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Abstract

The longitudinal mode of a massive vector field, generated during inflation, offers a well-
motivated and phenomenologically rich candidate for dark matter. We show that a rapid
variation in the mass of the vector boson, occurring during a brief phase of non-slowroll infla-
tionary evolution, can naturally give rise to extremely small vector masses after inflation ends,
corresponding to an ultralight dark matter candidate. This mechanism predicts a stochas-
tic gravitational-wave background, generated at second order by non-adiabatic longitudinal
vector fluctuations and amplified at very low frequencies, yielding a distinctive observational
signature of the scenario. By leveraging a brief departure from slowroll dynamics during in-
flation – commonly invoked in scenarios that produce primordial black holes – our framework
establishes a novel connection between ultralight vector dark matter and primordial black
hole physics, suggesting a possible unified setting for mixed dark matter scenarios.

1 Introduction

Determining the nature of dark matter (DM) is one of the most important open problems in

modern physics. Its feeble interactions with Standard Model particles, if any besides gravity,

make its detection extremely challenging. See, for example, [1, 2] for reviews.

In this work, building on the analysis of [3], we explore a variation of the scenario originally

proposed in [4], in which DM consists of the longitudinal modes of a massive dark photon produced

purely through gravitational effects during inflation. The setup of [4] is particularly minimal,

requiring only a single massive vector field as the dark matter candidate, which is efficiently

generated in the very early Universe. We investigate how this framework is modified by the

presence of a brief phase of non-slowroll evolution during inflation, which causes a rapid variation

of the vector mass. Our extension of the original scenario allows for the generation of dark

matter with extremely small masses, on the order of m = 10−21 eV or smaller. A key prediction

of this mechanism is the simultaneous production of a stochastic background of gravitational

waves, peaking at very low frequencies, which offers a distinctive smoking gun signature for the

scenario. By introducing a short departure from slowroll inflation through carefully chosen initial

conditions, our approach provides a new connection between the framework of [4] and the class

of models associated with the generation of primordial black holes (see, e.g., [5] for a review).

This opens up an intriguing link between ultralight vector dark matter and primordial black hole

physics, offering a new observational probe of inflationary dynamics across a wide range of scales,

and suggesting a framework for mixed dark matter scenarios.
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The gravitational production of scalar fields in inflationary scenarios has been studied in

several earlier works, including dark matter production (see for example [6–8]). Ref. [4] extended

these analyses to the spin-1 case, establishing a compelling connection to DM. In particular, it

emphasized the role of the vector longitudinal component, which arises due to the mass term,

and whose Lagrangian in a cosmological background was first analyzed in [9]. The framework

of [4] has since been further developed and analyzed in a number of theoretical studies [10–21],

and its phenomenological implications have been investigated in [22–32].

Sections 2–4 of this work show that a brief phase of non-slowroll evolution during inflation

significantly modifies the frequency profile of the longitudinal vector sector. This can occur, for

example, when the vector mass depends on the inflaton velocity, which can change significantly

over a brief period when slow-roll conditions are violated. The resulting spectrum exhibits a

characteristic peaked structure, whose amplitude and position depend sensitively on both the

vector mass and the parameters controlling the non-slowroll epoch. Notably, this phase alters

the infrared behavior of the longitudinal spectrum, leading to a k6 growth – compared to the k2

scaling found in the original scenario in the infrared part of the spectrum [4]. This modification

has important phenomenological implications: it allows for viable dark matter candidates with

extremely small vector masses, thereby providing a concrete realization of ultralight spin-1 dark

matter. Moreover, it represents an interesting generalization of previous findings on the maximal

growth of the spectrum of adiabatic fluctuations in models of inflation including a brief phase of

non-slowroll evolution [33,34].

In Section 5, building on [3], we demonstrate that this scenario naturally gives rise to a

stochastic background of gravitational waves, generated at second order in perturbation theory

by the enhanced longitudinal vector spectrum at small scales. The amplitude of this gravitational

signal increases with decreasing vector mass, and the peak of the spectrum lies at very low

frequencies, around 10−15−10−13Hz, making detection observationally challenging. Nevertheless,

we discuss possible techniques to probe such signals, and we outline additional phenomenological

consequences of this framework. A Section of Conclusions and two technical Appendixes conclude

the article. Natural units are adopted throughout.

2 The setup

We present a cosmological scenario involving a massive vector field whose mass evolves dynam-

ically during inflation. The nonzero vector mass explicitly breaks an Abelian gauge symmetry,

thereby rendering the longitudinal mode of the vector field physical and dynamical. If the mass

undergoes a rapid variation over a brief interval during inflation, to then stabilize to a constant

value by when inflation ends, the system exhibits distinctive features, which we will analyse in

detail. We argue that this mechanism provides a compelling framework for generating dark mat-

ter in the form of the longitudinal mode of a massive dark vector field, using ideas borrowed from

physics of primordial black hole formation, and with interesting phenomenological ramifications.

The longitudinal vector dark matter abundance and its properties are controlled by the vector

mass scale and its time variation during inflation. We show that this scenario allows for a new

mechanism to produce ultralight dark matter in the form of vector bosons during inflation. This

work offers an explicit realization of the phenomenological ideas developed in [3].

We consider a generalization of the covariant vector-tensor action studied, for instance, in [35],
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by introducing a spacetime-dependent mass term in a cosmological context:

S =

∫
d4x

√
−g

[
R

2
− 1

4
FµνF

µν − M2

2
AµA

µ

]
, (2.1)

with Fµν = ∂Aν − ∂νAµ. The quantity M2 is a mass parameter that can depend on spacetime

coordinates – for example, through its coupling to dynamical fields active during inflation, such

as the inflaton. We focus on a spatially flat, homogeneous and isotropic background metric:

ds2 = a2(τ)
[
−dτ2 + δij dx

idxj
]
. (2.2)

We assume that the vector field Aµ has no homogeneous background value and instead behaves

as a perturbation propagating on the cosmological background. Its decomposition takes the form:

Aµ(x) =
(
A0(x), ∂iφ(x) +AT

i (x)
)
, (2.3)

where AT
i is transverse, satisfying ∂iA

T
i = 0. The configuration (2.3) activates only the time-like

and longitudinal components of the vector field, which preserve spatial isotropy at the background

level. This assumption ensures consistency with observational evidence for the isotropy of the

universe on large scales. It would be interesting to explore the system’s evolution for more general

initial conditions that slightly break isotropy, in order to test whether the isotropic configuration

we will focus on acts as an attractor. In Eq. (2.1), we choose the mass term to take the form:

M2(τ) =
m2 J2(τ)

a2(τ)
, (2.4)

where m is a constant mass scale, corresponding to the physical vector mass at the end of infla-

tion τR , and J(τ) is a dimensionless function of conformal time. For simplicity, we impose the

condition J(τR) = a(τR), so that M(τR) = m. The time dependence of J(τ) can be naturally

motivated if it originates from a coupling to the inflaton field, whose dynamics during inflation

govern the evolution of the effective vector mass. In our discussion we are guided by scenarios

in which the inflaton velocity undergoes a brief, rapid variation –such as in ultra-slowroll [36–38]

or constant-roll [39–41] inflation (see e.g. [5] for a review). These rapid transitions in the infla-

ton’s velocity are expected to manifest as a sharp, short-duration variation in the function J(τ).

