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ABSTRACT: We develop a holographic framework for computing timelike entanglement entropy
(tEE) in quantum field theories, extending the Ryu-Takayanagi prescription into Lorentzian
settings. Using three broad classes of supergravity backgrounds, we derive both exact and
approximate tEE expressions for slab, spherical, and hyperbolic regions, and relate them to
the central charges of the dual conformal field theories. The method is applied to infinite
families of supersymmetric linear quivers in dimensions from d = 2 to d = 6, showing that Liu-
Mezei and slab central charges scale universally like the holographic central charge. We then
analyse gapped and confining models, including twisted compactifications and wrapped brane
constructions, identifying how a mass gap modifies tEE and when approximate formulas
remain accurate. In all cases, we uncover robust scaling with invariant separations and
signature-dependent phase behaviour, distinguishing spacelike from timelike embeddings. Our
results unify the treatment of tEE in both conformal and non-conformal theories, clarifying
its role as a probe of causal structure, universal data, and non-perturbative dynamics in
holography.
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1 Introduction and summary

Entanglement entropy has emerged as a fundamental probe of quantum correlations in
quantum field theory (QFT) and many-body systems, offering deep insights into the structure
of spacetime and quantum matter. In conformal field theories (CFTs), it provides universal
information encoded in the central charges and operator content, while also serving as a
bridge between statistical mechanics, condensed matter physics, and quantum gravity [1, 2.
The holographic correspondence [3-5] has established a powerful framework for computing
entanglement entropy in strongly coupled systems, most notably through the Ryu-Takayanagi
prescription [6-8], which connects geometric quantities in the bulk to information-theoretic
measures in the boundary theory.

While most studies have focused on space-like entanglement, the concept of time-like
entanglement entropy (tEE) offers a new perspective into the causal structure and temporal
correlations of quantum fields. In particular, CF'Ts in diverse dimensions offer a fertile ground
for both exact and approximate calculations, especially when complemented by holographic
duals of confining field theories [9, 10]. Such settings are sensitive to nonperturbative features
and scale-dependent phenomena, making them ideal laboratories for probing the dynamics
of entanglement in nontrivial geometries.



The timelike entanglement entropy is related (via Wick rotation of the usual EE) to a
concept in information theory known as pseudo-entropy. Pseudo-entropy provides a framework
to quantify the entanglement for a transition between states. For a careful explanation of
pseudo-entropy, its calculation in field theory and holography and its relation with tEE
see [11-13]. These ideas nicely relate with those presented in [14, 15]. The point is to
calculate the entanglement in time as the correlation between two regions A and B which are
separated in time. This leads to the definition of T4p (a generically non-hermitian operator),
which is the generalisation to the time-separated case, of the density matrix — defined for
the case in which A and B are separated in space.

In the case of CFTy and AdS3 the connection is understood, in that case the operator
T4p is obtained by analytic continuation of correlator of twist operators [14, 15]. In the
2d-CFT case, the tEE presents an imaginary part and a real part (that is logarithmic in the
time separation). The real part comes from the usual RT-surface. The imaginary part is
understood moving to a complexified AdS-space [16, 17]. In this vein, the papers [17, 18]
present a way to holographically define the tEE using the usual RT (spacelike) EE and
analytically continuing across the light-cone.

There are many other motivations to study time-like entanglement entropy beyond those
mentioned above. In fact, the concept of entanglement can be applied to any arbitrary
quantum system, generalising the usual density matrix to a space-time density matrix.
Studying these concepts within the framework of holography seems a good idea, as the
problem becomes geometrized. On this same line, there is an interesting connection with the
theory of Tensor Networks and the complexity of algorithms that represent time evolution.
See for example [19, 20]

As mentioned above, at present, there is no clear consensus on the way to calculate
tEE. Some proposals, that rely both on QFT arguments and on the geometry side of the
duality and guide our work, include [15-18, 21, 22]. This deserves further study. Moreover,
studying entanglement across timelike regions can reveal intricate links between information-
theoretic measures and renormalisation group flows, including constraints from the c-, a-
and F-theorems [23-26].

In this work, we explore timelike entanglement entropy in CFTs across dimensions,
deriving exact results, developing controlled approximations, and relating our findings to
the central charges of the theory. We also discuss holographic duals to field theories with
a mass gap and/or confinement.

The contents of this paper are organised as follows:

e In section 2, we discuss different generic aspects of EE and tEE. We present a summary
of results with emphasis on the approach developed recently in [18, 22, 27]. We divide
our presentation into three classes of backgrounds, that are further explored in the
following sections. We provide expressions that approximate the separation and the
tEE (these are useful when intensive numerical analysis is needed to evaluate the exact
expressions).

e In section 3, we specialise our formulas for holographic duals to families of CFTs in
diverse dimensions (the results are presented for entanglement across slab-regions and



spherical ones). We present expressions for the central charge of the CFTs, computed
using the holographic description.

e Section 4 presents the careful study of the material in previous sections, applying it to
the holographic duals to an infinite family of SCFTs (with eight Poincare supercharges).
Precise expressions are presented.

e In section 5 we extend the study of the first few sections to systems that present a mass
gap (and in some cases confinement). A careful explanation of the dynamics of such
systems is given. Here, we discuss holographic duals that share the (dynamical part) of
the entanglement entropy, whilst having qualitatively different UV fixed points. Some of
the approximate expressions derived in previous sections become instrumental for some
of these models. Otherwise, the exact expressions would require intensive numerical
work, that we do not do in this work. Importantly, models with an extra scale (like
the mass gap in these systems) allow for a real-valued Ryu-Takayanagi surface in the
holographic calculation of timelike entanglement entropy.

We end with some concluding remarks and future directions in section 6.

2 Preliminaries

In this work, our focus is on timelike entanglement entropy. It is known that the extremal
surface calculating this quantity becomes complex (the turning point of the surface does),
presenting a puzzling situation. Several approaches were proposed to better understand this
issue. We build on the ideas in [16, 17, 28|, in particular, adopting the perspective presented
in [18]. In this approach we consider space-time entanglement in the case of slab regions. It
is not yet clear whether a similar approach can be applied to spherical regions.

The purpose of this section is to review the formalism of space-time entanglement for slab
regions. We then specialise the formalism to the case of timelike entanglement and present
expressions that can approximate both the time separation and the timelike entanglement
entropy. These expressions are used in examples, presented in subsequent sections. We
consider here three classes of backgrounds (we refer to them as class I, class II and class III)
and present expressions for the entanglement entropy for each class. Subsequent sections
illustrate each class with well-known backgrounds.

2.1 Three classes of backgrounds and space-time entanglement

We consider three classes of supergravity backgrounds in ten dimensions (the extension to
eleven-dimensional supergravity is straightforward). We write the metric and the dilaton,
noting that the Neveu-Schwarz and Ramond forms complement these backgrounds but do
not play a role in this work and are not written. We work in string-frame.

e The backgrounds of class I read,

dsi o = f(T)AdSas1 + gij (9—a)(T)dv'dv’,  &(7). (2.1)
2 l2d 2
AdSyy1 = %(AdtQ +dF_y + dy?) + uf



We explain our conventions. The background is ten dimensional, solves the supergravity
equations of motion (the extension to eleven dimensional supergravity is straightforward). The
AdS-space is (d + 1)-dimensional. We use the (Poincare patch) coordinates as (t,y, Z4—2,u)
to describe it. The time is Euclidean (when A = 1) or Lorentzian (when A = —1). The
internal space with metric g;;(v) is (9 — d)-dimensional and parametrised by the coordinates
U. The warp factors f(¥), gi;(¢) and the dilaton ®(¥) depend only on the internal space
coordinates, otherwise they would spoil the isometries of AdS. The same holds for the NS
and RR forms, which we do not include explicitly.

e The backgrounds in class II read,

ds%l,st = f(f)’,u){ 1(u) ()\dt2 + dxd 3+ dy2) + 32(u)du2 + 83(u)d¢2} +
+9ij,9—a) (T, w)(dv’ — A")(dv? — A7), ®(¥,u), (2.2)
A" = s44(u)do.

Backgrounds in class II describe the generic form of solutions in Type II A/B (or M-theory)
that are dual to CFTs in dimension d with one direction — here called ¢ — compactified
on a circle and twisted with the R-symmetry to preserve some SUSY. This is realised in
holography with the ¢-direction being fibered (by virtue of the one forms A%), over the
internal (9 — d) dimensional space. These backgrounds, dual to CFTs that flow to a gapped
(usually confining) IR QFT in (d — 1)-dimensions are exemplified by [29-40].

o Finally, the class III backgrounds read,
dS%II,st = ﬁ(u)_% ()\dt2 +dy? + df?i_z) +ﬁ(u)%e2k(")du2—|—gij’(9_d) (u, B)dv'dv?, ®(u). (2.3)

These backgrounds are simpler, describing holographic duals to field theories (characteristically
confining ones) that are obtained on wrapped brane systems or on intersections of branes
and fractional branes. Examples include the backgrounds in references [41-51].

