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Abstract

Dynamic LiDAR point cloud compression (LPCC) is crucial
for the efficient transmission and storage of large-scale three-
dimensional data in applications such as autonomous driving.
However, many existing methods, which primarily focus on
compressing geometric or motion information, face a funda-
mental limitation: they treat all points as equally important.
This approach neglects the semantic priorities of a scene, re-
sulting in inefficient bit allocation and particularly compro-
mising the reconstruction quality of safety-critical regions,
such as pedestrians and vehicles, which are vital to down-
stream perception tasks. To address these limitations, we pro-
pose R²D-LPCC, a relevance-ranking framework for region-
adaptive LPCC that prioritizes fidelity in semantically impor-
tant regions. Central to our approach is the Adaptive Rel-
evance Learning (ARL) module, which integrates semantic
context with uncertainty to evaluate regional significance and
guide compression. We also introduce a Multi-scale Region-
Adaptive Transform (MRAT) module to enhance semantic
feature modeling and preserve fine-grained details in key ar-
eas. Additionally, we develop an adaptive multimodal motion
estimation module to improve motion prediction in complex
three-dimensional environments. Extensive experiments con-
ducted on the SemanticKITTI benchmark demonstrate that
R²D-LPCC significantly surpasses ten recent state-of-the-art
methods, achieving a 45.48% BD-rate gain over the previ-
ous leading method, Unicorn, and a 98.58% gain over the
GPCC standard, while ensuring superior reconstruction qual-
ity in semantically important regions. Project page with code:
https://github.com/zj-nn/R2D-LPCC.

Introduction
LiDAR point cloud compression has witnessed substantial
progress in response to the escalating need to efficiently
manage massive and complex 3D data. Outdoor dynamic
LiDAR captures complex scenes that include a wide variety
of elements such as buildings, vegetation, ground surfaces,
and moving vehicles, resulting in rich spatial distributions.
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Figure 1: Paradigms of point cloud compression methods.
(a) Traditional multi-scale compression assumes equal im-
portance for all input points. (b) The proposed method gen-
erates region-adaptive kernels from different regions, en-
abling more effective compression.

These point clouds are indispensable for applications includ-
ing autonomous driving, urban mapping, and robotic naviga-
tion. However, the raw data size is often enormous, reaching
gigabytes or even terabytes, and successive frames possess
significant spatiotemporal redundancy. This imposes serious
challenges for real-time processing, transmission, and stor-
age, making robust and efficient compression methods vital.

Traditional LiDAR point cloud compression (LPCC) ap-
proaches like VPCC and GPCC (Schwarz et al. 2018) mostly
rely on 2D projections or native 3D decorrelation techniques
for predictive coding. These conventional frameworks are
grounded in handcrafted feature design and heuristic match-
ing, which limits their flexibility and coding efficiency
across diverse scenarios. Range-image–based methods (Sun
et al. 2019; Wang et al. 2022) convert 3D points into 2D
images to ease encoding but often sacrifice important geo-
metric details by introducing distortions. Octree-based solu-
tions (Huang et al. 2020; Que, Lu, and Xu 2021; Fu et al.
2022; Wang et al. 2023; Cui et al. 2023; Fan et al. 2023)
hierarchically partition 3D space to exploit multiscale struc-
ture but suffer from the overhead of full octree construction



and traversal. Autoencoder-based models (Wiesmann et al.
2021; He et al. 2022; Huang et al. 2022; Wang et al. 2024)
leverage learned latent spaces and refined loss functions,
yet remain limited by their dependence on global statistics,
which constrain their ability to capture local geometric de-
tails and semantic diversity within scenes.

Recently, semantic-guided compression has emerged by
partitioning point clouds into categories such as foreground
and background, applying class-specific or selective encod-
ing (Sun et al. 2020; Varischio et al. 2021; Song et al. 2021;
Sun and Luo 2023). While this marks a shift beyond purely
geometric encoding, most existing methods rely on rigid cat-
egory partitions and treat all points within each category as
equally important. This simplistic assumption overlooks that
within the so-called “important” foreground, objects vary
significantly in relevance. Moreover, these approaches typ-
ically assume that the semantic or feature information used
for guiding compression is accurate and complete, implic-
itly neglecting the uncertainty inherent in dynamic scenes.
This kind of uncertainty arises because models have lim-
ited knowledge about dynamic objects and their changing
appearances under diverse environmental conditions. Ignor-
ing such uncertainty leads to suboptimal bit allocation and
restricts compression efficiency.