Although we do not specify a particular inflationary scenario for our arguments, we develop in

Appendix A a representative inflation model with some of the characteristics outlined above.

Building on these hypothesis, the central problem we address in this work is how to analyze the

dynamics of vector fluctuations when J(τ) exhibits such a rapid transition during inflation. Suc-

ceeding on this aim will us to enlarge the parameter space of the longitudinal vector dark matter

model [4] allowing for small dark matter masses with interesting phenomenological consequences.

In what follows, we neglect fluctuations of the metric, assuming that their contributions do

not spoil the early universe amplification mechanism of [4]. Hence we focus on the quadratic

action for vector fluctuations around a homogeneous and isotropic background, assuming the

vector field has no homogeneous vacuum expectation value, reads:

S =

∫
dτ d3x a2(τ)

[
−1

4
FµνF

µν − m2J2(τ)

2a2(τ)
AµA

µ

]
. (2.5)
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As described in the decomposition (2.3), the gauge field contains transverse vector modes

and a scalar (longitudinal) degree of freedom. In what follows, we focus exclusively on the scalar

sector, described by the fields A0 and φ. In Fourier space, the physical longitudinal mode of the

vector field is given by:

ALk(τ) = ik φk(τ) . (2.6)

Solving the equation of motion for the nondynamical component A0 yields the following

relation in Fourier space:

A0k(τ) =
k2

k2 +m2J2(τ)
φ′
k(τ) =

−ik

k2 +m2J2(τ)
A′

Lk(τ) . (2.7)

Substituting Eq. (2.7) into the action, we obtain the following effective quadratic action for

the longitudinal scalar mode φk:

S =

∫
dτ d3k

k2J2(τ)

2

[
m2

k2 +m2J2(τ)
φ′
k(τ)φ

′
−k(τ)−m2 φk(τ)φ−k(τ)

]
. (2.8)

To bring the latter term into canonical form, we define the canonically normalized field

πk(τ) ≡
kmJ(τ)√

k2 +m2J2(τ)
φk(τ) . (2.9)

In terms of πk, the quadratic action becomes (we understand here the time dependence of the

various quantities):

S =
1

2

∫
dτ d3k

[
π′
k π

′
−k −

(
k2 +m2J2 +

3k2m2J ′2

(k2 +m2J2)2
− k2

k2 +m2J2

J ′′

J

)
πk π−k

]
, (2.10)

which constitutes the starting point for our discussion. In what follows, we analytically solve the

corresponding evolution equations in different regimes – inflation and radiation domination – and

demonstrate that vector longitudinal modes can constitute an interesting dark matter candidate,

whose properties depend on the vector mass m and the characteristics of the time-dependent

function J(τ).

3 Cosmological evolution of the vector longitudinal mode

In this section we analyze the rich cosmological evolution of the longitudinal mode of the massive

vector field Aµ in a scenario where inflation is followed by a radiation domination universe, and

the vector mass M of Eq. (2.4) changes rapidly during a short period within the inflationary

phase. We focus exclusively on the dynamics of the spin-0 longitudinal mode and do not analyze

the spin-1 massive vector fluctuations, as they do not influence the longitudinal mode at linear

order and therefore do not affect the cosmological predictions considered here.

3.1 Evolution during inflation

We consider the regime in which the physical vector mass is much smaller than the Hubble scale

during inflation, m ≪ HI , with m the constant mass parameter introduced in Eq. 2.4, and HI

the inflationary Hubble scale, assumed nearly constant during inflation. In fact, throughout this
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section we assume a quasi-de Sitter background with scale factor a(τ) = −1/(HIτ). We work

under the following hierarchy of scales: at subhorizon scales, the physical momentum satisfies

k

aHI
≫ 1 ≫ Jm

aHI
, (3.1)

while at superhorizon scales we have

Jm

aHI
≪ k

aHI
≪ 1 . (3.2)

Under these conditions, the dominant contributions to the effective action (2.10) simplify con-

siderably. In particular, the equation of motion for the canonically normalized scalar field πk
reduces to

π′′
k(τ) +

(
k2 − J ′′(τ)

J(τ)

)
πk(τ) = 0 . (3.3)

Since πk ≃ mJ(τ)φk, it follows that the power spectrum of the original scalar mode φ is

related to that of the canonically normalized mode π via

Pφ =
Pπ

m2J2(τ)
. (3.4)

To determine the spectrum Pπ we follow the approach developed in [42, 43] in order to deal

with Eq. (3.3). We assume that the time-dependent vector mass profile of Eq. 2.4 is encoded in

the function

J(τ) = a(τ)
√
ω(τ) , (3.5)

where ω(τ) encapsulates the (possibly rapid) time dependence of the physics governing the vector

mass during the inflationary epoch. Such a situation can arise, for example, when the vector mass

depends on the inflaton velocity, which may vary abruptly over a brief interval in a non-slowroll

phase. A concrete illustration of this possibility is provided in Appendix A.

More generally, assuming inflation occurs in the conformal time interval τ ≤ τR (τR being the

epoch of the instantaneous reheating) we take

ω(τ) =


ω(τ1) = const. for τ < τ1 ,

smooth but rapidly varying for τ1 < τ < τ2 ,

1 for τ2 < τR ,

(3.6)

with the transition interval satisfying |τ1 − τ2|/|τ1| ≪ 1. This profile intends to model a brief

non-slowroll phase during inflation, treated as nearly instantaneous for analytical tractability,

which makes the inflaton velocity rapidly evolve affecting the vector mass.

