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A B S T R A C T

Air pollution poses a significant health risk for young children, particularly in urban and deprived areas. 
Exposure to fine particulate matter (PM2.5) during early life may contribute to long-term adverse health out
comes. This study examined changes in PM2.5 concentrations around Early Years Providers (EYPs; childcare 
providers) in England from 2018 to 2022. We assessed associations between small-area socio-demographic 
characteristics and exposure levels exceeding the World Health Organisation (WHO) 2021 annual air quality 
guideline (>5 μg/m3). We integrated data on EYPs locations from Ordnance Survey with annual PM2.5 estimates 
from DEFRA using Geographic Information Systems and socio-demographic indicators — deprivation, urban
icity, and ethnic composition. A Bayesian spatial regression model with random effects was used to estimate 
adjusted associations between PM2.5 levels and local population characteristics. The number of EYPs ranged from 
15,780 in 2018 to 18,427 in 2019. Mean PM2.5 levels around EYPs changed by 17.8 % over the study period 
(from 9.4 μg/m3 [SD = 1.8] in 2018 to 7.8 μg/m3 [SD = 1.5] in 2022). However, PM2.5 levels at over 96 % of 
EYPs remained above the WHO, 2021 annual guideline throughout. Higher PM2.5 concentrations were observed 
in EYPs located in more deprived, urban, and predominantly non-white communities. Despite recent improve
ments, PM2.5 levels around most EYPs in England remain above recommended thresholds. Targeted interventions 
in deprived urban areas are needed to reduce young children’s exposure and address environmental health 
inequalities.

1. Introduction

Poor ambient air quality is associated with increased mortality and 
morbidity (Tong, 2019) and the reduction of these effects is designated 
as one of the United Nations Sustainable Development Goals (SDG target 
3.9.1) (UNGA, 2015). Poor air quality contributes to an estimated 29, 
000 to 43,000 premature deaths annually in the UK (Mitsakou et al., 

2022). Children, particularly preschool-aged children, are especially 
vulnerable to the adverse effects of air pollution due to their smaller and 
developing airways, higher breathing rates, and greater time spent 
outdoors including at nurseries and schools, compared to adults 
(Goldizen et al., 2016; Schraufnagel et al., 2019). Understanding the 
impact of air pollution exposure on this vulnerable population is 
therefore crucial.
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There is no established safe level of ambient air pollution exposure 
(Marks, 2022). The 2021 World Health Organization Air Quality 
Guidelines (WHO AQG) for fine particulate matter that are 2.5 μm or less 
in diameter (PM2.5) recommends an annual mean concentration target 
of 5 μg/m3 (WHO, 2021). However, recognising that not all regions can 
achieve this target immediately, the WHO also introduced interim tar
gets as milestones on the path toward 5 μg/m3. These interim targets are 
set at 35, 25, 15, and 10 μg/m3 (WHO, 2021). The WHO does not 
mandate a specific global deadline for achieving these interim targets, as 
the pace of implementation varies by country and region, depending on 
local air quality challenges, policies, and capacities. These interim tar
gets serve as benchmarks for governments and policymakers to aim for 
in reducing air pollution over time. In the UK, the government has set an 
annual mean concentration target of 10 μg/m3 of PM2.5 to be achieved 
by 2040 under the Environment Act (DEFRA, 2023b).

Exposure to fine particulate matter in childhood is linked to a range 
of health problems. Short-term exposure exacerbates asthma and other 
respiratory conditions (Liu et al., 2018; Wang et al., 2021), while 
chronic exposure may lead to lifelong reductions in lung function 
(Zhang et al., 2022), and increase the risk of asthma development 
(Whitty and Jenkins, 2022). There is increasing evidence of links be
tween air pollution exposure and reduced cognitive function (Chandra 
et al., 2022; COMEAP, 2023).

Given these concerns, there has been large media and research in
terest in air quality around schools, including a literature review that 
included 14 studies in the UK alone (Osborne et al., 2021a). In 2021, a 
study concluded that approximately one third of state-funded schools 
providing education up to the age of 18 years with over 3.3 million 
students were located in areas where the WHO guideline for PM2.5 (then 
10 μg/m3) was exceeded in 2017 (Osborne et al., 2021b). The study also 
highlighted that these high-pollution areas disproportionately affected 
socio-economically disadvantaged and ethnically diverse pupils, with 
such schools often situated near major roads and lacking greenspace 
(Osborne et al., 2021b). Mahfouz et al. (2024) reported that 100 % of 
new schools’ sites in England breached the WHO AQG for PM2.5.

However, these studies have focused mostly on schools and 
commuting routes in London, and none have examined the air quality 
around Early Years Providers (EYPs), which include nurseries, kinder
gartens and preschools that offer childcare services for children under 5 
years old. Only one study, not peer reviewed, has specifically examined 
PM2.5 exposure around EYPs; and this focused solely on PM2.5 concen
trations around EYPs in London (Greater London Authority, 2024). This 
study recommended measures to reduce emissions and exposure, 
including "no engine idling" schemes, reducing emissions from boilers 
and kitchens, creating school streets, adding green barriers, promoting 
active travel, and trialling indoor air filtration systems (Greater London 
Authority, 2024).

Our aim was to examine changes in PM2.5 around EYPs in England 
from 2018 to 2022 and to identify neighbourhood characteristics asso
ciated with EYPs located in areas where PM2.5 levels exceed interna
tional guidelines. Our objectives were to (i) evaluate temporal changes 
in PM2.5 concentrations at EYPs focusing on variations in exposure by 
socio-demographic factors; (ii) identify any clustering of EYPs in areas 
where PM2.5 exceeds the UK target to be reached by 2040 (WHO interim 
target level of 10 μg/m3); and (iii) evaluate the association between 
small-area level socio-demographic (deprivation, ethnicity, and rural- 
urban classification) and PM2.5 concentrations around EYPs.

