Time taken by the algorithm can also be set to act as the
stopping criteria. The Pareto front in Figure 6.9 presents a set of efficient non-dominated solutions that
are chosen as optimal because neither objective can be improved without degrading the other.
Objective 1 represent the cost and its negative so that it can be minimised while object 2 is the
material property which is being maximised.

Pareto front

-0.1 -

Objective 2
%*

07 \ \ \ \ \ \ \ \ Lt
0 02 04 06 08 1 12 14 16 18 2

Objective 1 x10%

Figure 6.9: Pareto Front plot

Each point on the graph represent a solution on the Pareto front. These points are all non-dominated
and represent different trade offs where improving one objective degrade the other. That is reducing
the cost will reduce the material properties or improving the material properties increases the cost
along this curve. The decision is made depending on the priorities and a solution is chosen from the
Pareto front. The solution can be the one that balances the objectives to give design parameters. This
graph is used as an aiding tool in decision making for multi objective optimisation problem. Optimised
microstructure’s parameters from Pareto front in Figure 6.9 are shown by figure 6.14.

The above optimal solutions in Figure 6.10 are then used to generate the optimal micro-structure of
which together with the trained network the best material properties at lower cost without
compromising the material’s integrity can be achieved. The solutions are from the Pareto fronts and
which acts as an aid in decision making. For this problem objective 1 is a function based on properties
of the matrix and the fibre, while objective 2 is the cost functions. Since for this example it is assumed
that fibres are more expensive than the matrix. It actually make sense that the optimised solutions
suggest mostly little to no voids from Figure 6.10. Note that there are some anomalies in the plot
where the cost are greatly reduced (i.e closer to no fibres at all since they are expensive) however this
points results in very low shear and bulk modulus and my be undesirable for design.
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Figure 6.10: Optimised parameters if matrix is less expensive than fibers

6.4 Example 2: Discontinuous Fibres

This example involves discontinuous fibres of same diameter d with spacing between fibres sp;, sp; and
spe in x,y and z directions shown by figure 6.11 below. The length of the fibre is then varied together
with sp; and sp; to generate several RVEs which are then experimented on Using previous chapters.
The diameter of the fibres remains constant throughout. After obtaining a trained network, an
optimisation process is applied as described above to generate parameters an optimised microscopic
structure where material properties are not compromised. That is the optimal combination of aspect
ratio a and spacing sp; and sp; are identified and used for design. where:

a=1/d (6.10)

Spi
> —

spt | “Td

(a) Transverse view of fibre arrangement (b) Longitudinal view of fibre arrangement

Figure 6.11: RVE parameters of interest

Transverse properties F2 and Go3 and Longitudinal properties E'1 and G2 are used to generate a
trained network. Objective functions are generated as function of parameters sp;, sp; and a. That is :

F(spl7 SPt, O{) = [f]. (Sph SPt, Oé), f2(spl7 SPt, a)] (611)
Where:
l7rT—d2
V= 2 ., Ve=1-V; 6.12
(spe + )1+ 5p) (6.12)
fl (Spl7 SPt, Oé) = VmCm + V; X Ci (613)
4 . .

B max(0,S(%) — $(4)min)

f2(spu, spe, o) = ; <0 (6.14)

S = ann([sphsptaa]) (615)
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Function ann is a trained neural network which takes in three decision variables namely sp;, sp; and «
to generate E1, E2, G12 and Ga3 represented S(i) where i = 1,2,3,4 represent F1, E2, G12,Ga3
respectively as they appear in the neural network output. The decision variables are then set to

0.1 <sp<0.8and6<a<25 C;Ch,s(i)mn represent density of fibre , density of matrix and
minimum elastic property required for design. The average distances between individuals in the
solution space are illustrated in Figure 6.12.
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Figure 6.12: Distance between Pareto solutions

The average distance of individuals in a population shows a well scattered distribution indicating that
a wide range of solutions were considered in decision making. A higher diversity was considered as this
is indicated by higher average distance between individuals as indicated by figure 6.12 above. The
reduction in the average distance is a an indicator that the solution is converging towards the solution.
Figure 6.13 shows a rank plot of how individuals are allocated ranks:

Rank histogram

35

Number of individuals

Figure 6.13: individual ranks
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The solutions are ranked according to how many other solutions they dominate as explained earlier in
this chapter. The histogram in figure 6.13 shows a positive skew indicating that more solutions in rank
one showing more solutions that a re not not dominated by other solutions. This indicates that a
better selection was carried out hence a better solution is selected. Pareto plot in figure 6.14 represents
all solution that maximises elastic properties and minimises overall weight of the composite. Any
improvement in one objective leads to degradation on the other. A decision is made based on the
combination of sp;, sp; and « that results in point along this line.
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Figure 6.14: Pareto Front plot

Parento Distance plot in Figure 6.15 represents distances between all solutions of the pareto front.
Diversity among the Pareto front is maintained as shown by varying distances between Pareto solutions
therefore the decision variables considers a wide range of solutions within the Pareto fronts for the
selection of sp;, sp; and .

5 Distance of individuals
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Figure 6.15: Distance between Pareto solutions
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Figure 6.15 indicates that 100 generations were carried out before termination. Table 6.1 shows some of
the values of sp;, sp; and a that resulted in the optamal solution in the pareto. This are the
combinations that optimises the microstructure and can be regarded as the design parameters. Table
6.1 below shows the elastic properties which resulted from this decision variables:

El E2 Gas G1o sp Spy aspect r objl obj2
96.0162 | 53.1659 | 16.1250 | 16.7692 | 0.1513 | 1.2496 | 13.5216 | -0.3632 | -1.0571
90.5676 | 53.9872 | 16.5148 | 17.1616 | 0.7533 | 1.1171 | 10.1915 | -2.1624 | 0.1520
81.1784 | 50.5074 | 15.6514 | 16.0871 | 1.4969 | 1.2492 | 12.6046 | -5.6074 | 3.9746
89.7816 | 52.9845 | 16.2160 | 16.8176 | 1.0750 | 1.1453 | 14.0753 | -3.4620 | 1.3284
97.5009 | 54.1919 | 16.4225 | 17.1107 | 0.3115 | 1.1656 | 13.4598 | -0.7717 | -0.7723
81.7494 | 50.5694 | 15.6534 | 16.0987 | 1.4788 | 1.2492 | 13.0722 | -5.5130 | 3.8321
84.6039 | 51.2076 | 15.7720 | 16.2726 | 1.1085 | 1.2493 | 13.2349 | -3.7222 | 1.4977
84.6051 | 51.1656 | 15.7578 | 16.2578 | 1.1342 | 1.2496 | 13.5201 | -3.8378 | 1.6266
88.3065 | 51.9417 | 15.9151 | 16.4673 | 0.7115 | 1.2493 | 12.6992 | -2.1065 | -0.0003
84.1517 | 51.0626 | 15.7373 | 16.2295 | 1.1984 | 1.2493 | 13.5938 | -4.1317 | 1.9689
85.4475 | 51.3546 | 15.7963 | 16.3096 | 1.0225 | 1.2496 | 13.3374 | -3.3460 | 1.0974
82.7404 | 50.8050 | 15.6966 | 16.1638 | 1.3403 | 1.2496 | 13.1968 | -4.8117 | 2.8331
83.6350 | 50.9591 | 15.7191 | 16.2021 | 1.2591 | 1.2493 | 13.5338 | -4.4177 | 2.3201
82.2306 | 50.6448 | 15.6620 | 16.1166 | 1.4425 | 1.2493 | 13.3554 | -5.3252 | 3.5540
86.8947 | 51.4128 | 15.7692 | 16.3049 | 0.9969 | 1.2492 | 15.1046 | -3.2359 | 0.9867
88.0035 | 51.6458 | 15.8180 | 16.3679 | 0.8558 | 1.2494 | 14.7965 | -2.6572 | 0.4465
86.9711 | 51.5256 | 15.8085 | 16.3434 | 0.9287 | 1.2494 | 14.2351 | -2.9514 | 0.7118

Table 6.1: Results Table

The optimisation tool employed in this study enhances the microstructure by adjusting either the
spacing or the size of the fibres within it. The tool is designed to utilise the trade-off between objective
functions to identify the optimal combinations of fibre spacing and aspect ratio. In this example, the
first objective is to maximise the material properties, while the second is to minimise the overall weight
of the composite. The optimisation process identifies the most suitable combination of aspect ratio and
spacing that achieves a reduction in weight without compromising the material properties. It is
assumed that the fibres possess superior properties compared to the matrix, which is comparatively
lighter. Figure 6.16 presents a heat map of five designs selected from Table 6.1, highlighting those with
higher material performance.

Figure 6.17 shows that as fibres comes closer together and fibre length remain constant the elastic
properties tend increases however the overall weight of the composite is compromised. Smaller fibre
diameter or larger values of sp; and sp; means that there is more of the matrix which has lower elastic
properties and a lightweight overall composite hence the overall properties of the composite are
reduced. This is supported by the fact that matrix has inferior properties as compared to the fibres.
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Figure 6.17: Transverse view of fibre arrangement

Figure 6.18 shows the correlation between the relevant variables. From the figure, it can be concluded
that there is very low correlation between aspect ratio and either of the objectives, as the aspect ratio
values are relatively small. However, there is a strong negative correlation between Objective 1 and
Objective 2, as expected, improving one objective leads to a deterioration in the other.
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Heatmap of Top 5 Designs
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Figure 6.16: Heat Map for 9 Designs from Table 6.1

Young’s modulus exhibits a strong correlation with other parameters, particularly sp; and obj;. Both
objectives show a correlation above 0.95 with sp;. This is because reducing the spacing (sp;) makes the
macrostructure resemble a stronger, heavier continuous fibre material, whereas increasing sp; results in
a weaker, lighter, and more discontinuous material.
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Figure 6.18: Correlation Matrix Among Parameters of interest
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Figures 6.19, 6.20, 6.21 and 6.22 shows Design 7, which yielded higher values of Young’s modulus. The
marked peaks indicates the highest Young’s modulus achieved. Although this design is desirable due to
its stiffness, its objective 1 value is less negative indicating that the material is somewhat heavier

compared to other designs. A decision can be made by evaluating the trade-offs between objectives,

using Figure 6.16 as a guiding tool.
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Figure 6.19: (a) Young’s Modulus vs Objective 1 (material weight)
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Figure 6.20: (b) Young’s Modulus vs Objective 2 (material property)
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Effects of sp_| on the Youngs Modulus
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Figure 6.21: (c) Young’s Modulus vs sp;
Variation of Young's Modulus with Changes in sp_t
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Figure 6.22: (d) Young’s Modulus vs sp;

The RVE microstructure for Design 7 is developed based on the aspect ratio and fibre spacing. This
provides the size of the optimised structure, which can be used to build the new material. By
translating these parameters into a representative volume element, the physical characteristics of the
material can be accurately captured. This RVE can then be used for further simulations or
experimental fabrication to validate performance.

The optimiser used here allows for the use of nonlinear constraints for example, a function such that
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the transverse modulus is kept at certain value say Ey = 110G Pa is introduced and the optimiser is
allowed to do best combinations of sp; , sp; and « that results in this transverse Young’s modulus.
This is done by setting the second objective to:

J2=5(2) — Ey (6.16)

Where, S(2) is the transverse modulus obtained from the iteration process using the trained neural
network. Throughout the process, the above equation remains zero, and the results in Table 6.2
represent the best designs obtained from the optimiser.

E1 E2 Gos G12 spy Spt aspect r objl obj2
147.0893 | 110.0000 | 33.2692 | 36.3303 | 0.6652 | 0.2110 | 13.3114 | -1.2481 | 0.2237

Table 6.2: Results Table



Chapter 7

Conclusions

The goal of this thesis was to create a logical framework starting from modeling the composite
material, homogenisation of the composite, testing, and optimisation of the microstructure for efficient
design. Multi-scale analysis was used to analyse the solid when subjected to small strains to determine
the elastic properties. The following provides a comprehensive account of the achieved milestones,
conclusions drawn from the research, and outlines avenues for future work in this field.

Multi-scale Modelling: The described framework provided a link between micro and macro
structures. Boundary conditions such as periodic and linear displacements were employed to represent
the kinematic constraints within the Representative Volume Element (RVE) boundary. Linear
boundary conditions were crucial for homogenisation to achieve convergence. This was verified through
homogenisation examples where the RVE size was increased to obtain more accurate effective elastic
properties of the composites.

Homogenisation: Dettmer’s Mpap3 (Multi Physics Analysis Program) is utilised to investigate a
large number of RVEs. The 3D meshes generated are generally non-periodic because unstructured
meshes are used to predict material properties. Despite this, the interface allows periodic
Representative Volume Elements (RVEs) to be analyzed with non-periodic meshes. Stress outputs are
utilised to calculate effective elastic properties of the composite using the least squares method. These
effective elastic properties are then compared to analytical approaches (Halpin Tsai and Hashin Rosen)
to verify the method’s accuracy. The least squares method achieves lower residuals, typically less than
10% for both longitudinal and transverse direction indicating high accuracy. Specifically, the method
predicts longitudinal properties with less than 0.5% difference compared to analytical solutions,
demonstrating excellent predictive capability.

Enhanced Homogenisation: A trained neural network, utilising data developed from the least
squares method, is employed to predict the elastic properties of composite materials without the need
for re-modelling the RVE, thus saving time and computational costs. This tool has proven to be
powerful, delivering highly accurate results at a reduced cost. Moreover, a trained network can be
reused multiple times, enhancing efficiency in subsequent analyses.

Optimisation: Integrating the trained neural network results with an optimiser an effectively tailored
material designed to meet some criteria was developed. A material that gives the optimal balance
between performance and resource utilisation in various applications is developed.

Although the procedure can be applied to numerous examples, more work is needed on meshing RVEs
with irregular inclusions and RVEs with additional parameters, as most fibers have irregular shapes.
Addressing these challenges would further improve the accuracy and applicability of the method.
Future research should focus on refining mesh generation techniques and expanding the range of
parameters considered to better represent the complexity of real composite materials. Future scope of
this study entails modelling randomly oriented fibres and also considering inelastic material.