In what follows we apply the formalism developed in [18] to calculate the entanglement
entropy of a space-time slab for the three classes of backgrounds above. It would be interesting
to extend this to the case of Lifshitz-like and other non-relativistic backgrounds [52]. In order
to do this we choose an eight surface (it would be a nine-surface for M-theory backgrounds).
For the three classes of backgrounds, the eight-surface is parametrised by

Y81 = Xg,111 = (U, Zg—2,Vo—q), 28,11 = (U, Td—3, D, V9—d),
with t(u), y(u). (2.4)

Then we calculate the induced metric on each surface,

2

o AtlQ + y/2)

ds%, , = f(9) <du2 12 (

+ l2da:32> + 9ij,(9—q) () dv'dv?, (2.5)

dsk, ,, = F(@u)(du? [sa(u) + 51(u) M2 +5/2)] + 51 ()dF_y + 53(u)d6?)
+9ij,(9-a) (7, ) (dv' — Al)(dvj — A),
k



After this, one calculates the U-duality invariant quantity (recall that we work in string-frame,
in Einstein frame, the dilaton factor below is absent),

4GSk = / e detlging vy (2.6)
g

Here G19 = 87%g2a/* is the ten dimensional Newton constant. For the backgrounds of

class I we find,

- o u 2(d=3) u 2(d=1)
e detlgy, ) = O f@  delgo-d[ () 4 () W],

4G10SEE,T = /\/1/clu\/F2(u)(y’2 + At'2) + G?(u), where we defined (2.7)

o= () aw= (1)

Np = /dg_dv dd_2x\/e_4q’(’7)f(17)d_1 det[go_a].

A similar result is obtained for the backgrounds in classes IT and III. In fact,

e detlgs, ., = e PP f(¥,u)"" det[go—a(T,u)]

[
xsg(u) 51(w) [s1(w) A2 + y'2) + s5(u)]

N (1—d) N
e detfgy, ] = 4 detlgoa(B )] h(w) T (M2 4y e hw)]. (28)

As we discuss in section 5, an interesting conspiracy occurs and the integral over the
internal space parametrised by the ¢-coordinates, can be performed explicitly, leading for the
three classes of backgrounds to a one dimensional action of the form,

4G10SEE = /\/'/OO du\/F2(u)(y’2 + At?) + G?(u). (2.9)

Without specifying the functional form of ®(¥,u), f(¥,u) and g;; 9—q)(¥,u) it is not
possible to be more precise about the functions F'(u) and G(u). The functions F'(u), G(u) and
the constant N do depend on the particular supergravity solution in question. We explore
various examples in sections 3, 4 and 5. In what follows, we focus on actions of the form (2.9).
In generic terms we detail the treatment in the papers [18, 22].

In what follows we work with the action in eq. (2.9). The quantity & is related to the
central charge of the dual UV-CFT (and dependent on the class of backgrounds we discuss).
The parameter ug is the turning point of the eight-surface, the lowest value of the coordinate
u reached by Xg. The equations of motion of the variables ¢(u),y(u) are,

F2t/ F2y/
= ¢,
VEF PN +y?)

VTP gV

Here ¢y and ¢; are constants of motion. The solution to these equations read

o 3G) N <0
P = EEw - Py Y T P - P

(2.10)



We denote the turning point (this is the point at which both ¢ and 3’ diverge)
F?(ug) = ¢} + Acj. (2.11)

We express the lengths of the subsystems (in the coordinates ¢ and y respectively)

o [ G(w) e G(w)
R O i Bz v e ol

The entanglement entropy after regularisation is [18],

4G1o o [T GuwFw) %
TStEE = 2[% du ) = F2(ag) Q/U* G(u)du. (2.13)

In what follows we mostly focus on the Lorentzian signature case, hence choose A = —1. The
turning point is given by F?(ug) = CZ —c2. On the other hand, the point u, denotes the end of
the space, being u, = 0 for AdS-Poincare coordinates. For generic metrics like those in class II
or III the point u, depends on the place where some cycle (like the ¢-coordinate) shrinks.

From the above discussion, it is generic that the turning point in Lorentzian cases
F2(ug) = cZ — ¢ is real for ¢y > ¢;. In this case we have a spacelike separated slab. For
¢t > ¢y we have a time-like separated slab and the turning point is generically imaginary.
In [18] the two types of embeddings were named Type I and Type II respectively. We
anticipate here that for the case of dual QFTs with a scale (such as confining or gapped
theories), real embeddings (Type I) with real turning points wug, even for the case ¢, < ¢.
A more detailed discussion is given in section 5.

The idea is to write both the S;gg(ug) in eq. (2.13) and the space-time interval A?(ug) =
Y?2(ug) — T?(up) from eq. (2.12) and then parametrically write S;pp(A). For A% > 0 we
have Type I embeddings, for A2 < 0 Type II embeddings. The lightlike case is analysed as
a limiting procedure in [18]. In that paper, a way is suggested to interpolate between the
two types of embeddings via analytic continuation to avoid the divergent result on the light-
cone, something similar to the proposal of [17]. In other words, we start with a real valued
embedding (Type I) with ¢, > ¢; and increase ¢;. The case A? = 0 is avoided by analytic
continuation. After that we continue to increase ¢; and we have a Type II, complex embedding.

Below, we mostly focus on the purely time-like situation, that is when ¢, = 0, leading
to Type II embeddings. Of course the character of the embedding depends on the precise
functional form of F2(u). In cases in which there is a length scale in the field theory (like the
examples studied in section 5), the system can have Type I embeddings even if ¢; > ¢,.

2.2 The case of time-like entanglement

We now specialise our expressions in egs. (2.9)—(2.13) to the case of purely time-like entangle-
ment. In this case the integration constant ¢, = 0, in other words, the coordinate y is fixed.
When 3/ = 0, the action in eq. (2.9) has the same structure as the action obtained when
probing the background with a fundamental string (to calculate the quark-antiquark pair
separation and energy). In the case of space-like EE (with ¢’ = ¢; = 0), this formal similarity
was exploited in [53] to write expressions that well-approximate the separation of the slab.
In the same vein, the paper [22] made use of the formal similarity to write approximate



expressions for the time-like separation and the time-like EE. Below, we summarise these
expressions, as they become useful in subsequent sections.

Consider an action of the form in eq. (2.9), for the special case of fixing the value of
the t-coordinate, ¢’ = 0. In [53, 54] it was proposed (without a proof) that the expression

Yapp (o) = 77?,((1200)) approximates the separation in Y, otherwise given by the integral in

eq. (2.12), in terms of the turning point ug. Along this line, for the case y' = 0, the
approzimate time separation Ty, (ug) is [22],
G
- G(w)
F'(up)

In cases for which the evaluation of the integrals in eq. (2.12) is complicated, one can resort

Tapp(uo) =

. (2.14)

to the ‘experimentally motivated’ expression in eq. (2.14). It would be nice to provide a
proof of eq. (2.14).
Similarly, in the context of Wilson loops [54, 55], it was shown the ezact expression for
the functional S(ug) — like the one in eq. (2.13), satisfies
ds (uo)
dY(uo)

Although obtained in the study of Wilson loops, the proof given in [54, 55] also applies

= F(ug). (2.15)

to the case of entanglement entropy, due to the formal similarity between the actions (for
the F1 string and for the eight-surface).
Using egs. (2.14), (2.15) in the case ¢, = 0 we follow [22] and find,

dS(UO) dSapprox(uO) . .
~~ ~ F(up), integrating we find,
dT(ug) ~  dTapp (o) (o) grating
d ( G(up)

Sapprox(UO) = /F(UU)dTapp(uo) = 7T/F1(u0)du() F’(uo)

When studying holographic duals to non-conformal field theories, it is usually the case that

)duo + constant. (2.16)

the integrals giving the exact expressions for the separations and the EE, egs. (2.12), (2.13) are
not easy to evaluate and one needs to resort to (typically demanding) numerical work. It is in
those cases that the approximate expressions in egs. (2.14) and (2.16) are particularly useful.

The analysis in this preliminary section is based on slab-regions. In the case of conformal
field theories, the integrals can be performed explicitly not only in the case of slabs, but also
for spherical or hyperbolic regions. We study these expressions below, in section 3.

3 (Timelike) entanglement for generic CFT}

In this section, we discuss the general formulae above, for conformal field theories in d
space-time directions. We work with backgrounds in class I, eq. (2.1) containing AdSg41
subspaces. We begin with the calculation of the entanglement entropy on a slab region. We
write exact expressions for the interval separation and the EE in terms of the turning point in
the bulk. We then provide a useful expression for the EE in terms of the invariant separation
(the interval A? = Y2 — T?), expressing everything in terms of field theory quantities.

After this, we discuss the calculation of the entanglement entropy in spherical or hyperbolic
regions, quoting exact expressions derived in [22, 56]. We present expressions for the central
charge of these systems, derived from the entanglement entropy.



3.1 Entanglement entropy for holographic CFTs in dimension d
We consider class I backgrounds, which are dual to conformal field theories in d spacetime
dimensions. The background and dilaton read,

ds%st = f(¥)AdSgq41 + 9ij,(9—d) (U)dvidvj, O (7). (3.1)
The AdS-subspace is written as,

(ANt + di_o + dy?) + P (3.2)
d—2 Yy u2 ) .

2
u
AdSg41 = 7z
or,

du?

AdSgyy = u? (At + 2dQY, + dy?) + o (3.3)

The first expression is used for slab regions, and the second for spherical (A = +1, Euclidean

signature) or hyperbolic regions (A = —1, Lorentzian signature). For Euclidean time (A = +1),
the subspace dQ((j/\_ZQH) in eq. (3.3) is a sphere. The resulting metric is that of Euclidean
AdSg441. In contrast, for A = —1 (Lorentzian signature) the space dﬂl(i/\_:{l) is a hyperbolic

plane. The resulting metric is that of Lorentzian AdSg;.

