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Abstract

The rapid growth of the Internet of Things (IoT) has led to revolutionary innovations
in many fields; however, it has also resulted in significant security and privacy issues
due to the resource limitations and distributed nature of loT networks. Traditional
cryptographic techniques or machine learning-based anomaly detection systems

do not jointly provide data privacy and resilience to threats in real time. The existing
methods, such as Homomorphic Encryption (HE), offer a high computation cost for
performing encryption. Furthermore, Long Short-Term Memory (LSTM) networks

can predict an anomaly profile instead of performing encryption. To address these
shortcomings, this paper proposes NeuroCrypt. This new hybrid system combines
Fully Homomorphic Encryption (FHE) with LSTM-based encrypted anomaly detection
and supplements it with blockchain-based dynamic key management and muilti-
factor authentication. The architecture targets edge and fog computing settings
using, among other techniques, ciphertext packing, model quantisation, and
parallelised encrypted operations. The performance of the proposed framework has
been evaluated on a real dataset. The results show that the accuracy in the proposed
framework is 99.2% compared to existing techniques such as HE-based DNN, FL-
based models, and LSTM IDS. Conclusively, NeuroCrypt provides a privacy-preserving,
effective, and scalable solution to real-time threat abatement in loT networks.

Keywords Internet of things (loT), Homomorphic encryption (HE), Long short-term
memory (LSTM), Anomaly detection, Privacy-preserving computation, Blockchain,
Dynamic key management, Multi-factor authentication (MFA)

1 Introduction

The short history of our Internet of Things (IoT) has escalated; it encompasses the inter-
activity of billions of devices, intelligent networks of households, and various other
types of diverse wireless devices [1]. This growth has altered many sectors, including
the healthcare, transport, manufacturing, agricultural, and energy sectors. The tech-
nologies play a significant role in supporting automation, intelligence decision making
and distance control, which are essential components of the modern digital economy.
Recently, new studies have emphasized that the next-generation internet of things and
cyber-physical systems require an integrated security approach, whichentails integrating
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artificial intelligence and biometrics with encrypted computing. A detailed survey by
[2] demonstrates that intelligent networks can be secured with the help of biometric
authentication and privacy-saving technologies [3]. In a follow-up paper [4], looked at
the open issues in the Industrial-CPS security of the Al age, pointing out the constraints
of traditional cryptography in real-time systems. Intelligent decision-making in sensitive
domains such as medicine is also performed with deep-learning frameworks, where per-
sonalized diagnostics models can perform adaptive, privacy-aware inference [5, 6]. These
innovations motivate the creation of hybrid-based architectures such as NeuroCrypt,
an amalgamation of encryption, learning, and decentralized trust to scale IoT security.
Besides this, serious security and privacy concerns come in conjunction with the revo-
lutionary properties of the IoT ecosystem. The IoT gadgets constitute the resources in
their simplest form of purity, and the usual cybersecurity arrangements are the ones that
should never be applied to them. The heterogeneous and decentralised nature of the IoT
environments supports advanced dynamics.

Concerning the trust management, data confidentiality, and non-disclosure of the
various communication protocols and software stack. The alerts of the 10T devices may
frequently contain sensitive and internally identifiable information, particularly in fields
like healthcare, surveillance, and smart houses, it is vital to ensure that a competent
security measure has been, or must be utilized [5]. Conventionally, IoT LeoT ft infrastrat
infrastrat geographiostat is protected, which is part of other authenticated systems, e.g.
AES or symmetric since asymmetric key establishment recall e.g. RSA, ECC storage gi
i.e., stored authentication, which remains to be performed as a delivery or putrefaction
progresses. Its methods are generic building blocks of network-layer security protocols
(including TLS and internet-exposed service security protocols, including IPSEC [6]).
Within the realms of data analytics, there exist data analytics Systems, specifically, the
application of signature-based and elementary techniques of machine learning: deci-
sion trees, support vector machine (SVM), and random forests, to identify recognized
dangers and abnormal behaviors that have already been recognized to have taken place.
These systems are often achieved through the application of firewall policy and constant
updates of firmware against any control machine-based access processes [7]. However,
numerous restrictions exist on using these laid-down security procedures in an IoT. Sym-
metric encryption involves a shared secret control that is not a scalable one, not even
in the terminology of a decentralised topology; asymmetric cryptographic implementa-
tions are relatively far more appropriate to the determinant of the distribution of secrets,
however, and most certainly never to be implemented by the lightweight key distributing
machines [8]. Besides, the older IDS could not keep up, and therefore, could not scale
to more complex time dynamic attacks like Advanced Persistent Threat (APT) or zero-
day attacks. Even simpler representations of learning might not even be exercised to
acquire the chronological interaction or dynamical behaviour of network traffic data on
time-series IoT structures; they were not pertinent in acquiring polymorphic malware
and protocol-based evasion tactics [9]. A pre-late technique is already predisposed to
security against such invasions, which is only enhanced by the advanced anguish chosen
in adopting the maturing generation of assaulting methods on the ground of artificial
intelligence (AI), record armies, and disseminated assault area. The current high-profile
attacks, such as the recent Mirai botnet that installed large numbers of older cameras
and routers in a large-scale distributed denial-of-service (DDoS) attack of at least one
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nature, justify developing secure and robust security models [10]. The number of inter-
net-accessible networks using critical infrastructures, i.e., smart gridding, national trans-
port systems and medical cyberspace networks, helps overpower the loss of money, and
even becomes in the future a threat to the survival of society and nations.

1.1 Fully homomorphic encryption (FHE) in loT

Privacy-preserving computation in Internet of Things (IoT) environments has become
especially demanded with the rise in data sensitivity produced by these systems [11].
Healthcare, intelligent surveillance, industrial control systems, and critical infrastructure
are some application areas of IoT, which commonly involve personal, behavioural, or
proprietary data, the confidentiality of which needs to be maintained across the data life-
cycle [12]. Traditional cryptographic systems can secure data at rest and in transit, but
fail when it is necessary to decrypt information to process it (such as when performing
analytics on the data), putting the data at risk of interception during analysis. Recently,
the ability to arbitrarily compute on encrypted data has introduced Fully Homomorphic
Encryption (FHE) as a revolutionary technique [13]. This approach provides data confi-
dentiality even in the inference or processing phase, thereby sealing the vulnerability gap
exposed by the traditional encryption technique [14].

Figure 1 depicts the architectural integration of FHE into IoT systems operating
across several network layers. Devices that gather raw data about the environment using
their sensors and actuators reside at the edge layer [15]. Such devices are often limited
regarding memory, power, and computing capacity, meaning that direct FHE computa-
tion is out of reach at this layer [16]. However, before sending the collected informa-
tion, lightweight encryption modules, which can be enhanced by special hardware, can
be encrypted using a chosen FHE scheme. Fog/edge servers with greater computation
capabilities receive the ciphertext [17].

Furthermore, the fog layer preprocesses the encrypted data. In this case, cipher-
text padding techniques that map multiple values to a single ciphertext are applied to
allow parallel processing and increase efficiency. The cloud layer receives the encrypted
data and conducts more complex and heavy-computation tasks, such as LSTM-based
encrypted inference.

Furthermore, FHE will be used at the cloud layer to process the encrypted data. These
involve substituting non-linear activation functions with polynomial approximations
and weight quantisation to minimise computing depth [18]. Everything is performed in
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the encrypted space, and the outcome, which remains encrypted, is transmitted back
through the identical layers to be lastly decrypted by the data owner. The final encrypted
processing system offers extra security for data. At the same time, it’s being used, as
well as when it’s being sent or stored, fixing a significant weakness in older IoT security
systems.

The benefit of using FHE in IoT systems is that it allows for maintaining data confi-
dentiality without disrupting analytic processes. It enables safe data outsourcing, as it is
possible to use third-party analytics platforms or cloud services without losing sensitive
data [19]. In addition, FHE can enable the collaborative settings in which two or more
parties might be required to compute the common data without revealing their respec-
tive contributions. This makes it appropriate for the federated public health or the inno-
vative grid applications of the IoT [20].

1.2 Blockchain for secure and decentralized key management in loT

The problem of cryptographic key security in a distributed IoT environment is an old
and complicated issue. The conventional approach of centralised key management infra-
structure or certificate authorities does not apply to IoT networks, as they are decen-
tralised, dynamic, and highly heterogeneous [21]. The devices might regularly enter or
abandon the network, not trust one another, and frequently run in an environment with
restricted or missing central management. Blockchain technology presents an attractive
alternative to decentralised, transparent, and unalterable security credentials manage-
ment. The permanent record and smart contract support of blockchain technology make
it especially well-suited to automate thelifecycle of cryptographic keys, including their
generation, distribution, revocation, and assessment [22].

Figure 2 presents an architecture to implement blockchain into a key management sys-
tem in IoT, and the architecture is based on distributed registry stored by a set of valida-
tor nodes spread all over the network [23]. The consensus protocol allows such nodes
to reach an agreement on the current version of the ledger so that updates are verifiable
and irreversible. When the device is added to the network, it undergoes a registration
transaction signed and transferred to the blockchain (usually by a smart contract). The
identity and public key of the device are stored in the ledger [24]. The subsequent lower-
level lifecycle events, such as rotation, expiring, or revocation, are also encoded in block-
chain transactions.
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The magic of this architecture is smart contracts, which are automatically imple-
mented with the logic to enforce the security policies without human involvement. For
example, they can be told to carry out automatic key rotations on a schedule, or they
can be programmed to automatically revoke keys reported to have been compromised
[25]. More crucially, the nature of these contracts is that they can communicate with
other components of the system, like anomaly detection modules, to address arising
threats. Today, when an LSTM model learns that a device’s behavior is malicious, one
can launch a smart contract and revoke the current key of the object, prohibit further
communication, and ask the model to reauthenticate with multi-factor credentials. This
is done without oversight, and in a permanent manner, and offers a quick and standard-
ized deployment of security obstacles [26].

Clients lacking the means to access the blockchain directly (e.g., because of resource
constraints) may also do so through an intermediate node - allowing fog gateways or
lightweight clients. Such proxies execute the procedures of creating, signing, and post-
ing transactions as a proxy of limited devices [27]. The decentralized blockchain network
may be based on more lightweight consensus schemes, like Proof of Authority or Practi-
cal Byzantine Fault Tolerance, so the protocol may still be functional and responsive in
low-power and low-bandwidth environments. Any node with the necessary permissions
can access a query on the ledger to get any device’s up-to-date credentials and capabili-
ties, thereby sharing trust in the system.

One crucial aspect of the management of IoT is embracing blockchain. It does not
need central authorities; thus, single failure points are removed [28]. It is even open in
the sense that any modification in the credentials is verifiable publicly by the authorised
participants, fostering trust in multi-stakeholder environments. The immutability of the
ledger is such that no crucial historical events can be messed with in the future, and
this simulates forensics and legal accountability [29]. Moreover, it is possible to program
automation of security policies through smart contracts, which can be referred to as a
potential way to react to anomalies or system events in real-time and in a data-driven
fashion [30].

1.3 LSTM-based anomaly detection in loT

Firewalls, rule-based filters, and signature-based intrusion detection systems are exam-
ples of traditional security systems that are not keeping pace with the dynamism of IoT
environments, where new devices, new communication protocols, and new attack vec-
tors are regularly introduced [31]. A powerful alternative is presented by deep learning
methods and specifically Long Short-Term Memory (LSTM) networks, which can learn
to detect abnormalities in normal behaviour over time, even in cases where the abnor-
mal behaviour is slight or unobserved previously. LSTM models are particularly effective
when dealing with sequential information, so they will likely be helpful when presented
with time-series inputs produced by IoT devices [32].

Figure 3 shows that an LSTM-based architecture for anomaly detection in IoT starts
with the raw data streams gathered by sensors, actuators, or communication interfaces
[33]. Features of these data streams are packet sizes and protocol types, timestamps and
inter-arrival times, and device-specific telemetry. The data is normalised; missing values
are treated, and categorical variables are encoded so that clean and semantic inputs are
provided to the model [34]. After the preprocessing, the data is forwarded to the LSTM
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Fig. 3 LSTM-based anomaly detection architecture in loT

model, which is usually deployed on fog or cloud computing resources to gain access to
more significant computational capabilities.