Our review of existing methods reveals two primary chal-
lenges. First, semantic integration is still basic and frag-
mented, i.e., many approaches adopt coarse binary segmen-
tations that fail to distinguish critical objects like vehicles
and pedestrians, or rely on multi-model ensembles that in-
crease training complexity and runtime overhead. Neither
strategy enables unified fine-grained semantic prioritization
for adaptive bit allocation. Furthermore, these frameworks
implicitly assume that the input data and features are com-
plete and reliable, thereby neglecting the uncertainty of
model when dealing with dynamic or partially observed in-
puts. Second, existing feature extraction paradigms suffer
from a lack of true receptive field adaptivity. While many
networks employ multi-scale hierarchies to process infor-
mation at various scales, the receptive field at each level
is determined by handcrafted, static kernel sizes. This rigid
structure prevents the dynamic adjustment of the informa-
tion aggregation scope in response to real-time variations in
scene content, thereby impairing the efficiency of spatiotem-
poral redundancy removal.Addressing these issues calls for
novel compression frameworks that integrate fine-grained
semantic awareness, uncertainty quantification, and adaptive
context-sensitive feature extraction tailored for complex dy-
namic 3D scenes.

Motivated by these challenges, we introduce R²D-LPCC,
a novel relevance-ranking guided, region-adaptive frame-
work for dynamic LiDAR point cloud compression. Our
main contributions include:

• We present R²D-LPCC, the first dynamic LiDAR point
cloud compression framework that integrates relevance
ranking with region-adaptive processing to efficiently
prioritize semantically important and uncertain regions.

• We develop key adaptive modules, namely Adap-
tive Relevance Learning (ARL) for directing atten-

tional resources to critical regions by learning their
semantic context and uncertainty, Multi-Scale Region-
Adaptive Transform (MRAT) for preserving fine details
via relevance-guided feature aggregation, and Adaptive
Multi-Modal Motion Estimation (AME) for robust mo-
tion alignment in dynamic scenes.

• Extensive evaluations on the SemanticKITTI benchmark
demonstrate that R²D-LPCC consistently outperforms
ten state-of-the-art methods, achieving a 45.48% BD-rate
gain over the state-of-the-art Unicorn and enhanced re-
construction quality in critical semantic regions.

Related Work
Intra-LPCCs. Intra-LPCC aims to reduce spatial redun-
dancy by encoding point clouds into compact forms. Range-
image methods project 3D points into 2D planes (Sun et al.
2019; Wang et al. 2022; Sun et al. 2020; Zhao et al. 2022),
but severely distort underlying geometry. More commonly,
octree-based approaches perform hierarchical spatial parti-
tioning and entropy coding, enhanced via contextual aggre-
gation (Fu et al. 2022), hierarchical attention (Song et al.
2023a), multi-scale features (Fan et al. 2023), and sophis-
ticated coding schemes (Jin et al. 2024). However, deep
octree construction and traversal incur significant compu-
tation. Self-attention (Cui et al. 2023) and near/far parti-
tioning (Güngördü and Tekalp 2024) offer further refine-
ments. Alternatively, autoencoder-based techniques learn
compact latent representations through variable-precision
coding (Wiesmann et al. 2021), density preservation (He
et al. 2022), block-wise schemes (Huang et al. 2022),
multi-subset decoupling (Wang et al. 2024), and tiered de-
signs (Xu, Zhang, and Wu 2024), including sparse ten-
sor formulations (SparsePCGC (Wang et al. 2023), Uni-
corn (Wang et al. 2025)). Yet, these methods largely de-
pend on global statistics or rigid partitioning and often ne-
glect local geometric detail and semantic variance across re-
gions. A key innovation of our method is Adaptive Rele-
vance Learning (ARL), which combines semantic context
with uncertainty. This enables dynamic prioritization of se-
mantically critical and uncertain regions during compres-
sion, effectively addressing prior limitations.

