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ABSTRACT: Entanglement entropy has proven to be a powerful tool for probing renormaliza-
tion group (RG) flows in quantum field theories, with c-functions derived from it serving as
candidate measures of the effective number of degrees of freedom. While the monotonicity of
such c-functions is well established in many settings, notable exceptions occur in theories
with a mass scale. In this work, we investigate entanglement c-functions in the context of
holographic RG flows, with a particular focus on flows across dimensions induced by circle
compactifications. We argue that in spacetime dimensions d > 4, standard constructions of
c-functions, which rely on higher derivatives of the entanglement entropy of either a ball or a
cylinder, generically lead to non-monotonic behavior. Working with known dual geometries,
we argue that the non-monotonicity stems not from any pathology or curvature singularity,
but from a transition in the holographic Ryu-Takayanagi surface. In compactifications from
four to three dimensions, we propose a modified construction that restores monotonicity in
the infrared, although a fully monotonic ultraviolet extension remains elusive. Furthermore,
motivated by entanglement entropy inequalities, we conjecture a bound on the cylinder
entanglement c-function, which holds in all our examples.
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1 Introduction

In the study of confinement in quantum chromodynamics (QCD)-like gauge theories at
large-N, the holographic entanglement entropy (EE) has emerged as a powerful tool to
probe the underlying dynamics [1, 2]. Previous investigations using slab-shaped entangling
regions have demonstrated that at large scales, the (finite part of the) EE saturates due
to a finite correlation length [3]. Partial evidence for this saturation has been obtained
through direct lattice computations of Rényi entropies in SU(N) Yang-Mills theories in four
dimensions [4-6]. Nevertheless, some exotic confining holographic field theories do not seem
to conform with this saturation notion [7] and it is justified to ask if curvature singularities
of the dual geometry could play a role [8].

This paper instead aims to extend the analysis of slab-shaped entangling regions by
considering regions where both the volume and the interface area with the complementary
region grow. Unlike slabs, where the area remains constant as the volume increases, these
new regions provide a more nuanced understanding of EE in the context of confinement. We
explore whether definitive statements about EE within theories having a mass gap, possibly
also confining, can still be made under these conditions.

Particularly promising entanglement measures are entanglement c-functions in various
dimensions. These c-functions are non-uniquely defined, but they can be constructed to be
free of renormalization scheme ambiguities and to match with the central charge (the type
A Weyl anomaly coefficient) at the conformal fixed point of the underlying quantum field
theory (QFT). Any such non-increasing function along renormalization group flows toward
the infrared can serve as a measure of the effective number of degrees of freedom at a given
energy scale. For scalable entangling regions, balls with radii R, in a QFT in flat space
with conformal fixed points, the proposal by Liu and Mezei [9, 10] (LM) for a candidate
c-function, Crr hereafter, has received notable attention. In particular, it is noteworthy that
Crm has been proven to be monotonic using strong subadditivity of EE for intervals [11] and
for disks [12-14] in ambient (1 + 1)- and (2 + 1)-dimensional QFTs, respectively. In spacetime
dimensions higher than four, monotonicity is not guaranteed by strong subadditivity [14],
and in fact, there are holographic counterexamples [9]. Analogous c-functions constructed
from entanglement entropies of slabs in spacetimes of dimension d > 3 (also called strips
in d = 3) have been shown to be monotonic in [15, 16]. For a discussion of challenges in
identifying suitable candidate c-functions, see [17].

In this work we restrict our analysis on entanglement c-functions to two type of scenarios
that lead to confining infrared (IR) dynamics. In the first type of scenario, the RG flow is
initiated by a deformation of an ultraviolet (UV) theory leading to a gapped theory of the
same dimension in the IR. Examples in (3 + 1) dimensions are the Klebanov-Strassler (KS)
model [18], which can be thought of as a ‘quasi-marginal’ deformation of the Klebanov-Witten
theory [19], and the Girardello-Petrini-Porrati-Zaffaroni (GPPZ) [20] model, in which case the
UV CFT is deformed by a relevant operator. The characteristic property of the holographic
dual geometries is the shrinking of an internal compact cycle to zero size deep in the bulk:
the geometry ends at a finite distance measured by the gap. The KS solution is technically
gapless due to the presence of a massless Goldstone mode linked to a broken global symmetry,



as detailed in [21]. However, for our purposes, the crucial aspect is the existence of an IR
scale that truncates the flow of information, as discussed in [3].

The LM c-function in the (3 + 1)-dimensional GPPZ model was already studied in [9],
where it was found to be non-monotonic (as a function of the ball radius R) and unphysical
as a measure of number of degrees of freedom: starting from the UV fixed point, it decreases
monotonically until it crosses zero and turns around to approach zero again from below in
the IR. The mass gap manifests in the entanglement entropy as a transition of the Ryu-
Takayanagi (RT) surface between two topologically distinct configurations. The second-order
nature of this transition makes the c-function reach large negative values at the critical
point. One explanation for this pathological behavior, proposed in [9], is that the GPPZ
solution is singular, a feature that also persists in its embedding into ten-dimensional type
IIB supergravity [22, 23]. A regular top-down solution that avoids this issue is provided
by the KS solution.

Previous studies [2, 24] of the KS model focused on slab-shaped entangling regions and
their associated c-functions [15, 16]. In this work, we extend the analysis to ball-shaped regions
and the LM c-function. We will find that the LM c-function is again non-monotonic, exhibiting
qualitatively the same behavior as in the GPPZ case: there is a turning point at large negative
values due to a second-order phase transition in the entanglement entropy.! This shifts the
focus away from IR singularities in the dual geometry as the primary source of non-monotonic
behavior, instead highlighting the phase transition itself as the key factor. Interestingly,
analogous KS-like theories in (24 1) dimensions [25, 26] also feature such a transition, yet still
yield well-behaved, monotonic, albeit non-differentiable, LM c-functions [3, 24], in agreement
with the field theory monotonicity theorem [12-14].

The second kind of scenario involves gapped theories arising from circle compactifications
and has been studied holographically in various works [27-30]. For analysis of entanglement
entropy and entanglement c-functions for flows induced by compactifications on higher-
dimensional spaces, see [31-34]. The presence of a compact spatial direction complicates the
definition of the LM c-function, since a (d — 1) dimensional solid ball with an S?~2 entangling
surface can wrap around the circle and intersect itself when its radius becomes sufficiently
large [32]. A more appropriate entangling region, one that preserves the symmetries of the
compactified Cauchy slice, is a solid (d — 2)-dimensional ball of radius R times the circle;
topologically, its entangling surface is S~ x S'. As shown in [28], a modified version of the
LM c-function exists for this compactified setting: the Ishihara-Lin-Ning (ILN) c-function.
It is free from renormalization scheme ambiguities, and its RG flow is now governed by the
radius of the lower-dimensional ball.

Along a compactified flow from 3 4+ 1 to 2+ 1 dimensions, the ILN c-function approaches
zero from negative values in the IR [28, 29]. In this paper we will demostrate that the
non-monotonicity of the ILN c-function persists even in IR-regular top-down constructions.
In particular, we focus on a family of 4d A/ = 1 superconformal field theories (SCFT)

!The main difference from the GPPZ case is that the KS solution does not describe a UV fixed point. As a
result, the c-function diverges to positive values in the UV, whereas in the GPPZ case, it asymptotes to the
type A Weyl anomaly constant. This divergence can be interpreted as accounting for an infinite number of
degrees of freedom arising in the UV theory.



compactified on a circle (with a twist to preserve four supercharges). The dual QFT is
effectively a confining (2 + 1)-dimensional at low energies, growing an extra dimension as
we move towards the UV [35, 36].

Because these theories are effectively three-dimensional in the IR, we will construct an
“IR-adapted” entanglement c-function by applying the three-dimensional LM operator for
a disk to the entropy of the solid torus in the compactified four-dimensional theory. This
approach is justified by the fact that, at large radii (or equivalently, small compactification
circles) the solid torus effectively resembles a disk in the three-dimensional IR theory. This
c-function depends on the renormalization scheme and thus involves an arbitrary reference
scale. Still, in our top-down models, we find that with a suitable choice of this scale, the
function approaches zero from above in the IR and remains monotonic deep into the UV,
even across the phase transition. However, for any choice of reference scale, monotonicity
is eventually violated close to the UV.

In light of the aforementioned issues with entanglement c-functions, and to complement
our analysis, we turn to the so-called holographic (or flow) c-functions, originally introduced
in [37-39], as alternative measures of degrees of freedom. Unlike entanglement c-functions,
their definition relies explicitly on the existence of a holographic dual geometry and cannot
be defined purely using field theory observables. However, they satisfy desired properties
of reducing to universal CFT data (type A Weyl anomaly coefficient) at fixed points, and
in many situations, they can be shown to be monotonic under bulk energy conditions. The
holographic c-functions can be defined and computed in both of the two above scenarios
involving gapped field theories, and we find that they are monotonic in all top-down examples
we consider, including flows across dimensions.

The paper is organized as follows. We begin by surveying entanglement inequalities and
c-functions in quantum field theories in section 2. In section 3, we consider entanglement
entropy of ball-shaped regions in holographic CFTs dual to various supersymmetry-preserving
gravity backgrounds and compute corresponding type A and B Weyl anomaly coefficients.
In section 4, we use a top-down holographic background to study various c-functions in a
gapped field theory obtained via circle compactification. In section 5, we return to the first
scenario in four spacetime dimensions and calculate c-functions in the GPPZ and KS models.
We conclude with a discussion in section 6. A review of entanglement c-theorems for strips
and slabs is presented for completeness in appendix A. In appendix B we briefly comment
on our conventions in making contact with the Weyl anomaly. In appendix C, a bottom-up
holographic model illustrating non-monotonicity of cylinder c-functions is presented. Details
regarding various supergravity backgrounds dual to gapped field theories are relegated to
appendices D and E.

2 Survey of entanglement c-functions

In this section, we first review inequalities satisfied by entanglement entropies of ball-shaped
subregions presented in [14]. These generalize previous inequalities [11-13] valid in d = 2
and d = 3 to higher dimensions. Then we present the construction of c-functions from
entanglement entropies of balls and cylinders using the Liu-Mezei (LM) [9, 10] and the
Ishihara-Lin-Ning (ILN) [28] prescriptions respectively. The entropy inequalities of [14]



imply monotonicity of the LM c-function in d = 2 and d = 3 along the RG flow. In d = 4,
monotonicity is not implied, however, a constraint on the type A Weyl anomaly coefficients at
the fixed points arises (the a-theorem). Motivated by the inequalities for balls, we conjecture
an analogous inequality for the entanglement entropy of a cylinder. This imposes a novel
inequality on the ILN c-function along the flow together with a constraint on the type B
Weyl anomaly coefficients at fixed points. For completeness, a review of similar inequalities
for strips and slabs is given in appendix A.

2.1 Entanglement entropy inequalities in QFT

Let us consider the action
I =1I+ )\/ddx O(x), (2.1)

where I is the action of a CFT and O(z) is a relevant operator with scaling dimension
A < d and A a coupling constant. Let |\) be the ground state of the theory I prepared
by the Euclidean path integral over the half-space R%~! x R_ where Euclidean time runs
over R_. Consider a spacelike subregion A of dimension d — 2 and let p) be its reduced
density matrix in the state |A). Usually in practice, one takes the subregion A C R?~2 to
lie on a constant-time slice R~2, but this is not necessary. The entanglement entropy of
the subregion is then defined by

S(A) = —tr{(palog pr)} (2:2)

such that S(A)|[x=0 = So(A). In general, entanglement entropy is a UV divergent quantity in
quantum field theory (see for example the CFT formulae below).

Given another arbitrary spacelike subregion B, the entanglement entropy satisfies the
strong subadditivity inequality [40]

S(A)+ S(B) > S(ANB)+S(AUB). (2.3)

Consider now the UV fixed point A = 0 and assume that B is such that its boundary
(entangling surface) lies on the light-cone of the boundary of A. In this special case, the
inequality (2.3) is saturated [41]

So(A) + So(B) — So(ANB) — So(AUB) =0, (2.4)

which is known as the Markov property of the CFT vacuum. Therefore it is useful to define
the UV subtracted entropy [14]

AS(A) = S(A) — So(A), (2.5)

which measures the difference in entanglement entropy of the subregion A evaluated in
the ground state of the deformed CF'T and the vacuum of the UV CFT. When 0B lies on
the light-cone of 0.A, (2.5) also satisfies the strong subadditivity (2.3) due to the Markov
property (2.4). The subtracted entropy is finite as long as the scaling dimension satisfies
A< (d+2)/2 <dind>2[14].



Solid balls. In this work, we are mainly interested in subregions which are solid d — 1-balls
A = By_1(R) of radius R (with S}i{2 boundary) whose entanglement entropy is denoted by

S(R) = S(Bg-1(R)) (2.6)

and the vacuum subtracted entropy (2.5) by AS(R). Using the Markov property (2.4)
together with strong subadditivity (2.3), one can prove the inequality [14]

RAS"(R) — (d—3)AS'(R) <0, (2.7)

where the prime denotes differentiation with respect to R. We define the quantity

RS'(R), d=2
C(R)=RS'(R)—(d—-2)S(R)={RS'(R)-S(R), d=3 (2.8)
RS'(R)—2S(R), d=4
and the difference
AC(R) =C(R) — Cy(R) = RAS'(R) — (d — 2) AS(R), (2.9)
where Cy(R) = C(R)|x=0- Then the inequality (2.7) may be written as
AC'(R) <0 (2.10)

so that AC(R) is a monotonically decreasing function of R.

Let us introduce a short-distance (UV) cutoff ¢ with a dimension of length that can be
understood to be the lattice spacing of the underlying discrete theory when it exists. In d = 2,
a ball of radius R on the spatial slice is simply an interval of length 2R whose entanglement
entropy in the vacuum state of the UV CFT is logarithmically divergent

2R
SO(R):CUTvlog?—FO(l), e0, d=2, (2.11)

which gives Co(R) = YY. Therefore, AC'(R) = C'(R) < 0 and C(R) = R S'(R) decreases
monotonically in d = 2, which is Zamolodchikov’s c-theorem [42]. The finite term O(1) is
dependent on the regularization scheme, but in the scheme where one cuts out disks of radius
e around the entangling points, it coincides with the boundary entropy [43] of the CFT in
the presence of two boundaries [44]. In this regularization scheme, € has an interpretation
as the lattice spacing of the underlying lattice theory.