The LSTM network consists of one or multiple recurrent layers, which employ gat-
ing mechanisms to choose what information to keep or discard at each time step [35].
Furthermore, the output retrieved from the LSTM is faded into a dense layer to retrieve
the binary classification of anomalies. Anomalies. In specific architectures, autoencoder
architectures are employed, where the LSTM is learnt to reconstruct the input sequence,
and high reconstruction errors are viewed as anomalies.

Once the anomaly is recognised, it can be recorded for future secure data transmis-
sions [36]. The detection outcome may also be provided as feedback to smart contracts
on a blockchain in more sophisticated architectures, allowing access control policies
to be enforced in real time and dynamically managed keys. Such close functionality
between anomaly detection and trust infrastructure provides a rapid, closed-loop reac-
tion to possible threats.

The advantages of the LSTM-based anomaly detection on IoT are considerable. This
is because the model can learn temporal patterns and thus identify advanced threats,
which would otherwise slip through rule-based systems. Since it learns from data, the
system can be adapted to particular environments and continuously adapted as the
behaviour changes. LSTM models can also be trained without access to privacy-sensi-
tive data, as homomorphic encryption or federated learning, and thus can be applied to
regulated fields. Furthermore, there are drawbacks, such as the models being computa-
tionally expensive and confined to resource-limited devices. Also, the models are black
boxes, and explaining decisions and gaining user trust is challenging. Mechanisms to
explain the system and rigorous testing will be required to make it reliable and account-
able [37].

Comparison Table 1 presents a systematic review of three widely used methods: Fully
Homomorphic Encryption (FHE), blockchain-based key management, and LSTM-based
anomaly detection in IoT security and privacy. The table presented allows for revealing
the complementarity of these technologies by contrasting their advantages and short-
comings in alleviating various aspects of the security and privacy dilemma in an IoT
setting. Although FHE, blockchain and LSTM have strengths, none of the methods can
comprehensively meet the intricate security requirements of the IoT. FHE ensures data
security in processing, but it will not automate trust. Blockchain is also strong in key
management, but at the same time, it lacks in behavioral analysis.



Kumar et al. Discover Computing

(2025) 28:301

Page 7 of 39

Table 1 Comparison of the existing techniques for secure data transmission in loT

Feature/Aspect

Fully homomorphic en-
cryption (FHE)

Blockchain-basedkey
management

LSTM-based anomaly
Detection

Primary function

Main Use Case in loT

Security Benefit

Architectural

Components

Key Technologies

Device Requirement

Performance

Bottlenecks

Privacy Support

Automation
Capabilities

Challenges

Deployment

Difficulty

Best Fit For

Privacy-preserving computa-
tion on encrypted data

Secure outsourced compu-
tation (e.g., cloud-based ML)

Data remains encrypted
during computation — zero
exposure

Edge devices (encryption),
Fog (preprocessing), Cloud
(encrypted inference)
Polynomial approxima-
tions, Ciphertext packing,
Bootstrapping

Requires offloading due to
high computational cost

High latency and compu-
tational overhead, esp. for
ML tasks

Strong: computation in the
encrypted domain

None inherently; it depends
on the surrounding system

Bootstrapping, parameter
tuning, resource constraints

High (requires expert tuning,
specialized models)

Regulated environments
needing secure analytics
(e.g., healthcare, smart grid)

Decentralized, tamper-proof
key management

Secure lifecycle manage-
ment of cryptographic keys

Eliminates a single point

of failure; all events are
immutable

loT devices, Validator nodes,
Smart contracts, Ledger

Distributed ledger, Smart
contracts, Consensus
protocols

Lightweight clients or in-
termediaries for low-power
devices

Scalability and latency in
large deployments; smart
contract security
Moderate: ledger is trans-
parent but doesn't expose
data contents

Smart contracts automate
policy enforcement and
reaction

Consensus efficiency, gov-
ernance, and smart contract
vulnerabilities

Medium (requires consen-
sus setup and interface
middleware)

Dynamic, decentralized loT
ecosystems need trustless
credentialing

Real-time anomaly detec-
tion via temporal pattern
analysis

Behavioral threat detec-
tion in device/network
activity

Identifies zero-day and
adaptive attacks without
prior signatures

Data collectors, Preproces-
sors, LSTM models on Fog/
Cloud

LSTM layers, Autoen-
coders, Anomaly score
classifiers

Relies on fog/cloud due to
high model complexity

Model complexity, latency
in offloaded inference, and
the need for labeled data
Moderate to Strong:

can be integrated with
privacy-preserving ML
Can be part of automated
threat mitigation when
integrated with smart
contracts

Model explainability, train-
ing data scarcity, black-box
nature

Medium to High (requires
data pipelines, model
training, infrastructure)
Highly dynamic environ-
ments prone to novel or
stealthy attacks

With the architecture depicted in Fig. 4, encrypted traffic can be analyzed using

an LSTM model. To apply this in reality, several optimizations are applied in Neuro-

Crypt. They are packing ciphertext, quantizing the model, parallelizing the running of

encrypted operations, and key management via a blockchain. These methods reduce

the cost of computing and turn the system into edge and fog devices where computing

resources are scarce. This paper will integrate secure data management and innovative

and real-time anomaly detection in decentralized IoT networks. NeuroCrypt offers one

solution to address privacy and threat detection, a significant step in the next-genera-

tion IoT security design. It also facilitates the broader objective of designing Al systems

that are reliable, understandable, and scalable in privacy-sensitive and adversarial set-

tings. The work preconditions the future research related to encrypted deep learning,

secure edge Al and federated cybersecurity structures. NeuroCrypt is designed on five

interrelated elements: the Edge Device, the Fog Gateway, the Cloud-side Homomor-

phic Encryption (HE) Nodes, the Blockchain Layer, and the Key Management Service.

All the components operate using a well-defined data domain, plaintext or ciphertext,
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Table 2 Description of artifacts and their domains in the neurocrypt framework

Artifact Examplefields Domain Owner / who stores it Purpose
Raw packet timestamp, Plaintext at edge; ephem-  Edge device — fog pre-  Input to LSTM
features pkt_size, flags, eral at fog processing buffer Guidance
inter-arrival Module
LSTM anomaly  scalar € [0,1] Plaintext at fog Fog (local), logged sum-  Guidance
score P_anom mary on blockchain decision
Selected pack-  n packets after  Ciphertext (FHE) when Encrypted and sent to Homomorphic
ets window alert protected; AES otherwise cloud HE nodes inference
HE session key_pk_t plaintext metadata on KeyMgmt / blockchain Enables the
public key blockchain cloud to evaluate
the ciphertext
HE result encrypted infer-  Ciphertext until decrypted ~ Cloud — returned to Final decision,
ence output by the authorized party owner decrypted by the
owner

to ensure a high level of performance and confidentiality. The edge employs lightweight
AES-256 when doing regular flows and only encrypts with HE when directed by the
Guidance Module. The HE scheme does not store private keys. It receives pre-processed
plaintext features and outputs an anomaly score. Pupom € [0,1]. When Pupom > 0, it
requests an HE public key via a blockchain smart contract and encrypts the subsequent
window of packets. The fog, therefore, determines when homomorphic evaluation will
be conducted, weighing the cost of privacy and latency. Homomorphic computation of
encrypted data is processed. They receive ciphertext inputs. ¢; = Enc(z;, pk;)and eval-
uate model functions frrUsing CKKS arithmetic. Only authorized owners can decrypt
the resulting ciphertexts. The key issuance and revocation of smart contracts is recorded
in the system as hash, signature, and events. Smart contracts apply crucial lifetimes and
can initiate multi-factor authentication or re-training models on abnormal notifications.
Generates short-lived key pairs (pk:, sk:)for each HE session, publishes the public key
to the blockchain, and ensures private keys remain with the data owner.

Page 8 of 39
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Table 2 presents the key artifacts of NeuroCrypt, including the description of sample
fields, each a plaintext or ciphertext, its owner, and the purpose.

Algorithm 1 LSTM-Guided Selective FHE Processing (NeuroCrypt)

Require: streaming [oT data S(t), LSTM model M_LSTM deployed on fog
Require: parameters 0 (threshold), n (initial FHE window), k (persistence), An (adaptive increment)
Ensure: selective use of FHE for suspicious traffic, blockchain audit events, and key rotations

1. Initialization:
FHE_mode < FALSE
FHE_counter < 0
persist_count < 0
Deploy M_LSTM on fog; set 0, n, k, An.
2. For each incoming time window w of traffic S(t) do
Preprocess S(t) — features, normalize, window.
P_anom «— M_LSTM(S(t)) // anomaly probability in [0,1]
Log local summary (optionally hashed to blockchain).

If P_anom > 0, then «— suspicious traffic

persist_count « persist_count + 1

if FHE mode = FALSE then
Request short-lived FHE public key Key pk t from KeyMgmt via smart contract.
Publish key issuance event on blockchain.
FHE_mode < TRUE; FHE_counter « n.
Encrypt outgoing packets/windows using Key pk t (FHE/CKKS) while FHE counter > 0.
Decrement FHE counter as packets/windows are consumed.

if persist_count > k then FHE_counter «— FHE_counter + An «— adaptive extension

else «<— normal traffic (P_anom < 6)
persist_count «— 0
if FHE mode = TRUE and FHE counter = 0 then FHE mode < FALSE (revert to AES)
Encrypt regular traffic using AES-256 (low overhead).

If FHE mode = TRUE then send ciphertexts to Cloud FHE Nodes for homomorphic inference (LSTM
gates approximated by low-degree polynomials); else forward AES-encrypted data to trusted compute as
per deployment.

Cloud returns encrypted inference output to the Owner.

Owner performs MFA; decrypts with Key_sk_t; verifies integrity (SHA-256).
If integrity check fails, log tamper event to blockchain and trigger key revocation.

3. Periodic maintenance (policy):
Rotate short-lived keys per policy; publish rotation events to blockchain.
Archive blockchain logs; revoke stale or compromised keys.
4. Failure handling:
If KeyMgmt denies key issuance — fall back to AES and log event.
If Cloud reports noise budget exhaustion — request model re-quantization or bootstrapping; notify

operator.

LSTM only operates on plaintext and is only used on the fog layer in the Neuro-
Crypt framework. It examines lightly filtered momentary IoT information and provides
a probability score of an anomaly. Local AES 256-encryption protects the brief expo-
sure of plaintext when the data is sent or stored in buffers. Once the score falls below a
predefined threshold, it is encrypted with Fully Homomorphic Encryption (FHE) and
sent to the cloud to be encrypted and inferred. Since the typical LSTM models do not
support encrypted numbers, the cloud node computes the secure computations using
polynomially approximated LSTM gates. Such a setup has helped to defend the sensitive

traffic, and on the other hand, the fog can easily identify irregularities.

2 Literature review

The recent works have become more focused on the question of how to integrate differ-
ent kinds of deep learning, specifically the Long Short-Term Memory (LSTM) network,
with a variety of cryptographic mechanisms (such as Homomorphic Encryption (HE))

Page 9 of 39
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and fuzzier machine learning (FL) approaches to safeguard information throughout its
lifecycle. These hybrid models can (1) remove the capability of more sophisticated cyber
threats since they can learn temporal and contextual dependencies and (2) guarantee
privacy owing to the encrypted computation. The versatility of different contributions
exploring secure neural models, HE-friendly architectures, blockchain-based key man-
agement, and privacy-preserving approaches to learning is observed in the literature
investigating the generic contexts of the IoT ecosystems. Recent research has sought to
develop efficient and sustainable deep learning systems, which enhance accuracy in the
face of limited data and computing resources. In addition to encryption-related stud-
ies, several researchers have examined sustainable and optimized deep-learning solu-
tions to address data shortage and resource limitations in IoT security. Senanayake et al.
[38] provided an approach through which multiple organisations may employ machine
learning models without revealing their confidential information to each other. They uti-
lize the SMPC, which enables them to undertake the required calculations on encrypted
data and, simultaneously, maintain the privacy of inputs. Decentralised counter-terror-
ism needs all sites; all sites are identical, and personal information is guaranteed on both
ends.

Manh et al. [39] proposed a privacy-enabled framework for identifying cyber threats
in IoT-enabled blockchain networks. Safe sharing of IoT data with a cloud service pro-
vider uses the CKKS scheme and a SIMD algorithm. Experimental results have been
presented that indicate that the proposed technique can provide 91% accuracy with
minimal overhead, which is nearly the same as the non-encrypted performance.

