
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the 
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Kumar et al. Discover Computing          (2025) 28:301 
https://doi.org/10.1007/s10791-025-09843-4

*Correspondence:
Purushottam Sharma
purushottam@galgotiasuniversity.
edu.in
Xiaochun Cheng
xiaochun.cheng@swansea.ac.uk
1Department of Computer Science 
& Application, Maharshi Dayanand 
University, Rohtak, India
2Department of Computer Science 
and Engineering, Jai Parkash 
Mukand Lal Innovative Engineering 
and Technology Institute, Radaur, 
Haryana, India
3School of Computer Science and 
Engineering, Galgotias University, 
Greater Noida, Uttar Pradesh, India
4Computer Science Department, 
Bay Campus, Swansea University, 
Fabian Way,  
Swansea, Wales SA1 8EN, UK

LSTM guided homomorphic encryption 
for threat-resistant IoT networks
Sanjeev Kumar1, Sukhvinder Singh Deora1, Tajinder Kumar2, Purushottam Sharma3*, Xiaochun Cheng4* and 
Vishal Garg2

1  Introduction
The short history of our Internet of Things (IoT) has escalated; it encompasses the inter-
activity of billions of devices, intelligent networks of households, and various other 
types of diverse wireless devices [1]. This growth has altered many sectors, including 
the healthcare, transport, manufacturing, agricultural, and energy sectors. The tech-
nologies play a significant role in supporting automation, intelligence decision making 
and distance control, which are essential components of the modern digital economy. 
Recently, new studies have emphasized that the next-generation internet of things and 
cyber-physical systems require an integrated security approach, whichentails integrating 
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Abstract
The rapid growth of the Internet of Things (IoT) has led to revolutionary innovations 
in many fields; however, it has also resulted in significant security and privacy issues 
due to the resource limitations and distributed nature of IoT networks. Traditional 
cryptographic techniques or machine learning-based anomaly detection systems 
do not jointly provide data privacy and resilience to threats in real time. The existing 
methods, such as Homomorphic Encryption (HE), offer a high computation cost for 
performing encryption. Furthermore, Long Short-Term Memory (LSTM) networks 
can predict an anomaly profile instead of performing encryption. To address these 
shortcomings, this paper proposes NeuroCrypt. This new hybrid system combines 
Fully Homomorphic Encryption (FHE) with LSTM-based encrypted anomaly detection 
and supplements it with blockchain-based dynamic key management and multi-
factor authentication. The architecture targets edge and fog computing settings 
using, among other techniques, ciphertext packing, model quantisation, and 
parallelised encrypted operations. The performance of the proposed framework has 
been evaluated on a real dataset. The results show that the accuracy in the proposed 
framework is 99.2% compared to existing techniques such as HE-based DNN, FL-
based models, and LSTM IDS. Conclusively, NeuroCrypt provides a privacy-preserving, 
effective, and scalable solution to real-time threat abatement in IoT networks.
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artificial intelligence and biometrics with encrypted computing. A detailed survey by 
[2] demonstrates that intelligent networks can be secured with the help of biometric 
authentication and privacy-saving technologies [3]. In a follow-up paper [4], looked at 
the open issues in the Industrial-CPS security of the AI age, pointing out the constraints 
of traditional cryptography in real-time systems. Intelligent decision-making in sensitive 
domains such as medicine is also performed with deep-learning frameworks, where per-
sonalized diagnostics models can perform adaptive, privacy-aware inference [5, 6]. These 
innovations motivate the creation of hybrid-based architectures such as NeuroCrypt, 
an amalgamation of encryption, learning, and decentralized trust to scale IoT security. 
Besides this, serious security and privacy concerns come in conjunction with the revo-
lutionary properties of the IoT ecosystem. The IoT gadgets constitute the resources in 
their simplest form of purity, and the usual cybersecurity arrangements are the ones that 
should never be applied to them. The heterogeneous and decentralised nature of the IoT 
environments supports advanced dynamics.

Concerning the trust management, data confidentiality, and non-disclosure of the 
various communication protocols and software stack. The alerts of the IoT devices may 
frequently contain sensitive and internally identifiable information, particularly in fields 
like healthcare, surveillance, and smart houses, it is vital to ensure that a competent 
security measure has been, or must be utilized [5]. Conventionally, IoT LeoT ft infrastrat 
infrastrat geographiostat is protected, which is part of other authenticated systems, e.g. 
AES or symmetric since asymmetric key establishment recall e.g. RSA, ECC storage gi 
i.e., stored authentication, which remains to be performed as a delivery or putrefaction 
progresses. Its methods are generic building blocks of network-layer security protocols 
(including TLS and internet-exposed service security protocols, including IPSEC [6]). 
Within the realms of data analytics, there exist data analytics Systems, specifically, the 
application of signature-based and elementary techniques of machine learning: deci-
sion trees, support vector machine (SVM), and random forests, to identify recognized 
dangers and abnormal behaviors that have already been recognized to have taken place. 
These systems are often achieved through the application of firewall policy and constant 
updates of firmware against any control machine-based access processes [7]. However, 
numerous restrictions exist on using these laid-down security procedures in an IoT. Sym-
metric encryption involves a shared secret control that is not a scalable one, not even 
in the terminology of a decentralised topology; asymmetric cryptographic implementa-
tions are relatively far more appropriate to the determinant of the distribution of secrets, 
however, and most certainly never to be implemented by the lightweight key distributing 
machines [8]. Besides, the older IDS could not keep up, and therefore, could not scale 
to more complex time dynamic attacks like Advanced Persistent Threat (APT) or zero-
day attacks. Even simpler representations of learning might not even be exercised to 
acquire the chronological interaction or dynamical behaviour of network traffic data on 
time-series IoT structures; they were not pertinent in acquiring polymorphic malware 
and protocol-based evasion tactics [9]. A pre-late technique is already predisposed to 
security against such invasions, which is only enhanced by the advanced anguish chosen 
in adopting the maturing generation of assaulting methods on the ground of artificial 
intelligence (AI), record armies, and disseminated assault area. The current high-profile 
attacks, such as the recent Mirai botnet that installed large numbers of older cameras 
and routers in a large-scale distributed denial-of-service (DDoS) attack of at least one 
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nature, justify developing secure and robust security models [10]. The number of inter-
net-accessible networks using critical infrastructures, i.e., smart gridding, national trans-
port systems and medical cyberspace networks, helps overpower the loss of money, and 
even becomes in the future a threat to the survival of society and nations.

1.1  Fully homomorphic encryption (FHE) in IoT

Privacy-preserving computation in Internet of Things (IoT) environments has become 
especially demanded with the rise in data sensitivity produced by these systems [11]. 
Healthcare, intelligent surveillance, industrial control systems, and critical infrastructure 
are some application areas of IoT, which commonly involve personal, behavioural, or 
proprietary data, the confidentiality of which needs to be maintained across the data life-
cycle [12]. Traditional cryptographic systems can secure data at rest and in transit, but 
fail when it is necessary to decrypt information to process it (such as when performing 
analytics on the data), putting the data at risk of interception during analysis. Recently, 
the ability to arbitrarily compute on encrypted data has introduced Fully Homomorphic 
Encryption (FHE) as a revolutionary technique [13]. This approach provides data confi-
dentiality even in the inference or processing phase, thereby sealing the vulnerability gap 
exposed by the traditional encryption technique [14].

Figure 1 depicts the architectural integration of FHE into IoT systems operating 
across several network layers. Devices that gather raw data about the environment using 
their sensors and actuators reside at the edge layer [15]. Such devices are often limited 
regarding memory, power, and computing capacity, meaning that direct FHE computa-
tion is out of reach at this layer [16]. However, before sending the collected informa-
tion, lightweight encryption modules, which can be enhanced by special hardware, can 
be encrypted using a chosen FHE scheme. Fog/edge servers with greater computation 
capabilities receive the ciphertext [17].

Furthermore, the fog layer preprocesses the encrypted data. In this case, cipher-
text padding techniques that map multiple values to a single ciphertext are applied to 
allow parallel processing and increase efficiency. The cloud layer receives the encrypted 
data and conducts more complex and heavy-computation tasks, such as LSTM-based 
encrypted inference.

Furthermore, FHE will be used at the cloud layer to process the encrypted data. These 
involve substituting non-linear activation functions with polynomial approximations 
and weight quantisation to minimise computing depth [18]. Everything is performed in 

Fig. 1  FHE-based IoT systems architecture

 



Page 4 of 39Kumar et al. Discover Computing          (2025) 28:301 

the encrypted space, and the outcome, which remains encrypted, is transmitted back 
through the identical layers to be lastly decrypted by the data owner. The final encrypted 
processing system offers extra security for data. At the same time, it’s being used, as 
well as when it’s being sent or stored, fixing a significant weakness in older IoT security 
systems.

The benefit of using FHE in IoT systems is that it allows for maintaining data confi-
dentiality without disrupting analytic processes. It enables safe data outsourcing, as it is 
possible to use third-party analytics platforms or cloud services without losing sensitive 
data [19]. In addition, FHE can enable the collaborative settings in which two or more 
parties might be required to compute the common data without revealing their respec-
tive contributions. This makes it appropriate for the federated public health or the inno-
vative grid applications of the IoT [20].

1.2  Blockchain for secure and decentralized key management in IoT

The problem of cryptographic key security in a distributed IoT environment is an old 
and complicated issue. The conventional approach of centralised key management infra-
structure or certificate authorities does not apply to IoT networks, as they are decen-
tralised, dynamic, and highly heterogeneous [21]. The devices might regularly enter or 
abandon the network, not trust one another, and frequently run in an environment with 
restricted or missing central management. Blockchain technology presents an attractive 
alternative to decentralised, transparent, and unalterable security credentials manage-
ment. The permanent record and smart contract support of blockchain technology make 
it especially well-suited to automate thelifecycle of cryptographic keys, including their 
generation, distribution, revocation, and assessment [22].

Figure 2 presents an architecture to implement blockchain into a key management sys-
tem in IoT, and the architecture is based on distributed registry stored by a set of valida-
tor nodes spread all over the network [23]. The consensus protocol allows such nodes 
to reach an agreement on the current version of the ledger so that updates are verifiable 
and irreversible. When the device is added to the network, it undergoes a registration 
transaction signed and transferred to the blockchain (usually by a smart contract). The 
identity and public key of the device are stored in the ledger [24]. The subsequent lower-
level lifecycle events, such as rotation, expiring, or revocation, are also encoded in block-
chain transactions.

Fig. 2  Blockchain-based key management framework in IoT
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The magic of this architecture is smart contracts, which are automatically imple-
mented with the logic to enforce the security policies without human involvement. For 
example, they can be told to carry out automatic key rotations on a schedule, or they 
can be programmed to automatically revoke keys reported to have been compromised 
[25]. More crucially, the nature of these contracts is that they can communicate with 
other components of the system, like anomaly detection modules, to address arising 
threats. Today, when an LSTM model learns that a device’s behavior is malicious, one 
can launch a smart contract and revoke the current key of the object, prohibit further 
communication, and ask the model to reauthenticate with multi-factor credentials. This 
is done without oversight, and in a permanent manner, and offers a quick and standard-
ized deployment of security obstacles [26].