Inter-LPCCs. Inter-LPCC methods fall into three cat-
egories: video-based, octree-based, and motion-based ap-
proaches. Video-based techniques perform frame predic-
tion using uni- or bi-prediction to estimate subsequent point
cloud frames and compress residuals (Tu et al. 2019; Zhao
et al. 2022; Liu et al. 2023). However, these methods con-
vert point clouds into 2D range images, which limits their
ability to fully exploit 3D temporal redundancies. Octree-
based methods enhance intra-frame coding by incorporat-
ing multi-frame context into the entropy model through se-
quential convolutions (Biswas et al. 2020), edge convolu-
tions (Song et al. 2023b), or pose-based frame alignment
(Que, Lu, and Xu 2021). Despite these advances, they pre-
dominantly process individual octree nodes independently,
thus focusing more on spatial redundancy reduction than
on temporal correlations. Motion-based methods encode ex-
plicit motion between frames. Traditional algorithms such as
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Figure 2: Architecture overview of R2D-LPCC. Input
frames (Xt−1, Xt), reconstruction X̂t. Components: Adap-
tive Relevance Learning (ARL), Multi-Scale Region Adap-
tive Transform (MRAT), Adaptive Motion Estimation
(AME), Enhanced Coordinate Refinement (ECR).

ICP (Sun et al. 2021) or those leveraging sensor information
(Feng, Liu, and Zhu 2020) often struggle with non-rigid or
deformable objects. Recent deep learning approaches (Fan
et al. 2022; Jiang et al. 2023) attempt to improve motion
estimation but generally depend on fixed convolutional ker-
nels, which lack adaptability for the irregular and sparse na-
ture of point clouds. Our approach introduces an Adaptive
Motion Estimation (AME) module that dynamically mod-
ulates motion prediction by integrating local self-attention
and content-adaptive convolutional kernels, thus better cap-
turing complex motion patterns in 3D scenes and overcom-
ing the expressiveness limitations of prior methods.

Feature-Aware Compression. Recently, feature-aware
compression has gained attention for improving point cloud
compression by leveraging semantic and contextual infor-
mation. Semantic-based methods (Sun et al. 2020; Wang
et al. 2022; Zhao et al. 2022) typically perform semantic seg-
mentation on range images to assign per-pixel labels, which
are then used to predict the original range data. However,
their performance heavily depends on the accuracy of the
segmentation and prediction models, which can limit robust-
ness under varying conditions. Selective-coding strategies
(Varischio et al. 2021; Sun et al. 2022) enhance task-specific
outcomes by removing less informative points, yet this prun-
ing may disrupt feature continuity and harm downstream
task. Class-specific coding schemes (Song et al. 2021; Wang
and Liu 2022; Sun and Luo 2023) divide the point cloud
into semantic classes and apply specialized encoders per
category, improving compression for important classes but
increasing model complexity significantly. Using semantic
cues, these approaches mainly emphasize partitioning the
data without evaluating the varying significance of differ-
ent regions for compression prioritization. Based on ARL,
we introduce the Multi-scale Region-Adaptive Transform
(MRAT) module, which leverages a single network archi-
tecture to adaptively process diverse regions. This approach
enables the network to enhance semantic feature modeling
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Figure 3: The ARL module. Computes the relevance score
Ri for each point by jointly evaluating feature characteris-
tics and predictive uncertainty. Semantic segmentation la-
bels, shown as labels, are used solely for supervision during
training to guide relevance learning. Logits are the raw pre-
diction outputs from the backbone network.

while preserving fine-grained details in critical areas.
Building on these insights, our new framework redefines

feature-aware compression through a principled relevance-
ranking mechanism that dynamically prioritizes critical re-
gions for optimized bit allocation. We also enhance seman-
tic feature extraction by contextually modulating processing
according to relevance, ensuring preservation of key details.
By quantitatively assessing and leveraging regional impor-
tance beyond simple semantic cues, this approach effectively
addresses prior limitations, delivering superior compression
efficiency and reconstruction fidelity.

Methodology
Framework Overview
Our framework (Fig. 2) advances dynamic LiDAR point
cloud compression by enabling context-aware prioritization
of critical scene elements. Unlike traditional methods that
treat all regions equally, it leverages semantic context and
predictive uncertainty to focus compression resources on
safety-critical objects like vehicles and pedestrians.