Badawi et al. [40] introduced OpenFHE, which was motivated by earlier FHE librar-
ies, including PALISADE, HElib and HEAAN. OpenFHE supports bootstrapping and
changing schemes and can provide hardware acceleration via a Hardware Abstraction
Layer. It has modes specific to users and compilers to meet different development needs.
The information about the architecture is provided in the current document, and addi-
tional documents can be explored individually.

Lee et al. [41] proposed ResNet-20 with the RNS-CKKS FHE scheme with bootstrap-
ping and tested it on the CIFAR-10 data. They did not choose to replace ReLU and Soft-
max with simple alternatives, but used sophisticated techniques to evaluate their action
well. Indeed, they have verified that deep learning using private-key encryption is fea-
sible, as they achieved 92% accuracy, close to that obtained by a non-encrypted model.

Gentry [42] proposed a fully homomorphic encryption (FHE) framework that allows
one to evaluate any function on encrypted data. The point is that a fully homomorphic
encryption can run its own optimised decryption circuit on encrypted input — a condi-
tion referred to as bootstrap. Due to this effort, the contemporary FHE systems could
evolve.

Cheon et al. [43] depict that with their scheme, it is possible to perform addition and
multiplication on encoded real numbers. A significant development is when a process is
used to maintain precision, and noise can remain low when the modulus is varied. They
can do encrypted math using a special batching technique, RLWE, and cyclotomic rings,
which do not reduce accuracy.

Bhandari. R [44] investigated how various deep learning techniques preserve privacy,
focusing on key issues, penetration testing events and resistance measures. Differential
privacy and homomorphic encryption typically address model inversion attacks. The



Kumar et al. Discover Computing (2025) 28:301 Page 11 of 39

review helps to understand that, despite the development of valuable tools, federated
learning and secure data management should be used continuously in all ML processes
to protect privacy fully.

Narkedimilli et al. [45] suggested a type of federated learning (FL) designed for the
Internet of Things (IoT) that uses different advanced security features to meet privacy
and security needs. The framework allows the use of Decentralised Attribute-Based
Encryption (DABE), local data encryption, and decentralised authentication in IoT. HE
enables individuals to operate on encrypted information securely, and SMPC enables the
training of machine learning models without sharing confidential information. Due to
blockchain, SMPC gives its result securely and offers an open explanation of changes
and the integrity of all information in the FL network.

Bossuat et al. [46] provided recommendations of parameter sets in Learning With
Errors (LWE) to facilitate their application in Fully Homomorphic Encryption (FHE)
schemes over various levels of security. They determine a broad spectrum of FHE
parameter configurations regarding the degree of effectiveness of each and the level of
protection. Besides that, they also examined available open-source tools that assist in
parameter selection, contributing to thefeasibility of how FHE is employed in practice.

Xie et al. [47] discussed and reviewed techniques that improve HE in PPFL. The review
covers general optimisation, algorithmic techniques, hardware and hybrid optimisation
techniques and examines their issues and challenges. A mapping of optimisation meth-
ods is provided, making recommendations for future work to enable larger and practical
HE-based PPFL systems.

Liu et al. [48] divided the literature on homomorphic encryption into three groups
based on the development generated by the extension of PHE to AHE: bootstrapping,
precision improvement, and solution enhancement. The paper categorises AHE use
cases into groups according to the complexity of the application. It outlines the most
recent trends, providing insights into the possible future of research and utilisation of
AHE.

Asynchronous federated learning was proposed by Xiong et al. [49] to ensure that pri-
vacy remains preserved even in edge-based environments with multimedia data. In their
approach, they rely on RABE and DP to guarantee complete privacy and flexibility in
participation across devices. Experimental evaluation of the scheme indicates that its
run time reduces by 63.3% in cryptography, 61.9% in global aggregation, and it is highly
accurate on MNIST (86.7%), CIFAR-10 (70.8%) and Fashion-MNIST (86.1%).

Istaltofa et al. [50] trained linear regression and LSTM models on the price data of
Bitcoins obtained on Yahoo Finance from 2014 to 2024. The findings state that LSTM
is much more adequate than linear regression, resulting in lower MSE and RMSE and
a perfect R* performance. LSTM seems to be particularly effective in dealing with sud-
den changes observed in cryptocurrency, providing an advantage in financial trend
prediction.

Xiang et al. [51] reviewed the applicability of LSTM, neural networks and CNN to pre-
dict prices in the cryptocurrency industry. To improve the predictive ability of the mod-
els, the study employs technical indicators and sentiment data. The best precision was
observed when the three architectures were used in a hybrid model, as witnessed by the
RMSE value of BTC, ETH and BNB. Irrespective of these concerns, this paper identifies
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why deep learning-based hybrid models could help enhance the accuracy of forecasts
and support risk management in digital asset markets.

They experimented with various new models to test how well the deep learning
approaches could predict the price of cryptocurrencies, as reported by Wu et al. [52].
The authors tested variations of LSTM networks, CNNs and the Transformer model.
Univariate and multivariate tools were examined based on various cryptocurrencies to
predict close prices a few weeks into the future. A volatility analysis proved that, in the
context of the COVID-19 pandemic, the prices underwent substantial changes quickly.
Two separate tests were conducted: (1) based on pre-COVID-19 data, how well the
models would estimate the initial period of the pandemic and (2) based on new COVID-
19 data, to predict prices in future years. Convolutional LSTM generated the highest
prediction accuracy when the methodology utilised several input variables.

Singla. S [53] suggested a method to achieve security in the message exchange between
devices in the Industrial Internet of Things (IIoT) with the help of Spiking Neural Net-
works (SNNs) and blockchain. Calculations with SNN'’s consumption are much quicker
and use less memory. If the information on the IIoT network is not malicious, blockchain
seals it to prevent malicious individuals from altering it. Combining the Interplanetary
File System (IPFS) and smart contracts can vastly improve the effectiveness and speed
at which data can be used and processed. 5G enhances the architecture, thus reducing
latency and improving reliable network packets. They determine the effectiveness and
security of the system by quantifying various parameters, like loss, different time scales,
contract performance, and the bit error rate (BER).

Kumar and Kim [54] suggest identifying cyberattacks in the Internet of Health Things
(IoHT) with the help of both FL and LSTM networks. EFL-LSTM implies that FL pre-
serves sensitive information, and LSTM can capture time-series activities that can assist
in identifying cyber threats. The fact that feature selection is implemented in-house
makes the system more efficient, and FL ensures that the process can be extended and
run in a decentralised manner.

Jony et al. [55] present a concept of an LSTM-based IDS system that detects both
existing and new types of cyber threats. The findings emphasise the model as flexible
and precise, which offers what is required for next-generation security solutions to cope
with emerging patterns of attacks. The problem of IoT security is raised in the work, and
a solution is introduced that can be applied to different systems.

Sarkar et al. [56] explained why RNNs and a form of vector-valued neural synchro-
nisation could assist in the safe exchange of keys in the IIoT. The approach is based on
drive-response mechanics that enhance synchronisation and cryptography in IloT sce-
narios requiring tight timing. The study focuses on the architecture of coupled RNNs as
they react to different input and output delay types. Besides this, the work also considers
response-based RNN systems without delays, since this direction of secure neural-based
communication protocols that can be applied to IIoT devices has been scarcely studied.

Prasanna et al. [57] introduced a method to identify network threats depending on
how events and sequences of network traffic correlate on different time scales using
LSTMs—the operations aid in reducing the false positives and increasing the system
accuracy. Placing BDA alongside the LSTM model, the researchers addressed the issues
connected to the complexity of calculation and training, and the interpretation of the
model became significantly faster. The suggested IDS was deployed on Apache Spark
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with the NSL-KDD dataset and performed effectively against various parameters, dem-
onstrating superior performance to the conventional IDS methods.

Despite the advances in providing IoT with better security via privacy-preserving
computation and intelligent anomaly detection, there is still a huge gap in research at
the newly emerging aggregation of encrypted deep learning and real-time and adaptive
threat mitigation on resource-constrained IoT devices. Table 3 shows a comparison of
existing techniques used in the literature. There have been previous studies on all per-
mutations of homomorphic encryption (HE), secured multiparty computation (SMPC),
federated learning (FL), and blockchain to protect sensitive data, and it has been shown
that LSTM and deep neural models are effective at modelling the temporal dynamics
of cyberattacks. These methods, however, tend to focus on either privacy or detection
accuracy alone and rarely simultaneously without significant latency, scalability, or
implementation complexity trade-offs. The current HE-based systems are usually limited
in adaptability and computationally expensive. In contrast, the LSTM-based systems,
despite their accuracy, need access to plaintext and therefore cannot support strong pri-
vacy guarantees. Moreover, although research considers FL or differential privacy in a
decentralised learning environment, few have considered deploying these mechanisms
into a coherent framework that can perform encrypted model inference, allow dynamic
key management, and achieve regulatory compliance (e.g., GDPR). As a result, an inte-
grated solution capable of secure, low-latency, and intelligent analysis of encrypted IoT
data is required, which is currently not sufficiently examined.

Figure 5 shows the existing literature’s techniques for secure and privacy-preserving
IoT networks. The surveyed works also concentrate much on encrypted machine learn-
ing (40%) (SMPC, HE), which has attracted much attention recently in the desire to per-
form computation on encrypted data. The remainder of the literature, 10%, is FL-based
IoT Security and Blockchain-based Key Management, both focusing on making decen-
tralised trust and privacy-preserving federated learning a reality. LSTM-based Intrusion
Detection Systems (IDS) and HE + Deep Learning hybrid models follow with 6-7% each,
a small, although growing, use of temporal deep learning methods with encryption.
The remaining contributions, 17%, are categorised into various areas, including crypto
prediction, IoT messaging, and key exchange protocols. This analysis shows that while
there have been significant developments in different research areas like HE or FL, very
few existing studies combine encrypted anomaly detection, adaptive key management,
and blockchain-based trust, highlighting the uniqueness of the proposed NeuroCrypt
framework.

3 Problem statement

Although both encrypted computation and deep learning-based intrusion detection
have enormous potential, the existing IoT security frameworks lack an integrated solu-
tion that guarantees real-time threat detection, end-to-end data privacy, and scalabil-
ity. The majority of the current solutions consider privacy and intelligence as orthogonal
objectives: Cryptographic techniques keep data safe when it’s stored or being sent, but
to analyse it, the data has to be decrypted, which can expose sensitive information dur-
ing the process; LSTM-based models are excellent at spotting unusual patterns over
time, but since they work with unencrypted data, they can’t be used in sensitive areas

like healthcare or critical infrastructure.
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Table 3 Comparison of the existing techniques

Ref Contributions Techniques Dataset Results Research Limitations
No. Gap
[38] SMPC-baseden-  SMPC, CNN, Structural & Secure multi- No real-time High com-
crypted ML across  Logistic functional MRI party com- threat putational
institutions Regression putation with modeling cost, limited
practical ML temporal
models adaptability
[39] Privacy-preserving CKKS, SIMD, loT-based block-  91% accuracy Limited No integra-
threat detection ~ DNN, Distrib- chain dataset with minimal adaptability  tion with
for blockchain loT  uted Learning overhead toevolving  LSTMor
threats time-series
analysis
[40] OpenFHE: open-  FHE, HAL, PALI-  Library and Support for Nointegra-  Generic
source FHE library  SADE, HEAAN  framework-level  bootstrap- tion with platform,
with hardware evaluation ping and intelligent  lacks use-
acceleration compiler-level modelsor  case-specific
development loT-specific  implementa-
scenarios tions
[41]  HE with deep RNS-CKKS, CIFAR-10 92% accu- No anomaly Focused on
learning ResNet-20 racy under detection classification,
(ResNet) for encryption or real-time  not security
encrypted image capability context
classification
[42]  First design of Ideal Lat- Theoretical Proof-of-concept Not opti- High com-
Fully Homomor-  tices, Bootstrap  framework for FHE feasibility mized for putational
phic Encryption  technique real-time or  complexity,
(FHE) applied ML non-practical
tasks early model
[43] Approximate HE ~ CKKS, RLWE, Mathematical Efficient en- No use in No ML
arithmetic with Cyclotomic validation crypted math intelligent  integration
low-noise real Rings with batching anomaly or adaptive
number encoding and low noise detection learning
frameworks
[44] Penetration test-  Differential Review and anal-  Highlighted No concrete  Conceptual
ing framework Privacy, HE, FL  ysis framework privacy vulner-  model review, lacks
for deep learning abilities and implemen-  empirical
privacy tools mitigation tation or results
techniques integration
strategy
[45]  FL with block- FL, SMPC, DABE, Simulated Secure FL No deep Complex key
chain and DABE Blockchain loTframework training with de-  learning- manage-
for loT centralized key based ment, lacks
management anomaly encrypted
detection inference
[46] Security guide- LWE, Open- Cryptographic Practical recom-  No Al Param-
lines and param-  source tools parameter mendations for  model or eter design
eter sets for FHE simulations FHE use in real time-series  focused, not
systems analysis application-
integration  oriented
[47]  Optimization HE, Feder- Literature survey  Mapped chal- Noimple-  Survey-
strategies for HE  ated Learning, lenges and mentation  based, lacks
in PPFL Hardware solutions for or evalua- experimental
Optimization large-scale HE tioninloT  verification
systems networks
[48] Survey on Ap- AHE, CKKS, Comparative Identified trends  No model or Focused on
proximate HE Bootstrapping  review and use-case framework-  theoretical
(AHE) and its categorizations  based progression
evolution implemen-