Clients lacking the means to access the blockchain directly (e.g., because of resource 
constraints) may also do so through an intermediate node - allowing fog gateways or 
lightweight clients. Such proxies execute the procedures of creating, signing, and post-
ing transactions as a proxy of limited devices [27]. The decentralized blockchain network 
may be based on more lightweight consensus schemes, like Proof of Authority or Practi-
cal Byzantine Fault Tolerance, so the protocol may still be functional and responsive in 
low-power and low-bandwidth environments. Any node with the necessary permissions 
can access a query on the ledger to get any device’s up-to-date credentials and capabili-
ties, thereby sharing trust in the system.

One crucial aspect of the management of IoT is embracing blockchain. It does not 
need central authorities; thus, single failure points are removed [28]. It is even open in 
the sense that any modification in the credentials is verifiable publicly by the authorised 
participants, fostering trust in multi-stakeholder environments. The immutability of the 
ledger is such that no crucial historical events can be messed with in the future, and 
this simulates forensics and legal accountability [29]. Moreover, it is possible to program 
automation of security policies through smart contracts, which can be referred to as a 
potential way to react to anomalies or system events in real-time and in a data-driven 
fashion [30].

1.3  LSTM-based anomaly detection in IoT

Firewalls, rule-based filters, and signature-based intrusion detection systems are exam-
ples of traditional security systems that are not keeping pace with the dynamism of IoT 
environments, where new devices, new communication protocols, and new attack vec-
tors are regularly introduced [31]. A powerful alternative is presented by deep learning 
methods and specifically Long Short-Term Memory (LSTM) networks, which can learn 
to detect abnormalities in normal behaviour over time, even in cases where the abnor-
mal behaviour is slight or unobserved previously. LSTM models are particularly effective 
when dealing with sequential information, so they will likely be helpful when presented 
with time-series inputs produced by IoT devices [32].

Figure 3 shows that an LSTM-based architecture for anomaly detection in IoT starts 
with the raw data streams gathered by sensors, actuators, or communication interfaces 
[33]. Features of these data streams are packet sizes and protocol types, timestamps and 
inter-arrival times, and device-specific telemetry. The data is normalised; missing values 
are treated, and categorical variables are encoded so that clean and semantic inputs are 
provided to the model [34]. After the preprocessing, the data is forwarded to the LSTM 



Page 6 of 39Kumar et al. Discover Computing          (2025) 28:301 

model, which is usually deployed on fog or cloud computing resources to gain access to 
more significant computational capabilities.

The LSTM network consists of one or multiple recurrent layers, which employ gat-
ing mechanisms to choose what information to keep or discard at each time step [35]. 
Furthermore, the output retrieved from the LSTM is faded into a dense layer to retrieve 
the binary classification of anomalies. Anomalies. In specific architectures, autoencoder 
architectures are employed, where the LSTM is learnt to reconstruct the input sequence, 
and high reconstruction errors are viewed as anomalies.

Once the anomaly is recognised, it can be recorded for future secure data transmis-
sions [36]. The detection outcome may also be provided as feedback to smart contracts 
on a blockchain in more sophisticated architectures, allowing access control policies 
to be enforced in real time and dynamically managed keys. Such close functionality 
between anomaly detection and trust infrastructure provides a rapid, closed-loop reac-
tion to possible threats.

The advantages of the LSTM-based anomaly detection on IoT are considerable. This 
is because the model can learn temporal patterns and thus identify advanced threats, 
which would otherwise slip through rule-based systems. Since it learns from data, the 
system can be adapted to particular environments and continuously adapted as the 
behaviour changes. LSTM models can also be trained without access to privacy-sensi-
tive data, as homomorphic encryption or federated learning, and thus can be applied to 
regulated fields. Furthermore, there are drawbacks, such as the models being computa-
tionally expensive and confined to resource-limited devices. Also, the models are black 
boxes, and explaining decisions and gaining user trust is challenging. Mechanisms to 
explain the system and rigorous testing will be required to make it reliable and account-
able [37].

Comparison Table 1 presents a systematic review of three widely used methods: Fully 
Homomorphic Encryption (FHE), blockchain-based key management, and LSTM-based 
anomaly detection in IoT security and privacy. The table presented allows for revealing 
the complementarity of these technologies by contrasting their advantages and short-
comings in alleviating various aspects of the security and privacy dilemma in an IoT 
setting. Although FHE, blockchain and LSTM have strengths, none of the methods can 
comprehensively meet the intricate security requirements of the IoT. FHE ensures data 
security in processing, but it will not automate trust. Blockchain is also strong in key 
management, but at the same time, it lacks in behavioral analysis.

Fig. 3  LSTM-based anomaly detection architecture in IoT
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With the architecture depicted in Fig.  4, encrypted traffic can be analyzed using 
an LSTM model. To apply this in reality, several optimizations are applied in Neuro-
Crypt. They are packing ciphertext, quantizing the model, parallelizing the running of 
encrypted operations, and key management via a blockchain. These methods reduce 
the cost of computing and turn the system into edge and fog devices where computing 
resources are scarce. This paper will integrate secure data management and innovative 
and real-time anomaly detection in decentralized IoT networks. NeuroCrypt offers one 
solution to address privacy and threat detection, a significant step in the next-genera-
tion IoT security design. It also facilitates the broader objective of designing AI systems 
that are reliable, understandable, and scalable in privacy-sensitive and adversarial set-
tings. The work preconditions the future research related to encrypted deep learning, 
secure edge AI, and federated cybersecurity structures. NeuroCrypt is designed on five 
interrelated elements: the Edge Device, the Fog Gateway, the Cloud-side Homomor-
phic Encryption (HE) Nodes, the Blockchain Layer, and the Key Management Service. 
All the components operate using a well-defined data domain, plaintext or ciphertext, 

Table 1  Comparison of the existing techniques for secure data transmission in IoT
Feature/Aspect Fully homomorphic en-

cryption (FHE)
Blockchain-basedkey 
management

LSTM-based anomaly 
Detection

Primary function Privacy-preserving computa-
tion on encrypted data

Decentralized, tamper-proof 
key management

Real-time anomaly detec-
tion via temporal pattern 
analysis

Main Use Case in IoT Secure outsourced compu-
tation (e.g., cloud-based ML)

Secure lifecycle manage-
ment of cryptographic keys

Behavioral threat detec-
tion in device/network 
activity

Security Benefit Data remains encrypted 
during computation — zero 
exposure

Eliminates a single point 
of failure; all events are 
immutable

Identifies zero-day and 
adaptive attacks without 
prior signatures

Architectural 
Components

Edge devices (encryption), 
Fog (preprocessing), Cloud 
(encrypted inference)

IoT devices, Validator nodes, 
Smart contracts, Ledger

Data collectors, Preproces-
sors, LSTM models on Fog/
Cloud

Key Technologies Polynomial approxima-
tions, Ciphertext packing, 
Bootstrapping

Distributed ledger, Smart 
contracts, Consensus 
protocols

LSTM layers, Autoen-
coders, Anomaly score 
classifiers

Device Requirement Requires offloading due to 
high computational cost

Lightweight clients or in-
termediaries for low-power 
devices

Relies on fog/cloud due to 
high model complexity

Performance 
Bottlenecks

High latency and compu-
tational overhead, esp. for 
ML tasks

Scalability and latency in 
large deployments; smart 
contract security

Model complexity, latency 
in offloaded inference, and 
the need for labeled data

Privacy Support Strong: computation in the 
encrypted domain

Moderate: ledger is trans-
parent but doesn’t expose 
data contents

Moderate to Strong: 
can be integrated with 
privacy-preserving ML

Automation 
Capabilities

None inherently; it depends 
on the surrounding system

Smart contracts automate 
policy enforcement and 
reaction

Can be part of automated 
threat mitigation when 
integrated with smart 
contracts

Challenges Bootstrapping, parameter 
tuning, resource constraints

Consensus efficiency, gov-
ernance, and smart contract 
vulnerabilities

Model explainability, train-
ing data scarcity, black-box 
nature

Deployment 
Difficulty

High (requires expert tuning, 
specialized models)

Medium (requires consen-
sus setup and interface 
middleware)

Medium to High (requires 
data pipelines, model 
training, infrastructure)

Best Fit For Regulated environments 
needing secure analytics 
(e.g., healthcare, smart grid)

Dynamic, decentralized IoT 
ecosystems need trustless 
credentialing

Highly dynamic environ-
ments prone to novel or 
stealthy attacks
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to ensure a high level of performance and confidentiality. The edge employs lightweight 
AES-256 when doing regular flows and only encrypts with HE when directed by the 
Guidance Module. The HE scheme does not store private keys. It receives pre-processed 
plaintext features and outputs an anomaly score. Panom ∈ [0,1]. When Panom ≥ θ , it 
requests an HE public key via a blockchain smart contract and encrypts the subsequent 
window of packets. The fog, therefore, determines when homomorphic evaluation will 
be conducted, weighing the cost of privacy and latency. Homomorphic computation of 
encrypted data is processed. They receive ciphertext inputs. ci = Enc(xi, pkt)and eval-
uate model functions fHEUsing CKKS arithmetic. Only authorized owners can decrypt 
the resulting ciphertexts. The key issuance and revocation of smart contracts is recorded 
in the system as hash, signature, and events. Smart contracts apply crucial lifetimes and 
can initiate multi-factor authentication or re-training models on abnormal notifications. 
Generates short-lived key pairs (pkt, skt)for each HE session, publishes the public key 
to the blockchain, and ensures private keys remain with the data owner.

Table 2  Description of artifacts and their domains in the neurocrypt framework
Artifact Examplefields Domain Owner / who stores it Purpose
Raw packet 
features

timestamp, 
pkt_size, flags, 
inter-arrival

Plaintext at edge; ephem-
eral at fog

Edge device → fog pre-
processing buffer

Input to LSTM 
Guidance 
Module

LSTM anomaly 
score P_anom

scalar ∈ [0,1] Plaintext at fog Fog (local), logged sum-
mary on blockchain

Guidance 
decision

Selected pack-
ets window

n packets after 
alert

Ciphertext (FHE) when 
protected; AES otherwise

Encrypted and sent to 
cloud HE nodes

Homomorphic 
inference

HE session 
public key

key_pk_t plaintext metadata on 
blockchain

KeyMgmt / blockchain Enables the 
cloud to evaluate 
the ciphertext

HE result encrypted infer-
ence output

Ciphertext until decrypted 
by the authorized party

Cloud → returned to 
owner

Final decision, 
decrypted by the 
owner

Fig. 4  Proposed NeuroCrypt Architecture for secure data transmission
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Table 2 presents the key artifacts of NeuroCrypt, including the description of sample 
fields, each a plaintext or ciphertext, its owner, and the purpose.