2. Material and methods

2.1. Data sources

2.1.1. Early Years Providers
EYPs locations in England were sourced from the Ordnance Survey 

(OS) “Points of Interest™” data (Ordnance Survey (GB), 2018, 2019, 
2020, 2021, 2022), which are updated quarterly. For this study, we used 

OS Points of Interest data published in March of each year for the period 
2018 to 2022. We selected “Nursery Schools and Pre and After School 
Care" from that dataset with the PointX class code of “05320397”. This 
category covered: After School Care, Child Care, Childcare Services, 
Creche, Day Nursery, Independent Nursery School, Independent 
Pre-Preparatory School, Nurseries and Creches, Nursery School, 
Organised Children’s Play Schemes, Playgroups, Pre School-Education, 
and Pre School. This list of EYPs was then de-duplicated to provide 
one EYPs per location as EYPs were sometimes categorised under more 
than one service type (e.g. nurseries that also provided after-school 
care).

2.1.2. PM2.5
We focused on PM2.5 concentrations for our main analyses as the 

regulated ambient air pollutant with the greatest evidenced impact on 
health in the UK (COMEAP, 2023; Garcia et al., 2023). Data on PM2.5 
concentrations was sourced from the UK Air Information Resource (AIR) 
(DEFRA, 2023c), which provides annual mean concentrations of PM2.5 
across 1 km * 1 km grids in England. We attributed grid-based PM2.5 
concentration values to point locations representing EYPs using a spatial 
join for each year from 2018 to 2022. These point locations correspond 
to the x, y coordinates of the EYPs, enabling the assignment of air 
pollution data to their exact geographic positions.

2.1.3. Data sources for small-area level characteristics
To examine area-level socio-demographic characteristics, we used 

the Lower Super-Output Area (LSOA) corresponding to each EYP’s 
geographic location. LSOAs consist of 400 to 1200 households and 
typically have a resident population ranging from 1000 to 3000 people 
(ONS, n.d.).

We used the Ministry of Housing, Communities and Local Govern
ment’s (Noble et al., 2019) Income Deprivation Affecting Children Index 
(IDACI) to assess deprivation of the LSOAs in which the EYPs were 
located. IDACI is a LSOA-level measure of child poverty based on the 
proportion of children aged 0–15 years living in income-deprived 
households. Income-deprived households are defined as those where 
occupants are receiving income-related benefits (e.g. income support, 
jobseeker’s allowance, working families tax credit, and/or disabled 
persons tax credit) (Noble et al., 2019). Data on the ethnic group dis
tribution by LSOA was obtained from the 2021 England and Wales 
Census data (ONS, 2023). The Rural-Urban classification for LSOA in 
England for 2011 was obtained from the Department for Environment, 
Food and Rural Affairs (DEFRA, 2013). We assigned these LSOA-level 
data on small-area characteristics from polygon-based spatial datasets 
to point locations representing EYPs through a spatial join for each year 
from 2018 to 2022.

2.1.4. Variable definitions
Our primary outcomes were: a) the PM2.5 concentration levels at the 

locations of EYPs in England and b) the proportion of EYPs situated at 
locations where PM2.5 concentrations exceeded the WHO AQGs (WHO, 
2021). We examined the latter using two thresholds: in comparison with 
the WHO guidelines level (5 μg/m3), and the UK target to reach by 
2040/WHO interim target of 10 μg/m3 (WHO, 2021). These thresholds 
allowed us to assess the distribution of exposure relative to both 
guidelines for the protection of health, and legal limits.

The IDACI deprivation measure ranks areas in England based on 
deprivation, with values ranging from 1 (most deprived) to 32,844 (least 
deprived), representing the total number of LSOAs. For our analysis, we 
categorised this variable into quintiles: Quintile 1 (most deprived) to 
Quintile 5 (least deprived).

We categorised LSOAs as ‘white’ where >50 % of the population 
identified as white and as ‘other than white’ where >50 % of the pop
ulation identified as Asian, black, mixed, or other racial/ethnic groups. 
This classification was chosen because, during preliminary analysis, the 
number of EYPs in LSOAs where ethnic minority groups comprised >50 
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% of the population was very small (fewer than 8 % of providers). 
Further dividing these areas into more specific ethnic group categories 
according to most frequently recorded group would have reduced the 
statistical power of the analysis.

We used the 2011 Rural-Urban Classification for LSOAs in England 
(DEFRA, 2013) to create a binary variable, ‘Rural’ and ‘Urban’. The rural 
category encompasses towns and fringe areas, villages, hamlets, and 
isolated dwellings, while the urban category includes major and minor 
conurbations, as well as cities and towns (DEFRA, 2013). This binary 
classification was chosen to increase the statistical power of the analysis.

We used calendar year of the study period to explore trends in PM2.5 
around EYPs. The study period (2018–2022) included the national 
lockdown periods implemented in response to the COVID-19 pandemic 
in England (Brown and Kirk-Wade, 2021). The first lockdown in England 
began on March 23, 2020, with partial easing of restrictions starting on 
10 May and more substantial lifting on July 4, 2020. A second, shorter 
lockdown took place from 5 November to December 2, 2020, after which 
a regional tier system was introduced. A third national lockdown 
commenced on January 6, 2021, followed by a phased easing of re
strictions: schools reopened on 8 March, non-essential businesses on 12 
April, and indoor hospitality on 17 May. Most remaining legal re
strictions were lifted on July 19, 2021, marking the end of the lockdown 
periods.

2.2. Statistical methods

We evaluated the number and proportion of EYPs between 2018 and 
2022 that were situated in areas where PM2.5 levels exceeded the WHO 
AQG (≤5 μg/m3) and the lowest interim target (≤10 μg/m3). For cate
gorical variables (IDACI, ethnic composition, and urbanicity), we 
calculated the annual total and respective percentage of EYPs, while for 
continuous variables (PM2.5 annual mean concentration), we reported 
the mean, standard deviation (SD), median, minimum, maximum 
values, and interquartile range for each year. To explore variations in 
PM2.5 concentrations across different socio-demographic factors, we 
created boxplots stratified by year. We assessed within-year compari
sons of PM2.5 concentrations using non-parametric tests. For multiple 
categories (e.g. IDACI quintiles), we used the Kruskal-Wallis test to 
evaluate differences in PM2.5 concentrations for each study year. When 
significant differences were detected, we conducted Dunn’s post-hoc test 
with Bonferroni adjustment for pairwise comparisons. For binary cate
gorical variables (e.g. rural-urban classification), we applied the Wil
coxon rank-sum test to assess differences in PM2.5 concentrations within 
each year, with p-values adjusted for multiple comparisons.