tation
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Ref Contributions Techniques Dataset Results Research Limitations
No. Gap
[49] Asynchronous FL  RABE, Differen-  MNIST, CIFAR-10,  High ac- No homo- Focus on FL,
for multimedia in  tial Privacy, FL  Fashion-MNIST curacy with morphic en- limited to
edge loT reduced runtime cryption or  multimedia
and global encrypted
aggregation learning
integration
[50] Compared LSTM  LSTM, Linear Yahoo Finance LSTM outper- No security  Application-
and Linear Regres- Regression (BTC 2014 to formed regres-  contextor  specific, not
sion on Bitcoin 2024) sion with lower  encrypted  security-
data MSE and RMSE  data driven
handling
[51] Hybrid DL model  LSTM, CNN, BTC, ETH, BNB Hybrid model No privacy-  Focused on
with LSTM, CNN,  Neural Network improved fore- preserving  finance, lacks
NN for crypto casting accuracy orencrypt-  real-time
forecasting ed analytics  constraints
used
[52] Evaluated LSTM,  LSTM, CNN, Pre- and Post- Conv-LSTM No Financial
CNN, Trans- Transformer COVID cryptocur- achieved highest encrypted  context, no
former for crypto rency datasets accuracy on mul- framework  cyberthreat
prediction tivariate inputs ~ or threat- modeling
resilience
tested
[53] SecurelloT mes-  SNN, lloT network Low latency, No deep No LSTM or
saging using SNN  Blockchain, simulation tamper-proof temporal predictive
and Blockchain IPFS, Smart communication  learningor  anomaly
Contracts encrypted  detection
Al
[54] Cyberattack FL,LSTM, Fea-  ECU-loHT Better thantra-  Noencrypt-  Limited inte-
detection in loHT  ture Selection ditional models, ed model gration with
using FL and protected data  inference HE or secure
LSTM computation
[55] LSTM-based IDS ~ LSTM ClC-1oT2023 98.75% accuracy, No privacy- Operateson
for cyber threat F1-score 98.59% preserving  plaintext, not
detection mechanisms encrypted
data
[56] RNN-guided Coupled RNNs,  lloT communica-  Secure key No encrypt-  Protocol-fo-
neural synchroni-  Drive-Response  tion framework exchange pro- ed analytics  cused, lacks
zation for lloT key ~ Mechanism tocol with delay  oranomaly  detection
exchange analysis detection layer
[57] Big data-aware LSTM, BDA, NSL-KDD Better detection  Noencryp-  Privacy con-
LSTM IDS with Apache Spark than traditional  tion or cerns, lacks
reduced false IDS secure secure key
positives computation management

A promising candidate is Fully Homomorphic Encryption (FHE), which promises to

allow computations on encrypted data. Its use is, however, delayed by the high compu-

tational expense, complicated model updates, and inefficiency in real-time applications,

particularly when used with deep learning models such as LSTM. In addition, secure key

management is also a bottleneck. The centralised IoT system is not suited to be decen-

tralised and dynamic in structure and character, and the blockchain-based solutions,

despite being more optimistic, are hardly ever combined with encrypted analytics and

intelligent threat response seamlessly.

Most systems use fixed threat models and cannot rotate keys, reconfigure policies, or

otherwise update detection models in reaction to new attack patterns. IoT surroundings

are at a constant risk of emerging and advanced threats without real-time flexibility.
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= Encrypted ML (SMPC, HE) 10

= FL-based |oT Security 3
Blockchain-based Key Mgmt / lloT 3
LSTM-based IDS (Intrusion Detection) 2

m HE + DL hybrid models 2

m Other (Crypto prediction, IloT Messaging, Key Exchange, etc.) 5

Fig. 5 Classification of the techniques used in literature

In such a way, the central issue is the absence of a coherent framework that would
enable encrypted anomaly detection, decentralised trust, and real-time flexibility with-
out performance losses. Ideal research should incorporate the cryptographic power of
FHE, the predictive power of LSTM, and the decentralised trustworthiness of block-
chain to realise secure, scalable, and intelligent threat remedies. NeuroCrypt fills this
gap with a proposal of a hybrid architecture with the capabilities of encrypted inference,
dynamic key management, and tamper-evident logging, a new paradigm of privacy-pre-
serving loT security.

4 Proposed methodology

To address the complicated issues discussed earlier in a complete way, this section intro-
duces NeuroCrypt. This system uses Fully Homomorphic Encryption (FHE), LSTM-
based anomaly detection, and blockchain-based key management to ensure secure and
smart threat reduction in IoT networks. NeuroCrypt offers encrypted data processing
and real-time threat detection in the same architecture, unlike traditional solutions,
where privacy and analytics are addressed differently. It is tuned to edge, fog, and cloud
deployments via model quantisation and ciphertext packing, among others, to guaran-
tee low latency and minimal resource utilisation. The framework also allows dynamic
and decentralised key management and strong access control through the integration of
smart contracts and multi-factor authentication, rendering it scalable and able to meet
contemporary data protection regulations.

Figure 6 shows the architecture of the proposed NeuroCrypt framework, which con-
sists of fully homomorphic encryption (FHE), LSTM-based anomaly detection, block-
chain-based dynamic key management, and multi-factor authentication (MFA) to realise
privacy-preserving and dynamic threat detection in IoT networks. The initial stage is the
encryption of the sensitive IoT data with homomorphic encryption, which enables the
secure computation of ciphertext without revealing the raw data. The ciphertext is fur-
ther submitted to an anomaly detection module, where an LSTM model can learn the
temporal patterns and identify the possible threat. Access control to the anomaly detec-
tion pipeline is additionally enforced using MFA mechanisms. This system constantly
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communicates with a blockchain layer, a dynamic key rotation, and a management
component to make sure that encryption keys are safely rotated and all security-related
events are logged permanently, which provides tamper-evident auditing.

Algorithm 2 Secure loT Data Processing with FHE, Blockchain, and MFA

Input: D;, keys PkSk, threshold T, Blockchain SC, MFA Policy
Output: D', Blockchain event log
1. prske KeyGen()
2. Initialize Blockchain_SC, LSTM(T), MFA_Policy < {Biometric, OTP, Token}
3. Foreach Di:
a. ¢y« FHE.Enc(pk, Di), Csum homomorphic compute
b. anomaly_score« LSTM_Detect(logs)
c. Ifanomaly_score > t:
i.  Blockchain_SC.log("Intrusion Detected")
ii. sxe KeyManagement(sk, True), block Dj
d. Else:
i. MFA_Result— MFA_Verify(MFA_Policy)
ii. If MFA_Result = Success:
1. Ifthreat detected or time elapsed > interval:
a. (Py.Si) < KeyGen()
b. Blockchain SC.update(sy), Blockchain SC.revoke(sk)
C. Sk<Sp
2. D'« FHE.Dec(Sk, Csum)
3. If SHA256(D") == stored_hash:
a. Return D’
4. Else:
a. Blockchain SC.log("Tampering Detected")
iii. Else: Block Dj (MFA failure)
4. End for

Figure 7 depicts the flowchart of the complete work process of the AHE-BKM algo-
rithm of secure and intelligent processing of IoT data. The workflow is initialised by pre-
paring such major modules as Fully Homomorphic Encryption (FHE), Blockchain Smart
Contracts (SC), LSTM anomaly detection models, and Multi-Factor Authentication
(MFA) policies. On each incoming data request Dy, the data is encrypted to a ciphertext
ci, and homomorphic computation is performed on it. Access logs are next extracted,
and an LSTM-based anomaly score is estimated. A dynamic key rotation is initiated by
the system in case the anomaly score exceeds a preconfigured threshold T, the request
is blocked, and an intrusion entry is recorded on the blockchain. MFA is applied in case
of no detected anomaly, and the system assesses if a threat is detected or if a key rota-
tion period has expired. During either a threat or a rotation scenario, new encryption
keys are issued, the blockchain is updated, and old keys are cancelled. At this point, the
ciphered output is deciphered, and integrity is checked with SHA256 hashing.

4.1 LSTM guidance module for encrypted anomaly detection
The most critical advancement of the NeuroCrypt framework is the integration of Fully
Homomorphic Encryption (FHE) with Long Short-Term Memory (LSTM) anomaly
detection. FHE ensures high privacy, yet it is computationally expensive, which renders
it impractical to implement on all the IoT traffic. The module takes the output of the
probability of anomaly of the LSTM. It converts it into a transparent encryption choice
to ensure the sensitive traffic is not compromised, but does not overload resource-con-
strained devices.

The proposed LSTM Guidance Module presented in Fig. 8 used a fixed anomaly-detec-
tion threshold of 0.95, which was a conservative design, and such a design guarantees
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Fig. 8 Flowchart of the LSTM Guidance Module

that only flows with an extremely high probability of an anomaly activate FHE encryp-
tion. This environment is more security-conscious by reducing false negatives, which is
the highest risk of allowing malicious traffic to make it through without being encrypted.
When activated, the module encrypts the subsequent # =50 packets, which is approxi-
mately one second of IoT traffic sufficient to cover burst anomalies, but not excessively
using resources. In these conditions, protection against threats is scaled, and an adaptive
increase of 25 packets by the encryption window is gradually increased.

Algorithm 3 LSTM-Guided Encrypted Processing

Input: [oT traffic sequence S(t), Threshold 6, Window size n, Persistence window k
Output: Encryption decision {FHE or AES}

1. For each incoming sequence S(t):

2. P _anom « LSTM(S(t)) // anomaly probability in [0,1]
3. IfP_anom >0 then

4. // Suspicious traffic detected

5. For next n packets:

6 Encrypt using FHE(S i, Key)

7
8

End for
. If anomaly persists (P_anom > 0 for k consecutive windows):
9. n<«<n+An // adaptive extension of encryption window
10.  Else
11. Continue monitoring
12. Else

13. //Normal traffic

14. Encrypt using AES-256(S(t), Key)

15. Endif

16. IfP_anom < 6 for k consecutive windows:
17.  Revert to AES mode

18. End for

The parameters that govern this process are determined through careful design con-
siderations. The threshold 6 acts as the decision boundary for switching between AES
and FHE modes. The window size n specifies the number of packets to be encrypted
with the FHE, following the detection of an anomaly by ensuring short bursts of sus-

picious traffic are adequately covered. The persistence window k provides stability by
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requiring anomalies to continue across multiple observation windows before the adap-
tively extending FHE coverage, thereby avoiding unnecessary reactions to these transient
spikes. Finally, in the adaptive increment, An defines how much of the FHE coverage
is extended when anomalies persist, enabling the system to scale its protection accord-
ing to the severity and duration of the threat. These parameters ensure that the LSTM
Guidance Module balances strong privacy with computational efficiency in real-time
IoT environments.

4.2 Proposed mathematical model
This section is organised in a way that gradually establishes the data flow, computation
procedures, and system security assurances.

4.2.1 System definition

Here, the NeuroCrypt system is abstracted as a mathematical tuple of different modules:
data input, an encryption and decryption mechanism, a machine learning model, key
management, a blockchain ledger, and an authentication system. This abstract represen-
tation lays the foundation for modelling secure computation over IoT data. All of the
elements of the tuple have their particular role, ensuring the general integrity and pri-
vacy of the framework.

The NeuroCrypt system is defined as a tuple:

N = (D, &, Dec, Mg , Ky, B, A, 1) 1)
where:

o DistheIoT data stream {d;,ds,... ,d7}.