Algorithm 1  LSTM-Guided Selective FHE Processing (NeuroCrypt)

Require: streaming IoT data S(t), LSTM model M_LSTM deployed on fog

Require: parameters θ (threshold), n (initial FHE window), k (persistence), Δn (adaptive increment)

Ensure: selective use of FHE for suspicious traffic, blockchain audit events, and key rotations

1. Initialization:
 FHE_mode ← FALSE

 FHE_counter ← 0

 persist_count ← 0

 Deploy M_LSTM on fog; set θ, n, k, Δn.

2. For each incoming time window w of traffic S(t) do
 Preprocess S(t) → features, normalize, window.

 P_anom ← M_LSTM(S(t)) // anomaly probability in [0,1]

 Log local summary (optionally hashed to blockchain).

If P_anom ≥ θ, then ⟵ suspicious traffic
     persist_count ← persist_count + 1

if FHE_mode = FALSE then
        Request short-lived FHE public key Key_pk_t from KeyMgmt via smart contract.

        Publish key issuance event on blockchain.

        FHE_mode ← TRUE; FHE_counter ← n.

        Encrypt outgoing packets/windows using Key_pk_t (FHE/CKKS) while FHE_counter > 0.

        Decrement FHE_counter as packets/windows are consumed.

if persist_count ≥ k then FHE_counter ← FHE_counter + Δn ⟵ adaptive extension

else ⟵ normal traffic (P_anom < θ)
     persist_count ← 0

if FHE_mode = TRUE and FHE_counter = 0 then FHE_mode ← FALSE (revert to AES)

        Encrypt regular traffic using AES-256 (low overhead).

If FHE_mode = TRUE then send ciphertexts to Cloud FHE Nodes for homomorphic inference (LSTM  

gates approximated by low-degree polynomials); else forward AES-encrypted data to trusted compute as 

per deployment.

  Cloud returns encrypted inference output to the Owner.

  Owner performs MFA; decrypts with Key_sk_t; verifies integrity (SHA-256).

If integrity check fails, log tamper event to blockchain and trigger key revocation.

3. Periodic maintenance (policy):
Rotate short-lived keys per policy; publish rotation events to blockchain.

 Archive blockchain logs; revoke stale or compromised keys.

4. Failure handling:
If KeyMgmt denies key issuance → fall back to AES and log event.

If Cloud reports noise budget exhaustion → request model re-quantization or bootstrapping; notify 

operator.

LSTM only operates on plaintext and is only used on the fog layer in the Neuro-
Crypt framework. It examines lightly filtered momentary IoT information and provides 
a probability score of an anomaly. Local AES 256-encryption protects the brief expo-
sure of plaintext when the data is sent or stored in buffers. Once the score falls below a 
predefined threshold, it is encrypted with Fully Homomorphic Encryption (FHE) and 
sent to the cloud to be encrypted and inferred. Since the typical LSTM models do not 
support encrypted numbers, the cloud node computes the secure computations using 
polynomially approximated LSTM gates. Such a setup has helped to defend the sensitive 
traffic, and on the other hand, the fog can easily identify irregularities.

2  Literature review
The recent works have become more focused on the question of how to integrate differ-
ent kinds of deep learning, specifically the Long Short-Term Memory (LSTM) network, 
with a variety of cryptographic mechanisms (such as Homomorphic Encryption (HE)) 
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and fuzzier machine learning (FL) approaches to safeguard information throughout its 
lifecycle. These hybrid models can (1) remove the capability of more sophisticated cyber 
threats since they can learn temporal and contextual dependencies and (2) guarantee 
privacy owing to the encrypted computation. The versatility of different contributions 
exploring secure neural models, HE-friendly architectures, blockchain-based key man-
agement, and privacy-preserving approaches to learning is observed in the literature 
investigating the generic contexts of the IoT ecosystems. Recent research has sought to 
develop efficient and sustainable deep learning systems, which enhance accuracy in the 
face of limited data and computing resources. In addition to encryption-related stud-
ies, several researchers have examined sustainable and optimized deep-learning solu-
tions to address data shortage and resource limitations in IoT security. Senanayake et al. 
[38] provided an approach through which multiple organisations may employ machine 
learning models without revealing their confidential information to each other. They uti-
lize the SMPC, which enables them to undertake the required calculations on encrypted 
data and, simultaneously, maintain the privacy of inputs. Decentralised counter-terror-
ism needs all sites; all sites are identical, and personal information is guaranteed on both 
ends.

Manh et al. [39] proposed a privacy-enabled framework for identifying cyber threats 
in IoT-enabled blockchain networks. Safe sharing of IoT data with a cloud service pro-
vider uses the CKKS scheme and a SIMD algorithm. Experimental results have been 
presented that indicate that the proposed technique can provide 91% accuracy with 
minimal overhead, which is nearly the same as the non-encrypted performance.

Badawi et al. [40] introduced OpenFHE, which was motivated by earlier FHE librar-
ies, including PALISADE, HElib and HEAAN. OpenFHE supports bootstrapping and 
changing schemes and can provide hardware acceleration via a Hardware Abstraction 
Layer. It has modes specific to users and compilers to meet different development needs. 
The information about the architecture is provided in the current document, and addi-
tional documents can be explored individually.

Lee et al. [41] proposed ResNet-20 with the RNS-CKKS FHE scheme with bootstrap-
ping and tested it on the CIFAR-10 data. They did not choose to replace ReLU and Soft-
max with simple alternatives, but used sophisticated techniques to evaluate their action 
well. Indeed, they have verified that deep learning using private-key encryption is fea-
sible, as they achieved 92% accuracy, close to that obtained by a non-encrypted model.

Gentry [42] proposed a fully homomorphic encryption (FHE) framework that allows 
one to evaluate any function on encrypted data. The point is that a fully homomorphic 
encryption can run its own optimised decryption circuit on encrypted input – a condi-
tion referred to as bootstrap. Due to this effort, the contemporary FHE systems could 
evolve.

Cheon et al. [43] depict that with their scheme, it is possible to perform addition and 
multiplication on encoded real numbers. A significant development is when a process is 
used to maintain precision, and noise can remain low when the modulus is varied. They 
can do encrypted math using a special batching technique, RLWE, and cyclotomic rings, 
which do not reduce accuracy.

Bhandari. R [44] investigated how various deep learning techniques preserve privacy, 
focusing on key issues, penetration testing events and resistance measures. Differential 
privacy and homomorphic encryption typically address model inversion attacks. The 
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review helps to understand that, despite the development of valuable tools, federated 
learning and secure data management should be used continuously in all ML processes 
to protect privacy fully.

Narkedimilli et al. [45] suggested a type of federated learning (FL) designed for the 
Internet of Things (IoT) that uses different advanced security features to meet privacy 
and security needs. The framework allows the use of Decentralised Attribute-Based 
Encryption (DABE), local data encryption, and decentralised authentication in IoT. HE 
enables individuals to operate on encrypted information securely, and SMPC enables the 
training of machine learning models without sharing confidential information. Due to 
blockchain, SMPC gives its result securely and offers an open explanation of changes 
and the integrity of all information in the FL network.

Bossuat et al. [46] provided recommendations of parameter sets in Learning With 
Errors (LWE) to facilitate their application in Fully Homomorphic Encryption (FHE) 
schemes over various levels of security. They determine a broad spectrum of FHE 
parameter configurations regarding the degree of effectiveness of each and the level of 
protection. Besides that, they also examined available open-source tools that assist in 
parameter selection, contributing to thefeasibility of how FHE is employed in practice.

Xie et al. [47] discussed and reviewed techniques that improve HE in PPFL. The review 
covers general optimisation, algorithmic techniques, hardware and hybrid optimisation 
techniques and examines their issues and challenges. A mapping of optimisation meth-
ods is provided, making recommendations for future work to enable larger and practical 
HE-based PPFL systems.

Liu et al. [48] divided the literature on homomorphic encryption into three groups 
based on the development generated by the extension of PHE to AHE: bootstrapping, 
precision improvement, and solution enhancement. The paper categorises AHE use 
cases into groups according to the complexity of the application. It outlines the most 
recent trends, providing insights into the possible future of research and utilisation of 
AHE.

Asynchronous federated learning was proposed by Xiong et al. [49] to ensure that pri-
vacy remains preserved even in edge-based environments with multimedia data. In their 
approach, they rely on RABE and DP to guarantee complete privacy and flexibility in 
participation across devices. Experimental evaluation of the scheme indicates that its 
run time reduces by 63.3% in cryptography, 61.9% in global aggregation, and it is highly 
accurate on MNIST (86.7%), CIFAR-10 (70.8%) and Fashion-MNIST (86.1%).

Istaltofa et al. [50] trained linear regression and LSTM models on the price data of 
Bitcoins obtained on Yahoo Finance from 2014 to 2024. The findings state that LSTM 
is much more adequate than linear regression, resulting in lower MSE and RMSE and 
a perfect R² performance. LSTM seems to be particularly effective in dealing with sud-
den changes observed in cryptocurrency, providing an advantage in financial trend 
prediction.

Xiang et al. [51] reviewed the applicability of LSTM, neural networks and CNN to pre-
dict prices in the cryptocurrency industry. To improve the predictive ability of the mod-
els, the study employs technical indicators and sentiment data. The best precision was 
observed when the three architectures were used in a hybrid model, as witnessed by the 
RMSE value of BTC, ETH and BNB. Irrespective of these concerns, this paper identifies 
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why deep learning-based hybrid models could help enhance the accuracy of forecasts 
and support risk management in digital asset markets.

They experimented with various new models to test how well the deep learning 
approaches could predict the price of cryptocurrencies, as reported by Wu et al. [52]. 
The authors tested variations of LSTM networks, CNNs and the Transformer model. 
Univariate and multivariate tools were examined based on various cryptocurrencies to 
predict close prices a few weeks into the future. A volatility analysis proved that, in the 
context of the COVID-19 pandemic, the prices underwent substantial changes quickly. 
Two separate tests were conducted: (1) based on pre-COVID-19 data, how well the 
models would estimate the initial period of the pandemic and (2) based on new COVID-
19 data, to predict prices in future years. Convolutional LSTM generated the highest 
prediction accuracy when the methodology utilised several input variables.

Singla. S [53] suggested a method to achieve security in the message exchange between 
devices in the Industrial Internet of Things (IIoT) with the help of Spiking Neural Net-
works (SNNs) and blockchain. Calculations with SNN’s consumption are much quicker 
and use less memory. If the information on the IIoT network is not malicious, blockchain 
seals it to prevent malicious individuals from altering it. Combining the Interplanetary 
File System (IPFS) and smart contracts can vastly improve the effectiveness and speed 
at which data can be used and processed. 5G enhances the architecture, thus reducing 
latency and improving reliable network packets. They determine the effectiveness and 
security of the system by quantifying various parameters, like loss, different time scales, 
contract performance, and the bit error rate (BER).

