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ARTICLE INFO ABSTRACT

Air pollution poses a significant health risk for young children, particularly in urban and deprived areas.
Exposure to fine particulate matter (PMg5) during early life may contribute to long-term adverse health out-
comes. This study examined changes in PMy s concentrations around Early Years Providers (EYPs; childcare
providers) in England from 2018 to 2022. We assessed associations between small-area socio-demographic
characteristics and exposure levels exceeding the World Health Organisation (WHO) 2021 annual air quality

Dataset link: Towards Cleaner Air: PM2.5
Exposure and Disparities Around Childcare
Providers in England (Original data)

I;gv;gﬁi:;ion guideline (>5 pg/m>). We integrated data on EYPs locations from Ordnance Survey with annual PM, 5 estimates
Bayesian from DEFRA using Geographic Information Systems and socio-demographic indicators — deprivation, urban-
Environmental justice icity, and ethnic composition. A Bayesian spatial regression model with random effects was used to estimate
Geospatial adjusted associations between PM; s levels and local population characteristics. The number of EYPs ranged from
Nur;eries 15,780 in 2018 to 18,427 in 2019. Mean PMj; 5 levels around EYPs changed by 17.8 % over the study period
Paediatric

(from 9.4 pg/m3 [SD = 1.8] in 2018 to 7.8 pg/m3 [SD = 1.5] in 2022). However, PM> 5 levels at over 96 % of
EYPs remained above the WHO, 2021 annual guideline throughout. Higher PM; 5 concentrations were observed
in EYPs located in more deprived, urban, and predominantly non-white communities. Despite recent improve-
ments, PM; 5 levels around most EYPs in England remain above recommended thresholds. Targeted interventions
in deprived urban areas are needed to reduce young children’s exposure and address environmental health
inequalities.

1. Introduction 2022). Children, particularly preschool-aged children, are especially

vulnerable to the adverse effects of air pollution due to their smaller and

Poor ambient air quality is associated with increased mortality and
morbidity (Tong, 2019) and the reduction of these effects is designated
as one of the United Nations Sustainable Development Goals (SDG target
3.9.1) (UNGA, 2015). Poor air quality contributes to an estimated 29,
000 to 43,000 premature deaths annually in the UK (Mitsakou et al.,
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developing airways, higher breathing rates, and greater time spent
outdoors including at nurseries and schools, compared to adults
(Goldizen et al., 2016; Schraufnagel et al., 2019). Understanding the
impact of air pollution exposure on this vulnerable population is
therefore crucial.
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There is no established safe level of ambient air pollution exposure
(Marks, 2022). The 2021 World Health Organization Air Quality
Guidelines (WHO AQG) for fine particulate matter that are 2.5 pm or less
in diameter (PM3 5) recommends an annual mean concentration target
of 5 pg/m® (WHO, 2021). However, recognising that not all regions can
achieve this target immediately, the WHO also introduced interim tar-
gets as milestones on the path toward 5 pg/m®>. These interim targets are
set at 35, 25, 15, and 10 pg/m3 (WHO, 2021). The WHO does not
mandate a specific global deadline for achieving these interim targets, as
the pace of implementation varies by country and region, depending on
local air quality challenges, policies, and capacities. These interim tar-
gets serve as benchmarks for governments and policymakers to aim for
in reducing air pollution over time. In the UK, the government has set an
annual mean concentration target of 10 pg/m® of PMy 5 to be achieved
by 2040 under the Environment Act (DEFRA, 2023b).

Exposure to fine particulate matter in childhood is linked to a range
of health problems. Short-term exposure exacerbates asthma and other
respiratory conditions (Liu et al., 2018; Wang et al., 2021), while
chronic exposure may lead to lifelong reductions in lung function
(Zhang et al., 2022), and increase the risk of asthma development
(Whitty and Jenkins, 2022). There is increasing evidence of links be-
tween air pollution exposure and reduced cognitive function (Chandra
et al., 2022; COMEAP, 2023).

Given these concerns, there has been large media and research in-
terest in air quality around schools, including a literature review that
included 14 studies in the UK alone (Osborne et al., 2021a). In 2021, a
study concluded that approximately one third of state-funded schools
providing education up to the age of 18 years with over 3.3 million
students were located in areas where the WHO guideline for PM; 5 (then
10 pg/mg) was exceeded in 2017 (Osborne et al., 2021b). The study also
highlighted that these high-pollution areas disproportionately affected
socio-economically disadvantaged and ethnically diverse pupils, with
such schools often situated near major roads and lacking greenspace
(Osborne et al., 2021b). Mahfouz et al. (2024) reported that 100 % of
new schools’ sites in England breached the WHO AQG for PMy s.

However, these studies have focused mostly on schools and
commuting routes in London, and none have examined the air quality
around Early Years Providers (EYPs), which include nurseries, kinder-
gartens and preschools that offer childcare services for children under 5
years old. Only one study, not peer reviewed, has specifically examined
PM; 5 exposure around EYPs; and this focused solely on PM; 5 concen-
trations around EYPs in London (Greater London Authority, 2024). This
study recommended measures to reduce emissions and exposure,
including "no engine idling" schemes, reducing emissions from boilers
and kitchens, creating school streets, adding green barriers, promoting
active travel, and trialling indoor air filtration systems (Greater London
Authority, 2024).

Our aim was to examine changes in PM; 5 around EYPs in England
from 2018 to 2022 and to identify neighbourhood characteristics asso-
ciated with EYPs located in areas where PM, 5 levels exceed interna-
tional guidelines. Our objectives were to (i) evaluate temporal changes
in PMy 5 concentrations at EYPs focusing on variations in exposure by
socio-demographic factors; (ii) identify any clustering of EYPs in areas
where PM; 5 exceeds the UK target to be reached by 2040 (WHO interim
target level of 10 pg/m3); and (iii) evaluate the association between
small-area level socio-demographic (deprivation, ethnicity, and rural-
urban classification) and PMs 5 concentrations around EYPs.