+ & is the Fully Homomorphic Encryption (FHE) function: £ : R* x Ky — C".
+ Dec is the corresponding FHE decryption function.

o My is the encrypted LSTM anomaly detection model with parameters 6 .

o K. = (pk¢, ski) denotes the public/private key pair at time t.

+ Bisablockchain ledger used to store cryptographic events and key rotations.
+ Ais the Multi-Factor Authentication mechanism.

+ T is the anomaly detection threshold.

4.2.2 Data encryption and transformation
In this case, we outline the encryption of IoT data, as it has not yet been analyzed. This
is why Fully Homomorphic Encryption (FHE) is applied to every data vector and what
qualities it should have to be used in secure computation. The transformation guaran-
tees that the raw data will never be revealed in the processing, and downstream tasks,
like anomaly detection, can be carried out without confidentiality issues.

Each data vector d; € R" is encrypted as:

¢y = £(ds, pke) (2)

where c; is the ciphertext. This transformation preserves the semantic security of dy,
even when used for computation.
Homomorphic operations on ciphertexts obey:

E(d)® E(d2) =&(d1 +da), £(d1) ® E(d2) = E&(dy - da) (3)
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These properties allow encrypted input to be processed directly without exposing raw
features.

4.2.3 Encrypted LSTM processing

This concerns implementing the encrypted data into a specially adapted LSTM model.
Because the conventional LSTM operations are non-linear and cannot be used with
homomorphic encryption, they are represented by low-degree polynomials. This adap-
tation enables the model to be applied securely on ciphertexts and allows recognition
of time-dependent patterns on encrypted streams, with no information leakage, as
explained in the section.

In the proposed framework, the non-linear activation functions of the LSTM gates
(sigmoid and tanh) are approximated using third-degree Chebyshev polynomials. We
adopt this method because Fully Homomorphic Encryption (FHE) cannot evaluate sev-
eral exponential or hyperbolic functions efficiently. Cubic approximation provides a
good tradeoff between viability and precision. Lower-degree polynomials do not fit the
curvature of the activation functions and add more serious approximation errors. In
contrast, higher-degree polynomials add more multiplicative depth to encrypted opera-
tions, which results in too high latency. This demonstrates that the polynomial replace-
ment makes encrypted inference feasible without compromising anomaly detection
effectiveness.

Let an LSTM cell have input. z, hidden state h;_1, and cell state c¢;—;. The LSTM
gates in plaintext are:

fi=o (Wfl’t + Ufht_l + bf)
it =0 (Wzl‘t + Uiht—l + bz)
¢y = tanh(Weaxy + Uyhy_q + b)
G =ft® 1+ O c
O =0 (Womt + Uoht,1 + bo)
ht = 0: © tanh (ct)

(4)

In NeuroCrypt, all these functions are approximated with low-degree polynomials (e.g.,
Chebyshev or Taylor approximations):

o (2) ~& (z), tanh (z) ~ tanh (z) (5)
Encrypted LSTM output becomes:
Yr = MG (ct) (©)

where M§"¢ Applies all operations homomorphically.

4.2.4 Anomaly detection and key management

Following the encrypted inference step, the framework uses a thresholding operation
to identify potential outliers. This describes how an observed anomaly results in con-
structing another key pair, and a blockchain ledger is modified. By so doing, the system
ensures reactive and proactive security control, which guarantees against active threats
and exposure in case of a breach. The Practical Byzantine Fault Tolerance (PBFT) con-
sensus protocol runs in the blockchain layer (herein referred to as blockchain) of the pro-
posed NeuroCrypt framework. PBFT has been chosen instead of resource-consuming
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authentication, like Proof of Work, due to its lightweightness, low energy use, and appli-
cability to permissioned IoT. A blockchain network was set up, and the validator nodes
were deployed on fog and cloud computing servers to avoid extra computing power
charges to the constrained edge devices. Such a design allows unreliable validation of
key management transactions: generation, rotation, and revocation processes can be
realized without excessive load on the IoT devices. The resilience offered by the selection
of PBFT also provides resilience to a fraction of malicious or faulty validators and has
low communication and computation overhead. It measured the consensus performance
of transaction throughput and latency, which are essential to support near real-time key
updates and logging of anomalies in the IoT networks.
Anomaly score ¥; Is compared against a detection threshold 7 :

Flag, =1[y: > 7] (7)
If Flag, = 1, dynamic key rotation is triggered:

Kir1 = KeyGen (), B.append(K;11,t) (8)
The blockchain ledger B is implemented as:

B; = Hash(B,_1 | KeyEvent, || Sig;) 9)
Each new key event is digitally signed and linked via cryptographic hashes to ensure

immutability and auditability.

4.2.5 Multi-factor authentication and decryption
After a threat has been analyzed, its decrypted findings are protected by a Multi-Factor
Authentication (MFA) system. This is the process of authentication that integrates user
identity, token authentication, and biometric authentication.

To authorize decryption:

Ay = MFA (user, token, biometric) (10)
If A; = True, then:

d/ t — Dec(@t, Skjt) (11)
This ensures only authenticated users have access to decrypted results.
4.2.6 Security definitions
This section formalizes the security guarantees provided by the NeuroCrypt framework.
It proposes four main properties, i.e., data confidentiality, model confidentiality, block-
chain integrity, and end-to-end privacy. Each of them is characterized by probability
boundaries to describe the resilience of security against different adversaries. These defi-

nitions are the marks that the system has to fulfill to be declared secure.
Data Confidentiality:

VA: PrlA(c;) = di] <€, (negligible) (12)

Model Confidentiality
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PriA(y) = 0]< 6 (13)
Blockchain Integrity:
Tamper (B) = Collision (Hash) vV Break (Sig) = negligible (14)

End-to-End Privacy:

Leakage (M§"( ¢, )) ~ 0 (15)

4.2.7 Theorems and lemmas

This proves the key security theorem of the system, which confirms that the joint appli-
cation of FHE, blockchain, and MFA ensures solid defense against adversarial threats.
Theoretical assumptions in its support include semantic security and unforgeability. The
theorem summarises the key NeuroCrypt model claim: that it can enable privacy-pre-
serving, tamper-resistant, and auditable inference over encrypted IoT data.

Theorem 1 Privacy-Preserving Threat-Resilient Inference.

Under the assumptions of FHE semantic security, digital signature unforgeability, colli-
sion-resistant hashes, and enforced MFA, the system guarantees all defined properties
for any polynomial-time adversary A.

4.2.8 Supporting lemmas

To prove the theorem, this presents the necessary lemmas for why each component acts
safely within specified limits. These comprise the viability of assessing LSTM function-
alities in a homomorphic way, the verifiability of the blockchain entries, and the impos-
sibility of leakage of inferences due to the encryption of the intermediate results. These
lemmas give the logical spine that supports the main theorem.

Lemma 1 Homomorphic LSTM Evaluation.
Under the assumption that each non-linear activation in LSTM can be estimated with a
degree d polynomial, then:

MG (¢;) € HE-Supported Operations (16)

Lemma 2 Blockchain Verifiability.
If B; = Hash(Bi—1 || Event;), then altering B; for j <1i requires recomputing valid
hash chains, which is computationally infeasible.

Lemma 3 Encrypted Privacy.

Since all intermediate states of Mg are encrypted and never exposed:
Pr[A(view) = di] < negl(M) (17)

9. Unified Equation Pipeline.

This section gives an overview of the whole operation pipeline of NeuroCrypt. Infor-
mation is transferred between inputs and outputs by a series of steps: encryption,
encrypted inference, anomaly flagging, key management and conditional decryption.
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The following steps are presented in a linear order to explain the role played by each
mathematical operation in making the system reliable.

d, £ o Mj" 3, Threshold Flag, KeyGen, MFA, Dec s . (18)
10. Final Guarantee.

The conclusion proves the overall security status of the NeuroCrypt framework. This
conclusion summarizes the model and indicates it is effective in real-life Internet of
Things security situations.

For all t in execution time horizon T and all adversaries .A bounded by poly (A ), the
NeuroCrypt framework ensures:

Confidentiality A Integrity A Adaptivity A Auditability (19)

5 Results and discussion

This section provides the results of the proposed NeuroCrypt framework’s performance
metrics of detection accuracy, computational overhead, latency, privacy preservation
effectiveness, and scalability. As done in previous studies, simulated IoT network traffic
datasets with injected anomalies were used to evaluate it. The objective is to formalise
that NeuroCrypt achieves real-time, privacy-preserving, and adaptive threat detection
under resource limitations characteristic of IoT edges and fog conditions.

5.1 Dataset used

To evaluate the performance of the proposed framework, we considered an extensive
IoT network traffic dataset to test the efficiency of the suggested NeuroCrypt frame-
work, which covers normal device operations and a broad spectrum of cyberattacks.
The data is a collection of labelled traffic flows produced by numerous IoT devices in an
innovative environment, including smart home hubs, surveillance cameras, smart locks,
bright lights, and IoT sensors. The data consists of benign and malicious traffic, includ-
ing Distributed Denial-of-Service (DDoS) attacks, botnet communication, spoofing,
injection attacks, malware traffic, and reconnaissance. The data has been obtained in IoT
network environments realistically, meaning the traffic patterns represent how modern
IoT devices behave and their vulnerabilities. The dataset’s characteristics of every traffic
flow are denoted as a sequence of features based on packet-level and flow-level statistics.
These attributes extract significant temporal and behavioural aspects of the network traf-
fic, which is essential for effectively identifying anomalies using the LSTM-based model
in NeuroCrypt. The dataset was preprocessed before training the models, and the steps
involved were data cleaning, normalisation, and division into time-series sequences with
a window of 50 time steps, as that is the structure of input that the LSTM architectu-
reexpects. The processed data consists of an equal mixture of regular and malicious
activity, facilitating robust training and testing of the proposed threat detection system.
Table 4 gives a summary of the significant attributes utilised in the dataset.

Table 5 provides a comprehensive overview of the CIC-10T2023 dataset. Approxi-
mately 16.7% of the flows represent benign traffic, such as DNS, HTTP, and MQTT
communications from smart home and industrial IoT devices, while the remaining
83.3% consist of malicious flows covering a broad spectrum of injected attack scenarios.
These include high-volume Distributed Denial of Service (DDoS) and Denial of Service
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Table 4 Description of attributes in the dataset

Attribute Name Description

Timestamp Time of packet or flow observation

Source IP Address IP address of the sending device

Destination IP Address IP address of the receiving device

Source Port Network port used by the source device
Destination Port Network port used by the destination device
Protocol Network protocol used (TCP, UDP, ICMP, etc.)
Packet Count Total number of packets in the flow

Packet Size (Bytes) Size of individual packets or total flow size
Flow Duration (ms) Duration of the network flow

Inter-Arrival Time (ms) Time between consecutive packets

Flags TCP flag indicators (e.g., SYN, ACK, FIN)
Payload Size Size of the payload within the packet
Anomaly Label Label indicating whether the traffic is benign or malicious (binary label)

Table 5 CIC-loT2023 dataset statistics and features

Category Count Percentage Notes

Total Flows 33,000,000+ 100% loT traffic collected from smart home/
industrial loT devices

Benign Flows ~ 5,500,000 ~16.7% Normal traffic (DNS, HTTP, MQTT, etc.)

Malicious Flows ~27,500,000 ~83.3% Multiple attack scenarios injected

DDoS/DoS ~12,000,000 ~36% High-rate flooding (UDP/TCP/HTTP-based)

Brute Force / Password ~ 3,200,000 ~9.7% SSH/FTP brute force

Botnet / Mirai-like ~4,500,000 ~13.6% Botnet traffic from compromised loT nodes

Reconnaissance/Scan ~ 3,800,000 ~11.5% Port scanning, service probing

Injection/Malware ~4,000,000 ~12.1% Code injection, malware payloads

Spoofing/Man-in-Middle > 1000+ ~0.002% Limited representation

Features Extracted 80+ ~0.0001% Includes packet-level, flow-level & time-

series statistics (see below)

(DoS) flooding attacks, brute force attempts on authentication services such as SSH and
FTP, Mirai-like botnet communications, reconnaissance and scanning activities, and
malware or injection traffic.