Kumar and Kim [54] suggest identifying cyberattacks in the Internet of Health Things 
(IoHT) with the help of both FL and LSTM networks. EFL-LSTM implies that FL pre-
serves sensitive information, and LSTM can capture time-series activities that can assist 
in identifying cyber threats. The fact that feature selection is implemented in-house 
makes the system more efficient, and FL ensures that the process can be extended and 
run in a decentralised manner.

Jony et al. [55] present a concept of an LSTM-based IDS system that detects both 
existing and new types of cyber threats. The findings emphasise the model as flexible 
and precise, which offers what is required for next-generation security solutions to cope 
with emerging patterns of attacks. The problem of IoT security is raised in the work, and 
a solution is introduced that can be applied to different systems.

Sarkar et al. [56] explained why RNNs and a form of vector-valued neural synchro-
nisation could assist in the safe exchange of keys in the IIoT. The approach is based on 
drive-response mechanics that enhance synchronisation and cryptography in IIoT sce-
narios requiring tight timing. The study focuses on the architecture of coupled RNNs as 
they react to different input and output delay types. Besides this, the work also considers 
response-based RNN systems without delays, since this direction of secure neural-based 
communication protocols that can be applied to IIoT devices has been scarcely studied.

Prasanna et al. [57] introduced a method to identify network threats depending on 
how events and sequences of network traffic correlate on different time scales using 
LSTMs—the operations aid in reducing the false positives and increasing the system 
accuracy. Placing BDA alongside the LSTM model, the researchers addressed the issues 
connected to the complexity of calculation and training, and the interpretation of the 
model became significantly faster. The suggested IDS was deployed on Apache Spark 
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with the NSL-KDD dataset and performed effectively against various parameters, dem-
onstrating superior performance to the conventional IDS methods.

Despite the advances in providing IoT with better security via privacy-preserving 
computation and intelligent anomaly detection, there is still a huge gap in research at 
the newly emerging aggregation of encrypted deep learning and real-time and adaptive 
threat mitigation on resource-constrained IoT devices. Table 3 shows a comparison of 
existing techniques used in the literature. There have been previous studies on all per-
mutations of homomorphic encryption (HE), secured multiparty computation (SMPC), 
federated learning (FL), and blockchain to protect sensitive data, and it has been shown 
that LSTM and deep neural models are effective at modelling the temporal dynamics 
of cyberattacks. These methods, however, tend to focus on either privacy or detection 
accuracy alone and rarely simultaneously without significant latency, scalability, or 
implementation complexity trade-offs. The current HE-based systems are usually limited 
in adaptability and computationally expensive. In contrast, the LSTM-based systems, 
despite their accuracy, need access to plaintext and therefore cannot support strong pri-
vacy guarantees. Moreover, although research considers FL or differential privacy in a 
decentralised learning environment, few have considered deploying these mechanisms 
into a coherent framework that can perform encrypted model inference, allow dynamic 
key management, and achieve regulatory compliance (e.g., GDPR). As a result, an inte-
grated solution capable of secure, low-latency, and intelligent analysis of encrypted IoT 
data is required, which is currently not sufficiently examined.

Figure 5 shows the existing literature’s techniques for secure and privacy-preserving 
IoT networks. The surveyed works also concentrate much on encrypted machine learn-
ing (40%) (SMPC, HE), which has attracted much attention recently in the desire to per-
form computation on encrypted data. The remainder of the literature, 10%, is FL-based 
IoT Security and Blockchain-based Key Management, both focusing on making decen-
tralised trust and privacy-preserving federated learning a reality. LSTM-based Intrusion 
Detection Systems (IDS) and HE + Deep Learning hybrid models follow with 6–7% each, 
a small, although growing, use of temporal deep learning methods with encryption. 
The remaining contributions, 17%, are categorised into various areas, including crypto 
prediction, IoT messaging, and key exchange protocols. This analysis shows that while 
there have been significant developments in different research areas like HE or FL, very 
few existing studies combine encrypted anomaly detection, adaptive key management, 
and blockchain-based trust, highlighting the uniqueness of the proposed NeuroCrypt 
framework.

3  Problem statement
Although both encrypted computation and deep learning-based intrusion detection 
have enormous potential, the existing IoT security frameworks lack an integrated solu-
tion that guarantees real-time threat detection, end-to-end data privacy, and scalabil-
ity. The majority of the current solutions consider privacy and intelligence as orthogonal 
objectives: Cryptographic techniques keep data safe when it’s stored or being sent, but 
to analyse it, the data has to be decrypted, which can expose sensitive information dur-
ing the process; LSTM-based models are excellent at spotting unusual patterns over 
time, but since they work with unencrypted data, they can’t be used in sensitive areas 
like healthcare or critical infrastructure.
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Ref 
No.

Contributions Techniques Dataset Results Research 
Gap

Limitations

 [38] SMPC-based en-
crypted ML across 
institutions

SMPC, CNN, 
Logistic 
Regression

Structural & 
functional MRI

Secure multi-
party com-
putation with 
practical ML 
models

No real-time 
threat 
modeling

High com-
putational 
cost, limited 
temporal 
adaptability

 [39] Privacy-preserving 
threat detection 
for blockchain IoT

CKKS, SIMD, 
DNN, Distrib-
uted Learning

IoT-based block-
chain dataset

91% accuracy 
with minimal 
overhead

Limited 
adaptability 
to evolving 
threats

No integra-
tion with 
LSTM or 
time-series 
analysis

 [40] OpenFHE: open-
source FHE library 
with hardware 
acceleration

FHE, HAL, PALI-
SADE, HEAAN

Library and 
framework-level 
evaluation

Support for 
bootstrap-
ping and 
compiler-level 
development

No integra-
tion with 
intelligent 
models or 
IoT-specific 
scenarios

Generic 
platform, 
lacks use-
case-specific 
implementa-
tions

 [41] HE with deep 
learning 
(ResNet) for 
encrypted image 
classification

RNS-CKKS, 
ResNet-20

CIFAR-10 92% accu-
racy under 
encryption

No anomaly 
detection 
or real-time 
capability

Focused on 
classification, 
not security 
context

 [42] First design of 
Fully Homomor-
phic Encryption 
(FHE)

Ideal Lat-
tices, Bootstrap 
technique

Theoretical 
framework

Proof-of-concept 
for FHE feasibility

Not opti-
mized for 
real-time or 
applied ML 
tasks

High com-
putational 
complexity, 
non-practical 
early model

 [43] Approximate HE 
arithmetic with 
low-noise real 
number encoding

CKKS, RLWE, 
Cyclotomic 
Rings

Mathematical 
validation

Efficient en-
crypted math 
with batching 
and low noise

No use in 
intelligent 
anomaly 
detection 
frameworks

No ML 
integration 
or adaptive 
learning

 [44] Penetration test-
ing framework 
for deep learning 
privacy tools

Differential 
Privacy, HE, FL

Review and anal-
ysis framework

Highlighted 
privacy vulner-
abilities and 
mitigation 
techniques

No concrete 
model 
implemen-
tation or 
integration 
strategy

Conceptual 
review, lacks 
empirical 
results

 [45] FL with block-
chain and DABE 
for IoT

FL, SMPC, DABE, 
Blockchain

Simulated 
IoTframework

Secure FL 
training with de-
centralized key 
management

No deep 
learning-
based 
anomaly 
detection

Complex key 
manage-
ment, lacks 
encrypted 
inference

 [46] Security guide-
lines and param-
eter sets for FHE

LWE, Open-
source tools

Cryptographic 
parameter 
simulations

Practical recom-
mendations for 
FHE use in real 
systems

No AI 
model or 
time-series 
analysis 
integration

Param-
eter design 
focused, not 
application-
oriented

 [47] Optimization 
strategies for HE 
in PPFL

HE, Feder-
ated Learning, 
Hardware 
Optimization

Literature survey Mapped chal-
lenges and 
solutions for 
large-scale HE 
systems

No imple-
mentation 
or evalua-
tion in IoT 
networks

Survey-
based, lacks 
experimental 
verification

 [48] Survey on Ap-
proximate HE 
(AHE) and its 
evolution

AHE, CKKS, 
Bootstrapping

Comparative 
review

Identified trends 
and use-case 
categorizations

No model or 
framework-
based 
implemen-
tation

Focused on 
theoretical 
progression

Table 3  Comparison of the existing techniques



Page 15 of 39Kumar et al. Discover Computing          (2025) 28:301 

A promising candidate is Fully Homomorphic Encryption (FHE), which promises to 
allow computations on encrypted data. Its use is, however, delayed by the high compu-
tational expense, complicated model updates, and inefficiency in real-time applications, 
particularly when used with deep learning models such as LSTM. In addition, secure key 
management is also a bottleneck. The centralised IoT system is not suited to be decen-
tralised and dynamic in structure and character, and the blockchain-based solutions, 
despite being more optimistic, are hardly ever combined with encrypted analytics and 
intelligent threat response seamlessly.

Most systems use fixed threat models and cannot rotate keys, reconfigure policies, or 
otherwise update detection models in reaction to new attack patterns. IoT surroundings 
are at a constant risk of emerging and advanced threats without real-time flexibility.

Ref 
No.

Contributions Techniques Dataset Results Research 
Gap

Limitations

 [49] Asynchronous FL 
for multimedia in 
edge IoT

RABE, Differen-
tial Privacy, FL

MNIST, CIFAR-10, 
Fashion-MNIST

High ac-
curacy with 
reduced runtime 
and global 
aggregation

No homo-
morphic en-
cryption or 
encrypted 
learning 
integration

Focus on FL, 
limited to 
multimedia

 [50] Compared LSTM 
and Linear Regres-
sion on Bitcoin 
data

LSTM, Linear 
Regression

Yahoo Finance 
(BTC 2014 to 
2024)