2. Material and methods
2.1. Data sources
2.1.1. Early Years Providers
EYPs locations in England were sourced from the Ordnance Survey

(OS) “Points of Interest™” data (Ordnance Survey (GB), 2018, 2019,
2020, 2021, 2022), which are updated quarterly. For this study, we used
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OS Points of Interest data published in March of each year for the period
2018 to 2022. We selected “Nursery Schools and Pre and After School
Care" from that dataset with the PointX class code of “05320397”. This
category covered: After School Care, Child Care, Childcare Services,
Creche, Day Nursery, Independent Nursery School, Independent
Pre-Preparatory School, Nurseries and Creches, Nursery School,
Organised Children’s Play Schemes, Playgroups, Pre School-Education,
and Pre School. This list of EYPs was then de-duplicated to provide
one EYPs per location as EYPs were sometimes categorised under more
than one service type (e.g. nurseries that also provided after-school
care).

2.1.2. PMys

We focused on PMj; 5 concentrations for our main analyses as the
regulated ambient air pollutant with the greatest evidenced impact on
health in the UK (COMEAP, 2023; Garcia et al., 2023). Data on PMy 5
concentrations was sourced from the UK Air Information Resource (AIR)
(DEFRA, 2023c), which provides annual mean concentrations of PMs 5
across 1 km * 1 km grids in England. We attributed grid-based PMy 5
concentration values to point locations representing EYPs using a spatial
join for each year from 2018 to 2022. These point locations correspond
to the x, y coordinates of the EYPs, enabling the assignment of air
pollution data to their exact geographic positions.

2.1.3. Data sources for small-area level characteristics

To examine area-level socio-demographic characteristics, we used
the Lower Super-Output Area (LSOA) corresponding to each EYP’s
geographic location. LSOAs consist of 400 to 1200 households and
typically have a resident population ranging from 1000 to 3000 people
(ONS, n.d.).

We used the Ministry of Housing, Communities and Local Govern-
ment’s (Noble et al., 2019) Income Deprivation Affecting Children Index
(IDACI) to assess deprivation of the LSOAs in which the EYPs were
located. IDACI is a LSOA-level measure of child poverty based on the
proportion of children aged 0-15 years living in income-deprived
households. Income-deprived households are defined as those where
occupants are receiving income-related benefits (e.g. income support,
jobseeker’s allowance, working families tax credit, and/or disabled
persons tax credit) (Noble et al., 2019). Data on the ethnic group dis-
tribution by LSOA was obtained from the 2021 England and Wales
Census data (ONS, 2023). The Rural-Urban classification for LSOA in
England for 2011 was obtained from the Department for Environment,
Food and Rural Affairs (DEFRA, 2013). We assigned these LSOA-level
data on small-area characteristics from polygon-based spatial datasets
to point locations representing EYPs through a spatial join for each year
from 2018 to 2022.

2.1.4. Variable definitions

Our primary outcomes were: a) the PMs 5 concentration levels at the
locations of EYPs in England and b) the proportion of EYPs situated at
locations where PM, s concentrations exceeded the WHO AQGs (WHO,
2021). We examined the latter using two thresholds: in comparison with
the WHO guidelines level (5 pg/m®), and the UK target to reach by
2040/WHO interim target of 10 pg/m> (WHO, 2021). These thresholds
allowed us to assess the distribution of exposure relative to both
guidelines for the protection of health, and legal limits.

The IDACI deprivation measure ranks areas in England based on
deprivation, with values ranging from 1 (most deprived) to 32,844 (least
deprived), representing the total number of LSOAs. For our analysis, we
categorised this variable into quintiles: Quintile 1 (most deprived) to
Quintile 5 (least deprived).

We categorised LSOAs as ‘white’ where >50 % of the population
identified as white and as ‘other than white’ where >50 % of the pop-
ulation identified as Asian, black, mixed, or other racial/ethnic groups.
This classification was chosen because, during preliminary analysis, the
number of EYPs in LSOAs where ethnic minority groups comprised >50
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% of the population was very small (fewer than 8 % of providers).
Further dividing these areas into more specific ethnic group categories
according to most frequently recorded group would have reduced the
statistical power of the analysis.

We used the 2011 Rural-Urban Classification for LSOAs in England
(DEFRA, 2013) to create a binary variable, ‘Rural’ and ‘Urban’. The rural
category encompasses towns and fringe areas, villages, hamlets, and
isolated dwellings, while the urban category includes major and minor
conurbations, as well as cities and towns (DEFRA, 2013). This binary
classification was chosen to increase the statistical power of the analysis.

We used calendar year of the study period to explore trends in PMy 5
around EYPs. The study period (2018-2022) included the national
lockdown periods implemented in response to the COVID-19 pandemic
in England (Brown and Kirk-Wade, 2021). The first lockdown in England
began on March 23, 2020, with partial easing of restrictions starting on
10 May and more substantial lifting on July 4, 2020. A second, shorter
lockdown took place from 5 November to December 2, 2020, after which
a regional tier system was introduced. A third national lockdown
commenced on January 6, 2021, followed by a phased easing of re-
strictions: schools reopened on 8 March, non-essential businesses on 12
April, and indoor hospitality on 17 May. Most remaining legal re-
strictions were lifted on July 19, 2021, marking the end of the lockdown
periods.