The dataset was first put through a structured preprocessing pipeline, including data
cleaning, normalization, and sequence preparation, before being made available to the
training process. When cleaning the data, repeated flows and incomplete records were
eliminated to ensure consistency. Your missing values were addressed by imputation:
without affecting your training, continuous numbers-related features were filled by
median, categorical variables by their mode, and records with more than 20% missing
items were dropped to eliminate the presence of noise. After the data was cleaned, it
was normalized to scale all features to a similar level. Min-max normalization of con-
tinuous variables was calculated, where words of the range [0,1], attributes like packet
size (length in bytes), and flow duration could not control the learning process. One-
hot encoding decodes categorical variables into a machine-interpretable format, such
as network protocols and TCP flags. This made each feature contribute to the training
and enhanced model convergence fairly. Lastly, the dataset was split into time-series
sequences that can be processed with LSTM-based anomaly detection. Flows on the net-
work were separated into sliding windows with 50 time steps, so the modeling could
study the temporal dynamics of the traffic pattern, but not rely on the individual pack-
ets or flows. Each sequence was assigned a label using majority voting, where it would
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be labeled malicious if most of its constituent flows are labeled malicious and benign
otherwise.

5.2 Performance metrics

We utilized a variety of performance metrics to thoroughly assess the efficiency of the
NeuroCrypt framework. These measures evaluated the capacity of the system to iden-
tify anomalies more precisely, maintain low computationalcosts, and provide real-time
reactions and safeguard the privacy of information when implementing encrypted
computations.

5.2.1 Detection accuracy

Detection accuracy is a ratio of correctly classified examples in the dataset, both benign
and malicious traffic. The high accuracy value shows that the LSTM-based anomaly
detector is suitable for detecting attacks without generating too many false positives or
false negatives.

TP + TN
TP + TN+ FP + FN

Accuracy = (20)

Where:

+ TP =True Positives (malicious correctly detected).

+ TN=True Negatives (benign correctly detected).

+ FP=False Positives (benign incorrectly flagged as malicious).
+ FN=False Negatives (malicious traffic missed).

5.2.2 Inference latency

The inference latency is the duration required to process one sequence of encrypted IoT
traffic with the LSTM model and obtain a detection result. This phase is one of the most
important steps to ensure that this system can provide real-time or near-real-time threat
detection even on resource-limited IoT devices.

5.2.3 Computational overhead

The three key measures utilised in estimating the computational overhead in Neuro-
Crypt include the CPU usage, the memory usage, and the time taken during encryp-
tion and decryption. All these measures are used to identify the efficiency of the system
and the number of resources it needs during the work. CPU usage measures processing
overheads due to cryptographic computations, whereas memory consumption indicates
RAM usage during data processing and key handling. Data transformation and retrieval
speed can be attained with the time required to encrypt and decrypt information.

5.2.4 Key management performance

Since dynamic key management is an inherent feature of NeuroCrypt, the latter is also
included in the analysis concerning its efficiency, which is measured by two signifi-
cant performance indices. First is key rotation latency, or the delay implied in rotating
encryption keys periodically or when required. This is an essential step towards avail-
ing a feature to the system to change cryptography keys based on security policies or
other threats in a timely fashion without disrupting other processes. The second is the
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blockchain transaction latency, i.e., the time required to log important management
events, e.g., generation, rotation, or revocation, and to prove related cryptographic keys
on the blockchain.

5.3 Results
This section outlines the outcomes of the NeuroCrypt framework, and its efficiency is
discussed in terms of the two frequent issues: protection of privacy and threat detection
in IoT networks in real time. Our performance metrics to measure the framework are
accuracy in detection, latency in inference, computing cost, and efficiency in key man-
agement. Our results indicate that NeuroCrypt has better security and scalability than
existing algorithms such as HE + DNN, FL -DABE -BC, and LSTM IDS.

Figure 9 shows the detection accuracy of the NeuroCrypt framework against various
forms of attacks on the CIC-10T2023 dataset. The model shows high accuracy on all the
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categories, with benign traffic being identified with the highest accuracy (99.2%) and all
the types of attacks having an accuracy above 96%. This substantiates that the system
efficiently manages various cyberattacks related to IoT with minimal false positive rates.
Furthermore, Fig. 10 illustrates the inference latency in the NeuroCrypt framework at
the different device layers: Edge, Fog, and Cloud. The latency is the greatest on the edge
devices (120 ms) since these devices have limited processing capabilities and the lowest
on the cloud servers (40 ms), where more computational resources are provided. The Fog
layer offers a reasonable latency (70 ms) performance, and thus it is a feasible solution
to consider near real-time encrypted inference at the IoT networks. Moreover, Fig. 11
shows the computational overhead of the NeuroCrypt framework regarding CPU usage
and memory usage (MB) at various device layers. The overhead is more on edge devices
(75% CPU, 350 MB RAM), since they are resource-constrained. The fog layer is balanced
regarding resource consumption (55% CPU, 280 MB), so running an encrypted infer-
ence is a reasonable option. The cloud layer has the least overhead (30% CPU, 180 MB),
so it can be used as a centralised aggregation point to coordinate the models. Addition-
ally, Fig. 12 shows the rotation latency of the blockchain-based key management module
of NeuroCrypt. The measurements demonstrate that both key rotation variants have an
extremely low latency, meaning that dynamic key updates can be carried out fast enough
that they do not affect the real-time usage of the [oT network.

An essential component of evaluating NeuroCrypt is the False Negative Rate (FNR),
since undetected anomalies represent traffic that is not encrypted and may expose sen-
sitive data. Across the CIC-10T2023 dataset, the LSTM Guidance Module achieved an
ENR of 0.8%, indicating that fewer than 1 in 100 attacks went undetected.

Figure 13 shows the confusion matrix of the LSTM-based anomaly detector, which can
distinguish between regular and attack traffic. Most benign flows are accurately termed
as usual, with only a few false positives. Almost all attack flows are identified, and only
a few false negatives are drawn. The figure consequently highlights the credibility of the
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LSTM as a guiding mechanism, which has the security of sensitive traffic effectively safe-
guarded under the NeuroCrypt.

Figure 14 shows the general performance of the LSTM model in terms of preci-
sion, recall, and F1-score. One can observe high values in the graph: precision=0.987,
recall=0.985, and Fl-score=0.986. High precision indicates that most anomalous-
flagged flows are abnormal, with strong recall indicating that nearly all the attacks are
detected. This balance has been tight, as indicated by thehigh F1-score, which proves the
model’s strength. As the figure shows, the LSTM performs uniform detection, offering a

reasonable basis for selective encryption decisions in NeuroCrypt.
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Table 6 Comparison among the baseline configurations

System Encryption Method Computation Mode Privacy Expected

Level Overhead
LSTM-only None Plaintext Low Very Low
HE-only CKS FHE Fully Encrypted Very High Very High
AES +Trusted AES-256+TEE Plaintext in TEE Medium Low-Medium
NeuroCrypt Selective Hybrid (Encrypted/Plaintext) High Moderate
(Proposed) FHE 4+ LSTM-guided

To identify the contribution of each component in NeuroCrypt, we created three base-
line systems to compare. LSTM-only (Plaintext): It is an LSTM-based model that per-
forms threat detection, just like the model in NeuroCrypt, but it analyzes plaintext traffic
and does not encrypt traffic. HE-only (Always-HE): Encryption process. A fully homo-
morphic encryption (HE) system encrypts all incoming traffic and uses a single LSTM
model to process it using CKKS encryption. No selective and adaptive techniques are
used. The following arrangement demonstrates the overall price and degree of protec-
tion with a full-HE strategy. AES + Trusted Compute (Traditional): A conventional setup
where data is encrypted in transit using AES-256 and decrypted inside a trusted execu-
tion environment (TEE) or secure cloud node before LSTM-based inference. This is the
type of security baseline that is deployed in the industry. NeuroCrypt (Proposed): The
hybrid system integrates LSTM-guided selective homomorphic encryption, key rotation
and blockchain-based key verification. The configurations are listed in Table 6, including
the type of encryption used in each case, the privacy guaranteed by the configuration,
and the predicted computation overhead.

To determine the computational cost and responsiveness of NeuroCrypt, we calcu-
lated the time to data ingestion for the overall threat detection. The data was measured
in four setups, namely (1) LSTM-only detection (no homomorphic encryption), (2) AES
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Table 7 Comparative latency analysis across baseline and proposed frameworks

System Edge (ms) Fog (ms) Cloud (ms) Median P95 P99
LSTM-only 40 52 78 56 84 102
AES +Trusted 52 68 95 72 115 138
HE-only 240 380 520 380 610 790
NeuroCrypt 125 190 260 190 290 360
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Fig. 16 Comparison graph of detection accuracy with existing techniques

with setup of trusted execution, (3) homomorphic encryption only, and (4) the proposed
NeuroCrypt hybrid model. We also recorded the latency at the edge, fog, and cloud
layers to represent a realistic deployment hierarchy. The cumulative distribution func-
tion (CDF) of the end-to-end latency of each of the four setups is presented in Fig. 15.
The curve of NeuroCrypt is between the AES-trusted and the HE-only systems. This
ascertains the hypothesis that the hybrid framework minimizes the latency without
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Table 8 Comparisons of detection accuracy with existing techniques

Model Accuracy (%)
NeuroCrypt 99.20%
HE+DNN [45] 91%
FL-DABE-BC [53] 95%
LSTMIDS [33] 98.75%
A Edge(ms) & Fog(ms) Cloud (ms)
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Fig. 17 Comparison graph of Inference Latency (ms) with existing techniques

Table 9 Comparison of inference latency (ms)

Model Edge (ms) Fog (ms) Cloud (ms)
NeuroCrypt 120 70 40
HE +DNN [45] 200 150 80
FL-DABE-BC [53] 100 90 50

compromising privacy. Table 7 summarizes the latency distribution across the device
layers and statistical percentile (Median, P95, P99).

Figure 16; Table 8 compare the detection accuracy of NeuroCrypt with leading base-
line frameworks. NeuroCrypt matches or exceeds prior state-of-the-art while outper-
forming HE-based DNN [45], FL-based models [53], and LSTM IDS [33], confirming
its effectiveness in encrypted, adaptive threat detection—Figure 17; Table 9 present
inference latency across layers. NeuroCrypt achieves significantly lower latency than
HE + DNN [45] due to LSTM optimisations and ciphertext packing. It also matches or
improves on FL-DABE-BC [53], supporting its suitability for real-time IoT applications.
Figure 18; Table 10 illustrate how the proposed NeuroCrypt compares to other tech-
niques. The proposed framework’s CPU utilisation is better than the other two compara-
tive techniques.

Table 11 compares computational overhead (CPU %) for NeuroCrypt, prior schemes,
and three logical. The Always-HE incurs the highest overhead, reaching 95% at the edge,
80% at the fog, and 40% at the cloud, since all traffic is homomorphically encrypted irre-
spective of anomaly status. At the opposite extreme, the Never-HE shows the lowest
overhead (20%, 15%, and 10% respectively), but provides no encryption and therefore no
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Table 10 Comparison of computational overhead (CPU %)
Model Edge Fog Cloud
Always-HE 95% 80% 40%
Never-HE 20% 15% 10%
Threshold-HE 82% 60% 32%
NeuroCrypt 75% 55% 30%
HE-+DNN [45] 85% 65% 35%
FL-DABE-BC [53] 50% 50% 25%
Table 11 Comparison of computational overhead (CPU %)
Model Edge Fog Cloud
Always-HE 95% 80% 40%
Never-HE 20% 15% 10%
Threshold-HE 82% 60% 32%
NeuroCrypt 75% 55% 30%
HE-+DNN[45] 85% 65% 35%
FL-DABE-BC [53] 50% 50% 25%

security, making it impractical. The Threshold-HE, based on a naive rule, reduces some
overhead compared to Always-HE but still wastes resources by encrypting benign traffic,
resulting in 82%, 60%, and 32% overhead across edge, fog, and cloud layers. Compared
to these s, NeuroCrypt achieves a balanced trade-off, with 75%, 55%, and 30% overhead,
offering significant efficiency gains while still ensuring selective encryption of anoma-
lous traffic. When compared with prior works, HE + DNN [45] exhibits higher overhead
(85%, 65%, 35%), while FL-DABE-BC [53] shows lower values (50%, 50%, 25%) but at the
cost of reduced privacy-preserving capability.