We are left with the technical problem to solve Eq. (3.3). We make the Ansatz

πk(τ) =
e−ikτa(τ)

√
ω(τ)HI√

2k3

[
1 + ikτ + (ikτ)2A2(τ) + (ikτ)3A3(τ) + . . .

]
, (3.7)

where the functions An(τ) encode corrections due to the time dependence of ω(τ). An arbitrary

scale τ0 can be introduced to keep the series dimensionless; however, our final results are inde-

pendent of this choice. Plugging this ansatz into Eq. (3.3), we expand in powers of k, and solve
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order by order by requiring that each term vanishes independently. This method, developed

in [42], is well suited to the regime where the non-slowroll phase has infinitesimal duration 1,

|τ1 − τ2|/|τ1| ≪ 1. Reference [42] shows that each equation can be solved consistently for An(τ)

in the limit of brief non-slowroll phase, and the results can be plugged into (3.7) leading to a

series which can be resummed analytically. Starting from this result, the mode function obtained

within the interval τ1 ≤ τ ≤ τ2 can be connected through Israel junction conditions to the final,

slowroll phase of inflation, and evaluated at the end of the inflationary epoch.

The solution for the mode function πk(τ) depends on a dimensionless parameter α, the loga-

rithmic rate of change of ω at the transition:

α =
d lnω(τ)

d ln τ

∣∣∣∣
τ=τ1

, (3.8)

which we take positive. Since d ln τ = −d ln a(τ) during inflation, a positive α corresponds to

a negative rate of change for the vector mass M(τ) during inflation: the vector mass rapidly

decreases during the non-slowroll epoch. This possibility is concretely realized in the specific

model outlined in Appendix A.

Formulas simplify significantly in the following idealized limit, motivated by field theory

methods elaborated by ’t Hooft [44]:

α → ∞ ,
|τ1 − τ2|

|τ1|
→ 0 , keeping

α|τ1 − τ2|
|τ1|

≡ 2Π0 finite . (3.9)

We refer the reader to the recent works [42, 43, 45] for a careful derivation of these results,

where the techniques outlined above are spelled out in all technical details. In this regime, the

resulting power spectrum for the longitudinal mode of the vector field, when evaluated at the

end of inflation, results

P(0)
AL

(k) =
H2

I k
2

4π2m2
Π

(
k

k1

)
, (3.10)

where the dimensionless function

Π(x) = 1− 4xΠ0 cosx j1(x) + 4x2Π2
0j

2
1(x) (3.11)

encodes the imprint of the non-slowroll phase, which – as explained above – we assume is making

the vector mass changing rapidly during a small time interval. See in particular [43] for the work

where the expression (3.11) first appears. The quantity j1(x) in Eq. (3.11) is the spherical Bessel

function of the first kind:

j1(x) =
sinx

x2
− cosx

x
, (3.12)

while the reference momentum scale k1 appearing in Π(k/k1) is given by

k1 = HI a(τ1) = − 1

τ1
, (3.13)

and corresponds to the comoving wavenumber of modes exiting the horizon at the onset of the

brief non-slowroll phase. The function Π(x) defined in Eq. (3.11) has a characteristic profile

1In realistic scenarios, the phase of non-slowroll evolution is expected to have a finite duration, leading to

subleading corrections to the results derived below under the assumption of infinitesimally brief non-slowroll phase.
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whose properties play an important role in our analysis and can be studied analytically in the

limit of large Π0, which is the regime of interest here. For small x, Π(x) approaches a constant,

with the expansion Π(x) ≃ 1− 4
3Π0x

2 +O(x4) for x ≪ 1. As x increases, the function develops

a pronounced dip around xdip ≃
√
3/(2Π0), after which it steadily rises with an approximate x4

scaling, eventually reaching a peak and then transitioning to a plateau for x ∼ O(1). See [42] for

detailed analysis.

Setting Π0 = 0 corresponds to a purely slowroll evolution, in which case we recover the

standard result [4] for Eq. (3.10), characterized by a k2 scaling for the longitudinal modes. This

mechanism, as described in [4], provides an appealing framework for generating longitudinal

vector dark matter during inflation. The resulting blue-tilted spectrum is naturally suppressed

at large scales due to the overall k2 factor, thereby evading stringent observational bounds on

isocurvature perturbations in that regime.

The phenomenological impact of the non-slowroll phase is illustrated in the upper-left panel of

Fig. 1, and introduces novel features into the dynamics of the system. Activating the parameter

Π0 significantly alters the shape of the longitudinal power spectrum PAL
, leading to deviations

from the standard monotonic k2 scaling. We have chosen Π0 = 104 as representative value.

In fact, the resulting spectrum exhibits features reminiscent of those seen in scenarios with

enhanced curvature perturbations that may trigger primordial black hole (PBH) formation (see [5]

for a review). In particular, an intermediate phase emerges during which the spectrum grows

more rapidly, driven by the energy gradient transferred to the longitudinal modes by the time-

dependent vector mass.

Specifically, as shown in Fig. 1, the power initially rises from large to small scales as PAL
∝

(k/k1)
2, in agreement with the standard behavior [4]. This is followed by a dip which is located

– for the arguments described after Eq. (3.13) – at kdip/k1 ≃ Π−4
0 ≃ 10−2. The power spectrum

exhibits a subsequent sharp enhancement, scaling as (k/k1)
6 up to momenta around k ≃ k1.

These modes correspond to scales that exited the horizon during the non-slowroll epoch. At

smaller scales (k ≫ k1), the growth rate gradually returns – on average – to the milder (k/k1)
2

scaling. The strong oscillations at small scales arise from the abrupt transition between the non-

slowroll phase and the final slowroll epoch during inflation. A smoother matching between the

two phases would suppress these oscillations.

The transition from a k2 to a k6 behavior in the infrared region of the spectrum is reminiscent

of the maximal power-four enhancement observed in primordial black hole scenarios [33, 34],

which arise from an initially nearly scale-invariant spectrum. As in that context, we find that

the spectrum can acquire at most a fourth-order increase in its momentum dependence relative

to its slowroll counterpart 2.