In d = 3, the entanglement entropy of a disk in the vacuum state of the UV CFT is given by

So(R) = g—FUv—FO(E), e—>0, d=3, (2.12)

where Fyy is the Euclidean partition function of the UV CFT on a round S® and it is
positive if the theory is unitary. It follows that Cyo(R) = Fyy and AC'(R) = C'(R) < 0 and
C(R) = RS(R) — S(R) decreases monotonically in d = 3.
The situation becomes more complicated in d = 4 where [45]
R? R
SO(R):?—(Ileogz—l-O(l), e—0, d=4, (2.13)



where ayv is the coefficient of the type A Weyl anomaly of the effective action of the CFT
when it is coupled to a curved background metric (see appendix B for our conventions). In
this case, Cj(R) = 2“% is not a constant as a function of R, but it is UV finite. Therefore
the inequality (2.10) becomes

C'(R) < 240V (2.14)
R
which does not imply the monotonicity of C'(R) as in lower dimensions. However, it does
imply the weaker a-theorem aigr < ayy when the deformed theory flows to an IR fixed point
CFT for which the coefficient of the logarithmic divergence in the entanglement entropy (2.13)
equals arg [14].

In d = 2,3, we see that the inequality (2.7) is also obeyed by the entropy S(R) itself.
However, this is no longer true in d = 4, where RS”(R) — S’(R) = 2“% > 0, because the
type A anomaly coefficient is always positive [12, 46]. The reason behind this is that in
proving the inequality (2.7), strong subadditivity is applied to boosted balls that contain
cusps. These cusps produce additional UV divergences in dimensions d > 4 that violate the
inequality for S(R), but cancel in AS(R) leading to (2.7) (see [12, 14] for details).

Solid cylinders. In dimensions d > 3, a finite solid cylinder of radius R and length 2L
is defined as the region By 1(R) x (—L, L) C R9"! of the spatial slice. The implications
of strong subadditivity for the entanglement entropy of such a cylinder have not been
studied so far in the literature in dimensions d > 4. In d = 3, a cylinder is simply a strip
(=L, L) x (—R, R) which satisfies an inequality similar to the interval in d = 2 [15, 16] (see
appendix A for a review). Instead of attempting to prove an inequality in full using strong
subadditivity in general dimensions, we will focus on d = 4, and merely study implications
of inequalities of the form

(R20% + s1ROp + s9) SY(R) <0, (2.15)

where SY!(R) is the entanglement entropy of the cylinder and s0,1 are coefficients to be
determined. Derivatives higher than second-order are not expected to appear from strong
subadditivity.

To fix the coefficients, we should first consider the UV fixed point A = 0. In d = 4,
the entropy of the cylinder has the form [45]

RL

L R
SSYI(R):d18—2—bUVElog;+(’)(5), e—~0, d=4, (2.16)

where L — oo is the length of the cylinder (understood here as an IR regulator), d; is a
constant and byy is the type B Weyl anomaly coefficient as defined in appendix B. We also
assume that there is no finite O(1) term at the fixed point.

Demanding cancelations of quadratic and logarithmic UV divergences fixes the coefficients
uniquely to sp = —1 and s; = 1 in d = 4, as has been found in [28, 29]. Thus, we are led to
propose an inequality involving the unique combination of derivatives of the entropy that
yields a UV-finite result at a fixed point

naive proposal: (R?0% + ROz —1)S¥' <0. (2.17)



At the fixed point, we obtain explicitly

L
(R?0% + RO — 1) S = 200V 5 - (2.18)

which always violates the proposal (2.17) in a unitary theory in which byy > 0 by the
positivity of the two-point function of the stress tensor [46, 47]. This is analogous to the
entanglement entropy of a ball in d = 4 which violates the inequality R S”(R) — S'(R) <0
due to ayy > 0, as explained above. In that case, a valid inequality was found by considering
the UV-subtracted entropy due to the Markov property. Therefore the first proposal (2.17)
is false, but we may propose that the UV subtracted cylinder entropy satisfies the inequality

proposal: (R%*9% + ROr — 1) ASY!' <0. (2.19)

Together with (2.18) this is equivalent to

L
proposal:  (R?0% 4+ ROr — 1) SV < 2bUVE , (2.20)

which is analogous to the inequality (2.14) for ball subregions above. Notice though that
unlike for balls, the left-hand side of (2.20) cannot be written as a total R-derivative. If
the theory flows to an IR fixed point with type B anomaly coefficient big then (2.20) would
imply bir < byv to which there are known field theory [48, 49] counterexamples; it is also
straightforward to construct bottom-up holographic counterexamples as in [50]. This is
just the usual statement that the type B coefficient is not a good measure of number of
degrees of freedom of the theory, because it can be larger in the IR. Therefore, also the
second proposal (2.19) is generically false.

However, there are special theories for which big < byy is always true approximately:
these are large-N theories that have a holographic dual in terms of classical Einstein gravity.
For such theories, the type A and B coefficients coincide at a fixed point at leading order in
large-N [51, 52] which implies that big < byy follows from the weak a-theorem ag < ayy.
Therefore in holographic theories, the inequality (2.20) might hold in the strict large- N limit.

2.2 C-functions from entanglement entropy

As shown in the previous section, entanglement entropies of certain subregions in quantum
field theory obey monotonicity inequalities as functions of the size of the subregion. This
makes the use of entanglement entropy a prime candidate for the construction of measures
of degrees of freedom known as c-functions. In this context, a c-function should satisfy
the following two properties:

(i) It should be a renormalization scheme independent constant at the UV fixed point.

(ii) It should monotonically decrease from the UV to the IR as a function of the size of the
subregion.

We will now review the LM [9, 10] and ILN [28] c-function proposals obtained from entropies
of balls and cylinders respectively. They satisfy the property (i) and we review how the
entropy inequalities of the previous section imply also the monotonicity condition (ii) in
certain cases. In d = 4, we also conjecture an inequality for the ILN c-function.



C-functions from balls. The LM c-function is constructed from the entanglement entropy
of a solid ball by using a differential operator which cancels out the UV divergent parts of
the entropy. For d > 2, the entropy of the ball in the deformed theory A # 0 generically
diverges as [9]

R—2 R

S(R) = c < : (2.21)
RI72 R? R 9
Pd—g— t+ .-t pa—5 + Alog— + f+ O(e7), d = even
€ € €

where the coefficients p;, A are dimensionless constants while F, f are dimensionless functions
of the dimensionless radius A (@2 R. At the fixed point A = 0, F [x=0 coincides with the
Euclidean partition function on a round S (up to a d-dependent factor) and A coincides
with the higher-dimensional type A Weyl anomaly coefficient of the UV CFT (also up to
a factor). In addition, in a gapped theory in d = 3, the large radius limit limp o F is
called topological entropy [53, 54]. For d = 2,3,4, the form of these expansions coincide
with the ones given in section 2.1.
The LM c-function is defined as [9, 10]

Cuu(R) = lim Dy (R9R) S(R) (2.22)

where the differential operator is given by

ROp—1)(ROr—3)---(ROr— (d—2)), d = odd
Dy (RoR) = L RO = D RO =3) - (X0 = (0 =2) % (2.23)
(d=2)!" |ROr(ROR—2) --- (ROg — (d—2)) , d = even
In d = 2,3,4, the LM c-function equals the function (2.8) introduced above
RS'(R), d=2
Com(R) = { RS'(R) - S(R), d=3. (2.24)
$R(RS'(R)—2S(R)), d=4

We see that for d = 2 and d = 3 we have Crm(R) = C(R). Therefore the entropy inequalities
of the previous section imply that Cry(R) decrease monotonically. In four dimensions, we have

Com(R) = %RC’(R) , d=4. (2.25)
At the UV fixed point in d = 4 using (2.13), it picks up the type A anomaly coefficient
Cim(R) = ayy - (2.26)
Thus (2.14) implies the inequality
Cum(R) <auy, d=4, (2.27)

which does not constrain the monotonicity properties of the LM c-function which would
amount to the inequality C{,;(R) < 0. By the fact that

Crm(R)
R

1
Cim(R) = 5 R%2S"(R) + (2.28)



monotonicity is equivalent to
2Crm(R)
g ( R) < 7T :
which is a bound on the third derivative of the entanglement entropy. Notice that S”'(R)

is UV finite at least at the UV fixed point A = 0 where the entropy is given by (2.13). We
emphasize that this bound does not follow from the use of strong subadditivity.

(2.29)

C-functions from cylinders. In general dimensions d > 3, the entropy S%'(R) of a cylinder
has been argued to have the same divergence structure (2.21) as the entropy of a ball, but
multiplied by a factor of L/R and with a different set of coefficients [28]

_ Ri72 _ R -

d—2 2

L
S = 3 % R R
Pa—g=s +---+ Py + Blog— + f+0(e*),  d=ecven
9 9 9

(2.30)

Here the notation O(e) denotes terms linear and higher-order in € and the ¢ — 0 limit is
understood in the sense of € being smaller than all other length scales of the problem. This
divergence structure is valid for an infinitely long cylinder L — oo or in the case when L
is finite, but its ends are periodically identified by compactifying the full spatial slice R¢~1
on an S! as in [28] (see section 4.2 for a detailed discussion). The coefficients p;, B are
dimensionless constants, and in the L — oo limit, the coefficients F , fare functions of the
dimensionless radius \Y/(¢-2) R only, but in the compactified case with finite L, they can also
depend on R/L. In even dimensions, the coefficient B of the logarithmic divergence coincides
up to a constant factor with the type B Weyl anomaly coefficient.
The ILN c-function is defined as [28]

—1; (d) cyl
Cin(R) = im D (RIR) SY(R), (2.31)
where the differential operator is defined in terms of the LM one (2.23) as
d [N
Dy (ROR) = 7 Digy(Rp) R, (2.32)

which cancels all the UV divergences in (2.30). Note that compared to [28], we have multiplied
the operator by an additional factor of R/L: this ensures that (2.31) picks up exactly the
type B Weyl anomaly coefficient at the UV fixed point. Note also that the differential
operator % Dt(;?n(R Or) R used in [28] is invariant under a rescaling R — AR of the radius of
the cylinder alone, while the operator (2.32) we use is only invariant under a simultaneous
rescaling R — AR and L — AL.

In d = 4, (2.31) takes the form (see also [29])

ROp — 1)(Rop+1) SY(R) = 2 (R20% + Rog — 1) SY(R).  (2.33)

Cin(R) = =57

o7 (
At the fixed point it equals byy as defined in (2.16) and if our second proposal (2.20) is
true, it satisfies

Cunx(R) <byy, d=4, (conjecture), (2.34)
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which is analogous to the inequality (2.27) for the LM c-function. As we have explained
above, we expect this inequality to be violated in general except possibly in holographic
theories in the strict large- IV limit where the type A and B Weyl anomaly coefficients coincide.
Indeed, we have evidence for this in two distinct holographic examples. In section 4.2, we
compute Crn(R) in a top-down holographic model dual to a gapped field theory, while in
appendix C, we consider a bottom-up holographic model with a flow between two fixed
points. In both cases, we find that the bound (2.34) is satisfied. Note that monotonicity
as a function of R is not guaranteed by the conjecture.

3 Entanglement for balls in conformal field theories and c-functions

In this section we investigate EE in holographic backgrounds that are dual to d-dimensional
CFTs. These backgrounds always include an external AdSg4y; spacetime, ensuring com-
patibility with the global conformal symmetry of the boundary theory. Additionally, they
feature an internal space, which remains unspecified and encodes other global symmetries of
the CFT. Various examples of supersymmetry-preserving gravity backgrounds of this type
exist for integer dimensions d+ 1 =2,3,...,7; see [55—64] for a representative sample of
backgrounds preserving eight Poincaré SUSYs. This corresponds to the existence of NV = 2
superconformal field theories in dimensions d = 1,2,...,6. The non-supersymmetric case
of AdSg is discussed in [65].

We focus on entanglement entropy across a (d — 1)-dimensional radius-R ball subregion in
an underlying CFT4. The computation follows the standard RT prescription, where the eight-
dimensional dual embedding surface Xg is anchored to the boundary of the (d—1)-dimensional
ball: 0B = S92, Armed with expressions for EE in generic dimension, we will apply the LM
operator and display results for Cpy(R). We note that same computations in the case where
the internal space is omitted exist in the literature [9, 66], but we find it useful to review
them as they serve as a springboard for computations that follow in the coming sections. A
comparison with other measures of the number of degrees of freedom in CFTs is also presented.

3.1 Ten-dimensional background geometries

The string frame metric associated with the string theory backgrounds of interest is,

. y dr? .
ds* = f1(¥) [TQ(—dtQ +di ) + |t s 9-a() (3.1)

dr?

= fi(¥) [TQ(—dtZ +dp® + p*dQ5_,) + ey + dsi2nt,9—d(?j) . (3.2)

Generically, there is a dilaton ®(%) together with Ramond and Neveu-Schwarz fluxes that
complete the background. The subscript ‘int’ denotes the internal part of the metric. See
references [55-64] for details that do not play a significant role in the discussion that follows:
omitted details contribute to an overall normalization. Note that we have written the AdSg41
spacetime part inside the square brackets in Poincaré coordinates and in the second row we
have written the spatial field theory directions in terms of spherical coordinates in order
to isolate the (d — 1)-dimensional ball.
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It is important to note that the warp factor f1(%), the dilaton, and any fluxes present, can
only depend on the coordinates of the internal space, . Otherwise, we would be breaking the
isometries of AdSgy1. In what follows, we focus on backgrounds in Type II string theory; the
extension to eleven-dimensional supergravity is straightforward, requiring the minimization of
a nine-dimensional surface homologous to the entangling region instead of an eight-dimensional
one. In section 4 and in appendix D, we generalize the metric (3.1) to encompass situations
in which there is a nontrivial RG flow away from a UV fixed point to a gapped IR theory.