To identify spatial clustering of EYPs exceeding the PM2.5 WHO 
lowest interim target, we analysed the spatial pattern of air pollution 
exposure using Global Moran’s I and Local Moran’s I. We first used 
Global Moran’s I (Moran, 1948) to measure the overall degree of spatial 
autocorrelation between annual concentrations of PM2.5 at each EYP. A 
Global Moran’s I near 1 (or − 1) indicates values of locations that are 
close in space tend to be similar (or dissimilar) to each other, and a 
Moran’s I close to 0 implies a scatter of random values across space. A 
statistically significant Moran’s I (p < 0.05) is indicative of the existence 
of a significant spatial autocorrelation in the data values. For each year, 
we calculated the Global Moran’s I statistic to assess the spatial auto
correlation of PM2.5 concentrations at the EYP level. The neighbours of 
each EYP are defined as those within a circle of a 2 km radius centred at 
that EYP. The resulting spatial weights matrix is row standardised so 
that all weights lie between 0 and 1 (Esri, 2024). This method is 
commonly used when the distribution of features might be biased by 
sampling design or aggregation, and it helps to mitigate bias due to 
varying numbers of neighbours (Esri, 2024). Row-standardised 
weighting is particularly suitable for fixed distance neighbourhoods 
(Esri, 2024).

To identify priority intervention zones and track progress towards air 
quality targets, we then used Local Moran’s I (Anselin, 1995) to analyse 

spatial patterns (clusters and outliers) of EYPs exposure to PM2.5. Local 
Moran’s I value indicates positive spatial autocorrelation whereby, in 
the context of our study, EYP locations that are close in space tend to 
have similar PM2.5 values. It was calculated according to the following 
criteria, using the nearest neighbour algorithm: Euclidean distance as 
the measurement method, a threshold distance of 2 km to establish 
spatial relationships. The row-standardised spatial weights matrix is the 
same as that used for calculating the Global Moran’s I. This technique 
classifies EYPs into four categories based on their spatial association 
with annual PM2.5 concentrations: High-High (significant clusters of 
high PM2.5 values), Low-Low (significant clusters of low PM2.5 values), 
High-Low (high PM2.5 values near low values), and Low-High (low PM2.5 
values near high values). The cut-off value for classifying high or low 
PM2.5 concentrations varied across the study period, with values ranging 
from 7.5 μg/m3 in 2021 to 9.6 μg/m3 in 2019, reflecting year-to-year 
variation in PM2.5 levels. To ensure comparability across years, we 
assess High-High clusters by counting the number of clusters where 
PM2.5 concentrations exceed 10 μg/m3 each year, and we assess 
Low-Low clusters by counting those where PM2.5 concentrations are 
≤10 μg/m3. This approach allows us to consistently compare the pres
ence and distribution of high and low concentration clusters in relation 
to the WHO guidelines over time. To assess the likelihood of cluster or 
outlier status, we employed 9999 permutations, determining signifi
cance with a p-value threshold of ≤0.05, adjusted for multiple testing 
using the False Discovery Rate (FDR) correction (Benjamini and Hoch
berg, 1995). Permutation testing is a robust, non-parametric method 
commonly used in spatial analysis to generate empirical distributions 
under the null hypothesis (Anselin, 1995). In this context, permutations 
involved randomly reassigning data values to different locations 9999 
times, creating a distribution of spatial patterns that could occur purely 
by chance. By comparing our observed spatial pattern to this random 
distribution, we determined if the observed clusters and outliers were 
statistically significant or if they could likely have arisen randomly. 
Given that we performed multiple tests across many locations, each with 
its own potential p-value, the likelihood of false positives increased - 
meaning we might have identified random clusters as significant. The 
FDR correction addressed this by adjusting the p-value threshold 
downward from 0.05 to a more stringent level, effectively controlling for 
the increased risk of false positives across multiple tests (Benjamini and 
Hochberg, 1995). This adjusted threshold better reflects a true 95 
percent confidence level across the dataset, ensuring that clusters 
identified as significant were unlikely to be due to random chance. Both 
spatial autocorrelation, cluster and outlier analysis and mapping were 
conducted in ArcMap 10.3.1 for Desktop (Esri, 2015) and ArcGIS Pro 
3.2.0 (Esri, 2023).

To evaluate the association between small-area level socio- 
demographic (deprivation, ethnicity, and rural-urban classification) 
and PM2.5 concentrations near EYPs, we developed a Bayesian spatial 
regression model with random effects. The response variable was the 
mean annual concentration of PM2.5 at each EYP. Although we tested 
this variable for normality using the Kolmogorov-Smirnov test and 
visualised it through plots (Fig. S 2), PM2.5 concentrations did not 
strictly follow a normal distribution. Nonetheless, we assumed a normal 
distribution, as this assumption pertains to the residuals rather than the 
data itself, and Bayesian hierarchical models are robust, especially when 
handling aggregated or slightly non-normally distributed data (Gelman 
et al., 2013). The Bayesian framework enabled us to construct realistic 
models that incorporated spatial dependencies and accounted for vari
ability in PM2.5 exposure (Cheng et al., 2021). This approach also 
allowed us to assess the robustness of our conclusions under different 
model assumptions and incorporate uncertainty from both data and 
model parameters.