3.1.1 Slab-regions

We focus on slab regions (with Lorentzian signature). The induced metric is that in the
first line of eq. (2.5) and the entanglement entropy is given in eq. (2.7), for A = —1. We can
explicitly evaluate egs. (2.12)—(2.13) using eq. (2.7) for the functions F'(u), G(u)

©d 1 *d 1
T = 2 zd+1/ = .Y =2, zd+1/ = . (3.4)
up U \/u2(d—1) _ug(dfl) up U \/u2(d—1) _U(Z)(dfl)
For the EE we find,
4 9 2d—4 00
@SEE _ 2 / du v _/ u
N 193 oo [u2d—2 _ ugd’2 0

The constant N' = N7 in eq. (2.7). The two possible embeddings are characterised by

=3 du]. (3.5)

the value of

1
ug = (C; — C?) 2(@=1) . (36)

2
Y

coordinate u = ug in eq. (3.6). In contrast, for Type II embeddings (when ¢} > ¢7) we have

The Type I embeddings have (c2 — ¢?) > 0. The turning point occurs at a real value of the

i %
up = e 0 [\/|e2 — || = (idig) 7T (3.7)

The turning point is at a complex value of the u-coordinate, note that g = /[c2 — c?| is real.

We change to the variable = 2. The expressions for the T-separation and Y-separation are,
9 ldJrl 9 ld+1
T = Ctidll, Y = Cyidll, where
U Ug
1 d—1 VTl (54
r —
L= ar - (o) . (3.8)

o VI D (i)



For the EE in eq. (3.5) we find,

2G1o [d=3

NT(d)_zSEE == _[2 - 13, where (39)

1 d’f’ ]. ]. 2 - d d 2d—2
IQ = = - d—2 2F1 5 ; 3T
. pd—1y/1 — y2d-2 (d—2)r 2°2d—2"2(d—-1)

I < dr 1
37 il (d—2) ed=2

We introduced the small parameter ¢ — 0 to UV-regulate the quantities I3, Is. One can check

that the divergence (for € — 0) in I3 is precisely cancelled by the divergence in I3. This is
the logic of the UV-regulation in eq. (2.13). The result is

2 d—3 1 1 2—
2GN10 177 ) 1( d d 1) (3.10)

N ul? SEE = 5 22d—-2'2d—2

Before proceeding further, it is worth mentioning that for pure time-like separation
(cy = 0), we have two branches of solutions (7%) for the time-like slab as also observed
in [16]. In our calculation, this can be seen from (3.6), which yields ¢; = +iud~'. When
substituted back into (3.8), this produces a lower (7_) and an upper (7%) branch of solutions
that meet smoothly at the turning point wg.

We write the entanglement entropy in terms of the physical quantities in the field theory,
namely the separations Y and 7T". To do this we find the integration constants (cy,c;) from
eq. (3.8) and put this together with eq. (3.6) to obtain,

T Y 211
— = = 3.11
Ct 21d+1], Yo, Gy 20d+1T, Up,  Uo VY2 T2 ( )
Using eq. (3.10) gives,
N (I — I3)24-31(d-1)° 42 1
Spp = (2 — I5) L x - (3.12)
G1o (Y2-T2) 2
and
I, — [.)2d-3](d—1)% yd—2 —irld2)
Sppp = 2= I5) (R . — (3.13)
GlO |Y2 _ T2|T

If the interval A? = Y2 — T2 is positive we are considering surfaces with a Type I embedding
(as ¢y > c¢). We find a real result in eq. (3.12). For the case of negative A? (that corresponds
to ¢y < ¢;), we are considering surfaces with a Type II embedding, in which case the result
is that in eq. (3.13).

In the case ¢; = 0, we are in the pure Ryu-Takayanagi case with Sgpp ﬁ On the
—iT (d—2)
other hand, for ¢, = 0, we are in the case of a Type II embedding and we find Sgr o %,

reproducing the result in [22, 56]. Note that the result of eq. (3.13) is imaginary for odd d. The
expressions in egs. (3.12) and (3.13) precisely match those in [22] and [56] after setting Y = 0.




In the case of purely time-like EE (¢, = 0), we can compare the exact expressions
in egs. (3.8)—(3.13) with the approximate expressions in egs. (2.14), (2.16). Using that
F(u) = ﬁ(%)d_l and G(u) = (%)d_g, we find

G(up) s
Tapp = = ) 3.14
=T F )~ (d- VA o
uQ T -
SEE,approx = / dz F(Z)T;pp(z) = —mug 2. (315)

It is worth mentioning that the approximate EE (3.15) is defined up to an integration constant.
We have kept the parameter A = +1. The Lorentzian case (A = —1) shows an imaginary value
in the approximate separation in terms of the turning point ug, matching the result obtained

from eq. (3.11) in the limit Y — 0. Finally, we combine egs. (3.14) and (3.15) to obtain
nd1 1

VA=2(d — 1)4-2(d2 — 3d + 2) |Tapp|®2’

SEE,approx = - (316)
which coincides with egs. (3.12)—(3.13), as far as dependencies on A and |T'| are concerned.
Let us now study the EE in the case of hyperbolic or spherical regions

3.1.2 Hyperbolic or spherical regions

We now consider the special case in which the entangling region is either a sphere or a
hyperboloid. The time direction is Euclidean (for the case of the sphere) or Lorentzian (for
the hyperbolic case). In fact, this is a mapping of the spherical entangling region of [17] to a
hyperbolic plane that expands in real time. To accommodate these, we retain the parameter
A = %1 in our expressions. We use AdS;;1 written in the form of eq. (3.3) and also take
the coordinate y fixed (equivalently, ¢, = 0).
The metric of the corresponding eight-manifold is given by
ds2ls — f(T 4,12 du? - 2,2 34(N) 1y
szl = f(V) [1 + Au”t (u)} — + f(@)u "t dQ "y + gij(V)dv'du’ . (3.17)

The EE is given by

) )
SYTs] = Tem / /e det g = 42[1 0 / Qa3 14 dutt2 (). (3.18)

We defined the constant N as

N = Vol(QP,) / Ay Je=42 det g;; £ 7 (D). (3.19)
The equation of motion that follows from eq. (3.18) and its solution are,

ePt(u) ((d = D2t () + (d+ D (u) + ut"(u)) = (d = 2) ('t (@)? +1) =0. (3.20)

</ R2 2_)\
t(u):R+, with A\ =+1. (3.21)

The boundary condition used for this solution is ¢(u — co) = R, the radius of the ball-region.
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Substituting back into (3.18) and after the change of variables u = ‘f‘”

/” v(a? — 1) (3.22)
7]

, yields

_ 4G o
NV/i=2 Se
For odd d, the integral (3.22) results in [27]

(u) ( R >d—2j—2 i V7T ((d—;l))

L
1% )\d—2 z:: I(d — 2]—2) Ve 2F(g)

3;(] .
where (3_d) = M is the Pochhammer symbol. For even d, the integral in eq. (3.22)

2 (5,
J

[ d—25—2
4Gro L) (R) J
—57.F :E
Xz e 1(d —2j —2) \\V e

_ FF(ZZ;) U (0 (2) ) s

2

(3.23)

where H, =1+ % + % + -+ % is a Harmonic number. These results coincide with those
n [22], and after some manipulations, they can be shown to be equivalent to those in [56].

Let us now discuss the central charge of these CFTs, obtained from the results for the
EE we found above.

3.1.3 Central charge
Given the EE, one can calculate the Liu-Mezei central charge [57] for spherical or hyperboloid-

entangling surfaces. This relates the prefactor A to the central charge of the dual supercon-
formal field theory. In fact, for odd dimension d, the Liu-Mezei formula is expressed as
(d — 2)!lcparodd = (ROg — 1) - - (ROR — d + 2) S [Ss]. (3.25)
For even dimension d, the Liu-Mezei central charge charge reads,
(d — 2)eraroven = ROR - - (RIR — d + 2)SHy[Ss]. (3.26)

When using the purely time-like entanglement entropy, we take the absolute value of the
expressions in egs. (3.25) and (3.26) to define a meaningful quantity.

In the same vein, one can use the EE of slab regions to compute the central charge of
the dual conformal theory. This is expressed [27] as,

Td 2
Cslab — HLd TaTS(/\)[ ] (3.27)

where k is a constant of proportionality. This yields a generic expression for the central

charge of a CFT in dimension d (even or odd), which reads
d—1
. N & <2ﬁ r (Qd(iz) > 1
slab — d—2 1 1
460 L7\ T () A

(3.28)
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N, Np_;

Fq Fo Fp_1 Fp

Figure 1. A linear quiver. The balancing condition implies F; = 2N; — N;_1 — N;41.

Below, we elaborate on the above results using explicit examples of different backgrounds
with an AdSg4y1 subspace that preserve some amount of supersymmetry. In fact, we apply
these results to different infinite families of conformal field theories in diverse dimensions.
Our objective is to examine how these expressions appear in different dimensions and to
relate the CFT central charge to the geometry.

4 Holographic SCFTs in diverse dimensions

In this section, we study infinite families of supersymmetric and conformal field theories
(SCFTs) in various dimensions. The field theories considered are of the linear quiver type.
A localisation plus matrix model treatment can be done for the case in which the number
of Poincare SUSYs is eight, see for example [58-60].

An alternative perspective for the field theories arises from Hanany-Witten set-ups [61].
These consist of (P + 1) Neveu-Schwarz five branes. Between two consecutive five branes
N; D, branes extend, playing the role of colour (gauged) nodes. Also F; D49 branes are
localised in between consecutive NS-five branes and play the role of flavour (global) nodes.
In field theoretical terms, we have linear quivers like those in figure 1.

We consider the case of balanced quivers. This means that the condition
Fi = 2Nz — Ni—l — Nz’—l—l; (41)

is satisfied for all nodes. This condition in eq. (4.1) eases the holographic description. The
field theories enjoy SO(1,q— 1) Lorentz symmetry, and at least an SU(2) g global R-symmetry
(related to the eight preserved Poincare supercharges). Aside from these symmetries, there
are the global flavour and local gauge groups

Gglobal = SU(Fl) X ... X SU(FP), Glocal = SU(Nl) X ... X SU(NP).