3.2 Holographic entanglement for ball-shaped regions

To proceed with the calculation of the holographic entanglement entropy, we need to minimize
the area of a codimension-two surface that hangs from the asymptotic AdS boundary, anchored
on the ball-shaped entangling region. We parameterize the eight manifold ¥g by coordinates
{Qq4-2, 7,7}, with the embedding function p = p(r). The boundary condition is p(r — c0) = R,
with R the radius of the ball. The induced metric on Xg is

. dr? .
dsi = f1(7) [7"2/)261% o+ —5 (L+ )| +dsio (@)

where the prime indicates the derivative with respect to the holographic coordinate r. The
area functional that computes the holographic entanglement entropy reads

1 oe [T Vol (S972) Voljy /
= dSZL‘ e 20 det m / drr d-3 d 2 1+ 7«4 /2 3.3
4G Jxg 951 = 4G10 p (3:3)

where Vol (S972) = [dQy_o = 27r%/1“(%) and we further defined the integral

Voliye = / H dy; e 2(D\/ffl 1 det[gint] - (3.4)

mt i=1

over the (9 — d)-dimensional internal manifold My, which is equipped with the metric ging,

1 _ VOlint

= ; 3.5
4Gqap1 4Gy (3:5)
where G1p = 87%18g2. We also collectively denote
Vol (5772) Vol (§%2) Voliy,
= YUSTT) _ Vol (S77) Voo (3.6)

4Gay1 4G1g

The equation of motion following from (3.3) and its solution that fulfills the boundary

condition are
P fd-2 Vr2R? — 1

" (d— 1) — (d -2 d+1nE -2 =y =YIE T @37

P =1 - @-2)P @ n)f T —0 ) = (37)

Here one of the integration constants have been fixed by anchoring the RT surface to the

boundary of the entangling region and the other one by demanding that the embedding is

regular at the tipping point. We replace the solution in the expression for S of (3.3), to obtain

-3

1/e d=3
S=NR[ dr(R%*-1)7 | (3.8)
1/R
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where we regulate the integral from above by 1/e. We have identified the nonuniversal ¢
with the UV cutoff appearing in preceding section 2. We note that (3.8) can formally be
written in terms of a hypergeometric function. Interestingly, however, by manipulation a
simpler form can be found

. x 5 (3 d) ))<R)d—2(j+1)

s g d—2(7+1
-1 (d+1)/2
r (4t Ve 5 v d = odd
N 3.9
o F(%) ’ (_1)d/2 (1 2R+1’H ) d = eve ’ &
- = even
ﬁ a-2 | ,
where (a); = F(F“(:)j) is the Pochhammer symbol, |---| rounds down to an integer, and

Ha—2 denotes the harmonic number. Note that the exponent in the first term is never
negQative and that the full expression is real-valued. For odd dimensions, the finite constant
term in the brackets is universal and for even dimensions, the coefficient of the logarithmic
term is universal.

It is now straightforward to obtain the LM entanglement c-function Cry (2.22),

7(1= (=19 +2(1 + (-1)9)| P(%)
INGYE) '

The formula above gives the correct values as obtained from evaluation of (2.22) when d

CLMZNX

(3.10)

is integer. It would be interesting to understand if there is any meaning beyond integer
dimensions. It is worth noting that (2.22) also removes the ¢ divergence in the case where
d takes non-integer values, for which (3.10) needs to be adapted. As expected, there is no
dependence on any scale and hence the resulting value is to be interpreted as the central
charge of the underlying conformal field theory; recall that for even d, it is proportional to
the type A Weyl anomaly coefficient. For convenience, we collect all the results in table 1
for known AdS backgrounds.

We stress that the computations leading to (3.10) in spirit exist in the literature [9, 66].
Here we found it useful to recapitulate on this, in particular to emphasize that also the
prefactor 1/(4G4.1) appearing in [9, 66], or N/ can be written in terms of field theory
quantities, as we discuss in section 3.4.

3.3 Comparison to holographic c-function

Having obtained values for the central charge using the entanglement entropy, it is interesting
to ask how it compares with other means of defining it. To this end, we recall that the free
energy (or the central charge) of linear quiver field theories has been obtained in [67].

Therefore, it is interesting to compare the expressions in table 1 with the holographic c-
function cpel(r) defined in [37, 38]. This quantity is defined for a ten-dimensional background
geometry dual to a d-dimensional QFT with a metric and a dilaton profile of a generic
form (in string frame),

ds® = a(r,y) {—dt2 +di%_, +b(r) d’rQ} + gij(r,y") dy'dy’ d=d(r,y"), (3.11)
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Theory Entanglement entropy Central charge

Sge/N Cim /N
CFT3 £_1 1
CFT, 2 — Mlog () -1 1/2
CFTs £ L2 2/3
CFTg B -, 3/8
%log (%) + %
CFT; B R 8 8/15

Table 1. We collect the results for the entanglement entropies (second column) for balls with radii R
in various dimensions (first column). We also display the central charge as extracted using the LM
function Crpp (third column). For visualization we found it useful to use bold font to highlight the
term entering the central charge.

where 7,5 = 1,...,9 — d. The definition of the holographic central charge is given by [37, 3§]

Chol (1) (d—1)4-1 () 5 H(T)

Vol (Ré-1) - Go (r) = H’(r)d 1 (3.12)

where we have defined the integral

VH(r) = / de e 200 \/det[gu(r y)]( d y))dl rtt (3.13)

mtz‘ 1

over the internal manifold M, and r plays the role of the “energy scale”.

The definition (3.12) indicates that the meaningful quantity is the density of degrees
freedom due to the division over the infinite volume Vol (R%~1) of the field theory directions.
Also, notice that (3.12) is covariant under a reparametrization of the holographic radial
coordinate 7, respects the SO(1,d—1) isometry, and that []; dy’y/det[g;;(r, y?)] is the invariant
volume element under general coordinate transformations of the internal manifold Miy. It
would be interesting to analyze how a consistent truncation of the ten-dimensional geometry
down to (d + 1) dimensions would project (3.12) to effective holographic c-functions defined
directly on the reduced theory [68, 69]. This is interesting because the monotonicity properties
of the effective holographic c-functions can be linked with the null energy conditions (NECs),
while from the ten-dimensional perspective violations of the NECs appear admissible [70].
Indeed, while the function (3.12) at face value seems to satisfy the desired properties of
a c-function, in particular being monotonic in all the geometries studied in this work, it
nevertheless ceases to be monotonic in the supersymmetric ten-dimensional geometries in [70].
These backgrounds are not known to admit string theory realizations in a strict sense, however.

Let us calculate the holographic central charge in the background of (3.1). Compar-
ing (3.1) and (3.4) with the formulas (3.11)—(3.12), we find

. 1
a(r,y’) = A({)r?*, b(r) = o VH = Vol 7771, (3.14)
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N . Np_o

F F Fp_s Fp_4

Figure 1. Long quiver of length P — 1 with gauge nodes N; and flavor nodes F;. The quiver is
balanced and conformal if F; = 2N; — N;—1 — N;y1.

where the integral Voliy is defined in (3.4). We obtain

Chotl N 1
Vol(RT1) ~ Vol(94-2) X 5d=3 - (3.15)

Although (3.15) does not precisely match with the values in table 1 in general, it is interesting
to note that both the value from the LM entanglement c-function and the holographic central
charge are measuring intimately related aspects of the CFT. We note that

ol _ _Cm d
Vol(R3)  Vol(52)’

=4. (3.16)

In the next subsection, we focus on this particular d = 4 by performing a perturbative
calculation of the central charge/free energy and compare it with the non-perturbative results.

3.4 Field theory and holographic derivation of Cyn for d = 4

In this subsection we deliver a microscopic, weakly coupled, field theory derivation of the
central charge. This complements the holographic (strongly coupled) description of the
preceding discussion, but we will provide further details. Notice that we focus on the special
case of four-dimensional N/ = 2 linear quiver CFTs.

3.4.1 CFT approach

We focus our attention on the case of four-dimensional N = 2 linear quiver SCFTs. The
quasi-particle, weakly coupled field theory description consists of n, vector multiples and ny,
hypermultiplets. A generic linear quiver is indicated in figure 1. The condition for conformality
in these systems is that the number of flavors on each node equals twice the number of colors
of that node. For each node, it must be 2N; = N; 11 + N;—1 + F; (with No = Np = 0).

The information about the number of colors (gauge groups) and flavors (global groups)
is encoded in the so-called rank function,

Nin, 0<n<1
R =N+ (Nys — N)Y(p—1), 1<n<Il+1, l:==1,....,P—2. (3.17)
No1(P 1), (P-1)<n<P
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In fact, the rank of the j** gauge group is the value of the rank function at n = j. The
number of flavors F; is encoded in the second derivative R"(n),

P-1 P-1
R'(n) = Y (2Nj = Nj—1 = Nj11)d(n — j) = Y _ F;d(n —j).
j=1 j=1

The four-dimensional N' = 2 SCFTs are characterized by two numbers Ayy and Byy, which
are related to the coefficients ayy, byy introduced in section 2 as (see appendix B)
auv

Ayy = L Byv = 2byy . (3.18)
In terms of the microscopic degrees of freedom they are given by [67, 71],
1 1
AUV = ﬂ (57”LU + nh) , BUV = ﬂ (47%, + 2nh) , (3.19)

where n, and ny, are the number of vector- and hypermultiplets. It was shown in [67] that in
the limit of long quivers with large ranks (P — oo, N; — 00) we have

P o0
Avv = Buv = ¢ > R;  (large P and Nj). (3.20)
k=1

We have defined Ry = % fOP R(n) sin(k%")dn. We find it clarifying to provide a few detailed
examples.

B Example I. Let us consider the following quiver:

@_@_@ N /P_l) o PN

The rank function associated with this quiver is

(n) = Nn, 0<n<(P-1)
"T\ve-ne-n, P-1<n<p

We calculate the following useful quantities

P—-1 2 p3
N2p 3 1 3 3
— iN)2_1= = - 3.21
o jz::l(]) 3 ( 2P " 2p? N2P2+N2P3) (3.21)
P—-1 2 p3
N2P 1
nh j:1J(J+) 3 ( P2>
A _N2P3(1+ 1, 5 5 5) B —N2P3(1+ 2 2 1)
W9 4P2 " 9N2pP3 aN2pz 4p )’ T9VT 12 NZp3 N2p?2 P
QNP2 km
Rk- = WSIH (kﬂ—_P> . (322)
Following (3.20), we calculate
P N2p3 1\? N2p3
~— N R = 1— =) ~ . 3.23
o= () = 329

Showing that for this long quiver with large gauge ranks, the formula in (3.20) coincides at
leading order with (3.19). Let us see this at work in another example.
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B Example II. As our second example, the CF'T we now characterize by a quiver and
a rank function as follows:

N @ . @ N
N >4

v
P—-1
Nn, 0<n<l1
R(n)={N, 1<n<(P-1)
N(P—m), (P=1)<n<P
Similar calculations as in the previous example reveal,
n, = (N> = 1)(P —1), n = PN? (3.24)
N2P 5 5 5 N2P 2 2 2
Apy = 1-— _—— 4 —— Byv = l-— —— 4+ ——
Wy ( 6NZ 6P T 6N2P> PPV Ty ( 3NZ 3P T 3N2P>

2PN T . km . km
Rk:W Sin ? =+ sin kﬂ'—? .

It is straightforward to check that (3.20) is satisfied at leading order in P, N.
Let us return to the holographic calculation presented in section 3.3, now equipped with
all the field theory details to be inserted.

3.4.2 Holographic approach

Recall that the holographic description of the four-dimensional linear quiver N' = 2 SCFTs
is given in [72], see also [62, 73-76] for further discussion. The holographic background
and dilaton are of the form in egs. (3.2). In the conventions from [73], the string frame
metric and the dilaton read

2 2 2V — V 2 2 -2 4dT2 2V”V A 2V” 2 2 402 V” 2
ds?y =3 T [47‘ (—dt +d7 )+ 3 —I—Tdﬂz-i- v (do”+dn )+2V—de ’
42v-v)3 _
ew:wa Aa,n)=2V-V)V"+V'(0,n)*. (3.25)

Remarkably, all the metric functions can be written in terms of a ‘potential’ V (o, 7n) and its
derivatives, since primed and dotted quantities denote f’ = 9, f and f =00,f, respectively.
See [62, 72, 75, 76] for details.

Importantly, (3.25) is obtained from the eleven-dimensional supergravity solutions in [72].
In these conventions, k = ng /2 is imposed by flux quantization, with Planck length I, = g; /3 s
Because the circumference of the M-theory circle used in [72] is £1; = 27x!/3, the ten- and

eleven-dimensional Newton’s constant are related through

Gro = Gi1ly)! = 875319 /k3 = Gio (2mgsls)/(2mK3) | (3.26)
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since G11 = 167r7l2 as usual and Gy = 87518g2. The subtlety here is that ¢1; = (4W4gs)1/3ls
instead of ¢1; = 2mgsls which would be the usual convention in the literature (and which
we used in section 3.2).

We compute the holographic entanglement entropy for a two-ball as we did in the previous
section. We first rewrite the spatial slices dz? = dp? + p?dQs. The eight manifold that is
attached to the surface of the ball at the boundary extends in the coordinates [Q2, T, Qg, X, 0,1
at fixed t, and the only non-trivial dependence is captured by the embedding function p(r).
The induced metric on the surface becomes

VIV a2V 402V"
dQs + = (do® +dn®) + ———=dx*|.
I A A A T A
(3.27)

With this information, it is now easy to compute the entanglement entropy, which takes a

—V 4dr?
[4r2p2dﬂz+ 7“; (14+7r%(0,p)?) +

form analogous to (3.3) (with prefactor Gy, instead of G7,) and reads

S = N/drrpzy/ 14 r4(drp)?, (3.28)

with
8K5/3 2 &2 1 y y - 2
N = 22 Vol $2 Vol 5° Vol 5} / dodyoVV" = 4 / dodnoVV"=PS RZ,  (3.29)
10 k=1

where in the last equality we have used the expression of the potential function in terms of
the rank function of the quiver, worked out in [62, 76]. We obtain

o0
Cim =% =7 Ri=auv, (3.30)

which is consistent with (2.26) and with the field theory result (3.20) for the type A Weyl
anomaly coefficient Ayy = ayy/4 (3.18). In this way, we have shown that the holographic cal-
culation of Ayy using the Ryu-Takayanagi formula matches the microscopic CFT calculation
using (3.19) in the large P and large N; limits.

In what follows, we apply a similar treatment to holographic duals to a large class of
confining field theories. For this purpose, we consider a family of backgrounds dual to generic
CFTs as written in (3.1), i.e., that their large-r asymptotics will be of the form (3.1). There
we have set d = 4 to be more specific, while a general case is relegated to appendix D.