The intermediate phase of (k/k1)
6 growth of the longitudinal power spectrum plays a crucial

role in determining the final dark matter abundance sourced by the longitudinal vector modes:

in fact, it adds new parameters to the scenario that increase the potentially interesting region of

parameters to explore, with ramifications for gravitational wave physics.
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Figure 1: This series of plots shows the power spectrum PAL
of the vector longitudinal mode, both

during inflation and the radiation-dominated era, as a function of scale. The emphasis is on illustrating
the impact in the infrared part of the spectrum of effects controlling a brief period of non-slowroll evolution
during inflation. (See the main text for definitions of the parameters and further discussion.) Upper left
panel: The blue curve shows the profile of PAL

during inflation for Π0 = 104 as a function of κ = k/k1,
where k1 is the characteristic scale defined in Eq. (3.13). For comparison, the dashed orange line indicates
the κ2 scaling corresponding to Π0 = 0. Upper right and lower panels: The colored curves show the
evolution of PAL

during radiation domination for various values of the parameters Π0 and σ, compared
to the black line representing the standard profile in the absence of non-slowroll effects. The range of
momenta is chosen to emphasize the key features of the longitudinal spectrum. The lower limit aim to
capture the position of the first enhanced dip at x⋆ ≃ 10−2, signaling the transition from k2 to k6 behavior.
(See main text for details). The upper limit shows the post–rapid-mass-decrease behavior: in some panels
(upper left) the spectrum returns to a k2 slope, while in the other panels it reaches a peak before falling,
depending on the values of the parameter σ.

3.2 Evolution during radiation domination

During the radiation domination (RD) period following inflation the large-scale longitudinal mode

of the vector field, AL, re-enters the horizon and begins to evolve. Its dynamics depend crucially

on its comoving momentum k. The power spectrum of the longitudinal mode at a given time

2It would be interesting to investigate whether the presence of free-streaming particles, or related phenomena,

could further affect the shape of the infrared spectrum [46]. We leave this question for future work.
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τ ≥ τR during RD is controlled by a transfer function T (kτ), and is expressed as

PAL
(τ, k) = |T (kτ)|2 P(0)

AL
(k) , (3.14)

where P(0)
AL

(k) denotes the primordial spectrum computed at the end of inflation, as described

in Section 3.1 – see in particular Eq. (3.10), as well as [3, 47] for analytical solutions for the

transfer functions. In the standard slowroll scenario of [4], this spectrum features a turnover at

a comoving scale k⋆ ∼ a⋆m, determined by the vector mass m and the scale factor a⋆ evaluated

at the moment when the Hubble parameter satisfies H = m. Our goal is to investigate how

a transient non-slowroll phase during inflation modifies this standard prediction –particularly

through its impact on the spectrum shape, as shown in Fig. 1.

To analyze the evolution of the transfer function more conveniently, we introduce a set of

variables following the conventions in [3, 21]:

H⋆ = m , k⋆ = a⋆m,

x = kτ , x⋆ = k/k⋆ , (3.15)

y =
x

x⋆
, σ =

a⋆H⋆

a1HI
.

An analytic approximation for the transfer function T (kτ) ≡ T (x) in the relevant asymptotic

regimes is derived in Ref. [3], to which we refer the reader for full details. That work demonstrates

that T (x) can be expressed in terms of simple oscillatory functions in the two distinct regimes

x⋆ < 1 and x⋆ > 1. We are going to make use of this result in the following.

To understand the rich physical consequences of the relevant physical scales, we recall that

the comoving scale

k1 = a(τ1)HI = − 1

τ1
(3.16)

marks the onset of the non-slowroll phase during inflation. On the other hand, the scale

k⋆ = a⋆m (3.17)

characterizes the physical momentum at which the vector mass becomes dynamically relevant

during RD. We then have two distinct momentum scales to deal with. To proceed, it is useful to

analyse further the ratio σ introduced in Eq. (3.15):

σ =
k⋆
k1

=
a⋆H⋆

a(τ1)HI
=

a⋆
a(τ1)

m

HI
, (3.18)

which plays a significant role in our analysis. Writing aR for the value of the scale factor at the

end of inflation, we have:

aR
a1

= eN1 , with N1 the number of e-folds between τ1 and inflation end , (3.19)

a⋆
aR

=
τ⋆
τR

=

(
HI

H⋆

)1/2

=

(
HI

m

)1/2

. (3.20)

Combining these formulas, we obtain

σ = eN1

(
m

HI

)1/2

. (3.21)

To get a sense of the possible values of σ, consider two illustrative examples:
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- For N1 = 30 e-folds before inflation ends, m = 10−19 eV, and HI = 1014 GeV, we find

e30 ∼ 1013 and (m/HI)
1/2 ∼ 10−21, yielding σ ∼ 10−8: a negligible value.

- For N1 = 49 e-folds before inflation ends, m = 10−19 eV, and HI = 1010 GeV, we find

e49 ∼ 1021.2 and (m/HI)
1/2 ∼ 10−19, leading to σ ∼ 102.2: a significantly large value.

Thus, depending on the inflationary history and the vector mass scale m, the parameter σ can

vary across many orders of magnitude.

We can now re-express the longitudinal mode spectrum of Eq. (3.14) in terms of the dimen-

sionless variable x⋆ = k/k⋆ as

PAL
(x⋆) =

(
HIa⋆
2π

)2 [
x2⋆Π(σx⋆) |T (x⋆)|2

]
. (3.22)

where T is the transfer function, and recall the definition (3.11) for Π(x). Explicitly,

Π(σx⋆) = 1− 4σx⋆ cos(σx⋆)j1(σx⋆)Π0 + 4σ2x2⋆j
2
1(σx⋆)Π

2
0 , (3.23)

which depends on the parameters σ and Π0. We plot the quantity in square brackets of Eq. (3.22)

in three of the panels of Fig. 1, noting that it is independent of the parameters m and HI .

The figures reveal a nontrivial interplay between the effects of the transfer function |T (x⋆)|2
and the deformation of the inflationary spectrum by the function Π(σx⋆). For large values of the

parameter Π0, e.g., Π0 = 104 (chosen with an eye toward the applications discussed in Sections 4

and 5) the longitudinal spectrum exhibits a prominent peak and a turnover at a scale dependent

on the model parameters. The amplitude of the spectrum near the peak is significantly enhanced

relative to the slowroll case (Π0 = 0), indicating that the non-slowroll epoch efficiently amplifies

the production of longitudinal vector modes. As shown in the previous section, the departure from

slowroll evolution significantly impacts the infrared portion of the spectrum, enhancing its growth

rate as it approaches the peak. This behavior represents a key distinction from other scenarios

– such as those involving non-standard cosmological histories after inflation, see e.g. [13, 14] –

which instead alter the spectral properties after the peak occurs.