The comparative Table 12 presents the pros of the proposed NeuroCrypt framework
compared to other state-of-the-art approaches. However, the current solutions, such as
HE + DNN, FL-DABE-BC, and LSTM IDS, are incomplete: to the best of their engage-
ment with privacy or anomaly detection individually, they still do not provide a com-
mon framework that can perform real-time encrypted model inference. The suggested
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Table 12 Comparative analysis of existing state-of-the-art techniques with proposed neurocrypt

Aspect Existing Techniques Proposed NeuroCrypt (AHE-BKM)
Architecture HE + DNN [45]; FL-DABE-BC [53]; LSTM IDS FHE + LSTM + Blockchain +MFA
[33] (Hybrid)
Privacy Mechanisms Partial (HE only or FL only); LSTM operates Fully Homomorphic Encryption (FHE)
on plaintext enables encrypted model inference

Threat Detection
encrypted processing

Key Management
blockchain

Tamper-Proof Auditing Not consistently implemented

LSTM IDS [33] detects anomalies but without

Some works use static keys; FL-DABE-BC uses

LSTM-based encrypted anomaly
detection (secure & adaptive)

Dynamic key rotation with Block-
chain Smart Contracts

Blockchain logs all security events

(Intrusion/Tampering)

Multi-Factor Authentica-  Not included in existing techniques Integrated MFA (Biometric, OTP,

tion (MFA) Token) for key access
Latency (Edge devices) 200 ms (HE +DNN), 100 ms (FL-DABE-BC) 120 ms
Latency (Fog) 150 ms (HE+ DNN), 100 ms (FL-DABE-BC) 80 ms
Latency (Cloud) 80 ms (HE+DNN), 50 ms (FL-DABE-BC) 40 ms
Detection Accuracy HE + DNN: 91%, FL-DABE-BC: 95%, LSTM IDS:  99.20%
98.75%
Computational Overhead 85% (HE+DNN), 50% (FL-DABE-BC) 75%
(Edge CPU %)
Blockchain Integration FL-DABE-BC uses blockchain for FL only Used for dynamic key management

& tamper-proof audit

Handling of Evolving Limited adaptability Adaptive anomaly detection +dy-

Threats namic key rotation

Compliance (GDPR/ Partial Fully supports privacy-preserving
HIPAA) computation & auditability
Innovation Combine privacy or detection, but not both,  Unified architecture: Privacy-preserv-

in the encrypted domain ing, adaptive, scalable

framework provides a higher detection precision of 99.2% and significantly reduced
latency in the edge, fog, and cloud environments. Also, NeuroCrypt provides tamper-
evident auditing, which is logged to the blockchain and can be complied with data pro-
tection regulations like GDPR and HIPAA. NeuroCrypt addresses the key limitations of
the existing solutions since it offers a single, flexible, and scalable solution, which sets a
new standard of IoT network protection regarding security.

These results indicate that the proposed framework is superior to the current meth-
ods in that it comprehensively tackles their major weaknesses. In contrast to the previ-
ous solutions, which either concentrate on privacy or detecting accuracy only separately,
the proposed system combines privacy-preserving encrypted computation, real-time
anomaly detection, and blockchain-based auditability into one system. Framed by the
traits of fully homomorphic encryption, LSTM-based sequence learning, dynamic key
management, and multi-factor authentication, it offers a study involving the combina-
tion of either LSTM-based sequence learning, with the function of long sequence learn-
ing, enabling the provision of high-order privacy guarantees while ensuring no losses
in detection performance and scalability. The complete preprocessing pipeline, practi-
cal polynomial gate approximations, and simple consensus design assure that the sys-
tem is viable enough to be deployed in an edge, fog, and cloud deployment. Altogether,
the concept introduces a novel standard of practice by providing encrypted inference,
dynamic security, and tampering auditing within the IoT systems- a feature that is con-
comitant only to other methods.

Table 13 shows that the latency, memory, energy, and communication overhead of
the plaintext LSTM baseline and NeuroCrypt framework on constrained IoT devices
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Table 13 Latency and energy consumption on constrained loT devices

Metric Plaintext LSTM NeuroCrypt (FHE-enabled)
Average Inference Latency (per flow) 25ms 140 ms

Peak Memory Usage 90 MB 410 MB

Energy Consumption (per 1000 flows) 035 1.8

Communication Overhead (per packet) 128 bytes 512 bytes

are alike. As anticipated, encrypted inference comes with the added cost, as the average
latency per-flow can be seen to almost double between 25 ms during plaintext execution
to 140 ms during NeuroCrypt execution. On the same note, peak-memory consumption
increases by 90 MB up to 410 MB, and this is the ciphertext expansion caused by FHE
operations. The energy usage also comes into play with the increase by 0.35 J per 1,000
flows to 1.8 J per 1,000 flows, illustrating the computational power of homomorphic
evaluation and its effects on battery-powered IoT nodes. Outside the computational and
energy requirements, a communication overhead must also be considered: the size of
a beanstalk plaintext packet of 128 bytes grows to around 512 bytes on an encrypted
expression of 4 homomorphic messages, i.e., a size increase by a factor of 4. This over-
head also directly impacts bandwidth-limited IoT networks, where the heavy ciphertext
traffic may swiftly congest channels.

These results show a fundamental trade-off between security and overhead. A com-
plete traffic encryption in FHE would be the most private, but with prohibitive latency,
energy consumption, and communication cost, and a plaintext-only base would be
free of overhead but provide no security assurance. NeuroCrypt maintains a selective
tradeoff instead: by encrypting only that portion of the traffic that the LSTM Guidance
Module deems as an anomaly, it also makes the overhead proportional to the fraction
of the traffic to be encrypted rather than scaled directly based on the model traffic. This
will allow the framework to have a high level of privacy assurances where required, and
ensure resource requirements stay within manageable ranges of resource-constrained
IoT equipment.

6 Conclusion

Recent increase in the application of 10T devices has led to a chronic interest in frame-
works that can meet real-time record of anomalies and end-to-end data security con-
nected on resource-constrained and distributed frameworks. The existing solutions aim
to guarantee either privacy being preserved or paramount risk-probing, but seldom both
without entailing influential trade-offs in latency, scalability ranges, and detection per-
centages. Moreover, paradigms rooted in classical deep learning approaches like LSTM
are incapable of functioning on encrypted data, leading to privacy loss, and the Homo-
morphic Encryption (HE)-on-device solutions involve hefty computational tariffs. They
cannot be integrated into real-time IoT. To reduce this gap, the current paper proposes
NeuroCrypt, an innovative hybrid architecture of security, which is a mixture between
Fully Homomorphic Encryption (FHE) and encrypted LSTM-based anomaly detection.
Other computational optimisations in the framework include dynamic key manage-
ment (enabled by the blockchain), multifactor authentication (MFA), and optimisation
in the edge, cloud, and fog environments. According to the findings, the given frame-
work has 99.2% accuracy over other methods. The blockchain key rotation system is also
rapid and safe, with key updates in near real-time, low startup latency, and the capacity
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to respond to new threats in real-time. Within the framework of future work, Neuro-
Crypt can be extended under an encrypted environment to even more advanced deep
learning models (e.g., transformer models), the FHE scheme can be further optimised to
permit large-scale use, and federated learning can be incorporated to enable decentral-
ised, privacy-preserving threat detection in distributed yet integral systems of the IoT.
One of the weaknesses of this study is that the analysis was conducted on familiar attack
scenarios but was not explicit in assessing the framework’s resistance to adversarial eva-
sion attempts. Adaptive attacks with a traffic pattern that adversaries develop to appear
harmless continue to be a formidable problem for deep learning-based intrusion detec-
tors. This can also be addressed during eventual work, where methods of increased loss
resistance to NeuroCrypt, like adversarial data augmentation, model training and adver-
sarial threat intelligence will be studied. Beyond this, further extensions should examine
more deployment-oriented paths, such as characterizing latency and energy constraints
on IoT devices with limited resources, incorporating hardware accelerators to amortize
the FHE cost and systematically comparing the constraints with milder cryptographic
methods. Those will assist in such a way that NeuroCrypt can be considered not only in
terms of detection accuracy but also concerning scalability and sustainability, as well as
its applicability to real-world IoT conditions.

Acknowledgements
Funds acknowledgement statement: Authors are funded by UKRI Grant EP/W020408/1 and Grant RS718 through
Doctoral Training Centre at Swansea University.

Author contributions

Data curation, Purushottam Sharma; Formal analysis, Sanjeev Kumar and Sukhvinder Singh Deora; Investigation,

Sanjeev Kumar and Xiaochun Cheng; Methodology, Tajinder Kumar and Purushottam Sharma; Project administration,
Purushottam Sharma, Xiaochun Cheng; Software, Tajinder Kumar and Vishal Garg ; Development of design and
implementation: Sanjeev Kumar; Interpretation of results: Sukhvinder Singh Deora; Supervision, Xiaochun Cheng;
Validation, Vishal Garg and Purushottam Sharma; Writing - review & editing, Sanjeev Kumar and Sukhvinder Singh Deora.

Funding
The authors have been funded by UKRI Grant EP/W020408/1 and Grant RS718 through Doctoral Training Centre at
Swansea University.

Data availability
The dataset analyzed during the current study is available in the UNSW Canberra repository, [https://research.unsw.edu.a
u/projects/bot-iot-dataset](https:/research.unsw.edu.au/projects/bot-iot-dataset) .

Declarations

Ethics approval and consent to participate
This is an observational study. So, No Ethical Approval required.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 18 July 2025 / Accepted: 1 December 2025
Published online: 09 December 2025

References

1. ZhangY, Deng RH, Zheng D. Secure and efficient federated learning for internet of things: foundations and challenges.
IEEE Wirel Commun. 2022;29(1):32-9. https://doi.org/10.1109/MWC.001.2100322.

2. Rejeb A Keogh JG, Simske SJ, Treiblmaier H, Keogh J. Blockchain technology in the smart city: A bibliometric review.
Technol Forecast Soc Chang. 2022;179:121647. https://doi.org/10.1016/j.techfore.2022.121647.

3. Hesamzadeh MR, Berzish M. Privacy-Preserving deep learning: Threats, Challenges, and solutions. ACM-CSUR.
2022;55(5):1-40. https://doi.org/10.1145/3510422.

4. LiY,LiuB,Qin Z, Zhou P. DeepFed: federated deep learning with differential privacy for cyber intrusion detection. IEEE
Trans Industr Inf. 2021;17(8):5617-26. https://doi.org/10.1109/T1.2020.3046083.


https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/bot-iot-dataset
https://doi.org/10.1109/MWC.001.2100322
https://doi.org/10.1016/j.techfore.2022.121647
https://doi.org/10.1145/3510422
https://doi.org/10.1109/TII.2020.3046083

Kumar et al. Discover Computing (2025) 28:301 Page 38 of 39

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Halevi S, Shoup V. (2020). Faster Homomorphic Linear Transformations in HElib. Advances in Cryptology — CRYPTO 2020,
Lecture Notes in Computer Science, 12171, 93-124. Springer. https://doi.org/10.1007/978-3-030-56877-1_4

LiuY, Sun M, Lin Z, Liu Y. Blockchain-based data privacy management with nudge theory in the internet of things. IEEE
Internet Things J. 2020;8(6):4287-96. https://doi.org/10.1109/JI0T.2020.3012886.

SunT, Zhou J, Li Z, Liu Q. Survey on blockchain for internet of things. Comput Commun. 2022;182:1-15. https://doi.org/10.
1016/j.comcom.2021.09.004.

Hijazi NM, Alogaily M, Guizani M, Ouni B, Karray F. Secure federated learning with fully homomorphic encryption for lot
communications. IEEE Internet Things J. 2023;11(3):4289-300.

Praveen R, Pabitha P. (2023). Improved Gentry—Halevi's fully homomorphic encryption-based lightweight privacy preserv-
ing scheme for securing medical Internet of Things. Trans Emerg Telecommunications Technol, 34(4),e4732.

Albakri A, Alshahrani R, Alharbi F, Ahamed SB. Fully homomorphic encryption with optimal key generation secure group
communication in internet of things environment. Appl Sci. 2023;13(10):6055.

Sawlikar AP, Raich DS, Ganguly BS, Yadav LN. (2025). An enhanced encryption scheme for loT-Based wireless sensor net-
work using DNA enclosed fully homomorphic approach. Trans Emerg Telecommunications Technol, 36(3), 70075.
Hamsanandhini S, Balasubramanie P. loT data encryption and phrase search-based efficient processing using a fully
Homomorphic-based SE (FHSE) scheme. Pervasive Mob Comput. 2024;103:101952.