4 Flows to three-dimensional gapped field theories

In this section, we explore holographic entanglement measures in three-dimensional field
theories with an infrared energy scale. Recall that a key result in three dimensions is a
theorem concerning the LM c-function, defined in (2.22), which guarantees that it remains
constant at fixed points and monotonically decreases along an RG flow towards the IR. This
behavior has been verified in various holographic top-down models, see for instance [24].
When the theory does not flow from a UV CFT but from a more complicated QFT, the
c-function diverges at high energies, signalizing the growing in the number of degrees of
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freedom. This has also been observed holographically in [3], where the UV theory is a
(non-conformal) super Yang-Mills theory with Chern-Simons interactions, see [26]. Still, the
infrared develops a mass scale and the c-functions monotonically decrease to zero.

Notably, the solutions introduced in the previous section allow us to construct theories that
effectively become three-dimensional in the deep IR. However, when analyzing these theories
from an IR perspective and tracing the RG flow toward higher energies, we encounter a puzzling
scenario: as an additional dimension emerges and grows, the conventional expectations for c-
functions come into question. In the following, we examine the implications of this dimensional
transition and its impact on entanglement measures.

4.1 Top-down holographic example

We consider a very specific class of Type II backgrounds dual to confining (gapped) field
theories. The field theories we work with can be thought of as the deformation of a UV
CFT via a VEV for a dimension-three operator. This is achieved by compactifying the
UV-CFT on a circle with antiperiodic boundary conditions for fermions and periodic ones for
bosons. This compactification breaks a fraction of the supersymmetry of the UV-CFT (if
any SUSY was present). The above compactification is accompanied by a twist, a mixing
between the compact circle and the R-symmetry (if any) of the CFT. This procedure is
explained in detail for the case of N'=4 SYM in [77, 78]. The procedure triggers an RG-flow
from the UV-CFTy to a gapped IR QFT;_;.

The gravity background dual to this flow is inspired by solutions found in gauged
supergravity by Anabalén and Ross [79, 80]. These solutions can be embedded in various
backgrounds of Type II supergravity, see for example [35, 36, 81-86]. Our prime example
(that we generalize in appendix D) is the one of a family of three-dimensional QFTs that
follow from the twisted compactification of a family of CFTy4 on a twisted circle. The family
of dual backgrounds to this system is written in section 2.3 of [35] and with more detail in
section 4.2.1 of [36]. Details of the construction are relegated to appendix E.

In a nutshell, the field theory can be thought of as follows. We start from an infinite
family of six-dimensional ' = (1,0) linear quiver SCFTs. These are compactified on a
hyperbolic space Hy leading to an infinite family of four-dimensional SCFTs, studied in [39].
These four-dimensional SCFTs are then further twist-compactified on a circle, with a VEV
that triggers an RG flow to a three-dimensional family of QFT3 at low energies. There is
a precise background describing these flows, for a detailed description see appendix E. The
metric and the dilaton (for the accompanying RR and NS fields, see [35, 36]) read

dr? 4(dx? +da3)
ds2 — 36 _O‘(Z){Q_dtz dp? 4 p2d 32 de? 1 2
sTos = 3V6m | ()| (—dt* +dp” + p*df° + f(r)de )+T2f(r)+3(x%+x%_1)2

o) 22— a(z)a"(z) 2 1 sin? 2
6a(z) T B (22 —Ba(z)ar(z)) X T x(dEH Ay Au))
o 2¥ _d"() Py 2 —3a(z)a’(2))?
© <187r>10< a(z>> (2¢/(2)" =3a(2)a”(2)) )
2
f(r)zl_rﬂ_%’ A¢=3Q(7«12_7,12>d¢, Ag:lg;l%l-%(xldx2_x2dml)-
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Here p and ¢ are two free parameters. The parameter p typically breaks SUSY and is
associated with VEVs for T}, along the field theory directions. On the other hand, the
parameter ¢ performs a twist, mixing the field theory direction denoted by ¢ with the U(1)¢
R-symmetry. Notice that for r — oo we have f(r) ~ 1, while away from the boundary there is
a value of r = 1, for which f(r.) = 0. It will be useful to cast the parameter ¢ in terms of 7,

¢ =72 (7‘21 - ,u,) . (4.2)
In general, there would be a conical singularity at » = 7., but requiring that the circle

smoothly closes off, we find a relation between the size of the circle ¢ € (0, Lg) and 7,

47 2mrd
(4.3)

IR

The background (4.1) is (for 7 — oo) holographically dual to a family of CFT,4 and the space

Lg

is asymptotically AdSs x Hy x M3 where Ms is parametrized by the three coordinates (z, x, ).
Moving to smaller values of the radial coordinate r, the isometries of AdS5 are broken. This
corresponds to a non-trivial RG flow leading to a gapped QFT in three dimensions at low
energies. The corresponding family of geometries is parametrized by the function a(z) that
satisfies o’ (z) < 0. The function «(z) is determined by the dual linear quiver field theory,
but for our purposes, we do not need its explicit form. For completeness, see [35, 36, 39]
and appendix E for details.

Let us now calculate the entanglement entropy of a disk or radius R and its complement,
which will allow us to examine the flow of information afterwards. As usual, we need to find
a minimal eight-dimensional hypersurface ¥g that is anchored to the disk at the boundary
of spacetime. The symmetries of the problem allow us to assume that the embedding of
Yig is specified by

t = constant , p=p(r)elo,R], (4.4)
such that
lim p(r) = R, (4.5)

which ensures that the minimal surface is anchored on the boundary of the entangling
region as indicated by the RT formula. In particular, the hypersurface g is expanded by
{B, ¢, 1, 21,29, 2, X,&}, and wraps the internal space completely. Its embedding function p
depends only on r, and the metric restricted to g becomes

/ 1 4(dz? + dz3)
ds? = _a[22d2 2 de? d2< 2/2> 1 2
58 3v/6m o rp dB% +r7f(r)de” +dr r2f(r) T )t 3(x2 + 2% —1)2

@X2+smgxﬁ£+4%—FAw24. (4.6)

" "
[0 aQ
R

6 (6’2 — 9aa’)

The entanglement entropy then takes a simple form

S = 4&10 /dsxe—%\/m = N/dr rp(r)y/1+ 7“4f(7“)p’2, (4.7)
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(a) (b)

Figure 2. Tlustration of two of the possible types of embeddings that solve (4.9). Cases (a) and (b)
follow from setting (4.10) and (4.11) as a boundary condition, respectively. Figure adapted from [3].

with

- Vol (Hs) Vol (5?) Vol (S1)
A7 = Yol 22)“?55% )1 / dz(—a(2)a(2)"). (4.8)
Here, the volumes of the spheres Vol ($2) and Vol (S!) come from integration over {¢, x} and
B3 respectively, while Vol (Hz) = [(2? 4+ 23 — 1)~ *dx1dxs is the volume of the two-dimensional
hyperbolic plane.

To compute S, it is necessary to first find p(r). Extremizing the action functional (4.7)
leads to a second order non-linear differential equation for p(r),

AP s N o 0L (P05, 1
“( o f”) (T ) e 6

This equation needs to be supplemented with appropriate boundary conditions for p(r). The

first condition is the UV boundary condition (4.5) while the second is a regularity condition
in the IR. There are two possible qualitatively distinct ways the RT surface may cap off in a
regular manner in the interior, which are illustrated in figure 2(a) and (b). The reason is
that each constant-r slice of the surface is topologically S é X 5’(]15 X Mgy, where My is part of
the compact manifold of the background, the first circle Sé corresponds to a constant-p circle
of the entangling surface and the second circle Sé is the compactified field theory spatial
¢-direction. In the first possibility represented in figure 2(a), Sé shrinks to zero size and
the surface caps off before reaching the bottom of the geometry, where Sé shrinks. This
corresponds to a turning point for the embedding p(r) located at r = r, > r., where the RT
surface caps off smoothly if the embedding satisfies the regularity condition

p(ry) =0, P (re) = o0. (4.10)

This boundary condition defines a one-parameter family of minimal surfaces parametrized
by 7y € (¢, 00) as in figure 2(a). The other possibility, represented in figure 2(b), is that
the embedding reaches the end-of-space at the bottom r = r. where Sé shrinks to zero
size. Because the internal manifold shrinks in a regular manner due to (4.3), the RT surface
is automatically regular at r = r.. The value of p(r) remains free and finite at r = r.
amounting to the boundary condition

lim p(r) = ps . (4.11)

rT—Tc

This defines a one-parameter family of minimal surfaces parametrized by p. € (0,00) as
in figure 2(b).
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We have not been able to find analytical solutions in this case, and for this reason, we
turn to numerics. For this it is useful to observe that the rescalings

T -
¢=—=¢€(0,1], uz%, 0="7cp, (4.12)
T T‘C

allow us to factor out the dependence on 7, since the equation for the embedding in (4.9)
and the function f(r) in (4.1) become

s (O3RN e©? L (fo 3y 1
86) +2(0) ( 2 ¢ ) 2(0) +Q(C)<f(<) c) GEGE
FQ) = —ACt+ (- 10+ 1, (4.13)

where the dots stand for derivatives with respect to (. As promised, the dependence on 7.
has factored out and the only significant parameter left in the problem is ji.

To solve this equation numerically, we use series expansions compatible with (4.10)—(4.11)
to specify the boundary conditions of the numerical integrator. More precisely, solving
the equation of motion (4.13) using the boundary conditions in (4.10) leads to a series
expansion of the form

k
2

o(¢) = i k(e — €))7, (4.14)
k=1

where (. = r./r« corresponds to the position of the turning point in the new coordinate and
all the coefficients by, are determined in terms of it. Similarly, (4.11) leads to

() = @*+ick(1—c)’“, (4.15)
k=1

with o, = 7. ps and all the coefficients ¢; determined in terms of it. Knowing these expansions,
we can seed a numerical integrator such as Mathematica’s NDSolve and integrate up to a
value close to the boundary. Near the boundary (¢ ~ 0), the embedding behaves as

S (32(14,()@8,0 + 10g(C)>
4ag o 324

oo k
o) =D ary (log €)' ¢* = ag —

k=01=0

+0(¢) . (4.16)

Note that this expression contains two free (dimensionless) integration constants ag o and a4,
that are not fixed asymptotically by the equations, but fixed by the UV and IR boundary
conditions. These can be read off from the numerical solution. Physically, ag o is the radius
of the disk R =1r_ 1a070, while we understand from the way the solutions are constructed
that a4, is fixed by regularity of the embedding in the bulk. This a4 plays no role in what
follows (though calculating it allows more precision in the results).

The numerical results for several embeddings are shown in figure 3, where we fixed fi = 0,
to preserve supersymmetry. Note that the embeddings that do not reach the end-of-space, as
in figure 2(a), exist for disks whose radius R is smaller than a critical value R; ~ 0.681r !,
i.e.,, R € (0,Ry). Thus, we refer to them as small radius embeddings. In contrast, the second
type of embeddings portrayed in figure 2(b), appear for radii above Ry ~ 0.639r_ !, and we
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Figure 3. Numerical results for the small radius (blue) and large radius (orange) embeddings o(().
We will keep this color coding in what follows. The dashed line is not a real boundary, but the surface
where the S' of the background shrinks to zero size.

refer to them as large radius embeddings. Crucially, Ry > Ro, which means that in between
several embeddings exist for the same radius.

Now that the embeddings are known, we can compute the EE. Using the redefinitions
in (4.12), (4.7) becomes

- Cuv 0 - - - Cuv )
s:—Nn/C a5 <<6<u—1>—<4u+1>92+1;/< dc £(0,0), (4.17)

where we have regulated the divergent integral with a cut-off ( = (yy. For the embeddings
that reach the end-of-space, r, = r. and (., = 1. We will again focus on the SUSY preserving
case fi = 0. Near the boundary, the integrand possesses two divergent terms,

L= —— @) 4.18
Nre < C?, + SGO,OC + (C )) ( )
which implies that its indefinite integral diverges near the boundary as
v apo  log(¢) 0
d¢ (L) =Nre| ——% — @ . 4.19
[dc-o) Nr( 2 Sags O (4.19)

Note that we added an extra minus sign since in (4.17) the limits of integration are inverted.
From this we learn which counterterms are needed at ( = (yy near the boundary before
taking (yv — 0, to render the EE finite,

Sct(CUV) _ NTC [QO,O + log(CUV)‘| )

2¢2, 8ao,0

(4.20)

Indeed, defining L. so that

Cuv - Cuv a0,0 1 o
/* d< Ect = NTC /C* dC <_ C3 + 8@0704.) = SCt(CUV) - SCt(C*) ’ (421)

we can define a finite renormalized entanglement entropy as

0
Sren = Clim (S —Set(Cuv)) = | dC(L— Let) — Set(Cs) s (4.22)

uv—0 Cx
The result is shown in figure 4. Note that, as anticipated, there is a range of radii R € (Rg, R1)
where there are multiple extremal surfaces. The entanglement entropy is the one that
minimizes S. For this reason, there is a phase transition at R. ~ 0.660r, !, when the curves
of the two different branches cross.
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Figure 4. Renormalized entanglement entropy as a function of the radius with the zoomed in version
focusing on the swallowtail on the right panel.

4.2 C-functions upon compactification

In this section we aim to construct a c-function sensitive to the IR features of the theory.
For a low energy observer, as we argued previously, the physics look three-dimensional at
energies below the confining scale, dictated by r.. The entangling regions considered in
the previous section are four-dimensional cylinders,? but they appear as disks (balls) in the
three-dimensional theory. For this reason, it is a natural expectation that if we apply the
three-dimensional LM c-function it will have the desired properties of (i) being monotonic as
a function of the radius of the disk, (ii) vanishing for large radii and (iii) blowing up towards
plus infinity for small radii, due to the presence of an infinite number of Kaluza-Klein (KK)
modes. These expectations, however, are not met for the reasons we explain next.