Importantly, the location of the turnover scale is sensitive to the value of σ. For σ ∼ 1, the

turnover occurs near the familiar scale k ∼ k⋆ = a⋆m, as in the standard slowroll scenario (see

Fig. 1, upper right panel). However, in the σ ≪ 1 regime, the turnover shifts to significantly

smaller scales, k ≫ k⋆, resulting in a spectrum that accumulates power at high k (Fig. 1, lower

left panel). In contrast, for σ ≫ 1, the turnover remains at k ∼ k⋆, but the small-k growth of the

spectrum becomes markedly steeper (Fig. 1, lower right panel), suggesting that the total power

carried by short-wavelength modes may be significantly enhanced in this regime.

Overall, the plots in Fig. 1 clearly illustrate the dependence of the spectrum (3.22) on the

parameters m, Π0, and σ, pointing to a rich phenomenology that we explore in the following.

4 Longitudinal energy density and dark matter amount

Since we wish to explore the possibility that the vector longitudinal mode AL constitutes (part

of) the observed dark matter of our universe, we compute its energy density compared with the

present-day dark matter abundance. We determine how this ratio depends on the parameters of
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the model, and in particular we explicitly explore what is the role of the non-slowroll phase of

evolution during inflation for characterising the final dark matter density.

The energy density stored in the longitudinal vector modes is given by [4]

ρAL
=

m2

2a2

∫
d ln k

[P(∂τAL)(k)

k2 + a2m2
+ PAL

(k)

]
, (4.1)

where the first term corresponds to the kinetic energy and the second to the potential energy.

Both terms evolve in time via the transfer function. They share a common overall dependence

on the primordial power spectrum P(0)
AL

we analyzed in section 3.1. Plugging the explicit form of

P(0)
AL

obtained from a transient non-slowroll phase during inflation—encoded through the time-

dependence of the vector mass—we obtain an integral involving transfer functions

ρAL
=

1

2a2
a⋆
a

(
k⋆HI

2π

)2 [∫
d ln k

(
k2

k2⋆(k
2 + a2m2)

a

a⋆
|∂τT |2 + k2

k2⋆

a

a⋆
|T |2

)
Π(kτ1)

]
(4.2)

where the explicit oscillatory structure in the last factor Π(kτ1) of the integrand arises from the

non-slowroll transition at time τ1, and correspondingly introduces a physical scale k1 = a(τ1)HI :

see the definition in Eq. (3.11).

Computing the integral

We call Iρ the dimensionless integral in the square parenthesis of Eq. (4.2). By making use of the

dimensionless variables of Eq. (3.15), and evaluating it at late times yend = a(τend)m/k⋆ ≫ 1,

we write

Iρ(yend) = yend

∫
d lnx⋆

(
x2⋆

x2⋆ + y2end
|∂yT |2 + x2⋆|T |2

)
Π(σx⋆) . (4.3)

We choose a large value of yend in order to evaluate quantities deep in the radiation dominated

era, and to average over rapid oscillations. Recalling that σ = k⋆τ1, the modulation function

inside the integral is given by Eq.(3.23). Following the approach of [3], we split the integral into

two regions, x⋆ < 1 and x⋆ > 1. They correspond respectively to modes outside and inside the

Hubble radius during radiation domination:

Iρ(yend) = yend

∫ 1

0

dx⋆
x⋆

(
x2⋆

x2⋆ + y2end
|∂yT (A)

late |
2 + x2⋆|T

(A)
late |

2

)
Π(σx⋆)

+ yend

∫ yend

1

dx⋆
x⋆

(
x2⋆

x2⋆ + y2end
|∂yT (B)

late |
2 + x2⋆|T

(B)
late |

2

)
Π(σx⋆) . (4.4)

Each line of Eq. (4.4) depends on the different solutions for the analytic transfer functions which

apply in different regimes of y (see Section 2.3 of the arXiv version of [3]):

1. The first line of Eq (4.4), call it I(1), can be easily evaluated for large values of the argument

yend. We find

I(1) = 0.475883 + s1(σ)Π0 + s2(σ)Π
2
0 . (4.5)

The expressions for s1(σ) and s2(σ) are long and relegated to Appendix B. Sufficient to say

that they vanish as σ → 0 and asymptote to the same constant ∼ 0.95 for large σ: see the

left panel of Fig 2.
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Figure 2: Left panel: Plot of the functions s1,2(σ) defined in Eq. (4.5). Although these functions
exhibit oscillations, they asymptotically approach a common value for large σ. Right panel: Plot of the
differential energy density (4.11) as a function of momentum scale, for a representative choice of vector
mass m = 1.5 × 10−19 eV and inflationary Hubble scale HI = 1014 GeV. The figure highlights how the
parameters σ and Π0, which control the non-slowroll dynamics during inflation, significantly enhance the
amplitude of the peak in the spectrum.

2. For dealing with the contribution in the second line of Eq (4.4), call it I(2), we proceed

as in [3]. Given that the quantity yend occurs both as an integration limit and within the

integrand, it is convenient to first perform a rescaling of the integration variable by defining

z ≡ x∗
yend

. In terms of this new variable, the lower integration limit 1
yend

becomes small

enough to be approximated by zero. Moreover, the resulting integrand contains terms that

oscillate rapidly within the interval 0 ≤ z ≤ 1, and these oscillations are suppressed by

inverse powers of yend. Since these contributions average out to nearly zero, they can be

safely neglected. The result can be handled exactly, and we obtain the following expression

I(2) = 1.025

[
1 + 2Π0 +

(
2 +

0.685

σ2

)
Π2

0

]
. (4.6)

Collecting the results

Let us collect the results obtained so far. The total integral (4.4) is the sum of the previous two

pieces: Iρ = I(1)+I(2), and depends both on σ and Π0. Interestingly, Iρ acquires a particularly

simple expression for large σ

Iρ ≃ 3

2

(
1 + 2Π0 + 2Π2

0

)
for large σ. (4.7)

The resulting energy density in longitudinal vector modes, which redshifts as matter, is given by

ρAL
=

1

2

a3⋆
a3

(
mHI

2π

)2

Iρ . (4.8)

Evaluating this formula at matter-radiation equality and comparing with the total dark matter

density [48]

ρDM =
3

2
H2

eqM
2
Pl , Heq = 2.8× 10−28 eV , (4.9)
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we obtain, in a large σ regime, the ratio