The approach includes Adaptive Relevance Learning
(ARL), which ranks regions by semantic importance and
uncertainty to guide bit allocation; the Multi-Scale Region-
Adaptive Transform (MRAT), which uses relevance scores
to enhance multi-scale feature extraction and preserve de-
tail in key areas; Adaptive Multi-Modal Motion Estimation
(AME), which integrates spatial-temporal and semantic cues
from consecutive frames for robust motion prediction; and
Enhanced Coordinate Refinement (ECR), which corrects co-
ordinate drift to maintain geometric fidelity.

Given two consecutive point cloud frames, Xt−1 =
{CXt−1 , FXt−1} and Xt = {CXt , FXt}, where C and
F represent coordinates and occupancy-based features, the
R2D-LPCC pipeline integrates these modules to deliver an
efficient, high-fidelity, and semantically aware compression
solution. We discuss each component below.

Adaptive Relevance Learning (ARL)
The Adaptive Relevance Learning (ARL) module quantifies
the importance of each point in a dynamic LiDAR frame
by combining semantic context and predictive uncertainty.



Linear
ReLU
Linear

Kernel_generator

Conv
Conv
Conv

Multiscale_Conv

Conv
Conv
Conv

Attention_layer

Sigmoid

Convx

KD-Tree

iR

+

MRAT module

tyf ty

Figure 4: MRAT module. Multi-scale features are aggre-
gated using convolution kernels dynamically generated and
modulated by local features and region relevance scores.

Semantic context assigns high-level class labels (e.g., vehi-
cles, pedestrians) to points, inferred from a semantic seg-
mentation network, while predictive uncertainty measures
the model’s confidence. Uncertainty typically increases at
object boundaries, ambiguous, or dynamic regions. ARL in-
tegrates these cues to compute continuous relevance scores,
directing compression to focus on points that are both se-
mantically important and uncertain.

Given a point cloud frame Xt = {CXt , FXt}, a sparse U-
Net backbone extracts feature vectors fi for each point. The
relevance score for point i is

Rt,i =
exp

(
w⊤ϕ(fi)− λH(fi)

)∑
j exp (w

⊤ϕ(fj)− λH(fj))

where ϕ(·) is a learnable semantic embedding function
(MLP) encoding semantic context; w is a learnable attention
vector identifying features correlated with critical classes;
H(fi) = −

∑
c p(c|xi) log p(c|xi) is the predictive entropy

quantifying per-point semantic uncertainty over classes c;
and λ balances semantic context and uncertainty. The de-
nominator normalizes scores so that

∑
i Rt,i = 1.

Since explicit ground truth for relevance is unavailable,
ARL adopts a meta-learning paradigm (Ren et al. 2018) in
which the computed relevance scores Rt,i serve as adaptive
weights in the loss function of a proxy task, semantic seg-
mentation, which provides per-point class predictions and
associated uncertainty estimates:

Ltotal,t =

N∑
i=1

(NRt,i)Ltask,i

where N is the total number of points and Ltask,i is the loss
for point i. End-to-end training enables the model to learn
scene-adaptive relevance scores that guide compression for
efficient bit allocation and robust reconstruction, particularly
in complex and dynamic scenes.

Multi-Scale Region Adaptive Transform (MRAT)
Standard convolutions process semantically diverse LiDAR
point clouds uniformly, limiting focus on safety-critical re-
gions like vehicles and pedestrians. This leads to suboptimal
features in complex scenes with varied semantics and un-
certainty. To address this, the Multi-Scale Region-Adaptive
Transform (MRAT) dynamically adapts feature aggregation
using pre-computed per-point relevance scores that capture
semantic importance and uncertainty, combined with local
geometry via a learnable kernel generation network.

ReLU
Conv

1ty  ty

Concatenate
cat
ty

ReLU
Conv

Multi-scale
Motion Fusion

local_attention

dynamic_conv

Conv

tM

local_attentiom

Conv

qu
er

y

key

Conv Conv

value

Linear
ReLU
Linear

kernel_generator

scale
shift

dynamic_conv

AME module

Figure 5: AME module. Each point utilizes its local features
and region relevance score to dynamically generate kernels,
enabling adaptive multi-scale aggregation and channel atten-
tion for context- and priority-aware feature extraction.