Let us translate the results of the previous section into the notation of section 2. In
four dimensions, the entangling regions are of the form By(R) x St C R? x S} where the
circumference of the compact circle L = Lg, see (4.3). The fact that the region wraps the extra
direction completely and does not depend on this direction avoids additional complications.?
The cut-off € used in section 2 corresponds holographically to a cut-off in the radial coordinate
r [66, 87]. Therefore the cut-off in the (-coordinate (4.12) is given by

Cov =Te/ruv =Tc€ x /L. (4.23)

The radius of the disk is given by ago = Rre. Therefore, from (4.19) we see that the
entanglement entropy (4.17) of the region Bs(R) x S} has the divergence structure

_LR L. R -
SYYR) = S(R) = Py —buv plog — + f(R) + O(?), (4.24)

which indeed coincides with that of d = 4 cylinders, see (2.30). Here we identify byy as the

type B Weyl anomaly coefficient, py is independent of L, R, and f(R) depends on R only

2 Actually, they are solid tori, since the extra dimension S} is a circle. Nevertheless, we refer to them as
cylinders since the periodicity of this particular direction does not play a significant role here.

3See [31] where also (d — 1)-dimensional balls Byq—1(R) are considered. Unlike cylinders, they self-intersect
when the diameter of the ball is equal to the circumference of the compact circle R = L/2.
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through the dimensionless combination R/L. The finite term vanishes f(0) = 0 at the UV
fixed point R/L = 0 so that (4.24) coincides with (2.16) in this case.

The finite term f is renormalization scheme dependent: under a rescaling e — Ae of
the UV cutoff, they transform as ps — A"2p; and

F(R) = F(R) +boy = log . (4.25)

Now we can immediately see how problematic applying the d = 3 LM operator to an
entanglement entropy with cylinder divergent structure is. If we insist on doing so, we get

L /1 R
(Row 1) S (R) = FE\(R) — 2bov + <2 ~log ) + O, (4.26)
€
where we have defined the finite part fEﬁI(R) = (RO — 1) f(R). Equation (4.26) is UV
divergent, because the d = 3 LM operator does not remove the logarithmic divergence.
However, we can define a finite quantity F<'(R) by multiplying (4.26) by R, subtracting its
value at a reference scale R = R, and finally dividing by R. The result is

R L R
L FYR,er) + 2buy = log

cyl — oyl _
FOUR) = Fi () — = Flos

(4.27)

We propose that (4.27) is a measure of number of degrees of freedom at scales larger than
the reference (renormalization) scale R 2 R,.; the UV scale Ayy corresponds to a reference
length scale Ryef = Aﬁ%,, and hence our c-function is defined at low energies, i.e., large R.
In the IR, R — oo limit with R, fixed, we obtain

lim FYY(R) =

R—o00 Fgl—r)noo fgil(R) ’ (4'28)
which can be interpreted as a topological entropy [53, 54] of a disk in the d = 3 IR theory
arising from dimensional reduction [27] when the R — oo limit exists. The reason for
this interpretation is that for large R, the solid torus in the four-dimensional UV theory
becomes effectively a disk in the three-dimensional IR theory, and as briefly mentioned below
equation (2.21), the finite R-independent constant in the entropy of a disk in a gapped three-
dimensional theory is the topological entropy. Here it appears as the constant limp_, f (R)
which is picked up in (4.28).

We will now evaluate (4.27) using the renormalized entropy computed numerically in the
previous section. First, we find that (4.17) has the divergence structure (4.24) with

Y —_— N

P4 = 3L UV = ]

FR) = (RoR — 1) Swen(B) + 20 (1~ 210 (Rr)) . (4.20)

where the renormalized entropy Siep is defined in (4.22). By substituting to (4.27), we obtain

chf
R

FYR) = (RS,

ren(R) = Sren(R)) = == (Rucr Syon(Rucr) = Sren(Rrer)) - (4.30)
The numerical result for F<'(R) is shown in figure 5 (left) for different representative choices
of R,.. Let us make some observations. First, F Cyl(Rref) = 0, which follows directly from

its definition (4.28). In particular, at R = R, it is increasing from negative values for
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Figure 5. (Left) Proposed measure of the effective number of degrees of freedom from the lower
dimensional perspective, (4.27), for different choices of R,r. = 0.01, 0.05, and 0.25. The different
curves cross the horizontal axes precisely at these same R = R,.. The “desired” properties for a
c-function are recovered as R, becomes small. The discontinuity, depicted by the vertical black
straight line, corresponds to the phase transition of the entanglement entropy, see figure 4. (Right)
Cylinder c-function as given in (2.33) is depicted as a function of the base radius R.

R < R, to positive ones for R > R,.;. Second, the function has a global maximum at
R = R,.. ~ O(1) - R, Finally, for values above R,,,, the function decreases monotonically
towards zero as R increases.

The c-function (4.27) is renormalization scheme dependent (encoded in the arbitrary
scale R..;), because (4.26) depends on the choice of cut-off ¢ of the four-dimensional theory.
However, this does not mean that (4.27) is meaningless: if the UV cut-off € of the four-
dimensional theory is physical (as would be the case if the UV completion is a lattice theory
with lattice spacing ¢) then (4.27) is a well defined quantity given this fixed cut-off. Similar
situation arises in two dimensions where the entanglement entropy (2.11) of an interval
contains finite terms that are scheme dependent. In a lattice theory where € corresponds
to the lattice spacing, these finite terms have well-defined meaning as boundary entropy
(see the paragraph below (2.11)).

A more conservative approach leading to a renormalization scheme independent quantity
is to use the ILN c-function (2.33) adapted to cylinders as done in [28]. Applied to our
case it gives

R

Cax(R) = o+ (Rog — 1)(Ron+ 1) S(R) = % (RO — 1)(ROR + 1) Seen(R) . (4.31)

Note that this is now finite when the cut-off is taken to zero. Moreover, applying it directly
to (4.24) we discover that

Cux(R) = buv + 5o (ROp — 1)(Rop +1) F(R) (4.32)

from which we conclude that the renormalization scale ambiguity (4.25) is now absent. We
plot this quantity in figure 5 (right). At the UV (small R), it goes to a constant, signaling that
it is sensitive to the UV physics. While it is not monotonic, it approaches zero at the IR (large
R). Our conjectured inequality (2.34) implies that Crn can only diverge to —oo and not to
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+00. This is indeed what we observe so that our conjecture holds in this case. More precisely,
these divergences are a consequence of the swallowtail-like behavior of the entanglement
entropy, characteristic of first-order phase transitions, see figure 4 (right). At the cusps
of the swallowtail, the slope of the derivative becomes infinite, which implies a divergence
in the second derivative. This explains why the divergence appears in Cr,n(R) but not in
FY(R). Note, however, that this divergence would only occur along an unstable branch of the
entanglement entropy curve; when restricting to stable configurations, Crpn(R) remains finite.

It is interesting to discuss a generalization of the holographic c-function in section 3.3,
see (3.11)—(3.12), to a system that exhibits a flow in between different dimensions, such as
in the background of (4.1). As we explain below, a simple adaptation of (3.11) displays
the expected monotonic behavior.

4.3 A monotonic c-function along the flow

We briefly discuss a generalization of the holographic c-function (3.12) to a class of bulk
metrics larger than (3.11). We use formulas developed in [38] and summarized in [39].

Consider a anisotropic field theory in dimension d. The dual string frame background
of the (anisotropic) form is,

d-1 d-1 9-d
ds® = —apdt?® + > ao(dz®)? + 11 (aa)ﬁ b(r) dr? + > g (dy* — AY)(dy? — A7), (4.33)
a=1 a=1 ij=1

where a, = an(r,y’) and the system is also accompanied by a dilaton ®(r,y?).
We consider the following integral

_ d—1 9-d, —2®
\/H(T):/Mdld x Mintd ye % y/det[gs] (4.34)

over the eight-dimensional constant-t, r surface which is equipped with the metric gg (ob-
tained by setting t,r to constants in (4.33)) and parametrized by coordinates [z, y‘]. The
generalization of cpe1(r) (3.12) to bulk metrics of the form (4.33) is defined as

2d—1
2

Ehol(r) _ (d - l)dil B(’l“ % H(T) ’ (435)
Vol (Md—l) G10 H (’I”)d_l
where Vol (My_1) = | My, d?1z. We call &,(r) the anisotropic holographic c-function,
because the metric (4.33) breaks Lorentz invariance in the field theory directions z®. Consider
the isotropic limit in which as(r,9") = a(r,y"), for « = 0,...,d — 1, and in which all field
theory directions are non-compact My_; = R"!. In this case, the metric (4.33) reduces
to (3.11) and we see that

b(r) =b(r), +/H(r)= Vol (RY)\/H(r), (4.36)

where b(r) and H(r) are defined in (3.11) and (3.13) respectively and Vol (R%!) is the
volume of the field theory directions (a constant). Therefore épo1(r) = chol(r) in the isotropic
limit. When computed at conformal points (for isotropic field theories), o reproduces
the results of (3.12).
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Figure 6. Plot of the anisotropic holographic c-function (4.35) in the d = 4 backgrounds (4.1).

We can now apply ¢ to our family of d = 4 backgrounds (4.1) for which ¢pe is not
applicable. The relevant quantities appearing in (4.33), (4.34), and (4.35) are

as [ « ~ 1
apg=—a1=—ay :—m :—3\/671' —972, b(?“) = 744f(7~)% y (4.37)

2 P ) 1(R2
H=H3r"(r) with Ho= gz Vol(S*) Vol (Hz) Vol (R*) L / Az (—aa") = Ay 2G10VOLRY)
T 0

™

where we have used (4.8) and Vol (My_1) = Lg Vol (R?) where one of the field theory
directions is a circle of circumference L. We obtain

Galr) N NN
Vglé]]@) T 4r <f(7') + rf’(r)/6> T 4r (1 a CG) (4.38)

in terms the coordinate ( = r./r defined in (4.12). We plot this quantity in figure 6. We
find that it detects the UV fixed point (reaching a constant value in the UV) and vanishes
in the IR, indicating a gapped QFT.

Had we computed the holographic central charge cpo(7) (3.12) applicable only to metrics

isotropic in field theory directions (3.11), we would have obtained a quantity that vanishes in
the IR and diverges in the UV. The anisotropic generalization épo () of this section captures
the presence of an infinite number of KK modes (encoded in the function b(r)), revealing
the fixed point value of the UV CFT.

5 Non-monotonic entanglement c-functions in four dimensions

In this section we will illustrate with two examples that the Cpy ceases to be monotonic
in four dimensions. We will start by reviewing this issue in the Girardello-Petrini-Porrati-
Zaffaroni deformation as originally pointed out in [9], but whose ten-dimensional uplift
was only provided recently [22, 23, 88, 89]. This allows us to sharpen the discussion. We
will then continue to a better-behaved Klebanov-Strassler case, the discussion of a similar
non-monotonic Cryr thereof distancing IR singularities from the spotlight.
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5.1 Girardello-Petrini-Porrati-Zaffaroni deformation

We consider N' =1 SUSY preserving deformations of N' =4 SU(N) super-Yang-Mills theory
in four dimensions. This SUSY field theory is written in terms of a vector multiplet and three
chiral multiplets. We denote these chiral multiplets as (®;, @3, ®3), not to be confused with
the bulk dilaton field with a similar notation. The deformation of N’ =4 SYM is written in
terms of these chiral multiplets by an addition to the superpotential of the form,

AW = mytr(®?) + matr(®3) + matr(d3). (5.1)

This deformation gives masses to the three chiral multiplets. When m; = mgy # 0 but mg =0
the supersymmetry is enhanced to N'= 2 and the corresponding flow is the Pilch-Warner
flow [90]. When only one chiral multiplet is non-zero the theory flows in the IR to the
Leigh-Strassler conformal fixed point [91]. When all three masses are non-zero, the theory
is called N’ = 1* and has a rich, well-studied structure of vacua. GPPZ is an early attempt
to describe the A/ = 1* theory using five-dimensional supergravity [20]. It has not been
until recently that the ten-dimensional uplift of GPPZ has been understood, see the relevant
references [22, 23, 88, 89].
The background considered by GPPZ can be obtained from the truncated action

1
47 G5

— g [ EVG (- omed e - v() (5.2)

where M = 0,...,4, the scalar potential V(¢) is given in terms of a superpotential W (¢),

2
Vo) =32+ (D) (5.9

and 5 2
W(gp)=——11 h{—) ] . 5.4
(@)=~ (1+eon (52) (5.4
Moreover, the five-dimensional Newton’s constant relates to the ten-dimensional one as
in (3.5) after integrating over the compact manifold, which in this case is a five-sphere,
Gy A

- (5.5)

Gs = 1555 ~ 3Nz

In the last equality we used the usual holographic dictionary to translate to the rank of the
gauge group of the microscopic SYM theory, ¢*/I1* = 47g N2.

Because the potential is derived from a superpotential, the background is found by
solving a system of first order differential equations. Indeed, assuming a domain wall ansatz
for the metric,

ds? = 24 (—dt? + d#?) + dp?, (5.6)
the ground state of the system is given by the solution to the following BPS-like equations,

Opd =0, W, 9pA=—ZW. (5.7)
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Figure 7. Numerical results for the small radius (blue) and large radius (orange) embeddings p(z).
We will keep this color coding in what follows.

We are using that the functions A(p) and ¢(p) depend only on the radial coordinate. We
find it useful to perform the change of radial coordinate z = £exp(p/¢), in terms of which
the metric becomes

2

ds? = 24 (—dt? + di?) + %df : (5.8)

The system (5.7) can be solved analytically. In terms of the new coordinate the solution reads

_ ZA QA(Z) o 62 AQZQ
¢<Z) = \/§arcoth <\/§> s e = ? — T . (59)

Expanding the scalar near the boundary, we discover that the integration constant A corre-
sponds to the source of the operator dual to ¢, which has dimension A = 3,

A3z

9

3
o(z) = Az +

T (5.10)

The other integration constant has been fixed so that near the boundary the warp factor
diverges as €24 = ¢2/2% +---. Also, note that the radial coordinate takes values in z € (0, zp),
with zo = v/3/A. This introduces an IR scale in the geometry, related to the confining
nature of GPPZ flow.

Let us now consider entanglement of balls in the background (5.8). The computation is
quite similar to that in section 4. We perform the calculation in five-dimensional supergravity.
First, we write the euclidean three-space in spherical coordinates, dz? = dp? + p>d€)s. The
embedding of the RT surface is specified by ¢t = constant, p = p(z) with [z, Q3] parametrizing
the surface. The three-manifold (codimension-two manifold in five dimensions) is

52
ds? = 243) p(2)? dQy + dz? <22 + €24(2) p'(z)2> : (5.11)

where the prime ['] stands for derivative with respect to p. The entanglement entropy in
this case is

2
S = N/dz eQ’L‘(z)p(z)Q\/i2 + e24() pf (2)2, (5.12)
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Figure 8. (Left) Entanglement entropy and (right) c-function as a function of ball radius R. The
c-function is non-monotonic but assumes constant values at the fixed points and appears to be
stationary to the precision of our numerics.