ρAL

ρDM
=

m1/2

3H
1/2
eq

(
HI

2πMPl

)2

Iρ =
(
1 + 2Π0 + 2Π2

0

)( m

0.6× 10−6 eV

)1/2( HI

1014GeV

)2

. (4.10)

Hence, the result depends in a rich way on the available parameters. As explicit examples, we

can consider a regime where the longitudinal vector plays the the role of ultra light dark matter

candidate. Choosing m = 1.5×10−21 eV and HI = 1014GeV, a value Π2
0 = 107 yields the correct

dark matter abundance. As an additional case, choosing instead HI = 5 × 1013GeV (keeping

the same values for the other parameters), we obtain a scenario where the longitudinal vector

is an ultralight dark matter candidate constituting the 25% of the observed dark matter in the

universe. As we shall see in the next Section, besides known interesting features as ultralight

dark matter candidate (see the recent reviews [49, 50]), the very small mass range considered

above has ramifications for the physics of gravitational waves. Formula (4.10) is similar in spirit

to analog equations recently obtained in a phenomenological way in [3]: in fact, by means of

our construction based on non-slowroll dynamics during inflation, we are finding an explicit

realization of the ideas proposed in [3]. It is important to emphasize that the mechanism of

ultralight DM production we propose differs fundamentally from other scenarios, such as those

based on the misalignment mechanism (see [49,50] for reviews). In contrast to these approaches,

our framework does not rely on the presence of background fields oscillating around the minimum

of their potential.

To conclude this section, we discuss an informative quantity that provides insight into how the

energy density of the longitudinal mode is distributed across momentum scales. Specifically, we

consider the differential contribution to the energy density, normalized by the total dark matter

density:
1

ρDM

dρAL

d ln k
. (4.11)

This quantity represents the contribution per logarithmic interval in momentum to the energy

density of the longitudinal vector mode. When integrated over all momentum scales, it yields the

total energy density ratio given in Eq. (4.10). However, before integration, it offers an instructive

view of how different momentum modes contribute to the overall energy density, thereby serving

as a diagnostic for scale-dependent features in the production mechanism. In the right panel of

Fig. 2 we plot this distribution. One can clearly see that the brief non-slowroll phase during

inflation has a significant effect on the infrared part of the spectrum, in the region where it is

growing. The modification of the profile in this growing region reflects the enhanced amplification

of certain modes due to the departure from slowroll evolution.

5 Phenomenological implications

We learned in the previous section that our version of the scenario introduced in [1] realizes dark

matter in the form of longitudinal modes of a massive vector non-minimally coupled with gravity.

The dark matter abundance depends only on the mass of the vector boson and on the details of

the NSR phase.

The scenario for the inflationary production of longitudinal vector dark matter developed in
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the previous sections exhibits several appealing features. It generates a spectrum of longitudinal

modes that is strongly suppressed on large scales – thus evading stringent constraints from cosmic

microwave background observations – and grows toward smaller scales, reaching a peak whose

position and amplitude depend on the model parameters: the vector mass m, and the parameters

σ and Π0 characterizing the brief non-slowroll phase during inflation. The infrared part of the

spectrum is especially sensitive to the inflationary non-slowroll phase.

Remarkably, this framework allows for the efficient production of ultralight vector dark matter

from inflation, with masses comparable or smaller than m = 10−19 eV, while still yielding an

energy density sufficient to constitute a substantial fraction of the total dark matter abundance.

Ultralight dark matter has distinctive phenomenological implications, as its wave-like nature can

influence the formation and evolution of cosmic structures at small scales, possibly addressing

some of the problems of more standard dark matter scenarios. Among others, recent works

[51, 52] set bounds on the mass of generic ultralight dark matter candidates, if they constitute

the totality of the dark matter. For a comprehensive discussion, we refer the reader to the recent

reviews [49,50]. In the form of dark photon, a light vector dark matter can also have interesting

consequences through possible kinetic mixing with Standard Model particles, see [53] for a review.

Hence our mechanism offers a new tool to produce ultralight dark matter from the early Universe.

In our context, as we are going to discuss, the small-mass regime has also additional implications

for gravitational wave physics.

We examine the production of a spectrum of induced gravitational waves generated at second

order in perturbation theory from the amplified, peaked spectrum of longitudinal vector modes at

small scales (see the right panel of Fig. 2). The enhancement of the longitudinal vector spectrum

due to the non-slowroll phase is expected to significantly boost the generation of gravitational

waves – potentially to an amplitude detectable by future experiments. The study of scalar-

induced gravitational waves sourced by adiabatic curvature perturbations has a long history; see,

for instance, [54–60], and the comprehensive review [61]. In contrast, comparatively less attention

has been given to gravitational waves sourced by non-adiabatic perturbations; see e.g. [21,62–64].

The formalism required to study the case of non-adiabatic longitudinal vector modes – accounting

for the non-standard kinetic structure of the action governing our system – has recently been

developed in [3]. In what follows, we make use of those results and refer the reader to that work

for technical details. The gravitational wave energy density as a function of momentum scale k

is given by

ΩGW(k) =
m4 k4

12 k4⋆

∫ ∞

0
dt

∫ 1

0
ds

[
t(2 + t)(s2 − 1)

(1− s+ t)(1 + s+ t)

]2
Ī2
cs(k, u, v)P(0)

φ (uk)P(0)
φ (vk) , (5.1)

where the variables u and v are defined by u = (t+ s+1)/2 and v = (t− s+1)/2, and k⋆ = a⋆m

as introduced in Eq. (3.15). In what follows, we often use the rescaled variables defined there for

convenience.

The kernel Ī2
cs(k, u, v) corresponds to a time average over fast oscillations – a standard ap-

proach in the computation of induced gravitational wave spectra – and takes the form:

Ī2
cs(x⋆, u, v) =

∣∣∣∣∣
∫ y/k⋆

0
y1 dy1 cos(x⋆y1)β(y1, x⋆, u, v)

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ y/k⋆

0
y1 dy1 sin(x⋆y1)β(y1, x⋆, u, v)

∣∣∣∣∣
2

.

(5.2)
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Figure 3: Spectrum of induced stochastic gravitational wave background numerically obtained from
Eq. (5.1), and shown for two values of the parameter Π0, with σ = 102 fixed.