2.2. Statistical methods

We evaluated the number and proportion of EYPs between 2018 and
2022 that were situated in areas where PMj 5 levels exceeded the WHO
AQG (<5 pg/mg) and the lowest interim target (<10 pg/m3). For cate-
gorical variables (IDACI, ethnic composition, and urbanicity), we
calculated the annual total and respective percentage of EYPs, while for
continuous variables (PMj 5 annual mean concentration), we reported
the mean, standard deviation (SD), median, minimum, maximum
values, and interquartile range for each year. To explore variations in
PM, 5 concentrations across different socio-demographic factors, we
created boxplots stratified by year. We assessed within-year compari-
sons of PMj 5 concentrations using non-parametric tests. For multiple
categories (e.g. IDACI quintiles), we used the Kruskal-Wallis test to
evaluate differences in PM3 5 concentrations for each study year. When
significant differences were detected, we conducted Dunn’s post-hoc test
with Bonferroni adjustment for pairwise comparisons. For binary cate-
gorical variables (e.g. rural-urban classification), we applied the Wil-
coxon rank-sum test to assess differences in PMj s concentrations within
each year, with p-values adjusted for multiple comparisons.

To identify spatial clustering of EYPs exceeding the PMy s WHO
lowest interim target, we analysed the spatial pattern of air pollution
exposure using Global Moran’s I and Local Moran’s I. We first used
Global Moran’s I (Moran, 1948) to measure the overall degree of spatial
autocorrelation between annual concentrations of PMs 5 at each EYP. A
Global Moran’s I near 1 (or —1) indicates values of locations that are
close in space tend to be similar (or dissimilar) to each other, and a
Moran’s I close to 0 implies a scatter of random values across space. A
statistically significant Moran’s I (p < 0.05) is indicative of the existence
of a significant spatial autocorrelation in the data values. For each year,
we calculated the Global Moran’s I statistic to assess the spatial auto-
correlation of PMj 5 concentrations at the EYP level. The neighbours of
each EYP are defined as those within a circle of a 2 km radius centred at
that EYP. The resulting spatial weights matrix is row standardised so
that all weights lie between O and 1 (Esri, 2024). This method is
commonly used when the distribution of features might be biased by
sampling design or aggregation, and it helps to mitigate bias due to
varying numbers of neighbours (Esri, 2024). Row-standardised
weighting is particularly suitable for fixed distance neighbourhoods
(Esri, 2024).

To identify priority intervention zones and track progress towards air
quality targets, we then used Local Moran’s I (Anselin, 1995) to analyse
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spatial patterns (clusters and outliers) of EYPs exposure to PM5 5. Local
Moran’s I value indicates positive spatial autocorrelation whereby, in
the context of our study, EYP locations that are close in space tend to
have similar PM; 5 values. It was calculated according to the following
criteria, using the nearest neighbour algorithm: Euclidean distance as
the measurement method, a threshold distance of 2 km to establish
spatial relationships. The row-standardised spatial weights matrix is the
same as that used for calculating the Global Moran’s 1. This technique
classifies EYPs into four categories based on their spatial association
with annual PM, 5 concentrations: High-High (significant clusters of
high PM, 5 values), Low-Low (significant clusters of low PM, 5 values),
High-Low (high PMj 5 values near low values), and Low-High (low PM3 5
values near high values). The cut-off value for classifying high or low
PM, 5 concentrations varied across the study period, with values ranging
from 7.5 pg/m® in 2021 to 9.6 pg/m° in 2019, reflecting year-to-year
variation in PMy 5 levels. To ensure comparability across years, we
assess High-High clusters by counting the number of clusters where
PM, 5 concentrations exceed 10 pg/m3 each year, and we assess
Low-Low clusters by counting those where PM; s concentrations are
<10 pg/m?>. This approach allows us to consistently compare the pres-
ence and distribution of high and low concentration clusters in relation
to the WHO guidelines over time. To assess the likelihood of cluster or
outlier status, we employed 9999 permutations, determining signifi-
cance with a p-value threshold of <0.05, adjusted for multiple testing
using the False Discovery Rate (FDR) correction (Benjamini and Hoch-
berg, 1995). Permutation testing is a robust, non-parametric method
commonly used in spatial analysis to generate empirical distributions
under the null hypothesis (Anselin, 1995). In this context, permutations
involved randomly reassigning data values to different locations 9999
times, creating a distribution of spatial patterns that could occur purely
by chance. By comparing our observed spatial pattern to this random
distribution, we determined if the observed clusters and outliers were
statistically significant or if they could likely have arisen randomly.
Given that we performed multiple tests across many locations, each with
its own potential p-value, the likelihood of false positives increased -
meaning we might have identified random clusters as significant. The
FDR correction addressed this by adjusting the p-value threshold
downward from 0.05 to a more stringent level, effectively controlling for
the increased risk of false positives across multiple tests (Benjamini and
Hochberg, 1995). This adjusted threshold better reflects a true 95
percent confidence level across the dataset, ensuring that clusters
identified as significant were unlikely to be due to random chance. Both
spatial autocorrelation, cluster and outlier analysis and mapping were
conducted in ArcMap 10.3.1 for Desktop (Esri, 2015) and ArcGIS Pro
3.2.0 (Esri, 2023).

To evaluate the association between small-area level socio-
demographic (deprivation, ethnicity, and rural-urban classification)
and PM; 5 concentrations near EYPs, we developed a Bayesian spatial
regression model with random effects. The response variable was the
mean annual concentration of PM; 5 at each EYP. Although we tested
this variable for normality using the Kolmogorov-Smirnov test and
visualised it through plots (Fig. S 2), PMy5 concentrations did not
strictly follow a normal distribution. Nonetheless, we assumed a normal
distribution, as this assumption pertains to the residuals rather than the
data itself, and Bayesian hierarchical models are robust, especially when
handling aggregated or slightly non-normally distributed data (Gelman
et al., 2013). The Bayesian framework enabled us to construct realistic
models that incorporated spatial dependencies and accounted for vari-
ability in PMys exposure (Cheng et al., 2021). This approach also
allowed us to assess the robustness of our conclusions under different
model assumptions and incorporate uncertainty from both data and
model parameters.