When ¢ > 4, the field theories flow to a SCFT in the UV (this conformal point is what the
holographic duals studied below describe). When g < 4, the SCFTs appear at low energies
and it is in the IR that the holographic set-ups described below become valid. For ¢ = 4 the
balancing condition (together with the presence of eight supercharges) guarantees conformality.
In all cases, the holographic solutions are trustable in the scaling P — oo and N; — oc.

— 12 —



In the balanced case, it is useful to describe the quiver in terms of a rank function. This
is a convex polygonal function given by

Nin 0<n<l1
Np_1(P —n) (P-1)<n<P

Note that the rank of the colour groups appear at each integer-value of n =1,2,3,4...
Otherwise, the ranks of the flavour groups SU(F;), appear taking two derivatives of the
rank function,

P
R'(n) =Y Fid(n—1). (4.3)

i=1

The variable 7 is bounded in the interval [0, P] and is associated with the quiver-direction. It
is useful to calculate the (odd) Fourier transform of the rank function in eq. (4.2), see [62]
for a derivation,

2 [P . kmn op -1 ) kmyj
fe= [ ROpsin (5 ) an = g 2 fos (7)) (44)

The holographic description of the field theory (at the strongly coupled conformal point) is
written in terms of a function V' (sometimes referred to as potential). This function solves
a Laplace-like PDE with determined boundary and initial conditions. The solution to this
PDE is written in terms of the Fourier transform of the rank function. All the warp factors
in the metric are written in terms of the function V and its derivatives. In other words, the
knowledge of the function V' is equivalent to knowing the holographic description of the CFT.
We give some details for each dimension below, and direct the readers to the original references.
The logic that we make more explicit in the 3d-case follows similarly in all other dimensions.

The material is organised in subsections, one for each spacetime dimension. We climb-up
from dimension d = 3 up to d = 6 SCFTs. The case of dimension d = 2 is a bit of an
outlier and is reserved for the end of the section. In each subsection we write the (relevant
part of) supergravity background, compute the time-like entanglement entropy on slabs
and on spherical regions. We also relate the Liu-Mezei and slab central charges with the
holographic central charge.

4.1 Three-dimensional N = 4 SUSY linear quivers and their holographic dual

The system has been studied in various papers. Originally in [63, 64], and in the way described
here in the papers [60, 62]. The string-frame metric is

dsiy = fi {ds?éld&; + f2dQ2(0,0) + f3dQ2(0,0) + fi(do® + d772)} ,

du?

ds?as, = W*(Adt* + da® + dy?) + 2

e4® = f2, (4.5)

,13,



The function f;(o,n) (the warp factors) are written in terms of a function V' (o, n) as [62]

T | 0302,V OV 0y (00,V) O (00,V)
_ L7 Ton’ —_zn-FoerTemt ) =2 "7 7/ 4.
=3 9y (00, V)’ fo oA B 002,V (4.6)
0y (00, V) oV 2 2 15\2 27712
fa= —ﬁ, fs —16Aaé7nv7 A=0,V0;V +0(0;,V) + a(@nV) )

Note that we have set the parameter | = 1 (unit AdS-radius) to avoid cluttering of the
notation. Importantly, the function V(o,7n) can be written in terms of the rank function
(specifically, its Fourier transform) [62],

V(o,n) = p Z Ry, cos (?) e (4.7)
k=1

This illustrates the logic for the construction of the pair holographic background-SCFT:
o first choose a balanced quiver as in figure 1.
e Then encode the quiver in the rank function in eq. (4.2).

o After this, compute its (odd) Fourier transform and finally, with these quantities,
write the function V (o, n) in eq. (4.7) to be replaced in the holographic background in

eq. (4.5).

Similar expressions exist for the other NS and RR fields. Exactly the same logic applies
to other dimensions.

To compute the time-like entanglement entropy, we work with an eight-manifold para-
metrised by the coordinates [z, u,Q,Q2,0,n] with t(u) and y = 0. The induced metric
is (as above A = +1),

fi

ds? = $(1—Au4t’2(u))du2+ fruldz? + f1 f2dQ2(0, )+ f1f3dQ0(0, @)+ f1fa(do? +dn?). (4.8)

The EE that follows from egs. (3.12)—(3.13) is

) L 1y Buclidean (A = +1) signat
em o) T n Euclidean (A = +1) signature
N SEE[Eg] = 47riF(§)2 (4.9)
F(1)42 ﬁ In Lorentzian (A = —1) signature.
1
We have defined,
00 P
N = —1671'6Lx1/ da/ dno?0,V 0y (c0,V). (4.10)
0 0

The quantity A is related to the holographic central charge defined in [62, 65]. The ap-
proximate expressions (3.14)—(3.16), yield

. (4.11)
55 In Lorentzian (A = —1) signature
0

S {27;0 In Euclidean (A = 41) signature
app =
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2

s 1 : .
L In Euclidean (A = +1) signature
SEE,approx = {iw24 I Tape | (412)

1 . . .
T n Lorentzian (A = —1) signature.

For the spherical (A = +1) or hyperboloid (A = —1) regions, from eq. (3.23) we find,

4 & _1 In Euclidean (A = +1) signat
G:m 58%[28] L n Eucli ez.m ( ) 81igna ure (4.13)
& —14 In Lorentzian (A = —1) signature.
We have defined
o) P
N = —16776\/01((25’\))/0 da/o dno?0,V 0y (a0, V). (4.14)

We compute the Liu-Mezei and slab central charges [57] using the definitions in eqgs. (3.25)
and (3.28),

2
X N s (3)
Klo’ Cslab—4Gloz I‘(%)Q )

cLM = (4.15)

where only the absolute values are considered. It is interesting to observe that both these
quantities and the holographic central charge [62] are proportional

[e.o]

CLM X Cslab X Chol ~ Y kR, (4.16)
k=1
These three quantities and the EE are U-duality (T-duality, S-duality and non-abelian T-
duality [66]) and also mirror symmetry invariants. The Liu-Mezei, slab and holographic
central charges have different normalisations (they are only proportional to each other).
What is interesting is that they are sensitive to the same quantity, represented here by
POy kRi. This is a characteristic quantity for each linear quiver SCFT3. Similar comments
apply to other dimensions.
Let us now study the case of an infinite family of four dimensional SCFTs.

4.2 Four-dimensional N = 2 SUSY linear quivers and their holographic dual

We study AdSs5 backgrounds in Type ITA, dual to N = 2 SCFTs of the linear quiver type.
These backgrounds were discussed by Gaiotto and Maldacena in [67], see also [68-73] for
further elaborations. The corresponding string-frame metric and dilaton are,

dsly =/ 1} f5 [4dshus, + F2d9(0, ) + fadx?® + fa(do® + di?)] (4.17)

2
Ashasy = W2 +dad + do + dy?) + T (4.18)
et = (fifs) 7 (4.19)

Again, we allow A = £1 and we set the AdS-scale [ = 1. The functions f;(o,n) are written in
terms of derivatives of the potential function V (o, 7). The expressions are [71, 72]

VA V1V 452V 2V 202V — V)
3 = — = = —— = - =
f]_ _2V//7 f2 A ) f3 2V—V7 f4 V 9 f5 VA

A=QV-V)V'+ V'), V=00,V,V" =0V (4.21)

(4.20)
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where we denote V = 00,V and V' = 9, V. The potential function solves a linear PDE (71, 73]
whose solution is

Vi) = — ?:1 Ry, sin (T’) Ko (T) . (4.22)

The reasoning from the three-dimensional case applies here as well. To compute the EE,
we choose the eight-manifold to be Xg = [x1, x2, u, Qa, X, 0, 7], setting y = 0 and considering
an embedding ¢t = t(u). The time-like entanglement entropy for the slab follows from
egs. (3.12)—(3.13) setting Y = 0,

In Euclidean (A = +1) signature

4G B 1 [TT2
/\;0 SEE[Eé)\)] = 47r3/21;((62))3 (4.23)
e )?';‘ ﬁ In Lorentzian (A = —1) signature
which differ only by an overall sign. Also, we have defined the constant,
00 P
N = 25672 Ly, Ly, / do / dn aVV". (4.24)
0 0

It was found in [71, 73], that the holographic central charge is proportional to N.
The approximate expressions for the time separation and the tEE in egs. (3.14)—(3.16) are

Ty, = ﬁ In Euclidean (A = +1) signature (4.25)
3or In Lorentzian (A = —1) signature
0
w3 1 . .
— 7 In BEuclidean (A = +1) signature
SEE,approx = 354 [ Tapp* ( ) s (426)
%m In Lorentzian (A = —1) signature.
The EE for the sphere/hyperboloid region can be computed from eq. (3.24),
4G105 [2(”] % — Llog(3) -1 In Euclidean (A = +1) signature (4.27)
= EE = .
N i % + %log(%) +1(1 —im) In Lorentzian (A = —1) signature.
We have defined the constant
00 P
N = 25672Vol(24V) / do / dny V'V (4.28)
0 0

With these results, the Liu-Mezei and slab central charges [27, 57] follow using eqs. (3.26)
and (3.28),

) 3
N N ok STPT (%)
CLM = 5~ Cslab = 3 - (429>
8G1() 4GYIO Lacl ng T (l)
6
We have considered only the absolute value. In this case we find that
o
CLM X Cslab X Chol ~ P Z Ri. (4.30)
k=1