Future Research Direction: Although fibre-reinforced composites have been widely studied across
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various industries, several important research directions remain open and relevant for future work. In
the area of multi-scale modelling and simulation, there is still a need for an integrated framework that
effectively couples micro-scale fibre-matrix interactions with macro-scale structural performance.
Additionally, the use of machine learning to accelerate the prediction of stiffness, strength, and damage
evaluation is an emerging field that offers significant potential and remains largely unexplored.

Hybrid and multifunctional composites are also areas of growing interest. For example, hybrid
composites offer opportunities to balance performance, cost, and weight more effectively. Further
research can be directed toward multifunctional composites with enhanced capabilities such as energy
storage, thermal management, and electrical conductivity, enabling the development of superior,
next-generation materials. These composites can be tailored for specific applications, including
insulation, impact resistance, and improved fatigue durability.

Quantification of uncertainty and reliability in materials science also presents an interesting avenue for
study. The link between uncertainty in materials and their performance under service conditions can
be further explored to help bridge the gap between laboratory results and industrial adoption.

Structural health monitoring techniques offer another avenue for advancing non-destructive evaluation
methods for early damage detection. Sensors can be incorporated into composites as self-sensing fibres
for in-situ monitoring. This approach enables the early detection of damage, thereby reducing the risk
of injuries or structural failure. This field remains a promising area for further research.

Manufacturing and optimisation using 3D printing is also an emerging research area that can enable
the production of customised geometries while reducing material waste. This field can be explored for
fibre placement and resin infusion processes to improve repeatability and scalability. It offers significant
potential for further research and remains one of the most promising areas in advanced manufacturing.

These emerging areas ranging from uncertainty quantification to advanced manufacturing highlight the
need for continued research in materials science. Exploring these technologies further can lead to safer,
more efficient, and scalable solutions for real-world applications
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Appendix A

GEO and Mpap3 Output Files

A.1 Example of a Gmsh Geometry File

A geometry file generated using the c++ code. Together with Gmash software a mesh file is generated
using this file.

Mesh.Binary=0;

SetFactory ("OpenCASCADE") ;

Point (1) = {0, 0, 0, 0.3 };

Point (2) = {0, 1.05, 0, 0.3 };
Point (3) = {0, 1.05, 1.05, 0.3 };
Point (4) = {0, 0, 1.05, 0.3 };
Point (5) = {1.05, 0, 1.05, 0.3 };
Point (6) = {1.05, 1.05, 1.05, 0.3 };
Point (7) = {1.05, 1.05, 0, 0.3 };
Point (8) = {1.05, 0, 0, 0.3 };
Line(1) = {1, 2 };

Line(2) = { 2, 3 };

Line(3) = {3, 4 1};

Line(4) = {4, 1 };

Line(5) = { 4, 5 };

Line(6) = { 5, 6 1};

Line(7) = {6, 7 1};

Line(8) = { 7, 8 };

Line(9) = {8, 5 1};

Line(10) = { 8, 1 };

Line(11) = { 3, 6 };

Line(12) = { 2, 7 };

Sphere (1) = {0.525, 0.525, 0.525, 0.145};
Curve Loop(2) = {1, 2, 3, 4};
Plane Surface(2) = { 2 };

Curve Loop(3) = {6, 7, 8, 9};
Plane Surface(3) = { 3 };

Curve Loop(4) = {3, 11, 5, 61};
Curve Loop(5) = {2, 12, 7, 11};
Curve Loop(6) = {4, 10, 5, 9};
Curve Loop(7) = {8, 10, 1, 12};

Plane Surface(8) = {4};

Plane Surface(9) = {5};

Plane Surface(10) = {6};

Plane Surface(11) = {7};

Surface Loop (12) {2, 3, 8, 9, 10 , 11};
Surface Loop(13) = { 1};

Volume (2) = {12, 13};

Physical Volume ("matrix") = {2};

Physical Volume ("inclusions") = { 1 };
Mesh.CharacteristicLengthFromCurvature = 8;
Mesh 3;

Mesh.Smoothing = 100;
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A.2. EXAMPLE OF FEM OUTPUT FILE

Listing A.1: Cube with spherical inclusion of radius of 0.145 Geometry File

A.2 Example of FEM Output File

This file contains the stress outputs from Mpap3 software. Five test were carried out for each RVE.

R g it +
| |
| MPAPS3 |
| |
| Wulf G. Dettmer (2016) |
| |
R +
| project: solid |
o +
| test RVE

boocooooooooooooooooooo0oo00o000 +

linear b.c.

1 -> inclusions
2 -> matrix

initialising solver for
creating row compressed

format (unsymmetric)...

deleting temporary data

creating row compressed

format (unsymmetric)...

deleting temporary data

allocating memory for matrix coefficients

0. norm(residual)
1. norm(residual)

{ 0.2, 0.1,

{108.869, 84.1503,

norm(residual)
1. norm(residual)

{ 0.03, 0.02,

{22.0758, 18.885,

norm(residual)
1. norm(residual)

{ o.01, 0.03,
{-56.2017,

0. norm(residual)
1. norm(residual)
{ 0.01, 0.03,
{1.81083, 3.59946,

0. norm(residual)

-563.0825

6.34218753e+03
2.01269032e-11

33507 degrees of freedom

-0.1, 0.2, 0.1, -0.1}_6
60.8713, 21.8736, 10.0661, -10.9686}_6
= 5.80211257e+03
= 2.99701479e-11

-0.004, 0.2, 0.3, -0.5}_6
16.0817, 21.8995, 30.2763, -54.7639}_6
= 6.91051732e+03
= 3.14948737e-11

-0.2, -0.05, 0.2, -0.1}_6
, -79.833, -5.47966, 20.1998, -10.9447}_6
= 3.51719606e+03
= 1.14377528e-11

-0.04, 0.1, 0.01, -0.01}_6
-4.55514, 10.9367, 1.00439, -1.1029}_6

6.74420067e+03




57
58
59
60
61
62
63
64
65
66
67

106

APPENDIX A. GEO AND MPAP3 OUTPUT FILES

1. norm(residual) = 2.19056688e-11

{ 0.3, 0.05, -0.

{ 177.83, 128.729,

vtkUnstructuredGrid:
number of nodes = 12387
number of cells = 8840

file written:

‘rve.vtu’

01, 0.2, 0.04, -0.005}_6

121.745, 21.8656, 3.99714, -0.568685}_6

Listing A.2: Example of FEM output File




Appendix B

MATLAB Codes

B.1 Code 1: Isotropic Homogenisation

A transversely isotropic material. MATLAB code for least square method used for homogenisation.

1| function [E,nu,r] = isotropic(strain,stress)
2

3% exp is 6 by 2 by N array:

4|% 6 spatial coefficients

s| % strains (1) and stresses (2)

6/% N experiements

7

gl N = size(strain,1);

9

wl A = [];

1n|rhs = [];

12

13 for i=1:N

14 eps = strain(i,:)’;

15 eps (4:6) = 2xeps(4:6);

16

17 sig = stress(i,:)’;

18

19 0/0

20 % S11 S12

21 a = [sig(1) (sig(2)+sig(3)); % epslil
22 sig(2) (sig(3)+sig(1)); h eps22
23 sig(3) (sig(1)+sig(2)); % eps33
24 2*xsig (4) -2xsig(4) h 2 x epsl2
25 2*xsig(5) -2xsig(5) % 2 x eps23
26 2*xsig(6) -2*xsig(6) 1; % 2 x eps31
27

28 A = [A;a]l;

29

30 rhs = [rhs;eps];

31| end

32

33

34

35

36

37

38

39

40

41

42

43

size (A);
size (rhs) ;

[S,flag,r] =

size(S);

E

nu

= 1/S(1);
= -5(2)*E;

end

1sqr (A, rhs);
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APPENDIX B. MATLAB CODES

Listing B.1: Isotropic Data Analysis Script

B.2 Code 2: Transversely Isotropic Homogenisation
The code provides the least square method used for homogenisation of an isotropic material.

function [E1,E2,nul2,nu23,G12,G23,r] =
% exp is 6 by 2 by N array:

% 6 spatial coefficients

% strains
% N experiements

(2)

(1) and stresses

N =size(strain,1);

A= []1;
rhs = [];

i=1:N
eps = strain(i,:)’;
eps (4:6) = 2xeps(4:6);

for

sig = stress(i,:)’;
%hsig(3,:)=0;

S12 S23
sig(2)+sig(3) 0

sig(1) sig(3)

0 sig (1) sig(2)

0 2xsig(4) 0 -2*sig (4)
0 0 0 0
0 0 0 0

Y S11 S22

[sig(1) 0
0 sig(2)
sig(3)

»
1

=
1]

[A;al;
rhs = [rhs;eps];
end

[S,flag,r] = 1lsqr(A,rhs);
E1l
E2 =
nul?2
nu23 =
G12
G23
end

1/8(1);

1/8(2);

-S(3) *E1;
-S(4)*E2;

= 1/8(5);
1/(2*(S(2)-S(4)));

transverseisotropic(strain,stress)

S55

0 8 % epsiil

0 g % eps22

0 8 % eps33

0 8 % 2 x epsl2
sig(5); % 2 x eps23
sig(6) 1; % 2 x eps31

Listing B.2: Transverse isotropic Data Analysis Script

B.3 Code 3: FEM Output File Stress/Strain Extraction

This MATLAB code is used to read Appendix A.2 and is used to concentrate all stress values into a

larger matrix for all RVE output files for homogenisation.

clear all

clc

% Initialize matrices to store the numbers
matrix_line31 = [];

matrix_line33 = [];

[1;

matrix_line38
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B.3. CODE 3: FEM OUTPUT FILE STRESS/STRAIN EXTRACTION
matrix_line40 = [];
matrix_lined45 = [];
matrix_line47 = [];
matrix_line52 = [];
matrix_line54 = [];
matrix_line59 = [];
matrix_line61 = [];

e e e e
% B e o o o o T o R R e R E

% + EXTRACTION OF STRESSES AND STRAINS FROM FEM 5

% B T T e o T e e b b i T o b o o S AN S e S aR S AN S
Y=============================================================================
% Loop through the files

for i = 1:num_exp

disp([’Processing file ’> num2str(i)]);

% Read the lines from the file

lines = textread([’rve’ num2str (i) 1, ’%s?’, ’delimiter?’, ’\n’);
%lines = textread(’rvell2’, ’%s’, ’delimiter’, ’\n?);

% Extract numbers from line 31 and clean up the string
line31_str = lines{31};

line31_str = strrep(line3i_str, ’{’, ’’);

line31_str = strrep(line31l_str, ’}’, 7’);

line31_str = strrep(line31l_str, ’_6’, ’7);

% Convert the cleaned string to numbers
line31_numbers = str2num(line31_str) ;

% Append the extracted numbers to the matrix
matrix_line31 = [matrix_line31; line31_numbers];

% Extract numbers from line 33 and clean up the string
line33_str = lines{33};

line33_str = strrep(line33_str, ’{’, ’’);

line33_str = strrep(line33_str, ’}’, ’’);

line33_str = strrep(line33_str, ’_6’, ’’);

% Convert the cleaned string to numbers
line33_numbers = str2num(line33_str) ;

% Append the extracted numbers to the matrix
matrix_line33 = [matrix_line33; line33_numbers];

% Extract numbers from line 38 and clean up the string
line38_str = lines{38};

line38_str = strrep(line38_str, ’{’, ’’);

line38_str = strrep(line38_str, ’}’, ’7);

line38_str = strrep(line38_str, ’_6’, ’’);

% Convert the cleaned string to numbers
1line38_numbers = str2num(line38_str) ;

% Append the extracted numbers to the matrix
matrix_line38 = [matrix_line38; line38_numbers];

% Extract numbers from line 40 and clean up the string
line40_str = lines{40};
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APPENDIX B.

line40_str = strrep(line4O_str, ’{’, ’’);
line40_str = strrep(line4O_str, ’}’, ’?);
line40_str strrep(line4O_str, ’_6’, ’’);

% Convert the cleaned string to numbers
line40_numbers = str2num(lined4O_str) ;

% Append the extracted numbers to the matrix
matrix_line40 = [matrix_lined40; line40_numbers];

% Extract numbers from line 45 and clean up the string
lined45_str = linesq{45};

line45_str = strrep(lined4b5_str, ’{’, ’?);

line45_str = strrep(lined4b5_str, ’}’, ’?);

line45_str = strrep(line45_str, ’_67, ’’);

% Convert the cleaned string to numbers
line45_numbers = str2num(lined45_str) ;

% Append the extracted numbers to the matrix
matrix_lined45 = [matrix_lined45; line45_numbers];

% Extract numbers from line 47 and clean up the string
lined47_str = lines{47};

line47_str = strrep(lined47_str, ’{’, ’?);

line47_str = strrep(line47_str, ’}’, ’’);

line47_str = strrep(lined47_str, ’_6’, ’’);

% Convert the cleaned string to numbers
line47_numbers = str2num(line47_str);

% Append the extracted numbers to the matrix
matrix_lined47 = [matrix_lined47; line47_numbers];

% Extract numbers from line 52 and clean up the string
line52_str = lines{52};

line52_str = strrep(line52_str, ’{’, ’’);

lineb2_str = strrep(lineb2_str, ’}’, ’7);

line52_str = strrep(lineb2_str, ’_6’, ’7);

% Convert the cleaned string to numbers
line52_numbers = str2num(line52_str) ;

% Append the extracted numbers to the matrix
matrix_line52 = [matrix_line52; line52_numbers];

% Extract numbers from line 54 and clean up the string
line54_str = lines{54};

lineb4_str = strrep(lineb4_str, ’{’, ’?);

lineb54_str = strrep(lineb4_str, ’}’, ’7);

line54_str = strrep(lineb4_str, ’_6°, ’7);

% Convert the cleaned string to numbers
line54_numbers = str2num(lineb54_str) ;

% Append the extracted numbers to the matrix
matrix_line54 = [matrix_lineb54; line54_numbers];

% Extract numbers from line 59 and clean up the string

MATLAB CODES
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B.3. CODE 3: FEM OUTPUT FILE STRESS/STRAIN EXTRACTION 111

line59_str = lines{59};

lineb9_str = strrep(lineb9_str, ’{’, ’7);
line59_str = strrep(line59_str, ’}’, ’?);
line59_str = strrep(lineb59_str, ’_6°, ’?);