Let yit represent the PM2.5 concentration at each EYP i = 1, …, N in 
year t (with t = 1, …, 5, with 1 representing 2018). The model is spec
ified as: 
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yit ∼ Normal
(
μit , σ2)

Where: 

yit = β0 + β1*IDACIit + β2*Ethnicityit + β3*Urbanicityit + γt + uLSOA[i]

+ vLSOA[i]

(Equation 1) 

In this equation, β0 is the intercept, while β1,…, β4 are the regression 
coefficients for the covariates: IDACI (Income Deprivation Affecting 
Children Index, 2019 Quintiles at LSOA population level), Ethnicity 
(Ethnic Composition at LSOA population level), Urbanicity (at LSOA 
population level), and γ1,…, γ5 are the year effects with γ1 = 0 (i.e. 
setting 2018 as the reference). The term uLSOA[i] denotes the spatially 
structured random effect modelled via the Besag intrinsic conditional 
autoregressive structure to account for spatial dependence between 
neighbouring LSOAs; vLSOA[i] represents the spatially unstructured 
random effect at the LSOA level, capturing random noise or additional 
residual variability not explained by the covariates.

Spatial random effects were specified using the Besag–York–Mollié 
(BYM) model (Besag et al., 1991), combining spatially structured 
random effects, modelled via an intrinsic conditional autoregressive 
(ICAR) model and spatially unstructured random effects (modelled via 
an exchangeable normal distribution) (IID) (Besag, 1974). To account 
for spatial dependency, we defined neighbourhood structures among 
LSOAs using Rook’s case contiguity, where two LSOAs are considered 
neighbours if they share a common boundary (Besag, 1974; Besag et al., 
1991). This adjacency information was incorporated into the model via 
an adjacency matrix, enabling to capture spatially structured random 
effects based on the assumption that geographically close areas exhibit 
similar PM2.5 levels (Cressie, 2015), a feature of our data that we will 
show in Fig. 1 and in Table S2.

Prior distributions were assigned to the model parameters, including 
the regression coefficients and the random effects. Vague normal priors 
N (0, 1000) were used for the regression coefficients, reflecting minimal 

prior knowledge about their values. The precision parameters for the 
random effects were assigned a Gamma (1, 0.00005), providing a non- 
informative prior that allows the data to drive the estimation. Preci
sion parameters are the inverse of variance, controlling the spread or 
variability of random effects in the model. High precision indicates low 
variance, leading to more tightly clustered values around the mean, 
whereas low precision suggests higher variability (Gelman et al., 2013).

The analysis was conducted using the Integrated Nested Laplace 
Approximation (INLA) method via the R-INLA package (Rue et al., 
2009). INLA is particularly suited for fitting complex spatial models 
efficiently, even with large datasets like the one used in this study 
because it significantly reduces computational burdens compared to 
traditional Markov Chain Monte Carlo (MCMC) methods (Rue et al., 
2009). We also considered different versions of the model: one with 
covariates only; one with random effects only, and the intercept-only 
model. Model comparison was performed using the Deviance Informa
tion Criterion (DIC) and the Watanabe-Akaike Information Criterion 
(WAIC), both of which evaluate model fit and complexity. The model 
with the lowest DIC and WAIC values was selected as the most parsi
monious, final model. To assess model fit, we compared fitted versus 
observed PM2.5 values using a scatter plot, examining the alignment of 
data points along a 45-degree reference line (y = x). This visual check 
allowed us to evaluate the model’s predictive accuracy across the range 
of PM2.5 concentrations and detect any systematic deviations.

2.3. Sensitivity analysis

One limitation of the UK-Air modelled concentration maps is their 
coarse spatial resolution (1 km × 1 km), which may obscure finer-scale 
variability in pollutant levels and lead to inaccuracies when estimating 
exposure at specific school locations (Osborne et al., 2021b). To assess 
the potential impact of this limitation and to demonstrate the conver
gent validity of our main exposure, we conducted a sensitivity analysis 
using higher-resolution data (10 m × 10 m) for PM2.5 concentration data 
for Birmingham and its surrounding areas (referred to here as 

Fig. 1. Annual mean concentrations of PM2.5 (μg/m3) estimated at each Early Year Provider’s (EYPs) location across England during the period of 2018–2022.
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Birmingham). Birmingham was selected as it is one of the largest urban 
conurbations in England, with diverse socio-demographic characteris
tics and significant air pollution challenges, making it a representative 
area for validation. Furthermore, the additional data used have been 
peer-reviewed and are derived from high-resolution modelling tech
niques, validated against local observations, providing a robust bench
mark for comparison (Zhong et al., 2021, 2024). For this analysis, we 
compared exposure results obtained from two datasets for the year 
2019: the UK Air Information Resource (UK-AIR) (DEFRA, 2023c), 
which provides PM2.5 data at a 1 km × 1 km resolution and that we used 
for our main analysis, and the WM-Air ADMS-Urban model (Zhong et al., 
2021; Zhong et al., 2024) which offers a finer street-scale resolution of 
10 m × 10 m. By focusing on Birmingham, where high-resolution data 
were available, we assessed whether the coarser UK-AIR dataset yielded 
similar results to the more detailed WM-Air model for 2019. We used the 
Wilcoxon signed-rank test with continuity correction to evaluate 

differences between the two datasets, thereby assessing the consistency 
of PM2.5 estimates across resolutions and validating our exposure mea
surements for EYPs.

3. Results

A total of 21,893 unique EYPs were identified in England between 
2018 and 2022. The number of EYPs registered in each year ranged from 
15,780 in 2018 to 18,427 in 2019 (See Supplementary material: Table S 
1)

From 2018 to 2022, the annual mean PM2.5 concentration near EYPs 
in England decreased by 17.8 % (from 9.4 μg/m3, SD = 1.8–7.8 μg/m3, 
SD = 1.5, Table S 1). Despite this downward trend, the annual mean 
concentration of PM2.5 near EYPs remained above the WHO AQG of 5 
μg/m3 throughout (Table S 1; Fig. 1). However, during this period, we 
observed a substantial increase in the proportion of EYPs locations that 

Fig. 2. Annual Mean PM2.5 Concentration (μg/m3) around Early Years Providers (EYPs) in England by Socio-Demographic Factors, 2018–2022: (a) IDACI Quintiles 
(Income Deprivation Affecting Children Index), (b) Ethnicity, and (c) Rural-Urban Classification. Each boxplot illustrates the distribution of PM2.5 levels for each 
category per year, with a horizontal dotted line at the 10 μg/m3 WHO AQG lowest interim target.