LSTM outper-
formed regres-
sion with lower 
MSE and RMSE

No security 
context or 
encrypted 
data 
handling

Application-
specific, not 
security-
driven

 [51] Hybrid DL model 
with LSTM, CNN, 
NN for crypto 
forecasting

LSTM, CNN, 
Neural Network

BTC, ETH, BNB Hybrid model 
improved fore-
casting accuracy

No privacy-
preserving 
or encrypt-
ed analytics 
used

Focused on 
finance, lacks 
real-time 
constraints

 [52] Evaluated LSTM, 
CNN, Trans-
former for crypto 
prediction

LSTM, CNN, 
Transformer

Pre- and Post-
COVID cryptocur-
rency datasets

Conv-LSTM 
achieved highest 
accuracy on mul-
tivariate inputs

No 
encrypted 
framework 
or threat-
resilience 
tested

Financial 
context, no 
cyberthreat 
modeling

 [53] Secure IIoT mes-
saging using SNN 
and Blockchain

SNN, 
Blockchain, 
IPFS, Smart 
Contracts

IIoT network 
simulation

Low latency, 
tamper-proof 
communication

No deep 
temporal 
learning or 
encrypted 
AI

No LSTM or 
predictive 
anomaly 
detection

 [54] Cyberattack 
detection in IoHT 
using FL and 
LSTM

FL, LSTM, Fea-
ture Selection

ECU-IoHT Better than tra-
ditional models, 
protected data

No encrypt-
ed model 
inference

Limited inte-
gration with 
HE or secure 
computation

 [55] LSTM-based IDS 
for cyber threat 
detection

LSTM CIC-IoT2023 98.75% accuracy, 
F1-score 98.59%

No privacy-
preserving 
mechanisms

Operates on 
plaintext, not 
encrypted 
data

 [56] RNN-guided 
neural synchroni-
zation for IIoT key 
exchange

Coupled RNNs, 
Drive-Response 
Mechanism

IIoT communica-
tion framework

Secure key 
exchange pro-
tocol with delay 
analysis

No encrypt-
ed analytics 
or anomaly 
detection

Protocol-fo-
cused, lacks 
detection 
layer

 [57] Big data-aware 
LSTM IDS with 
reduced false 
positives

LSTM, BDA, 
Apache Spark

NSL-KDD Better detection 
than traditional 
IDS

No encryp-
tion or 
secure 
computation

Privacy con-
cerns, lacks 
secure key 
management

Table 3  (continued) 
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In such a way, the central issue is the absence of a coherent framework that would 
enable encrypted anomaly detection, decentralised trust, and real-time flexibility with-
out performance losses. Ideal research should incorporate the cryptographic power of 
FHE, the predictive power of LSTM, and the decentralised trustworthiness of block-
chain to realise secure, scalable, and intelligent threat remedies. NeuroCrypt fills this 
gap with a proposal of a hybrid architecture with the capabilities of encrypted inference, 
dynamic key management, and tamper-evident logging, a new paradigm of privacy-pre-
serving IoT security.

4  Proposed methodology
To address the complicated issues discussed earlier in a complete way, this section intro-
duces NeuroCrypt. This system uses Fully Homomorphic Encryption (FHE), LSTM-
based anomaly detection, and blockchain-based key management to ensure secure and 
smart threat reduction in IoT networks. NeuroCrypt offers encrypted data processing 
and real-time threat detection in the same architecture, unlike traditional solutions, 
where privacy and analytics are addressed differently. It is tuned to edge, fog, and cloud 
deployments via model quantisation and ciphertext packing, among others, to guaran-
tee low latency and minimal resource utilisation. The framework also allows dynamic 
and decentralised key management and strong access control through the integration of 
smart contracts and multi-factor authentication, rendering it scalable and able to meet 
contemporary data protection regulations.

Figure 6 shows the architecture of the proposed NeuroCrypt framework, which con-
sists of fully homomorphic encryption (FHE), LSTM-based anomaly detection, block-
chain-based dynamic key management, and multi-factor authentication (MFA) to realise 
privacy-preserving and dynamic threat detection in IoT networks. The initial stage is the 
encryption of the sensitive IoT data with homomorphic encryption, which enables the 
secure computation of ciphertext without revealing the raw data. The ciphertext is fur-
ther submitted to an anomaly detection module, where an LSTM model can learn the 
temporal patterns and identify the possible threat. Access control to the anomaly detec-
tion pipeline is additionally enforced using MFA mechanisms. This system constantly 

Fig. 5  Classification of the techniques used in literature
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Fig. 6  Working of the proposed NeuroCrypt architecture
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communicates with a blockchain layer, a dynamic key rotation, and a management 
component to make sure that encryption keys are safely rotated and all security-related 
events are logged permanently, which provides tamper-evident auditing.

Algorithm 2  Secure IoT Data Processing with FHE, Blockchain, and MFA

Input: Di, keys pk,sk, threshold τ, Blockchain_SC, MFA_Policy

Output: D′, Blockchain event log

1. pk,sk← KeyGen()

2. Initialize Blockchain_SC, LSTM(τ), MFA_Policy ← {Biometric, OTP, Token}

3. For each Di:
a. ci← FHE.Enc(pk, Di), csum← homomorphic compute

b. anomaly_score← LSTM_Detect(logs)

c. If anomaly_score ≥ τ:

i. Blockchain_SC.log("Intrusion Detected")

ii. sk← KeyManagement(sk, True), block Di
d. Else:

i. MFA_Result← MFA_Verify(MFA_Policy)

ii. If MFA_Result =  Success:

1. If threat_detected or time_elapsed >  interval:

a. (pk′,sk′)← KeyGen()

b. Blockchain_SC.update(sk′), Blockchain_SC.revoke(sk)
c. sk←sk′

2. D′← FHE.Dec(sk, csum)

3. If SHA256(D′) == stored_hash:

a. Return D′

4. Else:

a. Blockchain_SC.log("Tampering Detected")

iii. Else: Block Di (MFA failure)

4. End for

Figure 7 depicts the flowchart of the complete work process of the AHE-BKM algo-
rithm of secure and intelligent processing of IoT data. The workflow is initialised by pre-
paring such major modules as Fully Homomorphic Encryption (FHE), Blockchain Smart 
Contracts (SC), LSTM anomaly detection models, and Multi-Factor Authentication 
(MFA) policies. On each incoming data request DI, the data is encrypted to a ciphertext 
ci, and homomorphic computation is performed on it. Access logs are next extracted, 
and an LSTM-based anomaly score is estimated. A dynamic key rotation is initiated by 
the system in case the anomaly score exceeds a preconfigured threshold T , the request 
is blocked, and an intrusion entry is recorded on the blockchain. MFA is applied in case 
of no detected anomaly, and the system assesses if a threat is detected or if a key rota-
tion period has expired. During either a threat or a rotation scenario, new encryption 
keys are issued, the blockchain is updated, and old keys are cancelled. At this point, the 
ciphered output is deciphered, and integrity is checked with SHA256 hashing.

4.1  LSTM guidance module for encrypted anomaly detection

The most critical advancement of the NeuroCrypt framework is the integration of Fully 
Homomorphic Encryption (FHE) with Long Short-Term Memory (LSTM) anomaly 
detection. FHE ensures high privacy, yet it is computationally expensive, which renders 
it impractical to implement on all the IoT traffic. The module takes the output of the 
probability of anomaly of the LSTM. It converts it into a transparent encryption choice 
to ensure the sensitive traffic is not compromised, but does not overload resource-con-
strained devices.

The proposed LSTM Guidance Module presented in Fig. 8 used a fixed anomaly-detec-
tion threshold of 0.95, which was a conservative design, and such a design guarantees 
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Fig. 7  Flowchart for the processing of NeuroCrypt
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that only flows with an extremely high probability of an anomaly activate FHE encryp-
tion. This environment is more security-conscious by reducing false negatives, which is 
the highest risk of allowing malicious traffic to make it through without being encrypted. 
When activated, the module encrypts the subsequent n = 50 packets, which is approxi-
mately one second of IoT traffic sufficient to cover burst anomalies, but not excessively 
using resources. In these conditions, protection against threats is scaled, and an adaptive 
increase of 25 packets by the encryption window is gradually increased.

Algorithm 3  LSTM-Guided Encrypted Processing

16.   If P_anom < θ for k consecutive windows:

17.       Revert to AES mode

18. End for

Input: IoT traffic sequence S(t), Threshold θ, Window size n, Persistence window k

Output: Encryption decision {FHE or AES}

1. For each incoming sequence S(t):

2.    P_anom ← LSTM(S(t))        // anomaly probability in [0,1]

3.    If P_anom ≥ θ then

4.        // Suspicious traffic detected

5.        For next n packets:

6.            Encrypt using FHE(S_i, Key)

7.        End for

8.        If anomaly persists (P_anom ≥ θ for k consecutive windows):

9.            n ← n + Δn         // adaptive extension of encryption window

10.       Else

11.           Continue monitoring

12.   Else

13.       // Normal traffic

14.       Encrypt using AES-256(S(t), Key)

15.   End if

The parameters that govern this process are determined through careful design con-
siderations. The threshold θ acts as the decision boundary for switching between AES 
and FHE modes. The window size n specifies the number of packets to be encrypted 
with the FHE, following the detection of an anomaly by ensuring short bursts of sus-
picious traffic are adequately covered. The persistence window k provides stability by 

Fig. 8  Flowchart of the LSTM Guidance Module
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requiring anomalies to continue across multiple observation windows before the adap-
tively extending FHE coverage, thereby avoiding unnecessary reactions to these transient 
spikes. Finally, in the adaptive increment, Δn defines how much of the FHE coverage 
is extended when anomalies persist, enabling the system to scale its protection accord-
ing to the severity and duration of the threat. These parameters ensure that the LSTM 
Guidance Module balances strong privacy with computational efficiency in real-time 
IoT environments.

4.2  Proposed mathematical model

This section is organised in a way that gradually establishes the data flow, computation 
procedures, and system security assurances.

4.2.1  System definition

Here, the NeuroCrypt system is abstracted as a mathematical tuple of different modules: 
data input, an encryption and decryption mechanism, a machine learning model, key 
management, a blockchain ledger, and an authentication system. This abstract represen-
tation lays the foundation for modelling secure computation over IoT data. All of the 
elements of the tuple have their particular role, ensuring the general integrity and pri-
vacy of the framework.

The NeuroCrypt system is defined as a tuple:

N = (D, E , Dec, Mθ , Kt, B, A, τ )� (1)

where:

 	• D is the IoT data stream {d1, d2, . . . , dT}.
 	• E  is the Fully Homomorphic Encryption (FHE) function: E : Rn × Kt → Cn.
 	• Dec is the corresponding FHE decryption function.
 	• Mθ  is the encrypted LSTM anomaly detection model with parameters θ .
 	• Kt = (pkt, skt) denotes the public/private key pair at time t.
 	• B is a blockchain ledger used to store cryptographic events and key rotations.
 	• A is the Multi-Factor Authentication mechanism.
 	• τ  is the anomaly detection threshold.

4.2.2  Data encryption and transformation

In this case, we outline the encryption of IoT data, as it has not yet been analyzed. This 
is why Fully Homomorphic Encryption (FHE) is applied to every data vector and what 
qualities it should have to be used in secure computation. The transformation guaran-
tees that the raw data will never be revealed in the processing, and downstream tasks, 
like anomaly detection, can be carried out without confidentiality issues.

Each data vector dt ∈ Rn is encrypted as:

ct = E(dt, pkt)� (2)

where ct is the ciphertext. This transformation preserves the semantic security of dt, 
even when used for computation.

Homomorphic operations on ciphertexts obey:

E (d1) ⊕ E (d2) = E(d1 + d2), E (d1) ⊗ E (d2) = E(d1 · d2)� (3)
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These properties allow encrypted input to be processed directly without exposing raw 
features.

4.2.3  Encrypted LSTM processing

This concerns implementing the encrypted data into a specially adapted LSTM model. 
Because the conventional LSTM operations are non-linear and cannot be used with 
homomorphic encryption, they are represented by low-degree polynomials. This adap-
tation enables the model to be applied securely on ciphertexts and allows recognition 
of time-dependent patterns on encrypted streams, with no information leakage, as 
explained in the section.