The Fourier transform Ry, is calculated as in eq. (4.4). Let us now study the situation for
an infinte family of AdSg solutions in Type IIB supergravity.
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4.3 Five-dimensional N = 1 SUSY linear quivers and their holographic dual

We consider an infinite family of Type IIB solutions containing an AdSg factor [74-78]. These
backgrounds are dual to N = 1 linear quivers in five-dimensions. In the formalism we use
here, the supergravity backgrounds are [77]

dsly = fildshas, + F202(0,0) + fs(do® + dif?)] (4.31)

d 2
ds%gs, = u*(AdE? + dat + dad + daf + dy®) + uiu? (4.32)
=13 (4.33)

As above, we have set the AdS-scale [ = 1 and kept the parameter A = +1. The functions
fi(o,n) are written in terms of a potential V(o,7n) and its derivatives,

1/2
2 (0(c02V +30,V) 0, VO2V o2V
— = — = 4.34
fl 3< 8%‘/ ) f2 3A ) f3 30'8UV ( )
3020,V o2V A .
— 182 9’ n A= 2 172 2 V — 0d2V). 4
fo=18 B0,V 1 02V o (92, V)2 + 2V (0,V — 0d2V) (4.35)

The function V (o, n) satisfies a linear PDE [78], whose solution is

1 k ko]
= —— Z —Rk sin < 7T77> e P . (4.36)
P
The calculation of the timelike entanglement entropy requires us to define an eight-manifold
Ys = [x1, 29, x3,u,Qo,0,m] with y = 0 and #(u). We find,

2p(5
ML In Euclidean (A = +1) signature

4G YO RRAE
A;O SeplE é)\)] - 16i7r§1§25>4 1 (4.37)
> . _ .
~ )t T In Lorentzian (A = —1) signature.
We have defined
2871- o P
N = =5 Loy Ly Ly / do / dn o®0,V OV (4.38)
0 0
The approximate expressions in eqgs. (3.14)—(3.16) read,
+— In Euclidean (A = +1) signature
Topp = § ™0 ( ) sig (4.39)
Tuy In Lorentzian (A = —1) signature
_ﬁ 1 . . .
Sun _ 768 o 11 Euclidean (A = +1) signature (4.40)
,approx it 1 . . :
— 768 Topl® In Lorentzian (A = —1) signature.

For the sphere/hyperboloid regions, the time-like entanglement entropy can be computed
using eq. (3.24),

. (4.41)

4G SEE[E()\)} _ % -4 % In Euclidean (A = +1) signature
® ﬁi + i3 In Lorentzian (A = —1) signature.
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We defined,

N = —vol / do / dn o*0,VO;V. (4.42)

The Liu-Mezei central charge in eq. (3.25) and the slab central charge in eq. (3.28) are,

4

Y O R w1670 (3) 13)

LM — 4G10 37 slab — 4G1[) Llengacg r (l>4 . .

8
As it happens in other cases and using Ry defined in eq. (4.4), we find
R2

sla/ ol ™~ P 4.44
CILM X Cglab X Chol Zk ( )

k=1

4.4 Six-dimensional N = (1,0) SUSY linear quivers and their holographic dual

We consider massive Type ITA supergravity backgrounds with an AdS; factor [79-83]. These
are conjectured to be dual to N=(1,0) SCFTs in six-dimensions. The corresponding string-
frame metric reads [82, 83]

dsTy = fidshias, + fadn® + f3dQ(6, ¢) (4.45)

d 2
ds?ys, = WAL + da? + dad + dad + dad + dy?) + 7“2 (4.46)
AP — (4.47)

As before, we set the AdS-scale [ =1 and keep the parameter A = £1. The functions f;(n)
can be written in terms of a potential V(n) as

fr=38V2m /- v"’ fo=V2r —%, (4.48)

2 \ 257r10316(_%>3

TRV fe = : (4.49)

fs=r (V2 — 2V V)2

The potential function V() satisfies a linear ODE [81-83],
V" = —1621°F,. (4.50)

Being Fj a piece-wise constant RR zero form. By (even) Fourier expanding Fp, we find a
Fourier expansion of V"’. By integration, we have the (odd)-Fourier expansion of V(7). In
this case, the role of the rank function is played by V" (n).

To compute the time like entanglement entropy, we set an eight manifold g = [z1, 22, 3,
x4, 9, u,n] with y = 0 and ¢(u). The time-like EE follows from egs. (3.12)—(3.13),

sy’
4G o) e )5 K In Euclidean (A = +1) signature
& OB = geap(ay (4.51)
— e )g ﬁ In Lorentzian (A = —1) signature
i)
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which is interestingly the same in both signatures. We have defined

4/9 7 P
N=_ <> L:v1 v L$4 / (_V//V)dn (4'52>
3\3 0

The approximate expressions in eqgs. (3.14)—(3.16) read,

— 5q; In Euclidean (A = +1) signature (4.53)
app =i In Lorentzian (A = —1) signature '
Sug B &
. 7T.5 # . _ .
S a4 00Ty [0 Buclidean (A = +1) signature (4.54)
’ _#soom In Lorentzian (A = —1) signature.

The time-like entanglement for the sphere/hyperboloid regions is computed using
eq. (3.24),

4G9 e [2(A)] _ % — %%2 + % (log(%) + %) In Euclidean (A = +1) signature
NP % + %%2 +3 (log(%) - %) In Lorentzian (A = —1) signature.
(4.55)
We have defined
42\ P
N = 3(3) Vol(@M) / (=V"V)dn. (4.56)
0

We compute the Liu-Mezei central charge [57] and the slab central charge [27]. These follow
from egs. (3.26) and (3.28). The results are,

5
Ka w . swnr()
CLM = 7~ 35 Cslab = 5 . (457)
4G10 8 4G10 Lml PN L;,;4 T (L)
10
As found before, using Ry, defined in eq. (4.4), in this case we have
3= R}
CLM X Cglab X Chol ™~ P Z ka (4.58)
k=1

4.5 Two-dimensional N = (0,4) SUSY quivers and holographic dual

We briefly study here the case of AdS3 here. We present this case last, as it differs somewhat
from the material above. The differences stem from two facts: first that the dual field theories
are not simple linear quivers, but ‘two lines’ quivers with many bifundamental fields connecting
various nodes (hence, two rank functions are used). For details of the field theories, see [84-86].
The supergravity configuration is written in [84, 87, 88]. The second difference is that the
generic treatment in egs. (3.4)—(3.13), should be carefully handled. In fact, powers of (d — 2)
should translate into logarithms as we discuss below. Let us go over these in some detail.
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The metric and dilaton (we omit the Ramond and Neveu-Schwarz fields), are

h Ih \/ hah
(ds2(Ang) + Wd52(82)) + @ds%cw) + Y 002 (4.59)
G")? hs G

ds?® = =
4hghy + (

G
Vhah
3
B g hy + (G u? 122
e~ 8 —\/4hgha + (G")2. ds?(AdSs) = Tz(—dtQ a4 &

AL
201V G

The functions k4, hs and G depend only on the coordinate p (that ranges in the [0, P]-interval)
and solve second order linear ODEs. For the details see [84, 87].
The eight-manifold needed to calculate the entanglement entropy is defined by g =

[u, Qo, CYa, p] with t(u),y(u). The induced metric is (we take A = —1, the Lorentzian
signature),
- 2w hsh
ds, = (du2 5+ o (Y - t’Z)] + ﬁ%ds%s?))
\/ hahs ut dhghy + (G")?
+ 30[32(0\@) + i S dp?
hs G ’
h3h} 2
—4® _ hahg 2 2
e % detlgy,]| = 16 Volg2Voley, 2 + l—Q(y' — %) ] . (4.60)
The entanglement entropy is
4G /00 \/ 2w
—SEE = duy| — + —(y% — 2 4.61
N EE o U u2 + 12 (y )7 ( )
P ~
N: WVOICY2/ h4h8d,0. (4.62)
0

The expressions for the separations T,Y and the regulated EE are,

T Y /OO du 1
— - — =, (4.63)
2¢,13  2¢y 13 w uZyfu2—ug U
4 A d A VY2 _ T2
7G10 Sprp = lim / L _/ dj = log 3 . (4.64)
N A=00 Jug  Ju2 — 2 1w Al
Using the functions G(u) = % and F(u) = ¥, and the approximate expressions in

egs. (3.14)—(3.15), we find the same functional dependence of T,p, and Sapp in terms of
up as that in eqgs. (4.63)—(4.64).

Notice that in this case, the holographic central charge (computed in field theory and
matching the gravity calculation, see [87]) is proportional to N defined in eq. (4.62) which
coincides with the Liu-Mezei central charge.

Let us now study qualitatively different physical systems. Below, we discuss systems
with a scale, which makes the field theory gapped and in some cases, confining. Our
aim is to calculate the timelike entanglement entropy in these cases, extending the results
of [18, 22, 89, 90].
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Figure 2. Light cone structure that clearly distinguishes between spacelike and timelike separated
events. The red line (¢, > ¢;) corresponds to spacelike separated events (and hence a Type I or
usual RT like extremal surface). On the other hand, the dotted line (¢, < ¢;) corresponds to a
timelike separated events that corresponds to a Type II (or complex) extremal surface. Clearly, ¢, =0
corresponds to pure timelike separated events that are along the time (7) axis of the diagram.

5 Study of gapped and/or confining models

In this section, we extend the above analysis to systems that exhibit a mass gap (and in
some cases confinement). We work with class IT and class III backgrounds, as defined in
eqs. (2.2)—(2.3).