Let y; represent the PM3 5 concentration at each EYPi =1, ..., Nin
year t (witht =1, ..., 5, with 1 representing 2018). The model is spec-
ified as:
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Yie ~ Normal(p,,, 6%)

Where:

Yie = Po + P *IDACI + B, *Ethnicity; + f5*Urbanicity; + v, + Ursoaj)
+ Visoali
(Equation 1)

In this equation, f, is the intercept, while f,, ..., , are the regression
coefficients for the covariates: IDACI (Income Deprivation Affecting
Children Index, 2019 Quintiles at LSOA population level), Ethnicity
(Ethnic Composition at LSOA population level), Urbanicity (at LSOA
population level), and 74, ...,y5 are the year effects with y; = 0 (i.e.
setting 2018 as the reference). The term u;soa; denotes the spatially
structured random effect modelled via the Besag intrinsic conditional
autoregressive structure to account for spatial dependence between
neighbouring LSOAS; visoaj represents the spatially unstructured
random effect at the LSOA level, capturing random noise or additional
residual variability not explained by the covariates.

Spatial random effects were specified using the Besag-York-Mollié
(BYM) model (Besag et al., 1991), combining spatially structured
random effects, modelled via an intrinsic conditional autoregressive
(ICAR) model and spatially unstructured random effects (modelled via
an exchangeable normal distribution) (IID) (Besag, 1974). To account
for spatial dependency, we defined neighbourhood structures among
LSOAs using Rook’s case contiguity, where two LSOAs are considered
neighbours if they share a common boundary (Besag, 1974; Besag et al.,
1991). This adjacency information was incorporated into the model via
an adjacency matrix, enabling to capture spatially structured random
effects based on the assumption that geographically close areas exhibit
similar PM, s levels (Cressie, 2015), a feature of our data that we will
show in Fig. 1 and in Table S2.

Prior distributions were assigned to the model parameters, including
the regression coefficients and the random effects. Vague normal priors
N (0, 1000) were used for the regression coefficients, reflecting minimal
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prior knowledge about their values. The precision parameters for the
random effects were assigned a Gamma (1, 0.00005), providing a non-
informative prior that allows the data to drive the estimation. Preci-
sion parameters are the inverse of variance, controlling the spread or
variability of random effects in the model. High precision indicates low
variance, leading to more tightly clustered values around the mean,
whereas low precision suggests higher variability (Gelman et al., 2013).

The analysis was conducted using the Integrated Nested Laplace
Approximation (INLA) method via the R-INLA package (Rue et al.,
2009). INLA is particularly suited for fitting complex spatial models
efficiently, even with large datasets like the one used in this study
because it significantly reduces computational burdens compared to
traditional Markov Chain Monte Carlo (MCMC) methods (Rue et al.,
2009). We also considered different versions of the model: one with
covariates only; one with random effects only, and the intercept-only
model. Model comparison was performed using the Deviance Informa-
tion Criterion (DIC) and the Watanabe-Akaike Information Criterion
(WAIC), both of which evaluate model fit and complexity. The model
with the lowest DIC and WAIC values was selected as the most parsi-
monious, final model. To assess model fit, we compared fitted versus
observed PMj; 5 values using a scatter plot, examining the alignment of
data points along a 45-degree reference line (y = x). This visual check
allowed us to evaluate the model’s predictive accuracy across the range
of PM; 5 concentrations and detect any systematic deviations.

2.3. Sensitivity analysis

One limitation of the UK-Air modelled concentration maps is their
coarse spatial resolution (1 km x 1 km), which may obscure finer-scale
variability in pollutant levels and lead to inaccuracies when estimating
exposure at specific school locations (Osborne et al., 2021b). To assess
the potential impact of this limitation and to demonstrate the conver-
gent validity of our main exposure, we conducted a sensitivity analysis
using higher-resolution data (10 m x 10 m) for PMj 5 concentration data
for Birmingham and its surrounding areas (referred to here as

2020

Legend

Annual mean concentration of PM2.5 (ug/m?)
® <50
50-<80
80-<10.0
10.0-=12.0
e >120
England

,WL

Fig. 1. Annual mean concentrations of PM, 5 (ug/m>) estimated at each Early Year Provider’s (EYPs) location across England during the period of 2018-2022.
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Birmingham). Birmingham was selected as it is one of the largest urban
conurbations in England, with diverse socio-demographic characteris-
tics and significant air pollution challenges, making it a representative
area for validation. Furthermore, the additional data used have been
peer-reviewed and are derived from high-resolution modelling tech-
niques, validated against local observations, providing a robust bench-
mark for comparison (Zhong et al., 2021, 2024). For this analysis, we
compared exposure results obtained from two datasets for the year
2019: the UK Air Information Resource (UK-AIR) (DEFRA, 2023c),
which provides PM, 5 data at a 1 km x 1 km resolution and that we used
for our main analysis, and the WM-Air ADMS-Urban model (Zhong et al.,
2021; Zhong et al., 2024) which offers a finer street-scale resolution of
10 m x 10 m. By focusing on Birmingham, where high-resolution data
were available, we assessed whether the coarser UK-AIR dataset yielded
similar results to the more detailed WM-Air model for 2019. We used the
Wilcoxon signed-rank test with continuity correction to evaluate
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differences between the two datasets, thereby assessing the consistency
of PM; 5 estimates across resolutions and validating our exposure mea-
surements for EYPs.