Recall that N was given by (3.6), which in this case is simply

Vol (§%) w  2N?

N="i e B

(5.13)

The corresponding equation of motion for p(z),

9 (626—2A(@
p(z)

is subject to the condition p(z = 0) = R, indicating that the embedding is attached to the

Pz (zA’(z) (32262‘4(2)/)'(2)2 + 4€2> + €2> -

2z + p’(z)2> +¢"(2) =0, (5.14)

22

surface of the ball of radius R at the boundary. We solve (5.14) numerically. For small values
of z, the embedding admits an expansion similar to that of (4.16)
22 2% (6a4R — A?log(2))

el =R=gpt 6R

+0(2%) (5.15)

with R and a4 undetermined by the equations. This is compatible with situations (a) and
(b) in figure 2, which correspond to

)= Va2 bz —2)F, p() = pet D enlao — o) (5.16)
k=0 k=0

respectively. After constructing the numerical solutions, we can see that indeed these two
distinct configurations are realized, as depicted in figure 7.

Now, to compute the entanglement entropy, we need to regularize it by adding coun-
terterms. Following the same procedure as in section 4.1, we write

0
Seon = lim (S — St (20v)) = / (L= Lot)dz — Ser(2), (5.17)
ZUVA)O Zx
with
R?  (3+2R2A2) N? [3R?
_ 2 . _ 2 A2
Lot = 2N <z3 ] Sa=—m (Tt (3+ 2R2A )logz . (5.18)
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Figure 9. The isotropic holographic c-function (5.19) in the GPPZ background.

The result is shown in figure 8 (left). It does not coincide with that of [9] (see figure 10
there) since we used a different renormalization scheme. Nonetheless, we also find a transition
between the small and the big radius embeddings at R = R, ~ 0.870z9 = 1.507A~!. Within
our precision, the transition seems smooth in this case (i.e., it appears that the curve of Sieg
as a function of R is continuous, in contrast to figure 4).

Finally, we compute the c-function. Recalling its expression for d = 4 from (2.24) we plot
it in figure 8 (right). This is renormalization scheme-independent, thus the fact that it agrees
with ref. [9] constitutes a nice check of our numerical approach (2.27). From our numerical
results, we have checked that the first derivative of the entanglement entropy is smooth
and continuous. In particular, this implies that its second derivative (and as a consequence,
Crm(R)) is finite. Due to limited numerical accuracy, we have not been able to assess whether
these are continuous functions. We note that the bound in (2.27) is satisfied, however.

As it was already pointed out in [9], we obtain a c-function that is neither monotonic
nor positive definite, even though it has the desired property of being a constant at R =0
(corresponding to the UV CFT) and approaching zero as R — oo, when the confining IR
is explored. One reason adduced for the non-monotonicity is the irregularity of the flow in
the IR. Indeed, even the ten-dimensional uplift of the GPPZ suffers from an IR singularity,
see for instance ref. [22]. To understand whether regularity can cure this unsatisfactory
behavior, in the next section we study the same quantity in a top-down model with a perfectly
regular IR: the KS background [18].

Finally, we compute the (isotropic) holographic central charge cyo defined in (3.12) for
the case of the GPPZ background. In this case, it coincides with the anisotropic c-function
Chol defined in (4.35), and is given by

Chol Chat 1 £33 1_22/\2 3_£2 1_123 (5.19)
Vol(R3) — Vol(R3) ~ 8G5 234" 8Gj 3 T 4w 2) '

We plot this in figure 9 and note that it behaves nicely, starting as a constant (with zero

derivative) in the UV, smoothly decreasing towards the IR, eventually vanishing.
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5.2 Klebanov-Strassler background

In the previous section we reviewed how the c-function obtained from spheres in the GPPZ
background is not monotonic. As stated in ref. [9] the reason could be that the GPPZ
background is singular in the IR. For this reason we turn our attention to the KS solution [18],
which is a regular solution to Type IIB supergravity equations.

The KS solution is sourced by N D3-branes at the tip of the conifold, in addition to M
fractional three-branes sourcing a magnetic three-form flux through a three-sphere inside
the conifold. This is dual to a cascading, confining SU(N + M) x SU(N) supersymmetric
gauge theory, provided N is a multiple of M. We refer to the original work for the details.
The metric can be written as

dsty = 72 (r) (=dt? + dp? + p*d03) + h'/*(r) ds3, (5.20)
where 7 € (0,00) is the radial coordinate, d22 is the line element of a two sphere,

dsi= %64/3K(7') { (de—i-(gs)z) +cosh? (;) [(g3)2+(g4)2} +sinh? (;) [(gl)z—i-(gQ)ZH
(5.21)

1
3K3(T)

is the metric of the deformed conifold with deformation parameter €, and

i _9on)l/3 201292/3 oo B
K(r) = SinhCr) = 27) (g5l M)7277° / zeotha —1

S sinh(r) h(r) = 573 . (sinh(2x) — 23;)1/3.
(5.22)
The dilaton is constant and set to zero. The details concerning the angular forms g; can
be found in refs. [18, 92].
This geometry has a perfectly regular IR at 7 = 0. In this region we find two meaningful
energy scales,

B 2/3 2/3

As , Axg = 55—,
12/gs M T 29, M

related to the confining string tension and the masses of the glueball and KK states, re-

(5.23)

spectively.

To study entanglement entropy of spheres in this background we consider an eight-
dimensional hypersurface that wraps completely the compact space spanned by the forms
¢* and is attached to the sphere on the boundary at a constant time slice. Similar to the
previous cases, the embedding is given in terms of an embedding function p(7), that depends
only on the radial coordinate. More precisely, the induced metric on g becomes

R1/24/3
6K2

ds? = [h1/2p/(7')2 + dr? + h=12p2403 (5.24)

B1/24/3 1 2 ?
N 67629§ i §h1/2€4/3 K | cosh <;) (g§ + gZ) + sinh <72-) (Q% + 95) )
which leads to

o 1 €l0/3 | 64/3h(7) ,
S = 4G1096/d92/gl /\-../\g5/d7' h(T)K(T)p(T)QSIHhQ(T)\/W 62

(5.25)
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Figure 10. Embedding functions as a function of the radial coordinate. Here 7 = 0 corresponds to
the IR and the boundary is at 7 — co. Blue curves stand for “disconnected” configurations, while
orange curves correspond to “connected” configurations.

We decide to work in terms of the dimensionless variables
o(1) = Aiwp(7) /213 h(7) = €/3AL h(7) /223 (5.26)

in terms of which (5.25) becomes

913 .
s =@M [arme)Kme(r)? sinhQ(T)\/ ;(‘((T))Q fed(r)?  (5.27)
= g§M4/dTL(g, 0, (5.28)

where we have used that [g1 A -+ A g5 = 6473,
The equation of motion for p(7) is again obtained in the usual way,

or oL
50~ 500 = (5.29)

The explicit expression in this case is quite involved and not particularly insightful, so we

chose not to write it out explicitly. It has to be supplemented with the boundary condition
o(T = 00) = ag = Axx R/2"/?, with R the radius of the corresponding sphere. It turns out
that the perturbative expansion about the UV that fulfills this requirement is richer than
in the previous sections. This is inherited from the lack of conformality at the UV. Indeed,
the embeddings approach the boundary as

o(7) = ag + fr(T)e 23 4 fo(r)e ™3 + f3(r)e 2 + ... . (5.30)

When this ansatz is substituted into the equation of motion (5.29), at every order in e 27/3

we encounter a differential equation for the coefficients f;(7). The two first coefficients can
be solved analytically, and we find,

9 — 367
_ 3 2 (4r—1)/3p: (L =47
fo(T) = a4 + T&Z% (2167' — 10877 — 243e Ei 3 (5.31)
8172 817 2187 2187 28431

T6aad 3243 ™7 T02da3r 20484372 T 16384430
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Figure 11. (Left) Sphere entanglement entropy as a function of the radius in KS geometry. (Right)
Corresponding c-function.

where Ei(x) is the exponential integral function of x. Higher-order coefficients f;(7) can be
found in series expansion of 7, but we will not need them. At the end of the day, we are
left with two undetermined coefficients, ag and a4.

In the KS background we also find small and large radius embeddings, see figure 2(a) and
(b). The corresponding boundary conditions that these fulfill in the bulk are, respectively

o) = VTR b ) o) =t S bt (5.32)
k=0 k=1

These expansions are used to seed the integrator and find the solution numerically, up to a
large value 7 = 7, sufficiently close to the boundary. Due to the exponential dependence on
T, it turns out that a choice 7. = 14 suffices for the numerical precision. Some representative
solutions are shown in figure 10. We can then evaluate each numerical solution at 7 = 7. to find
the corresponding values of ag and a4, by equating the result to (5.30)—(5.31). Furthermore,
the UV expansion can be used to find appropriate counterterms to regulate the entanglement
entropy. Indeed, near the UV

o (47 = 1) 55 9 (167> 4407 —47)

— g2 7 —27/3
L = aj 39,2 © 10242 +O(e ), (5.33)
and so,
o —1) 5 9(167% + 407 — 47)

Lalr) = a—557¢ 102472 : o
o1 23041 =T) 5.5 37 (167° 4+ 607 — 141) (5.34)

Set(17) = g:M* | af —————€“7° — ;

6472 102472

can be used to regularize the integral. It is worth noticing that this has two parts. The first
term is proportional to ag = A2, R?/ 22/3 and it thus corresponds to the usual area-law term.
The second term, on the other hand, is independent of ag and will be unimportant when we
take derivatives with respect to the radius (for example, when computing the c-function).
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Figure 12. The isotropic holographic c-function in the KS background as a function of x = (14 17)~!
The UV is on the left of the plot (x = 0) and the IR on the right (x = 1), conforming with the
conventions in this paper.

The renormalized entanglement entropy now becomes

o0
Seon = lim (S — Sec(rov)) = g2M* / (L = Log)d7 — Set(72), (5.35)
TV —00 Ty
which is a regular quantity.* For large radius embeddings, 7, = 0.
The results for the entanglement entropy are shown in figure 11 (left). Like in the
previous cases, we see there is a phase transition between the two possible configurations.
Now we can compute the d = 4 c-function in this background, (2.24),

Con(R) = %(R&R)(RQRS —98) = %(R&R)(RaRSren  92Sem). (5.36)

In any case, we believe that the sudden change originates from the higher derivatives in (2.24),
which make the c-function sensitive to the curvature of the entanglement entropy. Finally,
we see that the main (and actually, unique) qualitatively distinct element that differentiates
GPPZ from KS is that in the latter the c-function diverges in the UV (i.e., for small values
of R), while in the former it reaches a constant value. This is nonetheless expected, given
that the UV of KS is dual to a cascading theory whose number of degrees of freedom is
growing, while GPPZ flows from a conformal theory.

It is interesting to compare our result with the isotropic holographic c-function (3.12)
in the KS background. In this case with (3.12), (3.13) become

9 25/6 3
\/H(r):Vol(R?’)T 2gsMé*) x \/h(7)K (1) sinh?(r

_ Chol _ 92M4 3/ sinh? (7‘) h(7)2 3 (537)
Vol(R®) — 7 22233 ) 12K'(r) W(r)\"
K(r ( K + 4 coth(r) 4+ h(r) >

“In practice, we cannot perform the integral all the way up to 7 = oo, but up to 7 = 7.. To minimize the error
made by cutting off the integral in this way, we actually added the integral of the order e =27/% in £ (i.e., the first
order that is not shown in (5.33)), between 7. and oo, which can be given analytically in terms of a¢ and a4.
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respectively. The result is plotted in figure 12. It shares features of the LM c-function at
the end-points of the flow: it diverges in the UV and approaches zero in the IR. However,
along the flow, it interpolates between the two values monotonically.

6 Conclusions and discussion

In this work, we explored the effectiveness of (entanglement) c-functions in identifying the
number of degrees of freedom across various quantum field theories. Utilizing the principles
of holography, we were able to conduct this investigation within several strongly coupled
theories. Our primary focus was on scenarios where the geometric framework is clearly
delineated through the top-down approach of brane construction.

We carried out a systematic analysis in N/ = 2 superconformal field theories in generic
number of spacetime dimensions d + 1 = 2,3,...,7 constructed in [55-64]. In these cases the
dual geometry had an explicit AdS metric factor, taking the general form written in (3.1).
The corresponding LM c-functions were determined to be constants and be related to the
type A Weyl anomaly coefficient for the different CFTs, summarized in table 1.

After recognizing that LM and ILN c-functions provide potential measures for the degrees
of freedom in CFTs, we extended our analysis to QFTs with intrinsic energy scales, especially
those pertinent to confining physics. Our initial focus was on the deformation of AdSs
backgrounds [35, 36] given in (4.1), which preserve parts of the supersymmetry according
to the framework established by Anabalén and Ross [79, 80]. On the field theory side one
finds a family of 4d N’ =1 SCFT compactified on a circle. The corresponding dual QFTs are
effectively (2 4 1)-dimensional at low energies, growing one dimension as we move towards
the UV. In this case, like in the (3 + 1)-dimensional bottom-up AdS soliton models studied
in [28, 29], the ILN c-function reaches large negative values associated with a transition in
the RT surface. This indicates that non-monotonicity is not an artifact of the bottom-up
models, but also persists in IR-regular top-down constructions.

Because the theories become effectively three-dimensional in the IR, we attempted to
apply the three-dimensional LM c-function to these geometries. Ultimately, this was motivated
by the existence of a monotonicity theorem in three dimensions [12-14]. Unfortunately, the
entanglement entropy of these regions exhibits the divergence structure of cylinders at small
scales, which the three-dimensional LM c-function is not designed to address. This has
dramatic consequences: if we persist on using this c-function, the outcome becomes dependent
on the renormalization scheme. Despite this, we managed to construct an IR-adapted effective
c-function that retains desired properties below a renormalization energy scale.