As discussed in [29-32, 34-38, 91] it is possible to construct backgrounds dual to confining
field theories, starting with a supersymmetric AdS-background and performing a twisted
compactification on a circle, aided by a one-form that mixes the space-circle with a U(1)g
inside the R-symmetry. This type of construction was studied from the QFT viewpoint
in [24, 39] and geometrically in [40]. These backgrounds feature a circle that is fibered over
the internal manifold and shrinks smoothly, leading to a gapped dual, in the style of [92],
but preserving SUSY. We first discuss these systems, summarised in a metric and dilaton
of class II, eq. (2.2). After this, we move to systems in class III, eq. (2.3). These systems
are complemented by other Ramond and Neveu-Schwarz fields that we do not quote as they
are not needed in the computations of this work.

As we indicated in eq. (2.8), we define an eight manifold, calculate the U-duality invariant
e~4® det[gs,] and then the entanglement entropy on a slab, as in eq. (2.9). Below we present
different models in the bibliography and write the EE for each of them.

Before we proceed further, it is important to highlight the main difference between the
conformal examples [16, 22, 56] studied in the previous section and the confining models
of the present section. For conformal theories, the extremal surface has a turning point
characterised by eq. (3.6). In contrast, for the case of confining theories, the extremal surface
is characterized by a turning point of the type ug ~ (A + 032/ — c?)ﬁ, where A is the
confinement scale. We discuss a special case of this in eq. (5.6) below. Referring to figure 2
and the discussion under the figure, one could have a real turning point, even for pure
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time-like separated events (c, = 0) if A > ¢7. However, the limit A — 0 is delicate, making
the turning point (up) imaginary and leading to a Type II extremal surface which is the result
of AdS [16, 22], as discussed in the previous section. In summary, the crucial difference is
played by the confinement scale (A # 0), which allows a real (or Type I) extremal surface even
for purely time-like separated events. These are usual RT-like surfaces that one encounters
in the case of space-like separated events in AdS. For the case A + cz < ¢? we are back to
a Type II surface, with complex turning point.

5.1 Class II backgrounds

Here, we collect the results for class II backgrounds. We start with the simplest example: the
background presented by Anabalén and Ross in [29], after this, we discuss a model presented
by Anabalén, Nastase and Oyarzo [31]. Subsequent subsections study ‘decorations’ on these
kind of models. These decorations lead to more elaborated field theory dynamics.

5.1.1 The Anabalén-Ross model

We briefly discuss this model as it provides a clean and simple example. A detailed derivation
of the results is given in [18]. The background consists of a ten-dimensional metric, a constant
dilaton (® = 0), and a Ramond five-form (omitted here). The metric is,

12du?
2 flu)u?
dQ2 = d6? + sin® 0dyp? + sin® O sin® ¢ (dpy — A1)* + sin? 0 cos® ¢ (dpy — Ar)?
+ COS2 0 (dg@g — A1)2 ,
2@2 Ql 6
M=Q(1-S)ds  gw-1-(2)

u

S+ 122, (5.1)

2
dsig

[/\dt2 +dy? +dz? + f(u )dgﬂ

Here, A = £1, and we focus on the Lorentzian case A = —1. The radial coordinate u
ranges over [uy,00), with uy = QI marking the smooth end of space for a specific period
Ly = % of the ¢-coordinate.

We consider embeddings of the eight-dimensional surface ¥ = [z, ¢, 5, u], with t = t(u)
and y = y(u). The induced metric on Xg is

12 ~
2 _ 2 2 2 12,762
dsg = lp (A2 + %) + qu(u)] du® + Z—Qd + f( )do* + 17dSds. (5.2)
The entanglement entropy is given by
N _ 2 F2(u) (A2 2
S = - [ Ve + PO ) (5.9
U 1

Glu) =7, Flu)= l—gy/f(u), N = PL,LyVol(5%), Ly= 30

Focusing on the case A\ = —1 and using eqgs. (2.12)—(2.13), we find for the separations T', Y’

(5.4)

/ udu
215ct 2l5cy \/u6 u6 —uf
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The regularised entanglement entropy becomes,

QZCZYIOSEE: Ooduwf OOudu (5.5)
N up ub — uf up
Here, ug is the turning point, obtained from F(ug)? = cg —c?,
ug :l(Q6—|—cZ—cf)1/6. (5.6)
For d = 4 and u, = 0, the above expressions reduce to those of the conformal case.

Interestingly, confinement (the presence of the scale uy) allows a real turning point even for
¢t > ¢y, provided @ > (c? — 012/)1/6. In other words, the presence of the confinement scale
allows for time-like slabs to present real (Type I) embeddings.

On the other hand, if ¢; > |/Q% + 2, up becomes imaginary
Uy = le”/6|Q6 + cz — cf|1/67

indicating a Type II embedding. Let us now define,

UuQ UA

J1

Lar [1— ~6p6 1
JQZ/ — 77745:‘724‘7‘*'0(64)7

r 1-— 2¢2
Jal (2 1/y 2
Jo = WSF{lllfﬂ] J—/ ar_ 1 77
2 — 21—‘(%) 2141 21 37677 Y 3 — . 7'3 _262 2
We find using egs. (5.4)-(5.5),
Tu} Yul 201G
Ct il Cy = Yo 10 SEE = J2 — Jg. (5.8)

T2 YT 2

Although it is difficult to express Sgg explicitly as a function of A? = Y2 — T2, we
can write

414 J2 V

A2 = (1—4F A
(1-=77) 2 SEE ZZGN(

JQ — Jg)ug (5.9)

We plot A2(ug) and Sgg(ug) in figure 3 and, parametrically, we plot Sgp(A) in figure 4.

The non-monotonic behavior of A implies a phase transition in Sgg. Figure 4 shows
a double-valued Spg(A), a signature of first-order phase transitions in confining theo-
ries [27, 53, 93-95]. Note that this surface is real (Type I surface). Indeed, ug is real (we
have chosen @ =1 and ¢, > ¢ in figure 4). Let us now analyse a related system.
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Figure 3. Interval A and entanglement entropy vs. ug, with uy = Q = 1.
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Figure 4. Parametric plot of Sgg vs. A, with uy = Q = 1. Here, we set ug = 1.01 which corresponds
to a real turning point and hence a Type I extremal surface in the bulk. From (5.6) one could see
that this corresponds to ¢, > ¢; and hence a spacelike separated interval in the dual confining QFTs.

5.1.2 A Coulomb branch flow. The background of Anabalén, Nastase and
Oyarzo

In this section we study the entanglement entropy for a more elaborate system. The dynamics
is that of the Coulomb branch of N = 4 Super-Yang-Mills [96, 97]. The main difference is that
we avoid the characteristically singular behaviour of the supergravity dual, by adding a mass
gap to the field theory. In other words, the space ends in a smooth way, after compactification
on a shrinking and twisted S! like it was done in [31]. In this case the dilaton is a constant
(we choose ® = 0), and the metric reads’

- 27,2
ds* = C(UQQ) u?(—dt? + dy? + da? + L? f(u)de?) + Lt a2
’ flat (5.10)
L? .
+ m [Cos2 9d1f)2 + cos? f sin? quﬁ + cos? 0 cos? d}ngg + 26 (u) sin? HD(;%} ’
where D¢; = d¢; + Afi, with
1 1
1 _ A2 _ 6 Y 3 _
Al = A% = g1 [M(u) = XO(u,)| Ldg, A% =g o A%*)] Ldé. (5.11)

!Note that for this background, the parameter A = +1 is set to A = —1. We also introduce the function
A(u). We hope that this does not cause confusion.
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The functions ¢(u,#), AM(u) and f(u) are defined as,

£ u? + ef?
o e, 2528

} 22 2
flu) = % - @74L (qf - Aﬁfw) : (5.12)

u

Here u, is defined to be the largest root of f(u), satisfying f(u,) = 0, which expresses the
end of the geometry. The quantity ¢ is the parameter allowing us to explore the Coulomb
branch of the UV-CFT, and € = 41 is just a sign indicating two non-diffeomorphic branches
of the supergravity solution [31].

Together with a Ramond five form, the background is a solution to the supergravity
equations of motion. It fits within class II of backgrounds in eq. (2.2). To calculate the EE
we choose Xg = [z, ¢, u, 0,1, ¢1, d2, ¢3]. The quantities needed to write the entanglement
entropy are,

asy, = $09) [uQ(de + L f(u)dg?)

12
L2du? Fu)AS (u)u?
+—— |1+ (2 )| + LAd6? 5.13
2
+C(§ ) {COSQ 0dep? + cos? O sin? YD @2+ cos? O cos® YDe3 + A6 (u) sin? 9Dqﬁ§} ,

e 1 det[gy, ]| = L8 cos® A sin? O cos® ¢ sin® b |u? +

F)Xo@yus 5

T(Zl —t9)]-

The entanglement entropy reads,
4Gho

N See = /u Oo du /G2 (u) + F2(u)(y2 — 2), (5.14)

where we have defined,

uX3(u)y/ f (u)
L )
Nir = L*L, L, / dOdiddr dpades cos® 0 sin 0 cos 1 sin 1.