In the proposed framework, the non-linear activation functions of the LSTM gates 
(sigmoid and tanh) are approximated using third-degree Chebyshev polynomials. We 
adopt this method because Fully Homomorphic Encryption (FHE) cannot evaluate sev-
eral exponential or hyperbolic functions efficiently. Cubic approximation provides a 
good tradeoff between viability and precision. Lower-degree polynomials do not fit the 
curvature of the activation functions and add more serious approximation errors. In 
contrast, higher-degree polynomials add more multiplicative depth to encrypted opera-
tions, which results in too high latency. This demonstrates that the polynomial replace-
ment makes encrypted inference feasible without compromising anomaly detection 
effectiveness.

Let an LSTM cell have input. xt, hidden state ht−1, and cell state ct−1. The LSTM 
gates in plaintext are:

ft = σ (Wf xt + Uf ht−1 + bf )
it = σ (Wixt + Uiht−1 + bi)

∼
c t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ ∼
c t

ot = σ (Woxt + Uoht−1 + bo)
ht = ot ⊙ tanh (ct)

� (4)

In NeuroCrypt, all these functions are approximated with low-degree polynomials (e.g., 
Chebyshev or Taylor approximations):

σ (x) ≈ ∼
σ (x) , tanh (x) ≈

∼
tanh (x)� (5)

Encrypted LSTM output becomes:

ŷt = Menc
θ (ct)� (6)

where Menc
θ  Applies all operations homomorphically.

4.2.4  Anomaly detection and key management

Following the encrypted inference step, the framework uses a thresholding operation 
to identify potential outliers. This describes how an observed anomaly results in con-
structing another key pair, and a blockchain ledger is modified. By so doing, the system 
ensures reactive and proactive security control, which guarantees against active threats 
and exposure in case of a breach. The Practical Byzantine Fault Tolerance (PBFT) con-
sensus protocol runs in the blockchain layer (herein referred to as blockchain) of the pro-
posed NeuroCrypt framework. PBFT has been chosen instead of resource-consuming 



Page 23 of 39Kumar et al. Discover Computing          (2025) 28:301 

authentication, like Proof of Work, due to its lightweightness, low energy use, and appli-
cability to permissioned IoT. A blockchain network was set up, and the validator nodes 
were deployed on fog and cloud computing servers to avoid extra computing power 
charges to the constrained edge devices. Such a design allows unreliable validation of 
key management transactions: generation, rotation, and revocation processes can be 
realized without excessive load on the IoT devices. The resilience offered by the selection 
of PBFT also provides resilience to a fraction of malicious or faulty validators and has 
low communication and computation overhead. It measured the consensus performance 
of transaction throughput and latency, which are essential to support near real-time key 
updates and logging of anomalies in the IoT networks.

Anomaly score ŷt Is compared against a detection threshold τ :

Flagt = I[ŷt > τ ]� (7)

If Flagt = 1, dynamic key rotation is triggered:

Kt+1 = KeyGen () , B.append(Kt+1, t)� (8)

The blockchain ledger B is implemented as:

Bi = Hash(Bi−1 ∥ KeyEventi ∥ Sigi)� (9)

Each new key event is digitally signed and linked via cryptographic hashes to ensure 
immutability and auditability.

4.2.5  Multi-factor authentication and decryption

After a threat has been analyzed, its decrypted findings are protected by a Multi-Factor 
Authentication (MFA) system. This is the process of authentication that integrates user 
identity, token authentication, and biometric authentication.

To authorize decryption:

At = MFA(user, token, biometric)� (10)

If At = True, then:

d′
t = Dec(ŷt, skt)� (11)

This ensures only authenticated users have access to decrypted results.

4.2.6  Security definitions

This section formalizes the security guarantees provided by the NeuroCrypt framework. 
It proposes four main properties, i.e., data confidentiality, model confidentiality, block-
chain integrity, and end-to-end privacy. Each of them is characterized by probability 
boundaries to describe the resilience of security against different adversaries. These defi-
nitions are the marks that the system has to fulfill to be declared secure.

Data Confidentiality:

∀ A : Pr[A(ct) ⇒ dt] ≤ ∈, (negligible)� (12)

Model Confidentiality
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Pr [A( ŷt) ⇒ θ ] ≤ δ� (13)

Blockchain Integrity:

Tamper (B) ⇒ Collision (Hash) ∨ Break (Sig) ⇒ negligible� (14)

End-to-End Privacy:

Leakage (Menc
θ ( ct )) ≈ 0� (15)

4.2.7  Theorems and lemmas

This proves the key security theorem of the system, which confirms that the joint appli-
cation of FHE, blockchain, and MFA ensures solid defense against adversarial threats. 
Theoretical assumptions in its support include semantic security and unforgeability. The 
theorem summarises the key NeuroCrypt model claim: that it can enable privacy-pre-
serving, tamper-resistant, and auditable inference over encrypted IoT data.

Theorem 1  Privacy-Preserving Threat-Resilient Inference.
Under the assumptions of FHE semantic security, digital signature unforgeability, colli-
sion-resistant hashes, and enforced MFA, the system guarantees all defined properties 
for any polynomial-time adversary A.

4.2.8  Supporting lemmas

To prove the theorem, this presents the necessary lemmas for why each component acts 
safely within specified limits. These comprise the viability of assessing LSTM function-
alities in a homomorphic way, the verifiability of the blockchain entries, and the impos-
sibility of leakage of inferences due to the encryption of the intermediate results. These 
lemmas give the logical spine that supports the main theorem.

Lemma 1  Homomorphic LSTM Evaluation.
Under the assumption that each non-linear activation in LSTM can be estimated with a 
degree d polynomial, then:

Menc
θ (ct) ∈ HE-Supported Operations� (16)

Lemma 2  Blockchain Verifiability.
If Bi = Hash(Bi−1 ∥ Eventi), then altering Bj for j < i requires recomputing valid 
hash chains, which is computationally infeasible.

Lemma 3  Encrypted Privacy.
Since all intermediate states of Mθ  are encrypted and never exposed:

Pr [A( view) ⇒ dt] ≤ negl (λ )� (17)

9. Unified Equation Pipeline.
This section gives an overview of the whole operation pipeline of NeuroCrypt. Infor-

mation is transferred between inputs and outputs by a series of steps: encryption, 
encrypted inference, anomaly flagging, key management and conditional decryption. 
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The following steps are presented in a linear order to explain the role played by each 
mathematical operation in making the system reliable.

dt
E→ ct

Menc
θ→ ŷt

Threshold→ Flagt
KeyGen, MFA, Dec→ d′

t� (18)

10. Final Guarantee.
The conclusion proves the overall security status of the NeuroCrypt framework. This 

conclusion summarizes the model and indicates it is effective in real-life Internet of 
Things security situations.

For all t in execution time horizon T and all adversaries A bounded by poly (λ ), the 
NeuroCrypt framework ensures:

Confidentiality ∧ Integrity ∧ Adaptivity ∧ Auditability� (19)

5  Results and discussion
This section provides the results of the proposed NeuroCrypt framework’s performance 
metrics of detection accuracy, computational overhead, latency, privacy preservation 
effectiveness, and scalability. As done in previous studies, simulated IoT network traffic 
datasets with injected anomalies were used to evaluate it. The objective is to formalise 
that NeuroCrypt achieves real-time, privacy-preserving, and adaptive threat detection 
under resource limitations characteristic of IoT edges and fog conditions.

5.1  Dataset used

To evaluate the performance of the proposed framework, we considered an extensive 
IoT network traffic dataset to test the efficiency of the suggested NeuroCrypt frame-
work, which covers normal device operations and a broad spectrum of cyberattacks. 
The data is a collection of labelled traffic flows produced by numerous IoT devices in an 
innovative environment, including smart home hubs, surveillance cameras, smart locks, 
bright lights, and IoT sensors. The data consists of benign and malicious traffic, includ-
ing Distributed Denial-of-Service (DDoS) attacks, botnet communication, spoofing, 
injection attacks, malware traffic, and reconnaissance. The data has been obtained in IoT 
network environments realistically, meaning the traffic patterns represent how modern 
IoT devices behave and their vulnerabilities. The dataset’s characteristics of every traffic 
flow are denoted as a sequence of features based on packet-level and flow-level statistics. 
These attributes extract significant temporal and behavioural aspects of the network traf-
fic, which is essential for effectively identifying anomalies using the LSTM-based model 
in NeuroCrypt. The dataset was preprocessed before training the models, and the steps 
involved were data cleaning, normalisation, and division into time-series sequences with 
a window of 50 time steps, as that is the structure of input that the LSTM architectu-
reexpects. The processed data consists of an equal mixture of regular and malicious 
activity, facilitating robust training and testing of the proposed threat detection system. 
Table 4 gives a summary of the significant attributes utilised in the dataset.

Table  5 provides a comprehensive overview of the CIC-IoT2023 dataset. Approxi-
mately 16.7% of the flows represent benign traffic, such as DNS, HTTP, and MQTT 
communications from smart home and industrial IoT devices, while the remaining 
83.3% consist of malicious flows covering a broad spectrum of injected attack scenarios. 
These include high-volume Distributed Denial of Service (DDoS) and Denial of Service 
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(DoS) flooding attacks, brute force attempts on authentication services such as SSH and 
FTP, Mirai-like botnet communications, reconnaissance and scanning activities, and 
malware or injection traffic.

The dataset was first put through a structured preprocessing pipeline, including data 
cleaning, normalization, and sequence preparation, before being made available to the 
training process. When cleaning the data, repeated flows and incomplete records were 
eliminated to ensure consistency. Your missing values were addressed by imputation: 
without affecting your training, continuous numbers-related features were filled by 
median, categorical variables by their mode, and records with more than 20% missing 
items were dropped to eliminate the presence of noise. After the data was cleaned, it 
was normalized to scale all features to a similar level. Min-max normalization of con-
tinuous variables was calculated, where words of the range [0,1], attributes like packet 
size (length in bytes), and flow duration could not control the learning process. One-
hot encoding decodes categorical variables into a machine-interpretable format, such 
as network protocols and TCP flags. This made each feature contribute to the training 
and enhanced model convergence fairly. Lastly, the dataset was split into time-series 
sequences that can be processed with LSTM-based anomaly detection. Flows on the net-
work were separated into sliding windows with 50 time steps, so the modeling could 
study the temporal dynamics of the traffic pattern, but not rely on the individual pack-
ets or flows. Each sequence was assigned a label using majority voting, where it would 

Table 4  Description of attributes in the dataset
Attribute Name Description
Timestamp Time of packet or flow observation
Source IP Address IP address of the sending device
Destination IP Address IP address of the receiving device
Source Port Network port used by the source device
Destination Port Network port used by the destination device
Protocol Network protocol used (TCP, UDP, ICMP, etc.)
Packet Count Total number of packets in the flow
Packet Size (Bytes) Size of individual packets or total flow size
Flow Duration (ms) Duration of the network flow
Inter-Arrival Time (ms) Time between consecutive packets
Flags TCP flag indicators (e.g., SYN, ACK, FIN)
Payload Size Size of the payload within the packet
Anomaly Label Label indicating whether the traffic is benign or malicious (binary label)

Table 5  CIC-IoT2023 dataset statistics and features
Category Count Percentage Notes
Total Flows 33,000,000+ 100% IoT traffic collected from smart home/

industrial IoT devices
Benign Flows ~ 5,500,000 ~ 16.7% Normal traffic (DNS, HTTP, MQTT, etc.)
Malicious Flows ~ 27,500,000 ~ 83.3% Multiple attack scenarios injected
DDoS/DoS ~ 12,000,000 ~ 36% High-rate flooding (UDP/TCP/HTTP-based)
Brute Force / Password ~ 3,200,000 ~ 9.7% SSH/FTP brute force
Botnet / Mirai-like ~ 4,500,000 ~ 13.6% Botnet traffic from compromised IoT nodes
Reconnaissance/Scan ~ 3,800,000 ~ 11.5% Port scanning, service probing
Injection/Malware ~ 4,000,000 ~ 12.1% Code injection, malware payloads
Spoofing/Man-in-Middle > 1000+ ~ 0.002% Limited representation
Features Extracted 80+ ~ 0.0001% Includes packet-level, flow-level & time-

series statistics (see below)
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be labeled malicious if most of its constituent flows are labeled malicious and benign 
otherwise.