Suma MR, Madhumathy P. (2022). Brakerski-Gentry-Vaikuntanathan fully homomorphic encryption cryptography for
privacy preserved data access in cloud assisted internet of things services using glow-worm swarm optimization. Trans
Emerg Telecommunications Technol, 33(12), e4641.

Marcolla C, Sucasas V, Manzano M, Bassoli R, Fitzek FH, Aaraj N. Survey on fully homomorphic encryption, theory, and
applications. Proc IEEE. 2022;110(10):1572-609.

Zhang L, Xu J, Vijayakumar P, Sharma PK, Ghosh U. Homomorphic encryption-based privacy-preserving federated learning
in loT-enabled healthcare system. IEEE Trans Netw Sci Eng. 2022;10(5):2864-80.

Matsumoto M, Oguchi M. (2021, August). Speeding up encryption on iot devices using homomorphic encryption. In 2021
IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 270-275). IEEE.

Subramaniyaswamy V, JagadeeswariV, Indragandhi V, Jhaveri R H, Vijayakumar V, Kotecha K, Ravi L. Somewhat homomor-
phic encryption: ring learning with error algorithm for faster encryption of loT sensor signal-based edge devices. Secur
CommunicationNetworks. 2022;2022(1):2793998.

Kandi MA, Kouicem DE, Doudou M, Lakhlef H, Bouabdallah A, Challal Y. A decentralized blockchain-based key manage-
ment protocol for heterogeneous and dynamic loT devices. Comput Commun. 2022;191:11-25.

Panda SS, Jena D, Mohanta BK, Ramasubbareddy S, Daneshmand M, Gandomi AH. Authentication and key management
in distributed lot using blockchain technology. IEEE Internet Things J. 2021,8(16):12947-54.

Arshad QUA, Khan WZ, Azam F, Khan MK, Yu H, Zikria YB. Blockchain-based decentralized trust management in iot: sys-
tems, requirements and challenges. Complex Intell Syst. 2023;9(6):6155-76.

De Ree M, Mantas G, Rodriguez J, Otung IE. DECENT: decentralized and efficient key management to secure communica-
tion in dense and dynamic environments. IEEE Trans Intell Transp Syst. 2022;24(7):7586-98.

Attkan A, Ranga V. Cyber-physical security for oT networks: a comprehensive review on traditional, blockchain and artifi-
cial intelligence based key-security. Complex Intell Syst. 2022;8(4):3559-91.

ChenT, Zhang L, Choo KKR, Zhang R, Meng X. Blockchain-based key management scheme in fog-enabled IoT systems.
IEEE Internet Things J. 2021;8(13):10766-78.

Narayanan U, Paul V, Joseph S. Decentralized blockchain based authentication for secure data sharing in Cloud-loT:
DeBlock-Sec. J Ambient Intell Humaniz Comput. 2022;13(2):769-87.

Yin H, Chen E, Zhu Y, Zhao C, Feng R, Yau SS. Attribute-based private data sharing with script-driven program-

mable ciphertext and decentralized key management in blockchain internet of things. IEEE Internet Things J.
2021,9(13):10625-39.

Zheng J, Zhang L, Feng Y, Wu Z. Blockchain-based key management and authentication scheme for loT networks with
chaotic scrambling. IEEE Trans Netw Sci Eng. 2022;10(1):178-88.

LiJ,Wu J, Chen L, Li J, Lam SK. Blockchain-based secure key management for mobile edge computing. IEEE Trans Mob
Comput. 2021;22(1):100-14.

Shanmuganathan V, Suresh A. LSTM-Markov based efficient anomaly detection algorithm for loT environment. Appl Soft
Comput. 2023;136:110054.

Ullah I, Mahmoud QH. Design and development of RNN anomaly detection model for loT networks. IEEE Access.
2022;10:62722-50.

Liu J, Bai J, Li H, Sun B.Improved LSTM-based abnormal stream data detection and correction system for internet of
things. IEEE Trans Industr Inf. 2021;18(2):1282-90.

Bibi S, Titouna C, Titouna F, Nait-Abdesselam F. (2023, September). An LSTM-based outlier detection approach for loT
sensor data in hierarchical Edge Computing. In 2023 International Conference on Software, Telecommunications and
Computer Networks (SoftCOM) (pp. 1-6). IEEE.

Sengan, S, Mehbodniya, A, Webber, J. L, Bostani, A, Almusharraf, A, Alharbi,M,, ... Khan, S. B. (2023). Improved LSTM-
based anomaly detection model with cybertwin deep learning to detect cutting-edge cybersecurity attacks. Hum-Centric
Comput Inf Sci, 13, 770-8.

Varshney N, Madan P, Shrivastava A, Srivastava AP, KUMAR CP, Khan K. (2023, December). Real-time anomaly detection in
loT healthcare devices with LSTM. In 2023 International Conference on Artificial Intelligence for Innovations in Healthcare
Industries (ICAIIHI) (Vol. 1, pp. 1-6). IEEE.

Azumah SW, Elsayed N, Adewopo V, Zaghloul ZS, Li C. June). A deep Lstm based approach for intrusion detection lot
devices network in smart home. 2021 IEEE 7th world forum on internet of things (WF-loT). IEEE; 2021. pp. 836-41.

Gopali S, Siami Namin A, Moon HJ. (2023). Anomaly detection based on Istm learning in iot-based dormitory for indoor
environment control. Buildings, 13(11), 2886.

Wei, Jang-Jaccard J, Xu W, Sabrina F, Camtepe S, Boulic M. LSTM-autoencoder-based anomaly detection for indoor air
quality time-series data. IEEE Sens J. 2023;23(4):3787-800.

Chanumolu KK, Nagamani GM. An enhanced model for smart healthcare by integrating hybrid ML, LSTM, and blockchain.
Ingenierie Des Systemes d'Information. 2025;30(1):43.


https://doi.org/10.1007/978-3-030-56877-1_4
https://doi.org/10.1109/JIOT.2020.3012886
https://doi.org/10.1016/j.comcom.2021.09.004
https://doi.org/10.1016/j.comcom.2021.09.004

Kumar et al. Discover Computing (2025) 28:301 Page 39 of 39

38.  Senanayake N, Podschwadt R, Takabi D, Calhoun VD, Sergey M. Plis. NeuroCrypt: Machine learning over encrypted distrib-
uted neuroimaging data. Neuroinformatics 20, no. 1 (2022): 91-108.

39.  Manh B, Duc C-H, Nguyen DT, Hoang, Diep N, Nguyen M, Zeng. and Quoc-Viet Pham. Privacy-Preserving cyberattack
detection in Blockchain-Based IoT systems using Al and homomorphic encryption. IEEE Internet Things J (2025).

40. Al Badawi A, Bates J, Bergamaschi F, Cousins DB, Erabelli S, Genise N, Halevi S et al. Openfhe: Open-source fully homo-
morphic encryption library. In proceedings of the 10th workshop on encrypted computing & applied homomorphic
cryptography, pp. 53-63.2022.

41, Lee J-W, Kang HC, Lee Y, Choi W, Eom J, Deryabin M, Lee E, et al. Privacy-preserving machine learning with fully homomor-
phic encryption for deep neural network. iEEE Access. 2022;10:30039-54.

42. Gentry C. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pp. 169-178.2009.

43. Cheon J, Hee A, Kim M, Kim, Song Y. Homomorphic encryption for arithmetic of approximate numbers. In Advances in
cryptology—ASIACRYPT 2017: 23rd international conference on the theory and applications of cryptology and information
security, Hong kong, China, December 3-7, 2017, proceedings, part i 23, pp. 409-437. Springer International Publishing,
2017.

44, Bhandari R, Singla S, Sharma P, Kang S. AINIS: an intelligent network intrusion system [J]. Int J Perform Eng.
2024,20(1):24-31.

45, Narkedimilli S, Sriram AV, Raghav S. FL-DABE-BC: A Privacy-Enhanced, decentralized Authentication, and secure communi-
cation for federated learning framework with decentralized Attribute-Based encryption and blockchain for IoT Scenarios.
ArXiv Preprint ArXiv:2410.20259 (2024).

46. Bossuat J-P, Cammarota R, Chillotti |, Curtis BR, Dai W, Gong H, Hales E et al. Secur Guidelines Implement Homomorphic
Encryption Cryptol ePrint Archive (2024).

47. Xie Q Jiang S, Jiang L, Huang Y, Zhao Z, Khan S, Dai W, Liu Z, Wu K. Efficiency optimization techniques in privacy-pre-
serving federated learning with homomorphic encryption: A brief survey. IEEE internet of things journal 11, 14 (2024):
24569-80.

48. LiuW,You L, Shao'Y, Shen X. Jiawen Shi, and Shuhong Gao. From accuracy to approximation: A survey on approximate
homomorphic encryption and its applications. Comput Sci Rev. 2025;55:100689.

49.  Xiong H, Hang Y, Obaidat MS, Chen J, Cao M, Kumar S. Kadambri Agarwal, and Saru Kumari. Efficient and Privacy-Enhanced
Asynchronous Federated Learning for Multimedia Data in Edge-based loT. ACM Transactions on Multimedia Computing,
Communications and Applications (2024).

50. Istaltofa M, Sarwido S, Sucipto A. Comparison of linear regression and LSTM (Long Short-Term Memory) in cryptocurrency
prediction. J Dinda: Data Sci Inform Technol Data Analytics. 2024;4(2):141-8.

51. Xiang Q. Cryptocurrency assets valuation prediction based on LSTM, neural network, and deep learning hybrid model.
Appl Comput Eng. 2024;49:265-72.

52. Wu J, Zhang X, Huang F, Zhou H. and Rohtiash Chandra. Review of deep learning models for crypto price prediction:
implementation and evaluation. arXiv preprint arXiv:2405.11431 (2024).

53. Singla’S, Sharma P, Sharma PK. Enhanced security using proxy signcryption technique for wireless mesh networks. Int J
Syst Assur Eng Manage. 2023;14(1):474-82. https://doi.org/10.1007/513198-022-01820-0.

54. Kumar M, Kim S. Securing the internet of health things: embedded federated learning-driven long short-term memory for
cyberattack detection. Electronics. 2024;13(17):3461.

55. Jony Al, Kumar Bose A, Arnob. A long short-term memory based approach for detecting cyber attacks in loT using CIC-
1072023 dataset. J Edge Comput. 2024;3(1):28-42.

56. Sarkar A. Recurrent neural networks-guided vector-valued synchronized key exchange for secure and privacy-preserving
communication. Industrial Internet Things Appl Soft Comput. 2024;161:111731.

57. Prasanna DSJD, Punitha K, Raju MN, Rahman F, Yadav KK. An artificial Intelligence-based, big Data-aware, Long-lasting
security solution for the internet of things. J Internet Serv Inform Secur. 2024;14(3):393-402.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1007/s13198-022-01820-0

	﻿LSTM guided homomorphic encryption for threat-resistant IoT networks
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Fully homomorphic encryption (FHE) in IoT
	﻿1.2﻿ ﻿Blockchain for secure and decentralized key management in IoT
	﻿1.3﻿ ﻿LSTM-based anomaly detection in IoT

	﻿2﻿ ﻿Literature review
	﻿3﻿ ﻿Problem statement
	﻿4﻿ ﻿Proposed methodology
	﻿4.1﻿ ﻿LSTM guidance module for encrypted anomaly detection
	﻿4.2﻿ ﻿Proposed mathematical model
	﻿4.2.1﻿ ﻿System definition
	﻿4.2.2﻿ ﻿Data encryption and transformation
	﻿4.2.3﻿ ﻿Encrypted LSTM processing
	﻿4.2.4﻿ ﻿Anomaly detection and key management
	﻿4.2.5﻿ ﻿Multi-factor authentication and decryption
	﻿4.2.6﻿ ﻿Security definitions
	﻿4.2.7﻿ ﻿Theorems and lemmas
	﻿4.2.8﻿ ﻿Supporting lemmas


	﻿5﻿ ﻿Results and discussion
	﻿5.1﻿ ﻿Dataset used
	﻿5.2﻿ ﻿Performance metrics
	﻿5.2.1﻿ ﻿Detection accuracy
	﻿5.2.2﻿ ﻿Inference latency
	﻿5.2.3﻿ ﻿Computational overhead
	﻿5.2.4﻿ ﻿Key management performance


	﻿5.3﻿ ﻿Results
	﻿6﻿ ﻿Conclusion
	﻿References