% Convert the cleaned string to numbers
line59_numbers = str2num(line59_str);

%» Append the extracted numbers to the matrix
matrix_line59 = [matrix_lineb59; line59_numbers];

% Extract numbers from line 61 and clean up the string
line61_str = lines{61};
line61_str = strrep(line6l_str, ’{’, ’?);
line61_str = strrep(line6il_str, ’}’, ’’);
line6l_str = strrep(line6l_str, ’_6°, ’?);

% Convert the cleaned string to numbers
line61_numbers = str2num(line6l_str);

% Append the extracted numbers to the matrix

matrix_line61 = [matrix_line61; line61_numbers];
YY============================================================================
% o e S T T R T b e
b +* STRESS AND STRAIN ASSEMBLY +
% e L S T S
Y =============================================================================
strain = [matrix_line31(i,:);matrix_1line38(i,:);matrix_line45(i,:);
matrix_lineb52(i,:) ;matrix_lineb59(i,:)];
stress = [matrix_line33(i,:);matrix_1lined40(i,:);matrix_lined7(i,:);
matrix_line54(i,:) ;matrix_line61(i,:)]./3;
YY============================================================================
% T o ™
i + HOMOGENASATION +
% S S I
Y=============================================================================
hIsotropic Use
for j=1:5
[E(j),nu(j),r(j)] = isotropic(strain(j,:),stress(j,:));
end
E_nu_r = [E’,nu’,r’]

% two experiments: together

[E,nu,r] = isotropic(strain,stress);

eval ([’E’ num2str (i) ° E’]1);
eval ([’nu’ num2str (i) ’ = nu’l);
eval ([’r’ num2str (i) ° r’l);

eval ([’K’ num2str (i) °
eval ([°G’ num2str (i) °

E/(3%(1-2*nu))’]);
E/(2x(1+nu))’]);

%For Transverse isotropic Use
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for j=1:5
[E1(j),E2(j) ,nul2(j),nu23(j),G12(j),G23(j),r(j)] =transverseisotropic(
strain(j,:),stress(j,:));ltransverselsotropy(strain(i,:),stress(i,:));
end

[E1°,E2’,nul2’,nu23’,G12’,G23°,r’];

% seven experiments: together

[E1,E2,nul2,nu23,G12,G23,r] = transverseisotropic(strain,stress);
eval ([’Ex’ num2str(i) °> = E1°]);
eval ([’Ey’ num2str(i) ’> = E2’]);
eval ([’nuxy’ num2str(i) ’> = nul2’]);
eval ([’nuyz’ num2str (i) ’ = nu23’]);
eval ([’Gxy’ num2str(i) °’> = G12°]);
eval ([’Gyz’ num2str(i) ’> = G23’]);
eval ([’r’ num2str(i) ’> = 1r°]1);
end
YY============================================================================
Y O 0 0 T S A
Y + END +
Y T S T
Y =============================================================================

Listing B.3: FEM output file stress/strain Extraction script

B.4 Code 4: Isotropic Assembly Script For Elastic Properties
Together with Appendix B.3 and B.1 this MATLAB code concentrated all the elastic parameters of an
isotropic material to their respective matrix for further analysis.

clear all
clc
run (’Extraction.m’);

%+++++++++++++++++++

% EXTRACTION OF K +
ht++++++++++++++++++

n = num_exp;
combined_vector = [];
for i = 1:n
var_name = [’K’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector = [combined_vector; eval([var_name ’(:)’])];
else
warning ([’Variable ’ var_name ’ does not exist. Skipping...’]);
end
end
hfh========================================================================

%t++++++++++++++++++

% EXTRACTION OF G +
%t++++++++++++++++++

combined_vectorl = [];
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B.4. CODE 4: ISOTROPIC ASSEMBLY SCRIPT FOR ELASTIC PROPERTIES

for i = 1:n
var_name = [’G’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vectorl = [combined_vectorl; eval([var_name ’(:)’])];
else
warning ([’Variablel > var_name °’ does not exist. Skipping...’]);
end
end
hfh========================================================================

%t++++++++++++++++++
% EXTRACTION OF E +
%t++++++++++++++++++

combined_vector2 = [];
for i = 1:n
var_name = [’E’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector2 = [combined_vector2; eval([var_name ’(:)’])];
else
warning ([’Variable2 ’ var_name °’ does not exist. Skipping...’]);
end
end
hfh========================================================================

ht++++++++++++++++++

% EXTRACTION OF V +
%+++++++++++++++++++

combined_vector3 = [];
for i = 1:n
var_name = [’nu’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector3 = [combined_vector3; eval([var_name ’(:)’]1)1]1;
else
warning ([’Variable3 ’ var_name ’ does not exist. Skipping...’]);
end
end
hh========================================================================

%t++++++++++++++HHtHHHH444

% EXTRACTION OF RESIDUAL +
%+++++++++++++++ttttttttbt

combined_vector4 = [];
for i = 1:n
var_name = [’r’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector4d = [combined_vector4; eval([var_name ’(:)’])];
else
warning ([’Variable4 °’ var_name °’ does not exist. Skipping...’]);
end
end
hh===============================s=========S=======SS===SsS====S=S=====s=====s====

A o o o e R R e

% DISPLAY ALL THE EXTRACTED PROPERTIES +
%t+++++++tttttttt A+

G =[combined_vectori]

K = [combined_vector]
E =[combined_vector?2]
nu = [combined_vector3]

r = [combined_vector4]
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%%:=:======================:=:=:==:=::=:========:=:=:==::::::=:=:======:=:

% B e o e e

% + END +

% +++++t+

Listing B.4: Isotropic Assembly code

B.5 Code 5: Transverse Isotropic Assembly Script For Elastic

Properties

Together with Appendix B.3 and B.2 this MATLAB code assemble all the elastic parameters of a tran-
versely isotropic material to their respective matrix for further analysis.

clear all
clc
run (’EXTRACTIONTRANS .m’) ;

hh===============================
Yt++++++++++++++++++
% EXTRACTION OF E1 +
Yt++++++++++++++++++
n = num_exp;
combined_vector = [];
for i = 1:n
var_name = [’Ex’ num2str(i)];

if exist(var_name, ’var’) ==
combined_vector =
else
warning ([’Variable

end

%t++++++++++++++++++

% EXTRACTION OF E2 +
%+++++++++++++++++++

combined_vectorl = [];
for i = 1:n
var_name = [’Ey’ num2str(i)];

if exist(var_name, ’var’)
combined_vectorl =
else
warning ([’Variablel
end

Y+ttt +

% EXTRACTION OF V12 +

A L L L L L

combined_vector2 = [];

for i = 1:n

[’nuxy’ num2str (i)

if exist(var_name, ’var?’)
combined_vector2 =

var_name =

else
warning ([’Variable2
end
end

[combined_vector;

var_name

[combined_vectori;

var_name °’

[combined_vector2;

var_name °’

1
2(:)°1) ]

eval ([var_name

> does not exist. Skipping...’]);

1
2(:)°1)7;

eval ([var_name

does not exist. Skipping...’]);

18
1
()1 ];

eval ([var_name

does not exist. Skipping...’]);




51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

B.5. CODE 5: TRANSVERSE ISOTROPIC ASSEMBLY SCRIPT FOR ELASTIC PROPERTIES115

Y+ttt
% EXTRACTION OF V23 +
e e e e
combined_vector3 = [];
for i = 1:n
[’nuyz’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector3 = [combined_vector3;
else
warning ([’Variable3
end

var_name =

var_name °’ does

%t+++++++++++++++tttttttbH44

% EXTRACTION OF RESIDUAL r +
%+++++++++++++++tttttttttbb4

combined_vector4 = [];
for i = 1:n
var_name = [’r’ num2str(i)];

if exist(var_name, ’var’) == 1
combined_vector4 = [combined_vector4;
else
warning ([’Variabled4 °
end

var_name °’ does

Pttt tttttt+ttttttrttttttrtttttt 4+
% EXTRACTION OF SHEAR MODULUS G12 +
Ytt++++++++++++ttttrrrr bbb+
combined_vector5 = [];

for i = 1:n

[’Gxy’ num2str(i)];

‘var?’) == 1
[combined_vector5;

var_name =
if exist (var_name,
combined_vectorb5 =
else
warning ([’Variableb5 °
end

var_name °’ does

%t++++++++tttttt bt

% EXTRACTION OF SHEAR MODULUS G23 +
%++++++++ttttttttt

combined_vector6 =
for i = 1:n

[1;

var_name = [’Gyz’ num2str(i)];
if exist(var_name, ’var’) == 1
combined_vector6 = [combined_vector6;
else
warning ([’Variable6 °
end

var_name °’ does

A e o R R R R

% DISPLAY ALL THE EXTRACTED PROPERTIES +
%++++++++ttttttt AR+

2(:)°1)1;

eval ([var_name

not exist. Skipping...’]1);

()11

eval ([var_name
not exist. Skipping...’]1);

()11

eval ([var_name
not exist. Skipping...’]);

2(:)°D];

eval ([var_name
not exist. Skipping...’]);
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e ]
-
1]

[combined_vector]
E2 = [combined_vectori]

nul2 = [combined_vector2]

nu23 = [combined_vector3]

G12 = [combined_vector5]

G23 = [combined_vector6]

r = [combined_vector4]
hh========================================================================
% L T e T

1 4 END A

% ttt b+

Listing B.5: Transverse Isotropic Assembly script

B.6 Code 6: Neural Network Training

This code provide a neural network with three hidden layers two of which use transig activation fuction
and one layer that uses the logsig activation function. This network is used for training.

run (’BRICKrslt.m?)
K=[A(C:,1),A(:,2),A(:,3),A(:,4)];
G=[AC(:,8),A(C:,9)];

target= [K]’;
input= [G]’;

% Create a feedforward network with 10 neurons in one hidden layer
net304 = feedforwardnet ([5,15,5]);

% Set the transfer function for the hidden layers
net.layers{1}.transferFcn = ’tansig?’;

net.layers{2}.transferFcn = ’logsig?’;

net.layers{3}.transferFcn = ’tansig’;

%net.layers{4}.transferFcn = ’logsig?’;

%net.trainParam.max_fail = 6; % Maximum validation failures
Jsnet.performParam.regularization = 0.1; % L2 regularization parameter
% Configure the network

net = configure(net, input, target);

% Train the network

[net, tr] = train(mnet, input, target);

% Display the trained network object
disp(’Trained Network:’);
disp(net) ;

% Display the training record
disp(’Training Record:’);
disp (tr);

filename = ’my_neural_network_model .mat’;
save(filename, ’net’);

out_put=net ([input])’

hth

figure;

scatter (A(:,1) ,A(:,3),°r+?)

hold on

scatter (A(:,2),A(:,4),°g+?)
hold on
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B.7. CODE 7: COST FUNCTION 1 SCRIPT

scatter (out_put (:,1) ,out_put(:,3),’bx’)
hold on
scatter (out_put (:,2) ,out_put(:,4),’kx*?)

grid on; % Turn on the grid

% Customize grid appearance
grid(gca, ’minor’);
ax = gca;

% Customize minor grid lines
ax.MinorGridColor = [0.5, 0.5, 0.5]; 7 Minor grid lines color
ax.MinorGridLineStyle = ’:’; % Minor grid lines style

%» Customize major grid lines
set (gca, ’XMinorGrid’, ’on’); % Turn on minor grid lines for x-axis
set(gca, ’YMinorGrid’, ’on’); % Turn on minor grid lines for y-axis

% Customize grid lines further (optional)

ax.GridAlpha = 0.8; % Grid transparency (0 to 1)

ax.GridColor = [0.2, 0.2, 0.2]; % Grid color

ax.GridLineStyle = ’:’; % Grid line style

x1im ([31,133])

ylim ([10,30]1)

legend(’actual longitudinal data’,’actual transverse data’,’trained
longitudinal data’,’trained transverse data’)’,, ’linear analysis’);

title(’Neural plot(G,E) vs Actual plot(G,E)’);

ylabel (’G_{12},G_{13}/ Shear Modulus’);

xlabel (’E1,E2/ Youngs modulus’);

% Adjust plot appearance (optional)

set(gca, ’FontSize’, 12); 7 Font size for axes labels and ticks
set (gca, ’LineWidth’, 0.2); % Line width for axes

set (gcf, ’Color’, ’w’); ' Figure background color

hold off
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Listing B.6: Neural Network Training script

B.7 Code 7: Cost Function 1 script

This script file gives objectives in Section 6.3 as a function of its decision variables.

function val = cost(x,ann)
ri = x(1);
rv = x(2);

d = 4.2; side of the cube/RVE

Cm ilg

Ci = 1000;

a = 1;

b= 100;

7 matrix inclusion
/) K 100 1000

7 mu 10 100

% minimum stifness required (constraint)
kmn = 95;
mumn 9.5;
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118 APPENDIX B.
% For 3D

V2 = d°3;

n = 4;

Vi = 0.5 * (n * n * n * 4/3 *x pi * ri~3) / V2;

Vv = 0.5 * (n * n * n * 4/3 *x pi * rv~3) / V2;

Vm = 1. - Vi - Vv,

s = ann([ri;rv]);

k = s(1);

mu = s(2);

Cl = (Vm * Cm + Vi * Ci)x*b;

C2 = a * ((max(0,k-kmn)/k + max(0,mu-mumn)/mu ));
val(1) = Ci1;

val(2) = -C2;

end

MATLAB CODES

Listing B.7: Cost Function 1

B.8 Code 8: Cost Function 2

This script file gives objectives in Section 6.4 as a function of its decision variables.

function val = opt(x,ann)

Y======================================================
Y======================================================
ri = x(1);

rv = x(2);

rj = x(3);

Cm = 1;

Ci = 1000;

a = 1000;

b= 0.1;%1.0e+10;

7 matrix inclusion

7/ K 100 1000

7 mu 10 100

% minimum stifness required (constraint)

Elmn = 70.71;
E2mn = 49.62
Gl12mn = 15.63;
G23mn = 16.08;
fvmn = 0.5;

s = ann([ri;rv;rjl);
El1 = s(1);

E2 = s(2);
G12 = s(3);
G23 = s(4);

rd = 1;
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1 = rj*xrd;
t = rix*xrd;
lng = rv*rd;
Fvr = (l*xpi*(rd/2)-2)/((t+rd)*(1l+1lng));

Mvr = 1-Fvr;

Cl = Cm*xMvr + Cix*Fvr;

C2 = a * ((max(0,E1-Eimn)/Eimn + max(0,E2-E2mn)/E2mn + max(0,G12-G12mn)/
G12mn
+ max (0,G23-G23mn) /G23mn) ) ;

val (1) = Ci1;
val(2) = -C2;
end

Listing B.8: Cost Function 2 script

B.9 Code 9: gamult optimiser code

This provide the code used for optimisation in Section 6.3.