Gu) =u, F(u)= and (5.15)

Before writing the explicit expressions for the 7" and Y separations and the entanglement

entropy, let us be more explicit about the functions entering the calculation. We focus on
3

the SUSY case, which implies ¢ = ¢o = qZ—QL. In this case we have

~ [uS + ef2ut — LO¢0]

G(u) =, f(u) = L2u4(u2 T 662) )
F(u) = % [u(j + el?ut — Lﬁqﬂé . (5.16)

Following [37] we note that in the limit £ — 0 the Coulomb branch metric in eq. (5.10)
reduces to that in eq. (5.1). When we set a finite (non-zero) value for ¢, we are studying an
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Figure 5. Plot for tEE vs system size where we set e =1, ¢ =1, L =1 and ¢ = 0.001. An almost
identical plot can be obtained for the choice e = —1.

interesting deformation of the result in the previous section. For the present case (Coulomb
branch with gapped IR) the expressions of the separations in eq. (2.12) and the entanglement

in eq. (2.13) read,
r U

[ .
20 L% 2¢,L* /uo \/(u6 + el2ut — L8¢) [(ub — u§) + e2(ut — ud)]

(5.17)

For the regularised entanglement entropy, we have

2G10 / UG + el2ut — L6 6) /OO
= — . 1
Spr = du u Zu8) P (ut — )] . u du (5.18)

We perform the change of variables,

/2 1,646
u:@, and define ,u:%, V:—g.
" up Ug
After this, we have
T 4 Y 4 1 3
L= 0= / dr : . (5.19)
2¢; L 2¢y L \/ + 2 — v ) [ —r0) + pr2(1 — b))
2G10 tpuri—vrs e dr (5.20)
Nird © - rﬁ ETEITRT) R '
Let us combine (5.19) and (5.20) to find the separation
2 2 o _ 4L 2
0

where 7 is the integral in (5.19). We used eq. (5.22) below to derive the above expression.

The integrals in egs. (5.19)—(5.20) need to be numerically evaluated. Notice that in
the limit £ — 0 (or p — 0), these expressions above reproduce those in the Anabalén-Ross
model, see egs. (5.7), (5.8). As before the EE is regulated (the divergent parts coming from
the lower limit of integration in eq. (5.20) do cancel). Also, note that the separations T, Y
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and the entanglement depend on the turning point ug both explicitly, and implicitly, as the
parameters (u,v) are themselves functions of ug.
The turning point is obtained by solving

F(ug)? = 032; —cf, — ud+elPuj = L%(¢® + cg —cd). (5.22)

The solution is,

3

Z : (5.23)

B 2Tm 2¢(6 4el6
3 / . 6( 6 2 2
where Z° = 5 (1—27 + 1——27 ),Wlthm—L (q +cy—c).

As observed above, note that for £ — 0, the turning point is that of eq. (5.6).

4
27uf = [—662—]—4—2

In the case of the Anabalén-Ross model, we observe below eq. (5.6), that the confinement
scale (represented there by the parameter @), allows for the existence of Type I surfaces
(with real-valued turning point ug) even in the purely time-like case ¢, = 0. In the case
of the model by Anabalén, Nastase and Oyarzo we have two parameters ¢ and ¢, and we
also have the two choices of sign ¢ = +1. In the case ¢ = —1, exploring the Coulomb
branch with the parameter ¢ makes the effect above (Type I/real embeddings even for purely
time-like slabs in the field theory) more prevalent, provided m > 0. The opposite occurs
for the branch of solutions ¢ = +1.

5.1.3 Gapped linear quivers and universality of the entanglement entropy

In this section we present two metrics and dilaton fields (as above, we do not quote the
Ramond and other Neveu-Schwarz fields). These backgrounds were written and studied in the
papers [35-37], we refer the reader to these papers for details. For our purposes, it is useful
to think about the backgrounds here presented as ‘embellishments’ of the Anabalén-Ross
and Anabalén-Nastase-Oyarzo models in sections 5.1.1 and 5.1.2. Of course, the added
‘ornament’ essentially changes the physical interpretation. In a nutshell, the dynamics of
the models in sections 5.1.1, 5.1.2 is now translated to linear quiver field theories, like the
ones we studied in section 4.

The four dimensional linear quiver version of the Anabalén-Ross model is given by a
background in ten-dimensional ITA-supergravity whose metric and dilaton read,

3 1 4
ds? = f2 f2 [4ds? + faDpsDpis + fa(do® +dn?) + fo(dx + A?], 3= fifs  (5.24)

We have defined,

o U 2 2 2 2 I du?
dsz = l—2(/\dt +dy” + dz* + f(u)de®) + )
Q?1? 1 1
fw=1- G A=Q(z-qg)de wm@"
11 = sin @ sin ¢, o = sin 6 cos ¢, 13 = cos .
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Dy = dpn + 2u2A, Dy = dpg — 2u1. A, Dz = dus,

.« o~ 1 .
VA3 VIV 402 2V
fl: (2‘/”) ) f2: A ) f3:Ta f4:75
2AV" - . 2V -V
fs = TA A =AV"?+ (V) A= T (5.25)

With these definitions, we can calculate the entanglement entropy. We choose as in sec-
tion 5.1.1, the eight manifold g = [z, ¢,u,0,n,0,p,x], with ¢t = t(u) and y = y(u). The
induced metric on Xg is

3 u? 12 4u? 4u?
dsi = (fi5)* (4 T +y?) + o du? + —da® + 5 f(u)d?
+ foDpi Dy + fa(do® + dn?) + f3(dx + A)2> . (5.26)
As an intermediate step we calculate,
—4® 9 £2 ¢2 w? uf 2 2
e” "V det[gs,] = fi f5 fi f3f5Volg2(g,4) Volgi(y) Zt lT;f(U)(Z/ + A7) | . (5.27)

Using this, the entanglement entropy is given by

W _ N
SEE - 4G10

[ e+ Pa0e) + 2 w) (5.28)

3 1

o] P
flu), N = 2567r2LxL¢/ da/ dpoVV" Ly=-——.
0 0 3Q

Glu) = 7. Flw)

IS

B
There are a couple of interesting observations to make:

 First, notice that the functions G(u), F'(u) characterising the surface that calculates
the EE are the same as those in the Anabalén-Ross model. In fact, compare egs. (5.3)
and (5.28). This implies that the dynamics of the eight surface, the separations in 7" and
Y and the expression of the EE in terms of them are exactly those in egs. (5.8), (5.9).
Note that the prefactor N in eq. (5.3) differs from N in eq. (5.28).

e The second observation is that the coefficient N is the same as that encountered when
discussing four dimensional linear quiver SCFTs, see eq. (4.24).

In the parlance of [37], the entanglement entropy is a ‘universal’ observable. These are
observables for which the information coming from the flow from conformal to gapped QFT
(the functions F'(u),G(u) in this case), separates (or factorises) from the information of the
UV-CFT (the coefficient A in this case). As explained in [37] this is a consequence of the
conjecture posed by Gauntlett and Varela [98], proven in [99].

Briefly, we quote the result of translating to four dimensional linear quivers the Coulomb
branch plus gap in the QFT dual to the background in eq. (5.10). The reader should
appreciate that even when the system becomes quite involved (the functions f,(u, o,n) are
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not factorised), after the calculation is done, we arrive at the same result in eqgs. (5.14)—(5.15),
with the difference appearing in the coefficient N related to the UV-CFT.

In fact, the background metric and dilaton are written in [37] for an infinite family of
linear quiver UV-CFTs that explore the Coulomb branch ending with a mass gap. The
background metric and dilaton are,

~3 .1 ~ . ~ ~
dsly = f2 f? [45ds3 + oDwDp’ + fy(dx + B)? + fa(do® + d?)],  (5.29)
%CD = f1f5-

(&

The functions f;(u,o,n) read

s (VA e z Zz p_2VVI s X
1= oV ) ’Y_X(u)_)\Q(u)a 2 = ZQA’ 3_2X3V_V ;
(5.30)
- 2v” - 22XV V)
=7, =— 5.31
fa=— fs AN (5.31)
. oo V2 v exsv — i
A=V + V"2V -V), Z= (V') + VXV — V) (5.32)
(V2 + V"2V —V)
We also defined,
2 2 2
2 uA(u) 2 2 2 27 2 du
= —_ L —_—
ds? = (—dt? + dy? + da® + L2 f(u)do?) + T
@1 = sin @ cos , Lo = sin @ sin ¢, W3 = cos 6,
D = (dpn + 2p2A14d) 651 + (dpe — 21 A14dd) 052 + dpizd; 3. (5.33)