Each point pi ∈ CXt is assigned the relevance score Rt,i

of its nearest neighbor via a k-d tree, converting high-level
semantic cues into point-wise modulation signals. A kernel
generation sub-network (two fully connected layers) takes
local features fyt,i and outputs normalized attention weights:

K ′
i = Softmax

(
Ψkernel(fyt,i)

)
These weights capture local geometric relations and are
modulated by the relevance score and a global learnable pa-
rameter α:

Ki = α ·Rt,i ·K ′
i

This ensures feature aggregation is sensitive to both seman-
tic relevance and local geometry.

To capture multi-scale context, MRAT uses three parallel
Minkowski convolution branches with kernels of sizes 3, 5,
and 7. Their outputs are fused by element-wise addition and
a 1×1 convolution to form feature vector Ffused. A Channel
Attention Module then recalibrates features:

yt = Ffused ⊗ σ
(
W2 δ(W1Ffused)

)
where W1,W2 are 1 × 1 convolutions, δ is ReLU, σ is Sig-
moid, and ⊗ denotes channel-wise multiplication. This final
operation enhances informative channels while suppressing
noise, yielding the refined output feature matrix yt.

Adaptive Motion Estimation (AME)
The Adaptive Motion Estimation (AME) module enhances
motion prediction for dynamic LiDAR point cloud compres-
sion by making the process content-aware and sensitive to
the semantic relevance of different scene regions. Unlike tra-
ditional methods that apply uniform processing, AME adap-
tively aligns motion estimation with both geometric com-
plexity and the importance of scene content. This enables
more accurate and efficient motion prediction in heteroge-
neous and dynamic environments.

To achieve this, AME first concatenates feature represen-
tations from the current frame yt and the previous frame
yt−1 into joint spatio-temporal features ycatt , which are then
fused through convolution. A local self-attention mechanism



Method bpp1 PSNR bpp2 PSNR bpp3 PSNR bpp4 PSNR BD-Rate Gain ↓ Enc(s) Dec(s)
GPCC TMC14 2.749 63.51 3.553 65.80 8.79 82.20 11.84 88.31 Anchor 2.53 0.66
RIDDLE 0.150 43.09 0.691 50.59 2.647 64.96 3.653 70.91 -19.99% - -
RPCC 1.831 60.95 2.186 65.00 2.664 69.88 3.425 76.14 -34.45% 0.098 0.098
OctAttention 0.394 58.95 0.968 65.00 2.101 70.99 3.852 77.02 -69.54% 0.4 120
Octformer 0.398 58.95 0.972 65.00 2.141 70.99 3.822 77.02 -69.34% - -
EHEM 0.64 60.37 1.00 63.16 2.15 69.80 3.69 76.46 -60.20% - -
MSLPCC 0.031 47.81 0.115 49.28 0.215 50.07 0.312 50.34 1.40% - -
D-DPCC 0.61 52.02 0.99 55.69 1.41 57.06 2.07 57.50 90.84% 1.5 0.17
Unicorn 0.71 46.96 1.299 63.18 2.216 69.46 3.785 77.06 -53.10% - -
RENO 0.71 58.85 1.65 65.24 2.72 69.89 5.00 77.13 -50.24% 0.095 0.09
SparsePCGC 0.395 58.95 0.939 65.00 2.016 70.99 3.694 77.02 -70.47% 1.47 1.07
Ours w/o ECR 0.398 67.03 1.01 69.55 2.04 74.71 3.65 78.58 -68.10% 2.96 0.17
Ours 0.398 82.56 1.00 89.68 2.46 95.76 3.19 97.66 -98.58% 2.96 0.17

Table 1: Comparison results of state-of-the-art representative LPCCs. The BD-Rate gain is calculated using GPCC as the anchor.

aggregates contextual relationships within each neighbor-
hood N (i), producing context-enriched features y′catt that
incorporate motion cues and environmental dependencies.

Adaptivity is further enhanced via a dynamic convolu-
tional layer whose kernel generation sub-network Ψkernel

predicts a unique channel-wise scaling vector si and bias bi

for each point based on its local features:
[si,bi] = Ψkernel(y

′cat
t )

These parameters define an affine transformation applied
point-wise:

y′′catt = si ⊙ y′catt + bi,

allowing fine-grained adjustment of feature representations
tailored to local motion characteristics and scene complex-
ity, surpassing the rigidity of static, shared kernels.