% Load the saved results
load (’my_neural_network_model.mat’);

h
% Define the number of decision variables
nvars = 2;

% Define lower and upper bounds for the decision variables
1b = [0.00, 0.00]; % lower bounds
ub = [0.5, 0.5]; % upper bounds

% Set the options for the genetic algorithm

options = optimoptions(’gamultiobj’, ’SelectionFcn’, {@selectiontournament,
50}, ’ConstraintTolerance’, 1e-6000,...
’CrossoverFraction’,0.75, ’PopulationSize’, 100, ’MaxGenerations’, 100,°
PlotFcn’ ,{@gaplotparetodistancel) ;

% Run the multi-objective genetic algorithm
[b, fval, exitflag, output] = gamultiobj(@(x)cost(x,mlnet), nvars,[], [1, [],
[1, 1b, ub, [], optiomns);

hh

% Display the optimized solution and objective function values
disp(’0Optimized void & incl radii Solution:’);

comb_of_ri_rv = Db

disp(’0Objective Function Values [C1 and C2 ]:’);

disp(fval);

% Calculation of the cost and design parameters K and mu with optimized ri and
rv
disp(’design parameters;’)
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K_and_mu_best = mlnet(b’)’

figure (4)

plot(b(:, 2), b(:, 1), ’k*’);

xlabel (’voids radius?);

ylabel(’inclusion radius’);
title(’Decision Variable Values?’);

% Set the limits for the x-axis and y-axis
x1im ([0 0.5]);

ylim ([0 0.51);

grid omn

return

APPENDIX B. MATLAB CODES

Listing B.9: Optimiser script
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Appendix C

C-+-+ Codes

C.1 Code 1: Main FEM Program

This provide the code used to Rum the Mpap3 with five different strains tests.

#define VTK

#define SOLID

#define MESH_TOOLS
#define MA41

#include "Fem.h"
#include <iostream>
#include <fstream>
#include <vector>
#include "MpapGlobal.h"
#include "FemSolidRVE.h"
#include "MaterialHooke.h"

int main(int argc ,char*xargs)

{
mpapInit("solid", "test RVE");
mos.setDoubleFormat ("%7g") ;

FemSolidRVE rve("rve", 3);
//rve.getMeshFromGmsh{1File ("rve2ex104 -mod.msh", "solzid3D");
rve.getMeshFromGmsh41File (args [1], "so0lid3D");

rve.mesh3D4tol0noded ("s0lid3D"); //convert 4 noded element to 10 noded

rve.centreMesh () ;
rve.x0 = rve.x;

//Choose boundary condition
rve.set("linearBC") ;

mos << " linear b.c.\n\n";

// rve.set("periodicBC"); mos << " pertiodic b.c.\n\n";
rve.set("ngp", 5); //set Number of gauss point.
rve.set("tol", 1.e-5); //set Tolerance.

rve.set ("maxIter", 5); // set number of iterations.
rve.set ("Hooke") ;

rve.set ("updateCoorFlag", false);

rve.set ("3D");

rve.listGroups () ;

//Set Material Properties

/*rve.set ("K", 100.);

121
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45 rve.set ("mu", 10.);*/

46

a7 rve.setGroupData ("matrix", "K", 100.);

48 rve.setGroupData("matrix", "mu", 10.);

49 rve.setGroupData("inclusions", "K", 1000.);

50 rve.setGroupData("inclusions", "mu", 100.);

51

52 //set strains for the ezperiment

53

54 double eps[] = { 0.2, 0.1, -0.1,
0.1, -0.1}, sigl[10], cc[36],

55 F[(l = {¢1.12, 0.1, 0.2, -0.1, 0.9, 0., 0.2, O.

56 rve.stressUpdate(sig, cc, eps);

57 mos << mos.array(eps, 6) << "\n\n";

58 mos << mos.array(sig, 6) << "\n\n";

59

60 double epsi[] = { 0.03, 0.02, -0.004,
0.8, -0.5}, sig1[10];

61 rve.stressUpdate (sigl, cc, epsl);

62 mos << mos.array(epsl, 6) << "\n\n";

63 mos << mos.array(sigl, 6) << "\n\n";

64

65 double eps2[] = { 0.01, 0.03, -0.2,
0.2, -0.1}, sig2[10];

66 rve.stressUpdate (sig2, cc, eps2);

67 mos << mos.array(eps2, 6) << "\n\n";

68 mos << mos.array(sig2, 6) << "\n\n";

69

70 double eps3[] = { 0.01, 0.03, -0.04,
0.01, -0.01}, sig3[10];

71 rve.stressUpdate (sig3, cc, eps3);

72 mos << mos.array(eps3, 6) << "\n\n";

73 mos << mos.array(sig3, 6) << "\n\n";

74

75 double eps4[] = { 0.3, 0.05, -0.01,
0.04, -0.005}, sigal[10];

76 rve.stressUpdate (sig4, cc, eps4d);

77 mos << mos.array(eps4, 6) << "\n\n";

78 mos << mos.array(sigd, 6) << "\n\n";

79

so| //vidualise the last strains deformations

gi| #ifdef VTK

82 rve.vtkGetUndeformedMesh () ;

83

84 rve.vtkGetCellData("group");

85

86 rve.vtkGetVectorData("displacement", 0);

87

88 rve.vtkWriteOutputFile ("rve.vtu");

89

90| #endif

91

92 }

0.2,

-0.05,

Listing C.1: Program to run the Meshes

C.2 Code 2: Cube Geometry file Generator

Homogenous blocks experimented on in this study are generated using this code as a geometry generator.

1| #define VTK
2| #define SOLID
3| #define MESH_TOOLS
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C.2. CODE 2: CUBE GEOMETRY FILE GENERATOR 123
#define MA41
#include "Fem.h"
#include <iostream>
#include <fstream>
#include <vector>
#include "MpapGlobal.h"
#include "FemSolidRVE.h"
#include "MaterialHooke.h"
#include <sstream>
int main ()
{
int num = 1 ,num2=1;
std::ofstream output_file("rveQex104233phere_Inclusions_with_voids2.m“);
if (output_file.is_open())
double rdv, rd;
{
for (double n = 1; n <= 1; n += 1)
{
double rd,rdv;
rd = 0.0; // radius of inclusions
rdv =0.0;//7radius of wvotids
{
std::string filename = "output_" + std::to_string(rd) + "_" + std::
to_string(n) + ".geo";
std::ofstream file(filename) ;
if (file.is_open())
{
Std::coUt << MK SUCCESS « v v vttt ittt e e e e e e e e *\n\
n";
}
int j, i, r, rr, Rr, v, S, fibre, swwwl, swww;
double d, nx, ny, nz, lc, t, a, b, z, x, y, y2, Pi, tol = 1.e-4;
lc =0.1; //mesh size
Pi = 3.14159265358979323846;
double Rrl = 5, r1 = 4, r2 = 6, Rr2 = 7, r3 = 8, Rr3 = 9;
r = 1;
Rr = 3;
file << "Mesh.Binary=0;" << std::endl;
file << "SetFactory (\"OpenCASCADE\") ;" << std::endl;
double maxr=1; ;
ny=maxr ;
nx ny;
nz = ny;
nz = ny;
file << "Point (1) = {" << 0.0 << ", " << 0 << ", " <K< 0 << ", " << lc << " };n"
<< std::endl;
file << "Point(2) = {" << 0 << ", " << ny <K< ", " <0 <K< ", " < 1c
<< " };" << std::endl;
file << "Point(3) = {" << 0 << ", " << ny <K< ", " <K< nz << ", " <L
lc << " };" << std::endl;
file << "Point (4) = {" << 0 << ", " K< 0 <K< ", " K< nz << ", " << 1c
<< " };" << std::endl;
file << "Point(5) = {" << nx << ", " << 0 << ", " << nz <K< ", " << lc
<< " };" << std::endl;
file << "Point(6) = {" << nx << ", " << ny << ", " << nz << ", " <<
lc << " };" << std::endl;
file << "Point(7) = {" << nx << ", " << pny << ", " << 0 << ", " << 1c
<< " };" << std::endl;
file << "Point(8) = {" << nx << ", " K< 0 << ", " K< 0 << ", " << 1c
<< " };" << std::endl;
file << "Line(1) = { 1, 2 };" << std::endl;
file << "Line(2) = { 2, 3 };" << std::endl;




57

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

96

97

98

99

101

102

104

105

106

108

109

124

file << "Line(3) = {
file << "Line(4) = {
file << "Line(5) = {
file << "Line(8) = {
file << "Line(7) = {
file << "Line(8) = {
file << "Line(9) = {
file << "Line (10) =
file << "Line (11) =
file << "Line(12) =
S = 13;
v = 1;
Double dt=0;
swww = dt + 6;
swwwl = dt + 2;
file << "Curve Loop("
<<
", M K< 4 << "Fr oK
{
file << "Plane Surf
file << "" << dt <<
}
{
file << endl;
}
file << "Curve Loop("
<<
oM K< 9 << "Ry <<
{
file << "Plane Surf
file << "" << (dt+1
}
{
file << endl;
}
file << "Curve Loop("
<< b5 <<
"M KK B <K< "F;" oK<
file << "Curve Loop("
<< 7 <<
T, " << 11 << "t oK<
file << "Curve Loop("
<< b <<
"M K< 9 << "Fpr oK<
file << "Curve Loop("
<< 1 <<
T, " << 12 << "F;t o<
for (j = 0; j < 4; j+
{
file << "Plane Surf
endl;

swww += 1;

swwwl += 1;
}
int fibbrree = dt;
file << "Surface Loop

<< ", omk<

dt + 6<<" "<< dt +
endl;

{

file << endl;

file << "Volume (" <<

"<
"<
"<
<<
"<
"<
HAR
"<

}
o<
}

W N O O W
U100 N O Ol =D

N W 0
N o e
R R A T A

"<

<< dt << ")

std::endl;

<< dt <
<< std

ace ("

n };n

<< dt+1 << "
std::endl;

<< dt+1
Pt o<<

ace ("
) << "

<< dt + 2 <<

std::endl;
<< dt + 3 <<

std::endl;
<< dt + 4 <

std::endl;
<< dt + 5 <

std::endl;
+)

ace (" << swww

(" << 4t +10

7 <",

dt << H)

std:

std::
std::
std::
std::

std:

std::
std:
std:
std:

= {n

< n)

:endl;
endl;
endl;
endl;
endl;
:endl;
endl;
:endl;
:endl;
:endl;

<< 1 << n, o

::endl;

)y =

<<
std

< u)

< u)

<<

<<

"<< dt + 8<<"

{u

= {n

= {n

") = {
::endl;

I
-~

I
-~

u) = {u

DI

= {u<< dt + 10 <<n};u

<< 6 << n, "

<< 3 << " "

<< 2 << Mo

"< 4 << " n

"< 8 << u’ n

"< dt + 9 <<n};n
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<< 2 << ", v << 3

<K< T << " n

>

<< 8

<< 11 << " m

H

<< 12 << " "

<< 10 << ", v

>

<< 10 << ", v

<< swwwl << "};" << std::

"< dt << ", " << dt + 1

<< std::

<< std::endl;
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file << "Physical Volume (\"matrix\") = {" << dt << "};" << std::endl;
file << endl;

//MESH QUALITY CONTROL
file << " Mesh 3;" << std::endl;
file << "Mesh.Smoothing = 100;" << std::endl;

std::string commend = "output_" + std::to_string(rd) + "_" 4+ std::
to_string(n) + ".msh";

//GENERATE MSH FILE
std::string command = "gmsh " + filename + " -3 -smooth 100 > gmsh.log";
int err = system(command.c_str());

//CREATE A SHELL FILE
std::ofstream Output_file("king.sh", std::ios::app);
if (Output_file.is_open())
Output_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ")
working..."<<"\""<<" g
Output_file<<" ./mpap3 " + commend + "> out/rve"+ to_string(num2) <<endl
Output_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ") all
done.."<<"\""<<endl;
num2+=1;
}
}

Listing C.2: Cube Geometry File

C.3 Code 3: Cube With spherical-inclusion Geometry file Gen-

erator

Geometry of an isotropic material with spherical inclusion is generated using this code. Parameters of
the microstructure are varied here to generate multiple RVEs.