J. Cruz et al.                                                                                                                                                                                                                                     Environmental Research 288 (2026) 123172 

5 



met the ≤10 μg/m3 guideline of annual mean concentration of PM2.5, 
rising from 62 % (n = 9862) in 2018 to 94 % (n = 15,702) in 2022. 
Nevertheless, by 2022, 90 % (n = 14,958) of the EYPs were located in 
areas with mean annual concentration of PM2.5 between 5 and 10 μg/ 
m3. EYPs were located in LSOAs with a predominantly white population 
and this was consistent across study years (Table S 1). Urban areas 
housed between 78 % (2018: n = 12,264) and 80 % (2020: n = 14,031) 
of EYPs, emphasising a significant urban concentration. The distribution 
of EYPs across IDACI quintiles were also consistent across the study 
period and evenly distributed across quintiles (16–23 % in each) sug
gesting an even spread across deprivation quintiles (Table S 1).

Fig. 2 illustrates the annual mean PM2.5 concentration from 2018 to 
2022, highlighting variation across factors such as deprivation (IDACI 
quintiles), ethnicity, and rural-urban classification. In 2018 and 2019, 
the concentration of EYPs in areas where PM2.5 levels exceeded the 
WHO interim target (>10 μg/m3) was higher in the most deprived areas 
(IDACI Quintiles 1 and 2) compared to the least deprived areas (Quintile 
5). Specifically, in 2018, 43.6 % of EYPs in Quintile 1 (1111 out of 2550) 
were above the target, compared to 30.5 % in Quintile 5 (1098 out of 
3605). A Kruskal-Wallis test indicated significant differences in PM2.5 
levels across IDACI quintiles (H(4) = 288.1, p < 0.001). Following this, 
Dunn’s post-hoc test revealed significant pairwise differences, including 
between Quintile 1 and Quintile 5 (z = − 11.9, p < 0.001, Bonferroni- 
adjusted), indicating that Quintile 1 had a significantly higher propor
tion of EYPs exposed to PM2.5 above 10 μg/m3 compared to Quintile 5. 
In 2019, this trend persisted, with 44.7 % of EYPs in Quintile 1 (1558 out 
of 3484) exceeding the target versus 27.8 % in Quintile 5 (1068 out of 
3843) (H(4) = 539.0, p < 0.001, z = − 17.7, p < 0.001, Bonferroni- 
adjusted) (Fig. 2a). Although there was a decrease in the proportion of 
EYPs with high exposure (>10 μg/m3) across all IDACI quintiles in 2020 
(mean = 7.5 μg/m3, SD = 1.3) and 2021 (mean = 7.3 μg/m3, SD = 1.0), 
PM2.5 levels began to rise again in 2022 (mean = 7.8 μg/m3, SD = 1.5), 
particularly impacting EYPs in the most deprived quintiles (Fig. 2a).

While only a small proportion of EYPs were located in LSOAs pre
dominantly composed of ’other than white’ ethnic groups (8.3 % in 
2018, n = 1313; 8.8 % in 2019, n = 1618) (Table S 1), the majority of 
these providers were exposed to PM2.5 levels above the WHO AQG 
lowest interim target of 10 μg/m3 (Fig. 2b). Specifically, in 2018, 78.8 % 
of EYPs in ’other than white’ LSOAs (1035 out of 1313) exceeded the 
target, increasing to 83.6 % (1353 out of 1618) in 2019, compared to 
those in predominantly ‘white’ LSOAs (33.8 %, n = 4883 out of 14,467 
in 2018; 32.1 %, 5401 out of 16,809 in 2019) (Fig. 2b). In 2020, similar 
disparities in PM2.5 levels according to ethnic composition of the LSOA 
population were observed throughout the study period, although PM2.5 
concentrations decreased during 2020 and 2021 (Fig. 2b). The Wilcoxon 
rank-sum test indicated significant differences in annual PM2.5 exposure 
for EYPs located in ‘white’ versus ‘other than white’ LSOAs across all 
years from 2018 to 2022 (p < 0.001, Bonferroni-adjusted).

We found substantial rural-urban differences in PM2.5 exposure 
levels. The Wilcoxon rank-sum test consistently demonstrated signifi
cantly higher annual PM2.5 concentrations in urban compared to rural 
areas for each year in the 2018–2022 period (p < 0.001, Bonferroni- 
adjusted). In 2018 and 2019, a higher proportion of urban EYPs 
(2018: 46.3 %, 5679 out of 12,264; 2019: 44.2 %, 6419 out of 14,531) 
were located in areas that exceeded the interim PM2.5 guidelines 
compared to rural EYPs (2018: 6.8 %, 239 out of 3516; 2019: 8.6 %, 335 
out of 3896) (Fig. 2c). This disparity sharply declined during of 2020 
and 2021, with the proportion of EYPs in areas exceeding PM2.5 levels of 
10 μg/m3 in 2020 falling to 6.4 % for urban EYPs (894 out of 14,031) 
and 0 % for rural EYPs, and in 2021 to 0.2 % (22 out of 13,503) in urban 
areas and 0.1 % (2 out of 3308) in rural areas (Fig. 2c).

The full model to estimate the EYPs exposure to PM2.5, incorporating 
both covariates and LSOAs’ random effects, yielded the lowest DIC and 
WAIC values compared to the models with only random effects or only 
covariates (Table S 3). The scatter plot comparing fitted versus observed 
PM2.5 values demonstrates a good model fit, as shown by the close 

alignment of data points along the 45◦ reference line (Fig. S 2). This 
alignment indicates the observed PM2.5 values were modelled reliably, 
providing the support for using this model to assess the covariate effects. 
Table 1 presents the posterior mean and 95 % credible interval for each 
regression coefficient (β) from Equation (1).