5.2  Performance metrics

We utilized a variety of performance metrics to thoroughly assess the efficiency of the 
NeuroCrypt framework. These measures evaluated the capacity of the system to iden-
tify anomalies more precisely, maintain low computationalcosts, and provide real-time 
reactions and safeguard the privacy of information when implementing encrypted 
computations.

5.2.1  Detection accuracy

Detection accuracy is a ratio of correctly classified examples in the dataset, both benign 
and malicious traffic. The high accuracy value shows that the LSTM-based anomaly 
detector is suitable for detecting attacks without generating too many false positives or 
false negatives.

Accuracy = TP + TN
TP + TN + FP + FN � (20)

Where:

 	• TP = True Positives (malicious correctly detected).
 	• TN = True Negatives (benign correctly detected).
 	• FP = False Positives (benign incorrectly flagged as malicious).
 	• FN = False Negatives (malicious traffic missed).

5.2.2  Inference latency

The inference latency is the duration required to process one sequence of encrypted IoT 
traffic with the LSTM model and obtain a detection result. This phase is one of the most 
important steps to ensure that this system can provide real-time or near-real-time threat 
detection even on resource-limited IoT devices.

5.2.3  Computational overhead

The three key measures utilised in estimating the computational overhead in Neuro-
Crypt include the CPU usage, the memory usage, and the time taken during encryp-
tion and decryption. All these measures are used to identify the efficiency of the system 
and the number of resources it needs during the work. CPU usage measures processing 
overheads due to cryptographic computations, whereas memory consumption indicates 
RAM usage during data processing and key handling. Data transformation and retrieval 
speed can be attained with the time required to encrypt and decrypt information.

5.2.4  Key management performance

Since dynamic key management is an inherent feature of NeuroCrypt, the latter is also 
included in the analysis concerning its efficiency, which is measured by two signifi-
cant performance indices. First is key rotation latency, or the delay implied in rotating 
encryption keys periodically or when required. This is an essential step towards avail-
ing a feature to the system to change cryptography keys based on security policies or 
other threats in a timely fashion without disrupting other processes. The second is the 
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blockchain transaction latency, i.e., the time required to log important management 
events, e.g., generation, rotation, or revocation, and to prove related cryptographic keys 
on the blockchain.

5.3  Results

This section outlines the outcomes of the NeuroCrypt framework, and its efficiency is 
discussed in terms of the two frequent issues: protection of privacy and threat detection 
in IoT networks in real time. Our performance metrics to measure the framework are 
accuracy in detection, latency in inference, computing cost, and efficiency in key man-
agement. Our results indicate that NeuroCrypt has better security and scalability than 
existing algorithms such as HE + DNN, FL -DABE -BC, and LSTM IDS.

Figure 9 shows the detection accuracy of the NeuroCrypt framework against various 
forms of attacks on the CIC-IoT2023 dataset. The model shows high accuracy on all the 

Fig. 10  NeuroCrypt Inference Latency among different device layers

 

Fig. 9  NeuroCrypt Detection accuracy for different classes of attacks
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categories, with benign traffic being identified with the highest accuracy (99.2%) and all 
the types of attacks having an accuracy above 96%. This substantiates that the system 
efficiently manages various cyberattacks related to IoT with minimal false positive rates. 
Furthermore, Fig. 10 illustrates the inference latency in the NeuroCrypt framework at 
the different device layers: Edge, Fog, and Cloud. The latency is the greatest on the edge 
devices (120 ms) since these devices have limited processing capabilities and the lowest 
on the cloud servers (40 ms), where more computational resources are provided. The Fog 
layer offers a reasonable latency (70 ms) performance, and thus it is a feasible solution 
to consider near real-time encrypted inference at the IoT networks. Moreover, Fig. 11 
shows the computational overhead of the NeuroCrypt framework regarding CPU usage 
and memory usage (MB) at various device layers. The overhead is more on edge devices 
(75% CPU, 350 MB RAM), since they are resource-constrained. The fog layer is balanced 
regarding resource consumption (55% CPU, 280  MB), so running an encrypted infer-
ence is a reasonable option. The cloud layer has the least overhead (30% CPU, 180 MB), 
so it can be used as a centralised aggregation point to coordinate the models. Addition-
ally, Fig. 12 shows the rotation latency of the blockchain-based key management module 
of NeuroCrypt. The measurements demonstrate that both key rotation variants have an 
extremely low latency, meaning that dynamic key updates can be carried out fast enough 
that they do not affect the real-time usage of the IoT network.

An essential component of evaluating NeuroCrypt is the False Negative Rate (FNR), 
since undetected anomalies represent traffic that is not encrypted and may expose sen-
sitive data. Across the CIC-IoT2023 dataset, the LSTM Guidance Module achieved an 
FNR of 0.8%, indicating that fewer than 1 in 100 attacks went undetected.

Figure 13 shows the confusion matrix of the LSTM-based anomaly detector, which can 
distinguish between regular and attack traffic. Most benign flows are accurately termed 
as usual, with only a few false positives. Almost all attack flows are identified, and only 
a few false negatives are drawn. The figure consequently highlights the credibility of the 

Fig. 11  NeuroCrypt CPU and Memory Usage per Device Layer
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LSTM as a guiding mechanism, which has the security of sensitive traffic effectively safe-
guarded under the NeuroCrypt.

Figure 14 shows the general performance of the LSTM model in terms of preci-
sion, recall, and F1-score. One can observe high values in the graph: precision = 0.987, 
recall = 0.985, and F1-score = 0.986. High precision indicates that most anomalous-
flagged flows are abnormal, with strong recall indicating that nearly all the attacks are 
detected. This balance has been tight, as indicated by thehigh F1-score, which proves the 
model’s strength. As the figure shows, the LSTM performs uniform detection, offering a 
reasonable basis for selective encryption decisions in NeuroCrypt.

Fig. 13  Confusion Matrix for the NeuroCrypt Model

 

Fig. 12  NeuroCrypt Key Rotation Latency
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To identify the contribution of each component in NeuroCrypt, we created three base-
line systems to compare. LSTM-only (Plaintext): It is an LSTM-based model that per-
forms threat detection, just like the model in NeuroCrypt, but it analyzes plaintext traffic 
and does not encrypt traffic. HE-only (Always-HE): Encryption process. A fully homo-
morphic encryption (HE) system encrypts all incoming traffic and uses a single LSTM 
model to process it using CKKS encryption. No selective and adaptive techniques are 
used. The following arrangement demonstrates the overall price and degree of protec-
tion with a full-HE strategy. AES + Trusted Compute (Traditional): A conventional setup 
where data is encrypted in transit using AES-256 and decrypted inside a trusted execu-
tion environment (TEE) or secure cloud node before LSTM-based inference. This is the 
type of security baseline that is deployed in the industry. NeuroCrypt (Proposed): The 
hybrid system integrates LSTM-guided selective homomorphic encryption, key rotation 
and blockchain-based key verification. The configurations are listed in Table 6, including 
the type of encryption used in each case, the privacy guaranteed by the configuration, 
and the predicted computation overhead.

To determine the computational cost and responsiveness of NeuroCrypt, we calcu-
lated the time to data ingestion for the overall threat detection. The data was measured 
in four setups, namely (1) LSTM-only detection (no homomorphic encryption), (2) AES 

Table 6  Comparison among the baseline configurations
System Encryption Method Computation Mode Privacy 

Level
Expected 
Overhead

LSTM-only None Plaintext Low Very Low
HE-only CKS FHE Fully Encrypted Very High Very High
AES + Trusted AES-256 + TEE Plaintext in TEE Medium Low–Medium
NeuroCrypt 
(Proposed)

Selective 
FHE + LSTM-guided

Hybrid (Encrypted/Plaintext) High Moderate

Fig. 14  LSTM Performance Metrics (Precision, Recall, F1-Score)
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with setup of trusted execution, (3) homomorphic encryption only, and (4) the proposed 
NeuroCrypt hybrid model. We also recorded the latency at the edge, fog, and cloud 
layers to represent a realistic deployment hierarchy. The cumulative distribution func-
tion (CDF) of the end-to-end latency of each of the four setups is presented in Fig. 15. 
The curve of NeuroCrypt is between the AES-trusted and the HE-only systems. This 
ascertains the hypothesis that the hybrid framework minimizes the latency without 

Table 7  Comparative latency analysis across baseline and proposed frameworks
System Edge (ms) Fog (ms) Cloud (ms) Median P95 P99
LSTM-only 40 52 78 56 84 102
AES + Trusted 52 68 95 72 115 138
HE-only 240 380 520 380 610 790
NeuroCrypt 125 190 260 190 290 360

Fig. 16  Comparison graph of detection accuracy with existing techniques

 

Fig. 15  End-to-end latency across four configurations (LSTM-only, HE-only, AES + Trusted, and NeuroCrypt)
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compromising privacy. Table  7 summarizes the latency distribution across the device 
layers and statistical percentile (Median, P95, P99).

Figure 16; Table 8 compare the detection accuracy of NeuroCrypt with leading base-
line frameworks. NeuroCrypt matches or exceeds prior state-of-the-art while outper-
forming HE-based DNN [45], FL-based models [53], and LSTM IDS [33], confirming 
its effectiveness in encrypted, adaptive threat detection—Figure 17; Table  9 present 
inference latency across layers. NeuroCrypt achieves significantly lower latency than 
HE + DNN [45] due to LSTM optimisations and ciphertext packing. It also matches or 
improves on FL-DABE-BC [53], supporting its suitability for real-time IoT applications. 
Figure  18; Table  10 illustrate how the proposed NeuroCrypt compares to other tech-
niques. The proposed framework’s CPU utilisation is better than the other two compara-
tive techniques.