#define VTK

#define SOLID

#define MESH_TOOLS
#define MA41

#include "Fem.h"
#include <iostream>
#include <fstream>
#include <vector>
#include "MpapGlobal.h"
#include "FemSolidRVE.h"
#include "MaterialHooke.h"
#include <sstream>

int main ()

{
int num = 1 ,num2=1; double rdv, rd;
{
for (double n = 1; n <= 7; n += 1) // number of inclusions
{

double rd,rdv;
rd = 0.5; // radius of inclusions
rdv =0;//radius of woids

std::string filename = "output_" + std::to_string(rd) + "_" + std::
to_string(n) + ".geo";
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file <<
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std::ofstream file(filename) ;
if (file.is_open())

{

StA::CoOUt << MK SUCCESS v v v vt vttt e et et e et e e e e e e e e e *\n\n";
}
int j, i, r, rr, Rr, v, S, fibre, swwwl, swww;

double d, nx, ny, nz, lc, t, a, b, z, x, y, y2, Pi, tol = 1l.e-4;
d = 0.05; // spacing

lc =0.5; // cube mesh size

Pi = 3.14159265358979323846;

double Rrl1 = 5, r1 = 4, r2 = 6, Rr2 = 7, r3 = 8, Rr3 = 9;

r = 1; //Sphere LABELS

Rr = 3;

file << "Mesh.Binary=0;" << std::endl;

file << "SetFactory (\"OpenCASCADE\") ;" << std::endl;

double maxr=1; //RVE size control parameter

a = (d+ maxr ); //increment

ny = (n) * ( d + maxr); // Side of RVE cube

b = (0.5 * d + 0.5 *x maxr ) ; //initial starting coordinate

nx = ny;

nz = ny;

nz = ny;

double F_volume_.r = (n * n * n * 4 / 3 * Pi * rd * rd * rd) / (ny * ny
* ny);

double v_volume_r = (n * n * n * 4 / 3 * Pi * rdv * rdv * rdv) / (ny *
ny * ny);

mos <<ny<<"\n\n";

mos << "F_volume_r is " << F_volume_r << "\n\n";

mos << "radius of voids is " << rdv << "\n\n";

mos << "radius of inclusion is " << rd << "\n\n";

mos << "spacing is " << d << "\n\n";

output_file<< "side_of_cube"+ to_string(num) <<" = " << ny <<";"<<"\n\n

"<<std::endl;

output_file << "F_volume_r"+ to_string(num) <<"
<< "\n\n"<< std::endl;

output_file << "v_volume_r"+ to_string(num) <<"
<< "\n\n"<< std::endl;

" << F_volume_r<<";"

" << v_volume_r<<";"

output_file << "radius_of_voids"+ to_string(num) <<" = " << rdv<<";" <<
"\n\n"<< std::endl;
output_file << "radius_of_inclusion"+ to_string(num) <<" = " << rd<<";"
<< "\n\n"<< std::endl;
output_file << "spacing"+ to_string(num) <<" = " << d<<";" << "\n\n"<<
std::endl;
output_file << "Y||successful...... for....... MESH"+ to_string(num)+"
................... | |"™ << "\n\n"<< std::endl;
num+=1;
//CREATE A CUBE
"Point (1) = {" << 0.0 << ", " <K< 0 <K< ", " << 0 << ", " << lc << " };m"
<< std::endl;
file << "Point(2) = {" << 0 << ", " << ny <K< ", " <K< Q0 <K< ", " < 1c
<< " };" << std::endl;
file << "Point(3) = {" << 0 << ", " << ny << ", " << nz <K< ", " <L
lc << " };" << std::endl;
file << "Point (4) = {" << 0 << ", " K< 0 <K< ", " << nz < ", " <K< 1c
<< " };" << std::endl;
file << "Point(5) = {" << nx << ", " << 0 << ", " << nz <K< ", " << lc
<< " };" << std::endl;
file << "Point(6) = {" << nx << ", " << ny << ", " << nz << ", " <<
lc << " };" << std::endl;
file << "Point(7) = {" << nx << ", " << pmy << ", " << 0 << ", " << 1c

<< " };" << std::endl;
file << "POint(s) = {Il << nx << |l’ n << 0 << ll’ n << o << ll’ n << lc
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<< " };" << std::endl;
file << "Line(1) = { 1, 2 };" << std::endl;
file << "Line(2) = { 2, 3 };" << std::endl;
file << "Line(3) = { 3, 4 };" << std::endl;
file << "Line(4) = { 4, 1 };" << std::endl;
file << "Line(5) = { 4, 5 };" << std::endl;
file << "Line(6) = { 5, 6 };" << std::endl;
file << "Line(7) = { 6, 7 };" << std::endl;
file << "Line(8) = { 7, 8 };" << std::endl;
file << "Line(9) = { 8, 5 };" << std::endl;
file << "Line(10) = { 8, 1 };" << std::endl;
file << "Line(11) = { 3, 6 };" << std::endl;
file << "Line(12) = { 2, 7 };" << std::endl;
//ADD SPHERICAL INCLUSION
for (y = b; y <= ny; y += a)
for (x = b; x < nx; x += a)
for (z = b; z < nx; z += a)
{
file << "Sphere(" << r << ")"<< " = "< "{" << x << ", 0"
<<y << ", "<z << ", "< rd << "};" << std::endl;
r += 1;
}
double dr = 0;
double dt = r + dr;
S = dt+11;
v = 1;
swww = dt + 6;
swwwl = dt + 2;
file << "Curve Loop(" << dt << ") = {" << 1 << ", " << 2 << " "
<<
w " << 4 << "};" << std::endl;
{
file << "Plane Surface(" << dt << ") = { ";
file << "" << dt << " };" << std::endl;
}
{
file << endl;
}
file << "Curve Loop(" << dt+1 << ") = {" << 6 << ", " << 7 << ",
<<
"M <K< 9 << "};" << std::endl;
{
file << "Plane Surface(" << dt+1 << ") = { ";
file << "" << (dt+1) << " };" << std::endl;
}
{
file << endl;
}
file << "Curve Loop(" << dt + 2 << ") = {" << 3 << ", " << 11 <<
<< b <<
", " << 6 << "};" << std::endl;
file << "Curve Loop(" << dt + 3 << ") = {" << 2 << " " << 12 <<
<< T <<
"M <K< 11 << "};" << std::endl;
file << "Curve Loop(" << dt + 4 << ") = {" << 4 << ", " << 10 <<
<< B <<
", " << 9 << "};" << std::endl;
file << "Curve Loop(" << dt + 5 << ") = {" << 8 << ", " << 10 <<
<< 1 <<
", " << 12 << "};" << std::endl;
for (j 0; j < 4; j++)
{
file << "Plane Surface(" << swww << ") = {" << swwwl << "};" <<

<<
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endl;
swww += 1;
swwwl += 1;
}
int fibbrree = dt;
file << "Surface Loop("
<< ", omk<
dt + 6<<" "<< dt + 7 <<",
endl;

<< dt +10 << ") = { " << dt <<

"<< dt + 8<<"

{
file << endl;
}

for (j = 0;

j < (r -1); j++)

<< "Surface Loop(" << S << ") = { " << v << "};"
S += 1;

v += 1;

int fbr =dt + 9;

file << "Volume (" << dt << ")
while (fbr <= (2*dt +7 ))

{

= {";

fbr = fbr + 1;

file << fbr << ", ";
}

file <<
//LABEL
file <<
//ASIGN

{

<< (2 *x dt + 9 ) <K<
THE MATRIX

"Physical Volume (\"matrix\") =
THE INCLUSION

"};" << std::endl;

{" << dt <K<

n};n

int inclu = 0;
file << "Physical Volume (\"inclusiomns\") = { ";
while (inclu < (dt)-2)
{
inclu = inclu + 1;
file << inclu << ", ";

}

{

file <<

}

file << endl;

//MESH QUALITY CONTROL

// file<<"Mesh.Adlgorithm3D = 10;"<<std::endl;
//file<<"Mesh.Algorithm = 5;"<<std::endl;
//file <<

endl ;

//file << "Mesh.CharacteristicLengthFromCurvature = 0.

"< (dt -1) << "

};" << std::endl;

//file << "Mesh.CharacteristicLengthFromPoints =0.01;"

//file << "Mesh.CharacteristiclengthFromEdges = 0;"
//file << "Mesh.CharacteristiclLengthFromFaces = 0;"

// file << "Mesh.CharacteristiclLengthFromVolumes = 0.1;"
//file << "Mesh.ElementOrder = 2;" << std::emndl;
file << "Mesh.CharacteristicLengthFromCurvature = 8;" <<

// file << "Mesh.CharacteristiclengthMin = 0.01;"
//file << "Mesh.CharacteristiclengthMaz = 1;" << std::
// file<<"Mesh.MeshSize{"<<r3<<"} = 0.2;"<<std::endl;

// file<<"Mesh.MeshSizeFactor = 0.25; "<<std::endl;
file << " Mesh 3;" << std::endl;

file << "Mesh.Smoothing = 100;" << std::endl;

"< dt + 9 <<n};n

" Mesh.CharacteristiclengthEztendFromBoundary =1;"

8:"
B

u, " o<< dt + 1

<< std::

<< std::endl;

<< std::endl;

<< std::

<< std::endl

<< std::endl;

<< std::endl;
<< std::endl;

<< std::endl;

std::endl;

<< std::endl;

endl;
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std::string commend = "output_" + std::to_string(rd) + "_" + std::
to_string(n) + ".msh";
//GENERATE MSH FILE
std::string command = "gmsh " + filename + " -3 -smooth 100 > gmsh.log";
int err = system(command.c_str());

std::ofstream Output_file("king.sh", std::ios::app);
if (Output_file.is_open())
// CREATE A SHELL FILE
Output_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ")
working ..."<<"\""<<" "y
Output_file<<" ./mpap3 " + commend + "> out/rve"+ to_string(num2) <<endl
Output_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ") all
done.."<<"\""<<endl;
num2+=1;
}
}

Listing C.3: Cube With Spherical-inclusion Geometry File

C.4 Code 4: Cube With spherical voids and inclusion Geometry

file Generator
Geometries of an isotropic material with spherical inclusion and voids are generated using this code.
Parameters of the microstructure are varied here to generate multiple RVEs.

#define VTK

#define SOLID

#define MESH_TOOLS
#define MA41

#include "Fem.h"
#include <iostream>
#include <fstream>
#include <vector>
#include "MpapGlobal.h"
#include "FemSolidRVE.h"
#include "MaterialHooke.h"
#include <sstream>

int main ()
{
double rdv, rd;
for (double rdv = 0.145; rdv <= 0.5; rdv += 0.06) //RADIUS OF VOIDS
{
for (double rd = 0.145; rd <= 0.5; rd += 0.06) //RADIUS OF FIBRES

{
{
std::string filename = "output_" + std::to_string(rd) + "_" + std::
to_string(rdv) + ".geo";
std::ofstream file(filename) ;
if (file.is_open())
{
STA::COUt << M SUCCESS v v v vt vttt e e e e e e \n\n";
}

int j, i, r, rr, Rr, v, n, S, fibre, swwwl, swww;

double d, nx, ny, nz, lc, t, a, b, z, x, y, y2, Pi, tol = 1.e-4;
d = 0.05; // spacing

n = 2; // number of inclusions

lc =0.1; //cube mesh size
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Pi = 3.14159265358979323846;

double Rrl1 = 5, r1 = 4, r2 = 6, Rr2 = 7, r3 = 8, Rr3 = 9;
r = 1;

Rr = 3;

file << "Mesh.Binary=0;" << std::endl;

file << "SetFactory (\"OpenCASCADE\") ;" << std::endl;
double maxr=1; //mazimum RVE size control parameter

a =2 % d + 2 * maxr ; //increment

ny = (n) * (2 *x d + 2 * maxr); // size of cube

b = (0.5 *x d + 0.5 * maxr ) ; //initial starting coordinate
nx = ny;

nz = ny;

nz = ny;

double dr = * n;

2
double F_volume_r = 0.5 * (dr * dr * dr * 4 / 3 * Pi * rd * rd * rd) /
(ny * ny * ny);

double v_volume_r = 0.5 * (dr * dr * dr * 4 / 3 * Pi * rdv * rdv * rdv
) / (ny * ny * ny);
//mos << "F_wolume_r = " << F_wolume_r << "\n\n";
// mos << "v_wolume_r = " << w_volume_r << "\n\n";
// mos << "radius of woids = " << rdv << "\n\n";
//mos << "radius of inclusion = " << rd << "\n\n";
//mos << "spacing = " << d << "\nl\n";
//ADD CUBE
"Point (1) = {" << 0.0 << ", " << 0 << ", " K< 0 << ", " << lc << " };"
std::endl;
file << "Point(2) = {" << 0 << ", " << ny << ", " << Q0 << ", " << Ic
<< " };" << std::emndl;
file << "Point (3) = {" << 0 << ", " K< ny << ", " << nz << ", oL
lc << " };" << std::endl;
file << "Point(4) = {" << 0 << ", " << 0 <K< ", " << nz << ", " << 1lc
<< " };" << std::endl;
file << "Point(5) = {" << nx << ", " << 0 << ", " << nz << ", " << lc
<< " };" << std::endl;
file << "Point(6) = {" << nx << ", " << pny << ", " << nz << ", " <<
lc << " };" << std::endl;
file << "Point(7) = {" << nx << ", " << ny << ", " <K< 0 << ", " << 1lc
<< " };" << std::endl;
file << "Point(8) = {" << nx << ", " <K< 0 << ", " << 0 << ", " << 1lc

<< " };" << std::endl;

file << "Line(1) = { 1, 2 };" << std::endl;
file << "Line(2) = { 2, 3 };" << std::endl;
file << "Line(3) = { 3, 4 };" << std::endl;
file << "Line(4) = { 4, 1 };" << std::endl;
file << "Line(5) = { 4, 5 };" << std::endl;
file << "Line(6) = { 5, 6 };" << std::endl;
file << "Line(7) = { 6, 7 };" << std::endl;
file << "Line(8) = { 7, 8 };" << std::endl;
file << "Line(9) = { 8, 5 };" << std::endl;
file << "Line(10) = { 8, 1 };" << std::endl;
file << "Line(11) = { 3, 6 };" << std::endl;
file << "Line(12) = { 2, 7 };" << std::endl;

//ADD INCLUSIONS
for (y = b; y <= ny; y += a)

for (x = b; x < nx; x += a)
for (z = b; z < nx; z += a)
{
file << "Sphere(" << r << ")"<< " = "< "{" << x << ",
<<y << ", " K<z << ") " <K< rdv << "};" << std::endl;

//




C.4. CODE 4: CUBE WITH SPHERICAL VOIDS AND INCLUSION GEOMETRY FILE GENERATOR131

87 file << "Sphere(" << r+1 << ")"<< " = "<< "{" << x << ", "

88 <<y << ", "<z +a/ 2 <<, " << rd << "};" << std::endl ;

89 //

90 file << "Sphere(" << r + 2 << ")"<K< " = "< "{" < x + a / 2 <<

91 ", " KKy <", "z +a/ 2<K<", "< rdv << " F;" << std:z:

92 endl;