3. Results

A total of 21,893 unique EYPs were identified in England between
2018 and 2022. The number of EYPs registered in each year ranged from
15,780 in 2018 to 18,427 in 2019 (See Supplementary material: Table S
1

From 2018 to 2022, the annual mean PM; 5 concentration near EYPs
in England decreased by 17.8 % (from 9.4 pg/m°>, SD = 1.8-7.8 pg/m°,
SD = 1.5, Table S 1). Despite this downward trend, the annual mean
concentration of PM, 5 near EYPs remained above the WHO AQG of 5
pg/m? throughout (Table S 1; Fig. 1). However, during this period, we
observed a substantial increase in the proportion of EYPs locations that
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(Income Deprivation Affecting Children Index), (b) Ethnicity, and (c) Rural-Urban Classification. Each boxplot illustrates the distribution of PM, 5 levels for each
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met the <10 pg/m> guideline of annual mean concentration of PM s,
rising from 62 % (n = 9862) in 2018 to 94 % (n = 15,702) in 2022.
Nevertheless, by 2022, 90 % (n = 14,958) of the EYPs were located in
areas with mean annual concentration of PMj 5 between 5 and 10 pg/
m>. EYPs were located in LSOAs with a predominantly white population
and this was consistent across study years (Table S 1). Urban areas
housed between 78 % (2018: n = 12,264) and 80 % (2020: n = 14,031)
of EYPs, emphasising a significant urban concentration. The distribution
of EYPs across IDACI quintiles were also consistent across the study
period and evenly distributed across quintiles (16-23 % in each) sug-
gesting an even spread across deprivation quintiles (Table S 1).

Fig. 2 illustrates the annual mean PM; 5 concentration from 2018 to
2022, highlighting variation across factors such as deprivation (IDACI
quintiles), ethnicity, and rural-urban classification. In 2018 and 2019,
the concentration of EYPs in areas where PM, 5 levels exceeded the
WHO interim target (>10 pg/m®) was higher in the most deprived areas
(IDACI Quintiles 1 and 2) compared to the least deprived areas (Quintile
5). Specifically, in 2018, 43.6 % of EYPs in Quintile 1 (1111 out of 2550)
were above the target, compared to 30.5 % in Quintile 5 (1098 out of
3605). A Kruskal-Wallis test indicated significant differences in PMj 5
levels across IDACI quintiles (H(4) = 288.1, p < 0.001). Following this,
Dunn’s post-hoc test revealed significant pairwise differences, including
between Quintile 1 and Quintile 5 (z = —11.9, p < 0.001, Bonferroni-
adjusted), indicating that Quintile 1 had a significantly higher propor-
tion of EYPs exposed to PMy 5 above 10 pg/m> compared to Quintile 5.
In 2019, this trend persisted, with 44.7 % of EYPs in Quintile 1 (1558 out
of 3484) exceeding the target versus 27.8 % in Quintile 5 (1068 out of
3843) (H(4) = 539.0, p < 0.001, z = —17.7, p < 0.001, Bonferroni-
adjusted) (Fig. 2a). Although there was a decrease in the proportion of
EYPs with high exposure (>10 pg/m?) across all IDACI quintiles in 2020
(mean = 7.5 pg/ms, SD = 1.3) and 2021 (mean = 7.3 pg/mB, SD =1.0),
PMS, 5 levels began to rise again in 2022 (mean = 7.8 pg/m°, SD = 1.5),
particularly impacting EYPs in the most deprived quintiles (Fig. 2a).

While only a small proportion of EYPs were located in LSOAs pre-
dominantly composed of ’other than white’ ethnic groups (8.3 % in
2018, n = 1313; 8.8 % in 2019, n = 1618) (Table S 1), the majority of
these providers were exposed to PMy s levels above the WHO AQG
lowest interim target of 10 ug/m?® (Fig. 2b). Specifically, in 2018, 78.8 %
of EYPs in ’other than white’ LSOAs (1035 out of 1313) exceeded the
target, increasing to 83.6 % (1353 out of 1618) in 2019, compared to
those in predominantly ‘white’ LSOAs (33.8 %, n = 4883 out of 14,467
in 2018; 32.1 %, 5401 out of 16,809 in 2019) (Fig. 2b). In 2020, similar
disparities in PMj 5 levels according to ethnic composition of the LSOA
population were observed throughout the study period, although PMj; 5
concentrations decreased during 2020 and 2021 (Fig. 2b). The Wilcoxon
rank-sum test indicated significant differences in annual PM; 5 exposure
for EYPs located in ‘white’ versus ‘other than white’ LSOAs across all
years from 2018 to 2022 (p < 0.001, Bonferroni-adjusted).

We found substantial rural-urban differences in PMsy 5 exposure
levels. The Wilcoxon rank-sum test consistently demonstrated signifi-
cantly higher annual PM; 5 concentrations in urban compared to rural
areas for each year in the 2018-2022 period (p < 0.001, Bonferroni-
adjusted). In 2018 and 2019, a higher proportion of urban EYPs
(2018: 46.3 %, 5679 out of 12,264; 2019: 44.2 %, 6419 out of 14,531)
were located in areas that exceeded the interim PMjs guidelines
compared to rural EYPs (2018: 6.8 %, 239 out of 3516; 2019: 8.6 %, 335
out of 3896) (Fig. 2c). This disparity sharply declined during of 2020
and 2021, with the proportion of EYPs in areas exceeding PM 5 levels of
10 pg/m? in 2020 falling to 6.4 % for urban EYPs (894 out of 14,031)
and 0 % for rural EYPs, and in 2021 to 0.2 % (22 out of 13,503) in urban
areas and 0.1 % (2 out of 3308) in rural areas (Fig. 2c).

The full model to estimate the EYPs exposure to PMj 5, incorporating
both covariates and LSOAs’ random effects, yielded the lowest DIC and
WAIC values compared to the models with only random effects or only
covariates (Table S 3). The scatter plot comparing fitted versus observed
PM, 5 values demonstrates a good model fit, as shown by the close
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alignment of data points along the 45° reference line (Fig. S 2). This
alignment indicates the observed PM; 5 values were modelled reliably,
providing the support for using this model to assess the covariate effects.
Table 1 presents the posterior mean and 95 % credible interval for each
regression coefficient (§) from Equation (1).