The one-forms Aj, Ay, A3 = B are those in eq. (5.11) and f(u), A(u) are defined in eq. (5.12).
Choosing the eight manifold g = [w, ¢, u, 0, ¢, x, 0, 7], one finds,

~~~~~ 2 616 3
e detlgs,) = 4 B2 | 1y + A )

(y’Q - t/2) VOISQ(GW)VOlSl(X)’ (5.34)
Here, we see the conjecture of Gauntlett and Varela [98] at work. In fact, there is a
factorisation of the (o,n)-dependent part from the u-dependent one. This is non-trivial, since
the functions ﬁ(u, o,mn) depend on their variables in a non-factorised fashion. A lengthy but
straightforward calculation gives expressions like those in egs. (5.14)—(5.15). The constant
Nj; is now replaced by

00 P
Nir = 256m°L, Ly / do / dnpo V V"
0 0
The observations about universality itemised below eq. (5.28) are applicable to this case.

Let us now study backgrounds in class III.
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5.2 Backgrounds of class 111

In this section we discuss the entanglement entropy in the case of some backgrounds in the
class III classification. We consider background metric and dilaton & of the form,

ds?, = ehz (u) | Adt? + dy? + dz? + da? + h(u)e?* W du® + h(u)e? ™ (d6? + sin® 0dp?)

}}(u)e%(w 1\ 2 )2 }}(u)e?k(u) 32
+74 {(m—A ) +(w2—A )}+4 (W3_A ) )
b = o). (5.35)

In the equation above, we have defined

w1 = cos df + sin ¢ sin édgb, we = — sin¥df + cos 1 sin 9~d<ﬁ, ws = dip + cos §d<ﬁ,
AW = —q(u)de, AP = q(u) sin Odp, AB) = —sinbdy, (5.36)

and the functions,

2h (P? - Q% 29 o _ P e 10, _sinh?(2u)
= = (P coth(2u)— =— =270 ——————
‘ 4 (P coth(2u)—Q)’ ¢ (Peoth(2u)=@Q), e 97 € ¢ (P2—Q2)P"
P .
- =1—x2e?? = N.(2 h(2u) —1). .
¢ P cosh(2u) — @Q sinh(2u)’ h me @ ( ucoth(2u) ) (5.37)

The function P(u) satisfies the ordinary differential equation,

Pl _ / Pl /
P+ P’( ¢ + @ 4coth(2u)> = 0. (5.38)

P+Q ' P-Q

This metric and dilaton should be complemented by Ramond and Neveu-Schwarz fields, we
direct the reader to [100] for a careful explanation of the system and different solutions of
the ODE (5.38). The backgrounds of the form given by egs. (5.35)—(5.38) encode various
known supergravity duals:

« When the parameter £ = 0 (appearing in the definition of h(u)), we describe systems
of N, D5 branes wrapping a two cycle inside the resolved conifold [41].

o For nonzero k (and the function P(u) found in [47, 101, 102]), we describe the Baryonic
Branch [49] of the Klebanov-Strassler solution [42]. For generic values of the constant
Kk, the field theory is coupled to gravity, whilst for k = e~ 2(%0) we describe the solution
of [49], decoupled from gravity.

Various papers have elaborated on solutions of this type, connecting and generalising them
in different ways [101-106]. We are interested in two kinds of solutions to the ODE in
eq. (5.38). One kind of solution is exact,

P =2N, u. (5.39)
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This exact solution is only acceptable if the constant k = 0, making fz(u) = 1. When plugged
into the configuration, we find the exact non-singular solution corresponding to D5 branes
wrapping a two cycle inside the resolved conifold [41, 107, 108].

The other kind of solution is only known numerically. In a series expansion for large
values of the u-coordinate (in the UV) we find the expression

_*N 13 8
cy + ’ <4 2 du+ ) + et <c — C—Fu) +
Cyt 4 3

4u

P =e3

+N4e_167u <18567 2081 27

C
3 512 32 T

+ 36u ) + 0(6—23“)] . (5.40)
Ct

The reader can check that the geometry in eq. (5.35) asymptotes to the conifold after using
the expansion in eq. (5.40).

In the IR (that is, close to the origin of the space that we take to be u = 0), we find
a solution of eq. (5.38) in an expansion for small-u,

P=hu+—

4hy (1 4N3> 5 16 (1_ ANZ 32N}

5 7
15 h? 525 32 3hd )“ +O(u). (5.41)

For h1 = 2N, + (, being ¢ > 0 some positive number. Note that for hy = 2N, we are back
in the exact solution of eq. (5.39). This space is free of singularities as can be checked by
computing curvature invariants. Figure 6 shows the function P(u) for the numerical solution
interpolating between the expansions in eqs. (5.40) for large v and (5.41) for small u. On
the other hand, figure 7 shows e*®®) and ﬁ(u) for ®y = 0 and k = e~ 2%()_ It should be
emphasised that for both the exact solution (with parameter x = 0) and the numerical one
(with parameter xk = e_cb(‘x’)), the calculation of Wilson loops results in an area law, namely
the dual QFTs are confining. We could expect that the time-like entanglement entropy
leads to a phase transition when plotted against the separation of the slab (as it happens
with the confining models of section 5.1.1 and 5.1.2). This expectation is not borne-out.
As we discuss the link between phase transitions in the tEE and the confining character
of the QFT must be refined by the requirement that the UV system is a local field theory.
Let us discuss this in detail.

Let us now compute the entanglement entropy. We choose the eight manifold g =
[x1, 29, 1,0, 0,0, 5, 1] with t(u),y(u). We calculate,

als%8 = Pz (u)

do? + da3 + (iL(u)e%(“) + At + y/2> du®
+h(w)e? ™ (6% + sin? Odp?)
h

+7(u) o (an — A(l))2 + <W2 — A(Q))z} + fz(u)Z“ (w3 — A(S))2],

A~

_ h?
e dot[gs,] = o (AP HI+Hg L (

G (M2 +4?) + 1) Volg2 Volgs

4G19SEE = N[]]/dU\/G2 + F2(u)(y"? + Mt'2), (5.42)
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Figure 6. The function P(u) interpolating between the UV and IR expansions in egs. (5.40), (5.41).
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Figure 7. The functions ¢** and h(u) computed using P(u) in figure 6. We chose ®; = 0 and

K = e 2%(c0),

A~ 4®O A~
G () = kg2 = O 2 u) (P - Q) PR,

—2k 12 4%, .
CTCW) _ e Gan?(2u) (P2 — Q%)

F?(u) =

In summary, we have two different solutions and want to compute the time-like EE for each of
them. For both solutions the integrals needed cannot be evaluated exactly and a demanding
numerical analysis is needed (which is not the objective of this work). Instead, we study
the approximate expressions, in particular that for the approximate time separation Ty,
in eq. (2.14). We plot T,p, obtained from the exact solution P = 2N.u in eq. (5.39). We
find that as a function of wug, it is monotonically increasing, see left insert of figure 8. The
maximum value of Ty, in the background of N, D5 branes is related to the scale inherent to
the Little String Theory. In this case there is no phase transition in the tEE.

We move to study the same T,pp, for the numerical solution in eqgs. (5.40)—(5.41). Re-

20(0) we find an

member that in this case we have a free parameter . If we choose k2 < e~
analogous situation. In fact, the T}y, is monotonically increasing (and diverges for uy — 00),

and no phase transition for the tEE is encountered, see the right insert in figure 8.
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Figure 8. The function T,,,. On the left, for the exact solution P = 2N.u. On the right, for a
de-tuned case (k < eq’(c’o)). In both cases there is no double valuedness, hence, no phase transition.
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Figure 9. The approximate separation T,pp, calculated with P(u) interpolating between the UV and
IR expansions in eqs. (5.40), (5.41) and for the finely tuned case x = e®(>°).

2 = ¢72%()  we find a double-valued Tapps

Finally for the particularly tuned case s
signaling the presence of a phase transition in the tEE, see figure 9.

Let us explain physically these behaviours. In the paper [93] it was proposed that an
alternative indicator of confinement is the existence of a phase transition in the (space-like)
entanglement entropy. This was critically analysed in [53] and later in [94]. The result is
that the phase transition in the EE indicates confinement only if the UV of the holographic
QFT is local. Similar proposals were made for the time-like entanglement entropy (as a
tool to diagnose confinement), see for example [22, 89, 90]. We find that a similar caveat
should be in place for the tEE case:

the phase transition of the tEE is an indicator of confinement if and only if the UV
of the holographic QFT is local.

The exact solution of eq. (5.39) leads to a UV system represented by N. D5 branes,
hence a Little String theory (non-local). This implies that the phase transition in the tEE
(double valuedness in T,pp, or T') is not expected. By the same token, the system represented
by the approximate solution, is only field theoretical when k% = e~2%(°°) Otherwise, the
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dual field theory is coupled to gravity (10 dim strings) and non-local. An explanation of

the importance of the finely-tuned value k2 = e2%()

is given in the papers [102-104].
Briefly, this special value ‘switches-off” an irrelevant operator on the QFT (the baryonic
branch of the Klebanov-Strassler field theory). We expect similar behaviour in the newly
presented background of [109].

We close this section here and move to final comments and conclusions.

6 Conclusions and future directions

Let us start with a summary, to then provide some possible future lines of research.

This paper explores a novel approach to computing time-like entanglement entropy (tEE)
in holographic settings, emphasizing the similarities with the formalism developed when
studying Wilson lines and the functionals that have been proposed to capture its behavior.

We propose a refined formalism for spacetime entanglement entropy, particularly tai-
lored to slab regions, and introduce practical approximations for time-separation and the
entanglement itself.

An interesting contribution is the derivation of expressions for the entanglement entropy
across three classes of ten-dimensional supergravity backgrounds, with clear applicability
to both confining gauge theories and general conformal field theories (CFTs). Importantly,
we offer a method to compute the Liu-Mezei central charge using real-time techniques. The
treatment is grounded in ten-dimensional top-down models and accommodates extensions
to eleven-dimensional supergravity. The paper addresses some of the subtleties of complex
extremal surfaces and their physical significance, providing theoretical insights and practical
tools to advance the understanding of holographic entanglement. This work delivers a
conceptual and computational framework for tackling real-time entanglement in curved
spacetimes.

Some possible new lines of investigation that this paper opens are:

e The analysis focuses mainly on slab regions, a logical next step is to generalise the
time-like entanglement entropy (tEE) framework to spherical or arbitrary entangling
surfaces (in the case of confining models). This would broaden the applicability of the
methods and deepen understanding of spacetime entanglement geometry.

e While the role of the Ramond and Neveu-Schwarz fields is absent in our treatment, it
would be interesting to know if this sector of the string background contains (or shares)
some of the information that the EE contains.

¢ A more careful implementation of the numerical simulations of our proposed expressions
to compare approximated tEE with exact holographic computations, especially for
complex extremal surfaces. This could validate or refine our approximations.

o It would be nice to extend our analysis to thermal states or other charged backgrounds.
This may reveal how time-like entanglement encodes thermodynamic or hydrodynamic
information in the dual theory.
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o It might be interesting to extend our calculations to holographic duals to 1d CFTs and
Matrix models, for example those in [110-113].

o Finally, the addition of quantum corrections (either in g5 or 1/N) in the bulk or
subleading contributions to tEE could improve the precision of holographic predictions.

We hope to report on these and other issues in the future.
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