93 //

94 file << "Sphere(" << r+3 << ")"<< " = "<< "{" << x + a / 2 <<

95 T, " KKy << ", MKz << ") " << rd << "};" << std::endl;

96 //

97 file << "Sphere(" << r + 4 << ")"<< " = "< "{" K< x + a / 2 <<

98 ", " <Ky +a/ 2 <K< ", "z K< ") " K< rdy << "} " << std:z:

99 endl;

100 //

101 file << "Sphere(" << r + 5 << ")"<< " = " < "{" < x + a / 2 <<

102 ", "<y +a/2<K ", "<z +a/2<K ", "< rd << "}

std

103 ::endl;

104 //

105 file << "Sphere(" << r + 6 << ")"<< " = "< "{" <K< x << ", " <L

y ar

106 a / 2 << ", "<z +a/ 2 << ", "< rdv << "};" << std::endl;

107 //

108 file << "Sphere(" << r + 7 << ")"<< " = "< "{" <K< x << ", " Ky

109 +a / 2 << ", " <K< z << ", " << rd << "};"<< std::endl;

110 r += 8;

111 }

112 double dr = (n >= 1) 7?7 0 : 7;

113 double dt = r + dr;

114 S = dt+11;

115 v = 1;

116 swww = dt + 6;

117 swwwl = dt + 2;

118 file << "Curve Loop(" << dt << ") = {" << 1 << ", " << 2 << " " << 3
<<

119 "M <K< 4 << "};" << std::endl;

120 {

121 file << "Plane Surface(" << dt << ") = { ";

122 file << "" << dt << " };" << std::endl;

123 }

124 {

125 file << endl;

126 }

127 file << "Curve Loop(" << dt+1 << ") = {" << 6 << ", " << 7 << " " << 8
<<

128 "M K< 9 <K< "};" << std::endl;

129 {

130 file << "Plane Surface(" << dt+1 << ") = { ";

131 file << "" << (dt+1) << " };" << std::endl;

132 }

133 {

134 file << endl;

135 }

136 file << "Curve Loop(" << dt + 2 << ") = {" << 3 << ", " << 11 << ", "
<< b <<

137 "M KK B <K< "};" << std::endl;

138 file << "Curve Loop(" << dt + 3 << ") = {" << 2 << ", " << 12 << " "
<< T <<

139 "M << 11 << "};" << std::endl;

140 file << "Curve Loop(" << dt + 4 << ") = {" << 4 << ", " << 10 << ", "
<< b <<

141 "M <K< 9 << "};" << std::endl;

142 file << "Curve Loop(" << dt + 5 << ") = {" << 8 << " " << 10 << ", "
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<< 1 <<

"M K< 12 << "};" << std::endl;

for (j = 0; j < 4; j++)

{

file << "Plane Surface(" << swww << ") = {" << swwwl << "};" << std::
endl;

swww += 1;

swwwl += 1;

¥

int fibbrree = dt;

file << "Surface Loop(" << dt +10 << ") = { " << dt << ", " << 4t + 1
<< ", omgg

dt + B<<" , "<< dt + 7 <<", "<< dt + 8<<" , "<< dt + 9 <<"};" << std::
endl;

{

file << endl;

}

for (j = 0; j < (r - 1 ); j++)

{

file << "Surface Loop(" << 8 << ") = { " << v << "};" << std::endl;

S += 1;

v += 1;

¥

int fbr =dt + 9;

file << "Volume (" << dt << ") = {";

while (fbr <= (2*xdt +7 ))

{

fbr = fbr + 1;

file << fbr << ", ";

¥

file << "" << (2 * dt + 9 ) << "};" << std::endl;

file << "Physical Volume (\"matrix\") = {" << dt << "};" << std::endl;
{

int inclu = 0;
file << "Physical Volume (\"inclusions\") = { ";
while (inclu < (dt) -4)
{
inclu = inclu + 2;
file << dinclu << ", ";
}
¥
{
file << "" << (dt -1) << " };" << std::endl;
¥

file << endl;
//MESH QUALITY CONTROL
// file<<"Mesh.Algorithm3D = 10;"<<std::endl;
//file<<"Mesh.Algorithm = 5;"<<std::endl;
//file << " Mesh.CharacteristiclengthExztendFromBoundary =1;" << std::
endl;
//file << "Mesh.CharacteristiclengthFromCurvature = 0.8;" << std::endl

//file << "Mesh.CharacteristiclengthFromPoints =0.01;" << std::endl;
//file << "Mesh.CharacteristiclLengthFromEdges = 0;" << std::endl;
//file << "Mesh.CharacteristiclengthFromFaces = 0;" << std::endl;

// file << "Mesh.CharacteristicLengthFromVolumes = 0.1;" << std::endl;

//file << "Mesh.ElementOrder = 2;" << std::endl;
file << "Mesh.CharacteristicLengthFromCurvature ;" << std::endl;
// file << "Mesh.CharacteristiclengthMin = 0.01;" << std::endl;

//file << "Mesh.CharacteristiclLengthMaz = 1;" << std::endl;

// file<<"Mesh.MeshSize{"<<r3<<"} = 0.2;"<<std::endl;
// file<<"Mesh.MeshSizeFactor = 0.25; "<<std::endl;
file << " Mesh 3;" << std::endl;

]
o]
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file << "Mesh.Smoothing = 100;" << std::endl;

std::string commend = "output_" + std::to_string(rd) + "_" 4+ std::
to_string(rdv) + ".msh";
//GENERATE MSH FILE
std::string command = "gmsh " + filename + " -3 -smooth 100 > gmsh.log";
int err = system(command.c_str());
//GENERATE A SHELL FILE
std::ofstream Output_file("king.sh", std::ios::app);
if (Output_file.is_open())
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ")
working..."<<"\""<<"
OQutput_file<<" ./mpap3 " + commend + "> out/rve"+ to_string(num2) <<endl
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ") all
done.."<<"\""<<endl;
num2+=1;
}
}
}
}

Listing C.4: Cube With Spherical voids and inclusion Geometry File

C.5 Code 5: Cube With Cylindrical inclusion Geometry file Gen-

erator

This code generates the geometry of a transversely isotropic material with cylindrical inclusion. Param-
eters of the microstructure are varied here to generate multiple RVEs.

#define VTK

#define SOLID

#define MESH_TOOLS
#define MA41

#include "Fem.h"
#include <iostream>
#include <fstream>
#include <vector>
#include "MpapGlobal.h"
#include "FemSolidRVE.h"
#include "MaterialHooke.h"
#include <sstream>

int main ()
{
int num=1, num2=1;
double rdv, rd;
{
for (double n = 1; n <= 7; n += 1) //number of fibres
{
double rd,rdv;
rd = 0.5; // radius of inclusions
rdv =0;//7radius of wvoids

{
std::string filename = "outputcyl_" + std::to_string(rd) + "_" + std::
to_string(n) + ".geo";
std::ofstream file(filename) ;
if (file.is_open())
{

STA::COUL << MK SUCCESS « v v vt vttt e ettt e et e e e e *\n\n";

}
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int j,i,p,q,r,rr,s,h,v,I,S,fibre,SS,tv,swl,sw,swwl,sww,swww,swwwl;
double nx,ny,nz,lc,l,t,rd,d,z,x,y,y2,Pi,tol=1.e-4,vv,VVV,VvvVVV;

rd = 0.5;

d = 0.05;

double rdv = 0;

1c=0.2;

Pi= 3.14159265358979323846;
r=2;

sw=3*n*n+2;swl=15;

sww=3*n*n+n*n+3; swwl=13;

sWwww=3*n*n+3; swwwl=5%n*xn+3;
file<<"Mesh.Binary=0;"<<std::endl;
file<<"SetFactory (\"OpenCASCADE\") ;"<<std::emndl;

double maxr = 2 * rd;
double a = ( d + maxr );
ny = (n) * ( d + maxr);
double b = (0.5 * d + 0.5 * maxr ) ;
nx = ny;
nz = ny;
nz = ny;

(n * n

1]

double F_volume_r
double v_volume_r =

* Pi * rd * rd) / (my * ny);

ny * ny);
mos <<ny<<"\n\n";
mos << "F_volume_r is " << F_volume_r << "\n\n";
mos << "radius of voids is " << rdv << "\n\n";
mos << "radius of inclusion is " << rd << "\n\n";
mos << "spacing is " << d << "\n\n";
//CREATE A CUBE
//add points
file<<"Point (1) = {"<< 0<<", "<<0O<K<", "<<0O<<", "<<lc<<" };"<<std::endl;
file<<"Point (2) = {"<< 0<<", "<<ny<<", "<<-.000<<", "<<1lc<<" };"<<std::
endl;
file<<"Point (3) = {"<< 0<<", "<<ny<<", "<<nz<<", "<<1lc<<" };"<<std::endl;
file<<"Point (4) = {"<< 0<<", "<<0<<", "<<nz<<", "<<1lc<<" };"<<std::endl;
file<<"Point (5) = {"<< nx<<", "<K<KO<K<", "<<nz<<", "<<1lc<<" };"<<std::endl;
file<<"Point (6) = {"<< nx<<", "<<ny<<", "<<nz<<", "<<1lc<<" };"<<std::endl;
file<<"Point (7) = {"<< nx<<", "<<ny<<", "<<0<<", "<<lc<<" };"<<std::endl;
file<<"Point (8) = {"<< nx<<", "<K<KO<K<", "<<O<<", "<<1lc<<" };"<<std::endl;
//add lines
file<<"Line(1) = { 1, 2 };"<<std::endl;
file<<"Line(2) = { 2, 3 };"<<std::endl;
file<<"Line(3) = { 3, 4 };"<<std::endl;
file<<"Line(4) = { 4, 1 };"<<std::endl;
file<<"Line(5) = { 4, 5 };"<<std::endl;
file<<"Line(6) = { 5, 6 };"<<std::endl;
file<<"Line(7) = { 6, 7 };"<<std::endl;
file<<"Line(8) = { 7, 8 };"<<std::endl;
file<<"Line(9) = { 8, 5 };"<<std::endl;
file<<"Line(10) = { 8, 1 };"<<std::endl;
file<<"Line(11) = { 3, 6 };"<<std::endl;
file<<"Line(12) = { 2, 7 };"<<std::endl;
//add cylinders/fibres
for (y = b; y <= ny; y += a)
for (z = b; z < nx; z += a)
{
file<<"Cylinder ("<<r<<")"<<" = "<"{"<<O<<", "<<y<<", "<z, "<KLny<<",
<<O<<M", "<<KO<<", "<<rd<<", "<<"2*Pil};"<<std::endl;
r+=1;

APPENDIX C. C++ CODES

(n *n*xn x4 / 3 x Pi * rdv *x rdv * rdv) / (ny *
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file<<"Curve Loop("<<3*n*n+1<<") = {"<<I1<<"  "<<2<" | "<<3<M ) "<4<< k<

std::endl;

for (j=0;j<n*n;j++)

{

file<<"Curve Loop("<<sw<<") = {"<<swl<<"};"<<std::endl;
sw+=1;swl+=3;

}

{

int fibree =3%*nx*n;

file<<"Plane Surface ("<<3%n*n+1<<") = { ";
while (fibree <=(3*(n*n)+n*n-1))

{

fibree=fibree+1;

file <<fibree<<", ";

}
file<<""<<(3*(n*n)+n*n+1)<<" };"<<std::endl;
}
file<<endl;
file<<"Curve Loop ("<<3*n*n+n*n+2<<") = {"<<B", "7, "<<B", "<<9"F ;"
<<std::endl;
{
for (j=0;j<n*n;j++)
{
file<<"Curve Loop("<<sww<<") = {"<<swwl<<"};"<<std::endl;
sww+=1; swwl+=3;
¥
}
{
int fibrree =3*n*n+n*n+1;
file<<"Plane Surface ("<<3*n*n+2<<") = { ";
while (fibrree <=(3*(n*n)+2*n*n))
{
fibrree=fibrree+1;
file <<fibrree<<", ";
}
file<<""<<(3*x(n*n)+2*n*n+2) <<" };"<<std::endl;
}
file<<endl;
file<<"Curve Loop("<<3*n*n+2*n*n+3<<") = {"<<3<<", "<<11<<", "B "B
"};"<<std::endl;
file<<"Curve Loop("<<3*n*n+2*n*n+4<<") = {"<<2<<"  "<<12<<", "7 0"
<<11<<"};"<<std::endl;
file<<"Curve Loop("<<3*n*n+2*n*n+5<<") = {"<<4<<", "<<10<<", "<<B" ) "<<9<<
"};"<<std::endl;
file<<"Curve Loop("<<3*n*n+2*n*n+6<<") = {"<<8<<", "<<10<<", "1, "

<<12<<"};"<<std::endl;
for (j=0;j<4;j++)

{

file<<"Plane Surface ("<<swww<<") = {"<<swwwl<<"};"<<std::endl;
swww+=1; swwwl+=1;

}

int fibbrree =3%*nx*n;
int cibre=-2;

file<<"Surface Loop("<<3*n*n+3<<") = { ";
while (fibbrree <=(3*(n*n)+5))
{

fibbrree=fibbrree+1;
file <<fibbrree<<", ";

}

while (cibre <=(3*(n*n) -6))
{

cibre=cibre+3;
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file<<cibre<<", ";
}
file<<""<<((3*n*n-2))<<"};"<<std::endl;

{
file<<endl;
}
int fbr =3*n*n+2;
file<<" Volume ("<<2x(n*n*xn+2)<<") = {";
file<<""<<3*n*n+3<<"};"<<std::endl;
file<<"Physical Volume (\"matrix\", "<<3*n*n+4<<") = {"<<2x(n*n*n+2)<<"};"<<
std::endl;
{
int inclu =1;//3*n*n+3;//n*n+2;
file<<"Physical Volume (\"inclusions\", "<<3*n*n+5<<") = { ";
while (inclu < (n*n))
{

inclu=inclu+1;

file<<inclu<<", ";

}

}

{

file<<""<<(n*n)+1<<" };"<<std::endl;
}

//MESH QUALITY CONTROL

//cout <<rd<<", "<<py<<std::emndl;
//file<<"Field[1] = Cylinder ;"<<std::endl;

//file<<"Field[1].VIn = "<<lc<<";"<<std::endl;
//file<<"Field[1].VOut = "<<lc<<";"<<std::endl;
file << "Mesh.CharacteristicLengthFromCurvature = 15;" << std::endl;

//file<<"Mesh.MinimumElementsPerTwoPi = 30;"<<std::endl;
//file<<"Mesh.Algorithm3D = 10;"<<std::endl;
//file<<"Mesh.Algorithm = 2;"<<std::endl;

file << " Mesh 3;" << std::endl;

file << "Mesh.Smoothing = 100;" << std::endl;

std::string commend = "outputcyl_" + std::to_string(rd) + "_" + std::
to_string(n) + ".msh";

//GENERATE A MESH FILE
std::string command = "gmsh " + filename + " -3 -smooth 100 > gmsh.log";
int err = system(command.c_str());

// CREAT A SHELL FILR TO STORE THE MESH
std::ofstream Output_file("kingcyl.sh", std::ios::app);
if (Output_file.is_open())
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ")
working ..."<<"\""<<" g
OQutput_file<<" ./mpap3 " + commend + "> out/rve"+ to_string(num2) <<endl
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ") all
done.."<<"\""<<endl;
num2+=1;

}

Listing C.5: Cube With Cylindrical inclusion Geometry File
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C.6 Code 6: Cube With Cylindrical Discontinuous inclusion Ge-

ometry file Generator
The code provide geometry of a transversely isotropic material with discontinuous cylindrical inclusion.
Parameters of the microstructure are varied here to generate multiple RVEs.