The function β contains the transfer functions for the longitudinal vector modes during radiation

domination:

β(τ,k, k̃) ≡ T (k̃τ) T (|k− k̃|τ)− a2M2k̃|k− k̃| T ′(k̃τ) T ′(|k− k̃|τ)(
k̃2 + a2m2

)(
|k− k̃|2 + a2m2

) . (5.3)

The size of momenta k and k̃ relate to the variables u and v via v = k̃/k and u = |k− k̃|/k.
The function P(0)

φ appearing in the integrand of Eq. (5.1) is the same as introduced in Sec-

tion 3, and is directly related to the longitudinal vector spectrum. (We refer the reader to that

section for recalling the variables we are going to use next.) It is expressed in terms of the rescaled

variable x⋆ = k/k⋆ as:

P(0)
φ (x⋆) =

H2
I

4π2m2

[
1− 4σx⋆Π0 cos(σx⋆) j1(σx⋆) + 4σ2x2⋆Π

2
0j

2
1(σx⋆)

]
, (5.4)

where Π0 and σ are the parameters introduced in Section 3.2, controlling respectively the strength

and location of the features associated with the non-slowroll phase during inflation. The oscil-

latory structure of Eq. (5.4) complicates the numerical evaluation of the integral in Eq. (5.1).

Using the methods of [65], we performed a numerical integration of this expression in the regime

of large σ and Π0. The result is shown in Fig. 3, plotted as a function of f/f⋆ with k = 2πf .

The spectrum exhibits small-scale oscillatory features, which we interpret as numerical artifacts

and therefore disregard in our analysis.

In the large-σ regime, we find that the numerical results for the gravitational-wave density

are well fitted by the following analytical expression for ΩGW as a function of frequency:

ΩGW(x⋆) = 1.2× 10−24

(
1

2
+ Π0 +Π2

0

)2( HI

1014GeV

)4 x2.6⋆

(1 + x2⋆)
1.325

(
1 +

x3⋆
7.29× 105

)−0.65

,

(5.5)

where again x⋆ = f/f⋆. This fitting formula accurately reproduces the shape of the gravitational

wave spectrum shown in Fig. 3 across the relevant frequency range, averaging out its small

oscillations. It is important to notice that ΩGW, as function of frequency, exhibits a plateau

ranging approximately between 5 ≤ f/f⋆ ≤ 50 3.
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Figure 4: Plot summarizing Eqs. (5.6), (5.7) and (5.8) for a scenario in which longitudinal modes account
for all of the dark matter. By varying the parameter Π0 over a certain interval, this condition can
be satisfied through corresponding changes in the vector mass. As a byproduct, an induced stochastic
gravitational-wave background is generated, with amplification at very low frequencies. We choose HI =
1014 GeV.

Let us further discuss some of the properties of the resulting gravitational wave spectrum,

building on [3]. We re-collect previous formulas with the aim to determine the allowed amplitude

and position of the plateau of ΩGW in Fig. 3. The plateau position lies at f ∼ f⋆, where

f⋆ = k⋆/(2π): expressed in Hertz, this quantity reads

f⋆ = 4.7× 10−14

(
m

1.5× 10−21 eV

)1/2

Hz (5.6)

As we learned in Sec. 3.2, the relative abundance of longitudinal vector modes relative to present-

day dark matter density reads, in a large σ regime,

ρAL

ρDM
= 10−7

(
1

2
+ Π0 +Π2

0

)(
m

1.5× 10−21 eV

)1/2( HI

1014GeV

)2

. (5.7)

The maximal value of ΩGW at the position of the plateau is approximately given by the overall

coefficient of Eq. (5.5),

Ωmax
GW = 1.2× 10−24

(
1

2
+ Π0 +Π2

0

)2( HI

1014GeV

)4

. (5.8)

For definiteness, let us fix the Hubble scale at HI = 1014GeV. From Eq. (5.8), we notice that the

amplitude of the gravitational wave spectrum increases with the parameter Π0. A large value of

Π0 is permitted by Eq. (5.7) in the regime of small vector mass. This makes the ultralight dark

3Besides the analysis carried on so far in the large σ limit, it would also be interesting to study in detail the
behaviour of the system for intermediate or small values of σ: the numerics involved for dealing with integral (5.1)

becomes much harder to deal with, and we prefer to postpone such analysis to future works.
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matter regime particularly relevant for our purposes. For instance, a mass m = 1.5 × 10−21 eV

requires Π2
0 ≃ 107 for the longitudinal vector mode to account for (most of) the observed dark

matter, as dictated by Eq. (5.7). The corresponding maximal gravitational wave energy density,

Ωmax
GW , reaches a relatively large amplitude of order 10−10. However, according to Eq. (5.6), the

associated plateau occurs at a very low frequency, of order f⋆ ≃ 10−14Hz, which lies in an

intermediate range between the scales accessible to cosmic microwave background polarization

experiments, and those probed by pulsar timing arrays. At present, there are no experiments

able to detect gravitational waves at these frequencies. Nevertheless, future experiments aiming

to measure redshift distortions in the microwave background could potentially be sensitive to

tensor modes in this range. One such proposal is SuperPIXIE [66], an evolution of the PIXIE

experiment [67–69]. Also, this frequency range might be probed in terms of gravitational wave-

induced distortions of galaxy shapes, see e.g. [70, 71].

To conclude this section, we point out additional compelling aspect of our scenario. With

suitable extensions, it can provide a unified framework for producing both ultralight vector dark

matter and primordial black holes. The common ingredient is the short-lived violation of slowroll

conditions during inflation. While our focus here has been on how this non-slowroll phase induces

a rapid change in the effective vector mass – leading to enhanced longitudinal mode production –

the same mechanism also amplifies adiabatic curvature perturbations. These amplified perturba-

tions can, in turn, lead to the formation of primordial black holes during the radiation-dominated

era. This opens the possibility for a mixed dark matter scenario, composed of both ultralight

vector modes and primordial black holes, with the mass spectrum of the latter determined by the

properties of the non-slowroll phase. Such a framework could help evade stringent observational

constraints that apply when each dark matter candidate is considered independently. Moreover,

it can lead to a gravitational wave background with a bimodal shape, with two peaks caused

by the amplified isocurvature and adiabatic fluctuations at different frequencies. We consider

this an intriguing direction for further research, which we intend to investigate in a forthcoming

publication.

6 Conclusions

In this work, we have presented a generalization of the scenario proposed in [4], constructing

a model of longitudinal vector dark matter produced during inflation that incorporates a brief

phase of non-slowroll evolution. If the vector mass depends on the inflaton velocity, it can undergo

substantial variations during this non-slowroll phase, due to rapid changes in the time derivatives

of the inflaton field. We have shown that such a phase can significantly modify the infrared

behavior of the longitudinal mode spectrum, enhancing its growth to a k6 scaling—compared to

the k2 rise characteristic of the original slow-roll setup.