Each estimate represents the expected change in PM».5 concentration
(ng/m®) associated with a change to a socio-demographic category
while holding all other covariates fixed and having adjusted for LSOA-
level variation through the random effects. The variance for the inde-
pendent (IID) random effects was 0.00003 (95 % credible interval (CI):
0.00001, 0.00018), reflecting minimal variability among these un-
structured effects (Table 1). In contrast, the ICAR model’s variance was
0.27 (95 % CI: 0.26, 0.28), indicating a much higher variation in the
spatially structured random effects, thus highlighting their importance
for accounting for the spatial structure in the exposure data (Table 1).

Across the study period from 2018 to 2022, EYPs in less deprived
IDACI quintiles were consistently located in areas with lower PMs 5
levels compared to those in the most deprived quintile (reference
group). The largest difference in PMy 5 concentrations was observed
between the most and the least deprived quintile, with a reduction of
—0.2 pg/m® (95 % CI: 0.2 to —0.2; Table 1) in the least, compared to the
most deprived areas. EYPs located in *Other than white’ LSOAs also had
higher PM, 5 concentrations, with an average difference of 0.1 pg/m°®
(95 % CI: 0.1 to 0.1) compared to EYPs in predominantly white LSOAs
(Table 1). In rural areas, PM; 5 concentrations for EYPs were substan-
tially lower than in urban areas, with an average difference of —0.5 pg/
m® (95 % CIL: 0.5 to —0.5; Table 1).

Global Moran’s I analysis consistently showed significant positive
spatial autocorrelation over the five-year study period (p < 0.005),
indicating a non-random spatial distribution of PMj; 5 exposure (Table S
2).

Table 1

Posterior mean estimates and 95 % credible intervals from the spatial Bayesian
hierarchical model (Equation (1)), examining associations between small-area
socio-demographic factors (IDACI quintiles, ethnic composition, and urban-
icity) and PM, 5 exposure levels around Early Years Providers (EYPs) in England,
2018-2022.

Variables Posterior 95 % Credible
Mean Interval
Intercept (5,) 9.19 9.12,9.26

Income Deprivation Affecting Children Index (IDACI) 2019 Quintiles ()
1 - most deprived (reference)

2 —0.03 —0.05, -0.01

3 —0.07 —0.09, -0.05

4 —0.15 —0.17, -0.12

5 - least deprived -0.19 —0.21, -0.17
Ethnic Composition at LSOA Population Level (5,)

White (reference)

Other than white 0.12 0.08, 0.15
Urbanicity (53)

Urban (reference)

Rural —0.46 —0.48, -0.44
Year (7,)

2018 (reference)

2019 0.03 0.02, 0.05

2020 —1.98 —2,-1.97

2021 —-2.17 —2.19, -2.16

2022 -1.75 -1.77, -1.74

Model Hyperparameters

Variance for the Gaussian 0.39 0.38-0.39

observations

Variance for IID (Vsoafi)) 0.00003 0.00001, 0.00018

Variance for ICAR (uzs0aj)) 0.27 0.26, 0.28

* The model includes spatial random effects specified through the BYM model to
account for spatial correlation (see the main text for detail). The posterior dis-
tribution of each parameter estimate is summarised via the posterior mean and
the 95 % Credible Interval. Associations are highlighted in bold where the 95 %
Credible Interval does not include zero, indicating higher confidence in the di-
rection of the effect.
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The Local Moran’s I cluster and outlier analysis in Fig. 3 reveals
distinct spatial clustering patterns of PM; 5 exposure around EYPs across
England over a five-year period (2018-2022). Throughout this period,
High-High clusters—areas where EYPs with high PM; 5 levels (>10 pg/
m®) are surrounded by other high-exposure EYPs - are consistently
located in urbanised and industrial regions, particularly in southern and
eastern England. Notable concentrations of High-High clusters were
observed around major urban centres, including Greater London, Bir-
mingham, and other parts of the Midlands and Southeast England.
Conversely, Low-Low clusters - regions where EYPs with low PMj 5
exposure are near other low-exposure EYPs - were primarily situated in
northern and rural regions such as Devon, Cornwall, and the northern
parts of England. A clear temporal pattern emerged, with a substantial
decrease in High-High clusters where the annual mean PMj 5 concen-
tration exceeded 10 pg/m>, dropping from 22.6 % (3565 out of 15,780
EYPs) in 2018 to 5.5 % (916 out of 16,634 EYPs) in 2022. The Low-Low
clusters, with annual mean PM; 5 concentration below or equal to 10 pg/
m3, ranged between 18.1 % in 2018 (2851 out of 15,780 EYPs) and 12.7
% in 2021 (2141 out of 16,811 EYPs).

3.1. Sensitivity analysis

In the 2019 sensitivity analysis including 850 EYPs in Birmingham,
the UK-Air model estimated a higher proportion of EYPs exposed to
elevated PM, 5 levels (>10 pg/m3) (83 %, n = 624) compared to the
WM-Air ADMS-Urban model (70 %, n = 526) (Table S 4, Fig. 4). The
Wilcoxon signed-rank test demonstrated a statistically significant dif-
ference (V = 17,164, p < 2.2e-16). This indicates that PM, 5 modelled
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concentrations vary significantly depending on the model used, with the
observed differences unlikely attributable to random variation alone.

4. Discussion

We observed an 18 % reduction in the annual mean PM5 5 concen-
tration around EYPs from 2018 to 2022. Disparities in PMj 5 concen-
trations remained consistent throughout this period however: a greater
proportion of EYPs in more deprived, urban, and ’other than white’
areas were exposed to PMs 5 levels exceeding the WHO AQG lowest
interim target of 10 ug/m3. D During 2020-2021, annual mean PMj 5
around EYPs decreased relative to adjacent years; however, disparities
in exposure across categories persisted.