1| #define VTK

2| #define SOLID

3| #define MESH_TOOLS

4| #define MA41

5| #include "Fem.h"

6| #include <iostream>

7| #include <fstream>

s| #include <vector>

o| #include "MpapGlobal.h"
10/ #include "FemSolidRVE.h"
11| #include "MaterialHooke.h"
12| #include <sstream>

15/ int main ()

16] {

17 int num = 1 ,num2=1,mshi=1;

18 std::ofstream output_file("sph_IV.m");
19 if (output_file.is_open())

20

21 // std::ofstream Output_file("king.sh", std::ios::app);
22 //  if (Output_file.is_open())

23

24 // Output_file<<"#!/bin/bash"<<endl;

25

26

27 double rdv, rd; //d, mazr=1;

28 //for (double rdv = 0.1; rdv < mazr; rdv += 0.1)
29| for (double 1 = 0.5; 1 <= 1.5; 1 += 0.25) //0.5>>>> 1.5>>>0.25

//0.04---1.321//0.98====0.135 (0.5============>1.5)
30 {
31 for (double dpy = 0.01; dpy <= 0.1; dpy += 0.0225)// 0.01>>>> 0.1>>>0.03
for (double rd = 0.04; 7md <= 0.985; rd += 0.135) (0.01==>0.1)
32 {
33 for (double dp = 0.01; dp <= 0.1; dp += 0.0225) // 0.1>>>> 0.1>>>0.03
(0.01=====>0.1)
34 //double rd=0;//,rdv;
35 //rd = 0.5; // radius of inclusions
36 // rdv =1;//radius of wvoids
37
38 {
39 //for (double dpz = 0.1; dpz <= 0.1; dpz += 0.03) // 0.01>>>>
0.1>>>0.03 (0.01====>0.1)
40
11 {
42
43
44 std::string filename = "output_"+ std::to_string(mshi) + ".geo";
45 std::ofstream file(filename) ;
46 //mshi+=1;
a7 if (file.is_open())
48
19 //std::ofstream file("rve2ex104-mod.geo");
50 //if (file.is_open())
51 {
52 std::cout << "}success
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int j, i, r, rr, Rr, v, n, S, fibre, swwwl, swww;
double d, nx, ny, nz, lc, t, a, b, z, x, y, y2, Pi, tol = 1.e-4;
double rdv = 0.08 ,rd=0;

// rd = 1; // radius of inclusions
// rdv =1;//radius of wvoids

d 0.05; // spacing

n 2; // number of inclusions

lc =2*rdv;

Pi = 3.14159265358979323846;

if(rdv>=0.1)

{

// lc = rd*0.8;
}

//else
{

// le= 0.1%0.8;
}

double Rrl1 = 5, r1 = 4, r2 = 6, Rr2 = 7, r3 = 8, Rr3 = 9;
r = 1;

Rr = 3;
// S = r+ 2;
//v = 1;
// swww = r+ 8;

// swwwl = r+ 4;

file << "Mesh.Binary=0;" << std::endl;
file << "SetFactory (\"OpenCASCADE\");" << std::endl;

double maxr = 1;

/*a = (2 *# d + 2 * mazr) ;

ny = (n) * (2 # d + 2 * mazr);

b = (0.5 * d + 0.5 ¥ mazr ) ;*/

// d = mazr;

//b = mazr;//(0.5%d + mazr);
// a = 4 % mazr;//(4 * mazr + 2 ¥ d );
// ny = (n-1)*(7+mazxr);//(n - 1)*(a + d + 2 * mazr)+ d +mazr; double dp
= 2*mazr-(rd+rdv); //2rdv

double dpz = dpy;

double ax, bz,by; //dpy = 0.001, dpz=0.001,1 = .5; //1=0.6-1
ax = dp + 1;//dp;

double ay = 2% (2*rdv+ dpy),az= 2*(2*xrdv+dpz);

b = dp/2;// - 0.5%rdv;

by dpy/2 + rdv;

bz = dpz/2 + rdv;

ny = 2x(4*x(2 *x rdv + dpy));//-(rdv+dpy)+rdv +0.5*dpy;

nx = 3xdp+ 3*1;//2+(4*(2 * rdv + dp))-(rdv+a); 2%/

nz = 2x(4x(2 *x rdv + dpz));//-(rdvtdpz)+rdv + 0.5 * dpz;

//double np = a + 1;

//nT = ny;
//nz = ny;
//nz = ny;
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115 double RVEarea = nx*ny*nx;
116 double F_volume_r = (Pi*x rdv * rdv * 1)*256/RVEarea;//0.5 * (drS * drS
¥ drS ¥ 4 / 3 * Pi ¥ rd ¥ rd * rd) / (ny * ny * ny);
117 double v_volume_r = 0;// * (drS * drS * drS * 4 / 3 * Pi * rdv * rdv *
rdv) / (ny * ny * ny);
118
119 //mos<<ny<<"\n\n";
120 //mos << "F_wolume_r = " << F_wolume_r << "\n\n";
121 // mos << "v_wolume_r = " << w_wolume_r << "\n\n";
122 // mos << "radius of woids = " << rdv << "\nln";
123 //mos << "radius of inclusion = " << rd << "\n\n";
124 //mos << "spacing = " << d << "\n\n";
125
126 output_file<< "side_of_cube"+ to_string(num) <<" = " << ny <<";"<<"\n\n
"<<std::endl;
127 output_file << "F_volume_r"+ to_string(num) <<" = " << F_volume_r<<";"
<< "\n\n"<< std::endl;
128 output_file << "v_volume_r"+ to_string(num) <<" = " << v_volume_r<<";"
<< "\n\n"<< std::endl;
129 output_file << "radius_of_voids"+ to_string(num) <KK" = " K< rd<<" ;" <<
"\n\n"<< std::endl;
130 output_file << "radius_of_inclusion"+ to_string(num) <<" = " << rdv<<";
" << "\n\n"<< std::endl;
131 output_file << "longitudinal_sp"+ to_string(num) <<" = " << dp/rdv<<";"
<< "\n\n"<< std::endl;
132 output_file << "Transverse_sp"+ to_string(num) <<" = " << dpy/rdv<<";"
<< "\n\n"<< std::endl;
133 output_file << "Horizontal_sp"+ to_string(num) <<" = " << dpz/rdv<<";"
<< "\n\n"<< std::endl;
134 output_file << "Aspect_ratio"+ to_string(num) <<" = " << 1/rdv<<";" <<
"\n\n"<< std::endl;
135 output_file << "Y||successful...... for....... MESH"+ to_string (num)+"
................... ||" << "\n\n"<< std::endl;
136 num+=1;
137 //double 1 = 0.5;
138 double =np = 2%a+ 4x1; //nzd //a + l;//, nt = 8xrdv + 4*d; //2%d + (3%
rdv+a) ;
139
140| double nyd=ny,nxd=nx ,nzd=nz ,cpx =0;//0.5%1 ; //+ a/2 +rdv/2)
141] file << "Point (1) = {" <<cpx << ", " << 0 << ", " << 0 << ", " << 1lc << " F;v
<< std::endl;
142 file << "Point(2) = {" << cpx<< ", " << nyd << ", " << 0 << ", " <<
lc << " };" << std::endl;
143 file << "Point(3) = {" << cpx << ", " << nyd << ", " << nzd << ", "
<< 1lc << " };" << std::endl;
144 file << "Point(4) = {" << cpx<< ", " << 0 << ", " << nzd << ", " <<
lc << " };" << std::endl;
145 file << "Point(5) = {" << nxd << ", " << 0 << ", " << nzd << ", " <<
lc << " };" << std::endl;
146 file << "Point(6) = {" << nxd << ", " << nyd << ", " << nzd << ", "
<< lc << " };" << std::endl;
147 file << "Point(7) = {" << nxd << ", " << nyd << ", " << 0 << ", " <<
lc << " };" << std::endl;
148 file << "Point(8) = {" << nxd << ", " << 0 << ", " << 0 << ", " << lc
<< " };" << std::endl;
149
150 file << "Line(1) = { 1, 2 };" << std::endl;
151 file << "Line(2) = { 2, 3 };" << std::endl;
152 file << "Line(3) = { 3, 4 };" << std::endl;
153 file << "Line(4) = { 4, 1 };" << std::endl;
154 file << "Line(5) = { 4, 5 };" << std::endl;
155 file << "Line(6) = { 5, 6 };" << std::endl;
156 file << "Line(7) = { 6, 7 };" << std::endl;
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<< "Line (8)
<< "Line(9) =
<< "Line (10) = {
<< "Line(11) = {
<< "Line (12) {

I
-

7, 8 };" << std::endl;
8, 5 };" << std::endl;

};" << std::endl;
};" << std::endl;
};" << std::endl;

//doudble dp = 2+mazr-(rd+rdv); //2rdv

for (y = by ; y <= ny; y += ay)
for (x = b; x < nx+ 0.5%1; x += ax)

for (z = bz; z < nz; z += az)

{

// file << "Sphere(" << r << ")M<< Moo= Mg MM << g << oM

// <<y << MM K<z << )<< pdy << "M << std:rendl
// file << "Cylinder (" << p << ")"<< " = "¢ "M << gopdy << ", "
// << y-rdu << ", " <K< z-rdy <<, M KT << KO, <<,

"<<rdu<<", 2%Pi};" << std::endl;
file << "Cylinder (" << r << ")"<< " = "<< "{" << x-0.5%1 << " "

<< y << M, M K< oz << << ] <<, 10!, "0, "<<rdv<<",
2%Pi};" << std::endl;

//f’lole << ”C'ylinde'r(” << r + 1 << n) nege Moo= Meg n{n << 111+7‘d’U << u’
n

// << y-rdvta/2 << ", " << z-rdut a/2 << ", M << <<, MO,
"<, "<<pdu<<", 2%Pi};" << std::endl;

// here uknow -

file << "Cylinder(" << r + 1 << ")"<< " = "<< "{" << x + dp/2 << "
n
K<y << ", M << oz+ az/2 << ", " << 1 << ", "<<O<<M, "<<0<<", "<<
rdv<<", 2*%Pi};" << std::endl;
//
tttttttt ittt ittt tt ittt ttttttttttttttttttttttttttttttttttstts
z-rdv-dp + dpz/2 //z+rdvtdp/2
file << "Cylinder (" << r +2<< ")"<< " = "<< "{" << x-0.5%1 << ",
n
<< y +ay/2<< ", " << oz +az/2<< ", M << 1 <K< M, 1O <O,
"<<rdv<<", 2%Pi};" << std::endl;
//unknown -

file << "Cylinder (" << r + 3 << ")"<< "

n n
>

"<< "{" << x + dp/2 <<

<< y+ay/2 << ", " << z<< ", M <<l << M, M<K, <0<, "<<

> >

rdv<<", 2*Pi};" << std::endl;

//
// file << "Sphere(" << r + 7 << ")N<< M o= Mg MM << g << " <<
Y
// + a / 2 << ", " <<z << M, << pd K< "};"<K< std:cendl;
// lee << “Cyli'n,de'r‘(” << r + 7 << n)n<< "= neg u{u << x-rd << u’
n
// << y-rd + a / 2 << ", " K< z-rd << ", M << opd <<, MO,

<O, "<<prd<<", 2*Pi};" << std::endl;

ttttttttt bt
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}
double dr = (n >= 1) 7 O 73
double dt = r*3 ;// + dr;
S = dt+11;
v = 1;
swww = dt + 6;
swwwl = dt + 2;
file << "Curve Loop(" << dt << ") = {" << 1 << " " << 2 << ", " << 3
<<
m " << 4 << "};" << std::endl;
{
file << "Plane Surface(" << dt << ") = { ";
file << "" << dt << " };" << std::endl;
}
{
file << endl;
¥
file << "Curve Loop(" << dt+1 << ") = {" << 6 << ", " << 7 << ", " L
<<
"M K< 9 << "};" << std::endl;
{
//int fibrree = 3 ¥ n * n + n ¥ n + 1;
file << "Plane Surface(" << dt+1 << ") = { ";
file << "" << (dt+1) << " };" << std::endl;
¥
{
file << endl;
}
file << "Curve Loop(" << dt + 2 << ") = {" << 3 << " " << 11 << " "
<< b <<
"M K< B << "};" << std::endl;
file << "Curve Loop(" << dt + 3 << ") = {" << 2 << " " << 12 << " "
<< 7 <<
"M <K< 11 << "};" << std::endl;
file << "Curve Loop(" << dt + 4 << ") = {" << 4 << ", " << 10 << " "
<< 5 <<
"M K< 9 << "};" << std::endl;
file << "Curve Loop(" << dt + 5 << ") = {" << 8 << ", " << 10 << " "
<< 1 <<
"M <K< 12 << "};" << std::endl;
for (j = 0; j < 4; j++)
{
file << "Plane Surface(" << swww << ") = {" << swwwl << "};" << std::
endl;
swww += 1;
swwwl += 1;
}
int fibbrree = dt;
file << "Surface Loop(" << dt +10 << ") = { " << dt << ", " << 4t + 1
<< ", omkg
dt + 6<<" "<< dt + 7 <<", "<< dt + 8<<" "<< dt + 9 <<"};" << std::
endl;
{
file << endl;
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}