We also investigated four-dimensional confining theories that do not rely on the shrinking
of one of the field theory directions. We began by revisiting the GPPZ model, originally
analyzed in [9]. As pointed out there, the four-dimensional LM c-function is neither monoton-
ically decreasing nor positive definite in this setup. The problematic singular nature of the
GPPZ flow at the IR was cited as the culprit for this inadequacy. In our work, we extended
this analysis to the KS background, which is perfectly regular in the IR. Despite this, we
observed similar behavior, with the c-function failing to exhibit positivity or monotonicity.
Therefore IR singularities appear not to be connected with non-monotonicity.
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Comparing the two scenarios studied, we observe that the LM and ILN c-functions behave
almost identically: both are non-monotonic and exhibit a sudden change of behavior at some
negative value. This is notable given that the LM c-function matches the type A Weyl anomaly
coefficient at the UV fixed point, while the ILN c-function is sensitive to the type B coefficient.
In [28], the non-monotonicity of the ILN c-function is attributed to the type B coefficient being
an unreliable measure of degrees of freedom.? However, we find this unsatisfactory, since the
LM c-function, tied to the monotonic type A coefficient [93], behaves non-monotonically in
the same way. This view is supported by the fact that, in holographic theories dual to Einstein
gravity, the type A and B coefficients coincide [51, 52]. We verified this explicitly for 4d N = 2
SCFTs dual to our top-down supergravity backgrounds in section 3. These linear quiver
theories require, for the holographic regime, long quivers (P — o), large-rank gauge nodes
(N; — 00), and sparse flavor groups. Under these conditions, the type A and B coefficients
agree, and the ILN c-function captures the type A coefficient of the UV theory in our setup.

As alluded to in the introduction, we believe that the underlying reason for the non-
monotonic behavior of both the LM and ILN c-functions is a phase transition in the RT
surface, which is characteristic of confining models at large-N. This transition appears
to be at least second order, allowing the second derivatives of the entanglement entropy
and consequently the c-functions to switch from decreasing to increasing behavior, thereby
violating monotonicity. We conclude that defining a fully monotonic c-function from the
entanglement entropy of compact regions in gapped theories, which satisfies both monotonicity
and fixed point criteria, remains an open challenge.

We also considered an alternative c-function which may be constructed in holographic
setups following [37, 38]. For the backgrounds we studied this has the desired properties:
it interpolates monotonically between constants in the UV and the IR. This applies both
to flows induced by circle compactifications and by deformations. It may be interesting in
future work to further study our c-functions. For example, it is natural to ask if there is a
more covariant way of writing the expressions in equations (3.12) and (4.35). Along the same
line, it is known that certain non-singular supergravity backgrounds display non-monotonic
c-functions [70]. It would be nice to understand the mechanism and dynamical reasons for
this. This might teach us something about the proposed c-function, or about these special
backgrounds, or both. We leave this for future work.
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A Entanglement inequalities for slabs

An infinite slab of width 2R is the subregion (—L, L)%~2 x (=R, R) C R%~! where L — oco. In
d = 3, the L — oo limit is known as a (infinite) strip while in d > 4 it is known as a (infinite)
slab. At the UV fixed point, its entanglement entropy in d > 3 dimensions behaves as [66, 87]

42 42
So(R, L) = d1 cd—2 — 851 Ri-2°

(A1)

In d = 1, the slab reduces to an interval of length 2R whose entropy coincides with (2.11).

Now the derivative of the entanglement entropy with respect to the width of the slab
OrS(R, L) is a UV finite quantity, at least at the UV fixed point. Strong subadditivity (2.3)
implies for d > 2 [15, 16]

RO%S(R,L)+ drS(R,L) <0. (A.2)

The explicit proof of this inequality can be found in [16]. The d = 1 case is an interval
and satisfies RS”(R) < 0 as above. For slabs there is no need to use the UV subtracted
entropy (2.5) nor the Markov property in contrast to solid balls above, because there are
no cusps in the boosted subregions.

Defining the quantity

C(R,L) = % RORS(R,L), (A3)
the inequality (A.2) takes the form
OrC(R,L) <0, (A.4)
which implies C'(R, L) decreases monotonically as a function of R. At the UV fixed point,
we get
Co(R. L) = 4 };flsl, (A5)

which clearly obeys (A.4) [15].
C-functions from slabs. Using the entanglement entropy S(R, L) of a slab, we define
the quantity [16]
lab d—2 R

Csa (R, L) = R C(R, L) = m RaRS(R, L) y (AG)
where C(R, L) has been defined in (A.3). It is defined such that at the UV fixed point, where
the entropy takes the form (A.1), it is equal to an R, L-independent constant

CSlP(R, L) = (d — 2) 1 . (A7)

The inequality (A.4) then implies that [16]

—2
OrCMP (R, L) < dT C*P(R,L). (A.8)
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B Weyl anomaly and entanglement entropy

Let W1g| be the effective action of a four-dimensional CFT in a Euclidean background metric
g. The functional derivative of Wg] defines the stress tensor one-point function

_ 2 oWlg]
(Tap) = _% 5gob

where a,b = 0,...,3. It exhibits a Weyl anomaly in a form fixed completely by the Wess-

(B.1)

Zumino consistency conditions

/d4x\/§gab <Ta,b> —

where Ayy,Byy are constants in the conventions of [67, 71] and we have defined (in the

4AUV
T2

4Byy
T2

A Iy, (B.2)

conventions of [45])
1
&= / d*2\/g (Rapea R — 4R R™ + R?), (B.3)

1 1
Ii=—¢ / d*z\/g (RabcdR“de — 2R, R + 3R2> . (B.4)

The constants Ayy and Byy are known as type A and B Weyl anomaly coefficients, re-
spectively.

The Weyl anomaly determines the coefficients of logarithmic divergences appearing in
entanglement entropies of ball- and cylinder-shaped subregions [45] (see also [69, 94]). This
is done using the replica trick where Rényi entropy of order n is related to a Euclidean
path integral over a replica manifold with n sheets. The replica manifold is diffeomorphic
to a single sheeted manifold with conical singularities along the entangling surface and the
universal contribution to the entropy is captured by the effective action of this manifold.
The singularities must be regulated by introducing a regulator € — 0 of dimension length
for example by cutting a tube of radius € around the entangling surface or by smoothing
out the singularities. The result is the regularized effective action W{g;e] from which the
logarithmic divergences of the entropy can be extracted [45].

The regularized effective action satisfies scale invariance W [A2gap; Ae] = W [gap; €] where
A is a dimensionless constant. The interpretation of this equation is that the length scales
set by the metric g, and by the cut-off £ are not independent. Note that for £ to preserve
diffeomorphism invariance, it must be determined by the metric, for example by equating
it to the proper radius of the cut-out tube. The scaling comes from the assumption that
Jap has units of length squared (to ensure that the line element has units of length squared
when the coordinates are dimensionless) while £ has units of length. Setting A = 1 + 6\
and expanding to linear order in é\, we obtain

9 4 ab
(665 2/da:g

where we used that g? is scaled as A™2¢g%. Substituting (B.2) and integrating with respect

)
o) Wlaiel =0, (B.5)
to e gives [45]

4A 4B
N+ gvlgkg5+“.. (B.6)

s T

WMdZ(
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By the argument explained above involving conical singularities, the entanglement entropies
of a ball and a cylinder are logarithmically divergent as [45]

L
So(R) = ayyloge + ..., Sgyl(R) = vaﬁlogE—i- cey (B.7)
where the coefficients are controlled by the coefficients in the effective action as
1
ayy =44yv, buv =g Buv. (B.8)

The divergences in (B.7) coincide with equations (2.13) and (2.16) in the main text.

C A simple bottom-up model between CFTs

In this appendix we study a simple, bottom-up holographic model that describes theories
with an RG flow between two CFTs. On the gravity side, the background solutions are
obtained from the same gravity action as in section 5.1, given in (5.2). Here we choose a
different superpotential, which will account for the physics we are interested in.

In particular, let us now specify the model by choosing an appropriate superpotential W
which allow us to describe a flow between two CFTs. For this, we want it to have a maximum
at ¢ = 0 and a minimum at ¢ = ¢rR, dual to the UV and the IR CFTs respectively. Imposing
that the superpotential is also invariant under ¢ — —¢, the simplest model we can consider
is one for which the derivative of the superpotential reads

W' (¢) = Wod(d + ¢r) (¢ — ¢1r) » (C.1)
with Wy a constant to be determined. Integrating this simple polynomial we obtain
1
W (9) = ;Wo(" — 20°¢fr) + Vo, (C.2)

with Uy an integration constant. Now, from (5.3) we can get the potential,

 ¢° + 360 + 18¢%¢1g + 49" dir — 20°(3 + 2¢7R)
12029

Note we have fixed the integration constant Uy imposing that V(0) = —3/¢2, in such a way

that the asymptotic AdS radius is £. Similarly, we chose Wy = 1/(¢¢?%;), so that the dimension
of the operator dual to ¢ at the UV is A = 3. As a consequence, the only parameter that

V(¢) = : (C.3)

we are left with is ¢1R, the position of the IR fixed point, related to the dimension of the
operator dual to ¢ in the IR CFT.

Using the same Ansatz for the metric as in (5.8), the ground state can be found
analytically by solving (5.7). We obtain

z A dir oa) 22 A oy SIR/B 242, 2 \ =2 /6
= 7R z) = —— - TIR___ A IR
o) NEYCE R 2P\ TgEarregy ) om FAom) TR
(C.4)
where A corresponds to the source of the operator dual to ¢, since near the boundary
o(z)=Az+..., (C.5)

which breaks conformal invariance explicitly. We can therefore test the ideas from section 2
in this non-conformal, non-confining model. We do this by studying entanglement entropies
of solid balls and cylinders.
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Figure 13. (Left) Entanglement entropy of balls as a function of the radius R. The c-function is
monotonic and constant at the fixed points. (Right) Entanglement entropy for cylinders. Note that at
the UV (R ~ 0) we recover byy = N /(8L) as in (4.29).

C.1 Balls

We are interested in understanding how the entanglement entropy of a ball with its complement
varies as we change the radius of the ball, R. The entanglement entropy in this case is
as in (5.12),

2
S = N/dz eQA(Z)p(z)z\/i2 + e24(2) pf/ (2)2 (C.6)

with N/ = 7/G5. Again, It is easy to solve the second order differential equation obtained
from varying this action numerically, by imposing that the embedding has a tip at some
particular value of the radial coordinate, z = z,

p(z) =z — 2 Z C’,gp)(z —z)". (C.7)

k=0

All of the coefficients C,gp ) are determined once the position of the tip z, is specified. This
corresponds to an embedding that is qualitatively the same as that of figure 2 (left). Since in
here the theory flows to an IR CFT, embeddings like figure 2 (right) are not realized in this case.

With this information, we evaluate the entanglement entropy using the appropriate
counterterms. Note that the UV behavior of the backgrounds and embeddings is the same as
in section 5.1, where the details of the computation can be found. From the entanglement
entropy we then compute the c-function (2.24). The result is shown in figure 13 (left): it is
a monotonically decreasing function between UV and IR fixed points.

C.2 Cylinders

Finally, we consider cylinders in this same theory. After writing # in (5.8) in cylindrical
coordinate, the embedding is specified by ¢ = constant, r = r(z) and ¢, z3 free. The
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entanglement entropy in this case is,

c \ / z 62
St = N/dz Al )7‘(2)\/22 + e24() (r1)2 (C.8)
with N = N'L/2 and L the size of the cylinder.

Like for spheres, here we need to find the embeddings numerically, imposing that at
the tip of the embedding

r(z) =Vze — 2 Z C,gr)(z — 2k, (C.9)
k=0

All coefficients CIET) are again determined once the position of the tip z, is specified. With
the numerical embeddings we can then compute the entanglement entropy after regulat-
ing (C.8) with the appropriate counterterms. With this information, we can compute
Cion(R) from (2.33). The result is shown in figure 13 (right): unlike the LM c-function,
it is non-monotonic in the intermediate region. However, we can see that our conjectured
bound (2.34) is satisfied.

D Confining backgrounds in general dimension

Let us generalize the family of confining holographic duals in (4.1) to a generic dimensionality.
After that, we go over the expressions needed to study the numerical evaluation of the
entanglement entropy. Generalizing (4.1), we propose background string frame metric and
dilaton (depending on internal coordinates) of the form

. dr?
dsly = f1(7) [7«2(_(1752 g P+ f(A8) + s |+ dsfuga (D)
. . . 2
dh9-q = Gijs-a(@)dy'dy’ + f2(7) (A + A(@)dy’ + As(R)do) . @ =a(p),

where the ¢-direction is fibered over a U(1) subgroup of the R-symmetry of the original CFT,
here represented by the Reeb vector d¢. The function f(r) is given by
po 7
fr)=1- rd  2(d-1) - (D2)
To avoid a conical singularity, we need to choose the periodicity of the ¢-coordinate to be
¢ ~ ¢+ Ly with period
B 4rl?
PTG

In our case the radius of curvature £ = 1 and r. is the value of the radial coordinate at

(D.3)

which the ¢-direction pinches off, namely f(r.) = 0.
The case p = 0 preserves SUSY. In other words, the CFTy in the far UV is compactified
according to

CFTy — QFTy ; x S}, (D.4)
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where we define the sphere S?—3 inside QFTy_;. We parametrize the eight manifold by
Y = [Qg-3,0,7,7,&] and compute the holographic EE, resulting in

2
dsg =f [rszde—:; + 7’2f(7“)d¢2 + rzd;(?“) (1+ 7’4f(7")P/2) + dsi2nt,9—d (D.5)
S = N/dr (pr)i? \/W (D.6)
~ 1
N = 4Glo/dgdy dge>*\/ fi" detlgijsalfo (D.7)

The equation of motion derived from (D.5) gives

r3p’3 / P d+1 '\, B-d
S - D) ) + -l (T ) e B

Let us discuss how to set the numerical analysis for generic d.

o+ 0. (D.8)

D.1 Numerical computation of the embeddings

Let us now discuss how to solve the embedding equation numerically. It is useful to perform
some redefinitions. Confinement has an intrinsic energy scale, determined by the position
where the function f(r) vanishes, denoted by r.. Using this, the parameter ¢ in (D.2) is
given by

g2 = i3 (rgl+1 —r M) _ (D.9)

0=Tcp, (D.10)

the equation for the embedding in (D.8) becomes

07 (19 - W=DIQY Ly (PO 1Y (L i)t g -0

2 ¢ fQ < (©) e(¢)
(D.11)
where the function f(¢) in (D.2) using the coordinates in (D.10) reads
F(Q) = ="+ (= 1) 1. (D.12)

Note that the dependence on 7. has factored out, and thus (D.12) only depends on d and
fi. The avoidance of a conical singularity at r = r. implies, according to (D.3), a relation
between the size of the circle ¢ € (0,Ly) and re:

 Ar 4
C 2 fl(re)  re(dp—2(d—1)(a— 1))

After this, the numerical analysis of (D.11) follow similarly as discussed for the case d = 4
below (4.9).