PM, 5 levels around EYPs consistently exceeded the WHO AQG of 5
ng/m>, with 4 % (744) meeting this limit by 2022. This aligns with
previous research highlighting persistent air quality concerns around
educational settings in England. For instance, while Osborne et al.
(2021b) demonstrated that nearly a third of state-funded schools
exceeded the previous WHO PM, 5 guideline of 10 ug/m3 in 2017, our
findings extend this analysis to EYPs, a critical but under-researched
group. Similarly, Mahfouz et al. (2024) reported that all new school
sites in England failed to meet the updated WHO AQG for PMy 5 (5
pg/m®), underscoring the ongoing challenge of achieving safer air
quality in educational environments.

This persistent exceedance underscores ongoing air quality chal-
lenges in England, particularly in urban areas with dense traffic and
industrial emissions (DEFRA, 2023a). While outdoor air pollution is a
significant concern, most research on EYP air quality has traditionally

Cluster and outliers analysis
. High-High cluster
High-Low outlier
Low-High outlier

. Low-Low cluster

|:] England

Fig. 3. Local Moran’s I cluster and outlier analysis of PM 5 concentration levels at Early Years Providers (EYPs) in England from 2018 to 2022. High-High clusters
represent areas where EYPs with high PM, 5 concentrations are near others with similarly high levels, while Low-Low clusters indicate areas of low PM, s con-
centrations surrounded by similarly low values. High-Low clusters show areas where EYPs with high PM, 5 concentrations are near others with lower PM, 5 con-
centrations, and Low-High clusters show the reverse. To enhance visibility, EYPs that were not statistically significant or had no neighbours are excluded from

this figure.
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Fig. 4. Spatial visualisation of the mean concentration of PM, 5 at each Early Year Provider’s location in Birmingham (England, UK) in year 2019, using the UK-Air

and WM-Air ADMS-Urban models.

focused on indoor pollutants, often finding that indoor particles matter
concentrations are more strongly influenced by indoor sources than by
outdoor pollution (Branco et al., 2014; Cano et al., 2012; Nunes et al.,
2015). However, indoor and outdoor pollutant levels are inter-
connected, with indoor/outdoor particle matter ratios varying across
cities and pollutant types (Ashmore and Dimitroulopoulou, 2009;
Kumar et al., 2024). Exposure to PMj 5 in educational settings contrib-
utes substantially to children’s overall daily PM, 5 exposure, even when
indoor PM; 5 sources are primary contributors. For example, Rose et al.
(2024) observed that classrooms in Cardiff (England, UK) had PM; 5 and
PM; levels above WHO AQG (<5 pg/m3) during school hours, with 74
%-89 % of PM;, 5 attributed to outdoor sources. This interaction between
outdoor and indoor PMj 5 sources highlights the compounded exposure
children face, not only within EYPs but also during activities such as
school pick-up/drop-off. Edwards and Whitehouse (2018) found
elevated black carbon exposure during school hours and commuting
times, while Sharma and Kumar (2018) reported that infants in prams
can experience up to 60 % higher pollutant concentrations than adults
due to their proximity to some emission sources.

The pandemic-associated dip in PMjy 5 observed during 2020-2021
aligns with global reports of improved air quality linked to reductions in
vehicular and industrial activity (Jephcote et al., 2021; Liou et al.,
2023). While PM; 5 annual concentrations in England saw a slight in-
crease in 2022, compared to 2020 and 2021, urban background PMs 5
mean concentrations in 2023 showed a 12 % decrease from 2022 levels,
continuing the downward trend observed since 2019 (DEFRA, 2024a).

The spatial clusters of PM; 5 concentrations at EYPs closely mirrored
the overall PM, 5 distribution across England, as reported by DEFRA
(2024a). The High-High clusters of EYPs (>10 pg/m3 of PM5 5 concen-
trations) were highest in urban areas of southern and eastern England
may be due to factors such as higher population density, prevailing
weather conditions, increased pollution from both domestic sources,
and cross-border emissions from mainland Europe (DEFRA, 2024a). In
2023, four of the five air quality monitoring sites recording the highest
annual mean PM5 5 concentrations in urban areas were situated in the
South or East of England, including London, with the fifth located in the
Midlands (DEFRA, 2024a) mirroring our results.

We showed consistent disparities in PMy 5 exposure, with EYPs
located in more deprived, urban areas, and ‘other than white’ LSOAs
experiencing higher levels. Our findings align with broader trends
showing that areas with higher levels of socio-economic deprivation
often overlap with regions of increased traffic or industrial activity,
resulting in elevated air pollution levels (Gadenne et al., 2024; Kay-
mierczak, 2018; Whitty and Jenkins, 2022). Socio-economic inequalities
further influence children’s exposure to air pollution, affecting the en-
vironments where they live, play, and attend school (Mathiarasan and
Hiils, 2021). Concerning urbanicity, except for ozone, air pollutant
concentrations are typically higher in urban areas compared to rural

regions (DEFRA, 2024b). Overall, these findings align with global
studies indicating that ethnically diverse neighbourhoods often face the
poorest air quality (e.g. Fairburn et al., 2019; Fecht et al., 2015; Gadenne
et al., 2024; Jbaily et al., 2022). Osborne et al. (2021b) found that En-
glish schools in areas with higher PM3 5 concentrations were more likely
to have a diverse pupil demographic than schools with lower PM; 5
levels. The "disadvantage gap" in educational attainment in the early
years foundation stage, ranging from birth to five years old, highlights
further disparities, with only four ethnic groups outperforming white
British pupils at age 5 in 2023: Chinese, white and Asian, white Irish,
and Indian (EPI, 2024).

4.1. Strengths and limitations

This study has several key strengths. It is the first large-scale analysis
of PMys exposure around EYPs across England, focusing on the
vulnerable population of young children within diverse socio-economic
settings. By addressing this critical gap in the literature, our study offers
insights that could guide future air quality policy and research. The
study spans a period of 5 years (2018-2022), enabling us to capture
changes in air quality, including the years that COVID-19 lockdowns
occurred. Additionally, we validated openly available data (UK-AIR,
with a 1 x 1 km resolution) against the finer WM-Air ADMS-Urban
modelled concentrations, revealing variability in PMj 5 estimates across
models. Notably, UK-AIR predicted relatively higher PMj 5 exposures in
Birmingham compared to the WM-Air model. These findings align with
Osborne et al. (2021b), who similarly highlighted variability in PMj 5
estimates depending on the data source, reinforcing the importance of
robust model validation.