Each estimate represents the expected change in PM2.5 concentration 
(μg/m3) associated with a change to a socio-demographic category 
while holding all other covariates fixed and having adjusted for LSOA- 
level variation through the random effects. The variance for the inde
pendent (IID) random effects was 0.00003 (95 % credible interval (CI): 
0.00001, 0.00018), reflecting minimal variability among these un
structured effects (Table 1). In contrast, the ICAR model’s variance was 
0.27 (95 % CI: 0.26, 0.28), indicating a much higher variation in the 
spatially structured random effects, thus highlighting their importance 
for accounting for the spatial structure in the exposure data (Table 1).

Across the study period from 2018 to 2022, EYPs in less deprived 
IDACI quintiles were consistently located in areas with lower PM2.5 
levels compared to those in the most deprived quintile (reference 
group). The largest difference in PM2.5 concentrations was observed 
between the most and the least deprived quintile, with a reduction of 
− 0.2 μg/m3 (95 % CI: 0.2 to − 0.2; Table 1) in the least, compared to the 
most deprived areas. EYPs located in ’Other than white’ LSOAs also had 
higher PM2.5 concentrations, with an average difference of 0.1 μg/m3 

(95 % CI: 0.1 to 0.1) compared to EYPs in predominantly white LSOAs 
(Table 1). In rural areas, PM2.5 concentrations for EYPs were substan
tially lower than in urban areas, with an average difference of − 0.5 μg/ 
m3 (95 % CI: 0.5 to − 0.5; Table 1).

Global Moran’s I analysis consistently showed significant positive 
spatial autocorrelation over the five-year study period (p < 0.005), 
indicating a non-random spatial distribution of PM2.5 exposure (Table S 
2).

Table 1 
Posterior mean estimates and 95 % credible intervals from the spatial Bayesian 
hierarchical model (Equation (1)), examining associations between small-area 
socio-demographic factors (IDACI quintiles, ethnic composition, and urban
icity) and PM2.5 exposure levels around Early Years Providers (EYPs) in England, 
2018–2022.

Variables Posterior 
Mean

95 % Credible 
Interval

Intercept (β0) 9.19 9.12, 9.26
Income Deprivation Affecting Children Index (IDACI) 2019 Quintiles (β1)

1 - most deprived (reference)
2 ¡0.03 ¡0.05, -0.01
3 ¡0.07 ¡0.09, -0.05
4 ¡0.15 ¡0.17, -0.12
5 - least deprived ¡0.19 ¡0.21, -0.17

Ethnic Composition at LSOA Population Level (β2)

White (reference)
Other than white 0.12 0.08, 0.15

Urbanicity (β3) ​ ​
Urban (reference) ​ ​
Rural ¡0.46 ¡0.48, -0.44

Year (γt)

2018 (reference)
2019 0.03 0.02, 0.05
2020 ¡1.98 ¡2, -1.97
2021 ¡2.17 ¡2.19, -2.16
2022 ¡1.75 ¡1.77, -1.74
Model Hyperparameters
Variance for the Gaussian 
observations

0.39 0.38–0.39

Variance for IID (vLSOA[i]) 0.00003 0.00001, 0.00018
Variance for ICAR ( uLSOA[i]) 0.27 0.26, 0.28

* The model includes spatial random effects specified through the BYM model to 
account for spatial correlation (see the main text for detail). The posterior dis
tribution of each parameter estimate is summarised via the posterior mean and 
the 95 % Credible Interval. Associations are highlighted in bold where the 95 % 
Credible Interval does not include zero, indicating higher confidence in the di
rection of the effect.
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The Local Moran’s I cluster and outlier analysis in Fig. 3 reveals 
distinct spatial clustering patterns of PM2.5 exposure around EYPs across 
England over a five-year period (2018–2022). Throughout this period, 
High-High clusters—areas where EYPs with high PM2.5 levels (>10 μg/ 
m3) are surrounded by other high-exposure EYPs - are consistently 
located in urbanised and industrial regions, particularly in southern and 
eastern England. Notable concentrations of High-High clusters were 
observed around major urban centres, including Greater London, Bir
mingham, and other parts of the Midlands and Southeast England. 
Conversely, Low-Low clusters - regions where EYPs with low PM2.5 
exposure are near other low-exposure EYPs - were primarily situated in 
northern and rural regions such as Devon, Cornwall, and the northern 
parts of England. A clear temporal pattern emerged, with a substantial 
decrease in High-High clusters where the annual mean PM2.5 concen
tration exceeded 10 μg/m3, dropping from 22.6 % (3565 out of 15,780 
EYPs) in 2018 to 5.5 % (916 out of 16,634 EYPs) in 2022. The Low-Low 
clusters, with annual mean PM2.5 concentration below or equal to 10 μg/ 
m3, ranged between 18.1 % in 2018 (2851 out of 15,780 EYPs) and 12.7 
% in 2021 (2141 out of 16,811 EYPs).

3.1. Sensitivity analysis

In the 2019 sensitivity analysis including 850 EYPs in Birmingham, 
the UK-Air model estimated a higher proportion of EYPs exposed to 
elevated PM2.5 levels (>10 μg/m3) (83 %, n = 624) compared to the 
WM-Air ADMS-Urban model (70 %, n = 526) (Table S 4, Fig. 4). The 
Wilcoxon signed-rank test demonstrated a statistically significant dif
ference (V = 17,164, p < 2.2e-16). This indicates that PM2.5 modelled 

concentrations vary significantly depending on the model used, with the 
observed differences unlikely attributable to random variation alone.

4. Discussion

We observed an 18 % reduction in the annual mean PM2.5 concen
tration around EYPs from 2018 to 2022. Disparities in PM2.5 concen
trations remained consistent throughout this period however: a greater 
proportion of EYPs in more deprived, urban, and ’other than white’ 
areas were exposed to PM2.5 levels exceeding the WHO AQG lowest 
interim target of 10 μg/m3. D During 2020–2021, annual mean PM2.5 
around EYPs decreased relative to adjacent years; however, disparities 
in exposure across categories persisted.