Ly (D.13)
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D.2 The special case of SCFT3; — QFT,

In the case of d = 3, the functional of the holographic entanglement entropy and the equation
of motion (D.11) using the coordinates (4.12) become

S = J\/’rc/dCCQ I (D.14)

#107 (5 - 2f§®)+g<<><§f§;—§)+g"<c>=o, (.15

where f(¢) is given by (D.12) and N is given by (D.7). Since the Lagrangian in (D.14) does
not explicitly depend on p, there exists a conserved quantity associated with translational

symmetry of the entangling region. From the UV QFT perspective, the entangling region is
a strip, and translations orthogonal to the strip leave the setup invariant. The associated
conserved momentum arises naturally via the Hamiltonian formalism, reflecting this symmetry.

We can therefore perform the first integral and find
1
2
0= S , (D.16)
Cef(Q)
10 (& -1)

where we identify the turning point as the value of ¢ = (, at which the p'(¢s) — oco. Integrating

over (D.16) yields the R((x) and plugging the ¢ into the area functional (D.14) gives us
the entanglement entropy S((.) and strip width R((.) as

~ G 1 1
S(¢.) = Nrc/ I S— (D.17)
0 C 1— CAf(¢x)
Cff(()

1/ c*/ s ! . (D.18)

¢z (G
Q) 5G]

We can then use the chain rule [95, 96] to obtain the relation

ds  dS dc.

N[22 2

which can be used for slab-shaped entangling surfaces directly without performing the
integrals and is hence void of scheme dependence or subtleties of regularization. From the
relation (D.19), we can directly compute the c-function.

At this point, we have a choice for two different measures of degrees of freedom: lower-
dimensional and higher-dimensional c-functions. In the IR, the theory can be effectively
described using the lower-dimensional theory, i.e., the (1 4+ 1)-dimensional QFT. In this case,
the entangling region is an interval and the corresponding LM c-function emerges

Cum(R) = RS'(R) = N1 () F(G) R(G) 4 (D.20)

where R((,) is given in (D.18) and so one needs to revert ¢, = (.(R). This c-function in (D.20)
is plotted in figure 14 (left) for three choices of p. The plot shows how in the UV region the
Crm(R) grows without bound as R~! for small values of R, which correspond to small values
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Figure 14. (Left) The IR LM function as obtained through the use of the chain rule. The transition
to the trivial, “disconnected” configuration shown in orange, marks the point of finite correlation
length. (Right) The UV LM c-function relevant for strips. The curves correspond to three different

, %, 3} from dark blue to light blue, respectively.

values of u = {0
of (. This is signaling that the c-function no longer accounts for the correct number of degrees
of freedom, as in this limit the flow ends in a theory in one dimension higher. Conversely, if
C« is large, we are exploring the deep IR, in which case we encounter the expected: there are
no degrees of freedom visible for scales larger than the correlation length set by 7.t

However, looking the theory from UV perspective, we will use the strip c-function for
(2 4 1)-dimensional field theory (see below equation (A.6))

R

CSlb(R) = I, RS'(R), (D.21)

where Ly is given by (D.13). The c-function (D.21) captures the UV fixed point, and flows to a
constant value of ./\~/’L;517T (%)2 at the UV as shown in figure 14 (right). In both cases, the
c-function drops to zero at the critical point where the entanglement phase transition occurs.

If one is interested in the result for the entanglement entropy, then one needs to regularize
it. One option is to subtract the trivial embedding, the “disconnected” configuration ~ [ d¢ C%
from (D.17). One then expects a phase transition in the EE, following what is discussed

in [7]. The results for EE are shown in figure 15, where the phase transition is evident.

The pu = 0 SUSY background. Curiously, for © = 0 we have a SUSY-preserving
background, and we can integrate the on-shell action giving us an analytical result in terms
of hypergeometric functions. The entanglement entropy S((.) and strip width R(() read

2572 (¢! - 1) o8 (3,45 4i!)

* :-/\7 c .
S(¢x) T 12593 CT (%)2 +1 (D.22)
Ric) VG 1T (D)2h(345¢) D23

i ()
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Figure 15. Entanglement entropy for three different values of u = {0, %, 3} from dark to light blue,

respectively. The phase transition from “connected” configuration to “disconnected” one occurs at the
point where the blue curves (“connected”) intersect with the orange one (“disconnected”).

The entanglement entropy here has the same form as the one derived for the QFT on a strip.
In figure 15 we show the S(R) curves solved for three values of ;, where the solutions are
obtained by numerically integrating (D.17) and (D.18). The analytical solution obtained for
1 = 0 coincides with the numerical solution, and matches with the darkest blue curve. The
c-function curve for analytical solution similarly matches with the © = 0 curve in figure 15
(dark blue) and it drops to zero at the critical point. However, this behavior disappears in
the limit of ¢ — 0 in which the background is no longer confining.

E Details of the holographic setup of section 4

In this appendix, we describe the holographic dual to a family of four-dimensional CFTs
that gets compactified on a circle (with a twist). The construction starts with duals to six-
dimensional SCFTs with N = (1,0) SUSY and ends with the family of backgrounds in (4.1).
The construction proceeds in three steps that we describe in subsections E.1, E.2; and E.3
below. A different perspective on this can be found in [97].

Let us start with a summary of six-dimensional N' = (1,0) conformal field theories
and their holographic description. The relevant Hanany-Witten setups [98] were presented
in [99]. The associated field theories preserve eight Poincaré supercharges, have SO(1,5)
Lorentz and SU(2) R-symmetries. In more detail, the field theories with /' = (1,0) SUSY
are constructed in terms of the following multiplets:

o Tensor multiplets with field content (B, A1, A2, ¢): a two-form with self-dual curvature
Hs = dB>, two fermions, and a real scalar.

o Vector multiplets with field content (A, 5\1,5\2): a six-dimensional vector and two
fermions.

o Hypermultiplets with field content (1, v2,11,12): two scalars and two fermions.

« Linear multiplets with field content (7, ¢,€) an SU(2): a triplet and a singlet, together
with a fermion.
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t 1 X9 T3 X4 X5 | Tg | T7 T X9

NS5 | e e ° ° ° °

D6 ° ° ° ° ° ° °

DS§ e o ° ° ° ° . . ° °

Table 2. The generic brane set-ups. All the branes are extended on the Minkowski R® directions.
The D6-branes also extend over zg where they have finite size extension between NS5-branes. The
D8-branes also extend along the z7, zs, and xg directions, preserving SO(3)z symmetry.

The field theories have a ‘tensor branch’ when the scalar ¢ acquires a non-zero VEV. In this
case, the SU(2)r symmetry is preserved. On the other hand, when the scalars inside the
hypermultiplet or the linear multiplet get VEVs, we explore the Higgs branch breaking the
R-symmetry. In what follows we will be concerned with the tensor branch only.

To reproduce the Lorentz and R-symmetry mentioned above, the authors of [99] dis-
tributed D6-, NS5-, and D8-branes according to table 2.

When the NS5-branes get very close together, at the origin of the tensor branch, the
system goes to strong coupling and reaches a UV fixed point. We describe holographically
this fixed point, to begin with.

E.1 Holographic description of the 6d SCFTs

Let us now discuss the holographic description of the CFTs that appear when we move to
the origin of the tensor branch. This description was developed in a set of papers, most
notably [64, 100-106]. We adopt the notation of [106]. The six-dimensional SCFTs have
SO(2,6) x SU(2)g bosonic symmetries, see for example [107, 108]. They are realized as the
isometries of a Massive Type IIA background of the form as

ds® = fi(2)dshgs, + fo(2)d2? + f3(2)dQ5(x, €)
BQ = f4(Z)V01(QQ)a F2 = f5(2) VOIQ2 ; €¢ = f6(z) 5 FU = FO(Z) 5 (El)

where we have defined dQ3(x, &) = dx? + sin? xy d¢? and Volg, = sin x dy A d¢ is the volume
form on S2.

If we impose that the N' = (1,0) SUSY is preserved by the background, we need the
functions f;(z) to satisfy some first-order and nonlinear differential equations. These BPS
equations are solved if the functions f;(z) in (E.1) are all defined in terms of a function a(z)
and its derivatives — see [64, 101-106] for the details,

fiz) = 8vam [~ 5 o) = Vamy |-,

fa(z) =V2r o <042> , falz)=m (z + OM,) , (E.2)

a’? — 200

(_a/a//)?)/zl

folz) = 22230 L2

M
o’* = 2aa”
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where «(z) is required to satisfy the differential equation
o = —16273Fy . (E.3)

The function «(z) must be piecewise continuous, this implies that Fy can be piecewise
constant and discontinuous. The internal space M3 = (z,{) is a two-sphere ‘fibered’ over
the z-interval. The warp factor f3(z) must vanish at the beginning and at the end of the
z-interval (z = 0 and z = P by convention), in such a way that the two-sphere shrinks
smoothly at those points. For a piecewise constant and possibly discontinuous Fy(z), the
general solution to (E.3) in each interval of constant Fj is,

az o 162w3Pb23

a(z) =ag+ a1z + b 5

As we observed above, the function «(z) is in general piecewise continuous and generically a
polynomial solution like the one above should be proposed for each interval [z;, z;+1]. Imposing
that the two-sphere shrinks smoothly at z = 0 and z = P implies that o(0) = a(P) = 0.

In general, we work with functions «(z) for quivers with (P — 1) gauge groups, such
that their second derivative reads,

Nz 0<z<1
o (z) = —81xn? Ni+ (Ngy1 — Np)(z—k) kE<z<(k+1), k=1,...,P—1.
Np_1(P —2) (P-1)<z<P.

Integrating twice and imposing continuity and a(z = 0) = a(z = P) = 0, we find the cubic
function a(z), with all its integration constants fixed. Let us find general expressions for the
brane-charges associated with the backgrounds in (E.1). Following [109, 110] we calculate
the Page charges. The results for the charges of NS5-, D6-, and D8-branes are:

e There are P NS5-branes, each of them could be thought to sit at positions z =0,1,2,....

o In the interval k < z < (k + 1) there are N D6-branes, leading to a SU(Vy) gauge
group.

 In the same interval, there are Fy, = 2N — N1 — Ni_1 D8-branes, generating a SU(F},)
flavor group.

The family of backgrounds in (E.1)—(E.2), parametrized by the function «(z), is dual to the
family of 6d SCF'Ts at the origin of the tensor branch described by the Hanany-Witten setups
of table 2. Now, let us discuss the construction of the 4d SCFTs obtained by compactification
of the above family on a hyperbolic space.

E.2 The dual to a family of 4d SCFTs

We proceed to compactify the family of 6d SCFTs to four dimensions. The internal (compact)
manifold is chosen to be a hyperbolic space with metric

(dx% + da:%)

dsf = L1 2
e T @i ag 1)

(E.4)
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When we perform the twist, a mixing between the R-symmetry and the Lorentz group of
the 6d theory, we need to do it judiciously in order to preserve some amount of SUSY (four
supercharges in this case). The twist is done by the introduction of the one-form A, in (4.1):

Ag = 2 (l’ldl'g — ZL'QdSBl) . (E5)

2

The background metric reads,

dr? 4(dz? + da3)
ds2, = 36, |—-2) { 2(_de? + dg?) + = L G E.6
510 Vor a(z) i +dys) + r2 3(x? + 2% —1)2 (E.6)
1 1
o (Z) Z2 _ Oé(Z)Oé (Z) (dx2+sin2 X(d§+Ag)2) .

~6a(z) (6c/(2)2 — 9a(2)a”(2))
There are an accompanying dilaton, NS two-form, and Ramond F3, Fy forms. The complete
form of the background can be found in [39], where the holographic dual to the full flow
AdS; — AdSsx H, is written.
Up to this point we have given the holographic description of the flow from the 6d SCEF'Ts
with /' = (1,0) to a family of N’ =1 4d SCFTs. The four-dimensional family of conformal
field theories is non-Lagrangian as argued in [36, 39).

What remains now is to describe the last part of the (holographic) flow, from the family
of 4d SCFTs to the family of gapped 3d QFTs.

E.3 The flow to a family of gapped systems

What remains now is to describe holographically the flow from the 4d SCFT to a 3d
gapped QFT. Note that as the family of 4d SCFTs is non-Lagrangian, the holographic
approach appears to be the best (and sometimes the only) method to perform calculations
of observables along such a flow.

As we briefly described in section 4 the procedure (in field theoretical terms) is just
a compactification of the 4d SCFTs on a circle with anti-periodic boundary conditions for
fermions and periodic for bosons. This alone breaks SUSY. The possible instabilities are
prevented by a second twisting procedure, now mixing the compact space-like circle with the
U(1) g associated with the R-symmetry of the UV-SCFT,. This twist is implemented by the
one form Ay = 3q(%2 - %)dgf) in (4.1). This twist is incorporated by replacement in (E.6),

dr?

fr)r?
dx? + sin? x(d€ + Ay)? — dx? + sin® x(d€ + A, + Ag)?. (E.7)

d 2
r? (—dt? + dif) + %2 — (= d? + dp? + 2B + f(r)de?) +

In this way, the ¢-coordinate becomes periodic and shrinking with the period determined
by (4.3). We also twist (mix) the ¢-circle with the R-symmetry U(1)¢, associated with the
Killing vector d¢. The function f(r) =1— & — g—z asymptotes to f ~ 1 for large values of the
radial coordinate implying that the UV is described by the family of 4d SCFTs. For r — r
the ¢-circle shrinks, rendering the QFT three-dimensional. Whenever the parameter g in
f(r) is nonzero, SUSY is broken (irrespective of the twists by A, and A,). In the main body
of the paper we have preferred the case ; = 0 as this avoids potential instabilities.

This completes the description of the flow for a family of 6d SCFT into a family of 4d
SCFTs that in turn flow to 3d QFTs with a mass gap.
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