Nevertheless, some limitations should be noted. The reliance on the
UK-AIR model for PM; 5 analysis, while comprehensive, is affected by
year-to-year changes in modelling approaches, such as updates to
emission inventories that are not retroactively applied, complicating
longitudinal trend interpretation (DEFRA, 2023c). Modelled data in-
troduces additional uncertainties (Osborne et al., 2021b), and our use of
area-level metrics (e.g. predominant ethnicity) oversimplifies area-level
ethnic diversity. Our analysis is based on annual PMj; 5 averages, which
smooth out seasonal variations in exposure and do not capture
short-term fluctuations (DEFRA, 2022). Additionally, we did not assess
other pollutants, such as NO5 or speciated PM, 5 components, which
may have varying toxicity depending on their source. Future analyses
should consider these factors to provide a more comprehensive under-
standing of air pollution and its health impacts. We recognise that
urbanicity, deprivation, and ethnic composition are not independent
phenomena. In England, socio-economically deprived and ethnically
diverse populations are disproportionately concentrated in urban areas
(Fairburn et al., 2019; Fecht et al., 2015; Gadenne et al., 2024; Kay-
mierczak, 2018). These structural patterns reflect longstanding
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inequalities shaped by urban planning, transport policy, and housing
access. While our Bayesian spatial model accounts for these variables
simultaneously and incorporates spatial random effects to reduce bias
from spatial confounding, some degree of conceptual and geographic
overlap is expected. As such, the individual effect estimates should be
interpreted with caution, as they may reflect interconnected structural
determinants of air pollution exposure. Furthermore, a national data-
base containing individual-level data on all children attending EYPs in
the UK (e.g. children’s age, ethnicity, health, or time spent at EYPs) does
not exist and as such these individual-level variables could not be
assessed in this study. The Office for Standards in Education, Children’s
Services and Skills (OFSTED) register of childcare providers contains
information on the number of childcare places (Ofsted, 2024), but these
EYPs are not geolinked by x, y coordinates or Unique Property Reference
Number (UPRN), which prevented us from linking these data to our
current dataset. We are currently exploring this linkage in a separate
study to address this issue. Additionally, this study did not include
childminders, who play a significant role in early childcare in England.
Childminders are self-employed professionals who provide childcare in
their own homes for children ranging from birth to age 8, and sometimes
older. As of June 30, 2024, there were over 26,300 registered child-
minders among England’s 61,800 childcare providers, collectively car-
ing for approximately 160,000 children (Ofsted, 2024). Since
childminders care for children in their own homes, data on their loca-
tions are not openly available. Moreover, the Department for Educa-
tion’s Early Years Census only covers children receiving free hours of
care (DfE, 2024a). This gap in data coverage may be reduced in the
future, as all children in England aged 9 months and older whose parents
are in employment are now eligible for 30 h of free childcare per week,
starting from September 2024, offered through EYPs, including nurs-
eries and registered childminders (DfE, 2024b). Addressing these limi-
tations in future research could provide a more comprehensive
understanding of air pollution concentrations around EYPs in England.

4.2. Policy implications and future research

Our findings highlight the importance of targeted air quality in-
terventions in urban areas, where young children are most exposed to
PM, 5. In particular, the resurgence of PM, 5 levels in 2022, especially in
highly deprived areas, highlights the need for sustained, long-term in-
terventions to address persistent environmental inequalities
(Nieuwenhuijsen, 2021). Policy efforts to reduce PM; 5 exposure around
EYPs may benefit from a focus on traffic emissions (including
non-exhaust emissions), domestic combustion (including wood
burning), and industrial sources. Prior studies and policy initiatives have
proposed a range of strategies to mitigate exposure near educational
settings, such as discouraging vehicle idling near childcare facilities,
enhancing green infrastructure to improve local air quality, and care-
fully considering the siting of new EYPs in relation to major roads
(Greater London Authority, 2024; UKHSA, 2025; UNICEF UK, 2018).
Expanding air quality monitoring in and around childcare environments
would also support more targeted interventions. Although we did not
evaluate interventions directly, peer-reviewed evaluations show that
local, area-level actions (e.g. neighbourhood-to-city scale) can reduce
exposure (and in some cases improve child health)—for example, Lon-
don’s LEZ/ULEZ programmes demonstrate roadside NO, reductions
(Mudway et al., 2019) and are being evaluated for child-health impacts
(Tsocheva et al., 2023), Stockholm’s congestion tax reduced ambient
pollution by ~5-15 % and lowered acute asthma attacks in young
children (Simeonova et al., 2021), and Dublin’s smoky-coal ban pro-
duced substantial mortality benefits (Clancy et al., 2002); together these
findings support prioritising high-exposure, deprived urban catchments
for action. In addition, near-road mitigation and carefully designed
vegetation/physical barriers around schools can lower downwind con-
centrations, complementing network-level emission reductions
(Abhijith et al., 2017). Future research should prioritise finer-scale
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pollution data and rigorous impact evaluations—particularly in
EYP-centred and high-deprivation settings—to assess the effectiveness
and equity impacts of such area-based interventions.

5. Conclusion

Although PM; 5 levels have decreased around EYPs in England, our
findings highlight the need for continued efforts to meet clean air ob-
jectives. Persistent inequalities in PMy 5 exposure remain, particularly
for EYPs located in areas of higher deprivation, with more non-white
residents, and in areas that were urban. These inequalities highlight
the urgent need for targeted action by local authorities and policy-
makers to protect vulnerable populations, especially young children.
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