Finally, the adaptively modulated features are decoded
into the final motion vector field Mt through a multi-scale
fusion head that integrates spatial, temporal, and contex-
tual information at multiple scales. This comprehensive
approach enables AME to deliver robust, expressive, and
region-sensitive motion estimation suited for complex and
dynamic 3D scenes.

Enhanced Coordinate Refinement (ECR)
Sparse convolutions in point cloud compression often lead to
cumulative errors such as coordinate shifts from discretiza-
tion and downsampling, degrading reconstruction accuracy.
The Enhanced Coordinate Refinement (ECR) module ad-
dresses this by explicitly correcting these errors using a co-
ordinate offset correction strategy. ECR employs a center
offset loss to align the global geometric centers of origi-
nal and reconstructed point clouds, a weighted Chamfer dis-
tance loss to preserve important local structures, and an off-
set regularization loss to prevent excessive corrections and
ensure stable reconstruction. The combined training loss is:
L = λ1+λ2·bpp+λ3·Lcenter+λ4·LChamfer+λ5·Loffset−reg,

coefficients λ3, λ4, λ5 weight each refinement component.
By explicitly correcting coordinate drift across scales

while enforcing stability, ECR significantly improves the
spatial accuracy and fidelity of reconstructed point clouds,
which is critical for applications such as autonomous driv-
ing and robotic perception.

Experiments and Results
Experimental Setup
Datasets: Our experimental evaluation leverages several
large-scale autonomous driving benchmarks. The primary
dataset is SemanticKITTI (Behley et al. 2019), which we
use both for training and for assessing our model’s com-
pression performance. Following established conventions,
we train on the ten official sequences (00–07, 09–10) and
use the remaining sequences (08, 11–21) for testing, ensur-
ing a strict separation between train and test data. To fur-
ther demonstrate the generalization ability of our approach,
we conduct additional evaluations on two widely recognized
datasets, nuScenes (Caesar et al. 2020) and Ford (Pandey,
McBride, and Eustice 2011). Additionally, to highlight the
practical effectiveness of our compression algorithm in real-
world perception scenarios, we measure its performance im-
pact on the KITTI 3D object detection benchmark.

Training Strategy: Model training is carried out on an
RTX4090 GPU using the Adam optimizer. We adopt β1 =
0.9 and β2 = 0.999 for the optimizer’s momentum terms.
Training is performed with a batch size of 1 and an initial
learning rate set at 0.008.

Evaluation Metrics: We closely adhere to the Common
Test Condition (CTC) as specified in the MPEG G-PCC and
V-PCC standardization processes. For comprehensive as-
sessment, we report compression performance using bits per
point (bpp), and evaluate point cloud reconstruction quality
with D1 PSNR and D2 PSNR scores (Fig.5 supppl).

Comparison Methods: We compare our approach with
a broad selection of state-of-the-art (SOTA) methods, in-
cluding GPCC TMC14 (Schwarz et al. 2018), RPCC (Wang
et al. 2022), RIDDLE (Zhou et al. 2022), OctAttention (Fu
et al. 2022), Octformer (Cui et al. 2023), EHEM (Song
et al. 2023a), Sparse-PCGC (Wang et al. 2023), D-DPCC
(Fan et al. 2022), MSLPCC (Wang et al. 2024), RENO (You
et al. 2025), and Unicorn (Wang et al. 2025), thereby cover-
ing a variety of range-image, tree, point, and sparse tensor-
based techniques. To ensure fairness in our comparisons, we
standardize the experimental conditions and reconstruct key
methods using official public code where available. Specif-
ically, we acquired the code for GPCC TMC14 (Schwarz
et al. 2018), RPCC (Wang et al. 2022), OctAttention (Fu
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Figure 6: visualized compression results on SemanticKITTI,
with points color-coded by error levels (lighter indicating
greater discrepancy from ground truth).

et al. 2022), Sparse-PCGC (Wang et al. 2023), D-DPCC
(Fan et al. 2022), and RENO (You et al. 2025), and retrained
these models on SemanticKITTI using the same data splits
and protocols as R²D-LPCC. In cases where official code
could not be obtained, we instead reference the results as
reported in the original papers. Recognizing that encoding
and decoding runtimes are highly sensitive to hardware and
software variability, we report codec runtimes only for those
models whose results we could reliably reproduce.