Table 11 compares computational overhead (CPU %) for NeuroCrypt, prior schemes, 
and three logical. The Always-HE incurs the highest overhead, reaching 95% at the edge, 
80% at the fog, and 40% at the cloud, since all traffic is homomorphically encrypted irre-
spective of anomaly status. At the opposite extreme, the Never-HE shows the lowest 
overhead (20%, 15%, and 10% respectively), but provides no encryption and therefore no 

Table 8  Comparisons of detection accuracy with existing techniques
Model Accuracy (%)
NeuroCrypt 99.20%
HE + DNN [45] 91%
FL-DABE-BC [53] 95%
LSTM IDS [33] 98.75%

Table 9  Comparison of inference latency (ms)
Model Edge (ms) Fog (ms) Cloud (ms)
NeuroCrypt 120 70 40
HE + DNN [45] 200 150 80
FL-DABE-BC [53] 100 90 50

Fig. 17  Comparison graph of Inference Latency (ms) with existing techniques

 



Page 34 of 39Kumar et al. Discover Computing          (2025) 28:301 

security, making it impractical. The Threshold-HE, based on a naive rule, reduces some 
overhead compared to Always-HE but still wastes resources by encrypting benign traffic, 
resulting in 82%, 60%, and 32% overhead across edge, fog, and cloud layers. Compared 
to these s, NeuroCrypt achieves a balanced trade-off, with 75%, 55%, and 30% overhead, 
offering significant efficiency gains while still ensuring selective encryption of anoma-
lous traffic. When compared with prior works, HE + DNN [45] exhibits higher overhead 
(85%, 65%, 35%), while FL-DABE-BC [53] shows lower values (50%, 50%, 25%) but at the 
cost of reduced privacy-preserving capability.

The comparative Table 12 presents the pros of the proposed NeuroCrypt framework 
compared to other state-of-the-art approaches. However, the current solutions, such as 
HE + DNN, FL-DABE-BC, and LSTM IDS, are incomplete: to the best of their engage-
ment with privacy or anomaly detection individually, they still do not provide a com-
mon framework that can perform real-time encrypted model inference. The suggested 

Table 10  Comparison of computational overhead (CPU %)
Model Edge Fog Cloud
Always-HE 95% 80% 40%
Never-HE 20% 15% 10%
Threshold-HE 82% 60% 32%
NeuroCrypt 75% 55% 30%
HE + DNN [45] 85% 65% 35%
FL-DABE-BC [53] 50% 50% 25%

Table 11  Comparison of computational overhead (CPU %)
Model Edge Fog Cloud
Always-HE 95% 80% 40%
Never-HE 20% 15% 10%
Threshold-HE 82% 60% 32%
NeuroCrypt 75% 55% 30%
HE + DNN[45] 85% 65% 35%
FL-DABE-BC [53] 50% 50% 25%

Fig. 18  Comparison graph of Computational Overhead (CPU %) with existing techniques
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framework provides a higher detection precision of 99.2% and significantly reduced 
latency in the edge, fog, and cloud environments. Also, NeuroCrypt provides tamper-
evident auditing, which is logged to the blockchain and can be complied with data pro-
tection regulations like GDPR and HIPAA. NeuroCrypt addresses the key limitations of 
the existing solutions since it offers a single, flexible, and scalable solution, which sets a 
new standard of IoT network protection regarding security.

These results indicate that the proposed framework is superior to the current meth-
ods in that it comprehensively tackles their major weaknesses. In contrast to the previ-
ous solutions, which either concentrate on privacy or detecting accuracy only separately, 
the proposed system combines privacy-preserving encrypted computation, real-time 
anomaly detection, and blockchain-based auditability into one system. Framed by the 
traits of fully homomorphic encryption, LSTM-based sequence learning, dynamic key 
management, and multi-factor authentication, it offers a study involving the combina-
tion of either LSTM-based sequence learning, with the function of long sequence learn-
ing, enabling the provision of high-order privacy guarantees while ensuring no losses 
in detection performance and scalability. The complete preprocessing pipeline, practi-
cal polynomial gate approximations, and simple consensus design assure that the sys-
tem is viable enough to be deployed in an edge, fog, and cloud deployment. Altogether, 
the concept introduces a novel standard of practice by providing encrypted inference, 
dynamic security, and tampering auditing within the IoT systems- a feature that is con-
comitant only to other methods.

Table  13 shows that the latency, memory, energy, and communication overhead of 
the plaintext LSTM baseline and NeuroCrypt framework on constrained IoT devices 

Table 12  Comparative analysis of existing state-of-the-art techniques with proposed neurocrypt
Aspect Existing Techniques Proposed NeuroCrypt (AHE-BKM)
Architecture HE + DNN [45]; FL-DABE-BC [53]; LSTM IDS 

[33]
FHE + LSTM + Blockchain + MFA 
(Hybrid)

Privacy Mechanisms Partial (HE only or FL only); LSTM operates 
on plaintext

Fully Homomorphic Encryption (FHE) 
enables encrypted model inference

Threat Detection LSTM IDS [33] detects anomalies but without 
encrypted processing

LSTM-based encrypted anomaly 
detection (secure & adaptive)

Key Management Some works use static keys; FL-DABE-BC uses 
blockchain

Dynamic key rotation with Block-
chain Smart Contracts

Tamper-Proof Auditing Not consistently implemented Blockchain logs all security events 
(Intrusion/Tampering)

Multi-Factor Authentica-
tion (MFA)

Not included in existing techniques Integrated MFA (Biometric, OTP, 
Token) for key access

Latency (Edge devices) 200 ms (HE + DNN), 100 ms (FL-DABE-BC) 120 ms
Latency (Fog) 150 ms (HE + DNN), 100 ms (FL-DABE-BC) 80 ms
Latency (Cloud) 80 ms (HE + DNN), 50 ms (FL-DABE-BC) 40 ms
Detection Accuracy HE + DNN: 91%, FL-DABE-BC: 95%, LSTM IDS: 

98.75%
99.20%

Computational Overhead 
(Edge CPU %)

85% (HE + DNN), 50% (FL-DABE-BC) 75%

Blockchain Integration FL-DABE-BC uses blockchain for FL only Used for dynamic key management 
& tamper-proof audit

Handling of Evolving 
Threats

Limited adaptability Adaptive anomaly detection + dy-
namic key rotation

Compliance (GDPR/
HIPAA)

Partial Fully supports privacy-preserving 
computation & auditability

Innovation Combine privacy or detection, but not both, 
in the encrypted domain

Unified architecture: Privacy-preserv-
ing, adaptive, scalable
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are alike. As anticipated, encrypted inference comes with the added cost, as the average 
latency per-flow can be seen to almost double between 25 ms during plaintext execution 
to 140 ms during NeuroCrypt execution. On the same note, peak-memory consumption 
increases by 90 MB up to 410 MB, and this is the ciphertext expansion caused by FHE 
operations. The energy usage also comes into play with the increase by 0.35 J per 1,000 
flows to 1.8  J per 1,000 flows, illustrating the computational power of homomorphic 
evaluation and its effects on battery-powered IoT nodes. Outside the computational and 
energy requirements, a communication overhead must also be considered: the size of 
a beanstalk plaintext packet of 128 bytes grows to around 512 bytes on an encrypted 
expression of 4 homomorphic messages, i.e., a size increase by a factor of 4. This over-
head also directly impacts bandwidth-limited IoT networks, where the heavy ciphertext 
traffic may swiftly congest channels.

These results show a fundamental trade-off between security and overhead. A com-
plete traffic encryption in FHE would be the most private, but with prohibitive latency, 
energy consumption, and communication cost, and a plaintext-only base would be 
free of overhead but provide no security assurance. NeuroCrypt maintains a selective 
tradeoff instead: by encrypting only that portion of the traffic that the LSTM Guidance 
Module deems as an anomaly, it also makes the overhead proportional to the fraction 
of the traffic to be encrypted rather than scaled directly based on the model traffic. This 
will allow the framework to have a high level of privacy assurances where required, and 
ensure resource requirements stay within manageable ranges of resource-constrained 
IoT equipment.

6  Conclusion
Recent increase in the application of IoT devices has led to a chronic interest in frame-
works that can meet real-time record of anomalies and end-to-end data security con-
nected on resource-constrained and distributed frameworks. The existing solutions aim 
to guarantee either privacy being preserved or paramount risk-probing, but seldom both 
without entailing influential trade-offs in latency, scalability ranges, and detection per-
centages. Moreover, paradigms rooted in classical deep learning approaches like LSTM 
are incapable of functioning on encrypted data, leading to privacy loss, and the Homo-
morphic Encryption (HE)-on-device solutions involve hefty computational tariffs. They 
cannot be integrated into real-time IoT. To reduce this gap, the current paper proposes 
NeuroCrypt, an innovative hybrid architecture of security, which is a mixture between 
Fully Homomorphic Encryption (FHE) and encrypted LSTM-based anomaly detection. 
Other computational optimisations in the framework include dynamic key manage-
ment (enabled by the blockchain), multifactor authentication (MFA), and optimisation 
in the edge, cloud, and fog environments. According to the findings, the given frame-
work has 99.2% accuracy over other methods. The blockchain key rotation system is also 
rapid and safe, with key updates in near real-time, low startup latency, and the capacity 

Table 13  Latency and energy consumption on constrained IoT devices
Metric Plaintext LSTM NeuroCrypt (FHE-enabled)
Average Inference Latency (per flow) 25 ms 140 ms
Peak Memory Usage 90 MB 410 MB
Energy Consumption (per 1000 flows) 0.35 J 1.8 J
Communication Overhead (per packet) 128 bytes 512 bytes
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to respond to new threats in real-time. Within the framework of future work, Neuro-
Crypt can be extended under an encrypted environment to even more advanced deep 
learning models (e.g., transformer models), the FHE scheme can be further optimised to 
permit large-scale use, and federated learning can be incorporated to enable decentral-
ised, privacy-preserving threat detection in distributed yet integral systems of the IoT. 
One of the weaknesses of this study is that the analysis was conducted on familiar attack 
scenarios but was not explicit in assessing the framework’s resistance to adversarial eva-
sion attempts. Adaptive attacks with a traffic pattern that adversaries develop to appear 
harmless continue to be a formidable problem for deep learning-based intrusion detec-
tors. This can also be addressed during eventual work, where methods of increased loss 
resistance to NeuroCrypt, like adversarial data augmentation, model training and adver-
sarial threat intelligence will be studied. Beyond this, further extensions should examine 
more deployment-oriented paths, such as characterizing latency and energy constraints 
on IoT devices with limited resources, incorporating hardware accelerators to amortize 
the FHE cost and systematically comparing the constraints with milder cryptographic 
methods. Those will assist in such a way that NeuroCrypt can be considered not only in 
terms of detection accuracy but also concerning scalability and sustainability, as well as 
its applicability to real-world IoT conditions.
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