This modification has noteworthy consequences, as it permits the vector field mass to be as

small as around m ≲ 10−20 eV or even lower, while still accounting for a fraction of the observed

dark matter abundance in the form of longitudinal vector bosons. It is worth stressing that the

mechanism of ultralight DM production we propose differs fundamentally from other scenarios,

such as those based on the misalignment mechanism (see [49,50] for reviews). In contrast to these

approaches, our framework does not rely on the presence of background fields oscillating around

the minimum of their potential. Furthermore, building on [3], we demonstrated that this scenario
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naturally leads to a stochastic background of gravitational waves with relatively large amplitude,

generated at second order in perturbation theory, sourced by the enhanced small-scale vector

spectrum. The resulting signal is peaked at extremely low frequencies, f ∼ 10−15–10−13 Hz,

making it a distinctive prediction of our ultralight dark matter model, which can be probed even

if dark matter has no interactions with the Standard Model besides gravity. An intriguing feature

of this framework is its potential ability to simultaneously generate both longitudinal vector dark

matter and primordial black holes, offering a unified mechanism for producing a two-component

dark matter model from a common inflationary source.

Several directions remain open for future investigation. It would be valuable to identify ex-

plicit particle physics realizations of this ultralight vector dark matter scenario, potentially within

extensions of the Standard Model that accommodate very light vector bosons. It is also important

to further explore observational strategies for detecting ultra-low-frequency gravitational waves

as predicted by this mechanism, for example through galaxy shape correlations and intrinsic

alignments. We plan to report on these developments in future work.
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A An explicit inflationary setup

We present a setup for inflation which can generate vector field mass that rapidly varies for a

short amount of time. Our setup is motivated by Starobinsky model [72] with singularities in the

inflaton potential. The complete action for the system during inflation is

S =

∫
d4x

√
−g

[
R

2
− 1

4
FµνF

µν − M2(ϕ̇)

2
AµA

µ − 1

2
∂µϕ∂

µϕ− V (ϕ)

]
. (A.1)

For convenience, in this appendix we work with physical time, related to conformal time by

dτ = dt/a(t). The potential for the inflaton field ϕ is parametrized as

V (ϕ) =

{
V0 + b1H

3
I (ϕ− ϕ0) for ϕ > ϕ0 ,

V0 + b2H
3
I (ϕ− ϕ0) for ϕ > ϕ0 ,

(A.2)

with HI the (nearly constant) Hubble parameter during inflation, V0 a constant scale, and b1,2
two positive parameters satisfying the hierarchy b1 ≫ b2. This potential is continuous but its

first derivative is discontinuous at ϕ = ϕ0. The vector field mass in action (A.1) is chosen as

M2(t) = m2 ϕ̇
2(t)

H4
I

, (A.3)

with m a constant mass parameter. It is straightforward to show (see, e.g., [73]) that, during

quasi-de Sitter expansion, the evolution equation of the inflaton scalar field leads to the following
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relation for its velocity, where t0 denotes the time at which ϕ(t0) = ϕ0:

3HI ϕ̇(t) ≃

{
−b1H

3
I for t < t0 ,

−b2H
3
I − (b1 − b2)H

3
I e

−3HI(t−t0) for t ≥ t0 .
(A.4)

Hence the scalar field velocity decreases exponentially fast for a short period of time starting

at t0. Correspondingly, also the vector mass quickly decreases its value at around that epoch,

passing from M2 = m2 b21/9 for t < t0 to M2 = m2 b22/9 at t > t0. Hence Starobinsky model [72]

offers a possible explicit framework for developing the mechanism studied in this work.

B The values of s1 and s2 in Eq (4.5)

In this Appendix we report the expressions for the quantities s1 and s2 appearing in Eq (4.5)

as a function of σ. The symbol Ci indicates the cosine integral, and γE the Euler-Mascheroni

constant.

s1(σ) =
1

16σ2(−1 + σ2)2

[
4
(
− 3 + σ2

(
4 + 5γE(−1 + σ2)2 − σ2(2 + σ2)

)
+ 3 cos(2σ)

+σ
[
σ
(
−6 + cos(2) + σ2(3 + cos(2))

)
cos(2σ)

+(−1 + σ2)2 (−6ArcCoth(σ) + 3σ cos(2)− 5σCi(2))
])

+2σ
[
− 4σ(−1 + σ2) cos(2σ) sin(2)

+(−1 + σ2)2
(
(−6 + 5σ) Ci(2(1− σ)) + 6Ci(2(1 + σ))

+σ
(
−10Ci(2σ) + 5Ci(2(1 + σ)) + log(1024) + 10 log(σ)− 5 log(−1 + σ2) + 4 sin(2)

) ]
−2

[
(−1 + σ2)(7− 5 cos(2) + σ2(−7 + 3 cos(2))) + 2(1− 3σ2 + σ4) sin(2)

]
sin(2σ)

)]
, (B.1)

s2(σ) =
1

8σ2(1− σ2)2

[
− 15 + 30σ2 − 17σ4 − 2σ6 + 2γE(1− σ2)2(4 + 5σ2) + (1− σ2)2(5 + 6σ2) cos(2)

+
[
15(1− σ2)2 + (−5 + 8σ2 + σ4) cos(2)

]
cos(2σ) + 12Ci(2)

−2σ2(17− 16σ2 + 5σ4)Ci(2) + (1− σ2)2(−6 + 5σ2)Ci(2(1− σ))− 2(1− σ2)2(4 + 5σ2)Ci(2σ)

−6Ci(2(1 + σ)) + log(256) + 8 log(σ) + 6 log(1− σ2)− 2 sin(2)− 2(1− σ4) cos(2σ) sin(2)

+σ2
[
(17− 16σ2 + 5σ4)Ci(2(1 + σ)) + 2(−3− 6σ2 + 5σ4) log(2σ)

+(−17 + 16σ2 − 5σ4) log(1− σ2) + 2(4− 5σ2 + 2σ4) sin(2)
]

−2σ
[
(1− σ2)(7− 5 cos(2) + σ2(−7 + 3 cos(2))) + 2(2− 4σ2 + σ4) sin(2)

]
sin(2σ)

]
. (B.2)
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