Compression Performance
The results in Table 1 demonstrate that our model achieves
SOTA reconstruction quality over the full bit-rate spectrum,
yielding substantial BD-rate savings of 98.58% and 45.48%
compared to GPCC and Unicorn, respectively. This perfor-
mance is not simply a consequence of combining modules;
rather, it results from directly addressing core bottlenecks
of previous approaches. In contrast to methods that rely on
distortion-prone projections (e.g., RPCC) or incur consid-
erable processing time with octree-based structures (e.g.,
OctAttention), our model delivers a superior rate-distortion
trade-off. This is primarily enabled by the MRAT and AME
modules. MRAT, guided by relevance scores, generates fine-
grained kernels for complex areas such as vehicles to en-
hance detail capture, while simpler areas like ground regions
are efficiently processed using kernels with large receptive
fields. This content-adaptive feature extraction ensures that
bits are allocated preferentially to encode information criti-
cal for accurate reconstruction, resulting in lower distortion
at the same bit-rate.

Fig. 6 provides a visual comparison illustrating the de-
tailed reconstruction capability of our approach. Existing
methods such as SparsePCGC and OctAttention, which em-
ploy uniform receptive fields, are unable to retain deli-
cate structures during downsampling, as indicated in the
green box. In contrast, our model maintains high fidelity in
key regions, highlighted in the red box. This improvement
stems from the combined operation of the ARL and MRAT
modules: ARL first discerns high-importance regions, then
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Figure 7: R-d performance on Ford and Nusecnes.

MRAT generates kernels tailored to local geometric charac-
teristics. This cooperative mechanism allows our model to
precisely preserve vehicle contour details that would other-
wise be lost.

As depicted in Fig. 7, our method consistently achieves
optimal Rate-distortion (R-d) trade-offs on both the Ford
and nuScenes datasets. This strong cross-dataset generaliza-
tion demonstrates that the model learns a fundamental, adap-
tive processing strategy rather than overfitting to any specific
data distribution. The MRAT and AME modules together
empower the network to dynamically adjust processing ac-
cording to the underlying content, enabling our approach to
robustly accommodate diverse sensor data and scene varia-
tions while maintaining SOTA performance.

Ablation Studies
To rigorously assess the contribution of each core module
in our framework, we systematically compare the compres-
sion performance of different component combinations, as
summarized in Table 2. The baseline (B) is D-DPCC. The
analysis below clarifies how each component targets distinct
technical challenges to improve compression efficacy.

Model Variant bpp1 PSNR bpp2 PSNR2 enc time(s)
B 0.99 55.69 2.07 57.50 1.500
B+A 0.99 56.58 1.67 57.53 -
B+A+R 0.94 65.07 1.98 67.03 1.586
B+A+M 0.99 57.94 2.07 58.30 2.874
B+A+R+M 1.01 69.55 2.04 74.71 2.960
B+A+R+M+O 0.93 71.98 2.09 77.65 2.961
B+A+R+M+E 1.00 89.68 1.99 94.20 2.961

Table 2: Performance for different model variants.

• ARL (A): This module addresses the baseline’s content-
agnostic bottleneck by ranking relevance using seman-
tic context and uncertainty. Semantic context identifies
what matters (e.g., vehicles), while uncertainty pinpoints
where compression is hardest (e.g., contours). This dual
guidance enables smarter bit allocation, yielding an over-
all gain of +0.89 dB (bpp1). Fig. 8 exemplifies how
gains come from prioritizing objects over ground points.
Ground points are easy to reconstruct but contribute little
to PSNR. Errors in sparse, meaningful regions like vehi-
cles hurt PSNR more due to their shape and semantic im-
portance. Our method preserves vehicle structure, while
the baseline often misses these details (Fig. 3 suppl).
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Figure 8: Relevance ranking visualization results.

• MRAT (R): MRAT mitigates the rigidity of fixed re-
ceptive fields by enabling “geometry-adaptive” feature
extraction. With guidance from ARL, MRAT generates
optimized convolutional kernels for different spatial re-
gions, which greatly reduces redundancy in the feature
space. This targeted adaptation leads to a notable PSNR
gain of +8.49dB (bpp1) over the B+M model, indicating
more effective capture of com-plex structures.