PM2.5 levels around EYPs consistently exceeded the WHO AQG of 5 
μg/m3, with 4 % (744) meeting this limit by 2022. This aligns with 
previous research highlighting persistent air quality concerns around 
educational settings in England. For instance, while Osborne et al. 
(2021b) demonstrated that nearly a third of state-funded schools 
exceeded the previous WHO PM2.5 guideline of 10 μg/m3 in 2017, our 
findings extend this analysis to EYPs, a critical but under-researched 
group. Similarly, Mahfouz et al. (2024) reported that all new school 
sites in England failed to meet the updated WHO AQG for PM2.5 (5 
μg/m3), underscoring the ongoing challenge of achieving safer air 
quality in educational environments.

This persistent exceedance underscores ongoing air quality chal
lenges in England, particularly in urban areas with dense traffic and 
industrial emissions (DEFRA, 2023a). While outdoor air pollution is a 
significant concern, most research on EYP air quality has traditionally 

Fig. 3. Local Moran’s I cluster and outlier analysis of PM2.5 concentration levels at Early Years Providers (EYPs) in England from 2018 to 2022. High-High clusters 
represent areas where EYPs with high PM2.5 concentrations are near others with similarly high levels, while Low-Low clusters indicate areas of low PM2.5 con
centrations surrounded by similarly low values. High-Low clusters show areas where EYPs with high PM2.5 concentrations are near others with lower PM2.5 con
centrations, and Low-High clusters show the reverse. To enhance visibility, EYPs that were not statistically significant or had no neighbours are excluded from 
this figure.

J. Cruz et al.                                                                                                                                                                                                                                     Environmental Research 288 (2026) 123172 

7 



focused on indoor pollutants, often finding that indoor particles matter 
concentrations are more strongly influenced by indoor sources than by 
outdoor pollution (Branco et al., 2014; Cano et al., 2012; Nunes et al., 
2015). However, indoor and outdoor pollutant levels are inter
connected, with indoor/outdoor particle matter ratios varying across 
cities and pollutant types (Ashmore and Dimitroulopoulou, 2009; 
Kumar et al., 2024). Exposure to PM2.5 in educational settings contrib
utes substantially to children’s overall daily PM2.5 exposure, even when 
indoor PM2.5 sources are primary contributors. For example, Rose et al. 
(2024) observed that classrooms in Cardiff (England, UK) had PM2.5 and 
PM10 levels above WHO AQG (≤5 μg/m3) during school hours, with 74 
%–89 % of PM2.5 attributed to outdoor sources. This interaction between 
outdoor and indoor PM2.5 sources highlights the compounded exposure 
children face, not only within EYPs but also during activities such as 
school pick-up/drop-off. Edwards and Whitehouse (2018) found 
elevated black carbon exposure during school hours and commuting 
times, while Sharma and Kumar (2018) reported that infants in prams 
can experience up to 60 % higher pollutant concentrations than adults 
due to their proximity to some emission sources.

The pandemic-associated dip in PM2.5 observed during 2020–2021 
aligns with global reports of improved air quality linked to reductions in 
vehicular and industrial activity (Jephcote et al., 2021; Liou et al., 
2023). While PM2.5 annual concentrations in England saw a slight in
crease in 2022, compared to 2020 and 2021, urban background PM2.5 
mean concentrations in 2023 showed a 12 % decrease from 2022 levels, 
continuing the downward trend observed since 2019 (DEFRA, 2024a).

The spatial clusters of PM2.5 concentrations at EYPs closely mirrored 
the overall PM2.5 distribution across England, as reported by DEFRA 
(2024a). The High-High clusters of EYPs (>10 μg/m3 of PM2.5 concen
trations) were highest in urban areas of southern and eastern England 
may be due to factors such as higher population density, prevailing 
weather conditions, increased pollution from both domestic sources, 
and cross-border emissions from mainland Europe (DEFRA, 2024a). In 
2023, four of the five air quality monitoring sites recording the highest 
annual mean PM2.5 concentrations in urban areas were situated in the 
South or East of England, including London, with the fifth located in the 
Midlands (DEFRA, 2024a) mirroring our results.

We showed consistent disparities in PM2.5 exposure, with EYPs 
located in more deprived, urban areas, and ‘other than white’ LSOAs 
experiencing higher levels. Our findings align with broader trends 
showing that areas with higher levels of socio-economic deprivation 
often overlap with regions of increased traffic or industrial activity, 
resulting in elevated air pollution levels (Gadenne et al., 2024; Kaÿ
mierczak, 2018; Whitty and Jenkins, 2022). Socio-economic inequalities 
further influence children’s exposure to air pollution, affecting the en
vironments where they live, play, and attend school (Mathiarasan and 
Hüls, 2021). Concerning urbanicity, except for ozone, air pollutant 
concentrations are typically higher in urban areas compared to rural 

regions (DEFRA, 2024b). Overall, these findings align with global 
studies indicating that ethnically diverse neighbourhoods often face the 
poorest air quality (e.g. Fairburn et al., 2019; Fecht et al., 2015; Gadenne 
et al., 2024; Jbaily et al., 2022). Osborne et al. (2021b) found that En
glish schools in areas with higher PM2.5 concentrations were more likely 
to have a diverse pupil demographic than schools with lower PM2.5 
levels. The "disadvantage gap" in educational attainment in the early 
years foundation stage, ranging from birth to five years old, highlights 
further disparities, with only four ethnic groups outperforming white 
British pupils at age 5 in 2023: Chinese, white and Asian, white Irish, 
and Indian (EPI, 2024).

4.1. Strengths and limitations

This study has several key strengths. It is the first large-scale analysis 
of PM2.5 exposure around EYPs across England, focusing on the 
vulnerable population of young children within diverse socio-economic 
settings. By addressing this critical gap in the literature, our study offers 
insights that could guide future air quality policy and research. The 
study spans a period of 5 years (2018–2022), enabling us to capture 
changes in air quality, including the years that COVID-19 lockdowns 
occurred. Additionally, we validated openly available data (UK-AIR, 
with a 1 × 1 km resolution) against the finer WM-Air ADMS-Urban 
modelled concentrations, revealing variability in PM2.5 estimates across 
models. Notably, UK-AIR predicted relatively higher PM2.5 exposures in 
Birmingham compared to the WM-Air model. These findings align with 
Osborne et al. (2021b), who similarly highlighted variability in PM2.5 
estimates depending on the data source, reinforcing the importance of 
robust model validation.