= 0; j < ((r - 1) x 3 ); j++)
file << "Surface Loop(" << 8 << ") = { " << v << "};" << std::endl;
S += 1;
v += 1;

¥

/*int fbr =dt + 9;
file << "Volume (" << dt << ") = {";
while (fbr <= (dt + 56 ))
{
for = fbr + 1;
file << fbr << ", U,
}
file << "" << (dt + 58 ) << "};" << std::endl;
file << "Physical Volume (\"matriz\") = {" << dt << "};" << std::endl;*/

/*{
//
tnt tnclu = 0;
file << "Physical Volume(\|"inclusions\") = { ";
while (inclu < (dt)-4)
{
inclu = inclu + 1;
file << dnclu << ", ";
}
}
{
file << "" << (dt -1) << " };" << std::endl;
}x/

file << endl;

//file << "Surface Loop (124) = {51, 52, 57 , 58, 59 , 60};"<< std::

endl;
file << "Surface Loop(" << 8 << ") = { " << dt << ", " << dt + 1 << ",
ll<<
dt + B<<" , "<< dt + 7 <<", "<< dt + 8<<" , "<< dt + 9 <<"};" << std::
endl ;
file << "Volume ("<<r<<") = {"<<S<<"};"<< std::endl;

//file << "Physical Volume(\"matriz\") = {64};" << std::endl;

/*% file << " BooleanIntersection{ Volume{64};} ";
file <<" { Volume{1}; Volume{2}; Volume{3}; Volume{4}; Volume{5};
Volume{6};";
file <<" Volume{7}; Volume{8}; Volume{9}; Volume{10}; Volume{11};
Volume{12}; Volume{13}; ";
file << "Volume{15}; Volume{14}; Volume{16};Delete;}"<< std::endl;*/

file << " BooleanIntersection{ Volume{"<<r<<"};} { ";
double sp =1;
for (j = 0; j < ((r - 2)); j++)
{
file << "Volume{" << sp << "};" ;
sp += 1;
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317 }

318 file << "Volume{" << r-1 << "};Delete;}"<< std::endl;

319

320 //file << "Phystical Volume(\"matriz\") =
{61,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};"<< std::endl;

321 //file<<"Volume (100) = {61,62,63,64,65, 66, 67, 68, 69, 70, 71,
72,73,74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109};"<<std::endl;

322 //file << "Physical Volume (\"matriz\") = {100};"<< std::endl;

323

324

325 // file << "Physical Volume(\"inclusions\|")=
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};"<< std::endl;

326

327 int inclu = 0;

328 file << "Physical Volume (\"inclusions\") = { ";

320 while (inclu < r-2)

330 {

331 inclu = inclu + 1;

332 file << inclu << ", ";

333 }

334

335

336 {

337 file << "" << (r-1) << " };" << std::endl;

338 }

339

340

341 file << endl;

342

343 //file<<" Physical Volume(\"matriz\") = BooleanDifference{ Volume
{64};Delete;} { Volumed{1};";

344 //file<<"Volume{2}; Volume{3}; Volume{4}; Volume{5}; Volume{6};
Volume{7}; Volume{8}; Volume{9}; Volume{10};";

345 //file<<" Volume{11}; Volume{12}; Volume{13}; Volume{15}; Volume{14};

Volume{16};};"<<std::endl;

346

347

348 file << " Physical Volume (\"matrix\") = BooleanDifference{ Volume{"<<r

<<"};Delete;} { ";

349 double spi =1;

350 for (j = 0; j < ((r - 2)); j++)

351 {

352 // Check if spi is within the specified ranges and is a multiple of 2

353 if ((spi >= 49 && spi <= 65 && static_cast<int>(spi) % 2 == 0) ||

354 (spi >= 113 && spi <= 129 && static_cast<int>(spi) % 2 == 0) ||

355 (spi >= 177 && spi <= 192 && static_cast<int>(spi) % 2 == 0) ||

356 (spi >= 242 && spi <= 256 && static_cast<int>(spi) % 2 == 0)) {

357 spi += 1;

358 continue; // Skip this iteration

359 }

360 file << "Volume{" << spi << "};" ;

361 spi += 1;

362 }

363 file << "Volume{" << r-2 << "};};"<< std::endl;

364

365

366

367

368 file << endl;

369 // file<<"Mesh.Algorithm3D = 10;"<<std::endl;

370 //file<<"Mesh.Algorithm = 5;"<<std::endl;
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file << " Mesh.CharacteristicLengthExtendFromBoundary =0;" << std::
endl;
//file << "Mesh.CharacteristiclengthFromCurvature = 0.8;" << std::endl
//file << "Mesh.CharacteristicLengthFromPoints =0.01;" << std::endl;
//file << "Mesh.CharacteristicLengthFromEdges = 0;" << std::endl;
//file << "Mesh.CharacteristiclengthFromFaces = 0;" << std::endl;
//file << "Mesh.CharacteristiclLengthFromVolumes = 0.1;" << std::endl;
//file << "Mesh.ElementOrder = 2;" << std::endl;
file << "Mesh.CharacteristicLengthFromCurvature = 15;" << std::endl; //
15
// file << "Mesh.CharacteristiclengthMin = 0.01;" << std::endl;
//file << "Mesh.CharacteristiclLengthMaz = 1;" << std::endl;
// file<<"Mesh.MeshSize{"<<r3<<"} = 0.2;"<<std::endl;
// file<<"Mesh.MeshSizeFactor = 0.25; "<<std::endl;

file<<" Field[1] = Box;" << std::endl;

file<<" Field[1].VIn = " << 0.08<< ";" << std::endl; // mesh size
inside the cylinder"”
file<<" Field[1].VOut =" << 0.08 << ";" << std::endl; // mesh size

outside the cylinder
file<<" Field[1].XMin = 0;" << std::endl;

file<<" Field[1].XMax = " << nx << ";"<< std::endl;
file<<" Field[1].YMin = 0;" << std::endl;
file<<" Field[1].YMax = " << ny << ";"<< std::endl;
file<<" Field[1].ZMin = 0;" << std::endl;

file<<" Field[1].ZMax = " << nz << ";" << std::endl;

file<<" Background Field = 1;" << std::endl;

file << " Mesh 3;" << std::endl;
file << "Mesh.Smoothing = 100;" << std::endl;

std::string commend = "output_" + std::to_string(mshi) + ".msh";//.msh
std::string cend = "gmsh output_" + std::to_string(mshi) + ".geo";//.msh

//system("gmsh rvelexzl104-mod.geo");

// system(cend.c_str());

std::string command = "gmsh " + filename + " -3 -smooth 100 > gmsh.log";
int err = system(command.c_str());

std::ofstream Output_file("king.sh", std::ios::app);
if (Output_file.is_open())

// Output_file<<"#!/bin/bash"<<endl;
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ")

working ..."<<"\""<<" g
OQutput_file<<" ./mpap3" + commend + "> out/rve"+ to_string(num2) <<endl;
OQutput_file<< " echo "<<"\"(" + to_string(num2); Output_file<< ") all
done.."<<"\""<<endl;

num2+=1;
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std::ofstream youtput_file("kinghpc.sh", std::ios::app);
if (Output_file.is_open())

// Output_file<<"#!/bin/bash"<<endl;

youtput_file<<"mpiexec ./mpap3 ~/fem2/mpap3/proj/rve/trial/"+ commend +
" > out/test"+ to_string(mshi) <<endl;

//num2+=1;

mshi+=1;

/¥

#ifdef

#endif

mpapInit ("solid", "test RVE");
mos.setDoubleFormat (")79") ;

FemSolidRVE rve("rve", 3);
rve.getMeshFromGmsh{1File ("output_1.msh", "solid3D");

// rve.getMeshFromGmsh{1File (args[1], "solid3D");
//rve.mesh3D4tol0noded ("solid3D");

rve.centreMesh () ;
rve.z0 = rve.zx;

VTK
rve.vtkGetUndeformedMesh () ;
rve.vtkGetCellData ("group");
rve.vtkGetVectorData ("displacement”, 0);

rve.vtkWritelutputFile ("rve.vtu");

rve.set ("linearBC");
mos << " limear b.c.\n\n";
// rve.set("periodicBC"); mos << " pertiodic b.c.\n\n";

rve.set ("ngp", 5);

rve.set ("tol", 1.e-5);

rve.set ("mazIter", 5);

rve.set ("Hooke") ;

rve.set ("updateCoorFlag", false);
rve.set ("3D");

rve. listGroups ();

/*rve.set ("K", 100.);
rve.set ("mu", 10.);

rve.setGrouplata ("matriz”, "K", 100.);
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#endif

/¥
#ifdef

#endif
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rve.setGrouplata ("matriz”, "mu", 10.);
rve.setGrouplata ("inclusions”, "K", 1000.);
rve.setGroupData ("inclusions”", "mu", 100.);
double eps[] = { 0.2, 0.1, -0.1, 0.2,
0.1, -0.1}, sig[10], cc[36],
F[] = {1.1, 0.1, 0.2, -0.1, 0.9, 0., 0.2, 0.1, 1.05};
rve.stressUpdate(sig, cc, eps);
mos << mos.array(eps, 6) << "\n\n";
mos << mos.array(sig, 6) << "\n\n";
#ifdef VTK
rve.vtkGetUndeformedMesh () ;
rve.vtkGetCellData ("group");
rve.vtkGetVectorData ("displacement”, 0);
rve.vtkWriteOutputFile ("rve.vtul");
double epsi[] = { 0.03, 0.02, -0.004, 0.2,
0.3, -0.5}, sig1[10];
rve.stressUpdate (sigl, cc, epsl);
mos << mos.array(epsl, 6) << "\n\n";
mos << mos.array(sigl, 6) << "\n\n";
double eps2[] = { 0.01, 0.03, -0.2, -0.05,
0.2, -0.1}, sig2[10];
rve.stressUpdate (sig2, cc, eps2);
mos << mos.array(eps2, 6) << "\n\n";
mos << mos.array(sig2, 6) << "\n\n";
double eps3[] = { 0.01, 0.03, -0.04, 0.1,
0.01, -0.01}, sig3[10];
rve.stressUpdate (sig3, cc, eps3);
mos << mos.array(eps3, 6) << "\n\n";
mos << mos.array(sig3, 6) << "\n\n";
double eps4[] = { 0.3, 0.05, -0.01, 0.2,
0.04, -0.005}, sig4[10];
rve.stressUpdate (sig4, cc, eps4);
mos << mos.array(eps, 6) << "\n\n";
mos << mos.array(sig4, 6) << "\n\n"; */
VTK
rve.vtkGetUndeformedMesh () ;
rve.vtkGetCellData ("group");
rve.vtkGetVectorData ("displacement”, 0);

rve.vtkWritelutputFile ("rve.vtu");

*/
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}
}
}
}
output_file<<" n ="<< num -1 <<";" << std::endl;
output_file<<"combined_vector = [];" << std::endl;
output_file<<"combined_vectorl = [];" << std::endl;
output_file<<"combined_vector2 = [];" << std::endl;
output_file<<"combined_vector3 = [];" << std::endl;
output_file<<"combined_vector4 = [];" << std::endl;
output_file<<"for i = 1:n" << std::endl;
output_file<<" var_name = [’spacing’ num2str(i)];" << std::endl;
output_file<<" var_namel = [’F_volume_r’ num2str(i)];" << std::endl;
output_file<<" var_name2 = [’v_volume_r’ num2str(i)];" << std::endl;
output_file<<" var_name3 = [’radius_of_voids’ num2str(i)];" << std::endl;
output_file<<" var_name4 = [’radius_of_inclusion’ num2str(i)];" << std::emndl;
/*output_file<<" exist (var_mname, ’var’) == 1" << std::endl;
output_file<<” ezist (var_mnamel, ’var’) == 1" << std::endl;
output_file<<" exist (var_name2, ’wvar’) == 1" << std::endl;
output_file<<" exist (var_nameld, ’wvar’) == 1" << std::endl;
output_file<<” ezist (var_name4d, ’var’) == 1" << std::endl;*/
output_file<<"combined_vector = [combined_vector; eval([var_name °’(:)’])];" <<
std::endl;
output_file<<"combined_vectorl = [combined_vectorl; eval([var_namel *(:)’])];"
<< std::endl;
output_file<<"combined_vector2 = [combined_vector2; eval([var_name2 ’(:)’])];"
<< std::endl;
output_file<<"combined_vector3 = [combined_vector3; eval([var_name3 ’(:)’])]1;"
<< std::endl;
output_file<<"combined_vector4 = [combined_vector4; eval([var_name4 ’(:)’])];"
<< std::endl;
/*output_file<<" else" << std::endl;
output_file<<" warning([’Variable ’ var_name ’ does not ezist. Skipping...’])
;" << std::endl;
output_file<<" warning([’Variablel ’ var_namel ’ does not ezist. Skipping
.. 2]) ;" << std::endl;
output_file<<" warning([’Variable2’ var_name2 ’ does not ezist. Skipping
.. 2]) ;" << std::endl;
output_file<<" warning([’Variabled ’ wvar_name3 ’ does not ezist. Skipping
.. 7]) " << std::endl;
output_file<<" warning ([’Variablel’ var_namel ’ does not ezist. Skipping

.. 2]) ;" << std::endl;x/

//output_file<<" end" << std::endl;

output_file<<"end" << std::endl;

output_file<<"spacing =[combined_vector];" << std::endl;
output_file<<"F_volume_r =[combined_vectorl];" << std::endl;
output_file<<"v_volume_r =[combined_vector2];" << std::endl;
output_file<<"radius_of_voids =[combined_vector3];" << std::endl;
output_file<<"radius_of_inclusion =[combined_vector4];" << std::endl

B
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