• AME (M): Extending adaptiveness into the temporal
domain, AME introduces advanced motion estimation
for sequences and lowers inter-frame prediction errors.
Alone, AME offers a +1.36dB gain (B+M+A vs. B+M),
but demonstrates synergy with MRAT, with a combined
gain of +4.48dB(bpp1) (B+M+R+A vs. B+M+R), high-
lighting its benefit in handling temporal variability.

• Boundary offset compensation (Offset (O)): Adding
only the coordinate offset mechanism from (Wang et al.
2023, 2025) without supplementing it with the special-
ized loss does not achieve optimal performance, suggest-
ing that loss design is critical for extracting the benefits
of this module.

• ECR(E): Serving as a dedicated residual refinement net-
work, the ECR module performs final adjustments to
compensate for subtle coordinate errors introduced by
quantization. With its specialized loss, it resolves remain-
ing alignment issues, which are often limiting factors for
SOTA precision. This refinement yields a substantial ad-
ditional gain of +20.13 dB (bpp1), reinforcing its essen-
tial role in the framework.

We further measure the computational cost of each mod-
ule in Table 2 (with ARL’s parameters frozen during infer-
ence and thus omitted). This analysis reveals how cost is
distributed across modules. The AME module is the most
resource-intensive, contributing an additional 1.374s to the
encoding time compared to the baseline. The MRAT module
remains highly efficient, adding only 0.086s, while the ECR
module’s overhead is nearly negligible at just 0.001s. This
demonstrates that ours suits offline tasks like high-fidelity
map generation as quality matters more than speed.

Downstream Task Evaluation
As highlighted in (You et al. 2025), LiDAR point-cloud
compression serves two essential purposes: reducing stor-
age and transmission costs, and preserving rich spatial de-
tail necessary for real-time information exchange between
devices or vehicles to facilitate collaborative perception and
decision-making. For compressed point clouds to be useful
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Figure 9: 3D object detection on the KITTI dataset.

in downstream applications, such as 3D object detection, it
is crucial that they retain sufficient fidelity so detector per-
formance closely matches that on uncompressed inputs.

To quantitatively evaluate this requirement, and following
the protocol established in (You et al. 2025), we benchmark
five representative encoders, namely GPCC TMC14, RPCC,
SparsePCGC, D-DPCC, and Ours, by integrating their de-
coded point clouds into the OpenPCDet framework and as-
sessing 3D detection performance using the pre-trained PV-
RCNN (Bhattacharyya and Czarnecki 2020) model. Note
that due to coordinate normalization in ActAttention decod-
ing, an explicit inverse-normalization step is needed to en-
able downstream testing, which greatly increases the result-
ing bpp. For this reason, we exclude it from comparison.

As depicted in Fig. 9, the uncompressed raw point cloud
delivers detection accuracies of about 89.07%, 58.73%, and
76.18% for cars, pedestrians, and bicycles, respectively. Our
model consistently maintains high detection accuracy at
very low bit-rates, outperforming both GPCC and RPCC.
This benefit is directly enabled by targeted information re-
tention in our compression framework: the ARL module
first pinpoints small, sparse targets such as ”pedestrians”
and ”cyclists,” while MRAT adaptively generates special-
ized convolution kernels to preserve their fine-grained ge-
ometry, supporting robust detection. By contrast, compet-
ing approaches often experience diminished detection per-
formance due to indiscriminate quantization or geometric
distortion, which primarily affects these difficult instances.
Our design avoids such failure modes, resulting in stronger
downstream utility.

Conclusion

Existing LiDAR compression methods treat all regions as
equally important, causing inefficient encoding and poor re-
construction of critical areas like dynamic objects. We pro-
pose R²D-LPCC, a framework for dynamic point cloud com-
pression, to address this. Our approach uses a relevance
ranking system (ARL module) leveraging semantic context
and uncertainty to identify important regions. This ranking
then guides an adaptive feature extraction module (MRAT)
and an accurate motion estimation module (AME) to pref-
erentially encode these critical areas. Extensive experiments
validate our method’s superior reconstruction quality by fo-
cusing on what matters. While the method effectively bal-
ances performance and efficiency, future work will opti-
mize the framework for real-time applications, especially for
inter-frame motion estimation.
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