Nevertheless, some limitations should be noted. The reliance on the 
UK-AIR model for PM2.5 analysis, while comprehensive, is affected by 
year-to-year changes in modelling approaches, such as updates to 
emission inventories that are not retroactively applied, complicating 
longitudinal trend interpretation (DEFRA, 2023c). Modelled data in
troduces additional uncertainties (Osborne et al., 2021b), and our use of 
area-level metrics (e.g. predominant ethnicity) oversimplifies area-level 
ethnic diversity. Our analysis is based on annual PM2.5 averages, which 
smooth out seasonal variations in exposure and do not capture 
short-term fluctuations (DEFRA, 2022). Additionally, we did not assess 
other pollutants, such as NO2 or speciated PM2.5 components, which 
may have varying toxicity depending on their source. Future analyses 
should consider these factors to provide a more comprehensive under
standing of air pollution and its health impacts. We recognise that 
urbanicity, deprivation, and ethnic composition are not independent 
phenomena. In England, socio-economically deprived and ethnically 
diverse populations are disproportionately concentrated in urban areas 
(Fairburn et al., 2019; Fecht et al., 2015; Gadenne et al., 2024; Kaÿ
mierczak, 2018). These structural patterns reflect longstanding 

Fig. 4. Spatial visualisation of the mean concentration of PM2.5 at each Early Year Provider’s location in Birmingham (England, UK) in year 2019, using the UK-Air 
and WM-Air ADMS-Urban models.
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inequalities shaped by urban planning, transport policy, and housing 
access. While our Bayesian spatial model accounts for these variables 
simultaneously and incorporates spatial random effects to reduce bias 
from spatial confounding, some degree of conceptual and geographic 
overlap is expected. As such, the individual effect estimates should be 
interpreted with caution, as they may reflect interconnected structural 
determinants of air pollution exposure. Furthermore, a national data
base containing individual-level data on all children attending EYPs in 
the UK (e.g. children’s age, ethnicity, health, or time spent at EYPs) does 
not exist and as such these individual-level variables could not be 
assessed in this study. The Office for Standards in Education, Children’s 
Services and Skills (OFSTED) register of childcare providers contains 
information on the number of childcare places (Ofsted, 2024), but these 
EYPs are not geolinked by x, y coordinates or Unique Property Reference 
Number (UPRN), which prevented us from linking these data to our 
current dataset. We are currently exploring this linkage in a separate 
study to address this issue. Additionally, this study did not include 
childminders, who play a significant role in early childcare in England. 
Childminders are self-employed professionals who provide childcare in 
their own homes for children ranging from birth to age 8, and sometimes 
older. As of June 30, 2024, there were over 26,300 registered child
minders among England’s 61,800 childcare providers, collectively car
ing for approximately 160,000 children (Ofsted, 2024). Since 
childminders care for children in their own homes, data on their loca
tions are not openly available. Moreover, the Department for Educa
tion’s Early Years Census only covers children receiving free hours of 
care (DfE, 2024a). This gap in data coverage may be reduced in the 
future, as all children in England aged 9 months and older whose parents 
are in employment are now eligible for 30 h of free childcare per week, 
starting from September 2024, offered through EYPs, including nurs
eries and registered childminders (DfE, 2024b). Addressing these limi
tations in future research could provide a more comprehensive 
understanding of air pollution concentrations around EYPs in England.

4.2. Policy implications and future research

Our findings highlight the importance of targeted air quality in
terventions in urban areas, where young children are most exposed to 
PM2.5. In particular, the resurgence of PM2.5 levels in 2022, especially in 
highly deprived areas, highlights the need for sustained, long-term in
terventions to address persistent environmental inequalities 
(Nieuwenhuijsen, 2021). Policy efforts to reduce PM2.5 exposure around 
EYPs may benefit from a focus on traffic emissions (including 
non-exhaust emissions), domestic combustion (including wood 
burning), and industrial sources. Prior studies and policy initiatives have 
proposed a range of strategies to mitigate exposure near educational 
settings, such as discouraging vehicle idling near childcare facilities, 
enhancing green infrastructure to improve local air quality, and care
fully considering the siting of new EYPs in relation to major roads 
(Greater London Authority, 2024; UKHSA, 2025; UNICEF UK, 2018). 
Expanding air quality monitoring in and around childcare environments 
would also support more targeted interventions. Although we did not 
evaluate interventions directly, peer-reviewed evaluations show that 
local, area-level actions (e.g. neighbourhood-to-city scale) can reduce 
exposure (and in some cases improve child health)—for example, Lon
don’s LEZ/ULEZ programmes demonstrate roadside NO2 reductions 
(Mudway et al., 2019) and are being evaluated for child-health impacts 
(Tsocheva et al., 2023), Stockholm’s congestion tax reduced ambient 
pollution by ~5–15 % and lowered acute asthma attacks in young 
children (Simeonova et al., 2021), and Dublin’s smoky-coal ban pro
duced substantial mortality benefits (Clancy et al., 2002); together these 
findings support prioritising high-exposure, deprived urban catchments 
for action. In addition, near-road mitigation and carefully designed 
vegetation/physical barriers around schools can lower downwind con
centrations, complementing network-level emission reductions 
(Abhijith et al., 2017). Future research should prioritise finer-scale 

pollution data and rigorous impact evaluations—particularly in 
EYP-centred and high-deprivation settings—to assess the effectiveness 
and equity impacts of such area-based interventions.

5. Conclusion

Although PM2.5 levels have decreased around EYPs in England, our 
findings highlight the need for continued efforts to meet clean air ob
jectives. Persistent inequalities in PM2.5 exposure remain, particularly 
for EYPs located in areas of higher deprivation, with more non-white 
residents, and in areas that were urban. These inequalities highlight 
the urgent need for targeted action by local authorities and policy- 
makers to protect vulnerable populations, especially young children.
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